
Fault Attack Resilience on Error-prone Devices

A study into the effects of error injection on micro-controllers and

software security strategies to recognise and survive attacks

Martin S. Kelly

A thesis presented for the degree of

Doctor of Philosophy

Information Security Group

Royal Holloway, University of London

2022

Declaration

Declaration

These doctoral studies were conducted under the supervision of Prof. Keith Mayes.

The work presented in this thesis is the result of original research carried out by

myself, in collaboration with others, whilst enrolled in Royal Holloway’s Information

Security Group as a candidate for the degree of Doctor of Philosophy. This work

has not been submitted for any other degree or award in any other university or

educational establishment.

Martin S. Kelly

January, 2022

Fault Attack Resilience on Error-prone Devices 1

2 Fault Attack Resilience on Error-prone Devices

Acknowledgements

Acknowledgments

The work described in this report would not have been possible without the assistance

of John Walker, ex of SiVenture Ltd. John’s help in preparing samples, along

with his infectious enthusiasm for sharing and passing on knowledge and skills, made

the early lab-work educational and entertaining. In a similar vein, my thanks and

gratitude are due to Prof. Keith Mayes who supervised this project. Keith’s

patience and support have been very much appreciated as work here progressed in

fits and starts while being interleaved with full-time employment. The third individual

worthy of special thanks is Julian Brown of Nexus Electronics, Cambridge. Julian’s

suggestions and corrections for some of the circuit boards developed for this study

saved countless hours and helped avoid expensive revisions.

All three of the above have my eternal thanks and gratitude. Without them, this

work would not have been completed.

Additional thanks are also due to Prof. Konstantinos Markantonakis and to

Dr. Raja Akram for their ad-hoc advice, encouragement and recommendations, as

this project progressed.

This list would be incomplete without expressing my gratitude to Dr. David

Everett, ex of NatWest Development Team, and Dato’ "Tony" Lee Kwee Hiang,

founder of Iris Technologies Sdn. Bhd., both of whom gave me free rein to cause

electronic trouble with chips while working on groundbreaking smartcard initiatives.

Their encouragement and trust led to a career in implementing defensive code that

ultimately resulted in this study.

All of the above have been friends as well as colleagues throughout this project,

and I hope, at some point, to be able to return the favours.

Thank you all!

Fault Attack Resilience on Error-prone Devices 3

Acknowledgements

Acknowledgements and thanks are also due to the following organizations for the

use of their images and code. The images’ copyrights remain the property of the

organizations and individuals listed below.

� Figure 2-9 — Nanoscope Services Ltd., Bristol, BS15 4PJ.

� Figures 2-5 & 2-6 — draw heavily on Roberto Avanzi’s original work in "TikZ

for Cryptographers", https://www.iacr.org/authors/tikz/.

� AVR Speck implementation by LuoPeng [10], used in Section 4.3.

� Digital Locksmiths Ltd., Cambridge. For access to a back catalogue of com-

mercially developed and security certified smartcard applications, funding these

studies, and paying for all of the hardware developed during this investigation.

4 Fault Attack Resilience on Error-prone Devices

https://www.iacr.org/authors/tikz/

Abstract

Abstract

This thesis demonstrates a new practical approach to understanding

a micro-controller’s behaviour when subjected to error inducing at-

tacks. It also shows a novel mechanism for understanding the effects

of errors and the efficacy of counter-measures. The insights gained

enabled the development and evaluation of a new C compiler capa-

ble of inserting effective counter-measures that could not otherwise

be realised via off-the-shelf tools.

While conducting this research, we identified properties of the equip-

ment used to induce errors that enabled us to construct a new, very

flexible, low-cost error injection workstation. The new tools provide

a framework for accurately injecting perturbation errors and for re-

trieving the resulting device state. This demonstrates the ease with

which an adversary can attack a target and provides the ability to

self-test one’s defences.

The findings of this study have particular relevance in the field of

general-purpose micro-controllers. These devices are playing an ever-

increasing role in everyday life, for example, home automation gad-

gets in the Internet-of-Things. The consequence of this increased di-

versity of application is that products are often specified and commis-

sioned without considering the vulnerabilities of stand-alone micro-

controllers. Similarly, the development and programming tasks are

often delegated to engineers who are unfamiliar with the coding dis-

ciplines required to resist attack.

This study shows that the tools and techniques required to protect

such devices can be made readily available and are not the sole pre-

serve of well-funded laboratories or big corporations.

Fault Attack Resilience on Error-prone Devices 5

6 Fault Attack Resilience on Error-prone Devices

Contents

Page

Cover 1

Declaration . 1

Acknowledgements . 3

Abstract . 5

Contents 7

List of Contents . 7

List of Tables . 10

List of Figures . 12

List of Abbreviations . 17

Forward 25

1 Introduction 27

1.1 Research Questions . 30

1.2 Methodology . 33

1.3 Significance . 34

1.4 Structure of this Thesis . 37

2 Background 39

2.1 Threats . 41

2.2 Attacks . 48

2.3 Errors . 68

2.4 Defence Techniques . 88

2.5 Observations . 91

3 Categorising Errors 93

3.1 Fault Models . 96

7

Contents

3.2 Test Strategy . 99

3.3 Experiments . 106

3.4 Data and Interpretation . 136

3.5 Summary . 136

4 A New Laser Workstation 139

4.1 Components . 141

4.2 Multi-Pulse Proof of Capability . 152

4.3 Creeping Barrage - Blind Attack on Known Code 158

4.4 Summary . 161

5 Testing Security Defences 163

5.1 Practicalities . 166

5.2 Defences . 169

5.3 Results and Analysis . 181

5.4 Application . 188

5.5 Summary . 190

6 Automating Defence Generation 193

6.1 Background . 197

6.2 Defensive C Compiler . 201

6.3 Defending Execution Path . 203

6.4 Code Efficiency . 224

6.5 Summary . 230

7 Security Impact 233

7.1 Implications . 235

7.2 Strategies . 244

8 Conclusions and Further Work 247

8.1 Original Goals . 250

8.2 Future Research Directions . 258

8.3 The Last Word . 261

Bibliography 263

A Test Harness 279

8 Fault Attack Resilience on Error-prone Devices

Contents

A.1 Components . 280

A.2 Roles and Responsibilities . 282

B Test Circuit Boards 287

B.1 Purpose . 288

B.2 Board 1 . 288

B.3 Board 2 . 291

B.4 Board FPGA . 294

C Defensive C-Compiler 301

C.1 Operation . 303

C.2 Samples . 304

Fault Attack Resilience on Error-prone Devices 9

List of Tables

List of Tables

2.1 Key Nulling Exploit . 74

3.1 ATTiny841 Features . 102

3.2 No Operation Results . 120

3.3 Inc/DecNo Operation Results . 121

3.4 Arithmetic Operation Results . 122

3.5 Observed laser induced errors on load/store operations 123

3.6 Conditional branch . 124

3.7 Laser induced errors . 125

3.8 Branch Test Results . 129

3.9 Branch Test Results, fixed location, Third Q-cycle 130

3.10 Errors by Power and Aperture . 135

4.1 Test Pulses, Permutations and Time. (𝑛 = 32, 𝑎𝑡 4𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑠−1) . . . 156

4.2 Jump Matrix Termination States . 157

4.3 Speck Round Attack . 160

5.1 Test Roles . 182

5.2 Test Samples . 184

5.3 Hybrid Defence Test . 190

6.1 Triple Values . 205

6.2 Call/Return - Single Pulse Attack . 213

6.3 Call/Return - Double Pulse Attack 215

6.4 Conditional Branches - Single Pulse Attack 219

6.5 Conditional Branches - Double Pulse Attack 221

6.6 Macro Defended Conditionals . 223

6.7 Code Volume . 225

6.8 Bootstrap - Code Compilation . 229

10 Fault Attack Resilience on Error-prone Devices

List of Tables

6.9 Banking MAC - Code Compilation 229

Fault Attack Resilience on Error-prone Devices 11

List of Figures

List of Figures

2-1 CMOS Inverter . 58

2-2 Power Measurement . 59

2-3 Typical Power Waveform . 60

2-4 Crude Exponentiation . 61

2-5 DES Round 1 . 63

2-6 DES S-Box Structure . 64

2-7 DPA Accumulated Trace . 64

2-8 ePassport Chip . 66

2-9 Chip Probing . 66

2-10 DES Final Rounds . 72

2-11 Java Source Code . 75

2-12 Java bytecode . 75

2-13 Body Bias Transistor . 79

2-14 Semiconductor Band Structure . 81

2-15 Laser workstation . 83

2-16 Frontside and Rearside Attack . 84

2-17 Etched Package . 84

2-18 Rebonded IC . 85

2-19 Static RAM, Single Bit . 86

2-20 Simplified SRAM Layout . 86

2-21 AVR Registers . 87

2-22 Silicon on Insulator . 89

3-1 ATTiny851 Pin-Out . 102

3-2 Nd:YAG Laser Workstation . 105

3-3 Basic Test Program . 108

3-4 DUT Support, Board 1 . 110

3-5 Board 1 Control Logic . 111

12 Fault Attack Resilience on Error-prone Devices

List of Figures

3-6 Test Campaign Configuration . 113

3-7 Test Program 1 . 114

3-8 Error Distribution Plots . 115

3-9 Lock-up Error . 115

3-10 DUT support, Board 2 . 117

3-11 Board 2 Control Logic . 117

3-12 Instruction Test . 118

3-13 Laser Firing . 119

3-14 Error Locations . 125

3-15 Error Sensitivity Map . 127

3-16 Branch Test Code . 128

3-17 Pre-Fetch Test . 131

3-18 Signal Timing . 132

3-19 Power and Aperture Test . 133

4-1 Laser Diode with Heatsink and Lens 142

4-2 Laser Station . 143

4-3 Trigger Signal Propagation . 145

4-4 Laser Control After Signal Propagation 145

4-5 Laser Test Rig . 146

4-6 Regular Pulse . 147

4-7 Laser Tripple Pulse . 148

4-8 Alignment Basic . 148

4-9 Alignment Parallax . 149

4-10 Alignment Offset . 149

4-11 Workstation . 150

4-12 Branch Tests . 152

4-13 Branch Test Execution Paths . 153

4-14 Branch Test Execution Paths . 155

4-15 Speck Encryption . 159

Fault Attack Resilience on Error-prone Devices 13

List of Figures

4-16 Speck Test Control . 160

5-1 Execution States . 168

5-2 Unprotected . 171

5-3 Double Test . 171

5-4 Retest at Destination . 172

5-5 Inverse Test . 173

5-6 Double Data . 174

5-7 Data Inverse . 174

5-8 Checksum Data . 175

5-9 Redundant Representation . 176

5-10 Repeat Calculation . 176

5-11 Modified Compensated . 177

5-12 Alternative Algorithm . 178

5-13 Inverse Calculation . 178

5-14 Jump Id . 179

5-15 Waymark, Late Test . 180

5-16 Waymark, On the Fly . 180

5-17 Termination States . 185

5-18 Disassembled Double Test . 187

5-19 Disassembled Inverse Test . 187

5-20 Hybrid Defence . 189

5-21 Hybrid Defence Termination States 190

6-1 Simple Double Test Source . 195

6-2 Accidental Optimised Output . 195

6-3 Optimised Output . 196

6-4 Unoptimised Output . 197

6-5 Compilation Stages . 202

6-6 Test Structure . 204

6-7 Triple Update . 204

14 Fault Attack Resilience on Error-prone Devices

List of Figures

6-8 Defended Call . 207

6-9 Defended Entry/Exit . 208

6-10 Call/Return Test Program . 209

6-11 Possible Paths with Two Skipped Instructions 211

6-12 Defended Branch . 217

6-13 Branching Test Program . 218

6-14 Double Checking Macros . 222

7-1 Equipment Availability . 236

7-2 Device Vulnerability . 240

7-3 Development Skills . 242

A-1 Test Rig Schematic . 280

A-2 Sample Alignment . 282

A-3 Zone Identification . 283

A-4 Campaign Parameters . 284

A-5 Test Script . 285

A-6 Campaign Progress . 285

B-1 Board 1 Populated . 289

B-2 Board 1 Schematic . 290

B-3 Board 2 Populated . 292

B-4 Board 2 Schematic . 293

B-5 Board FPGA . 295

B-6 Board FPGA Rear . 295

B-7 Board FPGA Power Schematic . 296

B-8 Board FPGA DUT . 297

B-9 Board FPGA Connections . 298

B-10 Simulation . 299

C-1 DCC Project Directory Structure. 302

C-2 Call & Return — Source Code . 304

Fault Attack Resilience on Error-prone Devices 15

List of Figures

C-3 Call & Return — Undefended Output 305

C-4 Call & Return — Defended Output 306

C-5 Branching Test — Source Code . 307

C-6 Branching Test — Undefended Output 308

C-7 Branching Test — Defended Output 309

C-8 Variable Declaration — Source Code 310

C-9 Variable Declaration — Output . 310

16 Fault Attack Resilience on Error-prone Devices

List of Abbreviations

List of Abbreviations

𝜇C - Micro-Controller.

A small computer on a single integrated circuit chip. 29–32, 34, 35,

40–43, 45–49, 53–55, 58, 60, 62, 63, 76, 78, 80, 87–92, 95–97, 99–101, 103, 106,

110, 111, 115, 116, 118–120, 126, 127, 130, 137, 146, 152, 162, 164–167, 174,

183, 192, 203, 204, 207, 225, 231, 238, 242–245, 249, 252, 254, 256

AES - Advanced Encryption Standard.

A standardized symmetric encryption algorithm designed as a replacement for

DES. 73, 74, 80, 97

APDU - Application Protocol Data Unit.

The communication packets exchanged between a smartcard reader and a smart

card. 175

CA - Certification Authority.

The issuer of digital certificates.

Digital certificates attest to the relationship between a public key, the named

subject associated with the key. 52

CC - Common Criteria.

International standard for information technology security evaluation. . . 95

CCD - Charge-Coupled Device.

Integrated circuit image sensor used primarily in digital cameras. . 144, 149,

258, 281, 282

CD - Compact Disk.

60 mm radius optically readable digital data storage device. 147

Fault Attack Resilience on Error-prone Devices 17

List of Abbreviations

CFI - Control Flow Integrity.

Ensuring program flow control transfers are deliberatly instigated by the exe-

cuting program and not a consequence of faulty execution. 199, 203, 207, 230,

231, 243, 245, 257, 260

CMOS - Complementary metal–oxide–semiconductor.

The principle technology used in integrated circuit manufacture. 79

CPA - Correlation Power Analysis.

An enhancement on DPA involving a model of a device’s power consumption

to augment trace categorization process. 64, 65

CPU - Central Processing Unit.

The main processor responsible for executing program code. 98, 111, 116, 132,

157, 165, 190, 191, 209, 251, 252, 260, 289, 302

CRT - Chinese Remainder Theorem.

A theorem which gives a unique solution to simultaneous linear congruences

with coprime moduli. It is of particular interest when applied to RSA as it

significantly reduces computer execution time when performing exponentiation

to large moduli. 70, 95

CSV - Comma-Separated Value.

An ASCII text file in which each record occupies a single line and each field in

the record is separated by a comma (or similar punctuation). 112

DCC - Defensive C Compiler.

The experimental code generator written for this investigation. 201, 203, 210,

212, 216–218, 222, 224–228, 230–232, 256, 257, 302

DDoS - Distributed Denial of Service.

An synchronised attack, coming from multiple sources, with the intention of

making the target unusable or unobtainable. 47

18 Fault Attack Resilience on Error-prone Devices

List of Abbreviations

DES - Data Encryption Standard.

A widely deployed standardised symmetric encryption algorithm. It has been

superseded by AES. 63, 73, 227

DFA - Differential Fault Analysis.

A cryptographic attack performed by comparing the erroneous output from a

cryptographic process. 69, 74, 80, 87, 158

DIL - dual in-line package.

Chip packaging that uses two parallel rows of pins with 2.54 mm pin to pin

separation (0.1 inch). 107

DPA - Differential Power Analysis.

Statistical analysis of side-channel leakage relating the power consumption of a

device. 62, 65, 192

DUT - Device under test.

The sample being investigated or attacked. 31, 33, 34, 37,

38, 50, 55, 59, 97, 99, 103–116, 119, 132, 133, 137, 138, 141–146, 150, 151, 158,

159, 165, 166, 169, 192, 226, 234, 238, 244, 250, 251, 253, 254, 256, 257, 259,

280–284, 287–289, 291, 294, 299

EM - Electro Magnetic Radiation.

Waves in the electro-magnetic field propagating through space. . . . 54, 238

EMV - Europay Mastercard Visa.

The industry standard for bank cards and payment terminals. 74, 95, 106, 169

FIB - Focused Ion Beam.

A device, similar in operation to an electron microscope, that uses a focused

beam of ions for deposition or ablation of material. 67, 88

FPGA - Field-Programmable Gate Array.

Configurable integrated circuit that is customisable in-circuit. . 146, 150, 294,

299

Fault Attack Resilience on Error-prone Devices 19

List of Abbreviations

GCC - the GNU Compiler Collection.

Open source compiler tools originally written as the compiler for the GNU

operating system. . 172, 173, 192, 198, 202, 210, 217, 222, 224–228, 232, 256,

257

GIGO - Garbage in, Garbage Out.

Unexpected results derived from calculations on unexpected data. 29

GPIO - General Purpose Input Output.

Uncommitted digital signal pins on a 𝜇𝐶 that may be configured to interact

with external peripherals. 99, 102, 103

HDL - Hardware Description Language.

A computer language used to describe the structure and behaviour of electronic

circuits. E.g. Verilog and VHDL. 249

IC - Integrated Circuit.

Otherwise known as a silicon chip. 44, 50, 58, 59, 62, 67, 68, 74, 77, 79–89, 97,

99, 100, 107, 112, 125–127, 134, 249

IoT - Internet of Things.

A network of physical devices with embedded 𝜇𝐶s capable of exchanging data.

35, 46–48, 99, 101, 137, 243, 261

IR - Intermediate Representation.

Internal data structures created by a compiler after parsing the source code..

200–202, 260, 261, 302, 303

ISA - Instruction Set Architecture.

An abstract definition of instruction behaviour that does not depend on the

characteristics of the implementation. 165, 190, 236, 249, 251

ISR - Interrupt Service Routine.

Code invoked in response to an interrupt signal. 131, 132

20 Fault Attack Resilience on Error-prone Devices

List of Abbreviations

JTAG - Joint (European) Test Access Group.

A hardware debugging interface to electronic components. 107, 109

LIDAR - Laser Imaging, Detection, and Ranging.

Range determination using time-of-flight of reflected laser pulses. . . 144, 253

LLVM - The LLVM Compiler Infrastructure Project.

The name "LLVM" itself is not an acronym; it is the full name of the project.

256, 257

LSI - Large Scale Integration.

Whole circuits, or ICs, on silicon as opposed to individual components. . . 97

LVDS - Low-voltage differential signaling.

Data signalling by transmiting information as the voltage difference between

two adjacent wires. 146, 299

MAC - Message Authentication Code.

A cryptographic checksum used to confirm the integrity, and sometimes also

the origin, of a message. 45, 227, 228

MitM - Man in the Middle.

An agent who is invisibly placed between both parties in a conversation who

has the opportunity to read and modify messages before forwarding them to

the intended recipient. 45

NDA Non-Disclosure Agreement.

A legally binding contract defining a confidential relationship whereby the sign-

ing parties agree that sensitive information they share will not be made passed

on third parties without the original owner’s consent 99, 100, 225

NIR - Near Infra Red.

The electromagnetic spectrum between 780 nm and 2500 nm. 83, 84, 87, 101,

133, 143, 258

Fault Attack Resilience on Error-prone Devices 21

List of Abbreviations

OBIC - Optical Beam Induced Current.

A laser injection technique to induce current flow within a semi-conductor. 81,

82

PCB - Printed Circuit Board.

A non-conductive material providing support for electronic components and pro-

viding inter-connection between those components via conductive tracks printed

or etched on the board material. 104, 107, 109, 291, 294

PKI - Public Key Infrastructure.

The set policies, processes and procedures using asymmetric cryptographic al-

gorithms to manage, distribute, and verify digital certificates and public keys.

52

ROP - Return Oriented Programming.

Deliberate corruption of the call stack to invoke code, typically libraries, already

resident in the machine. 198

RSA - Rivest Shamir Adleman.

A public key cryptographic algorithm used for encryption and digital signature.

69, 70

SER - Soft Error Rate.

The probabillity of a Single Event Upset (SEU) occurring. 68, 69

SEU - Single Event Upset.

A transient error in a silicon device caused by and external ionizing event. 68,

69, 77, 235, 241

SMID - Single Instruction Multiple Data.

Parralel operation of the same instruction on multiple data points. . . . 100

22 Fault Attack Resilience on Error-prone Devices

List of Abbreviations

SOIC - Small outline integrated circuit.

A surface-mounted integrated circuit package with pin separation of 1.27 mm

(0.05 inch). 102

SPA - Simple Power Analysis.

Analysis of a devices power consumption to infer internal behaviour. . 60, 62,

91, 137, 192

TTL - Transistor-Transistor Logic.

Defines the threshold voltages for digital logic implemented with 3.3 V or 5 V

devices. 144

USB - Universal Serial Bus.

A definition for cables, protocols and power, standardizing the connection of

peripherals and computers. 146, 253

VHDL - VHSIC Hardware Description Language.

Language to model the behavior of digital systems. 192

VHSIC - Very High-Speed Integrated Circuits Program.

A United States Department of Defense research program to develop very high

speed integrated circuits. 192

VLSI - Very Large-Scale Integration.

The process of integrating hundreds of thousands of transistors on a single

microchip. 249

VM - Virtual Machine.

Software emulation of a machine or computer. 76

WORM - Self replicating computer program.

A program that propagates through a network by duplicating itself and execut-

ing on neighbouring machines. 47

Fault Attack Resilience on Error-prone Devices 23

List of Abbreviations

YAG - neodymium-doped yttrium aluminium garnet Nd:YAG.

A crystal used as the laser medium for medium power solid-state lasers. 105,

134, 138, 141, 142, 144, 145, 150, 151, 161, 192, 252, 259, 288, 291, 294

24 Fault Attack Resilience on Error-prone Devices

Forward

Forward

In 1997 I found myself debugging some curious production-line failures. The world’s

first ePassport was due to be launched in Malaysia, and while production of the

inlays was gearing up, the unit failure rate became alarmingly high. It was my code

and, therefore, my problem. Each unit consisted of two integrated circuits and, when

tested after assembly, some responded with unexpected data. The issue was traced

back to the bonding machine supervisor, who, worried about production reliability,

frequently inspected the alignment of the wire bonding machine. High failure counts

coincided with these inspections. The inspection light was the root cause of the issue.

The chip’s internal program was corrupting its memory because of this light. The

immediate solution was to perform electrical tests in the dark; the long term solution

was to modify the internal program to survive execution errors. This fix was not a

defence against software bugs or unanticipated data crashing an application. It was

a defence against the CPU itself not reliably running its program. This was my first

exposure to Defensive Programming, and at this time, we considered errors to be a

nuisance rather than a threat.

Two years later, in 1999, while working on MyKad, Malaysia’s project for an

electronic national I.D. card, we saw the software partner responsible for the e-Purse

element attacking our code with a camera flash-gun. Flashes of light were being used

to induce errors deliberately. The defensive code behaviour needed to be extended to

cover all life-cycle states of the application. Defensive programming was needed to

protect assets, not just to improve production line efficiency.

It was not until 2002 that "Optical Fault Induction Attacks" were first publicly

described. Earlier theoretical papers on the consequences of errors could now be

combined with a reliable mechanism to induce them. What had been an open secret

in the industry was now public knowledge. Every smartcard application from here

on would need to be defensively coded and tested for fault resilience.

Over the following years, it became apparent that testing fault-tolerance was a

poorly understood art. I was responsible for getting multiple smartcard applica-

Fault Attack Resilience on Error-prone Devices 25

Forward

tions evaluated for security certification, and evaluators for ePassport, EMV, and

JavaCard/Global-Platform sometimes had conflicting views regarding defensive code

strategies. It appeared that the error effects, and consequently defences, were driven

by folk-lore and tradition. Apparently, nobody knew the best approach. This un-

certainty was expensive for me as a developer. One application, in particular, was

problematic. A single ROM-Mask, implementing the EMV payment card protocols,

was intended to be configurable to be either MasterCard or Visa as a production line

option.

The security evaluators assessing the MasterCard related code behaviour insisted

on a particular style of defence. The assessors of the Visa components insisted on

another. It was impossible to satisfy both at the same time.

This study was born out of a desire to shed light on that confusion, improve the

effectiveness of defensive code, and simplify its deployment.

26 Fault Attack Resilience on Error-prone Devices

Chapter 1

Introduction

Contents

1.1 Research Questions . 30

1.1.1 Nature of Errors . 31

1.1.2 Practicalities of Error Induction 31

1.1.3 Defences . 32

1.1.4 Deployment . 32

1.2 Methodology . 33

1.3 Significance . 34

1.3.1 Publications . 36

1.4 Structure of this Thesis . 37

27

Errors in software, and computers in general, are ubiquitous. Human error, man-

ufacturing defects and misunderstood problems introduce uncertainty into what is

widely perceived to be prescriptive or predictable behaviour. These errors can take

multiple forms and can have serious repercussions; they may be the consequences of

poor program design, implementation bugs, or, most dangerously, being deliberately

induced by an attacker.

� First of all, there is the simple case of inaccurate coding. Here typographical

mistakes by the programmer lead to erroneous results. Sometimes these errors

can go undetected through many rounds of debugging and testing but still have

catastrophic effects, for example, NASA’s Mariner 1 spacecraft [122]. Here

a missing hyphen [123] lead to the destruction of the launch vehicle and its

payload.

� There is flawed logic or faulty algorithms where accurate implementation still

yields erroneous results because of a flawed recipe. Such bugs may take years

to manifest themselves as problems. A pertinent example would be the Julian

calendar’s algorithm for inserting leap years and its subsequent replacement

with the Gregorian calendar one and a half millennia later [60]. Similar rounding

errors were responsible for an accumulated 50% inaccuracy in the Vancouver

Stock Exchange’s index of leading shares [142], and for the failure of a missile

defence system [189] resulting in the loss of 28 lives.

� Another source of errors is faulty input data. There are two categories of this

type of error;

– Unexpected structure of data may cause internal buffers to overflow and

corrupt neighbouring data. In extreme examples, the effect can be ex-

ploited to run unauthorised software on a computer [11]. These bugs arise

when the data receiver fails to check the size and syntax of the incoming

data.

– Well-formed but erroneous data may also be presented to a computer.

28 Chapter 1. Introduction

Commonly referred to a Garbage In Garbage Out (GIGO) errors, they can

have equally devastating effects; most famously when metric and imperial

units were transposed in navigation software on NASA’s Mars Climate

Orbiter [35].

� Broken or faulty hardware can prevent a computer from performing correctly.

Such errors usually prevent the use of the device until the issue has been phys-

ically identified and fixed. A dead moth obstructing a mechanical relay in an

early computer is credited as being the original computer bug and its removal

the origin of the term debugging [161].

� Finally, we have transient effects. Here bug-free code, processing well-formed

data and executing on an undamaged processor, may momentarily be influenced

to perform a faulty operation before resuming normal processing behaviour. The

effects of this transient error may then propagate in much the same way GIGO

errors do. These transient effects may be attributed to ’acts of god’ or cosmic

rays [26], or may have been deliberately induced by an attacker [75].

Deliberate induction of errors in an otherwise healthy Micro-Controller (𝜇𝐶) is the

focus of this thesis. Commonly referred to as perturbation errors or Glitch Attacks,

the adversary attempts to make the chip perform unauthorised functions or disclose

secret information. The mechanisms available to perform glitch attacks are diverse,

and the consequences can be significant. These are discussed in detail in Chapter 2.

Error induction is perceived as challenging to perform and leads to a degree of

complacency, with many developers believing the obstacles to an attack provide suf-

ficient defence for their products. This remains a valid argument when the attack’s

cost significantly outweighs the value of the information gained. However, a close eye

needs to be kept on the evolving repertoire of attacks and their implementation costs.

Where the value of the information within a device is high, the device itself must

take steps to recognise the attack and take defensive action. This is commonly referred

to as Defensive Programming. Unfortunately, defensive code comes with penalties in

Chapter 1. Introduction 29

1.1. Research Questions

terms of performance degradation, additional code volume and additional develop-

ment effort. It has led many developers to focus on critical functions within the

system as they juggle the competing drivers of security, performance and time to

market.

The design of efficient defences requires an understanding of the properties of

the induced errors. Personal experience of the EMV code-review and penetration

testing process [66] suggests that much folk-law, instinct and wishful thinking exists.

Contradictory advice from different testing laboratories relating to the same piece of

code was the trigger that initiated this body of research.

1.1 Research Questions

In this study, we address four basic questions about device security. In particular,

we look at the implications for devices deployed in the low-cost consumer electronics

field, where users increasingly and unwittingly place their trust in an ever-expanding

array of intelligent devices.

RQ1 —Do induced errors have repeatable characteristics that would assist developers

in predicting a device’s likely modes of failure?

RQ2 — Is it practical for attackers to induce multiple errors into software execut-

ing on a 𝜇𝐶 and exploit their effects without needing access to sophisticated

laboratory equipment?

RQ3 — Can a better understanding of a device’s modes of failure be translated into

improved security via targeted software countermeasures?

RQ4 — Is it practical to automate the generation of defensive measures within a

𝜇𝐶’s software development tools?

30 Chapter 1. Introduction

1.1. Research Questions

1.1.1 Nature of Errors

RQ1 — Do induced errors have repeatable characteristics that would assist developers

in predicting a device’s likely modes of failure?

This is a simple question in principle, but several complicating factors need to be

addressed. A representative target must be identified that is unencumbered by preex-

isting defences that will skew observed behaviour or result in the device’s destruction.

We must also find a viable mechanism for capturing the internal state of the Device

Under Test (DUT) immediately after the induction of an error. The intention is to do

this using a normally executing 𝜇𝐶, removing the potential effects debug mode may

have and making the attack scenario as similar as possible to typical deployment.

Finally, many samples and experiments will be required. The process will involve

creating many test scenarios and repeating these tests while directing the attack onto

different physical locations on the surface of a 𝜇𝐶. Automation of the data collection

process will be essential, and tools will need to be built to do this.

1.1.2 Practicalities of Error Induction

RQ2 — Is it practical for attackers to induce multiple errors into software executing

on a 𝜇𝐶 and exploit their effects without needing access to sophisticated laboratory

equipment?

The repertoire of attack techniques is wide, as discussed below in Section 2.2,

and some of them require very expensive, difficult to access equipment. Some other

attacks have been demonstrated in laboratory settings, but it may be possible to

replicate them with modest resources and without privileged access to laboratory

services. Reducing the cost and logistical difficulties associated with attacking a

device has implications for a wide range of devices that have hitherto been assumed

to be not worth attacking. Consequently, the software they run will need to implement

additional defences.

Chapter 1. Introduction 31

1.1. Research Questions

1.1.3 Defences

RQ3 — Can a better understanding of a devices’ modes of failure be translated into

improved security via targeted software countermeasures?

The deployment of defences is always a compromise between application efficiency

and security. Speed, code size and development effort compete with the ability to

resist a range of attacks. The tools and techniques used to characterise glitch errors

will also be suitable for evaluating the efficacy of defences. The expectation is that the

knowledge gained about the glitch errors’ nature will assist the definition of optimal

defences. This will be achieved by identifying techniques to recognise errors and

assessing their impact.

Removing the guesswork from the application of defences addresses the initial

motivation for this study.

1.1.4 Deployment

RQ4 — Is it practical to automate the generation of defensive measures within a 𝜇𝐶’s

software development tools?

It is already understood that some defences are complicated, intricate to deploy,

and difficult to test. This factor makes it unlikely that the required knowledge and

skills will be available in most development teams, particularly in the less security

conscious but potentially vulnerable consumer products market. Ideally, it will be

possible to encapsulate the required knowledge into development tools to include ap-

propriate defences automatically. Such a tool will improve the security of simple

products without the need to educate and retrain developers. For high-security prod-

ucts and skilled developers, it will complement the programmers’ skills, reduce the

opportunity for defence omission by human error, and simplify the slow and expensive

process of independent code review.

Turning the laboratory results into a practical tool completes this mission.

32 Chapter 1. Introduction

1.2. Methodology

1.2 Methodology

To a large extent, the strategy used to answer the research questions was dictated by

those same questions.

An initial investigation was carried out to identify prior art, relevant tools, and

operating parameters. In particular, reports of attempts to categorise errors and

measure the efficacy of defences would be sought out. This review would ensure the

relevance of the proposed research questions and identify the appropriate equipment

to use as the starting point for this investigation. This equipment would need to

enable controlled generation of error stimuli, need minimal manual input and be

capable of running uninterrupted for long periods.

The first requirement was to create a fault induction system that could be used to

evaluate the error responses from a DUT. This step involved removing unrelated ob-

stacles that complicate data collection without affecting those data. These obstacles

add complications to the implementation of an attack, and each could be considered,

to a degree, a defence in its own right, adding cost to an attack’s implementation.

These obstacles are unrelated to the effects this study targets, so, where possible,

their elimination is required to simplify access to the features of interest. This sim-

plification would be achieved by developing bespoke circuit boards to control the

environment the DUT operates in and by careful choice of DUT.

The follow on requirement was to collect data from the DUT while subjecting it

to attack with the test rig. This blitz of error induction would be time-consuming, as

many processor instructions would need to be exhaustively attacked and the results

collected. The variable parameters included the physical position of the laser focus on

the DUT’s surface, the timing of the attack relative to the execution of an instruction,

as well as the power and size of the laser pulse. The data collected through this process

would then need to be analysed to identify characteristics that could be exploited.

Bespoke tools would need to be written to coordinate experiments, collect data and

analyse them.

The techniques for characterising error responses also apply to testing the effi-

Chapter 1. Introduction 33

1.3. Significance

cacy of programmed defences. Other researchers have attempted defence testing via

simulation, but we would be able to obtain real-world results with the envisaged

equipment. This equipment would enable a relatively straightforward evaluation of

defences and would also answer the first of the research questions (RQ1).

The properties of the induced errors, and the complications observed while collect-

ing them, would lead to optimisations in the attack mechanism and the development

of a low-cost, more capable replacement for the test rig. This improved test rig would

answer the second research question (RQ2).

Searching for and recognising identifiable characteristics in the DUT’s error in-

duced behaviour should also suggest new and more robust defences, specifically op-

timised for the DUT; this would provide the answer to the third of the research

questions (RQ3).

Finally, after identifying demonstrably strong defence techniques, the viability of

automatic generation of defensive code would be investigated. The intention would

be to extend the behaviour of a compiler by applying appropriate defences during

its object code generation stage. The efficacy of this code generator would be tested

with the tools and techniques developed previously. This tool would answer the last

of the original research questions (RQ4).

1.3 Significance

There is no doubt that error-free computation is critical to the security of devices such

as smartcards. Errors are not just an inconvenience that crashes a device or causes

embarrassment by failing to permit an authorised action. Errors can be exploited.

As far back as 1997, Boneh et al. [37], and Biham et al. [32], demonstrated how to

recover keys from encrypted data if an arithmetic error occurs during the encryption

process.

Errors are easy to induce. All 𝜇𝐶’s come with a datasheet that explains the safe

working ranges for properties such as supply voltage, signal frequencies and, operating

temperature. Exceed these limits, and errors will occur. Also, by controlling when

34 Chapter 1. Introduction

1.3. Significance

and how long these limits are exceeded, an attacker can localise errors to specific parts

of an algorithm. Very fine control of error injection in terms of physical location on

a chip and the moment of an attack can be achieved with a focused laser beam.

This technique has been in the public domain since Skorobogatov and Anderson [165]

published details in 2002.

Defences against errors can be added to the 𝜇𝐶’s hardware. Sensors to detect

input signals that deviate from the specification and sensors for light are relatively

common in security chips. In some 𝜇𝐶s, duplicate CPUs simultaneously performing

identical actions can detect errors by continuously comparing the cores’ states. This

level of defence is reserved for the highest security devices such as Infineon’s SLE78

family [88].

For many 𝜇𝐶s designed for consumer electronics, and for the burgeoning Internet-

of-Things (IoT) market, such hardware security augmentation is rare or non-existent.

Instead, the programmer needs to write self-checking code, which involves anticipating

attacks and coding defences that detect abnormal behaviour within a program. These

coding techniques require a skill set that is not common amongst those tasked with

developing software for consumer electronic devices. However, as is detailed by Desai

[61], such devices are increasingly being trusted with personal information and have

access to private networks.

Defences have a cost of their own. Development time increases, execution speed

degrades, and code volume expands. Redundant code fragments that cannot be

exercised under normal operating conditions further complicate the testing process.

In the following chapters, we describe a technique that we developed to identify

the effects of induced errors. Understanding these effects is a critical first step in

defining efficient software defences. Furthermore, our discoveries about the nature of

the errors indicated that this process did not require particular specialist equipment.

We went on to develop a low-cost alternative error injector with superior capabilities.

This equipment was then used to measure the efficacy of a range of defensive code

structures, an exercise previously only seen in simulation, for example, by Theissing

[173].

Chapter 1. Introduction 35

1.3. Significance

Knowledge of the nature of errors and the best ways to defend against them is

of great value if it can be deployed in fields where such techniques are frequently

neglected. We developed a C-compiler that automatically inserts defensive code to

demonstrate that this is possible. This tool has multiple and wide-ranging advantages.

1. It makes the techniques available to a wider audience without the need to re-

train an army of developers.

2. It ensures systemic coverage of defences. Often defences are only placed in code

that the programmer perceives as vulnerable, overlooking equally vulnerable

support functions.

3. Defences that cannot be described in the syntax of the source-code language

can be inserted.

4. Even for high-security applications where specifically skilled programmers are

deployed, this tool can remove the opportunity for the accidental omission of

defences. It is expected that this would also reduce the time required to re-

view and certify code that is destined for scheme accreditation [66] or Common

Criteria certification [53]. The focus of code reviewing can shift to the charac-

terisation of errors and efficacy of defences. This process is more straightforward

and less error-prone than searching an application’s source code for overlooked

opportunities to add defences or where defences are incorrectly implemented.

1.3.1 Publications

The following publications have been produced during the course of this investigation.

Each paper covers the major phases of this investigation.

1. Characterising a cpu fault attack model via run-time data analysis.

Published 2017 - IEEE International Symposium on Hardware Oriented Security

and Trust (HOST).

doi: http://dx.doi.org/10.1109/HST.2017.7951802

36 Chapter 1. Introduction

http://dx.doi.org/10.1109/HST.2017.7951802

1.4. Structure of this Thesis

2. High precision laser fault injection using low-cost components.

Published 2020 - IEEE International Symposium on Hardware Oriented Security

and Trust (HOST).

doi: http://dx.doi.org/10.1109/HOST45689.2020.9300265

In addition, the experimental defensive compiler developed as part of this study

can be found in a public repository: https://github.com/digitallocksmiths/DCC.

1.4 Structure of this Thesis

Chapter 2 describes the background to the issues addressed in this study. It provides

a history of the evolution of attacks targeting execution errors and the mechanisms by

which such errors can be induced. It describes the threats posed by such errors and

the arsenal of countermeasures available. It describes the practical issues encountered

when attempting to induce erroneous execution and the choices available to a would-

be attacker.

Chapter 3 describes the technique we devised for determining the effects of induced

errors. It describes the collection data relating to the internal state of the DUT and

the categorisation of the effects of the errors. Finally, it draws conclusions that guide

the development of new test equipment.

The development of a new laser fault injection workstation is described in Chapter

4. This chapter covers the components used, the new device’s capabilities, and the

engineering obstacles overcome during its development. It ends with experimental

results showing that it is more capable than the commercially obtained device it

replaces.

Chapter 5 shows how we used the new laser workstation to evaluate a range of

software defences. We demonstrate its use to quantify the efficacy of defences and

measure the cost of these defences in terms of performance penalties and code volume.

The ability of the fault injector to automate data collection was invaluable. It greatly

simplified testing of the output of a defensive code generator in the form of a new

C-compiler, which forms the subject matter for Chapter 6.

Chapter 1. Introduction 37

http://dx.doi.org/10.1109/HOST45689.2020.9300265
https://github.com/digitallocksmiths/DCC

1.4. Structure of this Thesis

The impact of a more realistic perception of vulnerabilities and the improved

opportunities for defence deployment is considered in Chapter 7.

The conclusions drawn from this study and further work opportunities are pre-

sented in Chapter 8.

Finally, the appendices describe the significant components developed during this

investigation. Most of the work presented in this section relates to engineering and

development; however, the functional objectives were guided by the research require-

ments. These appendices demonstrate the capabilities of the tools and their modes

of use. They are primarily of interest to anyone intending to build upon the results

presented here. Appendix A describes the test harness that coordinates the micro-

scope, laser, test sample and data collection. Appendix B covers the circuit boards

developed to support the DUT and synchronise the laser pulses with the executing

test programs. Appendix C covers the features of the new Defensive C-compiler,

management of its source code, its output and how to use it or modify it.

38 Chapter 1. Introduction

Chapter 2

Background

Contents

2.1 Threats . 41

2.1.1 Motivation . 43

2.1.2 Mitigation . 44

2.1.3 Relevance . 45

2.2 Attacks . 48

2.2.1 Logical Attacks . 50

2.2.2 Side-Channel Attacks . 53

2.2.3 Physical Attacks . 66

2.3 Errors . 68

2.3.1 History of Fault Attacks Techniques 68

2.3.2 Consequences of Faulty Execution 69

2.3.3 Mechanisms of Fault Injection 76

2.3.4 Lasers . 82

2.4 Defence Techniques . 88

2.5 Observations . 91

39

This chapter describes a broad spectrum of attacks that a 𝜇𝐶 is vul-

nerable to and the relative ease with which they can be performed. It

highlights that the cornerstone of effective defences lies not in ever

more ingenious cryptography but through reliable execution of rela-

tively simple code. Humble operation of basic arithmetic and branch-

ing guards the most valuable assets within a 𝜇𝐶. It leads to the ques-

tion, what is required to make these operations trustworthy?

40 Chapter 2. Background

2.1. Threats

It has been a popular misconception that a bug-free program, implementing a

carefully defined protocol, executing on a well-maintained computer would provide

all that was necessary for reliability and security. The implicit assumption is that the

computer will reliably do what it is told to do and, so long as the task defined has no

logical weaknesses, the outcome will be entirely deterministic. The only risks worth

considering were physical. There is the risk that the device, or its sub-components,

may be stolen; the defence against this is akin to having a safe, making it very heavy

and bolting it to the office floor. Similarly, there is the risk that it may be attacked in-

situ; the defence here for a safe is to reinforce it to make it resist attempts to break it

open. For silicon chips, this meant adding physical barriers to prevent micro-probing.

This thesis is about what happens when one cannot fully trust a device to execute

a program and what programmers can do to mitigate this threat. It is about the

effects such errors have, the consequences of those effects, and programable defensive

strategies to mitigate them.

Defences need to consider the other risks threatening an application and not un-

wittingly introduce new weaknesses. An awareness of the potential vulnerabilities,

why they exist, how they are exploited, and the defences required in compensation is

essential when considering new defences.

This chapter gives a broad overview of a 𝜇𝐶’s vulnerabilities and the range of

attacks available to an adversary. It also highlights that underpinning all the sophis-

ticated cryptography is a fundamental reliance on trustable execution.

2.1 Threats

Why would a micro-controller be attacked?

The form factor of a 𝜇𝐶s invariably leaves it exposed to the possibility of attack,

and it must therefore be considered vulnerable. Vulnerability in its own right is not

a problem so long as adequate defences are used to mitigate the consequences of an

attack. The required strength of those defences depends on multiple factors, primarily

the ease with which an attack can be performed and the potential benefits gainable

Chapter 2. Background 41

2.1. Threats

by a would-be attacker. So, to answer this question, we need to consider the services

that a 𝜇𝐶 provides and the environment it operates in.

𝜇𝐶s, in their many guises, provide a service for, and look after interests of, various

parties. For example, a 𝜇𝐶 in a domestic appliance may be responsible for ensuring

an optimal wash cycle in a washing machine or preventing an oven from burning

your dinner. Here it acts as its owner’s agent, it protects its owner’s interests, and

an owner-attacker will gain no benefit by compromising its operations. If they had

access to it, a third party attacker would gain nothing either, unless their interest

was in causing frustration or inconvenience. Even though an attack might be easy to

perpetrate, it will be unlikely, and the consequences would be bearable if it were to

happen.

Alternatively, a 𝜇𝐶 may manage a burglar alarm. In this scenario, its purpose is

to protect its owner’s interest, and that owner is interested in ensuring it is physically

protected. A thief, however, would have a lot to gain if they could disable it or

compromise its operations; such a device is an attractive target. It is in the owner’s

interest to keep it away from attackers, and it is reasonable to expect that the device

will perform self-tests and summon assistance if it detects intrusion.

The third type of device provides one party with a service while protecting a

third party’s interests. A bank card, for example, provides a convenient way for an

individual to access their money while simultaneously ensuring they cannot spend

more than the bank allows. Such a 𝜇𝐶 is an exceptionally attractive target and

requires robust defences because it is deployed outside of the control of its primary

beneficiary.

These roles give us a concept of a target’s low, medium and high attractiveness

to an attacker.

� For devices with a Low attack attractiveness, attacks are unlikely, other than

by those motivated by curiosity or possibly by competitors seeking to clone a

device or discredit rivals. As a result, it is unlikely the device owner will pay

any attention to securing access to the device or consider special options for

disposal at the end of the product’s life.

42 Chapter 2. Background

2.1. Threats

� Devices with a Medium level of attack attractiveness can expect a degree of

physical protection to be provided by its beneficial owner. The threats here are

logical ones that can be perpetrated remotely, for example, vulnerable passwords

or remote software upgrades. For these devices, attacks requiring access to the

device are unlikely but still require consideration, particularly to avoid the risk

of tampering or substitution within the supply chain.

� Devices categorised as High on this attractiveness scale require extensive de-

fences at all points in the product life-cycle. Manufacturers need to consider

defences starting within their development environments and treat all partici-

pants in the product’s implementation, construction, delivery, use, and disposal,

as adversaries. These threats include insiders adding trap-door functions, as-

semblers building clones, tampering, substitution or theft during delivery and

attacks by the end recipient.

2.1.1 Motivation

In performing its tasks, a 𝜇𝐶 is expected to fulfill two primary functions.

� Protect secrets. Secret keys, for example, if disclosed, enable an attacker to

impersonate the 𝜇𝐶 and to obtain services fraudulently. A secure device must

keep the important data secret from everybody and only use these secrets on

behalf of the legitimate owner.

� Control access to its services. Possession of a device is not enough to prove

a legitimate right to its services. Devices need to authenticate the user, and

this role is just as crucial as protecting secrets. Additionally, it may need to

prove its identity to let the user know it is a genuine article.

The benefits of an attack on a 𝜇𝐶 are varied but can be distilled down to four

categories [164].

� Theft of Service. Cloning PayTV access cards was one of the first widespread

frauds perpetrated against smart cards. PayTV operators even hacked rival’s

Chapter 2. Background 43

2.1. Threats

cards in order to starve them of revenue and ultimately bankrupt them [172].

Similar risks exist for transport operators and their "smart tickets", although,

to date, such subterfuge has not been detected.

� Access to Information. Identification theft. The ability to clone passports

or even create fraudulent ones would give criminals a lucrative illicit income.

Similarly, unauthorised access to devices such as password vaults would enable

hackers to access information and services they had no right to access.

� Cloning or Overbuilding. Counterfeit products, e.g. printer cartridges. As

supply chains globalise, increasing efforts are being expended to ensure sub-

contractors in the manufacturing chain cannot create additional stock and il-

licitly sell it into the market. Increasingly these defences involve intelligent

Integrated Circuits (ICs), and the security of these components is the keystone

in the defences.

� Denial of Service. Or, anti-competitive practices. If devices can be disabled or

broken, the device holder will lose access to a service. And, since glitch attacks

typically leave no trail, users will attribute blame for a product’s reliability

issues to the device itself or its retailer. To prevent reputational damage and to

avoid the cost of replacing broken devices, the devices need to be robust against

such attacks.

2.1.2 Mitigation

A product owner should seek to eliminate, or at least reduce, the motivation for an

attack. This is achieved by obstructing attacks and reducing the rewards gained from

a successful attack. The three main mechanisms available to the product owner are

physical, cryptographic and logical.

The role of physical defences is to ensure that an attacker cannot extract secrets

from the device. This is sometimes called Hardening and aims to prevent an attacker

from dismantling the chip, monitoring or injecting signals within it, and manipulating

44 Chapter 2. Background

2.1. Threats

the operating environment. These attacks mechanisms are described in Section 2.2.

Cryptographic defences seek to disguise data or to identify unauthorised manipu-

lation of them. Cryptography provides four services [70, 157] and, depending on the

nature of the threat, combinations of these can be deployed to obstruct an attacker.

These services are,

� Confidentiality. An eavesdropper, or Man in the Middle (MitM), should not

be able to read a message. The use of encryption should ensure that messages

in transit cannot be read by anyone other than the intended recipient(s).

� Authenticity. It should be possible for a message receiver to verify its origin.

In other words, an adversary should not be able to assume a false identity.

Where both parties in an exchange of messages can establish the counter-party’s

authenticity, it is referred to as Mutual Authentication.

� Integrity. The recipient should be able to confirm that the message has not

been modified while passing from the sender to the receiver. This capability

is commonly called Message Authentication and implemented via a Message

Authentication Code (MAC) algorithm.

� Non-repudiation. A sender should not be able to claim that an imposter sent

a message signed by him. This is a combination of Authenticity and Integrity,

often referred to as a Digital Signature.

Logical defences ensure the device cannot be operated by, or on behalf of, an

unauthorised third party. There is little point in a 𝜇𝐶 protecting the confidentiality

of cryptographic keys if that device can be freely used to encipher data using those

keys. Lost or stolen devices need to be of no use to an adversary.

2.1.3 Relevance

The importance of naturalising threats extends beyond the prominent examples of

bank cards and burglar alarms. Increasing numbers of the devices we use in our

daily lives contain 𝜇𝐶s, and our dependence on these devices makes their reliability

Chapter 2. Background 45

2.1. Threats

of utmost importance. For example, ’old’ telephones had basic functionality and were

powered via their connection to the exchange. Modern telephones, with their in-built

address books, hands-free operation and answering machines, appear substantially

more useful. This additional functionality requires a 𝜇𝐶 and an independent power

supply. Unfortunately, if the 𝜇𝐶 or the power supply fails, this device can no longer

be used to summon help. The trend of increasing reliance on evermore intelligent

devices places an onus on the reliability of these devices, and this reliability includes

their ability to remain operational in adversity.

The expanding domain of IoT technology has seen humble appliances become

internet-connected. Software flaws in a kettle have been exploited to reveal the access

key to its owner’s Wi-Fi network [84], providing the attacker with full access to the

supposedly firewall-protected local network and unrestricted access to the internet at

the kettle owner’s expense. A similar bug in a BBQ grill [135] enabled the device to

be controlled remotely. These devices and many like them are locatable by a practice

known as Wardriving, which involves identifying them on Wi-Fi networks, usually

from a moving vehicle.

Researchers have also demonstrated an attack on a moving car, giving the attack-

ers control of steering, brakes and engine control. The problem is widespread, Jeep

[72], Tesla [98], Toyota and Ford [181]. Similar mistakes by similarly naive developers

indicate a pervasive lack of appreciation of both the risks and attackers’ capabili-

ties. The threat also exists for biomedical devices such as insulin pumps [48]. CNN

reported that US vice-president Dick Cheney had his heart pacemaker modified in

anticipation of just such an attack [68]. These attacks target logical weaknesses in

the devices and highlight that they perform a trusted safety-critical service. While

we can expect these ’early adopter’ logical oversights to be rectified, it is also clear

that the remedies will require additional secrets and secure programming within the

devices, emphasising the need for secure coding.

Similar methods can be used to attack home appliances. Taking control of IoT

devices and re-purposing them to form Botnets is a significant threat. Network infras-

tructure manufacturers have started issuing guidance for IoT equipment developers.

46 Chapter 2. Background

2.1. Threats

Trend Micro [114], and Nozomi-Networks [145] both provide detailed reports on var-

ious forms of malware, ransomware and common vulnerabilities. The need for this

is emphasised by reports that intelligence agencies, such as Russia’s FSB’s Fronton

Program [69, 149], are actively researching IoT botnets with these aims in mind and

have successfully demonstrated a Distributed Denial of Service (DDoS) attack against

Twitter, Netflix, Spotify, Paypal and Amazon. They were all taken offline for sev-

eral hours in 2016 [146]. The security and integrity of the humble 𝜇𝐶 will become

increasingly critical to the orderly functioning of the internet.

Even devices operating within an isolated private network are similarly vulnerable.

A range of light bulbs manufactured by Philips contains a bootloader that permits

them to be upgraded in-situ. Each bulb can communicate with near neighbours

to ensure the prorogation of new system code. Researchers [150], using sensitive

listening devices, monitored the bulb from outside a building and obtained the secret

key required to infect a device with a self replicating computer program (Worm). This

worm enabled the attackers to control or destroy all infected devices. The alarming

feature here is that it is effectively a computer virus; it spreads from one nearby

device to another. The devices need not have an owner in common or be attached to

the same network. Where a critical density of devices exists, an unstoppable chain

reaction occurs.

These issues have been understood in the high-security world of smartcards for

a long time. Specialist programmers deploying defensive code alongside a support

infrastructure of code reviewers and penetration testers combine to ensure defences

are in place for all conceivable relevant attacks. Payment scheme owners collectively

publish minimum security requirements that all products they accredit must satisfy

[66]. Scheme owners then add their additional specific requirements, such as those for

Visa [182] and Mastercard [111]. Scheme certifications provide a high level of security

and confidence. However, this all comes at great expense. Some of these practices

will likely become vital in the IoT. A report by PenTest Partners on the security of

𝜇𝐶 controlled devices, and in particular their software defences, states: "Adoption of

these has slowly increased in the server and desktop Linux market, but it is still rare

Chapter 2. Background 47

2.2. Attacks

to find them used in embedded systems" [174].

Even after verifying algorithms and double-checking the accuracy of their imple-

mentation, there remains the threat of faulty execution. Forcing 𝜇𝐶s to make errors

is far easier than many programmers realise. At the RaspberryPi Micro-computer

press launch, a device ideally suited to IoT applications, flashguns on the press cam-

eras caused the devices to crash; much to the amusement of the press [73] and the

embarrassment of the developers [168].

Knowing when to induce an error, predicting and then exploiting the consequences,

is the problem faced by an attacker. Anticipating errors, and reacting appropriately

when they are detected, is the task faced by the defenders.

2.2 Attacks

There are multiple ways to attack a 𝜇𝐶, various consequences of an attack, and

different motivations for launching an attack.

An often-cited way to consider a threat is to consider the adversary [7, 184]. This

categorisation looks at the availability of the knowledge required to perform an attack,

access to privileged knowledge or processes, and the resources required to accumulate

the knowledge.

A1 Clever Outsiders—Would the device be vulnerable to an attacker who could

obtain the samples and information required to implement an attack?

A2 Script Kiddies — Could a vulnerability be exploited via a tool that encapsu-

lates specialist knowledge? Like the clever outsider, Script Kiddies use publicly

accessible knowledge, but they require a primary adversary first to generate

and publish a tool that exploits a weakness. They do not need the same depth

of knowledge to carry out a prescribed attack. Script kiddies are essentially

nuisances between the time an exploit has been identified and before a fix can

be deployed.

A3 Knowledgeable Insiders — Could someone on the inside of an organisation

compromise the product’s security? This may be by informing and guiding an

48 Chapter 2. Background

2.2. Attacks

outside attacker or by placing deliberately exploitable flaws in the product. The

latter mechanism is sometimes called a trap-door or logic-bomb [104].

A4 Funded Organizations — What resources would an attacker require to per-

form an attack? Adversaries in this category range from well-equipped labo-

ratories to organized crime. An organization with specialist equipment could

implement attacks that are prohibitively expensive for amateurs or resource-

constrained attackers. In this scenario, it is more likely that the attacker would

need to justify the cost of the attack against the potential rewards. Intellectual

curiosity or bragging rights within a peer group are unlikely to be the primary

motivation for the attack.

Alternatively, funds can be deployed as bribes to gain inside knowledge from

the product’s developers or for financing threats and intimidation. The latter

is also known as rubber-hose cryptanalysis [157].

The reliance on the distinction between Clever Outsiders and Knowledgable In-

siders is Security Through Obscurity. The weaknesses of this as a security mechanism

have been recognised for a long time [97], and observers argue that disclosure of im-

plementation details improves security by allowing sympathetic analysts to review

implementations, satisfy themselves regarding the quality of the code and highlight

weaknesses that can be fixed [83].

An alternative way to look at threats, in the context of 𝜇𝐶 attack, is via the

obstacles faced by the attacker when performing an attack [164].

� Non-invasive— These attacks operate via the normal interface to the unmod-

ified device, and physical access to the device is not always necessary. A device

can be compromised by analysing signals between it and its environment or ma-

nipulating its inputs or environment. The knowledge required to perform these

attacks is readily available from a device’s datasheets and published papers

outlining attack methodologies. Non-invasive attacks are relatively low cost to

implement as no special processing of the device is needed, and the equipment

required to perform an attack is readily available.

Chapter 2. Background 49

2.2. Attacks

� Semi-invasive — These attacks require physical access to the target device.

The device itself remains functionally unmodified, but its packaging and some

defensive structures may require removal. Internal signals can be directly mea-

sured by probing the exposed inner device, or features, normally inaccessible

through the packaging, can be manipulated. These attacks often require rela-

tively complicated processes to prepare samples for attack and require specialist

equipment to perform attacks. It is also unlikely that the details of the exposed

device will be publicly available. Specialist knowledge and time will be required

to identify the attackable features of the device. These attacks can be considered

as affordable to a motivated attacker.

� Invasive — Here the device is often physically modified, for example, cutting

or joining tracks within the IC. These attacks require extensive knowledge of

the DUT and highly specialised equipment; they are consequently expensive

to perform. However, this equipment is sometimes accessible to poorly funded

attackers, such as students within university research departments. Therefore,

the cost of the equipment alone cannot be considered a defence.

Perhaps the best categorisation of attacks is based on the attack mechanism and

the methodologies required to exploit results. These attack classes have been defined

in different ways [14, 177, 164]. However, the common features of these categorisations

give three significant classes of attack with different exploitation techniques within

them. They are Logical attacks, Side-channel attacks and Physical attacks.

2.2.1 Logical Attacks

Logical attacks target the underlying logic or process used to protect information.

They exploit features of an implementation to break a defence and are the oldest cat-

egory of attack, predating computers. It is a never-ending competition between code

makers and breakers, employing increasingly sophisticated mathematics to outwit the

opposition.

The unifying characteristic of these attacks is that they are non-invasive. They

50 Chapter 2. Background

2.2. Attacks

are performed on raw observable data collected while it is being transferred between

two points.

Logical attacks can be further sub-divided into three primary categories.

2.2.1.1 Brute Force

Brute force attack is the most basic of attacks. It involves exhaustively testing all

possible combinations until the answer is found, and it is the benchmark by which all

other attacks are measured. The hypothetical perfect cypher algorithm, i.e. immune

from all possible cryptanalytic techniques, will still be vulnerable to a Brute Force

attack.

The limiting factor in Brute Force attacks is the time it takes to test every possible

solution. This is effectively a measure of the current state of the art in computer

performance.

For example, the ancient classic Caesar Cypher is perhaps the simplest example

of a transposition cypher. It can be broken using pencil and paper, requiring the

investigation of at most 26 possible solutions.

2.2.1.2 Analytical Attacks

Analytical attacks improve upon the base level efficiency of Brute Force by exploiting

features of the data or the algorithm to narrow down the search space and thereby

reduce the number of possible candidate solutions that need testing.

The weakness may be in either the raw algorithm or a side property of the data

it processes. In some cases, the underlying assumptions about either mathematics

of a system, or the algorithms available to crack a problem, are flawed; for example,

Shamir’s crack of the Merkle-Hellman knapsack cryptosystem [160].

Alternatively, systems can be compromised by using sneaky mechanisms to fool a

counterparty into a false sense of trust. Poetically described as ’Programming Satan’s

Computer’ [8], misleading or counterfeit data may be substituted for genuine data

at a victim’s site. The victim then, unknowingly, may use this information to verify

forged data. The process can be as simple as getting a bogus public key onto a

Chapter 2. Background 51

2.2. Attacks

victim’s computer. When security relies on something stored on, and processed by, a

computer, can anyone be sure it is safe to trust it? Defences against this problem exist

as Public Key Infrastructure (PKI)’s certification hierarchy [136], where increasingly

independent trusted agents sign and vouch for the authenticity of keys, giving a

chain of certificates up to a (presumed) trusted root Certification Authority (CA).

Alternatively, PGP’s ’Web of Trust ’ [2], replaces the hierarchy with a peer to peer

trust model, removing the need for a trusted root.

Pure mathematical attacks are comparatively rare, but attacks based on the pro-

cessed data’s statistical properties are relatively common and have a long history. For

example, knowing the relative frequency with which particular letters occur within a

language can guide a search strategy towards likely candidates first, thereby increas-

ing the chances of finding a solution early within the wider search space. Knowledge

of a fraction of the enciphered text, known as a crib, has also been used to optimise

search strategies and significantly improve a Brute-Force attack’s performance. Most

famously seen with the mechanised cracking of the German Enigma cypher by Turing

et al. at Bletchley Park during World War II.

2.2.1.3 Exploiting Flaws

Sometimes, it is possible to take advantage of mistakes made when defining or imple-

menting a feature within a device.

Implementation flaws are a common feature of many internet-based attacks. Here

an attacker constructs a message for the target computer, and the target computer

inadvertently discloses data as a consequence. The classic example is an oversized

data packet, or buffer overrun. Typically a buffer overrun corrupts adjacent data

and, depending on the buffer’s location, many outcomes are possible. Corrupting

the call stack can lead to a crash when the executing function attempts to return.

Strategically placed data within the overrun can capture the crash and assume control

of the device [167]. Alternatively, variables or keys may be corrupted, leading to

exploitable responses from the device.

Bugs unknown to the device manufacturer can sometimes be located and exploited.

52 Chapter 2. Background

2.2. Attacks

One example, known to the author, involved a password attack counter. Typically

such an attack counter would be incremented with each unsuccessful verification event

and reset after a successful event. If the count reaches a threshold, the device should

be locked, and all further verification attempts should be rejected. This mechanism is

intended to prevent a brute force attempt at guessing the password. In this particular

case, and despite rejecting further attempts, the counter continued to be incremented

until it reached 255. At that point, the counter wrapped round to zero, effectively

resetting and permitting an additional set of guesses to be tested.

2.2.2 Side-Channel Attacks

Side-channel attacks occupy the space between Logical and Physical attacks. The

attacks involve observing the device’s behaviour during an attack but do not require

the device to be tampered with or otherwise modified. Sides channels leak information

about the device’s internal operations while it performs a task. Traffic analysis is

a classic historical example of a side-channel. Ostensibly an adversary can learn

little from his enemies encrypted communications other than perhaps the source and

destination of a message. However, a sudden increase in frequency or size of messages

may be interpreted by an observer as the prelude to an impending action. Journalists

used the same techniques to infer the start of the ’Desert Storm’, the opening action

in the first gulf-war. Here analysis of pizza deliveries to the White House indicated

an abnormal number of late working staff [116, 153].

Side-channel analysis is a powerful attack technique, primarily because it is passive

and the target remains unaffected by the attack. A target must assume it is under

attack all the time because it has no way to determine when it is being attacked. For

a 𝜇𝐶, continuous defence deployment may make the device extra power-hungry or

slower than could otherwise be achieved. The example above would require additional

orders of unwanted pizzas on quiet days to disguise the occasional days when they

are wanted.

Chapter 2. Background 53

2.2. Attacks

2.2.2.1 Heat, Light and Sound

Heat, light and sound are relatively exotic and hard to exploit side-channels in 𝜇𝐶s.

Electrical currents, flowing in a semi-conductor, generate heat. Heat depends on the

magnitude of the current and resistance of the conductor. The current depends on the

rate of switching of the device’s transistors. While many observers have postulated

that this may be exploitable [17, 22, 46] there are significant practical difficulties

in doing so [85]. The observable heating effect is averaged and delayed by the chip

packaging and the packaging’s thermal conductivity. Alternatively, visible access is

required to the chip’s surface to observe localised heating effects [163]; however, results

suggest the approach is better suited to locating active areas of a device rather than

for obtaining insights into the data being processed.

Localised heat causes localised physical expansion and contraction of the device.

These mechanical stresses can cause acoustic noise, the volume and frequency of which

is related to the rate of heating and cooling occurring within the chip. This approach

has been successfully demonstrated against laptop computer to extract RSA keys [71].

It is reasonable to assume similar effects are observable in a 𝜇𝐶. However, there are

more accessible side-channels that can be exploited to indicate the same underlying

behaviour.

2.2.2.2 EM Radiation

Electrical currents momentarily flow each time a semi-conductor gate changes state.

The more gates that simultaneously change state, the higher the momentary current

is, and pulsating electrical currents cause Electro-Magnetic (EM) radiation. The

strength of the EM waves correlates with the activity within the 𝜇𝐶 and with the

data it is currently processing. This attack technique is challenging to implement

without shielding the device and the signal receiver from background noise. However,

when it is possible to collect sample data, it has been shown to be very effective [112].

54 Chapter 2. Background

2.2. Attacks

2.2.2.3 Timing

Timing data is the most readily available and most straightforward to interpret side-

channel data source. Consequently, it is often the best-defended aspect of an appli-

cation’s implementation.

A typical timing attack requires the ability to time the delay between sending

a message and receiving the response. This can often be performed directly by the

attacker while delivering commands to a DUT. For very small time differences, an

oscilloscope or similar device may be required to measure a signal wire directly.

In its simplest form, the time taken by the 𝜇𝐶 to respond to a stimulus can leak

secret information. For example, if an application checks an inputted password using

basic implementations of the C standard strcmp() or memcmp() functions, then the

response time will vary depending on which byte of the input differed from the secret

reference. The first byte of a password could be determined by testing all possible

values of that byte. The correct guess can be identified because it takes marginally

longer to respond than the other guesses. Once the first byte is known, the same

mechanism is used to determine the second byte; and so on until the whole password

has been reconstructed. For an alphabetic password of length n, this process would

take, at most, 26 × 𝑛 tests to crack as opposed to the 26𝑛 tests that a brute-force

attack may require in the worst case. Obviously, (most) application developers are

wise to this and perform time-invariant comparisons.

Sometimes, the defences themselves add weaknesses that a timing attack can

exploit. Consider the previous example of a password attack counter. Recording a

failed attempt, or resetting the counter, requires an update of non-volatile memory,

and the moment that this occurs can be detected via a side-channel. Non-volatile

memory updates are significantly slower than normal RAM or register updates, and

interrupting the process very early can prevent the update from occurring. If, as is

likely, it takes a different amount of time to initiate either of the updates, an attacker

can identify which one is being performed. Quickly cutting the power to the device

before the process begins enables the attacker to stop an attack counter from being

Chapter 2. Background 55

2.2. Attacks

incremented and neutralises the defence. Once again, we would expect application

developers to be aware of the threat and structure the program to resist the attack.

Simple timing attacks are relatively easy to predict and defeat by a programmer

who is fully aware of the threat. However, a class of timing attacks uses statistical

analysis of large numbers of samples to unpick a secret process. First described by

Paul Kocher [100], these statistical timing attacks are particularly powerful.

Consider Algorithm 1.

Algorithm 1: basic time invariant RSA

Data: 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝐶, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐴, 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑀 , 𝐾𝑒𝑦 𝐵 = (𝑏𝑛−1 . . . 𝑏1𝑏0)𝑏,

Result: 𝐶 = 𝐴𝐵 𝑚𝑜𝑑 𝑀

𝐶 ← 1
for 𝑖 = 𝑛− 1 . . . 0 do

𝐶 ← 𝐶 × 𝐶 𝑚𝑜𝑑 𝑀
if 𝑏𝑖 = 1 then

𝐶 ← 𝐶 × 𝐴 𝑚𝑜𝑑 𝑀
else

𝐶 ← 𝐶 × 1 𝑚𝑜𝑑 𝑀

return 𝐶

Here the programmer has attempted to make the calculation time-invariant: i.e.

execution time should remain constant for a given key length, irrespective of the value

of the secret key. In practice, this algorithm is frequently implemented using Mont-

gomery Multiplication [117]. Apart from some pre and post-processing of theMessage

and Signature, the RSA component remains the same. Montgomery’s multiplication

algorithm (taken from [113]) is shown here as Algorithm 2.

56 Chapter 2. Background

2.2. Attacks

Algorithm 2: Montgomery multiplication

Data: 𝑚 = (𝑚𝑛−1 . . .𝑚1𝑚0)𝑏, 𝑥 = (𝑥𝑛−1 . . . 𝑥1𝑥0)𝑏, 𝑦 = (𝑦𝑛−1 . . . 𝑦1𝑦0)𝑏,
with 0 ≤ 𝑥, 𝑦 < 𝑀, 𝑅 = 𝑏𝑛 𝑤𝑖𝑡ℎ 𝑔𝑐𝑑(𝑚, 𝑏) = 1, 𝑎𝑛𝑑 𝑀 ′ = −𝑀−1 𝑚𝑜𝑑 𝑏
Result: 𝑥𝑦𝑅−1 𝑚𝑜𝑑 𝑚

𝐴← 0 (notation 𝐴 = (𝑎𝑛𝑎𝑛−1 . . . 𝑎1𝑎0)𝑏)
T: for 𝑖 = 0 . . . 𝑛− 1 do

𝑢𝑖 ← (𝑎0 + 𝑥𝑖𝑦0)𝑚
′ 𝑚𝑜𝑑 𝑏

𝐴← (𝐴 + 𝑥𝑖𝑦 + 𝑢𝑖𝑚)/𝑏

S: if 𝐴 ≥ 𝑚 then
𝐴← 𝐴−𝑚

return 𝐴

For a 100 bit key, this multiplier will be called 200 times. Step T will execute in

constant time, while step S may add a small delay on some invocations of the routine.

If an attacker can request the signing of a large number of different messages and

collect each signature calculation’s execution time, he can then determine the secret

key. Each signature’s time will be similar but differ slightly, depending on how many

times the subtraction step S was required. The process is as follows.

� Knowing the original Message, an attacker can predict if 0, 1 or 2 subtraction

steps are required while executing the first round of the RSA loop, depending

on whether bit 𝑏𝑛−1 is either 0 or 1.

� For a supposed bit state, the attacker then categorises each sample as belonging

to set 0, 1 or 2.

� If the average time of the members of set 0 is less than the average time of set

1 and that is less than the average time of set 2 then it is highly likely that the

guess relating to the state of that bit of the key was correct.

� Conversely, if the average times of each set are not ordered, then the guess was

probably wrong.

� Now, knowing the state of 𝑏𝑛−1, the attacker can repeat the process. Calculating

the intermediate value of C for the loop round where 𝑖 = 𝑏𝑛−1 and predicting

the need to use the subtraction steps in the next round where 𝑖 = 𝑏𝑛−2.

Chapter 2. Background 57

2.2. Attacks

� This process can be repeated for consecutive passes of the loop. The known

portion of the key, up to the loop round with the first unknown key bit, is

used to calculate the intermediate value of C. The samples can then be recat-

egorised, based on the expected use of step S on this round, and applying the

same reasoning will disclose this next unknown bit. Each time the process is

repeated, one more bit of the key is discovered, enabling the attacker to progress

sequentially through each round until the whole secret key has been determined.

The simplified process described here can be extended to more realistic imple-

mentations of modular exponentiation and applies to many cryptographic algorithms

[183]. Wherever the data being processed influences the execution time, it is vulner-

able to a statistical timing attack. It is particularly difficult to defend against this

attack if the algorithm cannot be made time-invariant. Adding random time delays

merely dilutes the signal to noise ratio, which can be overcome by collecting more

samples. Random transformations of the data or keys can provide protection but also

exposes alternative opportunities for attack.

Execution time needs to be considered for all security operations. This runs

contrary to the common desire to optimise all operations for speed.

2.2.2.4 Power

Figure 2-1: CMOS Inverter

For 𝜇𝐶s, power analysis is perhaps the most ver-

satile side channel-attack mechanism. The logic

gates within an IC are constructed from combi-

nations of npn & pnp transistors. For example,

Figure 2-1 opposite, shows an inverter. When

𝑉𝑖𝑛 is high, the N-channel gate opens, connect-

ing 𝑉𝑜𝑢𝑡 to ground; conversely, when 𝑉𝑖𝑛 is low,

the P-channel gate is open instead, resulting in

a high output for 𝑉𝑜𝑢𝑡.

Whenever the gate changes state, a small current flows, and this is due to two

factors. Marginally differing switching speeds between the two transistors may permit

58 Chapter 2. Background

2.2. Attacks

a current flow for a very brief period, and the capacitance of 𝑉𝑜𝑢𝑡 leads to a short-lived

current whenever the voltage changes. On each clock cycle, potentially millions of

transistors are switched. Each transition results in a small flow of current, and the

sum of these small currents is observable as the current drawn by the device. The

measured current directly relates to the sum of all the small changes occurring within

the IC.

Figure 2-2: Power Measurement

A small (low value) resistor placed in series

with the power supply enables an attacker to

measure this current. By using an oscilloscope

to measure the voltage at the identified sample

point in Figure 2-2, the attacker can indirectly

measure the current; it being proportional to the

voltage across the resistor R1.

The current’s magnitude relates to the num-

ber of transistors changing state, and propaga-

tion delays within the device result in transistors

switching state at different times. This leads to characteristic shapes in the measured

waveforms rather than momentary current spikes coincident with each clock edge.

A typical waveform is shown in Figure 2-3. The blue trace, labelled Raw is the

data, as sampled by the oscilloscope. It contains minor quantisation errors and high-

frequency noise typical of measurements taken directly from a DUT. The red trace

shows the same data after filtering out the noise by using a simple moving average or

boxcar filter*, Equation 2.1.

𝑃𝑖 =
1

2𝑤 + 1

𝑤∑︁
𝑗=−𝑤

𝑃𝑖+𝑗 (2.1)

The two pronounced spikes at either end of the box labelled C in the power trace

sample (Figure 2-3) demonstrate another phenomenon. They are coincident with

Call & Ret operations where a relatively large number of address bits change within

*The window width 𝑤, in this case, was 8, and the result shifted by +0.1µV for clarity.

Chapter 2. Background 59

2.2. Attacks

1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900

0.25

0.3

0.35

0.4 A

B

C
D

Sample at 50𝑀𝑠𝑎𝑚𝑝𝑙𝑒 𝑠−1

µ
V

Filtered Raw

Figure 2-3: Typical Power Waveform

a single instruction. Besides the 𝜇𝐶 itself, integrated peripherals may be selectively

activated, leading to distinctive periods of increased power demand. For example, a

cryptographic co-processor would usually be idle. When it is used, we would expect to

recognise this in the power trace as an increase in the power demand for the duration

of the peripheral’s operation.

2.2.2.4.1 SPA

Direct observations of the 𝜇𝐶’s power are the basis for Simple Power Analysis (SPA).

SPA has three main uses in chip analysis.

Firstly, recognisable patterns in a power trace can be identified and used to syn-

chronise other activities. In the trace sample (Figure 2-3), the periods A & D on

either side of box C show repeated similar operations. It is a single-instruction loop,

waiting for a status flag to change. Period C shows markedly different behaviour.

Here, a subroutine is called, executed and returned from, breaking the simple loop’s

repetitive pattern. Events like this can be recognised and used to synchronise an

attack. For example, cutting the power when a non-volatile memory write is detected

is a way to prevent a device from recording an event.

Secondly, observations of the timing of events, the time between events, or the

60 Chapter 2. Background

2.2. Attacks

events’ duration may indicate secrets within the device. The process can be likened

to that used by the stereotypical safe-cracker who listens for clicks emanating from

within a lock mechanism to infer the lock’s combination and gain access to the safe.

Take, for example, a simple implementation of an exponentiation algorithm, as shown

in Algorithm 3.

Algorithm 3: Crude Exponentiation

Data: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑋, 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑌 = (𝑦7 . . . 𝑦1𝑦0)𝑏
Result: 𝑍 = 𝑋𝑌

𝑍 ← 1
for 𝑖 = 7 . . . 0 do

𝑍 ← 𝑍2;
if 𝑦𝑖 = 1 then

𝑍 ← 𝑍 ×𝑋;

return 𝑍

Each loop begins with a squaring operation. There is a quick decision made as

to whether to perform the multiplication step or not. It is then followed by another

decision about repeating the loop or terminating. Figure 2-4 shows a power trace of

this algorithm in action. The multiplication (or Squaring) process takes marginally

more power than the simple control logic. Presumably, the multiplication circuitry in

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0.22

0.24

0.26

0.28

0.3
A B C D E F G H I

Sample at 50𝑀𝑠𝑎𝑚𝑝𝑙𝑒 𝑠−1

µ
V

Figure 2-4: Crude Exponentiation

Chapter 2. Background 61

2.2. Attacks

the IC activates more gates than the surrounding loop management. We can see that

between power bursts, there are either short or long pauses, and from the algorithm,

we can surmise that a long pause relates to the decision to skip the multiplication and

perform the loop management logic. A short pause relates to performing the multiply

immediately after the square. Thus from label A to B, we can assume bit 𝑌7 is 0.

From B to C, bit 𝑌6 is also 0. A short delay separates the two power bursts following

C; thus, we can infer that this pair of power bursts identifies a square followed by

multiply, and that bit 𝑌5 must be 1. The process is repeated until the whole of 𝑌7...0

has been recovered. The exponent in this example is 00101001𝑏.

The third use of SPA is to identify familiar behaviour in an executing 𝜇𝐶 and iden-

tify abnormal behaviour. Power trace analysis has been used to recognise individual

instructions as they execute within a 𝜇𝐶 [121]. This technique has the potential to

verify code integrity, detect counterfeit components, or the presence of malware.

Nearly all code is suspectable to SPA unless the programmer takes specific de-

fensive actions. The programmer must ensure execution time is not influenced by

the data being processed because SPA can provide the same data as the statistical

timing attack described earlier and requires fewer samples. Ideally, the execution

path should also be constant to prevent the leakage of power profiles of the different

instructions executed within the alternative paths. Another defence is to add noise

to the power signal. However, this can be eliminated by Differential Power Analysis

(DPA). Finally most effective, but not infallible, defence against SPA is the intro-

duction of random delays. This confuses time measurements and makes comparisons

between traces difficult.

2.2.2.4.2 DPA

Differential Power Analysis (DPA) is another statistical attack devised by Kocher [99],

the author of the similar statistical timing attack described earlier. The attacker needs

access to multiple power traces of the target performing a particular operation. The

attacker needs to know either the input or the output data but does not need control

over it. As with the timing attack, the attacker makes predictions about the internal

62 Chapter 2. Background

2.2. Attacks

behaviour of the 𝜇𝐶 at a specific point in the calculation. This prediction defines

a discriminant function that prescribes adding or subtracting the waveform from a

running total. Repeating this for all sampled power traces produces a new averaged

trace. Most of the points on this trace will have the same average value because their

component influences were added or subtracted without any correlation between the

predicted and observed behaviours. If an action occurs at some point in the trace that

is consistent with the prediction, the averaging process will be biased. This point on

the accumulated trace will deviate from the average of the other, unrelated points.

Plaintext Key

IP

PC1

L1 R1

≪1 ≪1

PC2

C E

L2 R2

k1

1

Figure 2-5: DES Round 1

For example, consider an attack on

first round of the Data Encryption Stan-

dard (DES) algorithm [140], as shown in

Figure 2-5. Operation C, green in the

figure, is a compression function involv-

ing 𝑆𝐵𝑜𝑥𝑒𝑠, each taking 6 bits of input

and delivering a 4 bit result. This struc-

ture is shown in Figure 2-6. There are

32 possible values for bits of 𝑘1[𝑏𝑖𝑡𝑠 0 . . . 5]. Now assume an attacker can collect a set

of power traces for known Plaintext input. For a given value of 𝑘1[𝑏𝑖𝑡𝑠 0 . . . 5], it is

possible to calculate the input and output of 𝑆1 for each of the pre-collected traces.

These traces are then added to, or subtracted from, an accumulated trace depending

on the predicted output value of 𝑆1[𝑏𝑖𝑡 0]. If this candidate value for 𝑘1[𝑏𝑖𝑡𝑠 0 . . . 5]

is correct, then the accumulated trace will show spikes wherever the prediction cor-

relates with the observed behaviour. See Figure 2-7. When the guess was wrong,

there will be no apparent spikes in the resulting trace and another candidate for

𝑘1[𝑏𝑖𝑡𝑠 0 . . . 5] can be tested. It is not unusual to see more than one correlation spike

as the property chosen as the discriminator may be exhibited more than once. In this

case, the output of 𝑆1 is also seen in the input to permutation 𝑃 .

The whole process can then be repeated for 𝑘1[𝑏𝑖𝑡𝑠 6 . . . 11] and 𝑆2. Then again for

𝑘1[𝑏𝑖𝑡𝑠 12 . . . 17] and 𝑆3, etc. until the whole of 𝑘1[𝑏𝑖𝑡𝑠 0 . . . 47] has been discovered.

The same set of power traces can be reused at each stage of the process.

Chapter 2. Background 63

2.2. Attacks

S1 S2 S3 S4 S5 S6 S7 S8

Expansion from 32 to 48 bits

Reduction from 48 bits to 32 Each S-Box maps 6 bits to 4

ki

Ri

32 bits

P

XOR to Li

32 bits

48 bits

1

Figure 2-6: DES S-Box Structure

Depending on the characteristics of the algorithm under attack and possibly details

of its implementation, alternative discriminants may be chosen and may be more or

less effective. For example, the hamming weight of an intermediate result may be

used, or even the difference in hamming weights between two consecutive calcualtions

[54]. The latter method exploits the property that larger currents flow when gates are

changed than when they retain their current values. Using a model of the underlying

chip behaviour to optimise the discriminant function is known as Correlation Power

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·104

0.3

0.32

0.34

0.36

0.38

Sample

A
gg
ri
ga
te
d
p
ow

er

Figure 2-7: DPA Accumulated Trace

64 Chapter 2. Background

2.2. Attacks

Analysis (CPA) and is sometimes identified as a separate attack methodology in its

own right [45]. In CPA the process is logically the same as for DPA, however, the

discriminant function is fine-tuned by observing the behaviour of the device with

known input data and keys.

Defences against DPA include adding a temporal jitter to the processing to break

alignments between the trace samples. Some security chips achieve this by randomly

inserting wait-states in the execution of individual instructions. Similarly, random

power consumption can be used to obfuscate operations. This is often implemented

in silicon as a controllable defence feature. These techniques are examples of a defen-

sive strategy known as Hiding, and they change the signal to noise ratio in the power

traces. Unfortunately, Hiding can often be compensated for by collecting and exam-

ining more samples. An alternative, widely deployed defensive technique is Masking.

Here the processed data is manipulated, or masked, in a way that does not affect the

outcome but does affect the intermediate values and hence removes the opportunity

for correlation on predictable intermediate data. Mangard et al. [110] have published

a comprehensive reference for DPA, DPA defences, and attacks on defences.

Another technique, widely used in industry, has been generally ignored in aca-

demic literature. It involves recognising an attack and blocking further invocations

of the vulnerable process to prevent the collection of usable power traces in the first

place. It is not applicable in all cases, but mutual authentication protocols and ses-

sion key generation are a case in point. In this scenario, each party in the exchange

provides some unpredictable input, and both parties prove their authenticity by per-

forming cryptographic operations on that data. This Challenge / Response behaviour

is particularly vulnerable to DPA as the attacker has control over the data supplied

to the victim. In normal operation, this process would be expected to terminate suc-

cessfully, and when under attack, it would fail to complete because the attacker could

not complete the cryptographic challenge. The device protects itself by maintaining

an attack counter and registering the number of incomplete authentication attempts,

much like the PIN try-limit described earlier.

Chapter 2. Background 65

2.2. Attacks

2.2.3 Physical Attacks

The most straightforward and crude attack is the simple physical destruction of the

device. Clearly, it would be foolish to launch such an attack on one’s own e-purse

or electronic travel card as this would result in a personal loss of money or in being

denied a useful service.

Figure 2-8: ePassport Chip

However, destruction may be advan-

tageous if the device was an electronic

tachograph and held incriminating evi-

dence of historical traffic violations. In

the early roll-out phase of EMV’s Chip-

n-Pin program, it was acceptable for

merchants to accept the legacy signa-

ture if the more secure PIN option was

unusable. Criminals with stolen cards

were known to break the chip to make purchases with an easily forged and seldom

checked physical signature. Doing so bypasses the card’s in-built security measures

that restrict the number, and accumulated value, of unauthorised transactions. Some

e-Passports make the chip visible, see Figure 2-8, making tampering more easily de-

tectable. Defences for this class of attack require physical robustness for the device

and an enforceable duty-of-care obligation on the holder.

Figure 2-9: Chip Probing

Attacks that do not destroy the de-

vice are far more interesting but signifi-

cantly more expensive to perform. Elec-

trical connection with individual tracks

on an exposed chip’s surface can be

made using fine-pointed needles, as seen

here in Figure 2-9. Contact like this en-

ables an attacker to monitor a signal line

or inject a new signal into it while the

66 Chapter 2. Background

2.2. Attacks

chip while running.

A Focused Ion Beam (FIB) workstation is perhaps the most versatile tool in the

attacker’s armoury. A FIB can be used to cut tracks to isolate internal components

disabling a subcomponent or enabling the injection of externally synthesised signals.

Holes can also be drilled with a FIB to enable physical access to deeper layers within

a chip. This exposes more of the device’s internal signals to probing. Finally, a FIB

can also build up new metal deposits, creating new tracks and connections. Such

equipment is very expensive and only available in the best-equipped laboratories.

Chips can also be reverse-engineered by a process known as delayering. By delay-

ering a chip, an attacker can trace the paths taken by individual tracks and create

a schematic diagram of the chip’s circuitry. The most basic method involves polish-

ing for the mechanical removal of thin slivers from a chip’s exposed surface. Optical

inspection of the device as the polishing proceeds enables the attacker to trace each

track’s path individually. This ’kitchen table’ technique was used to great effect by

Nohl [127] to crack Mifare’s Crypto-1 cypher. Open-source tools exist to assist in

interpreting images of delayered chips and reconstructing the schematics [158].

Other techniques to delayer a chip exist too. Wet Chemical etching can selectively

remove materials, and by alternately using different etching chemicals, a chip can be

deconstructed, one layer at a time. Alternatively, Dry Plasma Etching can be used.

Here the IC is immersed in a gas plasma, and by altering the composition of the

plasma, selective removal of different materials from the chip’s surface is possible.

Finally, Ion Beam Etching enhances dry plasma etching by enabling the attacker to

focus the etching rather than the all-or-nothing option offered by immersive etching.

The ability to disassemble and, in effect, re-wire a chip means that no chip is safe

from the attacker when money is no obstacle. Kerckhoffs’s principle [97] states that

"A cryptosystem should be secure even if everything about the system, except the key,

is public knowledge". This remains true right down to the gate level of the ICs used.

Chapter 2. Background 67

2.3. Errors

2.3 Errors

The errors of interest are not faulty algorithms or program implementation bugs.

They are abnormal behaviour in response to an external stimulus that makes a device

do something it was not programmed to do. Referred to as glitches or transient faults,

they can be deliberately induced and exploited to compromise, what would otherwise

be, a secure device.

2.3.1 History of Fault Attacks Techniques

The recognition that transient faults may occur during program execution is not new.

The risks associated with these faults are widely recognised in industries working on

safety-critical devices and equipment designed to operate in hostile environments.

Referred to as Single Event Upsets (SEU) they occur randomly and are induced by

unpredictable external events.

Energetic charged particles can momentarily affect the electron distribution at a

semiconductor junction, induce momentary current flows and create an effect akin to

switching a transistor. The three primary sources of these particles are [25]:

� Alpha particles emitted from radioactive impurities in a device’s packaging ma-

terials.

� Terrestrial radiation in the form of high-energy neutrons.

� Cosmic background radiation.

The last two mechanisms induce errors in silicon circuits when neutrons, colliding

with atomic nuclei in close proximity to the device, cause nuclear fission and release

charged particles. The probability of experiencing SEUs depends on the deployment

environment, the size and packing density of individual transistors, and the overall

size of the device [24]. This probability is called the Soft Error Rate (SER), and

as ICs get bigger, containing ever more transistors, the threat from SEUs increases.

68 Chapter 2. Background

2.3. Errors

Chip manufacturers, recognising the risk, provide guidance datasheets on the subject

for engineers [6, 44].

There have been attempts to simulate SEUs to investigate their impact and to test

defensive strategies [81]. Many of the attack techniques used by cryptographers have

been borrowed from, or are reinvented, techniques used for radiation-hardness testing

[141, 67]. Likewise, the defences, in the form of self-testing software, have precedents

in fault-tolerant computing research. Trends towards voltage and geometry shrink

increase the SER, and the topic is gaining in everyday relevance outside the defence

and space industries [144, 180]. The latest chips are so big and sensitive they are

vulnerable to SEUs at home and at sea level.

The prospect of deliberately inducing such errors was not openly discussed in the

smart card and cryptographic community until 1996 when Boneh, DeMillo & Lipton

published the groundbreaking paper, ’On the Importance of Checking Cryptographic

Protocols for Faults’ [36]. Within a year, Biham & Shamir [33] coined the phrase,

Differential Fault Analysis (DFA), and demonstrated that most cryptographic algo-

rithms were vulnerable to attack if an attacker could induce an error during their

calculations. Both parties speculated on the likelihood of being able to generate such

errors in practice, and these reservations were backed up by RSA Laboratories, who

also suggested in a special report that "potential vulnerabilities are primarily of the-

oretical interest" [92]. Within a year, researchers were demonstrating practical error

attacks [7]. The cryptographers had discovered the engineers’ work, and the cat was

out of the bag.

2.3.2 Consequences of Faulty Execution

Does it matter if something goes wrong momentarily when executing a program?

Data will be invalidated, so the question should be, can we learn anything from

faulty execution?

The significance is clear for algorithms relying on modular exponentiation. The

Rivest–Shamir–Adleman (RSA) algorithm [147] is relatively simple to understand and

is the most widely used asymmetric cryptographic algorithm [108].

Chapter 2. Background 69

2.3. Errors

The RSA components are shown here.

𝑃 & 𝑄 = secretly chosen prime numbers

𝜑 = (𝑃 − 1)× (𝑄− 1)

𝑒 = 𝑛 | 𝑛 ∈ {1 . . . 𝜑− 1}, and 𝑛 ⊥ 𝜑

𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜑

𝑁 = 𝑃 ×𝑄

The key owner publishes 𝑒 and 𝑁 as the public key. The other components are

retained as the private key. Generating a key involves finding two large prime numbers

𝑃 & 𝑄. Once they have been found, it is easy to calculate the other components.

The system’s strength is based on the presumed difficulty of factoring 𝑁 to recover

𝑃 & 𝑄. As computers get faster and cheaper, it is easy to increase the security of

RSA by choosing ever-larger values for 𝑃 & 𝑄.

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑑 𝑚𝑜𝑑 𝑁

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑒 𝑚𝑜𝑑 𝑁

The holder of the private key can sign a message. Anybody with the public key

can confirm that the private key holder signed that message, but they cannot use the

public key to construct the signature. This asymmetry is what makes RSA powerful

and convenient to use.

𝑒 is not secret and is usually chosen to be relatively short. Consequently, the

computation of 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑒 𝑚𝑜𝑑 𝑁 is quick. 𝑑 is usually in the order of several

thousand bits long and, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑑 𝑚𝑜𝑑 𝑁 can therefore take a long time to compute.

The most common optimisation for signature generation, or decryption, is based

on the Chinese Remainder Theorem (CRT). A signature can be generated via CRT

approximately 4 times faster than by the full length exponentiation using 𝑑 & 𝑁 .

70 Chapter 2. Background

2.3. Errors

Algorithm 4: RSA Signature generation (decryption) via CRT

Key Data: 𝑃, 𝑄 = Secret prime numbers,
𝐷𝑝 = 𝑒−1 𝑚𝑜𝑑 (𝑃 − 1),
𝐷𝑞 = 𝑒−1 𝑚𝑜𝑑 (𝑄− 1),
𝑈 = 𝑃−1𝑀𝑜𝑑 𝑄.

Input : 𝑋 = Message to Sign
Output : 𝑍 = 𝑋𝑑 𝑚𝑜𝑑 𝑁

1 𝑆𝑝 ← 𝑋𝐷𝑝 𝑚𝑜𝑑 𝑃
2 𝑆𝑞 ← 𝑋𝐷𝑞 𝑚𝑜𝑑 𝑄
3 𝑍 ← (((𝑆𝑞 − 𝑆𝑝)× 𝑈) 𝑚𝑜𝑑 𝑄)× 𝑃 + 𝑆𝑝

The so called Bellcore attack by Boneh et al. [36] is possible if the attacker

can obtain two signatures of the same message, 𝑆 and 𝑆, where 𝑆 results from an

erroneous calculation during step 2, shown here in Algorithm 4. If this is possible,

the attacker can retrieve 𝑃 & 𝑄, the private key.

𝑃 = 𝑔𝑐𝑑(𝑆 − 𝑆,𝑁), 𝑎𝑛𝑑

𝑄 = 𝑁 ÷ 𝑃

An optimisation on this attack by Lenstra [107] recovers the key from a single

erroneous signature and works where an error occurred during either step 1 or step 2

of Algorithm 4.

𝑃 = 𝑔𝑐𝑑(𝑋 − ((𝑆𝑒 𝑚𝑜𝑑 𝑁), 𝑁)

It is also possible to recover the keys from symmetric cyphers. Take the last

two rounds of DES, for example, Figure 2-10, and consider the consequence of an

arithmetic error during any of the operations highlighted in green. Such errors affect

𝐿16 and 𝑅16 can be recovered from the 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 output.

Chapter 2. Background 71

2.3. Errors

Three conditions are required to perform the attack.

1. We must be able to repeat the calculation with the same input data. It is not

necessary to know that data, only that it is the same for each run.

2. We also need to see the resulting 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 output from which we can recover

𝐿17 & 𝑅17 by performing 𝐹𝑃−1.

3. We need to induce a fault during at least one DES operation during its 15𝑡ℎ

Round.

Let the round function, 𝐹 (𝑟, 𝑘) = 𝐶(𝑘 ⊕ 𝐸(𝑟))

We know,

𝐿17 = 𝐹 (𝑅17, 𝑘16)⊕ 𝐿16

�̂�17 = 𝐹 (�̂�17, 𝑘16)⊕ 𝐿16

Or alternatively, 𝐿17 ⊕ 𝐹 (𝑅17, 𝑘16) = 𝐿16 = �̂�17 ⊕ 𝐹 (�̂�17, 𝑘16)

Now we can search for all the possible values for 𝑘16 that satisfy 𝐿17⊕𝐹 (𝑅17, 𝑘16) =

�̂�17⊕𝐹 (�̂�17, 𝑘16). Thanks to the S-Boxes’ organisation within the compression func-

L14 R14

L15 R15

≪2 ≪2

PC2

C E

L16 R16

≪1 ≪1

PC2

C E

L17 R17

FP

Ciphertext

k15

k16

1
Figure 2-10: DES Final Rounds

72 Chapter 2. Background

2.3. Errors

tion C, See Figure 2-6, this search can be performed 6 bits at a time. By only consid-

ering those bits in 𝐿17 that are influenced by permutation 𝑃 on an individual S-Box’s

output. 𝑃 (0𝑥𝐹0000000) identifies the bits derived from S-Box0, 𝑃 (0𝑥0𝐹000000) S-

Box1, etc. We can quickly identify which values of each S-Box’s 64 possible inputs are

consistent with the observed results. Repeating this for each S-Box in turn, brings

the total search space down from 248 comparisons to a more manageable 26 × 8, or

29, comparisons. The process produces a list of possible candidates for each 6 bit

component of 𝑘16, and these lists can be reduced further if more erroneous samples

are available. The process is shown here in Algorithm 5.

Algorithm 5: DFA DES round 16.

Key Data: 𝐶[8, 64] = Candidate array, initialized to ′𝑉 𝑎𝑙𝑖𝑑′,
𝑅17 = Observed result 1,
�̂�17 = Observed result 2.

1 for 𝑐← 0 . . . 63 do
2 𝐾𝑒𝑦𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[0...47]𝑏 = 𝑐[0...5]𝑏 ‖ 𝑐[0...5]𝑏 ‖ · · · ‖ 𝑐[0...5]𝑏
3 𝐿 = 𝐹 (𝑅17, 𝐾𝑒𝑦𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

4 �̂� = 𝐹 (�̂�17, 𝐾𝑒𝑦𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
5 for 𝑖← 0 . . . 7 do
6 𝑚𝑎𝑠𝑘 = 𝑃 (𝐹0.00.00.00ℎ ≫ (𝑖× 4))

7 if (𝐿 ∧𝑚𝑎𝑠𝑘) ̸= (�̂� ∧𝑚𝑎𝑠𝑘) then
8 𝐶[𝑖, 𝑐]← ′𝐼𝑛𝑣𝑎𝑙𝑖𝑑′

The complete set of candidates for 𝑘16 is found by combining the 𝑉 𝑎𝑙𝑖𝑑 entries for

each S-Box[0. . . 7] from the array 𝐶. Our experimental observations have shown that

a single S-Box error is enough to bring the full candidate search space down from 248

to 243 comparisons, and an error affecting two S-Boxes brings the search space down

to 235 comparisons. Sixteen samples of single S-Box errors, or eight examples of a

double S-Box error, is enough to identify a subkey uniquely.

Each subkey uses 48 bits of the whole key’s 56 bit key field. This leaves just 8

bits, or 256 variants, to test via brute-force to recover the whole key.

Since the first description of these attacks, the original DES standard has been

superseded with the Advanced Encryption Standard (AES). The Rijndael algorithm

was selected as the new AES because it is relatively is easy to implement with hard-

Chapter 2. Background 73

2.3. Errors

ware and appeared, at the time, to be resistant to DFA. Unsurprisingly, given the

ingenuity of cryptographers, there are now many published examples of DFA attacks

on AES [34, 51, 63, 74, 137]. There are even optimisations of existing attacks [76],

and attacks on implementations utilizing duplicate/redundant hardware [159].

Not all attacks on Cryptography require exploitable mathematical errors. The

basic administrative tasks of feeding data and keys into cryptographic functions are

also fraught with risks. Consider the highly simplistic Key Nulling scenario where a

software loop may be prematurely terminated by an error [17, 178] shown in Table 2.1.

If an attacker can control the number of bytes copied for the key, then by performing

encryption first with one copied/unknown byte, then with two, the attacker can search

all 256 candidates for each byte. The brute force attack on an 𝑛 byte key takes 256×𝑛

trial calculations instead of the expected 256𝑛.

Table 2.1: Key Nulling Exploit

Input Key Output

𝑀 → 𝐾0 = 𝑋𝑋0 00 00 00 00 00 00 00 → 𝐶0

𝑀 → 𝐾1 = 𝑋𝑋0 𝑋𝑋1 00 00 00 00 00 00 → 𝐶1

𝑀 → 𝐾2 = 𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 00 00 00 00 00 → 𝐶2

𝑀 → 𝐾3 = 𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 00 00 00 00 → 𝐶3

𝑀 → 𝐾4 = 𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 00 00 00 → 𝐶4

𝑀 → 𝐾5 = 𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 𝑋𝑋5 00 00 → 𝐶5

𝑀 → 𝐾6 = 𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 𝑋𝑋5 𝑋𝑋6 00 → 𝐶6

𝑀 → 𝐾7 = 𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 𝑋𝑋5 𝑋𝑋6 𝑋𝑋7 → 𝐶7

A similar threat exists when returning the final answer to a calculation. Injecting

an error into loop variables may result in the delivery of unintended data. When it

is possible to corrupt the buffer’s location or size, a poorly implemented loop will

dump arbitrary data from an IC’s memory. This data may contain intermediate

working variables from an earlier calculation, keys or other secret data. This is one of

the most uncomplicated error attacks and is commonly used during EMV bank card

penetration testing as part of the scheme approval process required before permission

is granted for deployment. In this case, the Get Processing Options command [65]

is targeted because it delivers a block of data from memory and can be repeatedly

74 Chapter 2. Background

2.3. Errors

exercised without any requirement for passwords or cryptographic verification.

Virtual machines are compromised by errors too. The erroneous execution of an

interpreted instruction is enough to break the primary security claim of JavaCard.

JavaCard’s security model relies on the concept that the executing programs have

been Bytecode Verified. Bytecode verification is a static analysis of a whole appli-

cation, ensuring all variables and functions are used in ways appropriate to their

declared data types. For example, it prevents arithmetic on object references or the

casting of numeric data into object references. If a single instruction can be skipped

or made to malfunction, then the JavaCard security model’s foundation is broken.

1 byte[] baTmp;
2
3 byte Foo(byte [] baX , short s) {
4 return baX[s];
5 }
6
7 byte Bar(short s1 , short s2) {
8 return Foo(baTmp , (short)(s1+s2));
9 }

Figure 2-11: Java Source Code

In this example, Figure 2-11, the bytecode verifier ensures that function Foo() is

only invoked with a reference and a short in the parameter stack. In function Bar()

we see Foo() being invoked correctly. This code will pass the bytecode verification

process, and a basic JavaCard Virtual Machine will execute it without further checks.

1 .method Bar(SS)B 129 {
2 .stack 4;
3 .locals 0;
4
5 L0: aload_0;
6 getfield_a_this 0; // ref BcDemo.baTmp
7 sload_1;
8 sload_2;
9 sadd;
10 invokevirtual 5; // Foo([BS)B
11 sreturn;
12 }

Figure 2-12: Java bytecode

The compiled bytecode for function Bar() is shown in Figure 2-12. Line 6, pushes

the reference onto the parameter stack. Lines 7 & 8 place Bar()’s own parameters

on the stack. They are removed by the addition operation, Line 9, and replaced with

Chapter 2. Background 75

2.3. Errors

their arithmetic sum. The stack now contains the reference and the short expected,

and required, for the call to Foo().

If the addition on Line 9 could be avoided or corrupted, then the invocation of

Foo() could occur with two shorts at the top of the parameter stack. Foo() would

be unaware of the error and treat the first short as the byte array reference it was

expecting.

Historic attacks on JavaCard that relied on bypassing the off-card bytecode verifier

and loading malformed bytecode were effectively prevented when JavaCard V3 (Con-

nected Edition) implemented on-card bytecode verification. Unfortunately, runtime

error induction, as shown above, enables these attacks to be reinvented as a combined

physical and logical attack [19, 18]. Other researchers have used memory errors to

make a Java Virtual Machine (VM) use faulty references and execute arbitrary code

[78]. In recognition of these risks, modern JavaCard VM implementations perform

more runtime sanity checking of their execution state [5, 102].

In general, fault attacks on secure embedded software present a high risk of ex-

ploitation. This threat is underestimated by many programmers as there is an in-

stinctive assumption that 𝜇𝐶s execute programs accurately and repeatably.

There is also no advantage in heavily defending a cryptographic operation if a

simple error can ignore the result of that calculation. If an operation can proceed,

irrespective of an authentication state, then that application is vulnerable regardless

of the authentication algorithm’s quality. Multiple studies have arrived at this same

conclusion [75, 188], while also noting that defences have costs and need to be deployed

sparingly.

2.3.3 Mechanisms of Fault Injection

We have seen that faults in both data and execution of 𝜇𝐶s can have serious effects

on the security of schemes that rely on them. The question remains, does this mat-

ter? In much the same way as a meteor impact could be devastating for all life on

earth, no one will lose much sleep over the prospect because it is exceedingly unlikely.

Unfortunately, the same is not true of errors in 𝜇𝐶s. They are far more likely, both

76 Chapter 2. Background

2.3. Errors

as spontaneous events as in the SEU discussed previously and as deliberately induced

events initiated by hackers.

Here we look at the catalogue of techniques available to the hacker, observe the

ease with which they can be deployed, and the ease with which the effects can be

exploited.

2.3.3.1 Glitch Attacks

The principle behind power and clock attacks is relatively simple.

All ICs have an operating range for the supply and signal voltages. Manufacturers

list these on datasheets, and circuit designers ensure the ICs are supplied with the

appropriate signals to ensure their product’s reliability. If the voltage is too high, the

IC may burn out as too high currents flow through the device. If the voltage is too

low, the threshold for switching logical 0s & 1s is not met, and the device fails to

operate. In a glitch attack, a voltage, high or low, may be applied momentarily for

a short enough time to avoid damage to the IC and for long enough to make some

internal behaviour fail. The IC then continues its normal behaviour but with some

registers or other subcomponents in corrupted states.

Likewise, digital ICs have maximum operating frequencies described in the com-

ponent’s datasheet to guide circuit designers. Depending on the operating voltage,

semiconductor material used, and the transistor size within an IC, a transistor’s

switching time varies. These switching times accumulate when one transistor’s out-

put feeds another’s input. The sum of these delays is the signal’s propagation time.

In clocked digital circuits, a device will typically latch one state on a clock edge; this

new state will trigger a cascade of logic resulting in a new state that is then latched

on the following clock edge. The limit for the device’s clock signal frequency is the

time of the longest propagation delay. By creating a clock cycle shorter than this

limit, the attacker can expect the device to latch some internal states before they

have been fully calculated. Once again, the IC then continues its normal behaviour

but with some registers or other subcomponents in corrupted states.

Glitch attacks are applied externally to an un-tampered device. They work be-

Chapter 2. Background 77

2.3. Errors

cause the device has been taken out of what has been termed its Operating Envelope

[184]. They are relatively easy to implement at a very low cost in terms of components

and equipment. The disadvantage is that the glitch effect is not localised, and the at-

tacker has little control over what aspects of the device are affected. This imprecision

can lead to an overwhelming number of errors and no usable effect or errors within

features that are of no interest to the attacker. It is also possible that some errors

may hinder the collection of valuable errors. For example, an error that renders the

communication channel inoperative will make other internal errors unobservable.

Attempts have been made to identify the thresholds where errors begin to occur by

fine manipulation of the parameters, timing, duration and magnitude. The suspicion

is that a 𝜇𝐶’s attempts to access memory are most vulnerable. While register to

register operations are the most stable [20]. This and other studies of glitch attacks

have concluded that injecting a fault is relatively easy but that injecting an exploitable

fault is hard [16]. While this is undoubtedly true, it must be remembered that

the technique was successfully used in the criminal world of Pay-TV hacking before

academic interest emerged [7]. The use of glitches is widely reported [132, 137, 17, 94],

although it should also be noted that it is primarily in the context of defences rather

than examples of new exploitations. Modern security devices, such as those used

in smart cards, implement hardware defences against these attacks. This technique

remains a potent threat for other 𝜇𝐶s, lacking such defences. The ease and low cost

of implementation mean this practical attack is available to many potential attackers.

The third type of glitch attack worthy of mention is heat. Again operating tem-

perature is part of the Operating Envelope characterised by manufacturers and listed

on a typical datasheet. It is not possible to rapidly apply and remove heat as it is with

electrical inputs, but researchers have shown that at specific critical temperatures,

faults start to occur. On their 𝜇𝐶 of choice, Atmel’s AVR, they witnessed increasing

numbers of faults occurring between 152 & 158 °C [85]. The evidence suggests that

meticulous control of temperatures within this range may be exploitable.

78 Chapter 2. Background

2.3. Errors

Isolated P-Well

Global P-Substrate

p+ n+n+

Bulk Source DrainGate

N
-W

ell

Deep N-Well

N
-W

ell

Drain

Source

Gate Bulk

Figure 2-13: Body Bias Transistor

2.3.3.2 Body Biasing Injection Attacks

Body Bias is used in low-power CMOS designs to adjust the threshold voltage of

transistors to enable them to work with lower supply voltages [143].

In this configuration, the transistor has four terminals, Figure 2-13. As with an

ordinary transistor, applying a voltage to the Gate draws charge into the depletion

zone between the Source and Drain. At a critical gate voltage, this breaks down

the high resistance formed in the n-p-n junction and enables a current to flow. The

fourth terminal, Bulk, biases the p-doped substrate and affects the voltage thresh-

old for transistor switching. Isolation of regions of the chip with negatively doped

barriers enables different logical components within the IC to operate with different

switching characteristics. Operating with smaller voltages reduces the current, and

consequently, components can run faster and use less power.

The Bulk terminal affects a region of the IC and many transistors. This opens up

the possibility of influencing this signal and affecting the transistors, not by changing

the Gate or switch signals, or by inducing current flow between Source & Drain, but

by changing the point at which the sub-component switches state. A probe touching

the rear side of the IC with a momentarily applied voltage is enough to achieve this

effect [175]. Pulses of 160 V for 200 ns have been shown to generate localized effects

with approximately 200µm resolution [31]. This enables the attack to be focussed on

specific areas of the IC rather than the system-wide hit induced by clock or voltage

glitches. This attack vector bypasses the defences used insecurity chips for voltage or

clock glitches while generating similar effects.

Chapter 2. Background 79

2.3. Errors

2.3.3.3 EM Attacks

Electro Magnetic perturbations are induced by generating powerful electromagnetic

waves in close proximity to the running IC. For example by using a spark generator

[156]. Alternatively, a tiny wire loop antennae driven with an electrical pulse can

be used to generate a momentary magnetic field [129]. Changing magnetic fields

induce currents in nearby conductors, currents can switch transistors, and unexpected

switching of transistors generates errors.

Two types of EM perturbations have been successfully used to attack ICs; har-

monic emissions, where an oscillating field is used, and transient pulses, where the

momentary application of a powerful pulse is applied to an IC.

Harmonic emissions of approximately 1 GHz have been used to influence the op-

eration of stand-alone ring oscillators. Such oscillators are often used within ICs as

a source of random noise and used in random number generators [27, 58]. Reliable,

unbiased random numbers are critical for secure cryptographic protocols. Therefore,

this technique is a significant threat to devices that use ring-oscillators to generate

so-called ’true’ random numbers.

Transient pulses of EM radiation have been used to induce errors in executing

𝜇𝐶s. Single byte memory look-up errors have been observed and used to replicate

the oft-cited Bellcore attack [156], described earlier on Page 71.

EM attacks are equally effective when performed from either the top-side and

rear-side of an IC [156]. The technique does not have the same spatial resolution as

body-bias attacks, but it is still highly effective at generating computation errors. It

is often cited as a source of error in papers describing cryptographic attacks based on

DFA, for example, Dehbaoui’s attack on AES [58].

2.3.3.4 Light Attacks

Light attacks exploit the Photovoltaic effect in the semiconductor.

Conduction in solids depends on electrons’ ability to move between the valence

band and the conduction bands within an atom. When these bands overlap, no

80 Chapter 2. Background

2.3. Errors

additional energy input is required for electrons to change bands, and the material

will be a conductor. Conversely, when the energy required for an electron to switch

bands is large, we have an insulator. Semiconductors have a small but distinct band-

gap and require modest energy input to accelerate electrons from the valence to the

conduction band.

Figure 2-14: Semiconductor Band
Structure

In silicon, the energy required to cross the

band gap is 1.1 eV at 300 K and is the energy of

a single photon with wavelength 1130 nm. This

is the photoelectric effect, and 1130 nm corre-

sponds to near-infrared light. All light sources

from near-infrared through visible can generate

this effect in silicon.

The promotion of an electron to the conduc-

tion band creates an electron-hole pair within the

semiconductor. If no electric field is present, the

non-equilibrium will recombine with no net flow

of charge carriers. If electron promotion occurs within a reverse-biased pn junction,

the holes migrate to the p-region and the electrons to the n-region. This is known as

Optical Beam Induced Current (OBIC) [171].

Within a powered transistor, OBIC has the same effect as applying a voltage to its

gate. If enough electrons are excited, then the gate will switch. Thus the application

of light to a transistor can make it switch without reference to its controlling gate’s

input voltage. Therefore it is possible to use light to induce an error in a silicon

circuit. Smaller components require smaller OBICs, so modern ICs are potentially

more vulnerable to this effect than older designs.

Sustained application of light may cause circuits to burn out. See Figure 2-1; here,

the two gates should be in opposite states when controlled by the 𝑉𝑖𝑛 signal. When

switched by photons, they could simultaneously be open, leading to a short circuit

and possible burnout of the devices. Pin-point application of light can be used to

selectively destroy components [171].

Chapter 2. Background 81

2.3. Errors

The momentary application of light has a similar effect as an externally applied

glitch. It causes transient non-fatal errors and can be achieved with a simple photo-

graphic flash-gun. The technique was first described publicly by Skorobogatov [166]

but had been widely used in industry for many years before disclosure.

Lasers offer a significantly more precise mechanism to inject light into an IC. Finer

control of both focus and power is possible. A laser focussed through a microscope’s

objective lens enables an attacker to induce OBIC in single transistors within a large

IC, and the relative ease of control have made lasers the weapon of choice for most

sophisticated attacks based on error induction.

2.3.4 Lasers

Lasers provide a very flexible and precise way to inject errors into an IC. Being a

single wavelength light source, they can be accurately focussed with relatively simple

optics. Their use in error induction is almost as old as the semiconductor industry

itself [81]. This early interest was driven by the defence industry, seeking reliability,

particularly in harsh environments.

It had been argued that the complications and costs of mounting an attack with

lasers were in themselves defences. The capital cost of the equipment and expert

knowledge required to mount an attack meant that low-value targets were not worth

attacking [21]. However, relatively powerful semiconductor lasers have emerged on the

market to support telecommunications (fibre optics) and the DVD/BlueRay market.

These combine ease of control with sufficient power to induce OBICs, and do so at

an almost trivial cost.

2.3.4.1 Implementation Practicalities

A typical laser fault injection station consists of a microscope with a laser light source

mounted so that the beam passes through the objective lens onto the target. When

using a visible light laser, the focus will coincide with the optical focus obtained by

looking through the eyepiece. Ideally, the target will be placed on stage with fine

82 Chapter 2. Background

2.3. Errors

control available for both X & Y coordinates. The workstation used in this study is

seen here in Figure 2-15.

A mechanism is required to trigger a laser pulse. This usually requires continual

monitoring of the target’s power consumption in the same way that power analysis

attacks monitor the same property. Real-time pattern matching is then required to

identify the moment to fire the laser [178]. If the event of interest has no discernable

power profile, it may be necessary to insert a precise delay between a recognised

pattern and the laser trigger event. Knowledge of the algorithm being executed

can help identify patterns of interest within a power trace. For example, a rapid

series of 10, 12, or 14 power surges may identify successive AES round operations.

Identifiable but nondescript patterns before such land-mark patterns may be related

to key loading or data preparation.

Figure 2-15: Laser workstation

Computer control of the X-Y stage en-

ables the automation of a scanning cam-

paign. It is usually necessary to attempt

injection on all possible sites to identify the

sensitive regions worthy of further detailed

investigation. This process can be laborious

and time-consuming, so automation is prac-

tically unavoidable.

The top side of an IC is built up of multi-

ple layers of metal tracks, insulation and op-

tional protective layers. This shielding can

obscure the sites of interest for optical at-

tacks requiring line of sight access to the

silicon. For precision attacks on individual

transistors, it can render top-side attacks in-

feasible. Silicon is semi-transparent to light

in the Near Infra Red (NIR) part of the spectrum. It is even possible to photograph

the circuit from the back-side [30]. A laser with a wavelength greater than approxi-

Chapter 2. Background 83

2.3. Errors

L3
L2
L1

L4 Insulator

Substrate

p+ n+ p+ n+ p+ +n p+ +n p+ n+ p+

Metal

Visible Light
Only Between tracks

Near-IR
Unobscured access

Figure 2-16: Frontside and Rearside Attack

mately 1000 nm will penetrate the silicon and provide unobscured access to all of the

ICs components. See Figure 2-16.

In many cases, access to the backside of the IC is less complicated than the front

side. For ICs with many connections to external pins, a common manufacturing

process is bump-bonding and flip-chip packaging. This involves building up a small

conductive bump in the terminal pads, flipping the chip over and pressing it against

the carrier body. No wire bonding is required, and the back of the IC is left facing

outwards. This process makes it easier to attack the chip without needing to re-bond

connections but is only practical using NIR [179].

Figure 2-17: Etched Package

It is necessary to expose the surface of the IC to

perform laser fault injection. The widely used tech-

nique is to dissolve the packaging with hot fuming

nitric acid (> 98%𝑁𝐻𝑂3) and wash it with acetone

to remove any residues. This removes the plastic

without damaging the IC [156]. For ICs in the fa-

miliar black plastic packaging, it is more efficient to

mechanically grind away some of the plastic to form a

well above the site of the IC. Repeated etch and clean

cycles can be used to expose the IC while leaving it

supported in the package and connected to the package’s pins, Figure 2-17.

84 Chapter 2. Background

2.3. Errors

We have also observed that some devices use copper bond wires to connect the

IC to the pins. For such samples, it is necessary to stop 𝑁𝐻𝑂3 etching as soon as

these wires are exposed because they quickly corrode. We found it possible to resume

etching at this point with concentrated sulphuric acid (95− 99%𝐻2𝑆𝑂4). It is slower

and requires more etch and rinse cycles, but it leaves the copper undamaged. Others

recommend diluting the 𝑁𝐻𝑂3 with 𝐻2𝑆𝑂4 as this reduces the risk of damaging

aluminium structures [29]. The alternative is to entirely remove the IC and re-bond

it to new contact points, as shown in Figure 2-18.

Figure 2-18: Rebonded IC

When access to the rear side of the

IC is required, the whole process of de-

capsulation can be performed mechan-

ically by grinding away any packaging

until the chip is exposed. There is often

a copper or aluminium plate protecting

the rear side of the chip. This metal can

be removed with tweezers and a little bit

of force without damaging the device. A

problematic aspect of rear-side attacks

is aligning the laser to areas of interest.

Without recognisable surface features, it

is necessary to rely on a visible mark or blemish on the chip and precise X-Y stage

movement to reacquire targets.

Unless the microscope supporting the laser is equipped with a filter to protect

an observer’s eyes from laser light reflected out through the eyepiece, it is advisable

to replace an eyepiece with a CCD camera and observe the target remotely via a

monitor screen. Likewise, the area surrounding the target should be screened off to

avoid accidental exposure to the light source.

Chapter 2. Background 85

2.3. Errors

2.3.4.2 Static - Bit-Flip

The first reported effects of pin-point laser attacks on an IC related to changing its

memory contents. By targeting the transistors making up an SRAM cell, it is possible

to set or reset its stored data bit [166].

A typical CMOS SRAM cell comprises 6 transistors, and activating any of them

can lead to a state change. In Figure 2-19, transistors P1, N1, P2, N2 form a simple

bistable circuit, or flip-flop. Activation of P1, or N2 will set the state to 1, while

activation of P2 or N1 will set the state to 0. Using WL to simultaneously activate

N3 and N4 will make the component adopt the state currently asserted on the BL

lines.

Figure 2-19: Static RAM, Single Bit

Using a highly focussed laser to stim-

ulate individual transistors enables edit-

ing of the memory contents. This has

been termed ’surgical fault injection’

[64]. Setting and resetting are possible,

but logically inverting a bit would ap-

pear to be infeasible [151]. However, re-

producible bit inversion has also been

demonstrated by Agoyan [3]. It has

N-Well N-Well

 N41.1 P11.1 N21.1 N21.2

 N11.1 P21.1 N31.1 N11.2

 N12.2

BLx.1 /BLx.1 /BLx.2 BLx.2

 N42.1 P12.1

 N12.1 P22.1 N32.1

 N22.1 N22.2

 N31.2 P21.2

 N32.2 P22.2

 P12.2 N42.2

 P11.2 N41.2

Figure 2-20: Simplified SRAM Layout

86 Chapter 2. Background

2.3. Errors

been postulated that the effect arises as a consequence of exciting just one of a tran-

sistor’s wells, with the effect of inverting an inverter. Regardless of the mechanism,

it is an interesting result as it guarantees data corruption and increases the efficiency

of a DFA attack.

Figure 2-21: AVR Registers

RAM is one of the most readily

recognisable structures in an IC. Using 6

transistors per bit, and 8 bits per bytes,

a typical 𝜇𝐶’s RAM or register bank

shows a highly repeated pattern. Figure

2-20 shows how high density and regu-

larity is achievable by making each cell

a reflection of its near neighbours. This

gives a 4 bit repeating tile that is easily

recognisable in Figure 2-21 High density and regularised surface metal features mean

it is usually difficult to attack RAM from the top side. Instead, for accurate bit

editing, a rear-side NIR attack is required.

By using a highly focussed laser beam, Courbon has mapped the locations on an

IC where the laser will set or clear individual memory bits [55], effectively mapping the

individual transistors in the RAM. These maps demonstrate the alternating pattern

of cell layout and the relative sizes of the PMOS and NMOS transistors. Control

over the energy delivered by the laser pulse has also demonstrated that on his target

IC, 1 → 0 transitions require significantly less power than 0 → 1. This observation

raises the possibility of setting whole registers or memory regions to 0 with a single

precisely powered light flash over a specific area.

2.3.4.3 Laser Error Induction in a Running Program

Corrupting the execution of a program is the logical extension of tampering with data

in memory. Corruption of the individual instructions will lead to program execution

errors, and inducing corruptions while the instructions are being processed or in the

pipeline means the effect can be temporary. This gives the possibility of injecting

Chapter 2. Background 87

2.4. Defence Techniques

errors into individual rounds of a loop without affecting every round as a memory-

resident corruption would do.

Unlike memory editing, timing is critical, requiring synchronisation between the

executing program and the laser pulse trigger. In much the same way as with glitch

errors, the reading of data or program instructions is momentarily disrupted and syn-

chronising such events with critical operations leads to the possibility of manipulating

a program’s flow. The significant advantage given by using a laser is that the error

location, and presumably, its effect, can be specifically chosen.

Program flow has received less attention than memory editing [148], but the con-

sensus is that the effects are reliably repeatable. The effect has been demonstrated

on multiple CPU architectures, the most common being AVR and ARM. The AVR

has a one instruction pipeline, and the dominant effect has been characterised as

instruction skipping [40, 96]. The ARM7m has a 32-bit instruction fetch, collecting

a block of up to four instructions. Here the effect appears to be the repetition of the

preceding block of instructions [148]. Execution errors have differing effects on dif-

ferent 𝜇𝐶 architectures, and in this respect, they differ from memory editing induced

errors.

2.4 Defence Techniques

Defence techniques fall into two categories; preventing errors by physically obstructing

attacks and detecting errors to enable an attacked device to make a defensive response.

Placing a physical barrier layer on the top surface of an IC is a relatively simple

physical defence for a 𝜇𝐶. In its most basic form, it is relatively easy to etch and

remove. An alternative approach is the active shield, where a grid of wires is placed

over the surface, and simple electronics then detect broken wires or the short-circuits

between wires. Regularities in, or predictability of, the track layout has been recog-

nised by some attackers and subsequently bypassed using a FIB to cut and connect

individual tracks selectively [42]. These defences significantly increase the cost of

attack but do not stop a determined, well-funded attacker.

88 Chapter 2. Background

2.4. Defence Techniques

While shielding the top side of an IC can protect a device from top-side attack by

all but the best-equipped laboratories, it still leaves the backside vulnerable. Physical

barriers on this side can be mechanically ground and polished away without risking

damage to the active components on the top side.

Constructing transistors on top of a layer of insulator has two beneficial effects,

Figure 2-22. Performance is improved as the substrate’s parasitic capacitance is

reduced, and light attacks are made more difficult. The most common insulator is

silicon dioxide, 𝑆𝑖𝑂2. It has a significantly different refractive index to silicon (≈ 1.46

vs ≈ 4.5).

Si Substrate

N+ N+ P+ P+

NMOS PMOS

SiO2

Figure 2-22: Silicon on Insulator

Light injected from the back is more

likely to be internally reflected, and

any light through the silicon-insulator-

silicon sandwich will also be significantly

defracted [50]. Other insulators include

zirconium dioxide (𝑍𝑟𝑂2) and saphire

(𝐴𝑙2𝑂3). All increase the manufactur-

ing cost of the devices, and none of them

prevent rear-side laser attacks. They only make attacks more difficult to achieve [179].

Defences against non-invasive glitch attacks again add expense and complication to

an attack. Voltage and temperature sensors can identify when the 𝜇𝐶 operates outside

of the specified parameters and place the chip into a non-functioning hibernation mode

until it is reset. Frequency detectors can similarly recognise momentary over-clocking.

An additional common defence for clock manipulation is to provide an internal clock

or oscillator uncoupled to the externally supplied signals. Collectively these defences

prevent non-invasive error injection attacks but are ineffective against semi-invasive

attacks.

The same physical properties of a semiconductor junction that cause errors in

integrated circuits can detect light. These photodiodes can then signal the presence

of light and indicate that the chip is not operating in its expected environment, i.e.

it is probably under attack. A photodiode can operate in either of two modes. If

Chapter 2. Background 89

2.4. Defence Techniques

a reverse bias is applied to the diode junction, it will conduct in the presence of

light; this is the photoconductive mode. In the absence of a bias voltage, the diode

acts in photovoltaic mode. The photovoltaic mode has a lower dark current and

is more efficient in normal operating conditions, while photoconductive diodes have

faster response times at the expense of a higher dark current [9]. Variations on the

photodiode are the phototransistor and photoFET. These configurations can increase

the photodiode’s sensitivity but have a larger surface footprint, occupying more of

the silicon surface, ultimately increasing the device’s size. While these devices are

good at detecting simple light-flash glitch attacks, a well-focused laser beam that can

target a single transistor [55] can also avoid exciting such detectors.

Duplicating hardware is another approach used by 𝜇𝐶 manufacturers targeting

the high-security market [88]. Running both instances of a device in parallel and

halting if ever one device’s state differs from the other’s, detects an attack on either

of the twined devices. This approach is expensive in terms of silicon use and increases

the device’s power requirements. The repeatability witnessed for many error effects

means duplicated hardware is vulnerable to a synchronised attack targeting the same

feature on both components [159].

Laser-induced bit-flipping of memory can be defended against by including parity

bits in each stored word. The technique is widely used in desktop computer mem-

ory, where the devices are typically run at very close to their maximum speed and

are implemented as high-density DRAM, which is potentially more error-prone. This

technique only detects errors when the corrupted word is accessed. It defends execut-

ing programs against real-time induced memory errors when a single laser is used to

inject one fault at a time. An attacker, aware of the parity defence, could maintain

the parity by accurately manipulating multiple bits in the same word, either by using

two targeted pulses or by adjusting the focus to impact multiple bits per pulse [55].

The last, and most versatile line of defence, lies within the executing software.

Code that can verify its state, and the results of its calculations, is needed. This

defensive code requires discipline on the programmer’s part, who must verify calcu-

lations and only disclose results when there is no evidence of faults during execution.

90 Chapter 2. Background

2.5. Observations

Currently, the only way to verify this has been appropriately implemented is via in-

dependent code review, where a knowledgable third party reviews code and confirms

the appropriate application of defensive code. This code-review methodology is the

approach taken for Common Criteria certification [53] and EMV scheme approval

[66]. The process is both expensive and error-prone. It requires programmers and

reviewers with rare skill sets and introduces delays into projects while reviews are

performed.

2.5 Observations

Defences against side-channel attacks rely on intelligent implementation to ensure the

execution path is uninfluenced by the processed data and ensure auxiliary hardware

defences are appropriately activated. Techniques such as data blinding require soft-

ware to perform data transformations that disguise the data values when they are

stored in memory or their hamming weight while in transit. These defences require

additional code, and additional code provides additional opportunities to introduce

errors.

There are many ways to induce errors in a 𝜇𝐶, and these techniques have evolved

as quickly as the underlying hardware. A stand-alone 𝜇𝐶 is vulnerable to both the

static changes of its stored data and dynamic changes that momentarily affect an exe-

cuting program. Unfortunately, as the underlying technology has advanced, so too has

its susceptibility to induced errors. Meanwhile, the availability of the tools required

to mount an attack has similarly increased. These two factors significantly reduce

the cost of mounting an attack and increase the range of devices worth attacking.

Exploitable errors in a 𝜇𝐶 rely on accurate timing of the error stimulus, and the

techniques used in side-channel analysis provide this. Timing observations and SPA in

particular are well suited to assist an attacker in recognising the appropriate moment

to inject an error.

Physical defences have been shown to be expensive and, to a degree, ineffective.

At best, they serve as an obstacle, increasing the cost of an attack; at worst, they offer

Chapter 2. Background 91

2.5. Observations

a false sense of security. In short, we must be resigned to the fact that an attacker

can inject errors and choose the timing of those errors with some degree of accuracy.

The most basic software defences against errors involve repeating calculations,

but this has the undesirable effect of increasing the device’s vulnerability to side-

channel analysis. The alternative of re-computation via an alternative algorithm is

inefficient and provides an additional potential source of leaks. Whatever approach

is taken, there is no point in performing repeat computations if the act of comparing

the outcomes can itself be compromised.

To be exploitable, errors must be survivable. That is to say, the 𝜇𝐶 must continue

to execute instructions and, in doing so, deliver information to an attacker. If the 𝜇𝐶

is executing after an error injection, then there is the possibility that programmed

defences could recognise anomalous behaviour and react appropriately. This makes

the software the last and most versatile line of defence; but, can the executing program

be trusted to verify its own behaviour?

This is not a new problem.

"Quis custodiet ipsos custodes?" �

— Juvenal, Satire VI, 2𝑛𝑑 century AD.

�Who will guard the guards themselves?

92 Chapter 2. Background

Chapter 3

Categorising Errors

Contents

3.1 Fault Models . 96

3.1.1 Target Specific Factors . 96

3.1.2 Simulation vs. Physical Results 97

3.2 Test Strategy . 99

3.2.1 Choice of Target . 99

3.2.2 Attack Mechanism . 103

3.2.3 Synchronization . 103

3.2.4 Bespoke Equipment . 104

3.2.5 Specialist Tools . 104

3.3 Experiments . 106

3.3.1 Familiarisation . 107

3.3.2 Dedicated Tool Development 109

3.3.3 First Results and Tool Revision 114

3.3.4 Revised Controller Board 116

3.3.5 Instruction Behaviour Under Attack 118

93

3.4 Data and Interpretation . 136

3.5 Summary . 136

Identifying the characteristics of induced errors is the first step in

developing effective defences. Here we refine our techniques for cat-

egorising errors and identify the main factors that influence them.

94 Chapter 3. Categorising Errors

Part of the certification requirement for EMV or Common Criteria (CC), is that

code reviewers are satisfied with the level of defences implemented in the software.

Their conclusions are then tested with a limited amount of penetration testing [187].

This pen-testing comprises a set of regular tests, usually automated versions of histor-

ically successful attacks, and specific tests inspired by observations made during the

code review. The software defences are, as ever, a compromise between many factors,

such as code volume on a resource-constrained 𝜇𝐶, execution speed, and financial

costs relating to development and testing. Likewise, pen-testing is constrained by

time, budget, available tools, and the reviewers’ knowledge and experience.

For a developer, the question is, which software defences are most cost-effective

when considering their engineering costs and the potential degradation of perfor-

mance? We have seen above in Section 2.2 that, given limitless resources, it is pos-

sible to reverse engineer a 𝜇𝐶, edit its memory and control each transistor within

it. Also, with infinite patience, it is possible to edit the RAM and register contents.

Therefore the perfect defence will not be possible. We can, however, identify the

nature of inducable errors, their implementation cost in terms of equipment, and the

effort required to exploit them. This gives us the cost of an attack. Defence strategy

will then be dictated by the value of a defended asset and the attack cost. The tools

and techniques used to obtain this information will also be reusable for testing those

defences.

Academic papers describing attacks generally concentrate on the outcome of an

attack in terms of exploitable results, paying less attention to the cost or prac-

ticality of the attack. It is almost a right-of-passage that new or modified at-

tacks are demonstrated by re-implementing the classic Bellcore [36] CRT attack

[15, 17, 20, 156, 166, 175]. The notable exception is Balasch et al. [16], who at-

tempted to characterise the nature of faults generated by glitching the clock while a

program executed on an Atmel-ATmega 𝜇𝐶. They used an unsecured 𝜇𝐶 packaged as

a smartcard. This form factor presented some obstacles to collecting and interpreting

the recovered data. They noted that the induced errors were often repeatable and

that multi-cycle operations provided data that was easier to interpret. They inferred

Chapter 3. Categorising Errors 95

3.1. Fault Models

this was due to the required interruption of the instruction pipeline and the absence

of simultaneous fetch and store operations in this Harvard architecture CPU.

3.1 Fault Models

Device programmers need to make assumptions about both the errors that can be

induced in the 𝜇𝐶 they are programming and the consequences of those errors on

program execution. These effects are the micro-scale impact of errors instead of the

macro consequences so frequently exploited in the Bellcore attack and its successors.

If a program can recognise it is in an anomalous state, it can react and avoid returning

faulty results. This framework of what could happen and what the consequences may

be is referred to as the Fault Model. A fault model may emphasise protecting the 𝜇𝐶’s

program-counter in the belief that glitches may disturb its update and consequently

may start executing code from unexpected locations. In this case, a programmer

would emphasise defences that track a program’s execution path. Alternatively, a

model may predict reliable update of the program-counter, but that faulty data may

be fetched from memory; in this case, alternative defences would be required. Such a

distinction is meaningful for all types of perturbation attacks and can usefully focus

the limited defence budget on effective defences.

3.1.1 Target Specific Factors

Hardware defences against glitches are becoming more common; indeed, they are uni-

versally implemented on 𝜇𝐶s targeting security applications and increasingly common

in general-purpose devices. The component manufacturers have effectively neutralised

the threat from glitches by implementing hardware for clock and voltage monitoring

within the 𝜇𝐶. As a result, attackers are now pushed towards the next least com-

plicated attack vector, and device programmers need to consider more complex fault

models. The ability to localise fault injection suggests that the bias in the nature

of errors witnessed through glitch attacks may no longer be relevant. Instead, the

easily exposed and readily attackable structures of a 𝜇𝐶 will have a disproportionate

96 Chapter 3. Categorising Errors

3.1. Fault Models

influence on the nature of the inducible errors. The exploitable faults will most likely

relate to specific components within the DUT, and manufacturing features of the IC’s

layout will influence the nature of the exploitable errors. What is needed is a way to

characterise a 𝜇𝐶 by identifying the nature of injectable errors, the ease with which

they can be triggered, and the repeatability of these effects. With this knowledge,

programmers can then marshal their defences to the best effect.

3.1.2 Simulation vs. Physical Results

Simulating the behaviour of a circuit is a well-established method of design verifi-

cation, widely used in hardware development. Tools exist to simulate all aspects of

devices and circuits, from the behaviour of individual atoms within a transistor [162],

to the logic level functional behaviour with Verilog and VHDL. The latter encapsu-

lates a methodology akin to software programming with a rich syntax to describe

a behaviour along with simulators and debuggers to simplify development and re-

duce the potential for unforeseen implementation errors. Such tools have been used

to model the behaviour of errors within devices, enabling the relative strengths and

weaknesses attack methodologies to be compared [101].

Transistor level simulation has been used to model laser stimulation of a RAM cell

[151]. While it confirms observed behaviour, the computational requirements make it

impractical to scale this modelling to Large Scale Integration (LSI) circuits. Circuit

level simulation relies on behavioural models of the sub-components and therefore

cannot directly model the physical effects of error inducing stimuli. Instead, failure

modes need to be assumed for subcomponents, and their consequences are then mod-

elled through the larger system with manageable computation effort. Such simulation

has been used to identify critical logic paths within devices [24] and to predict the

behaviour of the cryptographic components such as AES co-processors [170, 74, 133].

Whole circuit simulation becomes computationally impractical when long executions

runs are required, and a more abstract simulation is required. Functional simulation

of micro-controllers and peripherals are commonplace in many software development

environments, and they can also be augmented to simulate errors. Such simulators

Chapter 3. Categorising Errors 97

3.1. Fault Models

have been used to test and categorise the efficacy of various defensive coding struc-

tures [173], or to propose combinations of instructions that are immune to localised

errors [118]. These approaches rely on a fault model that the simulator can imple-

ment while simulating the execution of test programs. The fault model itself is a

simplification of observed behaviour and lower level simulations [62].

Furthermore, simulation of errors relies upon assumptions about how, where and

when errors can be injected. Radiation hardening experiments have shown that, for a

specific type of error — single bit faults, only 15% of errors result in observable com-

putational errors. Such observations rely on a random event component to the fault

model, whereas in reality, an attacker will control both the time and location of an er-

ror stimulus. When considering the number of possible error types and combinations

thereof, exhaustive simulation is impractical.

The accuracy and relevance of a simulation decreases as the abstraction level in-

creases from the localised, transistor-level effects of error injection to the abstract

system-level emulation. This accuracy decreases to the point that it can be mislead-

ing. Consider Moro et al’s ’formally proven ... fault tolerance’ [118]. Here ingenious

combinations of instructions are used to ensure that a program can survive skipping

of individual instructions, a phenomenon reported by multiple observers on multi-

ple chip architectures [16, 59, 93, 155, 176]. Unfortunately, others have shown that,

for their chosen Central Processing Unit (CPU) — the ARM Cortex-M3, instruction

skipping is related to the word-sized instruction fetch operation [148, 187] and blocks

of four adjacent instructions are skipped or repeated. The oversimplified fault model

had led to a considerable amount of effort being wasted.

Where software defences are required, but resources are constrained, attention

must be paid to the most readily attackable features and those with the highest

value to an attacker if they were to be compromised. Simulation cannot predict this

reliably, and what is needed is a mechanism to observe physical attacks, characterise

their effects, repeatability, and ease of implementation. Ideally, such a mechanism

could characterise a specific device, guide a programmer to appropriate defences and

provide a test workbench to evaluate the efficacy of those defences. As a methodology,

98 Chapter 3. Categorising Errors

3.2. Test Strategy

it is almost back full circle to the original use of lasers on silicon devices, where physical

attacks were used to simulate random radiation-induced errors [81]. Half a century

later, we are back where we started as the complexity of modern devices exceeds our

ability to simulate their relevant error response behaviour accurately.

3.2 Test Strategy

Our first goal was to categorise the errors that could be invoked on a sample 𝜇𝐶.

Multiple independent obstacles need to be overcome when inducing errors, and

these obstacles add complications to the implementation of an attack. Each is, to a

degree, a defence in its own right, adding cost to the implementation of an attack.

However, most of these obstacles are unrelated to the effect we aimed to study, so,

where possible, they were eliminated to ensure simplified access to the features we

intend to observe. In addition, it was important to simplify the process as much

as possible because many experiments were required, and repetition of experiments

needed to be automated.

3.2.1 Choice of Target

Multiple factors influenced the choice of target 𝜇𝐶 for this study.

Security hardened ICs were ruled out for multiple reasons. First of all, the physical

protection would add expense and cause a delay in sample preparation; this was con-

sidered to be a distraction from the primary aim of characterising the underlying 𝜇𝐶.

We anticipated the accidental destruction of DUTs while developing our techniques,

so a prolonged preparation process needed to be avoided. Secondly, smartcard chips

typically lack additional peripherals, such as General Purpose Input Output (GPIO)

pins, and we intended to use such features to simplify synchronisation between the

DUT and the test harness. Finally, the examples of such devices that we had access to

were covered by development and Non-disclosure Agreements (NDA) that precluded

any reverse engineering and publication of results.

General-purpose 𝜇𝐶s designed for the home automation and IoT market were

Chapter 3. Categorising Errors 99

3.2. Test Strategy

of particular interest. As discussed in the introduction (Section 1), they are the

Achilles heel in many practical security breaches, and this study’s aim is to simplify

the adoption of secure programming techniques, particularly in this deployment sce-

nario. These ICs are readily available through multiple distribution channels and are

unencumbered with restrictive NDAs.

The choice, therefore, was between the popular device architectures in the 𝜇𝐶

marketplace. The leading candidates were,

� 8051 derivatives. This design originated in the 1970s and has been popular

ever since. Many enhanced derivatives are still available today. Infineon’s high-

security Sle77 and Sle78 product range is descended from this device family.

However, it is an old design and could be considered close to end-of-life.

� ARM Architecture. ARM derivatives are perhaps the single most common 𝜇𝐶s

on the market. It is widely used in smartphones, laptops and many general-

purpose 𝜇𝐶s. This architecture has many variants with differing performance

enhancements - Single Instruction Multiple Data (SIMD), pipeline lookahead,

branch prediction, and out of order execution. Free development tools are

available, but the device profiles required for specific devices are often only

supported by the commercial toolchains from IAR or Kiel.

� AVR based devices are commonplace in both the smartcard and generic 𝜇𝐶

markets. Atmel, and latterly Inside-Secure, produce high-security versions of

this part, and Microchip Technology Inc. produce a range of generic 𝜇𝐶s. The

devices have a Harvard architecture, most instructions operate in a single cycle,

and the design has a short, one stage pipeline. High-quality development tools

are available and free to use.

� Other relatively common architectures are also available. For example, Mi-

crochip Technology Inc. has a range of 16 & 32-bit devices. These are widely

associated with the hobby electronics market, and they were used in early ex-

periments in the security field [7]. The RISC-V architecture has emerged more

100 Chapter 3. Categorising Errors

3.2. Test Strategy

recently as a rival to ARM; it is an open-source, open-standard. It was relatively

unknown when this study started and now has many features in common with

ARM architecture. Finally, many of the more prominent silicon manufacturers

have their own range of 𝜇𝐶s; Hitachi/Renesas H8, ST-Microelectronics have

their STM8 range, Samsung has their Calm16 & Calm32 devices.

The intention was not to be device-specific, but the investment required to prepare

samples and construct test tools meant we needed to concentrate on a representative

device. We chose the AVR family of chips to study and, in particular, the ATtiny841

[12]. We anticipated that its relatively simple architecture would provide results that

were easier to interpret. While trying to develop techniques to identify patterns in

fault behaviour, we considered it wiser to start with the least complicated relevant

device. The AVR core has also been studied in relation to fault injection in other

academic studies; this provided a context to cross-check our results and conclusions.

Atmel uses the AVR core in a wide range of micro-controllers targeted at the IoT

market. It is also widely used in smartcards and similar security devices with a range

of variants manufactured by Inside-Secure*.

The ATtiny841 has a few differences from its smartcard targeted siblings.

� The memories are smaller - This would have no material effect on this study.

� There is no metal shielding - The secured variants of the AVR have a top

layer of metal that obstructs physical probing and blocks light injection. These

defences can, with a significant degree of difficulty, be overcome. NIR lasers can

still reach critical components via the reverse side of the chip [178] as silicon

is transparent to near-infrared light. The absence of the shield simplified our

study without affecting the behaviour we aimed to observe.

� Security monitors - The smartcard variants have peripherals designed to detect

glitch attacks. These peripherals typically reset the chip when it is under attack.

Techniques exist for bypassing these defences [178] and choosing a target that

does not have such defences would not affect the data we aimed to collect.
*Inside-Secure rebranded as Verimatrix in July-2019 and was sold to Rambus in December-2019.

Chapter 3. Categorising Errors 101

3.2. Test Strategy

Figure 3-1: ATTiny851 Pin-Out

� Additional peripherals - in particular, GPIO pins enabled us to communicate

with a test harness. It would not have been possible to do this with the smart-

card variants.

� It was readily available and unencumbered with restrictive licence conditions

that would otherwise make our results unpublishable.

Table 3.1: ATTiny841 Features

CPU

Instructions 120 (mostly single cycle)
Registers 32× 8
Clock 16 MHz

Memories (bytes)

PROM 8192
EEPROM 512
RAM 512

Peripherals

Serial 2× Full-duplex
Timers 2× 16 bit
GPIO 12 configurable I/O pins

The majority of the work in this study was performed on this device. It is avail-

able in Small Outline Integrated Circuit (SOIC) packaging with the pin configuration

shown here in Figure 3-1. The device can be programmed in-circuit, making it rela-

tively easy to reprogram it without disturbing its alignment under the microscope.

102 Chapter 3. Categorising Errors

3.2. Test Strategy

3.2.2 Attack Mechanism

Having a target accessible via its top-side enabled us to use visible light (a laser) to

induce errors. Light has the advantage that the spot size can be varied, so can the

power delivered; this provides greater control of the attack parameters. In particular,

visible light has the advantage that standard optics will efficiently aim and focus the

beam. We could observe the laser with a CCD/camera to see where the beam was

focussed. This greatly simplified the experimental setup.

The recognised downside is that some of the chip’s features are obscured by metal

tracks, rendering them inaccessible and shielded from attack. We would expect this to

be a significant problem for micro-surgical control of individual transistors. However,

with our strategy of using laser spot sizes of comparable geometry to the metal tracks,

we would expect to be hitting multiple transistors at a time and getting diffraction

effects from track edges. As we show in the following chapters, metal track masking

was not a problem.

3.2.3 Synchronization

The strategy involved executing and attacking specific instructions, controlling the

state of the 𝜇𝐶 before executing the instruction and then capturing the state of

the device after it had completed. While executing, each targeted instruction was

subjected to a laser pulse attack. This process was repeated with the laser pulse syn-

chronised with different phases of each machine cycle associated with the instruction

under investigation. It was also performed with the laser focussed at different areas

on the device’s exposed surface and with differing spot sizes and power intensities.

Timing the application of a laser pulse to coincide with specific instructions is a

complicated but not insurmountable obstacle; it is discussed here in Section 2.2.2.4.1.

We simplified the process by applying an external clock to the DUT and using the

same clock signal to drive the timer circuitry responsible for firing the laser. We then

used one of the DUT’s GPIO pins to indicate to the laser timer when execution of the

experimental code started. This signal ensured timing consistency when synchronising

Chapter 3. Categorising Errors 103

3.2. Test Strategy

the laser pulse with executing code.

We repeated each test multiple times to provide information relating to the con-

sistency of the results. We could locate and identify the most exploitable error effects

and their timings and power requirements by analysing the retrieved data. The in-

tention was to identify the obstacles to harvesting characterisation data and develop

reusable techniques for future experiments.

It was clear that this approach would involve many time-consuming and tedious

repetitions of relatively simple code fragments. Automation was essential for running

tests and processing the resulting data.

3.2.4 Bespoke Equipment

A custom made Printed Circuit Board (PCB) was made to hold the DUT and sup-

ply all of the electrical signals needed to run it. It controlled the firing of the laser,

programming the DUT, and initiating execution of the test programs. The PCB was

connected to a host PC via a serial data link that delivered the results of each exper-

iment. A computer-controlled X-Y stage supported the PCB to enable a controlling

PC to position the DUT under the laser. This general configuration evolved as this

study progressed, and descriptions of individual configurations are described below

in the sections detailing the specific experiments.

3.2.5 Specialist Tools

We were fortunate to have access to a range of tools courtesy of SiVenture Ltd.

The Laser workstation used in our initial experiments was a QuickLaze-50ST from

NewWave Research. It is an industrial tool for micro-machining, primarily used for

cutting and editing flaws on devices such as LCD displays. The unit consists of a

water cooled Nd:YAG� Laser mounted on a microscope. The output is selectable as

one of three different wavelengths, Infrared 1064 nm, Green 532 nm, and Ultra-violet

266 nm. All of these wavelengths cause electron excitation in silicon and, if suitably

�neodymium-doped yttrium aluminum garnet; 𝑁𝑑 : 𝑌3𝐴𝑙5𝑂12

104 Chapter 3. Categorising Errors

3.2. Test Strategy

aimed, will induce errors. It has two main power settings, Low and High delivering up

to 0.2 mJ and 0.6 mJ per pulse, respectively. Each power band is further controllable

between 0% & 100% within each band. The spot size can be varied via a variable

aperture. This mechanism obscures parts of the laser beam and, in doing so, reduces

the delivered power.

Figure 3-2: Nd:YAG Laser Workstation

Yttrium Aluminium Garnet (YAG)

lasers work by using a high-intensity

lamp or gas discharge tube as an optical

pump to excite the Neodymium atoms

in the crystal. When an electron in the

excited Neodymium returns to its nor-

mal band, it emits a photon with wave-

length 1064 nm. The rod-shaped crys-

tal is approximately 15 cm long; it has

a mirror at one end and a Q-Switch at

the other. When the Q-Switch is closed,

it behaves like a mirror, and the energy

injected into the rod by the lamp builds

up as the light remains trapped in the

crystal. Opening the Q-switch releases

the light as a very intense short pulse

lasting approximately 3 ns.

The laser is mounted on the camera

port of a trinocular microscope. The laser pulse is focussed through the objective

lens onto the target. The apparatus is mounted on a stable table and is shown here

in Figure 3-2.

The laser driver unit requires two control signals; one to run the lamp that charges

the YAG crystal, and another to open the Q-Switch. The latter signal needs to be

synchronised with the program running in the DUT to ensure the light pulse strikes

at the intended moment.

Chapter 3. Categorising Errors 105

3.3. Experiments

The DUT was placed on a computer-controlled XY-Stage to enable the target to

be positioned with 1 µm accuracy under computer control. Each experiment could

then be performed with the laser targeting precisely controlled sites on the DUT’s

surface without manual intervention.

We developed a PC program to control the stage and repeat experiments as part

of this study. It is described in more detail in Appendix A

3.3 Experiments

The first phase of this study was to identify suitable tools, equipment and techniques

to capture data from a 𝜇𝐶 under attack and to identify the effects of the attack.

We had already chosen a strategy of running small code fragments and subjecting

the 𝜇𝐶 to laser attack while those fragments were executing; also, we would need to

build a device to support the DUT and synchronise the laser attack. We set ourselves

the goal of answering the question posed by the contradictory advice received during

different certification reviews of an EMV application. Namely, do induced errors

have repeatable characteristics that should be considered by application programmers

when defining defences? To do this, we performed a series of experiments of increasing

complexity.

Step one involved familiarising ourselves with the available tools, confirming that

we could successfully induce errors in our DUT, and identifying any complications that

may influence the design of the test harness. Step two was to build a test harness that

would permit us to synchronise laser pulses with the execution of specific instructions

and to gather the resulting state of the DUT. Besides the timing of laser pulses, we

wanted control of the site of the attack on the DUT’s surface as well as the size and

power of the laser spot. We then planned to look at the effects of attacking specific

instructions to identify characteristic modes of failure before finally testing realistic

sequences of instructions implementing a typical software defence. By the end of this

series of experiments, we intend to demonstrate a methodology for recognising the

dominant modes of failure.

106 Chapter 3. Categorising Errors

3.3. Experiments

Our first boards were built with Dual In-Line package (DIL) components to make

them easy to patch, fix and modify. As work progressed, increasingly small surface

mounted components were required. The only practical way to handle them is to

place them directly on a PCB. They are exceedingly tricky to manually solder and too

fragile to be attached to freely movable wires. We mounted the DUTs on carriers that

could be plugged into the boards, making replacement quick and accessible whenever

we destroyed a sample. The other advantage of the PCBs was the inclusion of readily

accessible test points to facilitate the attachment of oscilloscope probes and other test

devices. This feature was particularly useful when the whole arrangement was placed

on a moving stage under the microscope. Reliable attachment of monitoring probes

is a fundamental requirement when comparing results between different regions of an

IC.

3.3.1 Familiarisation

The first test board was deliberately simple. It also served as a familiarisation ex-

ercise, providing rudimentary control of the features required in the intended set of

experiments.

The hardware details are described in Appendix B. This board supported in-circuit

reprogramming for the DUT, RS232 serial communications with a host PC and the

debugger connection (JTAG).

The DUT was programmed to perform an infinite loop, delivering the message

"Hello World.", as seen in Figure 3-3. The unused program memory was filled with

the value 0x40 (ASCII ’@’), and the unused RAM was filled with 0x21 (ASCII ’ !’).

The output from the serial port was displayed on a serial terminal, and the running

device was placed directly under the objective lens of the laser workstation.

The laser workstation was configured to deliver a light pulse every half second

automatically. This pulse injection was deliberately unsynchronised with the DUT.

While the apparatus was running, we were able to vary the position of the DUT, the

power of the laser pulse, the spot size of the pulse, all while observing the text output

on a monitor screen.

Chapter 3. Categorising Errors 107

3.3. Experiments

1 #define MSG_LEN 12
2 char Message [] = "Hello␣World.";
3
4 void main(void) {
5
6 Rs232_Setup ();
7
8 for (;;) {
9 char *pC = Message;
10 int i;
11
12 for (i=0; i < MSG_LEN; i++) {
13 Rs232_Send (*pC++);
14 }
15
16 Rs232_Send (13); // CR
17 Rs232_Send (10); // LF
18 }
19 }

Figure 3-3: Basic Test Program

From this experiment, we made the following observation.

Some locations were sensitive to error injection, while others, sometimes very

close by, were seemingly immune to error injection. This result was unsurprising but

enabled us to experiment with the power settings and spot sizes in known sensitive

areas. We established that, for the ’low-power’ setting of the laser cutter, just 15%

power with 70% of that obscured by the aperture was enough to cause frequent

examples of errors. Higher powers and larger apertures did not noticeably increase

the error rate. Therefore there was no need to experiment with the laser in high

power mode and risk damaging the DUT.

The errors we observed fell into four common categories.

1. Occasionally, we observed an unrecoverable crash necessitating manual inter-

vention and a power cycle to restart the test message delivery.

2. On some occasions, the message delivery froze mid-sentence. Such events usu-

ally lasted multiple seconds before restarting normal execution. The pause

was long enough for the stalled program to be subjected to multiple additional

laser strikes. This stuttering effect suggested the crashed program was being

re-crashed, ultimately resetting the device.

3. A common occurrence was a message of expected length but displaying the ’@’

108 Chapter 3. Categorising Errors

3.3. Experiments

character, suggesting a pointer corruption in the message reading loop.

4. A similar error occurred where the length of the delivered text increased, re-

sulting in the delivery of additional ’ !’ characters. This additional output can

be explained as a corruption of the loop counter or the loop test condition,

causing a buffer overrun. The additional ’ !’ characters indicate that the data

was retrieved from RAM.

This exercise demonstrated multiple modes of failure, and that timing was a sig-

nificant factor in determining failure mode, as evidenced by the fact that some pulses

invoked no observable effect. In contrast, others caused miss-execution at the same

target location. This timing dependency was what we expected, given the volume of

pre-existing reports of such behaviour.

More importantly, we identified the appropriate range of power settings for the

tools and demonstrated that we could control our DUT, attack it, and reprogram it

in situ. Furthermore, we noted that observation 1 (above) did not occur if the JTAG

debug connection was powered. We could not replicate the error with the debugger

attached, and basic attempts to trace or debug the behaviour failed. Presumably, the

JTAG cable was delivering power from the debugger to the DUT and this affected

sensitivity of some parts of the DUT to laser pulses. Knowing that the debug con-

nection could influence the error response, we ensured that future experiments were

performed in the non-debuggable state.

3.3.2 Dedicated Tool Development

We now had a set of requirements for our first support PCB. The DUT needed to be

physically reset between experiments rather than relying on its soft rest capabilities.

We needed a mechanism to initiate a test and recover its result that did not require

manual intervention or use the DUT’s debug interface. It was also vital that the laser

could be precisely synchronised with the executing test program. Large numbers of

tests were to be performed because many code samples needed to be run, and they

needed to be repeated with the DUT repositioned under the objective lens.

Chapter 3. Categorising Errors 109

3.3. Experiments

Shift Register / Cycle Counter

Delay.
Sub-cycle

control

Control
MCU

DUT

Clock

Tx Data
Rx Data

Reset

Serial
Message
Exchange

ENB
Lamp Ready

Lamp

Q switch

… 32 jumper links ...
 …

Start

Figure 3-4: DUT Support, Board 1

3.3.2.1 DUT life support PCB

The first solution we adopted is shown in Figure 3-4. The DUT communicated directly

with the host PC via a serial link. A second 𝜇𝐶 was responsible for generating the

laser priming Lamp signal and for indicating to the DUT when the laser was primed

and ready to fire. The DUT then generated a pulse on the Start signal line that rippled

through a 32 stage shift register. This pulse triggered the laser’s Q-Switch, and the

event timing was controlled by placing a jumper on any of the 32 shifter outputs.

Meanwhile, the DUT would be executing the test code. By carefully calculating the

instruction cycle counts and positioning the jumper on the corresponding pins, we

could ensure the laser pulse coincided with the execution of a specific instruction

within the test sample. This delegation of duty between 𝜇𝐶s ensured that if the

DUT crashed as a result of the laser injection, the laser itself could still be switched

off by the support 𝜇𝐶. Both 𝜇𝐶s and the shifter were synchronised by a shared clock

source. The clock to the shifter was selectable as being in phase or anti-phase with

the mainboard clock. This feature provided the opportunity to synchronise the laser

pulse with either the falling or rising edge of the clock, i.e. two distinct instances per

instruction cycle. The control sequencing for this board is shown in Figure 3-5 and

more details about this board are available in Appendix B.2.

110 Chapter 3. Categorising Errors

3.3. Experiments

Host DUT CTRL Shifter Laser

Start = 0

Prepare

Experiment
Ready

Go

Go Lamp ON

Timer 20ms

Lamp Ready

Start Pulse

Q Switch

Laser Flash
Timer

Lamp OFF

Run

Experiment
Timer

CPU State
Timer

Interrupt

Figure 3-5: Board 1 Control Logic

The test programs in the DUT all followed a common pattern.

1. First, all of the memory and working registers were initialised to a known state.

This ensured we had a known starting state and could identify any changes at

the end of the experiment.

2. An internal timer was used to trigger an interrupt two cycles after the expected

time of the laser pulse. By using an interrupt, we could take control of the CPU

even if it had crashed.

3. The interrupt service routine would then report the current state of the 𝜇𝐶 to

the host PC. This information comprised of the CPU’s registers, the program

counter, stack pointer and status flags. The state of the RAM contents was

delivered as a series of checksums — one for each 32-byte block. The non-

volatile memory was treated the same way as a series of checksums of 256-byte

blocks. The use of checksums enabled us to detect corruption in the memory

without the time delay of delivering the entire contents and the storage issue of

recording the contents for such a large number of experiments.

Chapter 3. Categorising Errors 111

3.3. Experiments

4. The DUT was then halted and waited for a reset from the host PC to start the

subsequent execution of the same test.

3.3.2.2 Experiment Invocation

Each test was performed by executing a small PC program, Zap.Exe, on the Host

PC. Command-line parameters indicated the current coordinates of the experiment

and the name of a log file where the results were placed. This program reset the

DUT, initiated the experiment and collected the response from the board. A single

line of Comma-Separated Values (CSV) data was appended to the log each time the

program ran. Using CSV, a universal data format, enabled the results to be viewed

in a wide variety of applications, such as spreadsheets, databases or even simple text

editors. Zap.Exe was a small easy to modify program that could be easily customised

whenever the programmed behaviour of the DUT was changed.

3.3.2.3 Test Campaign

A larger, more sophisticated program was developed to coordinate multiple invoca-

tions of Zap.Exe while controlling the microscope stage position. This application

is described in more detail in Appendix A. The DUT could be observed via a video

camera placed in one of the microscope’s eye-pieces. Features on the DUT, observable

through the limited field of view of the microscope, were paired with features on a ref-

erence image of the IC. The movable stage was then calibrated by cross-referencing

landmarks from the current XY-position (crosshairs in Figure 3-6) with the same

features in the reference image’s coordinate system. The user could then identify

a target area of interest on the reference image (green rectangle in Figure 3-6) and

direct the stage to align the same feature on the IC. The coordinate system of the

reference image was used when recording position within the experimental results for

the DUT. Using the image as the base coordinate system simplified the interpretation

of the results as laser spot locations could then be directly mapped to this image.

A grid defined for the reference image identifies the coordinates of each experiment.

This grid spacing is configurable, and was set to the same size as the laser spot.

112 Chapter 3. Categorising Errors

3.3. Experiments

Figure 3-6: Test Campaign Configuration

Each campaign involved the configuration of the following parameters.

1. The DUT was programmed with the appropriate sample code.

2. The pulse timing was configured via the jumpers on the control board. Alterna-

tively, the test code could be synchronised with the board settings by inserting

Nop operations in the preamble to a tested instruction.

3. The laser power and spot size were selected.

4. The area to process was identified, and the number of repetitions to perform

was indicated.

5. Finally, the microscope lamp was switched off, leaving the laser as the only

(intense) light source directed at the DUT.

The test manager then executed the whole campaign. It sequentially positioned

the DUT to direct the laser onto each grid position within the identified campaign

region before executing Zap.Exe at each of these positions.

Chapter 3. Categorising Errors 113

3.3. Experiments

3.3.2.4 Results Analysis

The analysis of collected data was highly dependent on the nature of the test per-

formed. It invariably involved writing small utility programs to analyse, aggregate

and present the results.

3.3.3 First Results and Tool Revision

To test the equipment, we devised a basic test that repeatedly incremented a register;

see Figure 3-7.

1 void Task01(void) {
2 PORTB &= ~TRIG; // Start = 0
3 UartTx0 (0x55); // Msg Ctrl to start
4 while ((PINB & READY) == 0); // wait for LAMP READY
5
6 PORTB |= TRIG; // shifter = 1
7 PORTB &= ~TRIG; // 0 shifter = 0
8 __asm (
9 "eor␣r0,␣r0\n" // 1 R0 <= 0
10 "inc␣r0\n" // 2
11 "inc␣r0\n" // 3
12 "inc␣r0\n" // 4
13 "inc␣r0\n" // 5
14
15 ...
16
17 "inc␣r0\n" // 30
18 "inc␣r0\n" // 31
19 "inc␣r0\n" // 32
20 "inc␣r0\n" // 33
21 "inc␣r0\n" // 34
22 "inc␣r0\n" // 35
23 "inc␣r0\n" // 35
24);
25 return;
26 }

Figure 3-7: Test Program 1

We expected register R0 to display a faulty result if an execution error could be

induced. The whole surface of the DUT was scanned as a 30×30 grid. The board was

configured to fire the laser at cycle 4, and the state reporting interrupt was expected

at cycle 8.

A result viewing program was written to demonstrate the locations of any errors

that occurred graphically. Sample images can be seen in Figure 3-8. Green indicates

no error, i.e. that the recovered data were identical to a reference sample taken when

the laser did not fire. Red indicates locations where the results differ, and black

114 Chapter 3. Categorising Errors

3.3. Experiments

(a) Program Counter (b) Status Flags (c) Registers

Figure 3-8: Error Distribution Plots

indicates the DUT failed to deliver any results, i.e. it crashed. Image 3-8a shows

the locations where program counter errors occurred due to a laser pulse. 3-8b shows

where the flags register ended up with unexpected values and 3-8c where register

corruption was observed.

Figure 3-9: Lock-up Error

The process demonstrated more or less what was ex-

pected; a background of scattered locations that caused

crashes and clusters of locations containing related er-

ror conditions. When the Program Counter was wrong,

indicating unexpected code was being executed, there

was also a high probability that a register was corrupt,

as most instructions modify registers. When a register

is modified, there is also a good chance that one or more

flags will be altered.

We intended to perform a large number of specific experiments using a finer grid

spacing. Unfortunately, we discovered a relatively common error side-effect that pre-

vented the automation of many tests. Occasionally we would see a result, demon-

strated in Figure 3-9. The 𝜇𝐶 was running and returning data; however, one register

was permanently corrupted. The error condition did not clear when the Host-PC

toggled the reset even though the reset had the expected effect of preparing the DUT

Chapter 3. Categorising Errors 115

3.3. Experiments

for the next run of the experiment. Power consumption of the device went up by

approximately 10 mA and remained high until a full power cycle reset was performed.

This hard reset also had the effect of clearing the error condition.

In light of this, we modified the test board to do a complete power cycle whenever

the Host PC toggled the reset line�. It solved the DUT reset problem, but the fre-

quent power cycles had an undesirable effect on the laser’s controller with unexpected

glitches on the lamp and Q-Switch inputs. It occasionally generated laser pulses while

the DUT was performing its bootstrap and, on other occasions, failed to fire at all.

While the device was good enough for short supervised tests, it could not be relied

upon for prolonged unsupervised campaigns; we, therefore, took the opportunity to

revise the whole control board.

3.3.4 Revised Controller Board

The primary reason for this board upgrade was to enable the temporary electrical

isolation of the DUT. This isolation enabled it to be reset via a power cycle without

affecting any support components.

The shift register was also replaced with a programmable counter. The control

𝜇𝐶 programmed this and it ran from 40 MHz clock. This arrangement gave quarter

cycle resolution for laser pulse injection into the 𝜇𝐶’s instruction cycles.

The end of the countdown then generated an interrupt signal to the DUT which

activated one quarter-cycle before the laser triggered. The DUT’s interrupt latency

of three CPU cycles resulted in a short delay before the instruction pipeline froze

and the service routine vector was fetched. The influence of this delay can be seen in

Figure 3-18’s pcint and irq signal lines. This feature removed the need to configure

a timer interrupt within the DUT in advance of an experiment. In turn, this reduced

the opportunity for human error and simplified test preparation.

More details of this board can be found in Appendix B, and the control logic is

shown in Figure 3-11.

�This modification can be seen in Figure B-1; it is the small appendage on the left.

116 Chapter 3. Categorising Errors

3.3. Experiments

Control
MCU

DUT

Clock

Tx Data
Rx Data

Reset

Message
Exchange

ENB
Lamp Ready

Lamp

Q switch

Start

Programable Counter Edge Detection

Div 4

Program

Tri-state Power and Signal Isolation

IRQ

Figure 3-10: DUT support, Board 2

Host DUT CTRL Counter Laser

Reset

BootstrapReady

Set Count

Set Count

Ack

Start

Go Load Count

Prepare

Experiment
Lamp ON

Timer 20ms

Lamp ReadyLamp Ready

Start

Count down

Q Switch

Laser Flash

Run

Experiment
IRQ

Timer

Lamp OFF

CPU State
Interrupt

service

Figure 3-11: Board 2 Control Logic

Chapter 3. Categorising Errors 117

3.3. Experiments

3.3.5 Instruction Behaviour Under Attack

3.3.5.1 Targeting Individual Instructions

The first step was to subject instructions of different classes to an extensive campaign

of laser strikes. Each instruction test involved three stages. The test program set up

relevant start conditions and sent the Start signal to the delay counter. It then exe-

cuted a sequence of Nop instruction followed by the instruction under investigation

and then executed a further sequence of Nops. This sequence of Nops, or whatever

crash state had been induced, was then interrupted by the state reporting mechanism.

1 .global Expt
2 Expt:
3 rcall PrimeTheTest
4 E1_1: sbis 0x16 ,2 // while (! LAMP_RDY);
5 rjmp E1_1 //
6
7 <SETUP here >
8
9 sbi 0x18 ,1 // PORTB |= START
10 // Cycle Laser time
11 nop // 0 0.2 - 1.1
12 nop // 1 1.2 - 2.1
13 nop // 2 2.2 - 3.1
14 <INSTRUCTION here > // 3 -zap - 3.2 - 4.1
15 nop // 4 | 4.2 - 5.1
16 nop // 5 | 5.2 -
17 nop // 6 |
18 nop // 7 <---- ISR after here
19 nop // 8
20 nop // 9
21 nop // 10
22 nop // 11
23 nop // 12
24 nop // 13
25 ret

Figure 3-12: Instruction Test

The target instruction was surrounded by Nops in the expectation that the only

changes in the 𝜇𝐶’s state would relate to the instruction being attacked or the 𝜇𝐶’s

instruction scheduling logic. See Figure 3-12. The ’setup’ code initialized the required

state for the chosen experiment, for example, setting the carry flag. This action

corresponds to the initialisation state listed in the result tables; Tables 3.2, 3.3, 3.4,

3.5 & 3.6.

Each test code sample was executed with laser pulses timed to precede, cover, and

follow the tested instruction. As shown in Figure 3-13. For single cycle instructions,

118 Chapter 3. Categorising Errors

3.3. Experiments

this required 6 runs with the pulse timed accordingly. Two-cycle instructions required

10 runs per experiment to ensure all execution phases were potentially disturbed.

Each experiment was also executed 4 times to test for repeatability. All of this was

repeated for all points in a 100×100 grid over the 𝜇𝐶’s surface. Testing a single cycle

instruction therefore took 6 × 4 × 10, 000(240, 000) execution runs and generated a

180𝑀𝑏𝑦𝑡𝑒 result file.

CPU nop target opcode nop

CPU clk

Timer clk

Laser

Total Execution Time

Register Operand Fetch

ALU Eexecution

Result Write Back

a c e g i k

b d f h j l

 D
at

as
he

et
 s

4.
6

Figure 3-13: Laser Firing

The first three columns of the tables that follow here show the start state, the

tested instruction, and the expected effect of that instruction, assuming execution

was error-free. The remaining columns show the total number of samples, the number

of errors detected and the number of those errors that were unique. Uniqueness was

measured for each repetition of four tests performed at the same location and with the

same timing for the laser pulse. An error was considered unique if the 𝜇𝐶’s recorded

state differed from the other three samples. Four tests terminating with identical

errors would register as four Errors but zero Unique results; four tests where all

results differ would show four Unique results.

∴ 𝐸𝑟𝑟𝑜𝑟𝑠 ≥ 𝑈𝑛𝑖𝑞𝑢𝑒 ≥ 0.

Smaller values of Unique, within these bounds, indicates more repeatable errors.

Conversely, larger values of Unique indicates unpredictability in the DUT’s error

response.

Chapter 3. Categorising Errors 119

3.3. Experiments

3.3.5.1.1 No Operation Tests.

Testing Nops provided the opportunity to observe changes to the 𝜇𝐶 relating purely

to the instruction fetch with none of the additional complications relating to data

transfers or arithmetic calculations. The Nop tests provided a useful reference to

compare other tests against; see Table 3.2.

Table 3.2: Laser induced errors on NOP

Initialisation Instruction Effect Samples Errors Unique

clca , clzb nope No change 240000 2045 787

stcc, stzd nop —"— 240000 2130 802

480000 4175 1589

a Clear Carry. b Clear Zero. c Set Carry. d Set Zero. e No-Operation. No register or
flag updates expected.

120 Chapter 3. Categorising Errors

3.3. Experiments

3.3.5.1.2 Single Register Update Tests.

The instructions tested here were characterised as Read-Modify-Write. They access

only one register and update a subset of the status flags; see Table 3.3.

Table 3.3: Laser induced errors on increment and decrement

Initialisation Instruction Effecta Samples Errors Unique

r0←00h inc r0b 240000 1721 730

r0←01h —"— 240000 1725 750

r0←7fh —"— n 240000 1901 805

r0←ffh —"— z 240000 1837 793

r0←00h dec r0c n 240000 1857 789

r0←01h —"— z 240000 1816 764

r0←02h —"— 240000 1704 744

r0←80h —"— 240000 1759 800

1920000 14320 6175

a Updates Zero, Negative & OVerflow flags. b Increment Register. c Decrement
Register.

Chapter 3. Categorising Errors 121

3.3. Experiments

3.3.5.1.3 Arithmetic Tests.

These arithmetic instructions involve binary operations (e.g. addition) taking input

from two sources and overwriting the first with an updated value; see Table 3.4.

Table 3.4: Laser induced errors on multiple register/register and memory access

Initialisation Instruction Effecta Samples Errors Unique

r16←60h, r17←10h add r16, r17b 240000 1869 834

r16←60h, r17←30h —"— vn 240000 1899 826

r16←60h, r17←a0h —"— c z 240000 1916 815

r16←60h, r17←a5h —"— c 240000 1886 817

r16←20h, r17←15h sub r16, r17c h 240000 1922 824

r16←20h, r17←20h —"— z 240000 1949 823

r16←20h, r17←25h —"— h s n c 240000 1955 806

r16←20h, r17←b0h —"— c 240000 1920 785

r16←7, r17←6 cp r16, r17d 240000 2197 942

r16←7, r17←7 —"— z 240000 2272 1005

r16←7, r17←8 —"— h s n c 240000 2320 1019

r16←7 cpi r16, 6e 240000 2203 1003

r16←7 cpi r16, 7 z 240000 2306 1058

r16←7 cpi r16, 8 h s n c 240000 2309 1005

3360000 28923 12562

a All tests update the Half-Carry, Sign, OVerflow, Negative, Zero, & Carry flags. b Add – R16 ←
R16 + R17. c Subtract – R16 ← R16 − R17. d Compare – R16 − R17. e Compare Immediate –
R16 − const.

122 Chapter 3. Categorising Errors

3.3. Experiments

3.3.5.1.4 Memory Access Tests.

The memory access tests observe instructions that perform data transfers, i.e. trans-

fers from registers to memory and memory to registers; see Table 3.5.

Table 3.5: Laser induced errors on load store/memory to register and register to
memory exchange

Initialisationa Instruction Effectb Samples Errors Unique

@100←00h ld r2, xc load zero 400000 2124 900

@100←5ah —"— load positive 400000 2172 937

@100←a5h —"— load negative 400000 2166 892

r16←00h st x, r16d store zero 400000 2135 883

r16←5ah —"— store positive 400000 2133 883

r16←a5h —"— store negative 400000 2143 873

2400000 12873 5368

a Index register X←100h. b No flags expected to change. c Load indirect. Register← memory

at address X. d Store indirect. Memory at address X ← R16.

Chapter 3. Categorising Errors 123

3.3. Experiments

3.3.5.1.5 Conditional Branch Tests.

The conditional branch tests were of particular interest to the study as they are crit-

ical to defensive coding strategies. When executing conditional branch instructions,

the program flow will continue to the next instruction or jump to a new address, de-

pending on the state of a status word flag. The expectation was that this behaviour

could be disrupted by fault insertion, resulting in a change in the control flow of the

program; see Table 3.6.

Table 3.6: Laser induced errors on conditional branch instructions

Initialisation Instruction Effect Samples Errors Unique

clca brcce branch taken 400000 3407 1270

stcb —"— branch skipped 400000 3359 1248

clc brcsf branch skipped 400000 3414 1320

stc —"— branch taken 400000 3455 1283

clzc brneg branch taken 400000 2200 836

stzd —"— branch skipped 400000 2384 911

clz breqh branch skipped 400000 2256 901

stz —"— branch taken 400000 2370 914

3200000 22845 8683

a Clear Carry flag. b Set Carry flag. c Clear Zero flag. d Set Zero flag. e Branch if Carry flag
is clear. f Branch if Carry flag is set. g Branch if Zero flag is clear. h Branch if Zero flag is
set.

124 Chapter 3. Categorising Errors

3.3. Experiments

3.3.5.1.6 Aggregated results..

Table 3.7 shows a summary of the results of these experiments. The nature of the

errors is discussed below.
Table 3.7: Laser induced errors

Test Set Samples Errors Unique Repeata

No Operation 480000 4175 1589 61.9%

Single Register 1920000 14320 6175 56.9%

Arithmetic 3360000 28923 12562 56.6%

Memory 2400000 12873 5368 58.3%

Branching 3200000 22845 8683 62.0%

11360000 83136 34377 58.6%

a 𝑅𝑒𝑝𝑒𝑎𝑡 = (𝐸𝑟𝑟𝑜𝑟𝑠− 𝑈𝑛𝑖𝑞𝑢𝑒)/𝐸𝑟𝑟𝑜𝑟𝑠.

3.3.5.1.7 Error categorization.

Figure 3-14: Error Locations

For each of the proceeding tests,

we generated a map of the sensi-

tive regions of the IC. One such

map is shown here in Figure 3-14.

All error location images showed

a similar distribution of locations

where errors had been induced.

The utility developed to create

these images can generate similar

images identifying specific types

of error. Many such images were

generated and could be visually

compared to identify areas where

interesting results could be found

rapidly.

Chapter 3. Categorising Errors 125

3.3. Experiments

The example here is typical of all of the tests; they all show clusters of sensitive

sites, and each of these sites exhibits errors with common characteristics. Presumably,

circuitry implementing related functionality is physically located in the same region

of the IC.

We identified six classes of error.

1. Crash and no response. Crashes were comparatively rare; so long as the

CPU was executing, then the interrupt-driven state collection mechanism could

recover the 𝜇𝐶’s state. We noted that when they did occur they were associated

with the zones marked A & B in Figure 3-14.

2. Widespread non-fatal corruption. Multiple registers became simultane-

ously corrupted, most frequently in zone B. More registers were corrupted than

could be achieved via program execution, and we assume the register contents

were simultaneously altered. The general behaviour was often repeatable, but

the erroneous values assigned to the registers had no apparent pattern.

3. Program counter corruption. Program counter corruption was common.

Mainly associated with zone D.

4. Working Register Corruption. The working hypothesis was that if we could

corrupt an instruction that manipulated a specific register, that register would

end up with corrupted contents. Surprisingly, we did not see any examples of

this behaviour. The reasons for this are discussed below.

5. Status Register. Here the flags register was corrupted without any other

errors induced in the 𝜇𝐶. These errors occurred exclusively in Zone D. This

flag corruption was a surprising result, given the stability of the general-purpose

registers and is discussed further below.

6. Memory corruption. In some instances, the memory became corrupted, but

with no corruption to the 𝜇𝐶 state. This behaviour was associated with zones

C and D, and appears similar to the effect studied in detail by [165] where

126 Chapter 3. Categorising Errors

3.3. Experiments

RAM was modified directly. Such corruption is surprising as the IC’s tracks in

these zones do not have the regular pattern generally associated with memory

structures.

These results were not at all what we had expected. Status flags were being

corrupted when they were not expected to be updated by the instruction being inves-

tigated. Registers that were being manipulated by the instruction under investigation

still ended up with the correct results in them. Program counter corruption was fre-

quently observed, and surprisingly it was no more or less common when investigating

branch instructions than it was for arithmetic or Nop instructions.

These results appeared to contradict the assumptions underpinning much histor-

ical defensive code. Namely, the ability to corrupt arithmetic or data transfer and

branching could be exploited to bypass software security features.

What we were observing was a high degree of repeatability. Under the same

conditions, the resulting corruption generated the same response. Except for the

widespread non-fatal corruption seen in zone B, the erroneous data and resulting

execution addresses were reproducible.

Figure 3-15: Error Sensitivity Map

Another noteworthy observa-

tion related to the number of er-

rors recorded for each of the dif-

ferent locations on the IC’s sur-

face. Figure 3-15 illustrates this.

The heights of the peaks repre-

sent the aggregated total num-

ber of errors recorded for those

locations. Notably zones B &

C, that were associated with cor-

rupted memory, generated most

errors. Zone D by contrast looked relatively insensitive. However, errors here were

strongly correlated with the timing of the laser pulse. This observation supported the

idea that for zone D we were observing a perturbation in some aspect of the 𝜇𝐶’s

Chapter 3. Categorising Errors 127

3.3. Experiments

dynamic behaviour because it was related to the specific timing of the laser pulse.

On the other hand, for zones B & C, we were probably looking at memory editing,

where the timing of the pulse is irrelevant.

3.3.5.2 Targeting Running Code

The second set of tests was performed on a realistic code sample, typical of a defensive

code. On entry register r25 contains a value of either STRUE, SFALSE, or a corrupt

value if something had caused an error previously. The sample has four termination

states, one of each entry condition and one for errors encountered during its own

operation.

1 // Timing
2 nop // 1.0 -1.1
3 nop // 1.2 -2.1
4 cpi r25 ,SFALSE // 2.2 -3.1
5 breq L_False // 3.2 -4.1/5.1
6 cpi r25 ,STRUE // 4.2 -5.1
7 breq L_True // 5.2 -6.1/7.1
8 rjmp L_Trap // 6.2 -8.1
9 rjmp L_Trap // 8.2 -10.1
10
11 L_Weird: mov r0 ,r25 // Note: mov is used here
12 mov r1,r25 // because it does not
13 mov r2,r25 // update any flags.
14 mov r3,r25 //
15 rjmp L_Weird //
16
17 L_True: mov r10 ,r25 // 7.2 -8.1
18 mov r11 ,r25
19 mov r12 ,r25
20 mov r13 ,r25
21 rjmp L_True
22
23 L_False: mov r16 ,r25 // 5.2 -6.1
24 mov r17 ,r25
25 mov r18 ,r25
26 mov r19 ,r25
27 rjmp L_False
28
29 L_Trap: mov r4 ,r25 // 8.2 -9.1
30 mov r5,r25
31 mov r6,r25
32 mov r7,r25
33 rjmp L_Trap

Figure 3-16: Branch Test Code

Under normal circumstances, the program shown in Figure 4-12 will reach the

appropriate end state where it will be trapped in an endless loop waiting to be in-

terrupted by the state reporting mechanism. For these experiments, the interrupt

was delayed by 8 cycles to ensure the program had time to execute to one of the end

128 Chapter 3. Categorising Errors

3.3. Experiments

functions§. Good values of STRUE & SFALSE should reach the appropriate handler,

while corrupt input should terminate in the L_Trap function. L_Weird would only be

reached if the data was corrupt and both of the attempts to jump to the trap failed.

We performed three tests, each with r25 pre-initialised to one of the three possible

start conditions. Each of these was performed at all points within the previously

identified zone D, a grid of 10 × 7 sample points. A single test involved twenty-

four separate execution runs with the laser pulse triggering at each of 24 consecutive

quarter cycles, the first of which was synchronised with line 4 of the source sample.

Each test was repeated 10 times at each location.

Table 3.8: Branch Test Results

Start state, R25=
SFALSE STRUE 0

Final State n % n % n %

Weird 7875 0.5 16625 1.0 48125 2.9
True 0 0.0 1627500 96.9 0 0.0
False 1647625 98.1 0 0.0 0 0.0
Trap 24500 1.5 35875 2.1 1631875 97.1

Total 1680000 1680000 1680000

The results of this test are shown here in Table 3.8. The interesting result is that

we had no examples of branches erroneously taken. All of the outcomes could be

explained by skipping instructions and failing to branch.

Closer observation of the results showed that some Mov instructions in the des-

tination routines had also been skipped. Timing of the laser pulse associated with

skipped branches and Movs was such that it had occurred during the execution of

the proceeding instruction. This timing strongly suggested that instructions were not

miss-executing but that the pre-fetch of the next instruction was being corrupted.

Some arrivals at the L_Weird termination appeared to be the result of more than

one fault. For example for the STRUE start state to arrive at the L_Weird end state

requires one of the instructions at line 6 or 7 to fail along with both of the instruction

§This trigger delay can be seen in Figure B-3, it is the additional, retro-fitted circuit board.

Chapter 3. Categorising Errors 129

3.3. Experiments

at lines 8 and 9. However, since the jump instructions are double-word sized, it is

conceivable that the instruction pointer could become misaligned with the code, and

we were witnessing the normal execution of a displaced byte stream.

Analysis of the results from a single location, where faults had been observed,

showed that the errors were associated with a laser pulse synchronised with the third

quarter machine cycle. Table 3.9 shows the results from one such location where the

only laser pulses used were synchronised with quarter three.

Table 3.9: Branch Test Results, fixed location, Third Q-cycle

R25
SFALSE STRUE 0

Final State n % n % n %

Weird 9 3.8 19 7.9 55 22.9
True 0 0.0 180 75.0 0 0.0
False 203 84.6 0 0.0 0 0.0
Trap 28 11.7 41 17.1 185 77.1

Total 240 240 240

These results strongly supported the conclusion that we witnessed instruction

skipping rather than in-transit corruption of data. Similar results had been observed

by Riviere [148] on an ARM 𝜇𝐶 where the cache failed to update, resulting in the

re-execution of the previous cache contents.

Consequently, our initial assumptions that drove the extensive scanning of the

chip surface were flawed. All instructions were examined while they prefetched a

Nop. This result suggests many of the observed errors related to the misbehaviour

of the subsequent miss-fetched Nop; i.e. not related to the specific instruction under

test.

3.3.5.2.1 Testing the Skip Hypothesis

The timings of the laser pulse and the observed effects pointed to a miss-fetched

instruction rather than the abnormal execution of an uncorrupted instruction. To

confirm this hypothesis, we devised a simple test. We executed a series of Inc in-

130 Chapter 3. Categorising Errors

3.3. Experiments

structions and subjected them to the same exhaustive attack previously used. A

skipped instruction should be observable as a register with unmodified contents. A

re-executed instruction would be expected to be shown by a multiply incremented

register. The test code is shown in Figure 3-17.

The signal that triggers the laser was used to initiate the data recovery interrupt.

No additional post-laser-strike delay was required. As the timer delay increased reg-

isters r2, then r3, then r4 etc. failed to increment. We observed the missing updates,

as expected, but saw no examples of the additional updates that would indicate re-

execution of the previously fetched instruction.

1 Boot_vec // Power -on/reset
2 Irq_vec // vector to ISR
3
4
5 Irq_vec: rjmp ISR // jump to ISR
6
7
8 Expt: rcall Setup // Zero all registers
9
10 E1_1: sbis 0x16 ,2 // while (! LAMP_RDY);
11 rjmp E1_1 //
12 sbi 0x18 ,1 // Set START signal
13
14 // Cycle , Laser time
15 inc r0 // 0, 0.2 - 1.1
16 inc r1 // 1, 1.2 - 2.1
17 inc r2 // 2, 2.2 - 3.1
18 inc r3 // 3, 3.2 - 4.1
19 inc r4 // 4, 4.2 - 5.1
20 inc r5 // 5, 5.2 - 6.1
21 inc r6 // 6, 6.2 - 7.1
22 inc r7 // 7, 7.2 - 8.1
23 inc r8 // 8, 8.2 - 9.1
24 inc r9 // 9, 9.2 - 10.1
25 inc r10 // 10, 10.2 - 11.1
26 inc r11 // 11, 11.2 - 12.1
27 inc r12 // 12, 12.2 - 13.1
28 inc r13 // 13, 13.2 - 14.1
29 ret
30
31
32 ISR: cbi 0x18 ,1 // Clear START signal
33 <Report CPU state >
34 ...

Figure 3-17: Pre-Fetch Test

This experiment also provided a convenient sanity check for other assumptions

made while analysing results. In particular, the timing and sequence of events involved

in the data capture.

The delay counter started its countdown after the Start signal was asserted. The

Start signal was then cleared as the first action of the Interrupt Service Routine

Chapter 3. Categorising Errors 131

3.3. Experiments

(ISR). With the delay counter set to 12 quarter cycles timer would have expired 3

CPU cycles after Start was asserted. The End_count signal initiated both the CPU’s

interrupt triggering logic and tripped the laser’s Q-Switch. After the laser’s internal

delay of 1 µs [124], the Q-Switch would open, enabling the light pulse to emerge. In

our test program, this aligned with the execution of Inc r4, line 19.

Experimental results showed registers r0 - r4, and r6 were set to 1, whilst reg-

isters r5 and r7,. . . remained unaltered. r5 had clearly been skipped, and the in-

structions, Inc r7 onwards, had not been executed as a result of the non-returning

ISR. The Start signal was cleared after 14 CPU cycles. These observations match

the timing behaviour for interrupts described in the device’s datasheet [12] and are

shown here in Figure 3-18. It also demonstrated that the CPU maintained its regular

timing. I.e. the miss-fetch of Inc r5 was not a result of an elongated or skipped

CPU cycle, as would be have been expected with an externally applied clock glitch

attack.

clk

Start count

End count

Laser Flash

Register values r0=1 r1=1 r2=1 r3=1 r4=1 r6=1

CPU Fetch stb inc r0 inc r1 inc r2 inc r3 inc r4 ??? inc r6 Vector rjmp clb

CPU Execute stb inc r0 inc r1 inc r2 inc r3 inc r4 ??? inc r6 Vector Fetch rjmp ISR clb

SYNC_LATCH

PCINT

pcint_syn

PCIF

IRQ Vector fetch ISR code

[Activate the timer]

[Programmed delay]

[Trigger IRQ]

[Laser latency]

[Causes misread]

[no update]

[Confirm ISR entry delay]

b j

c

e

h

f

a g i

d

M
ea

su
re

m
en

ts

4.
6

10
.2

.4
 9

.2
.1

 4
.7

.1

 D
at

as
he

et

Figure 3-18: Signal Timing

3.3.5.3 Power and Aperture

Two questions remained unanswered. How much power is needed to induce an error,

and what is the effect of varying the target area size?

Many factors influence the amount of energy that must be injected into the DUT

to induce an error. At the quantum level, we know the energy required to promote

electrons into the conduction band (See Section 2.3.3.4), and the appropriate choice

132 Chapter 3. Categorising Errors

3.3. Experiments

of laser wavelength can control this. In order to make a transistor switch, a critical

number of the semiconductor’s atoms need to be excited, and this depends on the

size of the transistor. At NIR wavelengths, the silicon is semi-transparent, so some

of the light may pass through the device without effect. At shorter wavelengths, the

silicon is opaque, so light may not penetrate, and only the exposed surface can be

influenced. In a top-side attack, metal layers obscure some components and cause

light scattering, so power and spot size could conceivably influence the size and shape

of the affected zone.

We aimed to show whether error repeatability was affected by either, or both, of

the laser spot size and power.

We defined an area 20 × 18 locations, centred on, and larger than, zone D. A

test program was run, and the laser fired at 20 time intervals covering a range of

different instructions, see Figure 3-19. This program was repeated 25 times at each

location. We counted the total number of errors and the number of unique errors

for each location. Each experimental run collected 180, 000 samples, and these runs

were repeated for all combinations of five different aperture settings and five power

settings.

1 Expt: rcall Setup // Zero all registers
2
3 E1_1: sbis 0x16 ,2 // while (! LAMP_RDY);
4 rjmp E1_1 //
5 sbi 0x18 ,1 // Set START signal
6
7 // Cycle , Laser time
8 ldi r0, 7 // 0, 0.2 - 1.1
9 mov r1, r0 // 1, 1.2 - 2.1
10 add r0, r1 // 2, 2.2 - 3.1
11 cp r0, r1 // 3, 3.2 - 4.1
12 inc r0 // 4, 4.2 - 5.1
13 brne fwd // 5+6, 5.2 - 7.1
14 inc r1 // ?,
15 fwd: inc r0 // 7, 7.2 - 8.1
16 nop // 8, 8.2 - 9.1
17 nop // 9, 9.2 - 10.1
18 nop // 10, 10.2 - 11.1
19 nop // 11, 11.2 - 12.1
20 nop // 12, 12.2 - 13.1
21 ...

Figure 3-19: Power and Aperture Test

The executed code’s only requirement was that errors could be recognised if in-

duced. As per the experiments in Section 3.3.5, we recorded the DUT’s state at the

Chapter 3. Categorising Errors 133

3.3. Experiments

end of each run and used this data to identify corrupted memory and registers.

It was the time required to perform 180, 000× 5× 5 discrete runs of the code that

led to the decision to concentrate on the area surrounding zone D, rather than to

scan the whole IC. This area includes a known sensitive zone, a boundary zone where

scatter effects may be expected and a previously identified insensitive area.

The laser pulse from the YAG laser lasts approximately 4 ns. In a low power

setting, it emits up to 2 mJ per pulse [124], and we varied the power from 10% through

to 30% in 5% increments. The full aperture of the laser cutter was 40µm× 40µm,

and we varied it between 20% and 60%. The microscope lens had a 35% transmission

ratio at our chosen wavelength of 532 nm (green). These parameters enabled us to

calculate an approximation¶ to the actual power delivered in each experiment. The

results are shown here in Table 3.10.

The most notable feature within Table 3.10 is the high degree of repeatability. The

initial experiments targeting individual instructions, see Section 3.3.5.1.6, suggested

repeatability of approximately 60%. Those figures were based on sets of four samples

per test. This data set had 25 samples per test and showed that results that appeared

to be unique within a small set of 4 samples were probably examples of repeatable

but less common errors.

This table also shows that significant errors are obtained from relatively low power

pulses. We see that 4µJ in a small focussed area reliably induces repeatable errors,

as demonstrated at Aperture:20% and Power:15%. The YAG was unnecessarily pow-

erful. All of the errors demonstrated here were induced by pulses using less than

one-tenth of the YAG’s low power setting.

¶It is approximate because the laser power declines with age, and we have no direct way to
measure this. These figures will probably overestimate the actual power delivered.

134 Chapter 3. Categorising Errors

3.3. Experiments

T
ab
le
3.
10
:
E
rr
or
s
b
y
P
ow

er
an
d
A
p
er
tu
re
.

A
p
e
rt
u
re

a

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

P
o
w
e
rb

µ
J
c

N
d

R
e

µ
J

N
R

µ
J

N
R

µ
J

N
R

µ
J

N
R

1
0
%

2.
8

0
0%

6.
3

10
1

85
%

11
.2

18
42

93
%

17
.5

81
42

97
%

25
.2

90
20

95
%

1
5
%

4.
2

26
42

95
%

9.
5

37
29

95
%

16
.8

69
34

96
%

26
.3

78
48

96
%

37
.8

10
21
9

95
%

2
0
%

5.
6

36
40

96
%

12
.6

49
52

92
%

22
.4

66
04

95
%

35
.0

55
18

95
%

50
.4

83
62

95
%

2
5
%

7.
0

41
27

95
%

15
.8

58
03

96
%

28
.0

56
76

95
%

43
.8

82
08

96
%

63
.0

10
77
3

96
%

3
0
%

8.
4

45
43

96
%

18
.9

58
99

96
%

33
.6

47
97

94
%

52
.5

87
38

96
%

75
.6

96
90

97
%

a
A
p
e
rt
u
re

d
ia
m
e
te
r
a
s
a
p
e
rc
e
n
ta
g
e
o
f
4
0
µ
m

b
L
a
se
r
p
o
w
e
r
se
tt
in
g
a
s
a
p
e
rc
e
n
ta
g
e
o
f
2
m
J
p
e
r
p
u
ls
e
.

c
E
n
e
rg
y
d
e
li
v
e
re
d
to

th
e
ch
ip

su
rf
a
c
e
a
ft
e
r
m
a
sk
in
g
b
y
th
e
a
p
e
rt
u
re

a
n
d
lo
ss
e
s
in

th
e
m
ic
ro
sc
o
p
e
o
p
ti
c
s.

d
T
o
ta
l
c
o
u
n
t
o
f
e
rr
o
rs

fr
o
m

1
8
0
,0

0
0
sa
m
p
le
s
ta
k
e
n
w
it
h
in

Z
o
n
e
D
.

e
P
e
rc
e
n
ta
g
e
o
f
e
rr
o
rs
th
a
t
a
re
d
u
p
li
c
a
te
s
fo
r
a
si
n
g
le
lo
c
a
ti
o
n
a
n
d
st
im

u
lu
s
ti
m
in
g
.
W
h
e
re

𝑅
𝑒𝑝

𝑒𝑎
𝑡𝑎
𝑏𝑖
𝑙𝑖
𝑡𝑦

=
(𝑇

𝑜
𝑡𝑎
𝑙𝐸

𝑟
𝑟
𝑜
𝑟
𝑠
−
𝑈
𝑛
𝑖𝑞
𝑢
𝑒𝐸

𝑟
𝑟
𝑜
𝑟
𝑠)
/
𝑇
𝑜
𝑡𝑎
𝑙𝐸

𝑟
𝑟
𝑜
𝑟
𝑠.

Chapter 3. Categorising Errors 135

3.4. Data and Interpretation

3.4 Data and Interpretation

The results from zone D suggest a failure of the prefetch of the next instruction.

Therefore, our earlier attempts to categorise the effects of targeting a specific in-

struction had been flawed for this zone in particular. It is likely that the intended

instruction was unaffected, and the observed errors were due to the misbehaviour

of the subsequent miss-fetched Nop. This behaviour probably also accounts for the

observation that, for arithmetic tests, we regularly saw the same pattern of flag cor-

ruption without seeing register corruption. It appears likely that the misread Nop

performed a repeatable but unidentified flag modifying operation.

Repeating tests using other samples yielded the same pattern of results. This

comparative testing was performed using a 50× 50 grid while keeping the laser spot

size consistent with the equivalent 100 × 100 scans. The laser was also only fired

during the third quarter-cycle, where earlier tests had shown a higher percentage of

induced errors within the collected samples. This reduced coverage saved a significant

amount of time but still showed the same pattern of sensitive areas, and the nature

of the errors was consistent with the more intensive scans.

For a top-side focussed laser attack on this device, the two dominant failure modes

are timing-sensitive instruction skipping and time-insensitive memory editing/corrup-

tion.

3.5 Summary

Through this series of experiments, we identified behaviour that obstructs accurate

data collection, and we revised our test environment to naturalise this effect. We

demonstrated a practical approach to characterising a device, and that character-

isation results are transferable to other samples of the same device. Weaknesses

identified in the test equipment have been overcome to enable more sophisticated and

powerful attacks to be performed.

The test environment affects the results and needs to be considered when automat-

136 Chapter 3. Categorising Errors

3.5. Summary

ing large numbers of tests. Individual errors are similar, but failure to reset cleanly

before subsequent tests means the data gathered may represent the aggregate effects

of multiple errors. This result in itself is interesting as it suggests multiple pulse

attacks may have effects beyond those expected by simply combining the effects of

two discreet tests. For these cases, it appears that one plus one does not necessarily

equal two. The effect is common enough to invalidate data recovered by automated

test campaigns unless special measures have been taken to ensure a complete reset of

the DUT.

The automated approach for collecting error responses by executing sample code

and scanning the whole chip is also practical. More importantly, the results from one

sample are transferable to other samples of the same device. Thus a 𝜇𝐶 component,

with its development kit, can be obtained via normal distribution channels and pro-

filed. The knowledge gained can be used to attack third-party devices that utilise the

same component. High-security devices such as smartcards usually have restricted

access to development tools and engineering samples, so the ability to characterise

a component and apply the knowledge to an unrelated device has limited practical

value. However, it is a potent threat in the IoT environment, where devices regularly

use generic components that are readily available through traditional distribution

channels.

The most notable observation is that errors are repeatable. Above a minimum

power threshold, the ratio of repeatable errors is both high and remarkably consis-

tent. This effect does not appear to change significantly as the power increases, first

reported in, Kelly [96].

Repeatable errors are easier to exploit from an attacker’s point of view. Know-

ing what effect to expect from an attack on a particular site assists in interpreting

recovered data. This knowledge, combined with SPA specific features, enables code

features such as loop counters to be targeted and manipulated. Similarly, knowing the

vulnerabilities and the relative ease of inducing them assists developers when specify-

ing countermeasures. Defensive code can then be deployed efficiently in appropriate

proportion to the threat.

Chapter 3. Categorising Errors 137

3.5. Summary

We could not readily identify specific sites where a laser pulse affected particu-

lar operations, e.g. corrupting arithmetic results without corrupting branching or

memory update. For this device, the dominant effects are instruction skipping and

memory/register corruption. Recognising such dominant effects is highly valuable

when planning defensive code.

This characterisation of error responses assists attackers by enabling them to un-

derstand the effects they are inducing while also reducing the time needed to collect

and interpret samples. It is equally valuable to a defender who can design defences

that fail safely in the dominant identified error modes.

It is also clear that the YAG laser workstation has many drawbacks. It is unnec-

essarily powerful. Designed as a micro-machining tool, it is as capable of destroying

the DUT as it is of inducing errors. We have seen that modest levels of power can

induce errors of interest to an attacker. The YAG laser requires a pre-charge before

discharge, limiting the rate at which consecutive pulses are generated. This delay has

previously been identified as evidence that multiple-pulse attacks are prohibitively

expensive or difficult to implement [23]� [118]**.

Here we have evidence that the power required is modest and within the capabil-

ities of laser diode technology. Such devices do not require pre-charging and do not

necessarily limit the repetition rate.

�"Such a tight timing is a[sic] very difficult to achieve with the current fault injection techniques,
which require a non-negligible amount of time to reset the fault inducing means . . . " — Barenghi
2010

**". . . it requires a much more costly fault injection equipment and very high synchronisation
capabilities. It is then not yet considered as a realistic threat." — Moro 2015

138 Chapter 3. Categorising Errors

Chapter 4

A New Laser Workstation

Contents

4.1 Components . 141

4.1.1 Laser Diode . 142

4.1.2 Refinements . 144

4.1.3 Validation . 146

4.1.4 Integration . 148

4.1.5 Functional Testing . 150

4.2 Multi-Pulse Proof of Capability 152

4.3 Creeping Barrage - Blind Attack on Known Code 158

4.4 Summary . 161

139

Limitations within our original laser pulse injector prevented us from

confirming our speculations relating to the exploitability of repeatable

errors. Other observations relating to the required power and fo-

cus of a laser pulse suggested we could build a superior replacement

laser injector. This exercise confirmed our earlier speculations and

demonstrated that sophisticated laser attacks could be implemented

for a surprisingly low equipment cost.

140 Chapter 4. A New Laser Workstation

4.1. Components

In this phase of the study, we aimed to confirm the observation that a well-timed

and well-aimed laser pulse could cause instruction skipping and discover if the ef-

fect can be repeated at short time intervals. While the YAG laser had been used to

demonstrate one-off instruction skipping, its long recharge time made multi-pulse at-

tacks impossible, and we found no other identifiable reports demonstrating sequential

targeted instruction skipping. This recharge characteristic of industrial lasers has in

the past been cited as evidence that multiple-pulse attacks are prohibitively expensive

or difficult to implement [23, 118].

A homemade workstation would demonstrate a more realistic, heightened threat

of attack. It would also show that defence characterisation and testing could be

incorporated into modest development plans, potentially increasing security at this

vulnerable, budget end of the market.

We set ourselves three goals,

1. Demonstrate the selective skipping of instructions executing within a small num-

ber of machine cycles of each other, using multiple discrete laser pulses.

2. Show a white-box attack on a known code sample without the need to know

precisely when the code was being executed.

3. And, the component cost of the solution should be affordable to an amateur

attacker or low-budget laboratory.

4.1 Components

The primary requirements of the device were simple and were based on observations

from the preceding experiments. We need a suitably powered laser that could be

switched on and off at approximately 40 MHz. We need a mechanism to turn the

laser on and off that could be synchronised with the DUT. Finally, we need a way to

focus the laser onto a spot approximately 20µm2.

Chapter 4. A New Laser Workstation 141

4.1. Components

4.1.1 Laser Diode

Upon initial review, this looked like an impossible goal. We needed a diode that

could be switched on and off at up to 40 MHz; i.e. within 25 ns. Furthermore, the

data in Table 3.10 suggested that we would need close to 5 µJ per pulse to induce

errors. Delivering the equivalent amount of energy in a 25 ns pulse would require

a 200 W laser with no losses during transmission through the focusing optics. Such

high power would be unachievable with readily available diodes. However, properties

of the YAG’s pulsed output and the properties of silicon semiconductors (described

in Section 2.3.3.4) suggested that longer pulses would generate the same effects at

significantly lower power.

The YAG laser delivered this energy in a 4 ns pulse, and this six times faster than

our anticipated 25 ns diode pulse. We speculated that to achieve a switching effect

in the DUT the electrons in a transistor’s gate would need to be excited across the

band gap (See Figure 2-14) for a significant fraction of a machine cycle and that the

energy delivered by the pulse would dissipate very quickly through the semiconductor

and local metal tracks. We had seen this effect when testing the laser response times;

see Figure 4-6. Thus we anticipated a similar error inducing effect could be achieved

with significantly less power applied steadily for a longer period. The first task was

to confirm this; otherwise, plans would need to be changed.

Figure 4-1: Laser Diode with
Heatsink and Lens

Readily available laser diodes fall into three

main categories.

i) High power and fast switching for telecom-

munications are unsuitable. They are designed

to run continuously at medium power with

high-frequency data signal modulating between

medium and high power modes [131]; from low

power to medium power, these devices typically

take several ms.

ii) Continuous-Wave mode diodes, as the name

142 Chapter 4. A New Laser Workstation

4.1. Components

suggests, are designed to be reliable when driven continuously. They are limited by

their packaging’s ability to dissipate heat and consequently need to run at modest

power. Continuous-wave diodes typically switch on and off relatively slowly, and this

property precludes the option of over-powering them and operating in pulse mode.

iii) Pulsed-Mode diodes operate at a low duty cycle. Therefore, if used correctly,

they do not generate much heat, and as a consequence, can tolerate operation with

higher momentary power output. Because of this, they are also designed to reach

peak output relatively quickly. For our application, only pulse-mode capable diodes

would be suitable.

Figure 4-2: Laser Station

We required a diode that

could operate in pulsed mode

and deliver multiple Watts of

power. The choice was be-

tween NIR or blue/violet, ap-

prox. 450 nm. At other

wavelengths, the options avail-

able offered insufficient power

or slow response times. We

chose a 455 nm laser diode

salvaged from a high-intensity

Nichia NUMB80 laser diode

bank [125]. It offers up to

4.3W of power and is capable

of switching at 200 MHz. Avail-

able on eBay at the time for less

than £30. The other advan-

tage is that working with visi-

ble light is significantly easier than NIR. Besides the obvious advantage of seeing the

light, readily available microscope optics are optimised for this part of the spectrum.

If the DUT is visibly in focus through the eyepiece, it will be in focus for the laser

Chapter 4. A New Laser Workstation 143

4.1. Components

too.

We obtained an old trinocular Leitz SM-LUX HL microscope, again via e-bay,

at the cost of about £200. We mounted the laser on the vertical camera port, a

Charge-Coupled Device (CCD) camera in one of the eye-pieces holders and left the

third eyepiece in situ for direct observations. For focussing and positioning the DUT,

the eyepiece was most helpful but obviously unusable when the laser was powered

up. Safety measures involving screens and goggles were taken to avoid the risk of eye

damage from reflected laser light.

Driving the laser-diode at full power requires a circuit capable of switching a 3 A

current without creating excessive spikes or reverse voltages which can be fatal to a

diode. We used a dedicated laser controller device, the iCHaus iCHG 3A Laser switch

[86], which is typically used for lidar* and data transmission. It is conveniently

available through distributors on an evaluation board for £70 (2017 prices).

4.1.2 Refinements

The initial experiments used the controller board developed for the categorisation

experiments described in Section 3. This controller triggered the YAG laser to fire

upon the rising edge of a Transistor-Transistor Logic (TTL) signal delivered through

a coax cable to the laser’s controller module. The signal pulse indicated the firing

time and its duration with this arrangement. Activation of our laser proved to be

unreliable, with the diode frequently failing to fire. The reasons for this can be seen

in the oscilloscope trace, Figure 4-3. The blue trace shows the DUT controller’s 5 V

signal sent to the laser controller. The red trace shows the signal received by the laser

controller. The received signal varies between 0.4 and 0.5 V and this is insufficient to

reliably switch TTL logic.

We also attempted to use the DUT to send a signal to a stand-alone signal genera-

tor. The signal generator was configured to deliver a pre-programmed pulse pattern to

the diode controller. In this configuration, the DUT controller provided the synchro-

nisation signal as the rising edge of a longer pulse, in the same way as had previously

*Laser Imaging, Detection, and Ranging (LIDAR)

144 Chapter 4. A New Laser Workstation

4.1. Components

Figure 4-3: Trigger Signal Propagation

Figure 4-4: Laser Control After Signal Propagation

worked with the YAG. This mechanism generated reliable laser activation but with

an unacceptable amount of timing jitter. It became clear that a new DUT controller

board would be required to overcome the shortcomings of the laser trigger mechanism.

The details of this new board are described in Appendix B.4.

The replacement DUT controller board had two significant improvements. First of

Chapter 4. A New Laser Workstation 145

4.1. Components

all, it delivered the laser firing and timing signal via Low-Voltage Differential Signaling

(LVDS). LVDS is used for high-speed digital signalling in Universal Serial Bus (USB)

and ethernet. It uses a twisted pair of wires for each signal. This mechanism proved

to be highly reliable, as can be seen in Figure 4-4; here the DUT controller generates

a 25 ns pulse. The image shows the voltages on both the anode (red) and the cathode

(yellow) of the laser diode.

The second significant change to the controller board was the incorporation of a

Field-Programmable Gate Array (FPGA) to replace the secondary 𝜇𝐶 and the timer

circuitry used in its predecessors. We programmed the FPGA to provide multiple

high-speed counters, giving us control of both the timing and duration of multiple

laser pulses. All counters were synchronised with a synthesised 200 MHz clock signal,

which was also used to derive a 10 MHz clock signal to drive the DUT. We used an

evaluation board [128] supporting a Xilinx Spartan-6 gate array [186]. Such boards

are widely available and cost less than £30.

4.1.3 Validation

We now had a DUT-controller that could generate laser control signals with 40 MHz

resolution. The control signal signals could be measured and verified for timing

accuracy at the connections to the laser diode. We still needed to confirm that the

laser’s light output matched its control signals.

Figure 4-5: Laser Test Rig

We constructed a simple light detector cir-

cuit, shown in Figure 4-5. A smooth power sup-

ply, provided by an battery of alkali cells, was

placed in series with a photodiode and a resistor.

The voltage across the resistor indicated the cur-

rent flow and, therefore, the open/closed state of

the photodiode. When driven by a 100 ns pulse,

repeated at 10 kHz we observed the trace shown

in Figure 4-6. The laser responded quickly to the

’on’ signal, but it remained unclear whether the

146 Chapter 4. A New Laser Workstation

4.1. Components

Figure 4-6: Regular Pulse

laser continued to emit light after the signal had ended.

Figure 4-7 shows three 25 ns pulses delivered in quick succession, again demon-

strating that the ’on’ response is both fast and distinct but is equally ambiguous

about the ’off’ behaviour.

Two possibilities were considered. It could be capacitance and exponential dis-

charge within the test circuit or an after-glow effect where the laser emits light after

the driving signal ends. We reduced the size of the resistor, R1 in Figure 4-5, and saw

that the rate of decay increased; this was indicative of the capacitance hypothesis.

However, the signal also became very noisy with ’ringing’ effects, and the distinction

between closely spaced pulses could no longer be identified. In a final test, we left the

laser on high power and directed it at the sensor that was itself obscured by a spinning

disk. The spinning disk, a standard 60 mm radius Compact Disk (CD), had a 0.1 mm

hole drilled close to the circumference. When spun at 50 Hz the hole’s transition

time was 5.3 µs. At higher rotational speeds, this apparatus became mechanically

unstable. The received power trace showed an asymmetric profile, with a steep rise

and an extended decay time. Whilst not proving the absence of a laser after-glow, it

Chapter 4. A New Laser Workstation 147

4.1. Components

Figure 4-7: Laser Tripple Pulse

was indicative of significant capacitance in the detector circuit. Demonstrable capac-

itance in the detector and a demonstrable absence of power input to the diode gave

us confidence that the laser was switching off reasonably quickly.

4.1.4 Integration

Figure 4-8: Align-
ment Basic

The next challenge involved integrating the sub-components

into a usable workstation.

The laser diode (seen in Figure 4-1) needed to be mounted so

that it could be focussed directly through the microscope’s ob-

jective lens. This alignment was achieved by placing the diode

at one end of a pipe and mounting the pipe in the microscope’s

camera port; see Figure 4-2. The microscope’s camera port pro-

vided a 38 mm aperture, and aluminium tube is readily avail-

able at exactly this size. The diode was held in place with four

pinch screws, North-South at the top of the diode’s heat sink

and East-West at the bottom. Adjustments to these screws en-

148 Chapter 4. A New Laser Workstation

4.1. Components

abled the fine� adjustments to be made to the position and orientation of the diode,

Figure 4-8. Crude alignment was first achieved by placing a target paper screen at

the mouth of the tube, running the laser at low power to make a visible spot, and

adjusting the screws to align the spot on the centre of the target.

Figure 4-9: Alignment Parallax

The laser spot, visible via the CCD

camera in the microscope, is a reflection

seen on internal optics within the mi-

croscope’s body tube. When the laser

brightness was increased to see the spot

projected onto the target, this reflection

became so bright that it saturated the

CCD. Figure 4-9 shows the beam, seem-

ingly aligned with the centre of the im-

age. However, the scorch-mark to the

right of the image shows the point on the

target where the beam actually focussed.

Figure 4-10: Alignment Offset

Figure 4-10 shows the virtual im-

age and the target aligned but dis-

placed. The final accurate alignment was

achieved by increasing the length of the

diode’s support tube. While this made

the adjustments marginally more sensi-

tive, it proved easier to align the re-

flection and scorch-mark with the cen-

tre of the image. This alignment with

the centre of the lens was essential; oth-

erwise, realignment would be necessary

each time the objective lens is changed to a different magnification.

The laser controller board was mounted next to the diode to minimise the wire

�An M4 threaded bolt gives 0.7mm of travel per 360°of rotation.

Chapter 4. A New Laser Workstation 149

4.1. Components

lengths and improve the signal quality for the fast switching high current laser supply.

The FPGA was mounted directly below the DUT on the support circuit board to

ensure clean signals between the DUT and the timer controller. The two parts of the

system were connected via a standard 1 GHz ethernet patch cable.

4.1.5 Functional Testing

We tested the new workstation by rerunning the experiments used to test the instruc-

tion skipping hypothesis, described earlier in Section 3.3.5.2.1. With a 2 A current

driving the laser, we could reliably repeat the results previously obtained using the

YAG laser. From the datasheet [125] describing the laser diode, a 2 A current should

deliver 2.5 W and a 25 ns pulse would therefore deliver 630 nJ. This value was ap-

proximately 1% of the energy delivered by the YAG to achieve the same effect. It

Figure 4-11: Workstation

150 Chapter 4. A New Laser Workstation

4.1. Components

demonstrated that sustained low power for a significant fraction of a machine cycle

was equally effective as a very short pulse of high power. This result supported our

speculation made in Section 4.1.1; removing the last of the uncertainty about the

viability of our approach.

We now had a fully functional, programmable laser workstation; Figure 4-11. This

budget device was capable of generating multiple pulses with 40 MHz resolution and of

inducing errors with the same properties as the expensive YAG laser that it replaced.

We had also confirmed an earlier observation that at a particular Sweet-Spot on the

DUT’s surface, we could reliably induce instruction skipping behaviour with a laser

pulse synchronised with the third quarter cycle of the device’s instruction clock.

Chapter 4. A New Laser Workstation 151

4.2. Multi-Pulse Proof of Capability

4.2 Multi-Pulse Proof of Capability

10: breq H
11: L: breq LH
12: LL: breq LLH
13: LLL: breq LLLH
14: LLLL: nop
15: nop
16: nop
17: nop
18: ldi r24 ,’0’
19: ret
20: LLLH: nop
21: nop
22: nop
23: ldi r24 ,’1’
24: ret
25: LLH: breq LLHH
26: LLHL: nop
27: nop
28: nop
29: ldi r24 ,’2’
30: ret
31: LLHH: nop
32: nop
33: ldi r24 ,’3’
34: ret
35: LH: breq LHH
36: LHL: breq LHLH
37: LHLL: nop
38: nop
39: nop
40: ldi r24 ,’4’
41: ret
42: LHLH: nop
43: nop
44: ldi r24 ,’5’
45: ret
46: LHH: breq LHHH
47: LHHL: nop
48: nop
49: ldi r24 ,’6’
50: ret
51: LHHH: nop
52: ldi r24 ,’7’
53: ret
54: H: breq HH
55: HL: breq HLH
56: HLL: breq HLLH
57: HLLL: nop
58: nop
59: nop
60: ldi r24 ,’8’
61: ret
62: HLLH: nop
63: nop
64: ldi r24 ,’9’
65: ret
66: HLH: breq HLHH
67: HLHL: nop
68: nop
69: ldi r24 ,’A’
70: ret
71: HLHH: nop
72: ldi r24 ,’B’
73: ret
74: HH: breq HHH
75: HHL: breq HHLH
76: HHLL: nop
77: nop
78: ldi r24 ,’C’
79: ret
80: HHLH: nop
81: ldi r24 ,’D’
82: ret
83: HHH: breq HHHH
84: HHHL: nop
85: ldi r24 ,’E’
86: ret
87: HHHH: ldi r24 ,’F’
88: ret

Figure 4-12: Branch Tests

The primary driver for building the new laser was to

be able to generate rapid consecutive laser pulses. Such

quickfire pulses would enable us to test the predictions

of earlier work. Firstly, it would test the hypothesis that

multiple suitably timed laser pulses would induce multi-

ple repeatable error effects and that each induced error

was independent of preceding errors. Secondly, it would

dispel the myth that attacks requiring multiple closely

timed laser pulses would be prohibitively expensive to

implement.

To do this, we devised the short code fragment shown

in Figure 4-12. It consists of a sequence of conditional

branch instructions with each decision path leading to

another similar conditional branch. After four such

branches, the program flow terminated at one of sixteen

possible end states, each identified by loading a register

with a unique value.

Figure 4-13 shows the possible paths through the

code. The tree assumes an error results in an instruction

skip rather than a branch to an indeterminate location.

This behaviour had been observed in the previous char-

acterisation experiments.

When a branch is taken, it takes two machine cy-

cles on this 𝜇𝐶. Therefore an unperturbed path down

the tree’s branches should take 8 machine cycles, giving

32 discrete opportunities to inject errors. Branches not

taken, and most other instructions take a single machine

cycle to execute. Thus erroneous execution could reach

152 Chapter 4. A New Laser Workstation

4.2. Multi-Pulse Proof of Capability

breq H

H

breq HH

HH

breq HHH

HHH

breq HHHH HHHH

return ’F’

Execute

HHHL

return ’E’
Sk
ipE

xecute

HHL

breq HHLH HHLH

return ’D’

Execute

HHLL

return ’C’
Sk
ip

Sk
ip

E
x
ecu

te

HL

breq HLH

HLH

breq HLHH HLHH

return ’B’

Execute

HLHL

return ’A’
Sk
ipE

xecute

HLL

breq HLLH HLLH

return ’9’

Execute

HLLL:

return ’8’
Sk
ip

Sk
ip

S
k
ip

E
x
ecu

te

L

breq LH

LH

breq LHH

LHH

breq LHHH LHHH

return ’7’

Execute

LHHL

return ’6’
Sk
ipE

xecute

LHL

breq LHLH LHLH

return ’5’

Execute

LHLL

return ’4’
Sk
ip

Sk
ip

E
x
ecu

te

LL

breq LLH

LLH

breq LLHH LLHH

return ’3’

Execute

LLHL

return ’2’
Sk
ipE

xecute

LLL

breq LLLH LLLH

return ’1’

Execute

LLLL

return ’0’
Sk
ip

Sk
ip

S
k
ip

S
k
ip

Figure 4-13: Branch Test Execution Paths

a termination node in just 4 cycles. To avoid the possibility of firing the laser at the

termination node’s code and potentially confusing the identifying response, we added

Chapter 4. A New Laser Workstation 153

4.2. Multi-Pulse Proof of Capability

Nop instruction to ensure all paths through the tree took 8 cycles to reach the end

state. The laser could then be fired at all 32 relevant time intervals, as shown by the

’Pulse clk’ signal in Figure 4-14, without risk of hitting the code that reported the

outcome.

Figure 4-14 also shows the execution paths and the pulse timings required to reach

the 16 possible outcomes. It also demonstrates the significance of the Nop instruction

and their role to delay the execution of Ret instruction until after the moment the

final pulse may be delivered. The presumption here is that a Nop, whether skipped

or not, will be immediately followed by the same instruction. Therefore we do not

need to consider the effect of skipped Nops; i.e. the instruction pointer or instruction

timing are unaffected by skipping. In this diagram, instructions arrived at as a result

of a skip are shaded blue. The red lines link skippable instructions with the resulting

’blue’ out-of-sequence instruction. The code identifying termination nodes is orange

and was not attacked.

In each test run, the zero flag was set to state High, and under normal circum-

stances, the execution path would take each branch it encountered, ultimately ending

up at node HHHH, and return the value ’F’.

For the first real test of the equipment, we generated all patterns of 1− 4 pulses

within the 32 quarter cycle window and repeated it at 9 target sites, on and surround-

ing in the previously identified Sweet-Spot. Each test generated 41 thousand response

samples and took three hours to complete. The device operated continuously for a

day. We found examples of all 16 possible outcomes within the results, but the sheer

volume of result data proved difficult to interpret. By far, the vast majority of pulses

had no effect. An error induced by a single pulse would be repeated for all ineffective

permutations of the other 3 pulses.

154 Chapter 4. A New Laser Workstation

4.2. Multi-Pulse Proof of Capability

F
ig
u
re

4-
14
:
B
ra
n
ch

T
es
t
E
x
ec
u
ti
on

P
at
h
s

Chapter 4. A New Laser Workstation 155

4.2. Multi-Pulse Proof of Capability

The test time rises geometrically with the number of execution cycles being exam-

ined. For a code fragment offering 𝑛 intervals in which to inject pulses, the number

of samples to collect when using up to 𝑋 pulses is given by,

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑋∑︁
𝑝=1

(︂
𝑛

𝑝

)︂
where

(︂
𝑛

𝑝

)︂
=

𝑛!

𝑝!(𝑛− 𝑝)!
(4.1)

Equation (4.1) demonstrates an important feature, the time to perform exhaustive

searches soon becomes prohibitively long, the volume of results becomes large and

difficult to interpret. Table 4.1 shows figures based on the above experiment. The

apparatus executed the experiment 4 times per second, and each run offered 𝑛 = 32

pulse injection opportunities.

Table 4.1: Test Pulses, Permutations and Time.
(𝑛 = 32, 𝑎𝑡 4𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑠−1)

Pulses (𝑋) Samples Time

1 32 8.0 Seconds
2 528 2.2 Minutes
3 5,488 22.9
4 41,448 2.9 Hours
5 242,824 16.9
6 1,149,016 3.3 Days
7 4,514,872 13.1
8 15,033,172 43.5

Armed with the knowledge that, at the Sweet-Spot, the skipping effect was asso-

ciated with pulses coinciding with the third quarter cycle, we repeated the test. This

pruning reduced the time to test a single site from 2.9 hours to 40 seconds, enabling

us to repeat each test multiple times to compare the consistency of the outcomes.

Once again, we found examples of all 16 outcomes within the collected data.

156 Chapter 4. A New Laser Workstation

4.2. Multi-Pulse Proof of Capability

Table 4.2: Jump Matrix Termination States

Outcome Pulsesa Patternsb Samplesc

0 4 1 4
1 3 5 20
2 3 5 20
3 2 11 44
4 3 5 20
5 2 11 44
6 2 11 44
7 1 15 60
8 3 5 20
9 2 11 44
A 2 11 44
B 1 15 60
C 2 11 44
D 1 15 60
E 1 15 60
F 0 15 60
corrupt 0 0

Total 162 648
a Minimum number of errors required to reach this out-
come. b Unique pulse patterns that yield this outcome.
c Samples collected after repeating each pulse pattern 4
times.

Table 4.2 shows the results for the test at the sweet spot. As expected, where

pulses coincided with the fetch cycle for a branch instruction, we saw branch skipping,

exactly as predicted. Where pulses coincided with the second CPU-cycle of a branch

instruction or with one of the Nops, we saw no effect. For example, the outcome ’0’

was reached consistently with the pulse timings of 3, 7, 11 & 15. We saw five paths

reached outcome ’1’, requiring 3 well-timed errors — 1 trace of 3 pulses got there as

well as 4 traces of 4 pulses, where 3 of these pulses were well-timed, while the fourth

had no effect.

Chapter 4. A New Laser Workstation 157

4.3. Creeping Barrage - Blind Attack on Known Code

4.3 Creeping Barrage - Blind Attack on Known Code

We have seen that exhaustive searches for pulse patterns that induce errors are prac-

tical for small code fragments. However, in more extensive programs, it is not always

possible to identify a short enough region of interest that could be searched within a

reasonable time frame.

If a pulse pattern could be identified that would compromise a small defensive

code structure, then could that pattern be applied to a larger code sample where the

time at which the defence is applied is unknown? Furthermore, particularly relevant

for the instruction skipping effect; if we knew the source code, could we predict the

appropriate pulse pattern and test this pattern over a wider time window? The same

way a single pulse attack can search for a weakness in a time frame proportional to

the search window size, a multi-pulse pattern could be used with no time penalties.

We chose to attack an implementation of Speck [28]. We used an AVR version

freely available on Github [10]. This implementation had previously been studied by

Breier [39] for DFA via static code analysis and simulation of the effects of errors.

The code implementing the encryption rounds is shown in Figure 4-15. We looked

at the code and quickly identified an obvious weakness; the loop counter and loop

termination test; seen in lines 36 and 37. Since this would be vulnerable to a single

pulse attack, we duplicated the test; lines 40 and 41. This style of double testing is

typical of defended code. The test to terminate and deliver a result is repeated and,

if the conclusions differ, a Trap() function is entered from which there is no return.

Knowing the code, and in particular the defence, we could predict that skipping

the instructions at line 38 and line 41 would result in a premature exit from the loop.

These instructions execute 2 cycles apart if the first of them is skipped. Thus, we

would expect to bypass the test and the defence by presenting a pattern of two pulses,

8 quarter cycles apart, to the DUT at all timing intervals where we suspect the round

body is being executed. If failure could be triggered at the earliest opportunity, the

resulting data would be the input data after round one using 𝑆𝑢𝑏𝑘𝑒𝑦0.

This code was invoked from a simple ’C’ program, part of which is shown in Figure

158 Chapter 4. A New Laser Workstation

4.3. Creeping Barrage - Blind Attack on Known Code

1 loop: // Enter with Z = @Subkey [0], r0..7 = Plaintext
2 ld r12 , z+ // r12 -15 = Sub Key[round]
3 ld r13 , z+
4 ld r14 , z+
5 ld r15 , z+
6 add r5, r0 // Xh += Ror8(Xl)
7 adc r6, r1
8 adc r7, r2
9 adc r4, r3
10 eor r12 , r5 // Subkey ^= Xh
11 eor r13 , r6
12 eor r14 , r7
13 eor r15 , r4
14 lsl r0 // Xl = rol3(Xl)
15 rol r1
16 rol r2
17 rol r3
18 adc r0, zero
19 lsl r0
20 rol r1
21 rol r2
22 rol r3
23 adc r0, zero
24 lsl r0
25 rol r1
26 rol r2
27 rol r3
28 adc r0, zero
29 eor r0, r12 // Xl ^= Subkey
30 eor r1, r13
31 eor r2, r14
32 eor r3, r15
33 movw r4 , r12 // Xh = Subkey
34 movw r6 , r14
35
36 inc currentRound // next round
37 cpi currentRound , 26 //
38 brne loop //
39
40 cpi currentRound , 26 // basic defence against
41 brne trap // premature exit
42
43 exit: // Result CipherText = r0-r7
44 ...
45 ret
46
47 trap: // execution black -hole.
48 ...

Figure 4-15: Speck Encryption

4-16. For the tests, we used a GO signal (line 15) generated by the DUT to indicate

when the encryption rounds were being executed. Clearing the GO signal (line 17)

simplified the process of working out how long the round processing took. This control

could have been provided by an oscilloscope tuned to trigger on identifiable power

trace landmarks or even just the DUT’s I/O command exchange. The plain text and

key data are the reference samples provided by Beaulieu [28] for Speck 64/96.

The twin pulse pattern was delivered at each of the third quarter cycle opportu-

nities, i.e. starting at quarter cycle 3, 7, 11, 15, Etc. The results of this experiment

Chapter 4. A New Laser Workstation 159

4.3. Creeping Barrage - Blind Attack on Known Code

1 // Test vectors Speck 64/96.
2 unsigned char initialKeys [12] = { 0x13 , 0x12 , 0x11 , 0x10 ,
3 0x0B , 0x0A , 0x09 , 0x08 ,
4 0x03 , 0x02 , 0x01 , 0x00 };
5
6 unsigned char plainText [8] = { 0x74 , 0x61 , 0x46 , 0x20 ,
7 0x73 , 0x6E , 0x61 , 0x65 };
8
9 unsigned char cipherText [8]; // 0x9F , 0x79 , 0x52 , 0xEC ,
10 // 0x41 , 0x75 , 0x94 , 0x6C
11
12 ...
13 speckKeySetup (); // Generate subKey array
14
15 PORTA |= GO; // Signal Encrypt Starting
16 speckEncrypt (); // Active
17 PORTA &= ~GO; // Ended
18 ...

Figure 4-16: Speck Test Control

are summarised in Table 4.3.

Normal unperturbed execution took 111µs and generated the expected result.

The vast majority of tests took precisely this time and generated erroneous results.

This outcome was expected because all the instructions in the loop body execute in

a single cycle and perform arithmetic that affects the final result. The laser pulses in

most experiments would almost certainly cause one or more of these instructions to

be skipped.

The shortest execution time corresponds to a pulse pair on quarter cycles 259

and 259 + 8; this result also matches the expected cypher output after one round.

Likewise, the second and third shortest execution times correspond to the execution

and premature result delivery of two and three rounds, respectively.

There were multiple examples and a 116µs execution time. This timing corre-

Table 4.3: Speck Round Attack

Time First pulse
(µs) cycle No. Result

Unperturbed execution 111 none 9f 79 52 ec 41 75 94 6c

Most common 111 various many different
Shortest 9 259 90 e0 c3 ab 0b 93 c8 80

Second shortest 13 423 a4 39 aa 4a f8 a7 ee 4a

Third shortest 17 587 f8 94 2a a7 3d ab 58 f0

Longest 116 various many different

160 Chapter 4. A New Laser Workstation

4.4. Summary

sponds to an additional round of the algorithm and can be attributed to skipping the

loop counter increment instruction.

The choice of the Speck cypher, and a short-key, small-data variant at that, was

just for convenience to prove the viability of the attack mechanism. In practice, any

loop-based algorithm would be similarly vulnerable. The key feature was the use of

knowledge of the implemented defence to prescribe a multiple pulse pattern which

could then be tested against the algorithm. The time required to perform the test was

linear with respect to the search window size, whereas, in the previous experiments,

the search time increased geometrically with the window size.

4.4 Summary

In this phase of the study, we have demonstrated that a functionally powerful laser

workstation can be constructed for just a few hundred pounds, and this can be

achieved without needing access to anything more than Do-It-Yourself tools. There-

fore, a laser workstation is within the budget of any suitably motivated hacker, and

the capital cost of the equipment is not a defence in its own right. With a low cost

of attack, even low-value targets become worth attacking.

The laser diode can be switched on and off quickly enough to target consecutive

instructions, and the effects appear to be independent; i.e. the effect on an instruction

appears to be the same whether targeted individually or shortly after a previously

targeted instruction. We demonstrated the ability to navigate a path through a

multiply branching chain of instructions and guide execution to a chosen termination

state. This capability was impossible with the expensive and powerful YAG laser

previously used, and this observation had presumably led others to speculate that

multiple pulse attacks would be both difficult and infeasibly expensive to implement.

This low-cost solution proves that it is inexpensive and straightforward and appears

to be the first published demonstration of this capability, Kelly [95].

The ability to selectively execute individual instructions means that a template

of pulses can be defined to manipulate an execution outcome. This is particularly

Chapter 4. A New Laser Workstation 161

4.4. Summary

powerful when an attacker knows the code being attacked. In such a scenario, the

definition of a multi-pulse template is straightforward, and templates can be tested

at all relevant time intervals far more quickly than exhaustive searching of pulse

combinations.

As far as pulse timings and repetition rate are concerned, our laser workstation

exceeds the capabilities of the equipment it was designed to replace and does so for

a fraction of the cost. Though we chose to attack a single 𝜇𝐶 with visible light from

the topside, more recent results from Guillen [80] indicate that similar behaviour can

be expected on differing architectures.

The frequently used defensive strategy of repeating tests leads to frequent dupli-

cation of simple code structures. In practice, this is often achieved by placing this

repetition in macros to ensure consistent application of defences throughout an ap-

plication. Consequently, there is frequent and predictable use of identical defensive

structures. The ease with which multi-pulse templates can be used means that some

defended code is almost as vulnerable as its undefended equivalent.

Besides the offensive capability of this workstation, it also has a defensive role.

Code developers can use it to characterise and test a variety of defences and identify

appropriate defensive techniques for their chosen target 𝜇𝐶 and application. We

explore this defence testing capability in the following section of this report, Chapter

5.

The primary weakness exposed here is the ability to skip instructions, resulting

in inaccurate arithmetic or out of sequence execution of code. Forearmed with this

knowledge, it should be possible to write code that is designed to fail-safe. The

practicalities of such an approach are pursued here later in Chapter 6.

162 Chapter 4. A New Laser Workstation

Chapter 5

Testing Security Defences

Contents

5.1 Practicalities . 166

5.1.1 Defensive Coding . 166

5.1.2 Fault Model . 167

5.1.3 Testing Defences . 167

5.2 Defences . 169

5.2.1 Unprotected . 171

5.2.2 Double Test . 171

5.2.3 Retest at Destination . 172

5.2.4 Inverse Test . 173

5.2.5 Double Data . 174

5.2.6 Data Inverse . 174

5.2.7 Checksum . 175

5.2.8 Redundant Representation 176

5.2.9 Repeat Calculation . 176

5.2.10 Modified Compensated . 177

163

5.2.11 Alternative Algorithm . 177

5.2.12 Inverse Calculation . 178

5.2.13 Jump Id . 179

5.2.14 Waymark - Late Test . 179

5.2.15 Waymark - On the Fly . 180

5.3 Results and Analysis . 181

5.3.1 Results . 183

5.3.2 Normal Termination . 186

5.3.3 Trapping . 186

5.3.4 Crashing . 187

5.3.5 Out-of-Order Processing 188

5.4 Application . 188

5.5 Summary . 190

We use the new laser workstation to reevaluate work that has pre-

viously been performed, by others, in simulation. In doing so, we

demonstrate that physical attacks provide a practical approach to

testing the efficacy of defensive code structures. The exercise also

demonstrates that subtle differences in source code can lead to rad-

ically different outcomes for defence efficacy. The results and tech-

niques described here are valuable to both attackers and defenders of

secure 𝜇𝐶 systems.

164 Chapter 5. Testing Security Defences

One of the initial objectives for this study was to physically evaluate defences that

hitherto had been based on speculation or tested through simulation. The suspicion

was that simulations overlook many of the real-world practicalities of implementing

attacks. The typical approach taken in earlier work on categorising the efficacy of

various defences, typified by Theißing [173], was based on random errors injected into

a large number of simulation runs. In Chapter 3 we have shown that error injection is

far from random and, more importantly, that repeatable errors can be injected. This

observation invalidates the Monte-Carlo simulation approach used by others when

testing defences. These reliable and repeatable properties opened up the realistic

possibility of exhaustive probing of a defence at a previously identified vulnerable site

using multiple carefully timed error injection pulses.

The weaknesses of simulation are becoming apparent. Moro [118] produced a for-

mal verification of combinations of instructions showing that immunity from single

skipped instructions was both possible and practical. However, for their chosen CPU

architecture, the single skip fault model was flawed [148, 187]. Others, such as Lau-

rent [106] and Proy [139], argue that a deep understanding of the device’s Instruction

Set Architecture (ISA) is required here. Such detailed knowledge will enable a simu-

lation to predict the effect of a faulty instruction based on the details of the pipeline

and instruction interpretation hardware. This approach is interesting and relevant

for micro-surgical error injection, in much the same way that, Skorobogatov [166],

Courbon [55] and others demonstrate bit-level static memory editing. This micro-

surgical error injection is, to a large extent, irrelevant when large laser spots induce

multiple examples of such errors. The resulting error effect will become dominated

by the DUT’s circuit layout, a feature that will be beyond all but the most detailed

simulations to predict.

While we can be confident about getting multiple, repeatable errors, it is still

possible that the individual error effects may differ subtly. For example, the dominant

effect we have witnessed is instruction skipping. In reality, the 𝜇𝐶 is still executing

an instruction, and that unknown instruction will probably affect some aspect of the

DUT’s state. In a simple simulation, we would probably model this behaviour by

Chapter 5. Testing Security Defences 165

5.1. Practicalities

assuming the unknown instruction is a Nop, while in reality, it remains unknown.

From a practical perspective, for software developers wanting to test the resilience

of their defences or for hackers tinkering with vulnerable consumer electronics, the

most straightforward approach is to test the target device physically. An academic

archaeologist would approach a dig with a trowel and a brush and ultimately under-

stand the whole context of their site. In contrast, a treasure hunter will go in with a

shovel. It is the treasure hunters whom we need to defend against in practice.

This phase of the study used the new laser station to evaluate a range of defences.

Such an evaluation would be a practical first step when embarking upon an application

development. Defences have a cost in both performance and code volume. Therefore,

identifying the most effective defences will minimise these costs.

5.1 Practicalities

The 𝜇𝐶s deployed in the consumer electronics world are usually readily available to

developers. Ready availability means a would-be attacker has almost unlimited access

to samples for testing code and locating appropriately sensitive regions on which to

focus the laser. Locating such a Sweet-Spot is the first step in executing an attack.

It is unlikely that most attackers would have in-depth knowledge of the DUT’s

internal layout or understanding of the physical nature of the induced faults. Whilst

these details are interesting, Proy [139], such knowledge is not required when consider-

ing the consequences of an attack, Schellenberg [154], and these attacks are therefore

accessible to a wide range of attackers, including amateurs and those with limited

resources.

5.1.1 Defensive Coding

Programmers need to add redundant operations to their code in anticipation of er-

rors to detect and respond to their effects. For example, when considering the con-

sequences of memory corruption, multiple defensive strategies exist. Simple bound

checking can ensure the data is within a set of expected values. Alternatively, cor-

166 Chapter 5. Testing Security Defences

5.1. Practicalities

ruption can be detected by maintaining duplicate copies of data and confirming they

match. There are many defences to many potential errors, and each defence comes

at a cost, additional code, degraded performance and extended development times.

The choice of defence will ultimately be a compromise, considering these factors; the

likelihood of the specific error being ineducable and the impact on the application if

the error goes unchecked.

Therefore, defensive coding can be seen as a self-performed software sanity check

to detect erroneous behaviour and respond appropriately to prevent errors from prop-

agating.

5.1.2 Fault Model

A Fault Model describes the likely error behaviour of a device under attack. Differ-

ent devices will have different models, and those models will vary per deployment,

depending on the opportunities for attack and the commercial value of any assets

those devices protect. The range of errors a 𝜇𝐶 may exhibit depends on the physical

properties of the device. A remote device will not be physically attacked, for exam-

ple, but could be probed with malformed, badly sequenced or badly timed command

requests. On the other hand, electrical consumer goods can be subjected to the most

intrusive physical attacks, unpoliced by their creators.

5.1.3 Testing Defences

Historically, programmers have defined fault models based on knowledge of the target

device, experience, and to a large degree, intuition. A set of appropriate defences is

then prescribed and implemented throughout the application during development.

The cost of the defences is easily measurable, but its appropriateness is difficult to

test because the defensive response can only be triggered by an error. If this error

behaviour is simulated, the simulation’s definition will most likely be influenced by

the same factors and logic that prescribed the defences. Where multiple defence

mechanisms exist for a particular error category, the relative efficacy of each of them

Chapter 5. Testing Security Defences 167

5.1. Practicalities

𝑛𝑜𝑟𝑚𝑎𝑙

𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑

𝑡𝑟𝑎𝑝𝑝𝑒𝑑

𝑐𝑟𝑎𝑠ℎ𝑒𝑑

sk
ip

crash

skip

trap

crash

skip

cr
as
h

skip

tr
ap

Figure 5-1: Execution States

may also be difficult to observe in simulation*. Anything but the most detailed

hardware simulation will be testing the features for which defences have been defined.

The new laser workstation permitted us to physically test various defensive struc-

tures in the device for which the program is being developed. To do this, we defined

a minimalistic fault model. We considered an executing program to be in one of four

states as shown in Figure 5-1.

1. normal : Execution as expected. Unaffected by error injection.

2. corrupted : Execution continues within our program but some instructions may

have been skipped and some data values may be incorrect.

3. trapped : The executing code has recognised it was in the corrupted state and

has deliberately entered a trap. Here the program would be expected to erase,

or otherwise protect, valuable assets before freezing execution.

*". . . there are known knowns; there are things we know we know. We also know there are known
unknowns; that is to say we know there are some things we do not know. But there are also unknown
unknowns — the ones we don’t know we don’t know." —Donald Rumsfeld, United States Secretary
of Defense, 12/02/2002 :

168 Chapter 5. Testing Security Defences

5.2. Defences

4. crashed : The executing code is out of our program’s control.

Transitions between the states occur as a consequence of one of three events.

1. crash : may occur as a consequence of a single catastrophic error such as a

skipped ret or as a result of continued execution with corrupt data for example

ret from a function when the stack or frame pointers were previously corrupted.

2. skip: occurs when an instruction fails to execute correctly but the program

continues. There is a high likelihood that some aspect of the program’s state

will be corrupt. It is also possible that a fetched data value had been corrupted

as noted by Proy [139]. Here we treat errors such as failure to execute an add

or, adding the wrong value, as equivalent outcomes.

3. trap: the executing program detects its own corrupted state. This transition

is driven by the defensive code, and the efficacy and efficiency of this detection

process is the primary driver behind this study.

Ideally programs will terminate in either the normal or the trapped states. The

risks associated with termination in the corrupted state are well-documented [32, 37].

Attempts to cause a crash during data delivery is a long-established technique aimed

at obtaining snapshots of a DUT’s memory contents. As such, termination in either

corrupted or crashed states is undesirable.

5.2 Defences

Our catalogue of defences was compiled from examples published in studies such as

Theißing [173], Barenghi [23], Malkin [109]; manufacturer prescribed defences from

Infineon [87], Samsung [152] and InsideSecure [89]; Payment scheme security rec-

ommendations from MasterCard [111], Visa [182]; and a back catalogue of secure

applications for EMV, e-Passport and JavaCard operating systems developed by Dig-

ital Locksmiths Ltd. over many years that have all been subjected to independent

security review. We identified 14 basic defences from these sources, each representing

a distinct defence strategy.

Chapter 5. Testing Security Defences 169

5.2. Defences

The exhaustive testing of all pulse patterns is prohibitively time-consuming. Thus,

some compromises needed to be made. As noted in Section 4.2, for multiple-pulse

attacks, the test time rises geometrically with the number of execution cycles to be

examined. Because of this, the test code has been stripped down to the bare minimum.

This pruning exercise reduced the predicted test execution time from many months

to a few days for some tests.

It has been observed that defensive code is frequently employed to protect small,

focused operations such as double testing within a comparison. Thus these short

code samples remain representative of real-world defences. It is also worth noting that

many of the defences become more effective when used in bigger, more realistic modes.

For example, a checksum over a small data block hardly differs from a duplicate data

value. In contrast, when used over a larger block, it is likely to be vulnerable to a

miscalculation step. An attack is then signalled even when the data it protects is

uncorrupted.

Careful attention was paid to code output from the compiler. It was noted that,

even with optimisations disabled, code was frequently in-lined and repeated, appar-

ently redundant code was often omitted. These compiler-generated optimisations can

totally remove defences.

The code was also structured by placing SecretOp code after the defended code

that selectively accessed it. This arrangement was intended to expose the vulnerabil-

ity of skipping the final ret operation and falling through into the protected code. It

also engineered the scenario required for testing out-of-sequence execution detection.

The complete set of defences examined is described below. Each code fragment

was invoked from a test routine that provided a synchronisation signal to the laser

timer. This signal ensured the test timing was accurate and consistent for all execution

runs. The same routine disabled the laser timer as soon as the test code returned.

Disabling the timer reduced the risk of inducing errors in the result delivery code if

the sample returned sooner than expected.

170 Chapter 5. Testing Security Defences

5.2. Defences

5.2.1 Unprotected

1 // Unprotected
2
3 var Flag = FALSE
4
5 func test()
6
7 ...
8 if (Flag == TRUE)
9 return SecretOp ()
10 else
11 return EXPECTED
12 endfunc
13
14 func SecretOp ()
15
16 ...
17 return SECRET
18 endfunc

Figure 5-2: Unprotected

This sample acts as the reference behaviour for the other test samples. The basic

logic is that a secret value is returned if a flag variable in RAM has a specific value.

Under normal circumstances, the secret value should not be returned. We would

expect the secret value to be erroneously returned if either the pre-call test of Flag

was corrupted or if the function return failed and execution was to ’fall through’ into

the SecretOp code.

5.2.2 Double Test

1 // Double Test
2
3 var Flag = FALSE
4
5 ...
6 if (Flag)
7 if (Flag)
8 return SecretOp ()
9 else
10 TRAPPED
11 else
12 return EXPECTED
13
14
15 func SecretOp ()
16 ...
17 return SECRET
18 endfunc

Figure 5-3: Double Test

Chapter 5. Testing Security Defences 171

5.2. Defences

Here the test is repeated. This defensive construct is frequently used in the EMV

and JavaCard sample code that we reviewed. The technique is recommended in

[111] with caveats. The rationale is that if a test is skipped, the repeat should

detect the inconsistency and invoke the trap mechanism. Under error-free conditions,

the expectation is that the program should return the EXPECTED value and that

returning SECRET would indicate an error had been induced, and it had been

undetected by the defence. The cost of this defence is trivial; it is one extra fetch and

one extra conditional branch operation per decision point.

Despite its apparent simplicity, this defence mechanism test requires meticulous

coding. In ’C’, for example, using the manufacturer supplied GNU Compiler Col-

lection (GCC) toolchain, the second test is recognised as redundant and eliminated.

This code elimination can only be identified by closely examining the compiler’s out-

put. Reducing the optimisation level of the compiler retains the prescribed double

test; however, the Flag variable is copied to register, and that register’s contents are

then compared twice. The solution lies in marking the variable as volatile, ensuring

the variable is re-fetched from memory for the second test.

5.2.3 Retest at Destination

1 // Retest at Destination
2
3 var Flag = FALSE
4
5 ...
6 if (Flag)
7 return SecretOp ()
8 else
9 return EXPECTED
10
11
12 func SecretOp ()
13 if (Flag)
14 ...
15 return SECRET
16 else
17 TRAPPED
18 endfunc

Figure 5-4: Retest at Destination

This is a slightly more sophisticated variant of Double Test. Here the second test

is repeated within the called function. As above, it tests a property twice. Functions

172 Chapter 5. Testing Security Defences

5.2. Defences

that involve different numbers of parameters will incur differing timing overheads

between the first and second test of the state variable Flag. When this technique

is used to protect multiple functions, it will add a timing variability not seen in

Double Test. This variation also has the advantage of being able to detect out-of-

order invocation of the SecretOp code. The execution time cost of this defence is

comparable toDouble Test and, depending on how many times the function is invoked,

should lead to a smaller memory footprint.

5.2.4 Inverse Test

1 // Inverse Test
2
3 var Flag = FALSE
4
5 ...
6 if (Flag)
7 if (!Flag)
8 TRAPPED
9 else
10 return SecretOp ()
11 else
12 return EXPECTED
13
14
15 func SecretOp ()
16 ...
17 return SECRET
18 endfunc

Figure 5-5: Inverse Test

The test is repeated in its negative form. Evaluators have recommended this as

an improvement to the Double Test mechanism. The intention is to ensure that one

branch is taken and another not taken to reach the protected code. Thus attacks

that force conditional branches to either be taken or fall-through should be resisted

when the valid path requires an example of each mode of behaviour. In practice, the

resulting assembler output does not reflect the ’C’ source code’s intention, and we

had to handcraft assembler code for this test. The GCC compiler generated code

identical to Double Test. This makes the strategy impractical for large projects with

this toolchain unless the compiler’s behaviour can be modified. The cost of this

defence is equivalent to Double Test.

Chapter 5. Testing Security Defences 173

5.2. Defences

5.2.5 Double Data

1 // Double Data
2
3 var FlagA = FALSE
4 var FlagB = FALSE
5
6 ...
7 if (! FlagA && !FlagB)
8 return EXPECTED
9 elseif (FlagA && FlagB)
10 return SecretOp ()
11 else
12 TRAPPED

Figure 5-6: Double Data

This mechanism duplicates critical data variables in memory. The simple ratio-

nale behind this mechanism is that if a variable becomes corrupted in memory or

while being fetched, it is unlikely that its shadow copy will be similarly corrupt. A

variable’s value is only trusted when both copies match, and if the two instances dif-

fer, there must be a problem. The runtime cost of this defence is equivalent to Double

Test thus, it has minimal impact on performance. The 100% duplication of data,

however, is likely to prove impractical in resource-constrained environments typical

of 𝜇𝐶 deployments.

5.2.6 Data Inverse

1 // Inverse data
2
3 var FlagA = FALSE
4 var InvFlag = ~FALSE
5
6 ...
7 if (Flag != ~InvFlag)
8 TRAPPED
9 elseif (Flag)
10 return SecretOp ()
11 else
12 return EXPECTED

Figure 5-7: Data Inverse

This is another widely used defence and a theoretical improvement on the Double

Data mechanism. Here the shadow copy is the logical inverse of the primary data.

The state variables are only trusted when the two copies are complementary. The

174 Chapter 5. Testing Security Defences

5.2. Defences

presumption is that if both copies of a variable can be corrupted in memory or during a

fetch, it is less likely that the two corrupted instances will be mutually complementary.

The cost of this defence is the same as that for the Double Data defence. It is expensive

in terms of storage if widely used but comparable to the preceding defences in terms

of code volume.

5.2.7 Checksum

1 // Checksum over data
2
3 var FirstVar
4 ...
5 var Flag = FALSE
6 ...
7 var LastVar
8 var CheckSum
9
10 ...
11 if (CalculateCrc(FirstVar ... LastVar) != CheckSum)
12 TRAPPED
13
14 ...
15 if (Flag)
16 return SecretOp ()
17 else
18 return EXPECTED

Figure 5-8: Checksum Data

The 100% redundancy of the Double Data, and Data Inverse defences can be

avoided by maintaining a checksum over a set of variables at the expense of more

computation. Here a checksum is generated over a set of variables. This checksum is

then verified before the variables are used. The checksum also needs to be recalculated

and set whenever the variables are updated. The runtime cost of this defence is very

high as verifying and calculating checksums over blocks of data is computationally

expensive. However, it has a low demand for resources when used to protect large

data blocks. This defence has been seen defending large blocks of critical data as

a one-time operation before a complex algorithm proceeds. For example, to verify

cryptographic keys or to verify the whole machine state between Application Protocol

Data Unit (APDU) commands in smart-card applications.

Chapter 5. Testing Security Defences 175

5.2. Defences

5.2.8 Redundant Representation

1 // Redundant Representation
2
3 #define SECURE_TRUE 0xA5
4 #define SECURE_FALSE 0x50
5
6 var Flag = SEURE_FALSE
7
8 ...
9 if (Flag == SECURE_TRUE)
10 return SecretOp ()
11 elseif (Flag == SECURE_FALSE)
12 return EXPECTED
13 else
14 TRAPPED

Figure 5-9: Redundant Representation

This technique aims to detect corrupted data by inserting redundant data bits

(sometimes referred to as sentinels) within a value’s representation. If the sentential

bits do not match the expected pattern, then the value as a whole must have been

corrupted. The technique can encode multiple flags into a single word but is most

frequently deployed to represent a single flag value where the sentinels and value can

be tested in a single operation. The cost of this defence is very low. It requires very

little storage as sentinels can be encoded within the redundant bits of a variable’s

storage word. Similarly, the testing of sentinel values can be performed in parallel

with the associated data, or in the worst case, after logical masking and comparison

operations.

5.2.9 Repeat Calculation

1 // Repeated Calculation
2
3 var nTmp1 = SecretOp ()
4 var nTmp2 = SecretOp ()
5
6 ...
7 nTmp1 = Calculation ()
8 nTmp2 = Calculation ()
9
10 if (nTmp1 != nTmp2)
11 TRAPPED
12 else
13 return nTmp2;

Figure 5-10: Repeat Calculation

176 Chapter 5. Testing Security Defences

5.2. Defences

Errors in computation can be detected by performing an operation twice and con-

firming that both calculations yield the same result. The technique is computationally

inefficient but may be appropriate when invoking hardware-assisted calculations us-

ing peripherals such as co-processors. Repetition has its own drawbacks, and Inverse

Calculation may be more appropriate.

5.2.10 Modified Compensated

1 // Modified & Compensated
2
3 ...
4 Tmp1 = Calculation(Rnd1)
5 Tmp2 = Calculation(Rnd2)
6
7 Result = Clear(Tmp1 , Rnd1)
8 if (Result != Clear(Tmp2 , Rnd2))
9 TRAPPED
10 else
11 return Result

Figure 5-11: Modified Compensated

In this technique, an input parameter affects the result of a calculation in such

a way that the caller can easily compensate for it. This enables the caller to invoke

a function multiple times, yielding different answers while still being able to confirm

the accuracy of the results. If the function is entered accidentally during out-of-order

processing, then the returned value is likely to be modified by an unknown input.

This provides an additional level of defence beyond the ability to check the accuracy

of the calculation. The computational cost of this defence depends on the complexity

of removing the input’s bias from the result.

5.2.11 Alternative Algorithm

This technique aims to overcome the primary weakness inherent in Repeat Calculation.

Namely, the power profile of repeat calculations is likely to be similar and therefore

recognisable, thus enabling an attacker to synchronise attacks on the same moments

in both invocations of a function. Using different algorithms makes it less likely that

an attacker could influence both to yield matching erroneous results. This is a very

Chapter 5. Testing Security Defences 177

5.2. Defences

1 // Alternative Algorithm
2
3 ...
4 Tmp1 = Method1 ()
5 Tmp2 = Method2 ()
6
7 if (Tmp1 != Tmp2)
8 TRAPPED
9 else
10 return Tmp1

Figure 5-12: Alternative Algorithm

costly defence in terms of both code volume and processing time. Performing two

calculations and comparing their results must take more than double the time of a

single execution of the optimal algorithm.

5.2.12 Inverse Calculation

1 // Inverse Calculation
2
3 ...
4 Tmp1 = Method(Input)
5 Tmp2 = InvMethod(Tmp1)
6
7 if (Input != Tmp2)
8 TRAPPED
9 else
10 return Tmp1

Figure 5-13: Inverse Calculation

For some algorithms, the inverse calculation can be significantly quicker than the

normal calculation. In this situation, it is possible to confirm computational accuracy

by ensuring the input data can be recovered and verified from the deliverable result.

The confirmation step also avoids the repetition of the primary computation. A sur-

prising result is that the cost of this defence is not always as high as the Alternative

Algorithm defence. For example, with RSA signature generation, verifying the signa-

ture using the public key is significantly faster than repeating the signing calculation.

Given the high cost of failure, see Boneh [37], this defence is frequently deployed.

178 Chapter 5. Testing Security Defences

5.2. Defences

5.2.13 Jump Id

1 // Jump ID
2
3 Var CallId
4
5 func ProtectedFn ()
6 if (CallId != CALL_F)
7 TRAPPED
8 else
9 ...
10 CallId = RET_F
11 return Result
12 endfunc
13
14 ...
15 CallId = CALL_F;
16 Val = ProtectedFn ()
17 if (CallId != RET_F)
18 TRAPPED
19 else
20 return Val

Figure 5-14: Jump Id

This technique aims to detect out of order execution. Code for function entry

and exit is augmented with additional parameters to demonstrate the caller’s intent

to invoke the function. If the execution path accidentally enters the function, for

example, by skipping a Ret and falling through to adjacent code, then the executing

function can recognise this is not deliberate and enter the trapped state. Similar

behaviour at the function exit enables the caller to confirm the return occurred from

the correct function. This defence is relatively expensive as each defended function’s

invocation, entry, exit & return state must be instrumented with various data set, get

and comparison operations.

5.2.14 Waymark - Late Test

Whenever execution passes a particular point, a waymark variable is updated. The

waymark can later be examined to confirm that all the critical points of the proceeding

execution path were executed. This technique is well suited for code containing loops

and function calls where different fields within the waymark can be manipulated

independently and where the final value is constant and predictable at compile time.

The overhead is minimal, and the test is performed at the end of the processing.

Chapter 5. Testing Security Defences 179

5.2. Defences

1 // Waymark - Late Test
2
3 WayMark = IV
4 ...
5 WayMark += M1
6 ...
7 WayMark += Mx
8 ...
9 if (WayMark != IV + M1 + ... Mx)
10 TRAPPED
11 else
12 return nRetVal

Figure 5-15: Waymark, Late Test

5.2.15 Waymark - On the Fly

1 // Waymark - On the fly
2
3 var nNextWayMark
4
5 func Waymark(n)
6 if (n != nNextWayMark)
7 TRAPPED
8 else
9 nNextWayMark ++
10 endfunc
11
12 ...
13 Waymark (10)
14 ...
15 Waymark (11)
16 ...
17 Waymark (12)
18 return Result

Figure 5-16: Waymark, On the Fly

An alternative waymark mechanism enables the early detection of unexpected or

skipped code. In this variation of the defence, each time a waymark is updated, its

current expected state is simultaneously verified. Frequent inline tests throughout the

whole code body make this mechanism able to detect out-of-order processing, and it

can be used to switch a crashed program to a trapped state. It is marginally slower

than the Waymark Late Test variant but has the advantage of noticing the effects of

skipped code at the earliest possible opportunity.

180 Chapter 5. Testing Security Defences

5.3. Results and Analysis

5.3 Results and Analysis

Each defensive technique tested addresses a particular side effect of fault injection.

These roles are shown in Table 5.1. Most defences address a single issue, although

some have a minor overlap of roles. For example, the Retest in Target technique

could detect accidental invocation of the target function under some circumstances.

� Test & Comparison errors arise as a result of faulty comparisons or failure

to correctly execute a conditional branch operation.

� Data & Arithmetic errors arise as a consequence of many fault effects. In-situ

memory editing, faults during fetch and store operations, or faulty arithmetic

operations, all lead to a corrupt result from a calculation.

� Flow-Control errors arise when program code is executed inappropriately or

when code that should be executed is not executed at all.

The effects of all of these errors can be achieved as the result of skipped instruc-

tions, where the skipped instruction fails to either read the data correctly or fails to

operate on it correctly. For example, skipping a Load instruction has a similar effect

as correctly loading a previously corrupted value, and skipping an Add operation is

equivalent to adding faulty data. This property justifies our focus on the sweet-spot

where instruction skipping is most readily demonstrated.

Each test was designed to return different values depending on the execution state

at the end of the run. Three coded return values identified the different termination

states.

i. An expected value, returned when the program apparently executes faultlessly.

ii. A recognisable alternative value that is another legally returnable result that

would be delivered if state variables protecting it contain appropriate values.

Such behaviour is typical of applications that perform protected actions if, and

only if, earlier actions have been performed, such as password verification.

Chapter 5. Testing Security Defences 181

5.3. Results and Analysis

Table 5.1: Test Roles

Test & Data &

Defence Comparison Arithmetic Flow-Control

Double Test 3 . .

Retest in Target 3 . 3

Inverse Test 3 . .

Double Data . 3 .

Data Inverse . 3 .

Checksum . 3 .

Redundant Representation 3 3 .

Repeat Calculation . 3 .

Modified Compensated . 3 3

Alternative algorithm . 3 .

Inverse Calculation . 3 .

Jump Id . . 3

Waymark - Late Test . . 3

Waymark - On the Fly . . 3

iii. An indicator to signal that a trap had been reached. Traps are entered under

program control when the application detects an anomaly in its own state.

These three values corresponded to the normal, corrupted and trapped states of

our execution state model, Figure 5-1. Unexpected return values were also treated

as examples of corrupted behaviour. Failure to return or an unexpected volume of

returned data were categorised as crashed samples.

The ideal outcome is for a test program to terminate in the normal or trapped

state. The trapped response indicates that the defence worked and prevented the pro-

gram from continuing. In contrast, the normal response suggests that the program

did not suffer any faults or that the faults had no bearing on the outcome. Termi-

nation in the corrupted state is the least desirable outcome. It indicates that the

program is running, but it is potentially making flawed decisions. In some of the ex-

periments, it is equivalent to performing protected operations without performing the

pre-requisite authorisation test. In others, it indicates that code execution may have

182 Chapter 5. Testing Security Defences

5.3. Results and Analysis

been skipped or repeated. crashed programs that go mute are less of a concern but

crashes sometimes return bursts of data, and this is an undesirable and potentially

dangerous outcome.

The laser was focused on a previously identified sweet-spot that reliably caused

the 𝜇𝐶 to misread memory fetches. This gave us a high probability that each laser

pulse would cause some form of error, either an instruction skip or a faulty operand

fetch.

We also chose to attack each code fragment with all combinations of up to four

laser pulses. Three injected errors would be a reasonable expectation for an attack,

one to induce an error and two more to hopefully bypass a defensive step intended to

anticipate and trap the initial error. A fourth pulse was added for good measure in

case the above assumption was flawed. A fifth pulse would make the execution time

of the experiments prohibitively long and could not be considered�.

Initially, each code fragment was executed to determine the execution time of

the algorithm under test. This knowledge was then used to program the laser pulse

injector to subject each fragment to all possible time combinations of 1 . . . 4 laser

pulses within this time window. The actual number of result samples obtained varied

depending on the execution time of the code fragment (See Equation 4.1 and Table

4.1). Each experiment was then repeated 40 times�.

5.3.1 Results

The aggregated results from all of the experiments on the different test samples and

their corresponding terminating states are presented below in Table 5.2.

The Cycles column is determined by the execution time of the code fragment

being investigated. The Samples column indicates the number of unique 1,2,3,&4

pulse combinations tested per experiment. The Termination State columns show

�One test of Four pulses in a 102 cycle frame took seven weeks to execute. Five pulses would tie
the equipment up for over a year.

�The test program was reutilized from earlier experiments, and it repeated each experiment four
times. The laser and microscope stage control program then executed the test program ten times to
collect sufficient samples to demonstrate error repeatability while keeping the overall experimental
time manageable. This resulted in 40 sample results per test site.

Chapter 5. Testing Security Defences 183

5.3. Results and Analysis

Table 5.2: Test Samples

(per run) Termination State (after 40 runs)

Defence Cycles Samples Normal Trapped Corrupt Crashed

Undefended 11 561 3766 0 14209 4465

Double Test 12 793 6296 4524 14519 6381

Retest in Target 22 9108 95423 23631 154962 90304

Inverse Test 11 561 10190 32 6024 6194

Double Data 18 4047 36086 52178 66947 6669

Data Inverse 15 1940 12122 24489 30724 10265

Checksum 33 46937 842127 302284 531388 201681

Redundant Representation 12 793 10887 126 8774 11933

Repeat Calculation 32 41448 329672 700314 345769 282165

Modified Compensated 25 15275 110048 24 102600 398328

Alternative algorithm 31 36456 316146 558530 265387 318177

Inverse Calculation 46 179446 1024362 1530077 822062 3801339

Jump Id 30 31930 224302 594678 304951 153269

Waymark - Late Test 27 20853 191771 403210 163354 75785

Waymark - On the Fly 35 59535 323660 1403506 549331 104903

the total number of experiments terminating in each of the four states. Because

the execution time, and hence the number of experiments, varies per sample, this

presentation is relatively difficult to interpret.

The same data, normalized, is re-presented in Figure 5-17. Each termination state

is shown as a fraction of the number of experiments performed on the code sample.

This visual presentation shows the likelihood of an attack pulse pattern terminating

in each state, making it possible to cross-compare the efficacy of different defences.

Desirable termination states are Normal & Trapped. Crashed is undesirable but

difficult to exploit, while Corrupt is potentially dangerous.

None of the defences is infallible, but this is unsurprising as we have already

demonstrated the selective execution of arbitrarily timed instructions.

In this test environment, it is possible to determine the particular instructions

being executed at the time of a laser strike. From this, it is possible to infer the

184 Chapter 5. Testing Security Defences

5.3. Results and Analysis

0 20 40 60 80 100

Undefended. pulse × 1
× 2
× 3
× 4

Double Test 1
2
3
4

Retest in Target 1
2
3
4

Inverse Test 1
2
3
4

Double Data 1
2
3
4

Data Inverse 1
2
3
4

Checksum 1
2
3
4

Redundant Representation 1
2
3
4

Repeat Calculation 1
2
3
4

Modified Compensated 1
2
3
4

Alternative algorithm 1
2
3
4

Inverse Calculation 1
2
3
4

Jump Id 1
2
3
4

Waymark - Late Test 1
2
3
4

Waymark - On the Fly 1
2
3
4

Normal Trapped Corrupt Crashed

Figure 5-17: Termination States

Chapter 5. Testing Security Defences 185

5.3. Results and Analysis

execution path within a failure. This technique was used to determine probable

failure paths and explain why similar defences show markedly different outcomes.

5.3.2 Normal Termination

The large number of Normal terminations initially appears to be surprising, given that

the chosen target site was reliably susceptible to laser-induced errors. Examination of

the instruction sequences in the compiled code and cross-checking this with the pulse

times shows that these Normal terminations occur when the pulses coincide with

instructions that take multiple clock cycles to execute. Here the vulnerable pre-fetch

of the next instruction is not performed on every cycle. Similarly, on conditional

branch operations, the potentially erroneous pre-fetched fall-through option may be

discarded in favour of the calculated branch-taken address.

5.3.3 Trapping

The Inverse, Redundant Representation and Modified Compensated code samples

rarely terminated in Trapped state. These are examples of where the programmer’s

intention, as prescribed in the source code, is not realised in the compiled output.

This is illustrated when comparing the source code for Double Test (Figure 5-3) and

Inverse Test (Figure 5-7). They are both very similar and logically identical, but the

executable code is subtly different. Both programs have a standard test followed by

a defensive retest.

The assembler code for the two tests is shown in Figures 5-18 and 5-19.

In Figure 5-18 failure to execute lines 10 or 11 has no effect as this is the repeat

of the initial test, while failure to execute line 12 will be followed by a fall through

into the Trap. This code fails safe or ends in the Trap.

In Figure 5-19, skipping line 12 results in the Secret code being executed, as does

corruption of r0. This code defaults to calling the protected operation. Reaching the

trap code involves misreading Flag variable as value zero on line 10, or the call to

SecretOp() and the following Ret, lines 15 & 16, both skipped.

186 Chapter 5. Testing Security Defences

5.3. Results and Analysis

1 // if (Flag) // Check
2 ld r0, Flag // Fetch Flag from memory
3 or r0, r0 // update Z flag
4 brne L1 // Z-flag clear (true)
5
6 // else EXPECTED
7 rjmp Expected // Z-flag Clear so ’else’
8
9 // if (Flag) // Check again
10 L1: ld r0 , Flag // Fetch Flag from memory
11 or r0, r0 // update Z flag
12 brne L2 // Z-flag is Consistent. OK
13
14 // else TRAPPED
15 rjmp Trap // Z-flag is inconsistent. NOK
16
17 // return SecretOp ()
18 L2: rcall SecretOp // Called only after double test
19 ret

Figure 5-18: Disassembled Double Test

1 // if (Flag) // Check
2 ld r0, Flag // Fetch Flag from memory
3 or r0, r0 // update Z flag
4 brne L1 // Z-flag clear (true)
5
6 // else EXPECTED
7 rjmp Expected // Z-flag Clear so ’else’
8
9 // if (!Flag) // Check again
10 L1: ld r0 , Flag // Fetch Flag from memory
11 or r0, r0 // update Z flag
12 breq L2 // Z-flag is inconsistent. NOK
13
14 // return SecretOp ()
15 rcall SecretOp // Called only after double test
16 ret
17
18 // else TRAPPED
19 L2: rjmp Trap //

Figure 5-19: Disassembled Inverse Test

Despite their similarities, one efficiently identifies injected faults, and the other is

surprisingly ineffective. As we see in Figure 5-17 the Inverse Test has more similarities

with Undefended code than it does with the Double Test code.

5.3.4 Crashing

There is a noteworthy but unsurprising trend to terminate in the Crashed state that

increases with the number of injected faults. It is difficult to get out of this state in

these test scenarios, and with more faults injected, it is more likely to be entered. An

Chapter 5. Testing Security Defences 187

5.4. Application

exit from the Crashed state would require a further fault that returned execution to

the controlled environment of the test code. Additionally, when entering the Trapped

state, there is a window of opportunity for another fault to be injected, hijacking

the trap and resulting in a crash. In some cases, the result reporting functionality is

itself subjected to laser pulses, resulting in erroneous result delivery and consequently

being interpreted as Crashed.

5.3.5 Out-of-Order Processing

A relatively easy to identify cause of corruption is out-of-order processing. Here,

a code section is executed at an unexpected time; for example, by ’fall-through’,

where, after skipping a Ret operation, execution will continue into the neighbouring

function. In many cases, the next ret encountered returns execution to the original

caller where execution resumes, unaware of the additional processing that had been

performed. The reverse effect occurs when a function call is skipped. Here there is a

failure to execute code, and the caller is unaware of it.

On other occasions, skipping conditional branches within comparisons leads to

a similar effect where an unscheduled code section is executed. This is a specific

example of out-of-order processing where execution falls through to conditional code

regardless of the state of the condition.

The defences against out-of-order are JumpId andWaymarks, and the best of them

is Waymark-on-the-fly. The key feature of Waymark-on-the-fly is the accumulating

waymarker and the repeat tests. If either marking or testing is skipped in one instance,

the effect can still be noted and trapped by a subsequent mark and test instance.

5.4 Application

The defences tested here individually address particular fault scenarios, and in reality,

defences need to be applied in combinations to cover the range of different faults an

application may encounter. It is expected that an efficient recipe for defensive coding

can be identified by combining defences from each category. Therefore, the question

188 Chapter 5. Testing Security Defences

5.4. Application

is, does a hybrid defence inherit the positive properties of its components, or does

the compiler generate code that, like the Inverse Test, superficially looks good but is

impotent in practice? This exercise demonstrates the practicality of using the new

laser workstation as a development tool for refining and testing defences.

Based on earlier observations, we combined the most effective defences to create a

testable hybrid defence. Figure 5-20 shows this hybrid combination ofWaymark (Test

on the Fly) for flow control protection, Repeat Calculation for arithmetic accuracy,

and Double Test for conditionals.

1 // Hybrid Defence
2
3 var nNextWayMark
4
5 func Waymark(n) // Waymark
6 if (n != nNextWayMark) // Confirm caller ’s prediction
7 TRAPPED // Failed.
8 nNextWayMark ++ // Set next predictable value
9 endfunc
10
11
12 func Calculation(WP) // Arithmetic function
13 Waymark(WP) // Confirm called as expected
14 ... // Do the arithmetic
15 Waymark(WP+1) // Show we got to the end
16 return EXPECTED //
17 endfunc
18
19 func TestEQ(WP, V1 , V2) // Comparison with waymark
20 Waymark(WP) //
21 return (V1 == V2) //
22 endfunc
23
24 ...
25 A = Calculation (1) // Calculation
26 B = Calculation (3) // Repeat Calculation
27 if (TestEQ(5, A, B)) // Comparison
28 if (TestEQ(6, B, A)) // Comparison Doubled
29 Waymark (7) // Proof of full path
30 return A
31 TRAPPED

Figure 5-20: Hybrid Defence

Table 5.3 shows the number of executions terminating in each of the four states.

The same data is presented pictorially in Figure 5-21. While the example is contrived,

it shows that individual defences can be combined to improve the level of defence

within an application, as witnessed by the low incidence of Corrupt or Crashed results.

The proportion of runs that end in the Trapped state also increases as the number of

pulses increases, demonstrating that this defence improves when an attack intensifies.

Chapter 5. Testing Security Defences 189

5.5. Summary

Table 5.3: Hybrid Defence Test

Termination State

102 Cycles Normal Trapped Corrupt Crashed

Pulses Samples # % # % # % # %

1 408 184 45.1% 216 52.9% 0 0.0% 8 2.0%
2 20604 4289 20.8% 15955 77.4% 0 0.0% 360 1.7%
3 686800 67688 9.9% 610653 88.9% 28 0.0% 8431 1.2%
4 16998300 821628 4.8% 16032665 94.3% 2656 0.0% 141350 0.8%

total 17706112 893790 5.0% 16659489 94.1% 2684 0.0% 150149 0.8%

0 20 40 60 80 100

pulse ×1
×2
×3
×4

Time in msNormal Trapped Corrupt Crashed

Figure 5-21: Hybrid Defence Termination States

5.5 Summary

Using physical device samples, as opposed to simulation, is a practical method of

evaluating software defences. This approach exercises features that are unknowable to

all but the most detailed simulations. Others, Brejon [41], Proy [139], . . . , have argued

that physical attacks overlook issues relating to the instruction pipeline and the CPU’s

behaviour while skipping an instruction. They argue that ISA level modelling is the

only way to understand the full effects of a faulted instruction. We have shown real

physical effects can be observed, and un-modelable subtle side effects will be included

in these observations. The results presented here and the fact that they were collected

with relative ease demonstrate the counterargument.

It is unlikely that chip manufacturers will share sufficient detail to enable highly

accurate modelling of their devices with developers. It is even less likely that they

would do so with hackers. Thus detailed modelling will only be a practical option for

the device manufacturers themselves or for laboratories with the resources to reverse

engineer the silicon chip. Most importantly, from a practical point of view, there is no

overriding need to understand a fault so long as it can be recognised and neutralised.

190 Chapter 5. Testing Security Defences

5.5. Summary

The prevalence of crashed data collected from the experiments also highlights the

need to freeze the CPU immediately upon detection of a fault. Many crashes were

identifiable as a consequence of the trap management being faulted. The calling and

processing of a Trap() function can itself be faulted and potentially disabled. Ideally,

a Halt instruction or reset interrupt should be invoked. This was not done in these

experiments because of the requirement to separately identify crashed and trapped

termination states.

When untrapped errors are induced, knowledge of the pulse times and executing

code can be used to show what went wrong and hopefully guide a programmer to an

improved solution. Alternatively, using the same techniques, a hacker can develop

a library of template pulse patterns that defeat known defensive code structures.

Applying a multi-pulse template as a Creeping Barrage over a long stretch of unknown

executing code is a practical attack mechanism, as described in Section 4.3.

All of the defences ultimately rely on comparison operations to decide whether

to proceed or not. This Trust-or-Trap decision process is unrelated to the data

representation or algorithm used, and disrupting it negates the defence. The surprise

result from the Inverse Test sample demonstrates this. When a conditional branch is

skipped, the fall-through option becomes the default. Testing for a problem and then

optionally branching to a trap function is inherently weak. This branch weakness is,

in many cases, outside the programmer’s control as the compiler ultimately controls

the ordering of, and flow between, different blocks of code. The strongest defence

comes when a positive test leads to a conditional jump to the appropriate code,

with all fall through behaviour resulting in a trap. This arrangement cannot easily

be described in the high-level source code. Instead, a compiler will typically treat

a binary decision as a conditional jump and a deliberate fall-through. A compiler’s

behaviour can also change depending on the chosen optimisation level and may change

in future versions. A chosen defence for a device will need to be reevaluated whenever

such changes occur.

As a test environment, the most significant limitation we encountered was the

test repeat rate. When considering large numbers of pulses or large code fragments,

Chapter 5. Testing Security Defences 191

5.5. Summary

exhaustively checking all pulse combinations can take a considerable time. The Hybrid

Test program took 102 instruction cycles to execute, resulting in 17, 706, 112 samples,

and that took 7 weeks to collect at 4 tests per second. Despite this frustratingly slow

repeat rate, it still compares favourably against simulation. On a powerful desktop

PC, the logic level simulation of our test rig’s pulse timer mechanism took 15 seconds

to model 120 clock cycles (Figure B-10). Simulation of a 𝜇𝐶 will take longer due to

the vastly increased complexity. This logic level simulation cannot possibly model

the interaction of multiple simultaneous errors induced in neighbouring transistors

because a VHSIC Hardware Description Language (VHDL) description provides no

information about the physical layout of the target’s subcomponents. Thus a more

detailed, and hence slower, simulation would be required. For all practical purposes,

physical testing will be quicker than simulation, and as the detail of a simulation

increases, so too will the advantage of physical testing.

These results, also presented here (and Kelly [95]), are directly applicable to this

specific DUT and the particular version of the GCC toolchain used here. However,

the techniques are generically applicable and easily repeatable. This prediction is

supported by contemporary observations that the instruction skipping effect has also

been noted as the most readily exploitable fault effect on a different 𝜇𝐶 architecture,

Colombier [52]. This also reinforces the idea that the techniques should be transfer-

able, even if the specific defences need modification. So in this respect, the nature, if

not the implementation, of effective defence combinations will most likely be similar.

𝜇𝐶s that use clock jittering to disrupt SPA and DPA attacks would require many

more samples to be gathered for each candidate pulse pattern. Correlation between

the pulse timing and the currently executing instruction will be difficult to perform

in this scenario. However, the quantifiable outcomes of trapped, corrupt, . . . , will still

provide a measure of the efficacy of a defence for developers or pulse timing templates

for attackers.

As a tool for studying error injection attacks, this low-cost laser workstation’s

capabilities far exceed those of the expensive YAG laser cutter it replaces.

192 Chapter 5. Testing Security Defences

Chapter 6

Automating Defence Generation

Contents

6.1 Background . 197

6.2 Defensive C Compiler . 201

6.2.1 A Defensive Object-code Generator. 202

6.3 Defending Execution Path . 203

6.3.1 Call and Return . 207

6.3.2 Branching . 216

6.4 Code Efficiency . 224

6.4.1 Large Application . 225

6.4.2 Call Intensive Code . 226

6.4.3 Branch Intensive Code . 227

6.4.4 Code Size . 227

6.4.5 Code Performance . 227

6.5 Summary . 230

6.5.1 Room for Improvement . 231

193

Not all defences can be described via the syntax of high-level program-

ming languages, and hand-crafted assembly language programming is

both time-consuming and error-prone. By integrating defences into

a compiler’s code generator, we can ensure defences are universally

applied and that the compiler’s optimiser does not eradicate impor-

tant but seemingly redundant code structures. The resulting compiler

permits experimentation with defences and generates code of compa-

rable efficiency to commercial compilers.

194 Chapter 6. Automating Defence Generation

Writing defensive code is both time-consuming and error-prone. As noted in

Section 5.3.3, subtly different but logically identical, defences can exhibit markedly

different efficacy. These behavioural differences result from the compiler’s translation

and optimisation and are difficult to influence from the source code.

1 extern u8 Function1(void);
2 extern u8 Function2(void);
3
4 u8 bVal;
5
6 u16 Foo(void) {
7 u8 b;
8
9 if (bVal) {
10 if (!bVal) {
11 trap ();
12 }
13 else {
14 b = Function1 ();
15 }
16 }
17 else {
18 if (bVal) {
19 trap ();
20 }
21 else {
22 b = Function2 ();
23 }
24 }
25
26 return (u16)b;
27 }

Figure 6-1: Simple Double Test Source

Take, for example, the simple code fragment shown here in Figure 6-1. The func-

tional intention of this code is to call either Function1() or Function2() depending

on the state of a variable, bVal. bVal is tested twice and if the tests are contradictory

a trap() function is called. It is also hoped that the ordering of the code statements

means that if the test instructions were skipped, fall-through would default to the

trap().

1 Foo: lds R24 ,bVar
2 tst R24
3 breq L1
4 rcall Function1
5 rjmp L2:
6 L1: rcall Function2
7 L2: ldi r25 ,0
8 ret

Figure 6-2: Accidental Optimised Output

The programmer’s failure to mark bVal as volatile and compiling with default

Chapter 6. Automating Defence Generation 195

options results in the code shown in Figure 6-2.

The compiler has identified that second tests of bVal are redundant and has

deduced that the calls to trap() are unreachable and can therefore be eliminated.

This highly efficient code has had all of the intended defences removed by an over-

helpful compiler and a simple oversight by the programmer.

1 // -03
2 Foo: lds R24 ,bVar
3 tst R24
4 breq L2
5 lds R24 ,bVar
6 cpse R24 ,R1
7 rjmp L4
8 L1: rcall trap
9 rjmp L3
10 L2: lds R24 ,bVar
11 cpse R24 ,R1
12 rjmp L1
13 rcall Function2
14 L3: ldi r25 ,0
15 ret
16 L4: rcall Function1
17 rjmp L3

Figure 6-3: Optimised Output

After correcting the programmer’s error by marking bVal as volatile, the com-

piler generates the output shown in Figure 6-3. Here the variable is tested twice as

intended, but the compiler has re-ordered the code. Now a single fault injection to

skip the function’s return (line 15) will result in Function1() being called, and the

routine will still return to its caller as intended. Code re-ordering is unpredictable

and depends on the size of the code blocks and any duplication of code within them.

The code re-ordering can be overcome by reducing the optimisation level as shown

in Figure 6-4. This code is closer to the programmer’s original intention. Multiple

errors must be induced before Function1() or Function2() can be invoked inappro-

priately. Unfortunately, lowering the optimisations to achieve this has also eliminated

safe optimisation relating to the unnecessary use of register R28. The resulting code

is larger and slower than it needs to be.

This section looks at automating code generation with two specific security-related

goals. Firstly, making the compiled code easier to verify simplifies the review process

and reduces development costs. To achieve this, we want human-readable output that

can demonstrate to reviewers that effective defences are present despite their apparent

196 Chapter 6. Automating Defence Generation

6.1. Background

1 // -O1
2 push R28
3 lds R24 ,bVar
4 tst R24
5 breq L2
6 lds R24 ,bVar
7 cpse R24 ,R1
8 rjmp L1
9 rcall trap
10 rjmp L4
11 L1: rcall Function1
12 mov R28 ,R24
13 rjmp L4
14 L2: lds R24 ,bVar
15 tst R24
16 breq L3
17 rcall trap
18 rjmp L4
19 L3: rcall Function2
20 mov R28 ,R24
21 L4: mov R24 ,R28
22 pop R28
23 ret

Figure 6-4: Unoptimised Output

absence in the source code files. Secondly, the automatic generation of defensive code

simplifies implementation and reduces the potential for accidental errors, making this

niche skill available to programmers with differing skills and backgrounds.

Finally, if the goals are achievable, will the resulting code be efficient enough

for deployment? The key factors are the defence’s effectiveness, execution speed,

and generated code volume. Determination of efficacy requires small abstract test

samples that can be exhaustively tested, while meaningful comparisons of speed and

size require larger, more realistic applications. Fortunately, we had access to the

source code for several commercially developed smartcard applications that enabled

these comparisons to be made.

6.1 Background

Using a compiler to generate code that goes beyond the source code language’s se-

mantics to defend against undesirable behaviour is not new.

Automated defences against side-channel leakage, a related security threat, have

been investigated. Pre-compilation code transformations to mask leakage relating to

the execution-path are described by Molnar [115], and Moss [119] describes transfor-

Chapter 6. Automating Defence Generation 197

6.1. Background

mations of a compiler’s intermediate arithmetic representations to mask data related

leakage. They are interesting because they show that features and obscure behaviour

that is difficult to implement with traditional development tools can be delegated to

the compilers.

Execution error defences have also been investigated. For example, adding ca-

naries into a stack frame provides a run-time mechanism to detect buffer overruns,

Cowan [56]. Similar capabilities are built into Microsoft’s Visual C and are seen in

’debug’ builds of applications but absent from ’release’ builds. This demonstrates

the common mindset that assumes errors result from flawed programming logic and,

once eliminated, the host platform can be trusted. In a similar vein, extensions to

GCC have been described by Jones [91] that ensure the results of pointer arithmetic

reference meaningful data. These are primarily defences against programming errors

and errors triggered by malformed or unanticipated data.

In an extreme example, Reis [144] has demonstrated a compiler that generates

two functionally identical versions of code, each using different register and memory

allocation strategies. Both are then executed, and the results are compared to identify

if errors have occurred. This approach is the software equivalent to Infineon’s Integrity

Guard [88] where duplication of hardware is used to detect faulty execution.

Of the defences investigated in Section 5 the most complicated to implement, but

most effective defensively, protected against out of order execution. This is where

a compiler can add the greatest value and has had recent interest from researchers.

The interest was triggered by so-called Stack Smashing attacks, where a hacker would

exploit buffer overruns to insert executable code into the stack frame. By corrupting

return addresses within the stack frame, functions could be made to return into

the injected code rather than the original caller. The simple defence of prohibiting

execution of code within the stack can be defeated by an improvement on the attack,

known as Return Oriented Programming (ROP). In ROP manipulation of return

addresses on the stack is used to transfer execution to known code fragments. This

technique is sometimes known as return-into-library or return-to-libc attack because

an application’s runtime library is often the best source of exploitable code fragments.

198 Chapter 6. Automating Defence Generation

6.1. Background

Out of order execution is addressed by Control Flow Integrity (CFI) as described

by Abadi [1] and is effective against buffer overflow, return-into-library attacks and

pointer subterfuge. As a defence, CFI attempts to verify that each control-flow trans-

fer is required for the correct execution of a program. Called functions perform

run-time checks to confirm they were deliberately invoked. A control flow graph is

statically generated at compile time; this is combined with run-time verification in-

voked upon arrival at a destination to ensure the flow transition was expected. The

technique recognises when functions are invoked from unexpected call-stack config-

urations and terminates execution. A recognised disadvantage here is the size of

the control flow graph, which may contain many unnecessary edges. Construction

of a smaller control flow graph, on-the-fly, has been proposed by Niu [126] but the

technique is still too expensive for resource-constrained devices, Burow [49]. Micro-

controllers and similar resource-constrained processors need a mechanism to enforce

CFI while avoiding the overheads associated with storing and checking a control flow

graph.

Other researchers have also identified flow-control verification as an important

defensive technique and have offered solutions.

Source Code Level. Automatic additions and modifications to a program’s

source code are possible. For example, Lalande [103] simulates a program at source

code statement-level using a fault model that assumes that glitches can cause random

assignments to the program counter. The impacts of simulated glitches are then

analysed to identify outcomes that may have security implications. Defensive code

in the form of Waymarks* is then automatically added to the source code to defend

these vulnerable sections. This arbitrary-jump fault model has been demonstrated

as being realistic by Gratchof [79], but in doing so, it was noted that it is difficult to

control. Arbitrary jumps, however, need not necessarily jump between lines of source

code and will frequently resume execution partway through code associated with a

single source code statement. As such, the categorisation of glitch outcomes may be

flawed. The efficiency of Lalande [103]’s technique of strategically placing Waymarks

*See Sections 5.2.14 & 5.2.15

Chapter 6. Automating Defence Generation 199

6.1. Background

at only the most critical locations may overlook many code vulnerabilities and fail to

take into account the relative likelihoods of particular outcomes occurring.

Intermediate Representation�. After parsing source code, a typical compiler

builds a representation of the program in a collection of data structures. This In-

termediate Representation (IR) can then be analysed and manipulated to optimise

it. Loop hardening by directly manipulating the IR was attempted by Proy [138].

After recognising the compiler’s habit of aggressively removing redundant code, the

defences were inserted later in the compilation process. However, at this stage of

compilation, loops and their vulnerable control variables become more difficult to

identify, and the technique fails to protect all loops. Additionally, it was noted that

modern compilers, such as the LLVM [105] used in the study, perform multiple stages

of optimisation on the IR and can still recognise and remove the additional redundant

code.

Link Time. The final step in creating a program’s binary output is linking, and

some limited optimisations are possible during this step. Link time code hardening

as been considered by deKeulenaer [57]. Recognisable vulnerable code sequences in

the linkable code can be substituted for more robust alternatives. E.g. expanding

conditional branch instructions to trap accidental fall through. The disadvantage

of this technique is that all additional information from the source code relating to

the object code has been lost. Defences, when blindly applied, may then have un-

intended consequences, particularly when memory-mapped special function registers

are accessed or where code addresses are calculated at run-time.

The above examples echo the view expressed by deKeulenaer [57] that "program-

mers should not have to waste effort and time on changing their source code to intro-

duce the redundancy". They also demonstrate that automatic generation of defensive

code needs information only available in the source code. As a result, the process is

highly suspectable to even the most basic optimisations. Proy [138] concludes that

"We do not foresee that such a problem will find a general, compiler-independent

�Aho [4] "Introduction", & Bornat [38] "Phases and Passes", refer to Analysed-programs, Parse-
trees or various stages of Intermediate Representation. Here, Intermediate Representation (IR)
covers all of them generically

200 Chapter 6. Automating Defence Generation

6.2. Defensive C Compiler

answer".

Defences within source code are suspectable to being eliminated by an over helpful

optimiser. Moreover, the best defences are target specific but unreliable when applied

at the link phase. We are left with the conclusion that target specific defences should

be inserted after the IR optimisations have occurred but before the source code an-

notations are lost. i.e. in the so-called Translator or Object-code generator.

6.2 Defensive C Compiler

The stages of a typical compilation process are shown in Figure 6-5. A typical C

compiler would perform all of the transformations, from source code (stage 1) to

object code (stage 6), as a single operation from the user’s point of view. Internally

it will still follow the transformations shown here (often missing out stage 5) and

directly generate object code as the Code Generator’s output.

The Defensive C Compiler (DCC) is a test environment for the experimental Code

Generator, but because the generator needs an input IR, it also needs to perform the

roles of Parser and basic Optimiser. The parser uses the ANSI C language YACC

grammar presented in Kernighan & Ritchie [43]. It constructs a tree structure of the

source code program, and in doing so, it confirms the syntax of the input and identifies

missing or undefined functions and variables. The tree structure is the basic-IR and

can be traversed and manipulated without the need to anticipate syntactic errors. The

Optimiser manipulates the basic-IR, e.g., evaluating expressions to remove constants

or converting array and structure field access into pointers and displacements. The

optimised-IR obeys the same syntax rules as, and is semantically identical to, the

basic-IR. This optimisation aims to reduce the code volume by simplifying the IR’s

structure, ultimately speeding up calculations. No defences are added at this stage.

Finally, the optimised-IR is presented to the Code Generator and converted into

individual, target specific machine instructions. More details of DCC can be found

in Appendix C.

The alternative approach would be to take an open-source compiler, such as

Chapter 6. Automating Defence Generation 201

6.2. Defensive C Compiler

1 : C Source code

2 : Macro-Expanded

C Source

3 : Basic

Intermediate Representation

4 : Optimised

Intermediate Representation

5 : Assembler code

6 : Object Code

7 : Executable Binary

3𝑟𝑑 Party tool

DCC

OEM Tool Chain

Pre-Processor

Parser

Optimiser

Code Generator

Assembler

Linker

Figure 6-5: Compilation Stages

GCC [169] or LLVM [105], and adapt or replace an existing code generator. The

absence of a public domain AVR variant of either compiler and the need to gain

familiarity with a highly complex versatile IR before writing a generator led to the

decision to implement a basic, C specific, IR. The code generator is the main point

of interest for this study, so an imperfectly optimised-IR is acceptable.

6.2.1 A Defensive Object-code Generator.

An additional advantage of inserting defensive behaviour into the code generation

step is that the output can be annotated to assist with quality assurance and security

review. With access to the symbol tables, detailed knowledge of the origin of each

code block, and the logic controlling execution flow between code blocks, it is possible

202 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

to indicate where the defences are and what form they take.

Once written, it is relatively simple to substitute an alternative target 𝜇𝐶 in-

struction set. The output is a human and machine-readable assembler code file that

is generated via a series of printf() statements.

The assembly file output is then converted to object code by the original manufac-

turer’s toolchain. DCC’s output can therefore be freely mixed with other assembler

code modules, and the resulting program can be loaded, executed and debugged via

the industrial-strength OEM tools.

The best source code defences against arithmetic errors involve repeating a calcu-

lation via an alternative algorithm or reversing it to ensure a result is consistent with

its input. This level of intelligence is beyond the capabilities of a simple compiler.

The crude and less effective approach of simply repeating calculations is inefficient

and has the potential to change the semantics of the source code�. There is also

the issue of volatile variables to consider. Here a repeat calculation will differ from

the original; or, the compiler may deliberately avoid the recalculation leaving the

programmer unaware that a defence has been omitted.

That is not to say that the problem is insoluble. Compiler generated arithmetic

transformations by Patrick [134] and inter-instruction redundant operations by Moss

[120] have been used to defend cryptographic functions. While these are specific use

cases, they demonstrate the approach’s feasibility and suggest it is worthy of further

investigation.

However, this proof-of-concept study concentrates on the equally important task

of CFI, defending the execution path.

6.3 Defending Execution Path

To achieve this, we needed a mechanism that permitted us to execute a code sample

and then retrospectively determine the execution path taken. The mechanism also

�E.g., post incremented variables - most C programmers will recognise this issue commonly
associated with max(a,b) macro.

Chapter 6. Automating Defence Generation 203

6.3. Defending Execution Path

had to be tolerant of glitch attacks upon itself, as there was no practical mechanism

to avoid glitching the 𝜇𝐶 while it was recording the execution path without first

knowing that path and its time of execution.

The solution adopted is shown here in Figure 6-6. Three consecutive counter incre-

ments are performed within the body of each code block at strategic points. Limiting

the number of glitches to two per run restricts the range of possible modifications

to a given triple. Each time a triple increment is executed, it must leave a trace by

updating at least one of the counters. By inspecting each triple at the end of the

experiment, it is possible to infer whether code was not executed, executed once or

multiply executed.

1 char baBeenThereDoneThat[N_TESTS *3];
2
3 #define TestTick(n) { ++ baBeenThereDoneThat[n*3]; \\
4 ++ baBeenThereDoneThat[n*3+1]; \\
5 ++ baBeenThereDoneThat[n*3+2]; \\
6 }
7
8
9 void foo(void) { // called fn
10 TestTick (1); //
11 } //
12
13
14 void bar(void) { // uncalled fn
15 TestTick (3); //
16 } //
17
18
19 void TestMain(void) { // Entry point
20 TestTick (0); //
21 foo (); //
22 TestTick (2); //
23 }

Figure 6-6: Test Structure

1 lds r20 , baBeenThereDoneThat +3 // reg8 <== Global baBeenThereDoneThat [3]
2 inc r20 // pre inc 8
3 sts baBeenThereDoneThat +3, r20 // baBeenThereDoneThat [3] <== reg
4 lds r20 , baBeenThereDoneThat +4 // reg8 <== Global baBeenThereDoneThat [4]
5 inc r20 // pre inc 8
6 sts baBeenThereDoneThat +4, r20 // baBeenThereDoneThat [4] <== reg
7 lds r20 , baBeenThereDoneThat +5 // reg8 <== Global baBeenThereDoneThat [5]
8 inc r20 // pre inc 8
9 sts baBeenThereDoneThat +5, r20 // baBeenThereDoneThat [5] <== reg

Figure 6-7: Triple Update

Implementing the TestTick() functionality as a macro ensured it resulted in

inline code, thus preventing the inclusion of additional control instructions (Call and

204 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

Ret) within the tested code sample. Additionally, using a constant value to identify

each macro invocation ensured no run-time arithmetic was required when calculating

an address to update. Corruption of run-time arithmetic would seriously confuse the

results being gathered. The code generated by both compilers for updating a triple

was inspected to confirm this predicted behaviour and is shown here in Figure 6-7.

Table 6.1: Triple Values

Category Interpretation Pattern Reasoning

None Not executed 000 Expected result if the code is not executed.
Single Single pass 111 Expected result if all instructions execute cor-

rectly.
Multiple Double pass 222 Executed twice and all instructions execute cor-

rectly.

Single Single pass 112, 121, ?11 One error in either of fetch, increment or store
011, 101, 110, One error in either of fetch, increment or store,
001, 010, 100 or, Two errors in Increment or Store operations
012, 021, 102 One fetch error and one increment or store error
120, ?01
123, ??1, ?21 Two fetch errors

Multiple Double pass 122 One increment or store operation failed
223, 232, ?22 One Fetch failed

Ambiguous 212, 221 Single execution with errors on two failed fetch
operations, or, Double execution with one incre-
ment, or, store error.

At the end of each experiment, the pattern of values within each triple was used to

infer the probable execution path. Table 6.1 shows a list of all theoretically possible

combinations of values, how they arose and how they were categorised when using

a fault model that assumed a skipped instruction was equivalent to a Nop. This

set of possible patterns was obtained by simulating execution of the code shown in

Figure 6-7, selectively omitting the operations on lines 1. . . 9, and observing the result.

It was also assumed that an error would be required to initiate a double execution.

Therefore, there could be at most one arithmetic error within a triple that has multiple

invocations.

Results for each triple were categorized as None, Single or Multiple to indicate

whether code was not run, executed once or multiply executed. To cater for the

Chapter 6. Automating Defence Generation 205

6.3. Defending Execution Path

Ambiguous results, the analysis was performed twice. Initially defaulting to Multiple

and probably overestimating the number of times code was executed unexpectedly.

Secondly, defaulting to Single and probably overestimating the number of experiments

that followed the intended code path.

The results obtained from the physical experiments contained a few alternative

triples that could only be explained if more than two errors occurred or if the skipped

instructions did more than a Nop. These results were rare but repeatable. This

observation suggests that the fault simulator was good and that the physical silicon

can demonstrate inexplicable but repeatable behaviour. It also highlights the value

of physically testing defences rather than trusting simulated results. These additional

error triples were categorised manually by considering each on a case by case basis

and when in doubt, treating them as Ambiguous.

A custom-built test harness executed the code samples. It initialised the triples

used to determine the execution path, programmed the pulse timers, signalled the

laser that the test had started and was about to invoke the test sample. At the end

of a test, the contents of the triples were delivered to the controlling PC. The role of

the Trap() function was to block further laser pulses before delivering the full set of

triples to the host PC. The duration of each test, and hence the number of samples

collected, depended upon the expected execution time of the code fragment under

test. Each test was repeated four times for each possible timing combination. This

ensured that the rare occasional misfire did not materially skew the results. The

collected results were first processed to categorise each triple, and from this, to infer

the execution path.

This arrangement satisfied three requirements necessary for testing Call, Return

and Branch operations: i) the only execution flow control instructions executed were

those being tested; ii) the execution path could be retrospectively determined; iii)

induction of arithmetic errors during the tests would not compromise the results.

206 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

6.3.1 Call and Return

When instructions can be skipped, a significant risk is that a function call may be

avoided, and the caller will carry on, unaware that a significant amount of processing

has not been performed. Similarly, execution may fall into the following code if a

function is called, but its return operation is skipped. A skipped return will probably

fall through onto another function, and when that function returns, the original caller

may be unaware that additional unrelated processing has been performed.

Flow-control graphs, as proposed by Abadi [1] as a solution for CFI, could po-

tentially be calculated by a compiler. Unfortunately, this will be incomplete in all

but the most simple applications because the complete map of flow transitions can

only be calculated after linking. Even if it were practical, the storage and run-time

processing overheads would preclude this approach as a viable option for 𝜇𝐶s.

The alternative approach using Waymarks has already been shown to be effective

in 𝜇𝐶s, as demonstrated here in Section 5.2. However, this mechanism of updating

and testing state variables at each waymark has the same compile-time issues relating

to completeness as identified for flow control graphs. While Waymarks are simple to

use within a single function, they are difficult to use effectively when branching and

especially difficult to use when invoking subroutines or within loops.

Another technique, usually seen in debug builds of programs, is the use of stack

canaries as proposed by Cowan et al. [56]. Here sacrificial data is placed within

the call frame, and its corruption indicates anomalous execution has occurred and

triggers defensive behaviour.

1 ...
2 ldi r0, Foo -1 // Load immediate
3 call Foo // Call subroutine
4 // clz // Z-flag , Preset to fail
5 subi r0, Foo+1 // Sub immediate
6 breq L_ok // Branch if zero
7 jmp Trap // Error detected
8 jmp Trap //
9 // jmp Trap // in case > 2 errors
10 L_ok: ...

Figure 6-8: Defended Call

We formulated a hybrid of these last two techniques that can be implemented

Chapter 6. Automating Defence Generation 207

6.3. Defending Execution Path

efficiently within a code generator to defend Call and Return operations. A token

with a constant value is added to the invocation parameters of a subroutine (Figure

6-8, line 2). As with a canary, this token is not part of the function’s formal parame-

ters, but its corruption indicates anomalous behaviour. The subroutine’s entry code

then verifies this token’s value before proceeding (Figure 6-9, line. 1-3); accidental

invocation would not be expected to have a valid token. Similarly, when the subrou-

tine exits, it replaces the token with one that the caller can verify (Figure 6-9, line

10). If execution returns from the wrong subroutine, the caller will be aware that an

abnormal execution path has been followed (Figure 6-8, line 5-7).

1 Foo: // clz // Z-flag , Preset to fail
2 subi r0 , Foo -1 // Sub immediate
3 breq Foo_ok // Branch if zero
4 jmp Trap // Error detected
5 jmp Trap // Error detected
6 // jmp Trap // in case > 2 errors
7 Foo_ok: ... // Foo body code
8 //
9 ... //
10 ldi r0, Foo+1 // Load immediate
11 ret // Return

Figure 6-9: Defended Entry/Exit

There are some simple constraints on the choice of values for a subroutine’s tokens.

Each subroutine should be allocated different tokens, or at least adjacent subroutines

need differing tokens. The call and return tokens need to be different in order to

identify the case where the Call instruction gets skipped. The compiler must au-

tomatically generate the token values, and they must remain unique through the

compilation and linking processes. This precludes values based on a subroutine’s

name as it cannot accommodate indirect invocation via pointers.

The mechanism shown here uses the callee’s address −1 for the invocation token

and the same address +1 for the return token. For static calls, the compiler can

symbolically describe each token value, and the linker can handle simple arithmetic

at fix-up. For an indirect call, efficient operations can calculate a token value from a

function pointer.

This mechanism gives compact and efficient code for function invocation, as shown

in Figure 6-8. The example is capable of trapping up to two skipped instructions

208 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

providing the zero flag is clear before either the Call or Ret operations. The code

for subroutine entry and exit is similarly compact and efficient, as shown in Figure

6-9.

Similar but less compact, instruction combinations can be constructed to survive

more than two skipped instructions. This may be necessary where the programmer

expects a concerted attack or where the CPU architecture may skip more than one

instruction at a time in a deterministic pattern, as observed by Riviere [148].

1 WORD Fn1(WORD a) { // Function 1
2 TestTick(N_TICK_1); // ----------
3 return a | 0x01;
4 }
5
6 WORD Fn2(WORD a) { // Function 2
7 TestTick(N_TICK_2); // ----------
8 a = Fn3(a);
9 a = Fn4(a);
10 return a | 0x02;
11 }
12
13 WORD Fn3(WORD a) { // Function 3
14 TestTick(N_TICK_3); // ----------
15 return a | 0x04;
16 }
17
18 WORD Fn4(WORD a) { // Function 4
19 TestTick(N_TICK_4); // ----------
20 return a | 0x08;
21 }
22
23 WORD Fn5(WORD a) { // Function 5
24 TestTick(N_TICK_5); // ----------
25 return a | 0x10;
26 }
27
28 WORD Fn6(WORD a) { // Function 6
29 TestTick(N_TICK_6); // ----------
30 return a | 0x20;
31 }
32
33 WORD Fn7(WORD a) { // Function 7
34 TestTick(N_TICK_7); // ----------
35 return a | 0x40;
36 }
37
38 void TestEntryPoint(void) { // Entry Point
39 WORD a; // -----------
40 PORTA |= ((u8)1<<3); // Timer Start
41 TestTick(N_TICK_0); // first mark
42 a = Fn1 (0); // call 1
43 a = Fn2(a); // call 2,3,4
44 a = Fn5(a); // call 5
45 PORTA &= ~((u8)1<<3); // Timer stop
46 TestTick[N_TICK_9]; // last mark
47 }
48
49 WORD Fn8(WORD a) { // Function 8
50 TestTick(N_TICK_8); // ----------
51 return a | 0x80;
52 }

Figure 6-10: Call/Return Test Program

Chapter 6. Automating Defence Generation 209

6.3. Defending Execution Path

A test program (Figure 6-10) was structured to provide the opportunity for errors

and the ability to detect them. For example, the uncalled functions Fn6() . . . Fn8()

may be executed if the preceding functions fail to return.

The TestTick() mechanism shown in Figure 6-6 makes it possible to deduce

the execution path taken. Normal execution would be expected to indicate single

registrations for ticks 0 . . . 5 & 9 while not registering ticks 6 . . . 8. This is indicated

by the blue path shown in Figure 6-11. This figure also shows all of the execution

paths possible when two errors may be injected. By comparing each triple with the

values shown in Table 6.1 it is possible to identify a sample’s execution path, even in

the presence of arithmetic errors.

This test program was compiled and executed while being subjected to all pos-

sible timing combinations of one and two laser pulses. To demonstrate the defences

individually and in combination, we tested six alternative compilations of the code.

They were,

� A1: GCC. This was the code built using the GCC toolchain. During compi-

lation, all optimisation had to be disabled to prevent the compiler from elimi-

nating unused code and inlining subroutine calls. This generates an artificially

large and relatively inefficient output. However, it is not unrealistic when using

defensive code, as these optimisations need to be disabled to ensure defences

are not optimised away.

� B1: DCC (undefended). With all automatically generated defences switched

off, this output provides a common reference point for the two compilers. This

version is expected to exhibit similar weaknesses as the GCC generated code.

� C1: DCC (basic defence). This variant generates the code defences shown in

Figures 6-8 and 6-9. It is expected to defend against two skipped instructions,

where skipping an instruction is assumed to be equivalent to executing a Nop.

� D1: DCC (additional Clz). An additional clearing of the zero-flag is inserted

before the Subi operations. As shown commented out in Figures 6-8 line 4, and

210 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

Tick0

EntryPoint

Call Fn1 Tick1
OK

Ret Fn2 Tick2
SkipOK

Call Fn3 Tick3
OK

Ret Fn4 Tick4
SkipOK

Ret

S
k
ip

Call Fn4 Tick4
OK

Ret Fn5 Tick5
SkipOK

Ret

S
k
ip

Ret Fn3 Tick3
SkipOK

Ret

S
k
ip

Call Fn2 Tick2
OK

Call Fn3 Tick3
OK

Ret Fn4 Tick4
SkipOK

Ret Fn5 Tick5
SkipOK

Ret

S
k
ip

Call Fn4 Tick4
OK

Ret Fn5 Tick5
SkipOK

Ret Fn6 Tick6
SkipOK

Ret

S
k
ip

Ret
OK

Fn3 Tick3
Skip

Ret Fn4 Tick4
SkipOK

S
k
ip

Ret

Call Fn5 Tick5
OK

Ret Fn6 Tick6
SkipOK

Ret Fn7 Tick7
SkipOK

Ret

S
k
ip

Tick9
Blue: Expected Path

Red: Error Path

Black: Post-Error Execution

Figure 6-11: Possible Paths with Two Skipped Instructions

Chapter 6. Automating Defence Generation 211

6.3. Defending Execution Path

6-9 line 1. The reasoning is that if the zero-flag is already set and the Subi gets

skipped, then the test will fail to identify the error. Pre-arming the zero-flag to

indicate failure should prevent this scenario.

� E1: DCC (additional Jmp Trap). An additional unconditional Jmp was

added to the trap handling. As shown commented out in Figures 6-8 line 9,

and 6-9 line 6. This can only have an effect if more than two instructions have

been executed erroneously.

� F1: DCC (additional Clz & Jmp Trap). Here both of the supplementary

defences D1 & E1 are added.

The results presented in Table 6.2 show the outcome of executing all six variants of

the test program while subjecting each run to a single laser pulse attack. Laser pulses

were generated for all possible moments during the program’s execution; thus, the

total number of samples per experiment differs according to the program’s execution

time.

A Run was categorized as Complete if it executed and returned to the calling

test harness; Trapped if it entered the trap handler; and, Crashed if it failed to

return to the test harness. The Complete results were further categorised to indicate

the path taken during execution. A sample is Off-Path if code that should not have

been invoked is unexpectedly executed or if code on the expected path gets executed

more than once. It was Skipped if code on the expected path does not get executed.

Finally, it is categorised as Path-OK, only if the expected path is followed precisely.

� The defended code shows significantly fewer crashes. Identifying and trapping

the erroneous states prevents the unwinding of potentially corrupt frames and

the associated risk of retrieving a faulty return address.

� For the undefended code, sample sets A1 & B1, Off-Path or Skipped code ac-

counted for approximately 6% of the Complete samples. Whereas in the de-

fended code, sample sets C1 - F1, No samples identified as Complete had exe-

cuted Off-Path or Skipped code.

212 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

T
ab
le
6.
2:

C
al
l/
R
et
u
rn

-
S
in
gl
e
P
u
ls
e
A
tt
ac
k

U
n
d
ef
en
d
ed

co
d
e

D
ef
en
d
ed

co
d
e

S
a
m
p
le
S
et

A
1

B
1

C
1

D
1

E
1

F
1

#
%

#
%

#
%

#
%

#
%

#
%

T
o
ta
l

10
00

72
4

88
4

92
4

88
4

92
4

C
ra
sh
ed

49
4.
9

37
5.
1

6
0.
7

7
0.
8

21
2.
4

21
2.
3

T
ra
p
p
ed

0
0.
0

0
0.
0

16
0

18
.1

17
4

18
.8

14
8

16
.7

16
0

17
.3

C
o
m
p
le
te

95
1

95
.1

68
7

94
.9

71
8

81
.2

74
3

80
.4

71
5

80
.9

74
3

80
.4

C
o
m
p
le
te

b
re
a
k
d
o
w
n

O
ff
P
at
h
&
S
k
ip
p
ed

0
0.
0

0
0.
0

0
0.
0

0
0.
0

0
0.
0

0
0.
0

O
ff
P
at
h

32
3.
4

20
2.
9

0
0.
0

0
0.
0

0
0.
0

0
0.
0

S
k
ip
p
ed

20
2.
1

20
2.
9

0
0.
0

0
0.
0

0
0.
0

0
0.
0

P
at
h
O
K

89
9

94
.5

64
7

94
.2

71
8

10
0.
0

74
3

10
0.
0

71
5

10
0.
0

74
3

10
0.
0

Chapter 6. Automating Defence Generation 213

6.3. Defending Execution Path

� Sample sets D1, E1 & F1 show that the additional defences have no value when

considering a single glitch event.

The experiment was repeated for all possible timing combinations of two laser

pulses. These results are presented in Table 6.3. With two glitch events, the execution

path analysis yielded examples of the ambiguous states shown in Table 6.1. These rare

examples could have resulted from either single or double passes of the corresponding

code section. The results for Complete samples were therefore processed twice, once

as Strict and then again as Lax. The Strict interpretation treats ambiguous triples

as examples of multiple executions; doing so probably overestimates the number of

erroneous executions. The Lax interpretation treats the same samples as a single

execution of the same triple; this time, possibly underestimating the number of faulty

executions.

As with the single pulse attacks, the undefended code from both compilers shows

similar ratios of Complete executions that executed Off-Path or Skipped subroutine

calls. Approximately 10% of Complete runs indicate functions have not been called

as expected or have been executed more than once.

The basic defended code sample, C1, almost entirely eliminates these problems by

trapping erroneous execution and reducing the number of crashes. Of the Complete

runs, 0.1 . . . 0.7% had at some point skipped a function call or executed unprescribed

code without detection by the in-built defences. The majority of these errors are

for skipped function calls rather than accidental additional function execution. The

number of tests performed when such errors occur explains this result. Failure to

call a function can be achieved by skipping the initial Call instruction and then

bypassing the return confirmation test. Accidental execution of a function requires

many more errors. An error is required to invoke the function; the function’s entry

test must then be bypassed; finally, the original callers return confirmation test must

also be bypassed.

The additional defences tested in samples D1. . . E1 have a measurable effect. This

implies that, for a small number of samples, more than two errors occurred, and the

simple Nop substitution model of instruction skipping is imperfect.

214 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

T
ab
le
6.
3:

C
al
l/
R
et
u
rn

-
D
ou
b
le
P
u
ls
e
A
tt
ac
k

U
n
d
ef
en
d
ed

co
d
e

D
ef
en
d
ed

co
d
e

S
a
m
p
le
S
et

A
1

B
1

C
1

D
1

E
1

F
1

#
%

#
%

#
%

#
%

#
%

#
%

T
o
ta
l

12
55
00

65
88
4

98
12
4

10
71
84

98
12
4

10
71
84

C
ra
sh
ed

10
47
8

8.
3

29
12

4.
4

11
92

1.
2

13
13

1.
2

39
80

4.
1

41
39

3.
9

T
ra
p
p
ed

0
0.
0

3
0.
0

31
74
8

32
.4

36
15
4

33
.7

29
67
6

30
.2

33
46
0

31
.2

C
o
m
p
le
te

11
50
22

91
.7

62
96
9

95
.6

65
18
4

66
.4

69
71
7

65
.0

64
46
8

65
.7

69
58
5

64
.9

C
o
m
p
le
te

(S
tr
ic
t)

O
ff
P
at
h
&
S
k
ip
p
ed

44
0.
0

44
0.
1

0
0.
0

0
0.
0

0
0.
0

0
0.
0

O
ff
P
at
h

73
46

6.
4

36
11

5.
7

37
9

0.
6

37
5

0.
5

37
5

0.
6

37
5

0.
5

S
k
ip
p
ed

44
49

3.
9

33
88

5.
4

64
0.
1

24
0.
0

20
0.
0

4
0.
0

P
at
h
O
K

10
31
83

89
.7

55
92
6

88
.8

64
74
1

99
.3

69
31
8

99
.4

64
07
3

99
.4

69
20
6

99
.5

C
o
m
p
le
te

(L
a
x
)

O
ff
P
at
h
&
S
k
ip
p
ed

44
0.
0

44
0.
1

0
0.
0

0
0.
0

0
0.
0

0
0.
0

O
ff
P
at
h

68
51

6.
0

31
16

5.
0

4
0.
0

0
0.
0

0
0.
0

0
0.
0

S
k
ip
p
ed

44
49

3.
9

33
88

5.
4

64
0.
1

24
0.
0

20
0.
0

4
0.
0

P
at
h
O
K

10
36
78

90
.1

56
42
1

89
.6

65
11
6

99
.9

69
69
3

10
0.
0

64
44
8

10
0.
0

69
58
1

10
0.
0

Chapter 6. Automating Defence Generation 215

6.3. Defending Execution Path

Further investigation into the Crashed samples showed that in many cases, the

execution had passed into the test harness code used to invoke the sample and to

report on its termination state. This additional analysis was archived by strategically

placing breakpoints and infinite loops within the test harness and manually examining

the machine’s state after repeating runs using glitch patterns previously identified as

causing crashes. The test harness was common to all the samples generated by both

compilers. If this test harness had itself been generated by DCC, then it is likely that

many of the samples categorised as Crashed would have been Trapped. In a practical

deployment of the DCC’s output, the whole executable image would be similarly

defended, further improving on the figures shown in Table 6.3.

6.3.2 Branching

Branching instructions are widespread and especially vulnerable to glitch attacks. The

instruction itself may be skipped, in which case the code immediately following it will

be exercised instead. Alternatively, faulty arithmetic before a conditional branch may

make a correctly executed instruction take an inappropriate path.

As with the Call/Ret behaviour, the first scenario is difficult to defend at the

source code level. The second scenario is the one most commonly defended in source

code and is considered in the Arithmetic Defences section below.

6.3.2.1 Branch Instruction

The efficient and straightforward defence the compiler can add is to make both the

positive and negative outcomes of a test branch to their respective code fragments

(Figure 6-12, line 2&3).

By making the fall-through option a Trap (line 4), we can handle the skipping

of either of the branch instructions safely. The option of repeating the jmp Trap

instruction (line 5) is used to add immunity to multiple skip events. This code

structure cannot be directly described in source code, and this is an example of a

defence that can only be implemented within a compiler (or as hand-crafted assembler

216 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

code).

1 ...
2 breq L_eq // Branch if equal
3 brne L_ne // Br. if not equal
4 jmp Trap // Error detected
5 // jmp Trap // <optional >
6
7 L_eq: ... // Then body code
8 jmp L_cont //
9 jmp Trap //
10 // jmp Trap // <optional >
11
12 L_ne: ... // Else body code
13
14 L_cont: ... // common continuation

Figure 6-12: Defended Branch

Once again, a simple test program was devised to test the efficacy of the defences

when under attack - Figure 6-13. The start of the attack was synchronised with

the first ’if’ statement. This ensured the decision behaviour was being attacked

rather than the arithmetic accuracy of the tested data. The execution path could

be retrospectively inferred using the same triple counter logic used in the Call-Ret

testing. Under normal, unperturbed conditions, the triples 1, 3, 5 & 6 would be

expected to be set. Faulty behaviour could be detected by failure to set these ticks

or by ticks 2 & 4 being set. The use of macros, IF_LT & IF_GT, added flexibility to

enable the same code to be reused in later tests (Section 6.3.2.2) combining branch

defences with Branch Arithmetic Defences.

To compare the compilers and to cover the expected error scenarios, five alterna-

tive compilations of the code were generated and tested. They were:

� A2: GCC. This code was built with the GCC tools. Optimisations were re-

duced to ensure the initialised variables used in the comparisons were not sub-

stituted for constants and that the code path for the theoretically unused path

was not removed.

� B2: DCC (undefended). The defensive compiler was used with defences

disabled. The expectation was that this should display similar vulnerabilities

to the GCC version.

Chapter 6. Automating Defence Generation 217

6.3. Defending Execution Path

1 #define IF_LT(x,y) if ((x)<(y))
2 #define IF_GT(x,y) if ((x)>(y))
3
4 WORD a=1;
5 WORD b=2;
6
7 ...
8 PORTA |= ((u8)1<<3); // Timer Enable
9 IF_LT (a,b) {
10 TestTick(N_TICK_1);
11 }
12 else {
13 TestTick(N_TICK_2);
14 }
15 TestTick(N_TICK_3);
16
17 IF_GT (a,b) {
18 TestTick(N_TICK_4);
19 }
20 else {
21 TestTick(N_TICK_5);
22 }
23 TestTick(N_TICK_6);
24 PORTA &= ~((u8)1<<3); // Timer Disable
25 ...

Figure 6-13: Branching Test Program

� C2: DCC (basic defence). The defensive compiler generating code as per

Figure 6-12.

� D2: DCC (Jmp Trap ×2). As per C2 with additional Jmp Trap instruc-

tions added (Figure 6-12, line 5&10) to catch the case where the first Jmp may

have been skipped.

� E2: DCC (Jmp Trap ×3). As per D2 but adding a third Jmp to the trap

handler.

The results of a single pulse attack performed against each compilation are shown

in Table 6.4. The most common error detected is Off-Path-and-Skipped. This be-

haviour occurs when the expected code block gets skipped, and the complimentary

code path gets executed; in other words, the opposite outcome to that prescribed by

the if clause. This behaviour is attributable to two error conditions: i) performing

the comparison on corrupted data which results in a faulty conclusion, or ii) failing to

take a prescribed branch and falling through into the code block associated with the

opposite outcome. The decrease in the number of Off-Path-and-Skipped outcomes in

218 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

T
ab
le
6.
4:

C
on
d
it
io
n
al

B
ra
n
ch
es

-
S
in
gl
e
P
u
ls
e
A
tt
ac
k

U
n
d
ef
en
d
ed

co
d
e

D
ef
en
d
ed

co
d
e

S
a
m
p
le
S
et

A
2

B
2

C
2

D
2

E
2

#
%

#
%

#
%

#
%

#
%

T
o
ta
l

34
4

30
8

31
6

31
6

31
6

C
ra
sh
ed

46
13
.4

1
0.
3

0
0.
0

0
0.
0

0
0.
0

T
ra
p
p
ed

0
0.
0

0
0.
0

13
4.
1

18
5.
7

16
5.
1

C
o
m
p
le
te

29
8

86
.6

30
7

99
.7

30
3

95
.9

29
8

95
.3

30
0

94
.9

B
re
a
k
d
o
w
n
o
f
C
o
m
p
le
te

O
ff
P
at
h
A
n
d
S
k
ip
p
ed

20
6.
7

22
7.
2

15
5.
0

14
4.
7

14
4.
7

O
ff
P
at
h

12
4.
0

12
3.
9

4
1.
3

0
0.
0

0
0.
0

S
k
ip
p
ed

0
0.
0

0
0.
0

0
0.
0

0
0.
0

0
0.
0

P
at
h
O
K

26
6

89
.3

27
3

88
.9

28
4

93
.7

28
4

95
.3

28
6

95
.3

Chapter 6. Automating Defence Generation 219

6.3. Defending Execution Path

the defended code suggests the defence behaves as expected for the skipped instruc-

tion case ii. However, corrupt comparison, case i, is the dominant influence. This is

unsurprising as case i can result from any one of many possible instruction errors.

In contrast, case ii occurs as a result of the single branch instruction being skipped.

The results associated with Off-Path also support this interpretation. The code for

both the positive and negative outcomes of the if clause is being exercised. The most

likely cause of this would be skipping the branch instruction at the end of the first

conditional code block (Figure 6-12, line 8) and execution falling through to the code

block for the else clause. The defended code effectively eliminates this behaviour by

trapping after skipped branches.

The same code samples were subjected to all possible timing combinations of

two laser pulses, shown in Table 6.5. Of the Complete runs, proportionately fewer

reported Path OK, as would be expected given the additional error opportunities.

Off-Path-and-Skipped is attributable to taking a conditional branch for the wrong

reason. Here the proportion of erroneous samples increased and the defences C2 - E2

were equally effective. Strongly suggesting the arithmetic that formed the conditional

state was corrupted and the defences were not invoked.

Off-Path is attributable to failing to take a branch. Here defence C2 is an im-

provement on B2, but less effective that D2 or E2. In this scenario the defences are

clearly having a meaningful effect as seen by the increase in the number of trapped

executions. This demonstrates the benefit of repeating the Jmp Trap when multiple

pulses are delivered within an attack.

While the defences work, it is clear that the weak link is the arithmetic that

establishes the testable state for the conditional branches.

220 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

T
ab
le
6.
5:

C
on
d
it
io
n
al

B
ra
n
ch
es

-
D
ou
b
le
P
u
ls
e
A
tt
ac
k

U
n
d
ef
en
d
ed

co
d
e

D
ef
en
d
ed

co
d
e

S
a
m
p
le
S
et

A
2

B
2

C
2

D
2

E
2

#
%

#
%

#
%

#
%

#
%

T
o
ta
l

14
96
4

12
01
2

12
64
0

12
64
0

12
64
0

C
ra
sh
ed

37
0.
3

89
0.
7

0
0.
0

0
0.
0

0
0.
0

T
ra
p
p
ed

0
0.
0

0
0.
0

12
31

9.
7

16
48

13
.0

15
87

12
.6

C
o
m
p
le
te

14
92
7

99
.7

11
92
3

99
.3

11
40
9

90
.3

10
99
2

87
.0

11
05
3

87
.4

C
o
m
p
le
te
(S
tr
ic
t)

O
ff
P
at
h
A
n
d
S
k
ip
p
ed

16
41

11
.0

17
16

14
.4

90
4

7.
9

89
3

8.
1

89
3

8.
1

O
ff
P
at
h

96
5

6.
5

83
6

7.
0

59
1

5.
2

26
8

2.
4

27
4

2.
5

S
k
ip
p
ed

2
0.
0

8
0.
1

0
0.
0

0
0.
0

0
0.
0

P
at
h
O
K

12
31
9

82
.5

93
63

78
.5

99
14

86
.9

98
31

89
.4

98
86

89
.4

C
o
m
p
le
te
(L
a
x
)

O
ff
P
at
h
A
n
d
S
k
ip
p
ed

16
41

11
.0

17
13

14
.4

90
4

7.
9

89
4

8.
1

89
3

8.
1

O
ff
P
at
h

96
5

6.
5

31
1

2.
6

16
0.
1

4
0.
0

4
0.
0

S
k
ip
p
ed

2
0.
0

11
0.
1

0
0.
0

0
0.
0

0
0.
0

P
at
h
O
K

12
31
9

82
.5

98
88

82
.9

10
48
9

91
.9

10
09
4

91
.8

10
15
6

91
.9

Chapter 6. Automating Defence Generation 221

6.3. Defending Execution Path

6.3.2.2 Branch Arithmetic

It is clear from the simple conditional branch defences above that arithmetic errors

are still the primary cause of Off-Path-And-Skipped errors. Where the branch de-

cision depends on arithmetic accuracy, the branch instruction defence has limited

effectiveness, as seen above. The usual approach is to repeat a comparison and treat

contradictory results as evidence of an attack. In simple cases, this could also be

automatically implemented by a compiler. However, there are many cases where this

cannot be archived safely, particularly where repeating a comparison may change the

semantics of an expression.

1 boolean Trap(void); // non -returning function.
2
3 #define IF_LT(a, b) if ((((a) < (b)) && (((b) > (a)) || Trap ())) || \\
4 (((b) > (a)) && Trap ()))
5
6 #define IF_GT(a, b) if ((((a) > (b)) && (((b) < (a)) || Trap ())) || \\
7 (((b) < (a)) && Trap ()))

Figure 6-14: Double Checking Macros

The experiment was repeated after replacing the comparison macros with those

shown in Figure 6-14. This demonstrates the effect of a hybrid defence using tradi-

tional source-code arithmetic defence and compiler-generated defended branches.

The results are presented in Table 6.6. In all cases, the number of Off-Path-

And-Skipped has been reduced, confirming the earlier suggestion that this category of

errors was attributable to unperturbed execution, guided by erroneous data. Double

testing the data has predictably reduced the incidence of these errors.

For GCC with a single pulse attack, we see mainly Off-Path errors typical of skip-

ping the jump over the code for the else block. DCC catches and traps this behaviour

effectively, as we saw previously. With double pulses attacks, DCC traps significantly

more errors and, of the runs that terminate cleanly, the proportion demonstrating

erroneous execution is similarly reduced.

222 Chapter 6. Automating Defence Generation

6.3. Defending Execution Path

Table 6.6: Macro Defended Conditionals

Single Pulse Double Pulse
Sample Set GCC DCC GCC DCC

% # % # % # %

Total 372 372 17484 17484
Crashed 0 0.0 0 0.0 3 0.0 0 0.0
Trapped 20 5.4 36 9.7 1818 10.4 3170 18.1
Complete 352 94.6 336 90.3 15663 89.6 14314 81.9

Complete(Strict)
Off Path & Skipped 4 1.1 0 0.0 551 3.5 24 0.2

Off Path 12 3.4 0 0.0 1024 6.5 770 5.4
Skipped 0 0.0 0 0.0 4 0.0 0 0.0
Path OK 336 95.5 336 100.0 14084 89.9 13520 94.5

Complete(Lax)
Off Path & Skipped 551 3.5 24 0.2

Off Path n/a n/a 354 2.3 8 0.1
Skipped 4 0.0 0 0.0
Path OK 14754 94.2 14282 99.8

Chapter 6. Automating Defence Generation 223

6.4. Code Efficiency

6.4 Code Efficiency

Besides the efficacy of the defences demonstrated above, there is invariably a compet-

ing need to keep code efficient in terms of both size and execution time. A clue to the

efficiency of the defensive compiler’s output is seen in the tables for single pulse at-

tacks, (Tables 6.2, 6.4 & 6.6). Here the Total sample counts are directly proportional

to the execution time of the expected, unperturbed path through the code. However,

these are highly artificial test scenarios.

A better idea of what impact the automatically generated defences would have,

in more realistic scenarios, can be gained by compiling real-life code samples. Three

code samples were investigated, each providing a different insight into DCC’s output.

There are two viable approaches to generating deployable code using the GCC

toolchain,

� Turn off all optimisations and accept the most inefficient code, confident that

source code implemented defences remain in the object code. This is the mini-

mal effort approach, but the code will be unnecessarily large and inefficient. It

is identified in the tables as ’No Optimisations’.

� Compile with basic optimisations (GCC command-line switch -O1) enabled.

The code is significantly better but requires a visual inspection to confirm that

defences remain. When the compiler removes defences, they need to be modi-

fied or re-implemented to make them immune to the compiler’s optimisations§.

This approach is both time-consuming and prone to accidental errors. It does,

however, generate smaller and faster code. It is identified in the tables as ’-O1

optimised’.

§For higher levels of optimisation, this approach is impractical because they are too efficient at
removing redundant code.

224 Chapter 6. Automating Defence Generation

6.4. Code Efficiency

6.4.1 Large Application

The source code from a full implementation of a Global Platform V2.2 card man-

ager [77] with a Javacard Classic V3.0.5 Virtual machine [130] was variously com-

piled. This application was originally targeted at an AVR smartcard core; it included

source code level defensive coding and had been independently reviewed for payment

scheme accreditation. The code’s original target was a high-security device with be-

spoke peripherals and tools licensed explicitly for a particular commercial product

development. Details of the device, beyond the fact it was an AVR core, are also

covered under an NDA, making the tools for physical testing and emulation off-limits

for this investigation.

For this exercise the code was compiled for nearest equivalent publicly available

𝜇𝐶, the AVR xmega [13]. Sections of the original code that accessed hardware pe-

ripherals not present on this new target had to be replaced with dummy functions,

which made meaningful code execution impossible. The source code could be com-

piled and linked to gain insights into the code volume, but the execution efficiency

of the binary could not be measured here. The code volume results are presented in

Table 6.7 and performance is considered separately in Section 6.4.5.

Table 6.7: Code Volume

Global Platform 2.2 + JC 3.0.5 VM Program
Size %

GCC Source code defences 242780 133%
. . . -O1 optimised 182874 100%

DCC Source code defences 261224 143%
. . . + Branch Defence 282496 154%
. . . + Call/Ret Defence 329782 180%
. . . + Branch & Call/Ret Defences 351054 192%

These figures suggest that GCC unoptimised output is only a little bit more effi-

cient than DCC’s defenceless output. With defences turned up to maximum, the code

size here increases is 90%. Examination of the generated code shows that GCC uses

Chapter 6. Automating Defence Generation 225

6.4. Code Efficiency

a far more sophisticated register allocation strategy for local variables and efficiently

removes redundant re-fetching of variables when their values are reused immediately

after store operations. The most expensive defence is the Call-Ret protection, and

this effect is exaggerated as a result of the source code programming style that uses

many small functions to assist readability in the expectation that the compiler will

ultimately place the code inline. The source code also includes defences that are

unnecessary when DCC adds additional equivalent defences. These automatically in-

serted defences are also added to the unnecessary manually defined defences, making

them additionally defended by DCC; unnecessary calls and branches become defended

unnecessary calls and branches. It is, therefore, safe to assume these figures represent

an unrealistic worst case.

6.4.2 Call Intensive Code

It is more realistic to compare defended code, compiled with GCC, against undefended

code compiled by DCC. Both processes generate defended object code. This was

tested by preparing two source code samples. One directly from the original Java

Card sources, it is the original Defended version and contains all of the source level

defences. The other, Defenceless version, has the source code defined flow-control

defences removed. This more meaningful comparison is highlighted as green-tinted

rows in the following tables.

The bootstrap code for the Java Card application was used because it can be

executed on the DUT up until the point it passes control to its communications

manager. Table 6.8 shows the resulting object code sizes and execution times when

the two code versions are compiled with the two compilers.

This bootstrap code has many function calls within it and few branches; this

biases the figures towards the Call/Ret defence.

226 Chapter 6. Automating Defence Generation

6.4. Code Efficiency

6.4.3 Branch Intensive Code

A second code fragment, rich in branches and with fewer function calls, was similarly

tested. The subroutine for ISO/IEC 9797-1 Algorithm 3, the so-called banking MAC

[90] was used here. In the absence of a DES co-processor, an empty no-op function was

substituted to replace the co-processor manipulation routine, leaving the simulated

in/out buffer unchanged. All source-code prescribed function calls, data movements,

exclusive-or operations and source code defined defences were performed. A test

harness invoked this library function to generate the MAC of a 44 byte string, and all

variants executed correctly, generating the same MAC values. The results are shown

in Table 6.9.

6.4.4 Code Size

In both code samples, DCC’s output after compiling defenceless code falls mid-way

between GCC’s outputs for the optimised and unoptimised builds of defended code.

All of the outputs are, of course, defended, but DCC generated its code from sim-

ple undefended input. The cost is highest where function calling predominates, as all

Call & Return operations are instrumented with integrity checks. The application

of these defences is universal with DCC, whereas, in the GCC/Defended code com-

bination, the defences were only applied to security-critical events. This represents a

10 . . . 25% code volume penalty in exchange for significantly faster development time,

the confidence of universal coverage, and stronger defences.

6.4.5 Code Performance

The Java Card application’s bootstrap code initialises a set of state variables during

its first run. Subsequent runs of this code identify the initialised state and bypass the

set-up processing. These two execution states are security-critical and consequently

heavily defended. They are identified in Table 6.8 as the Init and Initialized columns

respectively. This Call intensive code shows a 10% execution time penalty.

Chapter 6. Automating Defence Generation 227

6.4. Code Efficiency

The branch intensive MAC algorithm shows a 10% speed improvement. Much

of the redundant code DCC generates to implement branch defences is not executed

unless there is an error. Therefore the code volume expansion does not manifest itself

as additional code to be executed. Defences implemented at the source code level and

seen by GCC are executed, highlighting an advantage of compiler-generated defences.

228 Chapter 6. Automating Defence Generation

6.4. Code Efficiency

T
ab
le
6.
8:

B
o
ot
st
ra
p
-
C
o
d
e
C
om

p
il
at
io
n

E
x
e
cu
ti
o
n
ti
m
e

S
o
u
rc
e

P
ro
g
ra
m

In
it

In
it
ia
li
ze
d

co
d
e

C
o
m
p
il
e
r
se
tt
in
g

S
iz
e

%
cy
cl
e
s

%
cy
cl
e
s

%

G
C
C

D
ef
en
d
ed

N
o
op
ti
m
is
at
io
n
s

17
78

17
3%

23
28

21
0%

10
45

20
7%

-O
1
b
as
ic
op
ti
m
is
at
io
n
s

10
28

10
0%

11
06

10
0%

50
4

10
0%

D
ef
en
ce
le
ss

N
o
op
ti
m
is
at
io
n
s

16
10

15
7%

16
65

15
1%

85
2

16
9%

-O
1
b
as
ic
op
ti
m
is
at
io
n
s

90
6

88
%

75
5

68
%

40
7

81
%

D
C
C

D
ef
en
d
ed

N
o
co
m
p
il
er

d
ef
en
ce
s

14
78

14
4%

15
36

13
9%

66
8

13
3%

D
ef
en
ce
le
ss

B
ra
n
ch

&
C
a
l
l
/
R
e
t
D
ef
en
ce
s

12
88

12
5%

11
37

10
3%

55
3

11
0%

T
ab
le
6.
9:

B
an
k
in
g
M
A
C
-
C
o
d
e
C
om

p
il
at
io
n

B
a
n
k
in
g
M
A
C

P
ro
g
ra
m

E
x
ec
u
ti
o
n

A
L
G
_
D
E
S
_
M
A
C
8
_
IS
O
9
7
9
7
_
1
_
M
1
_
A
L
G
3

S
iz
e

%
cy
cl
es

%

G
C
C

D
ef
en
d
ed

so
u
rc
e,
w
it
h
ou
t
op
ti
m
is
at
io
n

28
62

11
8%

57
95

10
8%

D
ef
en
d
ed

so
u
rc
e,
-O
1
op
ti
m
is
ed

24
16

10
0%

53
80

10
0%

D
C
C

D
ef
en
d
ed

so
u
rc
e
co
d
e

30
46

12
6%

62
80

11
7%

D
C
C

D
ef
en
ce
le
ss
so
u
rc
e
co
d
e

19
56

81
%

44
60

83
%

..
.
+
B
ra
n
ch

D
ef
en
ce

22
28

92
%

46
45

86
%

..
.
+
C
al
l
/
R
et
u
rn

D
ef
en
ce

23
94

99
%

46
35

86
%

..
.
+
B
ra
n
ch

&
C
a
l
l
/
R
e
t
D
ef
en
ce
s

26
66

11
0%

48
20

90
%

Chapter 6. Automating Defence Generation 229

6.5. Summary

6.5 Summary

It is practical to build a code generator that automatically inserts effective defensive

code against multi-pulse fault attacks, and this is possible even with modest resources.

Even though the code is not highly optimised, it compares favourably with that of

mainstream compilers that need to have their optimisations constrained to prevent

the elimination of deliberately redundant code. Most significantly, from a security

standpoint, this approach eliminates the opportunity for the accidental omission of

defences by the programmer and undetected removal of those same defences by a

compiler’s optimiser.

The defences demonstrated here cannot be described via the source code syntax.

Their computational efficiency compensates for DCC’s relatively poor general optimi-

sation capabilities. Mainstream compilers may optimise the code better, but defences

that can be implemented through them are less efficient. The automatically inserted

defences demonstrated here constitute a novel and effective CFI defence.

A significant advantage is the speed of development of defended code. There is no

need to instrument the source code with self-checking code. Such source-code defences

are expensive in terms of development overhead, prone to accidental omission and,

lead to inefficient code. These defences can be omitted and delegated to the DCC.

Knowing that the compiler will insert the defences leaves the application programmer

free to concentrate on the functional accuracy and readability of the code, uncluttered

by double tests or code that has to be illogically organised in anticipation of skipped

branches or out of sequence execution.

The fault model that assumes skipping instructions is equivalent to executing a

Nop is surprisingly accurate. Despite its simplicity, defences based on this failure

mode can trap the majority of errors injected into the program’s control flow.

The methodology used here enables experimentation with various defence mech-

anisms. It is relatively easy to test their efficacy and adopt the most suitable for

a particular target platform and presumed attack vectors. The physical tests per-

formed on the defences found rare but repeatable exceptions to this fault model.

230 Chapter 6. Automating Defence Generation

6.5. Summary

Defences were extended to trap these rare events, and the impact of the changes on

the whole application’s code volume was easy to reevaluate. The same approach will

be applicable to other target 𝜇𝐶s.

The effectiveness of the out-of-order defences implemented by DCC will increase

if more of the support code and system libraries are compiled with the same tool.

This particular CFI defence wraps and protects each function individually. Acciden-

tal crashes will be trapped at the earliest possible opportunity, and stack smashing

attacks, such as the return-into-library, face the additional complication of preparing

the dummy parameters as well as faking return addresses.

Defences against arithmetic errors have not been attempted, and these defences

currently remain the programmer’s responsibility. Arithmetic defences ultimately rely

on a decision about whether or not to trust an outcome. This decision making process,

critical to all arithmetic defences, can be securely defended with a combination of

macro augmented source-code and DCC generated CFI defences.

As measured by execution speed, the cost of defences is acceptable here, it being

< 10% in our sample. In many cases, the automatic defences are smaller and faster

than the equivalents described in the source code.

6.5.1 Room for Improvement

This investigation considered attacks using two accurately timed laser pulse injec-

tions. Resistance to two pulses is a significant improvement upon current practice.

Unfortunately, most source-code implemented defences fail and need to be used in

combination to survive multiple pulse attacks, as seen earlier in Figure 5-17. All of

the source-code defences tested demonstrated corrupted data outcomes with just a

single pulse. Two pulses is a practical limit for a blind attack as it takes a long time

to perform all the possible test patterns over anything more than small fragments of

code. Some of the tests performed here took several days to collect the samples.

Where the defences consist of repeated fragments of identical code, an attacker

may use a multi-pulse template (as described in Section 4.3) to search for a vulnera-

bility. For these cases, the defence lies in the device’s ability to remember it has been

Chapter 6. Automating Defence Generation 231

6.5. Summary

attacked and change its behaviour in future. This is achievable with a more intelligent

Trap() function. With the efficiency of the traps demonstrated here, a multi-pulse

template attack will most probably trigger a trap before discovering the appropriate

synchronisation for it to be effective. Therefore, the additional complexity and code

volume required to survive more than two pulses may be overkill.

Purely on a practical note, some simple improvements could be made to the cur-

rent DCC. These mainly relate to ease of use and impact the tool’s practical deploy-

ment rather than its ability to generate secure code. Integration of the pre-processor

into the compiler and improved integration with the target device’s debugging tools

would greatly facilitate application development. Currently, the best approach is to

develop and debug using GCC and then re-compile the tested code with DCC. In

a similar vein, the relatively simple optimisations relating to register allocation and

elimination of redundant store/fetch operations, as demonstrated by GCC, need to

be addressed. This quick-fix will have a significant beneficial impact on the size of

DCC’s output code.

Alternatively, having proved the concept is viable, it may be worthwhile imple-

menting the defensive code generator as part of a quality open-source compiler. This

approach would take advantage of that compiler’s optimisation capabilities while aug-

menting the calls, returns and branches with the security refinements demonstrated

here. The caveat here, of course, would be that many arithmetic defences rely on

redundant code and mainstream compilers are particularly efficient at removing this.

232 Chapter 6. Automating Defence Generation

Chapter 7

Security Impact

Contents

7.1 Implications . 235

7.1.1 Accessibility . 235

7.1.2 Repeatability . 237

7.1.3 Attackers . 238

7.1.4 Defenders . 239

7.1.5 Exploitations . 240

7.1.6 Development, Review and Certification 242

7.2 Strategies . 244

233

Characterising the error responses of a DUT, developing a fault

model and then prescribing and testing defences is a practical work-

flow for application development. When treated as a whole, the weak-

ness of any particular stage is compensated for by the others. This

can be achieved with easily accessible equipment and tools. And, since

the capital expenditure is low, the methodology can be employed by

modestly funded developers.

The economic and technical arguments relating to an attacker’s mo-

tivations to attack have also changed. With operational expenditure

far exceeding capital costs, amateur hackers (and other time-rich but

cash-poor adversaries) must be considered to be viable threats. Con-

sequently, the risk model used when prescribing defensive strategies

for low-cost devices needs to be recalibrated.

234 Chapter 7. Security Impact

7.1. Implications

During this investigation, we have established two key features: One, within a

readily controlled environment, fault induction is reliably repeatable, and two, this

can be achieved with modest resources.

While some errors are random, e.g. SEUs, control of the error stimulus induces

errors that show consistent repeatable properties. Of the controllable parameters,

two play a significant role in determining the response; they are i) Timing and ii)

Location. The other two controllable parameters are less important. iii) Duration of

a stimulus does not significantly alter the response, but longer durations do appear

to reduce the power required to induce an error. iv) Power is effectively binary. That

is to say, once a threshold is reached, an error occurs, but the nature of the error

remains unaffected by the magnitude power.

The ability to choose the timing of an error and to confidently predict its effect is

a serious threat to any application. Similarly, the ability to achieve this with readily

available tools has multiple implications.

7.1 Implications

The most notable outcomes of this investigation have been identifying error repeata-

bility and demonstrating the low-cost threshold for accessibility to the tools needed

to investigate error injection.

Using the tools developed here, we have demonstrated a powerful and efficient

attack that exploits the repeatability of error responses. These results also help

defenders define and refine defences. Furthermore, the low cost of these tools makes

them accessible to the whole spectrum of application developers.

7.1.1 Accessibility

A surprising outcome of this study has been the realisation that the tools required to

perform semi-invasive attacks are widely available. While other researchers focussed

on ever more powerful equipment and analysis in the hope of accurately defining the

precise effects of an error, this study has shown that such precision is unnecessary.

Chapter 7. Security Impact 235

7.1. Implications

𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒

𝑃𝑜𝑤𝑒𝑟

𝑆𝑚𝑎𝑙𝑙 𝐿𝑎𝑟𝑔𝑒

𝐿𝑜𝑤

𝐻𝑖𝑔ℎ

$

$

𝑁
𝑒𝑤
𝐸
𝑞𝑢𝑖𝑝𝑚

𝑒𝑛𝑡 𝐶
𝑜𝑠𝑡

$ℎ𝑖𝑔ℎ

$𝑙𝑜𝑤

Figure 7-1: Equipment Availability

Many characteristic errors can be induced using relatively imprecise focus and with

modest laser power. These are the errors an attacker will try to exploit first.

High power lasers cost more and are more difficult to control accurately. Similarly,

fine focus requires expensive optics and vibration-free support for the equipment.

Conversely, as illustrated in Figure 7-1, low-power and imprecise focus are relatively

low-cost. These properties are readily attainable using easily obtained equipment.

We must therefore assume a larger number of potential attackers exist.

From the defender’s perspective, a device can be characterised using readily avail-

able samples while operating it in its normal release mode, i.e. without attached

debuggers. An appropriate fault model can be defined from the characterisation,

which can then be used to prescribe relevant defences. Others, e.g Dureuil [62]*, have

observed that, from the attacker’s perspective, it is the error effect that counts and

not the detail of the mechanism. The methodology used here demonstrates that this

observation is equally applicable to defenders. It also undermines the premise that

a detailed understanding of a device’s ISA is a prerequisite for effective software de-

fences. Defences can be tested using the same equipment that was used to perform

the characterisation. It may sound simple and obvious, but the approach is far from

*"While the exact fault is not of interest when attacking a single application (only the success
of the attack matters). . . " — Dureuil 2015

236 Chapter 7. Security Impact

7.1. Implications

common industrial practice.

Multi-pulse attacks had been presumed to be infeasibly expensive and complicated

[23, 118]. We can confidently dismiss this line of argument, and developers must

consider multi-pulse attacks as part of their defensive strategy.

The important characterisation phase can be performed at a low cost without

needing access to the intended target sample. This lack of obstacles means an attacker

can perform much of the required preparation work without the risk of damaging

samples of the target and can eliminate the risk of being discovered while doing

so. The low-cost and low-risks involved in attacking a target mean even modest

rewards may justify the expense of an attack. Many more devices should therefore

be considered vulnerable.

Defenders cannot rely on expensive or generally inaccessible equipment to deter

attackers.

7.1.2 Repeatability

Most obviously, repeatability, or Test–Retest Reliability, invalidates earlier studies

that assumed random events and used Monte-Carlo simulation techniques. It is the

difference between navigating a path to a destination or relying on Brownian motion

to get there. If deterministic fault injection can be combined with knowledge of an

executing program, then efficient strategies can be devised to modify that program’s

outcome.

While the errors may be repeatable, their outcomes are not necessarily control-

lable. Characterisation of errors for a particular device identifies the properties of

errors, and these error responses then define the toolkit available to both attacker

and defender. An attacker will try to exploit the effects that will happen when under

attack. While at the same time, the defender uses those same properties to create

traps for erroneous behaviour and uses the uninfluenceable outcomes to guard critical

code. The importance of error characterisation as a first step when defining defences

cannot be overstated.

Chapter 7. Security Impact 237

7.1. Implications

Error repeatability is not unique to our chosen DUT, or our chosen fault induction

mechanism�. Other researchers have noted similar effects in other devices. The effects

are common to the semi-conductor materials and not a feature of the device design

implemented using them. While the consequence of an error will relate to the device’s

design, it is unavoidable that a device can be perturbed and that the perturbation

effect will be repeatable. Different samples of a particular type of device behave

similarly. Thus characterisation can be performed on a per type basis, and defences

can be tailored accordingly.

7.1.3 Attackers

Characterisation identifies behavioural weaknesses and discovers how, when and where

to apply a stimulus that induces an error. This knowledge is transferable to other

samples of the same device. Having identified a weakness, an attacker will then seek

to exploit it. This process is greatly simplified with the equipment developed during

this study. The low cost also means the techniques are available to a wider audience.

It has been recognised for a long time that individual errors are sufficient to break

undefended code. Undefended code has always been regarded as vulnerable, but

repeatability makes this more concerning. Predictable attack outcomes help define

search strategies for locating weaknesses. In contrast to earlier random outcome fault

models, the attacker does not need to perform many repetitions of a stimulus before

testing an alternative. Search times are consequently reduced, providing the attacker

has a reliable method to synchronise fault injection with the executing code.

Defences that can resist multiple errors are significantly harder to defeat without

knowledge of the code being attacked. The difficulty here lies in the combinatorial

explosion occurring when searching for suitably timed patterns of multiple pulses.

There is little additional complexity involved in a multi-pulse attack and the defence

results from the increased time needed to search for an effective pulse pattern.

�Riviere [148] performed a similar characterisation on the ARM Cortex-M4 using EM pulses to
induce errors and to develop a target-specific fault model. Colombier [52] also identified instruction
skipping as the most readily exploitable error that is inducible in an ARM 𝜇𝐶.

238 Chapter 7. Security Impact

7.1. Implications

Where the precise instruction sequence within a defence is known, the Creeping

Barrage (Section 4.3) attack makes multi-pulse tolerant defences just as vulnerable

as undefended code. The attacker has to align a single event, delivery of a predefined

pulse pattern, with a vulnerable operation. This process is no more complicated or

time-consuming than using a single pulse against an undefended target.

7.1.4 Defenders

The characterisation that potentially assists an attacker is also the source of the de-

fensive mechanisms. Repeatability of errors means the defender can predict the error

response and insert traps for erroneous behaviour. Therefore, defences against single

errors are comparatively straightforward and inexpensive in terms of performance

and code volume. This is achieved by placing an application’s functional behaviour

so that errors bypass it rather than invoke it.

Small fragments of defended code can be tested with the same tools used in the

characterisation. Individual defensive code structures can be exhaustively tested.

Any flawed assumptions made by misinterpreting results in the characterisation stage

can be identified, and defences can be refined.

We have also demonstrated that defences can be built into a compiler, enabling

the systemic deployment of defences within an application. It also enables the inclu-

sion of defensive code sequences that would otherwise be impossible to achieve via

a regular compiler. Furthermore, this removes the opportunity for oversight by the

programmer. However, compiler-generated code introduces additional predictability

into the structure of defended code and potentially assists an attacker who can then

design a suitable pulse time template for a Creeping Barrage attack.

Liberal inclusion of defences appears to be the best defence against a Creeping

Barrage. A Creeping Barrage will probably trigger a trap before the perfect alignment

is identified. Therefore traps that modify a device’s future behaviour will stop a

barrage from progressing.

Chapter 7. Security Impact 239

7.1. Implications

Traps are vulnerable to errors too. It is essential that traps cannot be faulted into

returning; i.e. if they are not implemented as in-line code, they should be jumped to

rather than called.

7.1.5 Exploitations

Easily accessible tools for error induction offer opportunities to both attackers and

defenders. It is a concern that the outcome of this study may encourage attacks on

devices that would otherwise have been ignored. However, the ability to recognise

vulnerabilities and test defences significantly improves the pre-existing development

environment. Historically, uncertainty relating to the nature of errors has led to the

inefficient deployment of defences. Sometimes defences were ignored in the misguided

belief that attack would be difficult and uneconomic. Conversely, on occasions, exces-

sive defending resulted in inefficient code. This study has provided a workflow that

can identify the most significant threats and compare the efficacy of defences.

𝑃𝑟𝑜𝑗𝑒𝑐𝑡

𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑙𝑖𝑡𝑦

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒

𝑆𝑎𝑓𝑒

𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒

𝑆𝐸𝑈 𝑆𝐸𝑈

𝐴1
𝐴1, 𝐴2𝐴2

𝐴3

𝐴3, 𝐴4𝐴4

Figure 7-2: Device Vulnerability

Figure 7-2 shows how the perception of threats has evolved through the course

of this study. The initial Expected vulnerabilities were shown to be overly optimistic

after the early characterisation work. This work identified misconceptions about the

nature of induced errors leading to the Identified threat recalibration. The later work,

240 Chapter 7. Security Impact

7.1. Implications

evaluating defences and automating defence generation, corrects the misconceptions

and, to a large extent, restores the previously assumed range of vulnerabilities at-

tributable to differently equipped attackers.

By considering the adversaries described in section 2.2 and the spontaneous risk

of SEUs, we can see how the results of this study can be used to improve a device’s

resilience when under attack.

SEU Random single events — These rare, unpredictable events are akin to single

pulse attacks. As such, the historical defence techniques of crude double check-

ing values and decisions remain effective, and the device’s vulnerability does

not need to be reevaluated.

A1 Clever Outsiders—Knowledge of the likely nature of an error response assists

this class attacker when making the educated guesses required to perpetrate

an attack. The reliable repeatability of responses also assists the outsider by

speeding up the searches for effective pulse patterns. Therefore, the device is

more suspectable to attack than had previously been assumed.

The same knowledge assists the defenders. Appropriate use of the defences

discussed in this study, combined with the compiler’s ability to apply them

universally, shows it is possible to improve the resilience of a device against this

group of attackers.

A2 Script Kiddies — Attack via this mechanism presumes a vulnerability has

been discovered and made exploitable. All other attack classes have been iden-

tified as more potent than previously supposed; therefore, the likelihood of an

attack being automated will also increase. The predictable nature of compiler-

generated defences means that once the parameters for an attack have been

identified, it is likely that the same parameters will be applicable to other parts

of the device’s code; therefore, the incentive to generalise and automate an

attack is similarly increased.

A3 Knowledgeable Insiders— Combining predictable error responses with inti-

Chapter 7. Security Impact 241

7.1. Implications

mate knowledge of the code makes this the most potent threat. Knowing exactly

which instructions need to be skipped makes attacks quick and efficient.

The exploitable skipping weakness can be eliminated for low numbers of pulses,

but large numbers of consecutive skips can be prescribed if the code under

attack is known. Thus, even after applying improved defences, it is likely that

this threat is more potent than has previously been assumed.

A4 Funded Organizations — In the absence of physical defences, attacks by

well-funded organisations have historically been the most biggest threat to a

𝜇𝐶. Knowledge of existing weaknesses increases the device’s vulnerability to

the extent that it simplifies or prioritises the deployment of different attack

mechanisms. Defences against the predominant error category (skipping in this

instance) will restore the status quo, but this group of attackers will always be

amongst the most capable adversaries.

7.1.6 Development, Review and Certification

The study has identified additional skills required to generate secure code when using

the currently available development tools. The specialist skills required by developers,

therefore, need to be reconsidered; Figure 7-3.

𝑃𝑟𝑜𝑗𝑒𝑐𝑡

𝑆𝑘𝑖𝑙𝑙𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒

𝑁𝑜𝑟𝑚𝑎𝑙

𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑

𝐼𝑜𝑇
𝐼𝑜𝑇

𝑆𝐶

𝑆𝐶

Figure 7-3: Development Skills

242 Chapter 7. Security Impact

7.1. Implications

SC Smart Cards and similar security controllers — Effective defences rely on code

structures that cannot be described in high-level languages. As a result, it has

become apparent that developers need to understand a device’s modes of failure

and implement defences in assembler language.

The defensive compiler developed during this study demonstrates that it is pos-

sible to isolate the developer from understanding the CFI errors and the need to

work with assembler code. However, specialist knowledge relating to a device’s

physical defences will still be required. Overall the speed and cost of develop-

ment can be improved while simultaneously reducing a device’s susceptibility

to attack.

IoT General Purpose 𝜇𝐶s — Devices relying solely on software defences will

require specialist skills to make them suitably secure. It is, however, unlikely

that the smart card industry’s discipline relating to documentation, traceability,

and test coverage will be required. With the adoption of a defensive compiler, it

is conceivable that adequate security can be automatically generated. Normal

development practices would be possible, providing the programmer was aware

of the ongoing need to verify arithmetic results.

The workflow implied by this study changes the emphasis of effort involved in

security review and certification of application code. Characterisation of error be-

haviour removes the uncertainty relating to defensive strategies and simplifies the

code review process. Furthermore, automated defensive code generation reduces the

need to verify the appropriate inclusion of defences.

The accuracy of the characterisation and the efficacy of individual defensive struc-

tures will become the focus of reviews. Both of which are more easily measured than

defences against unclear/imprecise attacks or the identification of undefended critical

code.

Chapter 7. Security Impact 243

7.2. Strategies

7.2 Strategies

The techniques and workflow described here are, to a large extent, self-correcting.

Using physical attacks to both develop and test a fault model avoids the pitfalls

experienced in earlier work. Exhaustive testing of defences based on simulations

of a potentially flawed fault model (Theißing [173] and others) gives unverifiable

results; while similarly flawed assumptions about error behaviour (Moro [118]) have

invalidated attempts at formal verification of defence efficacy. The ability to readily

characterise a device and test defences means effort is expended on relevant defences,

and errors introduced while implementing defences can be easily identified. Most

importantly, the workflow demonstrated here identifies the most easily created and

most numerous errors. The limited budget for defences can then be spent covering

the most relevant error scenarios.

The approach is not infallible. For example, with our DUT, the assumption that

skipped instructions can be modelled as Nop instructions is simplistic, and some of

the errors identified in Section 6.3 are only explainable if the number of errors exceeds

the number of pulses injected. The most likely cause of this would be if the presumed

Nop performed a meaningful instruction and modified the 𝜇𝐶’s state. The previously

noted reliable repeatability of errors, in general, would suggest they should be more

common than the results suggests. However, the detailed characterisation described

in Section 3 found very few examples of register corruption. Where code is liberally

defended, a hunt for the rare exploitable exceptions will trigger many other traps

during the search.

Handling common errors is more important than detecting comparatively rare

edge cases. Two competing actions must be considered when a fault is detected and

a trap is invoked.

1. The trap itself is vulnerable to errors. It would therefore be prudent to freeze

operation of the 𝜇𝐶 instantly, thus preventing additional faults from negating

the trap. Many of the crashes and untrapped errors witnessed in this study

have been traced to faults induced in the trap recording and management code.

244 Chapter 7. Security Impact

7.2. Strategies

2. The Creeping Barrage attack described in Section 4.3 involves sweeping a pulse

pattern over executing code until the pattern of induced errors negates the

defence. It is likely that faults will be detected during the sweep and before the

perfect alignment is found. The most practical defence against this attack is to

record these early detected faults and lock the 𝜇𝐶. It becomes advantageous to

remember a history of suspected attacks, and this is most efficiently done after

a fault has been trapped.

With robust mechanisms in place to identify CFI errors, the vulnerability now lies

in the mechanism used to react to detected faults. The recording of an error event,

after its discovery, must be performed while under attack, and failure to record an

attack leaves the 𝜇𝐶 vulnerable to Creeping Barrage attacks. The alternative strategy

of pre-recording a potential attack and later clearing it if it failed to materialise

imposes a performance penalty on all operations and would be impractical in most

situations.

For CFI defences, the simple defensive strategy of resisting two induced errors

can be implemented in a compiler’s code generator. Resisting two errors means an

attacker needs to induce three or more perfectly timed errors. Exhaustive searching

of unknown code will be time-consuming and Creeping Barrage is the most likely

attack strategy.

Automated generation of such defensive code avoids accidental omission and moves

the responsibility for the defence from the programmer to the tool-set. In practice,

this means products that would otherwise be inadequately defended can have their

defences significantly strengthened. History shows that simple products, developed

on a tight budget, provide a back-door into otherwise secure environments. Deskilling

the development of secure code for these devices is a realisable benefit.

Chapter 7. Security Impact 245

7.2. Strategies

246 Chapter 7. Security Impact

Chapter 8

Conclusions and Further Work

Contents

8.1 Original Goals . 250

8.1.1 Characterization . 250

8.1.2 Repeatability . 252

8.1.3 Defence Refinement . 254

8.1.4 Defence Automation . 256

8.2 Future Research Directions . 258

8.2.1 Logistical Obstacles . 258

8.2.2 Pursuable Properties . 259

8.2.3 Improving the Compiler 260

8.3 The Last Word . 261

247

The results and discoveries of this study are reviewed in the context

of the original research questions. The findings relating to a device’s

behaviour under error conditions are at odds with what was the pre-

sumed but generally accepted behaviour at the time the study began.

These findings make it possible to generate more realistic error mod-

els, which are invaluable when prescribing effective defences.

Unfortunately, the predictability of error responses can also benefit

an attacker, and this emphasises the importance of obtaining reliable

device characterisation data so that the defender can ensure defences

fail-safe when under attack.

Finally, as with most discoveries, new questions arise. Properties

that were not, or could not, be pursued here are considered for future

investigation.

248 Chapter 8. Conclusions and Further Work

This study started with the premise that simulating fault induction in 𝜇𝐶s was

unreliable and misunderstood by programmers. Consequently, software defences were

likely to be untrustworthy. This view was borne out by the conflicting advice received

during security reviews of coded defences and the contemporary trend of modelling

error outcomes as random effects. Defence strengths were measured using software

emulation of devices and monte-carlo simulations of error injection [173].

The underlying suspicion was that instruction-level simulation would fail to ac-

count for subtle differences in error response expected to exist between instructions.

Hardware Description Language (HDL) based simulations could simulate errors down

to a gate level. However, they could not realistically account for multiple gate er-

rors without knowing which set of gates to simulate errors within, and that required

knowledge of the relative proximity of individual transistors within the target. Man-

ufacturers would not willingly disclose such details, and reverse engineering of Very

Large-Scale Integration (VLSI) devices is prohibitively expensive. Therefore it was

assumed that a detailed characterisation of error responses for each instruction would

be required. This approach is the logical extension of the mechanisms that permit

bit-level memory editing [55]. Ever finer focus on ever-smaller components, yielding

specific errors with the expectation that an attacker could exploit these errors. This

is more or less the rationale driving the interest in ISA and the desire to get a detailed

understanding of the mechanisms leading to specific faults [139].

In a world where faults can be separately induced in each individual transistor

within an IC, there is no limit to the range of error effects that are theoretically achiev-

able. However, the practical obstacles are considerable and possibly insurmountable

with the current generation of tools. They include identifying the appropriate set

of transistors to perturb, perturbing just this set, and synchronising such perturba-

tions with an executing program. These obstacles dictated the alternative strategy

of physically inducing errors in executing instructions, collecting the device’s state

post-error, and then attempting to identify the error effects. This approach would

search for easy to induce exploitable effects rather than trying to engineer hard to

induce predicted effects.

Chapter 8. Conclusions and Further Work 249

8.1. Original Goals

The surprising outcome of this study has been that a straightforward fault model

can describe most observable errors. In this case, instruction skipping with a Nop

replacing the skipped instruction. Failure to read memory accurately, process arith-

metic correctly or update memory can be modelled as skipped instructions. Branches

can be misdirected by failure to set up the appropriate conditions or by skipping the

instruction entirely. With such a simple fault model, instruction-level simulation is

efficient and realistic. This observation contradicts many of the assumptions that

initiated this investigation.

8.1 Original Goals

The original research questions that instigated this study, and the assumptions that

they were based upon, are reviewed here, taking into consideration the results of the

proceeding experiments. We had four basic questions at the start of this investigation.

8.1.1 Characterization

Do induced errors have repeatable characteristics that would assist

developers in predicting a device’s likely modes of failure? (RQ1)

Where the laser is focussed changes the error response, and for large areas of

the DUT’s surface, we detected no error response at all. This lack of effect is not

surprising as the DUT, a micro-controller, contains peripherals that were not active

at the time of the experiments. The widely used practice of quickly scanning the

whole chip surface identifies the sensitive areas worthy of further investigation. The

specific instruction executing while the laser pulse fires is not particularly important

during this first pass zone identification step. The critical test property is the ability

to detect faults in the DUT’s state. Checksums of memory blocks and register dumps

provide enough information to recognise areas worthy of deeper investigation.

The initial expectations were that combining very precise pulse injection times

and fine focus would cause specific changes in an instruction’s behaviour, and differ-

ent instruction classes would show distinctive failure modes. For example, making

250 Chapter 8. Conclusions and Further Work

8.1. Original Goals

conditional jumps unconditional or preventing the status flags from being updated.

The reasoning here reflects the same logic that drives the interest in ISA modelling. It

is reasonable to assume that if individual transistors can be affected (as demonstrated

by Courbon [55]), individual instructions can then be made to misbehave. However,

the number of possible instructions, combined with the number of possible starting

states and the number of active transistors that need testing, will make this approach

infeasible without detailed knowledge of both the schematic design and the physical

layout of the DUT. For purely practical reasons, not all individual transistors can

be investigated, or multiple closely located transistors must be hit simultaneously.

Either way, the effects will no longer be finely controllable.

With a very finely focused laser, we noted that the instruction skipping effect

demonstrated here in section 3.3.5.2.1 could be achieved at one location with a pulse

timed for the second quarter-cycle of the CPU clock. The same effect occurred in the

third quarter cycle at a nearby location. When using a larger spot size encompassing

both locations, the effect occurred in both the second and third quarter cycles. This

observation shows that it is unnecessary to focus on ever-smaller features or improve

the pulse’s temporal accuracy. High-precision, and presumably expensive equipment,

is not a prerequisite to mount a viable attack on unshielded devices. This observation

contrasts with the ISA driven trend for additional precision and control, showing that

neither lower precision equipment, nor ignorance of the DUT’s microscopic layout,

are obstacles to an attacker.

For one zone in particular on the DUT, the consistency of the error responses,

across the whole range of instruction types, led to the realisation that it was not

the currently executing instruction that was being perturbed but the pre-fetch of the

next one. The ability to exploit this is very powerful indeed. Many of the predictable

properties of ISA level attacks can be achieved via instruction skipping. Preventing

memory write-back, corrupting memory reads, forcing faulty arithmetic computation

or neutralising jumps; all can be replicated by instruction skipping. To create an

arithmetic error, it does not matter if the read, maths, or write-back fails; the result

will be corrupt either way.

Chapter 8. Conclusions and Further Work 251

8.1. Original Goals

The purpose of Characterisation is to define a fault model that can then be used

to prescribe a defence strategy. Such a fault model must be a compromise between

the theoretically possible and the realistically achievable. Models that map specific

effects to manipulating individual transistors will be too complicated to exploit eco-

nomically. Furthermore, attacks based on such scenarios have near-insurmountable

practical difficulties relating to intra-cycle laser realignment and synchronisation with

an executing CPU. Run-time software defences are unlikely to be effective on a device

that can be manipulated to this extent.

The techniques and equipment developed here enable the characterisation of 𝜇𝐶s.

Readily available sacrificial samples are used in non-debug mode, replicating the en-

vironment of a deployed device. For different 𝜇𝐶s, the behaviour under attack may

differ and lead to alternative fault models. However, the evidence of reliable repeata-

bility of effect across differing 𝜇𝐶 architectures [148] and via different perturbation

mechanisms [52] suggests the techniques can be applied generically to 𝜇𝐶s that are

available as engineering samples. For our chosen sample, we have shown that Instruc-

tion Skipping, modelled as the arbitrary replacement of instructions with Nop, is a

realistic fault model, despite its apparent simplicity.

8.1.2 Repeatability

Is it practical for attackers to induce multiple errors into software

executing on a 𝜇𝐶 and exploit their effects without needing access to

sophisticated laboratory equipment? (RQ2)

The answer proved to be yes; and, the unsophisticated, home constructed ap-

paratus proved to be significantly more versatile than the expensive equipment it

replaced. The characterisation exercise was carried out using an industrial YAG laser

[124]. The presumption was that relatively high power and quality optics were re-

quired. In practice, however, this equipment has drawbacks that make it unusable for

this investigation. Foremost it delivers its energy in a very intense short pulse, which

involves a prolonged inter-pulse recharge time. This recharge time limits the pulse

252 Chapter 8. Conclusions and Further Work

8.1. Original Goals

repetition rate to approximately 50 Hz. Critically, as demonstrated in Table 3.10, it

had been noted that focus and very high power were not limiting requirements for

inducing one-off repeatable errors. What was missing was the ability to generate laser

pulses at or above the rate of the DUT’s execution clock.

The most difficult problems encountered were purely engineering issues. Switching

relatively high currents on and off for precise short intervals caused inevitable power

spikes and reverse voltages. The problem had already been solved in the LIDAR

world, and we were able to repurpose existing solutions. Similarly, getting a timing

signal from the circuitry close to the DUT to the laser, mounted on the microscope’s

eye-piece, involved using techniques common in the fast network and USB world. The

resulting equipment, described in Section 4.1, enabled us to investigate all the points

we were seeking to demonstrate.

Lower power for a more extended period achieves the same repeatable effects with

significantly less energy input per fault. We could also repeat the categorisation

experiments using low-quality optics and obtain the same error response behaviour.

Therefore difficulty of access to expensive and hard to obtain tools is not a defence

against semi-invasive fault attacks. The cost of equipment to attack a device has been

reduced from many tens of thousands of pounds to just a couple of hundred pounds,

making the limiting factor the operational cost of manpower and time. For amateur

hackers in particular, time also has a relatively low cost, and reward is often measured

in kudos within their peer group. Consequently, the attacker’s cost to benefit ratio

versus the manufacturer’s reputational and financial liabilities need to be reassessed.

The implication is that many more devices should now be considered vulnerable.

Modest rewards do not require excessive investment.

The new equipment also enabled us to demonstrate that error effects that are

repeatable when induced in isolation are also repeatable on consecutive instructions.

There is no observable after-effect that modifies the effect of a second, closely timed,

error injection stimulus. This behaviour had been speculated upon (Barenghi [23],

Moro [118]), but exploitation has been dismissed as impractical. Our demonstration in

Section 4.2, directing execution through a matrix of branch instructions to a specified

Chapter 8. Conclusions and Further Work 253

8.1. Original Goals

outcome, is the first, and possibly only, published example [95] of this behaviour.

Here, up to four pulses, delivered at pre-determined intervals, guide the execution

path to a specified end-point. Any one of the sixteen possible outcomes can be

achieved with the appropriate pulse pattern.

Predictable repeatability provides a new technique for efficiently exploiting multi-

pulse attacks; this Creeping Barrage is demonstrated in Section 4.3. If the structure

of a vulnerable code fragment is known at the instruction level, then, in many cases,

a pre-calculated pattern of pulses can be defined to make it fail, thereby neutralising

simple defences. A programmer’s stylistic habits, or deterministic output from com-

pilers, mean that predictable code fragments will repeatedly occur, and therefore pulse

pattern templates can be defined to break them. These pulse patterns can be exer-

cised against relatively large code sections, and knowledge of the larger-scale structure

or implementation is unnecessary. A single pass, testing at each time interval over

the executing code sample, exploits multi-pulse attacks without the combinatorial

explosion that occurs when testing all variations of multiple pulses. The ease with

which this can be achieved was demonstrated with an attack on Speck described in

Section 4.3.

8.1.3 Defence Refinement

Can a better understanding of a device’s modes of failure be trans-

lated into improved security via targeted software countermeasures?

(RQ3)

The characterisation experiments have shown the types of failures that can be

expected from a laser pulse injection attack on the DUT. The techniques are straight-

forward and can be utilised on any generic 𝜇𝐶. The repeatability experiments have

also confirmed that these single error effects can be sequentially combined to defeat

defences that use repetition and comparison as a defence. Knowing this enables a

programmer to plan accordingly. Since it is easier to skip a conditional jump in-

struction than to take the jump inappropriately, it is wise to place protected code at

254 Chapter 8. Conclusions and Further Work

8.1. Original Goals

the branch destination rather than as the fall-through behaviour to be executed after

branch-not-taken. For testing arithmetic results, simple repetition of a calculation

is likely to be weak. The repeatability of injected errors suggests that the second

calculation would be identically corruptible and may lead to the same erroneous re-

sult. A wise programmer would modify the arithmetic of the recalculation to ensure

synchronised errors do not yield synchronised erroneous results.

A replacement or supplementary question would be — How much control does

the programmer have to influence the executable code?

Testing this question led to some surprising results. After testing a wide range

of defences, in Section 5.2, it is apparent that many factors are at play, and the

application programmer cannot directly address all of the weaknesses. Analysis of

failed defences shows several prominent features that are regularly overlooked when

code is reviewed during security certification.

� Optimising compilers eliminate redundancy — Double testing of states, dupli-

cated calculations, and logically unreachable code may get eliminated from the

executable image. The only reliable solution is to reduce the compiler’s optimi-

sation level and suffer the consequence of slower and bigger binary images.

� Duplicated calculations invariably rely on a single comparison — No matter how

carefully the calculations are performed to prevent duplicate error injection, the

two results ultimately need to be compared. Errors injected into the comparison

process are the Achilles heel of most redundant-code defences.

� Induced errors fall into two categories — Abnormal control flow and Normal

flow with faulty data. Hybrid defences that address both issues are significantly

stronger than the sum of their parts.

� Some defences cannot be implemented in the syntax of the source code lan-

guage — Ensuring protected code does not follow as the default behaviour of

an untaken conditional branch is impossible to guarantee when a compiler may

reorder some code blocks and inline others.

� Code that traps errors is itself vulnerable to errors — This is perhaps the

Chapter 8. Conclusions and Further Work 255

8.1. Original Goals

most extreme example of the above issue. Branching to a shared error han-

dler after detecting an error frequently leads to the situation where a skipped

branch-to-error results in the normal continuation of the program. Negating

the proceeding defence entirely.

While code may be vulnerable and some aspects of the resulting executable bi-

nary difficult to predict, the most reassuring feature is that testing of defences is

uncomplicated and inexpensive. Developers, armed with equally powerful tools as

the attackers, have a significant advantage in this respect. The ability to selectively

test and refine defences is a capability that has hitherto only been available to the

best-equipped research laboratories and development houses. We have demonstrated

a viable development process of categorisation, implementation, testing and refine-

ment that can be adopted without significant capital expense.

8.1.4 Defence Automation

Is it practical to automate the generation of defensive measures

within a 𝜇𝐶’s software development tools? (RQ4)

Many commercially deployed compilers for 𝜇𝐶s are based on GCC, or increasingly

on LLVM. They have been repeatedly improved and refined and are the product

of many authors and many man-years of expert development. Therefore, the first

question is, could a one-off bespoke development generate code of comparable quality?

The reality is that most of the expert development effort has focussed on optimisations

that negate software defences. Optimisations need to be switched off to get executable

code that retains source-level defences. This necessary and unavoidable downgrading

of the compiler’s capabilities is frequently overlooked, and when recognised, much of

the power of state-of-the-art tools is wasted.

The output from the compiler developed for this project, DCC, compares favourably

with the unoptimised output from the DUT’s GCC compiler. Therefore, adopting a

home-grown compiler does not imply unmanageable volumes of inefficient code will

result. Code with no source-level defences compiled with DCC is smaller and faster

256 Chapter 8. Conclusions and Further Work

8.1. Original Goals

than the necessarily unoptimised code generated by GCC from sources embellished

with defences. DCC’s executable is also more robust in resisting exhaustive attacks.

The most significant single benefit of having a customisable code generator is the

ability to insert defensive code structures automatically and to apply them univer-

sally. Compiler generated defences for simple code structures are significantly more

efficient than convoluted source code defences processed by a traditional compiler.

This removes the need for the application programmer to insert redundant code man-

ually and removes the opportunity for accidental omission. The approach provides

better defences, fewer errors and accelerated development times. All of which are

highly desirable features.

In many cases, such as detecting unexpected fall-throughs after skipped branch in-

structions, defensive code is not executed during normal operation. Therefore despite

increasing the code volume, it has a negligible impact on performance. When using

a traditional compiler and implementing defences within the source code, the addi-

tional tests in the defensive code are executed, resulting in performance degradation

and code expansion.

These results are highly encouraging, but they are still just proof of concept and

indicate greater benefits could be obtained in future. The defences implemented here

are all applied at the code generator stage. As such, the same instruction combinations

could be generated by the equivalent stage in one of the more sophisticated GCC or

LLVM compilers. The defences for CFI do not require any source code description

and should therefore be unaffected by the more aggressive optimisations performed

by the industrial-strength compilers.

Improved defences, in terms of both efficacy and code efficiency, can be achieved.

The low-cost laser workstation was used to identify vulnerabilities in the DUT. The

vulnerabilities defined a relevant fault model, and from this, appropriate defensive

code structures were proposed and tested using the same equipment. The most effec-

tive defences were then implemented within DCC to provide a DUT specific compiler.

In bringing together the results relating to error categorization, defence testing, and

efficient deployment, we demonstrated that this workflow is straightforward and elim-

Chapter 8. Conclusions and Further Work 257

8.2. Future Research Directions

inates many weaknesses inherent in current best-practice. In particular, it ensures the

appropriate choice of defensive structures and provides confidence relating to accurate

and complete defence deployment.

8.2 Future Research Directions

The work to date has identified a practical new approach to defensive coding. How-

ever, some questions remain unanswered, and some opportunities have not yet been

pursued. This section identifies some of these issues and speculates on their relevance.

8.2.1 Logistical Obstacles

We, unfortunately, lost access to the wet-lab and the safe environment for sample

preparation halfway through this investigation. While Health & Safety may not be a

significant issue for attackers, it does limit the opportunities for responsible organisa-

tions. With ample supplies of our chosen target pre-prepared, we chose to concentrate

on this device. Latterly, reports from other researchers have shown that similar effects

have been witnessed on other architectures. The strength of the argument presented

here relies on the transferability of the techniques to other targets. This appears to

be the case but, as of yet, has not been fully demonstrated.

ARM would be an obvious second target, given its ubiquity in embedded appli-

cations. Riviere [148] has already demonstrated that ARM shows repeatable error

characteristics and has defined an exploitable fault model for it. It may therefore be

more informative to look at an alternative target.

The other issue we were unable to peruse was using a rear-side attack with a

NIR laser. NIR from the rear-side has advantages because it is unobstructed by

metal layers and will enable a more comprehensive characterisation of a device. The

difficulties here relate to equipment setup, which is easier to overcome than we initially

expected. By using a CCD, NIR light is visible on a video display, so focus and

alignment should be solvable engineering problems. Standard microscope lenses are

optimised for visible light, so very fine focus may be difficult to achieve. However, we

258 Chapter 8. Conclusions and Further Work

8.2. Future Research Directions

have shown that exploitable error responses do not require fine focus. An attack via

the rear side may also simplify the sample preparation. The top side of a chip is very

fragile, and wet etching is the only practical way to avoid damage to the device. In

manufacturing, the chip is usually placed on a carrier to hold it in position while bond

wires are attached between it and the legs. The whole assembly is then encapsulated

in black plastic. Mechanical etching on the rear side can expose the carrier, which

can then be cut and removed without damaging the chip’s top surface or the bond

wires. Rear side attacks may remove the unfortunate obstacle we faced mid-project;

that of sample preparation.

8.2.2 Pursuable Properties

We have noted that a longer low-power pulse from a diode can substitute for the

very short, very powerful YAG pulse. We have also noted that the same effect can

sometimes be obtained by differently timed pulses at closely located positions on the

DUT. Presumably, this is catching a propagating signal at different stages of the

machine cycle. Where an effect can be induced in different areas at different times, a

laser spot encompassing both areas can induce the effect at both time intervals. This

leads to the question, would a beam focussed on either zone produce the same effect

if the pulse duration was extended to cover both time intervals?

This result would be interesting as it may mean longer pulses would be more

effective than many short pulses in triggering errors. In a clock synchronised circuit,

biasing the transistor for a longer period encompassing the critical moment may not

matter, and we could speculate that error induction would become even more reliable.

We identified and concentrated on a zone that gave consistent results and ignored

other areas that generated similar effects (akin to instruction skip) while being less

reliable. If an extended pulse does increase the reliability, then more of the DUT’s

surface may demonstrate exploitable errors. Consequently, the first stage early scan

(as seen in Figure 3-14) could be quicker to perform and would locate larger areas with

reliable error responses. Again, we speculate that lower precision in both targeting

and timing may prove to be readily exploitable.

Chapter 8. Conclusions and Further Work 259

8.2. Future Research Directions

Another exploitation of predictable and repeatable error effects would invoke hid-

den code. Stack smashing techniques aim to take control of an executing CPU by

injecting executable code, disguised as data, and invoking it by corrupting a return

address within the stack frame. Similarly, a developer could hide uncalled code within

an embedded application and invoke it via an execution error. Bukasa [47] identified

this risk and cited the unpredictability of errors as the factor that prevents exploita-

tion of such Fault Activated Backdoors. Hamadouche [82] has described a mechanism

to generate code that contains such a trojan and still passes byte-code verification on

a Java-Card. These researchers have addressed the issue of the payload’s creation and

delivery while identifying reliable invocation of the trojan code as the last remaining

obstacle. We have seen that this is not an obstacle; trojan code could be inserted

into an application with confidence that a prescribed error injection pattern will be

able to invoke it.

8.2.3 Improving the Compiler

By far, the most complicated parts of a compiler relate to the creation of the IR

along with the manipulations and optimisation performed upon it. Many of these

activities are independent of the source code language and the target instruction set.

Code generators inherit this universal behaviour while being intimately related to

the target device. This separation is ideal for exploiting the results of this inves-

tigation. Device-specific defences can be added to the only device-specific stage of

the compilation process. This study has demonstrated that the code generator, in-

dependent of the IR, can generate efficient defences. Therefore, it would be logical

to apply the techniques to a high-quality open-source compiler and benefit from its

more sophisticated optimisations.

The compiler defences part of this study have concentrated on CFI. However, in

the defences investigations, Section 5.2, we established that hybrid arithmetic and CFI

defences complement each other. Detecting faulty arithmetic relies on trustable test

and branch behaviour, while test and branch behaviour needs accurate data to inform

its decisions. Presumably, the subtle source-level semantics must have been preserved

260 Chapter 8. Conclusions and Further Work

8.3. The Last Word

through the IR stage. Compound operations, such as read with post-increment,

which if blindly repeated at source code level change a statement’s semantics, will

be sequenced within the IR’s register transfer description language. Therefore, it

may be practical to add redundant operations or employ shadows registers within the

target to generate defended arithmetic code safely. Implementing defensive arithmetic

operations within the code generator would potentially isolate the programmer from

all aspects of defensive coding.

8.3 The Last Word

The low-cost and relative ease of construction of our laser error injector suggest that

developers of IoT devices need to seriously consider the likelihood and consequences

of an attack on their products. This study should encourage IoT developers to use

defensive coding as normal practice, and in many cases, consider using devices with

physical defences against this category of attack. Such a paranoid outlook is crucial

because it must be assumed that these attack techniques are readily available to

criminals, malicious attackers, and amateur hackers.

The low-cost equipment makes device characterisation open to all interested par-

ties, not just the well-equipped laboratories. Characterisation demonstrates repeat-

able outcomes when injecting errors, and repeatable outcomes mean predictable be-

haviour when under attack. This predictability can be exploited by attackers who

can refine techniques on readily available samples before moving to meaningful tar-

gets. Predictable error responses can also guide the defender to identify relevant

defences and be confident about how those defences will respond when under at-

tack. These defences can also be efficiently encapsulated in a compiler, thus ensuring

full application-wide deployment, avoiding accidental oversight and the corresponding

need for meticulous independent review. For a given device, there should no longer be

uncertainty or confusion about which style of defensive code to deploy. Furthermore,

the previously unresolvable debates with security evaluators that inspired this study

(see page 26) can now be concluded.

Chapter 8. Conclusions and Further Work 261

8.3. The Last Word

262 Chapter 8. Conclusions and Further Work

Bibliography

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):1–40, 2009.

[2] Alfarez Abdul-Rahman. The pgp trust model. In EDI-Forum: the Journal of
Electronic Commerce, volume 10, pages 27–31, 1997.

[3] M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and A. Tria. How
to flip a bit? In 2010 IEEE 16th International On-Line Testing Symposium,
pages 235–239, 2010.

[4] AV Aho, R Sethi, and JD Ullman. Compilers: Principles, techniques, and tools,
second ed. 1985.

[5] Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes. Enhancing
java runtime environment for smart cards against runtime attacks. In European
Symposium on Research in Computer Security, pages 541–560. Springer, 2015.

[6] Altera Coorporation. Introduction to single-event upsets. White paper - WP-
01606-1.0, 2013. Accessed: 2021-01-06.

[7] Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices.
In International Workshop on Security Protocols, pages 125–136. Springer, 1997.

[8] Ross Anderson and Roger Needham. Programming satan’s computer. In Com-
puter Science Today, pages 426–440. Springer, 1995.

[9] AP Technologies Ltd. Photodiode theory of operation. http:

//www.aptechnologies.co.uk/support/photodiodes/photodiode-theory-

of-operation, 04 2014. Accessed: 2021-03-07.

[10] AP Technologies Ltd. Simon and speck on avr. https://github.com/

openluopworld/simon_speck_on_avr, 12 2016. Accessed: 2021-06-18.

263

http://www.aptechnologies.co.uk/support/photodiodes/photodiode-theory-of-operation
http://www.aptechnologies.co.uk/support/photodiodes/photodiode-theory-of-operation
http://www.aptechnologies.co.uk/support/photodiodes/photodiode-theory-of-operation
https://github.com/openluopworld/simon_speck_on_avr
https://github.com/openluopworld/simon_speck_on_avr

Bibliography

[11] Ars Staff. How security flaws work: The buffer overflow. https:

//arstechnica.com/information-technology/2015/08/how-security-

flaws-work-the-buffer-overflow/, August 2015. Accessed: 2020-12-31.

[12] Atmel Corporation. ATtiny441/ATtiny841 Datasheet – 8-bit AVR Microcon-
troller with 4/8K Bytes In-System Programmable Flash - Datasheet, 05 2014.
Rev. 8495H.

[13] Atmel Corporation. Datasheet, 2 2014. Rev.: Atmel-2549Q.

[14] Atmel Corporation. Security for intelligent, connected iot edge nodes. White Pa-
per, 2015. Rev.:Atmel-8994A-CryptoAuth-Security-for-Intelligent-Connected-
IoT-Edge-Nodes-WhitePaper_112015.

[15] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and J-P
Seifert. Fault attacks on rsa with crt: Concrete results and practical counter-
measures. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 260–275. Springer, 2002.

[16] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth and
black-box characterization of the effects of clock glitches on 8-bit mcus. In 2011
Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 105–114.
IEEE, 2011.

[17] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[18] Guillaume Barbu, Guillaume Duc, and Philippe Hoogvorst. Java card operand
stack: fault attacks, combined attacks and countermeasures. In International
Conference on Smart Card Research and Advanced Applications, pages 297–313.
Springer, 2011.

[19] Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on java
card 3.0 combining fault and logical attacks. In International Conference on
Smart Card Research and Advanced Applications, pages 148–163. Springer,
2010.

[20] Alessandro Barenghi, Guido Bertoni, Luca Breveglieri, Mauro Pellicioli, and
Gerardo Pelosi. Low voltage fault attacks to aes and rsa on general purpose
processors. IACR Cryptol. ePrint Arch., 2010:130, 2010.

[21] Alessandro Barenghi, Guido M Bertoni, Luca Breveglieri, Mauro Pelliccioli, and
Gerardo Pelosi. Injection technologies for fault attacks on microprocessors. In
Fault Analysis in Cryptography, pages 275–293. Springer, 2012.

[22] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault
injection attacks on cryptographic devices: Theory, practice, and countermea-
sures. Proceedings of the IEEE, 100(11):3056–3076, 2012.

264 Bibliography

https://arstechnica.com/information-technology/2015/08/how-security-flaws-work-the-buffer-overflow/
https://arstechnica.com/information-technology/2015/08/how-security-flaws-work-the-buffer-overflow/
https://arstechnica.com/information-technology/2015/08/how-security-flaws-work-the-buffer-overflow/

Bibliography

[23] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and
Francesco Regazzoni. Countermeasures against fault attacks on software im-
plemented aes: effectiveness and cost. In Proceedings of the 5th Workshop on
Embedded Systems Security, pages 1–10, 2010.

[24] Robert Baumann. Soft errors in advanced computer systems. IEEE Design &
Test of Computers, 22(3):258–266, 2005.

[25] Robert C Baumann. Soft errors in advanced semiconductor devices-part i: the
three radiation sources. IEEE Transactions on device and materials reliability,
1(1):17–22, 2001.

[26] Robert C Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and materials reliability, 5(3):305–
316, 2005.

[27] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, François Poucheret,
Bruno Robisson, and Philippe Maurine. Contactless electromagnetic active
attack on ring oscillator based true random number generator. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
151–166. Springer, 2012.

[28] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The simon and speck lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference, DAC ’15,
New York, NY, USA, 2015. Association for Computing Machinery.

[29] Friedrich Beck. Integrated circuit failure analysis: a guide to preparation tech-
niques. John Wiley & Sons, 1998.

[30] Robert Bellinger. Scientific imaging: Near-ir microscopes image through silicon
without damaging the finished product. https://www.laserfocusworld.com/
optics/article/16548175/scientific-imaging-nearir-microscopes-

image-through-silicon-without-damaging-the-finished-product, 01
2017. Accessed: 2021-03-07.

[31] Noemie Beringuier-Boher, Marc Lacruche, David El-Baze, Jean-Max Dutertre,
Jean-Baptiste Rigaud, and Philippe Maurine. Body biasing injection attacks in
practice. In Proceedings of the Third Workshop on Cryptography and Security
in Computing Systems, pages 49–54, 2016.

[32] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, pages 513–525, 1997.

[33] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Annual international cryptology conference, pages 513–525. Springer,
1997.

Bibliography 265

https://www.laserfocusworld.com/optics/article/16548175/scientific-imaging-nearir-microscopes-image-through-silicon-without-damaging-the-finished-product
https://www.laserfocusworld.com/optics/article/16548175/scientific-imaging-nearir-microscopes-image-through-silicon-without-damaging-the-finished-product
https://www.laserfocusworld.com/optics/article/16548175/scientific-imaging-nearir-microscopes-image-through-silicon-without-damaging-the-finished-product

Bibliography

[34] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the
advanced encryption standard (aes). In International Conference on Financial
Cryptography, pages 162–181. Springer, 2003.

[35] Mishap Investigation Board. Mars climate orbiter mishap investigation board
phase i report november 10, 1999, 1999.

[36] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance
of checking cryptographic protocols for faults. In International conference on
the theory and applications of cryptographic techniques, pages 37–51. Springer,
1997.

[37] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, pages 37–51, 1997.

[38] Richard Bornat. Phases and passes. In Understanding and Writing Compilers,
pages 8–21. Macmillan International Higher Education, 1979.

[39] Jakub Breier, Xiaolu Hou, and Yang Liu. Fault attacks made easy: Differential
fault analysis automation on assembly code. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 96–122, 2018.

[40] Jakub Breier, Dirmanto Jap, and Chien-Ning Chen. Laser profiling for the
back-side fault attacks: with a practical laser skip instruction attack on aes.
In Proceedings of the 1st ACM Workshop on Cyber-Physical System Security,
pages 99–103, 2015.

[41] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz, Quentin Me-
unier, and Son-Tuan Vu. Fault attack vulnerability assessment of binary code.
In Proceedings of the Sixth Workshop on Cryptography and Security in Com-
puting Systems, pages 13–18, 2019.

[42] Sébastien Briais, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain Guilley,
David Naccache, and Thibault Porteboeuf. Random active shield. In 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 103–113.
IEEE, 2012.

[43] Dennis M. Ritchie Brian W. Kernighan. The C Programming Language, Ansi
C, Second Edition. Prentice Hall, 1988. isbn: 0-13-110362-8.

[44] Brendan Bridgford, Carl Carmichael, and Chen Wei Tseng. Single-event upset
mitigation selection guide. Xilinx Application Note, XAPP987 (v1. 0), 2008.

[45] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In International workshop on cryptographic hardware and
embedded systems, pages 16–29. Springer, 2004.

266 Bibliography

Bibliography

[46] Julien Brouchier, Tom Kean, Carol Marsh, and David Naccache. Temperature
attacks. IEEE Security & Privacy, 7(2):79–82, 2009.

[47] Sebanjila K Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay.
Let’s shock our iot’s heart: Armv7-m under (fault) attacks. In Proceedings
of the 13th International Conference on Availability, Reliability and Security,
pages 1–6, 2018.

[48] Wayne Burleson, Shane S Clark, Benjamin Ransford, and Kevin Fu. Design
challenges for secure implantable medical devices. In DAC Design Automation
Conference 2012, pages 12–17. IEEE, 2012.

[49] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. Control-flow integrity: Precision, security, and
performance. ACM Computing Surveys (CSUR), 50(1):1–33, 2017.

[50] George K Celler and Sorin Cristoloveanu. Frontiers of silicon-on-insulator. Jour-
nal of Applied Physics, 93(9):4955–4978, 2003.

[51] Chien-Ning Chen and Sung-Ming Yen. Differential fault analysis on aes key
schedule and some countermeasures. In Australasian Conference on Information
Security and Privacy, pages 118–129. Springer, 2003.

[52] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain Moëllic,
Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced single-bit faults
in flash memory: Instructions corruption on a 32-bit microcontroller. In
2019 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 1–10. IEEE, 2019.

[53] Common Criteria. Common criteria for information technology security eval-
uation - part 1: Introduction and general model version 3.1 rev.5. https:

//www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf, 04
2017. Accessed: 2020-12-18.

[54] Jean-Sébasticn Coron, Paul Kocher, and David Naccache. Statistics and secret
leakage. In International Conference on Financial Cryptography, pages 157–173.
Springer, 2000.

[55] Franck Courbon, Philippe Loubet-Moundi, Jacques JA Fournier, and Assia
Tria. Adjusting laser injections for fully controlled faults. In International
workshop on constructive side-channel analysis and secure design, pages 229–
242. Springer, 2014.

[56] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
guard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In USENIX security symposium, volume 98, pages 63–78. San Antonio, TX,
1998.

Bibliography 267

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf

Bibliography

[57] Ronald De Keulenaer, Jonas Maebe, Koen De Bosschere, and Bjorn De Sutter.
Link-time smart card code hardening. International Journal of Information
Security, 15(2):111–130, 2016.

[58] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, Philippe Orsatelli,
Philippe Maurine, and Assia Tria. Injection of transient faults using electro-
magnetic pulses-practical results on a cryptographic system-. IACR Cryptol.
ePrint Arch., 2012:123, 2012.

[59] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Elec-
tromagnetic transient faults injection on a hardware and a software implemen-
tations of aes. In 2012 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, pages 7–15. IEEE, 2012.

[60] Nachum Dershowitz and Edward M Reingold. Calendrical calculations. Soft-
ware: Practice and Experience, 20(9):899–928, 1990.

[61] Bipin C. Desai. Iot: Imminent ownership threat. In Proceedings of the 21st
International Database Engineering & Applications Symposium, pages 82–89.
Association for Computing Machinery, 2017.

[62] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens, Cécile Dumas, and
Jessy Clédière. From code review to fault injection attacks: Filling the gap
using fault model inference. In International conference on smart card research
and advanced applications, pages 107–124. Springer, 2015.

[63] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis
on aes. In International Conference on Applied Cryptography and Network
Security, pages 293–306. Springer, 2003.

[64] Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, and Assia Triaz.
Reproducible single-byte laser fault injection. In 6th Conference on Ph. D.
Research in Microelectronics & Electronics, pages 1–4. IEEE, 2010.

[65] EMVCo. LLC. Emv integrated circuit card specifications for payment systems
book 2 security and key management version 4.3, 2011.

[66] EMVCo. LLC. Issuer and application security guidelines - version 2.6. https:
//www.emvco.com, 08 2018. Accessed: 2020-12-18.

[67] Luis Entrena, Mario García-Valderas, Almudena Lindoso, Marta Portela-
Garcia, and Enrique San Millán. Fault injection methodologies. In Radiation
Effects on Integrated Circuits and Systems for Space Applications, pages 127–
144. Springer, 2019.

[68] Dana Ford. Cheney’s defibrillator was modified to prevent hacking. CNN News,
2013.

268 Bibliography

https://www.emvco.com
https://www.emvco.com

Bibliography

[69] Peter G. Putin’s fsb hacked once again: Russia’s new cyber
weapon aimed to spy on every device exposed! Tech Times:
https://www.techtimes.com/articles/248256/20200322/putins-fsb-

hacked-once-again-russias-new-cyber-weapon-aimed.htm, 3 2020.
Accessed: 2021-01-15.

[70] Georges Gagnerot. Study of attacks on embedded devices and associated coun-
termeasures. PhD thesis, PhD thesis. University of Limoges, 2014.

[71] Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic cryptanalysis. Journal
of Cryptology, 30(2):392–443, 2017.

[72] Samuel Gibbs. Jeep owners urged to update their cars after hackers take remote
control. The Guardian, https://www.theguardian.com/technology/2015/
jul/21/jeep-owners-urged-update-car-software-hackers-remote-

control, 6 2015. Accessed: 2021-01-24.

[73] Samuel Gibbs. Raspberry pi 2 is camera shy: flash causes mini-computer to
switch off. The Guardian, https://www.theguardian.com/technology/2015/
feb/09/raspberry-pi-2-camera-flash-power-off, 2 2015. Accessed: 2021-
01-15.

[74] Christophe Giraud. Dfa on aes. In International Conference on Advanced En-
cryption Standard, pages 27–41. Springer, 2004.

[75] Christophe Giraud and Hugues Thiebeauld. A survey on fault attacks. In Smart
Card Research and Advanced Applications VI, pages 159–176. Springer, 2004.

[76] Christophe Giraud and Adrian Thillard. Piret and quisquater’s dfa on aes
revisited. IACR Cryptol. ePrint Arch., 2010:440, 2010.

[77] GlobalPlatform Inc. Global platform card specification - version
2.2.1. https://globalplatform.org/wp-content/uploads/2018/06/GPC_

Specification-2.2.1.pdf, 01 2011. Accessed: 2020-10-01.

[78] Sudhakar Govindavajhala and AndrewW Appel. Using memory errors to attack
a virtual machine. In 2003 Symposium on Security and Privacy, 2003., pages
154–165. IEEE, 2003.

[79] James Gratchoff, Niek Timmers, Albert Spruyt, and Lukasz Chmielewski. Prov-
ing the wild jungle jump. 2015.

[80] Oscar M Guillen, Michael Gruber, and Fabrizio De Santis. Low-cost setup for
localized semi-invasive optical fault injection attacks. In International Work-
shop on Constructive Side-Channel Analysis and Secure Design, pages 207–222.
Springer, 2017.

Bibliography 269

https://www.techtimes.com/articles/248256/20200322/putins-fsb-hacked-once-again-russias-new-cyber-weapon-aimed.htm
https://www.techtimes.com/articles/248256/20200322/putins-fsb-hacked-once-again-russias-new-cyber-weapon-aimed.htm
https://www.theguardian.com/technology/2015/jul/21/jeep-owners-urged-update-car-software-hackers-remote-control
https://www.theguardian.com/technology/2015/jul/21/jeep-owners-urged-update-car-software-hackers-remote-control
https://www.theguardian.com/technology/2015/jul/21/jeep-owners-urged-update-car-software-hackers-remote-control
https://www.theguardian.com/technology/2015/feb/09/raspberry-pi-2-camera-flash-power-off
https://www.theguardian.com/technology/2015/feb/09/raspberry-pi-2-camera-flash-power-off
https://globalplatform.org/wp-content/uploads/2018/06/GPC_Specification-2.2.1.pdf
https://globalplatform.org/wp-content/uploads/2018/06/GPC_Specification-2.2.1.pdf

Bibliography

[81] Donald H Habing. The use of lasers to simulate radiation-induced transients
in semiconductor devices and circuits. IEEE Transactions on Nuclear Science,
12(5):91–100, 1965.

[82] Samiya Hamadouche, Jean-Louis Lanet, and Mohamed Mezghiche. Hiding a
fault enabled virus through code construction. Journal of Computer Virology
and Hacking Techniques, 16(2):103–124, 2020.

[83] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open source.
Communications of the ACM, 50(1):79–83, 2007.

[84] Matthew Hughes. Why the ikettle hack should worry you (even if you don’t own
one). https://www.makeuseof.com/tag/ikettle-hack-worry-even-dont-

one/, 10 2015. Accessed: 2021-01-15.

[85] Michael Hutter and Jörn-Marc Schmidt. The temperature side-channel and
heating fault attacks. volume 8419, 11 2013.

[86] iC Haus Gmbh. Datasheet - iC-HG. 3A Laser Switch, 2014. Rev. B2.

[87] Infineon Technologies AG. Security Guidelines. M7820 Controller Family for
Secure Application., 06 2015. Revision: 2025-06-19 - Under NDA.

[88] Infineon Technologies AG. Integrity Guard, 06 2018. Order No. B181-I0677-
V1-7600-EU-EC.

[89] INSIDE Secure, Aix-en-Provence, Farance. Security Recommendations for
0.13 µm products - 2, 03 2012. Ref: TPR0456EX - Under NDA.

[90] ISO/IEC. Information technology – Security techniques – Message Authentica-
tion Codes (MACs) – Part 1: Mechanisms using a block cipher, 2011. Edition
2.

[91] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds checking
for arrays and pointers in c programs. In AADEBUG, pages 13–26. Citeseer,
1997.

[92] Burton S Kaliski Jr and Matthew JB Robshaw. Comments on some new attacks
on cryptographic devices. RSA Laboratories Bulletin, 5:1–5, 1997.

[93] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware
designer’s guide to fault attacks. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 21(12):2295–2306, 2013.

[94] Mark Karpovsky, Konrad J Kulikowski, and Alexander Taubin. Robust protec-
tion against fault-injection attacks on smart cards implementing the advanced
encryption standard. In International Conference on Dependable Systems and
Networks, 2004, pages 93–101. IEEE, 2004.

270 Bibliography

https://www.makeuseof.com/tag/ikettle-hack-worry-even-dont-one/
https://www.makeuseof.com/tag/ikettle-hack-worry-even-dont-one/

Bibliography

[95] Martin S Kelly and Keith Mayes. High precision laser fault injection using
low-cost components. In 2020 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 219–228. IEEE, 2020.

[96] Martin S Kelly, Keith Mayes, and John F Walker. Characterising a cpu fault
attack model via run-time data analysis. In 2017 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST), pages 79–84. IEEE,
2017.

[97] Auguste Kerckhoffs. La cryptographie militaire, ou, Des chiffres usités en temps
de guerre: avec un nouveau procédé de déchiffrement applicable aux systèmes à
double clef. Librairie militaire de L. Baudoin, 1883.

[98] Swati Khandelwal. Hackers take remote control of tesla’s brakes and door locks
from 12 miles away. The Guardian, https://thehackernews.com/2016/09/
hack-tesla-autopilot.html, 9 2016. Accessed: 2021-01-24.

[99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

[100] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference, pages 104–
113. Springer, 1996.

[101] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault injec-
tion tools for complex systems. In 2014 9th IEEE International Conference
on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), pages
1–6. IEEE, 2014.

[102] Michael Lackner, Reinhard Berlach, Michael Hraschan, Reinhold Weiss, and
Christian Steger. A defensive java card virtual machine to thwart fault attacks
by microarchitectural support. In 2013 International Conference on Risks and
Security of Internet and Systems (CRiSIS), pages 1–8. IEEE, 2013.

[103] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Software
countermeasures for control flow integrity of smart card c codes. In European
Symposium on Research in Computer Security, pages 200–218. Springer, 2014.

[104] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A
taxonomy of computer program security flaws, with examples. Technical report,
NAVAL RESEARCH LAB WASHINGTON DC, 1993.

[105] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Gen-
eration and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

Bibliography 271

https://thehackernews.com/2016/09/hack-tesla-autopilot.html
https://thehackernews.com/2016/09/hack-tesla-autopilot.html

Bibliography

[106] Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-Peyroula,
and Athanasios Papadimitriou. On the importance of analysing microarchitec-
ture for accurate software fault models. In 2018 21st Euromicro Conference on
Digital System Design (DSD), pages 561–564. IEEE, 2018.

[107] Arjen K Lenstra. Memo on rsa signature generation in the presence of faults.
Technical report, 1996.

[108] Dindayal Mahto and Dilip Kumar Yadav. Rsa and ecc: a comparative analysis.
International journal of applied engineering research, 12(19):9053–9061, 2017.

[109] Tal G Malkin, François-Xavier Standaert, and Moti Yung. A compara-
tive cost/security analysis of fault attack countermeasures. In International
Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 159–172.
Springer, 2006.

[110] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008.

[111] MasterCard Worldwide. Security Guidelines for M/Chip Advance Developers,
5 March 2010.

[112] Adam Matthews. Low cost attacks on smart cards: the electromagnetic
sidechannel. Next Generation Security Software, Sept, 2006.

[113] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 2018.

[114] Trend Micro. Into the battlefield: A security guide to iot botnets.
https://www.trendmicro.com/vinfo/us/security/news/internet-of-

things/into-the-battlefield-a-security-guide-to-iot-botnets, 12
2019. Accessed: 2021-01-15.

[115] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The pro-
gram counter security model: Automatic detection and removal of control-flow
side channel attacks. In International Conference on Information Security and
Cryptology, pages 156–168. Springer, 2005.

[116] Michael G Monnett. Media predictions in operations desert shield/desert storm.
Technical report, ARMY COMMAND AND GENERAL STAFF COLL FORT
LEAVENWORTH KS, 1992.

[117] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[118] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno Robis-
son. Formal verification of a software countermeasure against instruction skip
attacks. Journal of Cryptographic Engineering, 4(3):145–156, 2014.

272 Bibliography

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/into-the-battlefield-a-security-guide-to-iot-botnets
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/into-the-battlefield-a-security-guide-to-iot-botnets

Bibliography

[119] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2012, pages 58–75, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[120] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 58–75. Springer, 2012.

[121] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes. Precise
instruction-level side channel profiling of embedded processors. In Interna-
tional conference on information security practice and experience, pages 129–
143. Springer, 2014.

[122] NASA, Jet Propulsion Laboratory. Mariner1. https://www.jpl.nasa.gov/

missions/mariner-1/. Accessed: 2020-12-31.

[123] NASA, Space Science Data Coordinated Archive. Mariner1. https://

nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1. Ac-
cessed: 2020-12-31.

[124] NewWave Research. QuikLaze-50ST Operator’s Manual, 1 2005.

[125] Nichia Corporation, Tokushima 77-8601, Japan. Datasheet - Specifications for
Nichia BULE laser diode bank. NUBM08, UTZ-SF0119E.

[126] Ben Niu and Gang Tan. Per-input control-flow integrity. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 914–926, 2015.

[127] Karsten Nohl, David Evans, Starbug Starbug, and Henryk Plötz. Reverse-
engineering a cryptographic rfid tag. In USENIX security symposium, vol-
ume 28, 2008.

[128] Numato Systems, LLC. Datasheet - Mimas - Spartan 6 FPGA Development
Board., February accessed 2020-01-12. Mimas - Spartan 6 FPGA Development
Board, https://numato.com/docs/mimas-spartan-6-fpga-development-board/.

[129] Rachid Omarouayache, Jérémy Raoult, Sylvie Jarrix, Laurent Chusseau, and
Philippe Maurine. Magnetic microprobe design for em fault attack. In 2013 In-
ternational Symposium on Electromagnetic Compatibility, pages 949–954. IEEE,
2013.

[130] Oracle Corporation. Java card classic edition 3.0.5. https://docs.oracle.

com/javacard/3.0.5/, 2015. Accessed: 2020-10-01.

[131] OSI Laser Diode Inc. Telecom / Datacom Laser Modules, 07 2012.
https://www.laserdiode.com/.

Bibliography 273

https://www.jpl.nasa.gov/missions/mariner-1/
https://www.jpl.nasa.gov/missions/mariner-1/
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://docs.oracle.com/javacard/3.0.5/
https://docs.oracle.com/javacard/3.0.5/

Bibliography

[132] Martin Otto. Fault attacks and countermeasures. PhD thesis, Citeseer, 2005.

[133] Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen, and Debdeep
Mukhopadhyay. A biased fault attack on the time redundancy countermeasure
for aes. In International workshop on constructive side-channel analysis and
secure design, pages 189–203. Springer, 2015.

[134] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schaumont.
Lightweight fault attack resistance in software using intra-instruction redun-
dancy. In International Conference on Selected Areas in Cryptography, pages
231–244. Springer, 2016.

[135] Darren Pauli. Brit-american hacker duo throws pwns on iot bbqs, grills open ad-
min). https://www.theregister.com/2015/12/10/american_hacker_duo_

throws_pwns_on_iot_bbqs_grills_open_admin/, 12 2015. Accessed: 2021-
01-15.

[136] Radia Perlman. An overview of pki trust models. IEEE network, 13(6):38–43,
1999.

[137] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique
against spn structures, with application to the aes and khazad. In Interna-
tional workshop on cryptographic hardware and embedded systems, pages 77–88.
Springer, 2003.

[138] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
Compiler-assisted loop hardening against fault attacks. ACM Transactions on
Architecture and Code Optimization (TACO), 14(4):1–25, 2017.

[139] Julien Proy, Karine Heydemann, Fabien Majéric, Albert Cohen, and Alexandre
Berzati. Studying em pulse effects on superscalar microarchitectures at isa level.
arXiv preprint arXiv:1903.02623, 2019.

[140] FIPS Pub. Data encryption standard. nist fips 46-3. FIPS PUB, pages 46–3,
1999.

[141] Heather M Quinn, Dolores A Black, William H Robinson, and Stephen P Buch-
ner. Fault simulation and emulation tools to augment radiation-hardness assur-
ance testing. IEEE Transactions on Nuclear Science, 60(3):2119–2142, 2013.

[142] Kevin Quinn. Ever had problems rounding off figures. This stock exchange has.
The Wall Street Journal, page 37, 1983.

[143] Hooman Rashtian. On the use of body biasing to improve the performance
of CMOS RF front-end building blocks. PhD thesis, University of British
Columbia, 2013.

274 Bibliography

https://www.theregister.com/2015/12/10/american_hacker_duo_throws_pwns_on_iot_bbqs_grills_open_admin/
https://www.theregister.com/2015/12/10/american_hacker_duo_throws_pwns_on_iot_bbqs_grills_open_admin/

Bibliography

[144] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I
August. Swift: Software implemented fault tolerance. In International Sympo-
sium on Code Generation and Optimization, pages 243–254. IEEE, 2005.

[145] Nozomi-Networks: Research Report. Ot/iot security report: Ris-
ing iot botnets and shifting ransomware escalate enterprise risk.
https://www.nozominetworks.com/downloads/US/Nozomi-Networks-

OT-IoT-Security-Report-2020-1H.pdf, 2020. Accessed: 2021-01-15.

[146] Defense World Staff Reporter. Russian federal security service seeks
iot intrusion devices: Hackers group. Defense World: https:

//www.defenseworld.net/news/26558/Russian_Federal_Security_

Service_Seeks_IoT_Intrusion_Devices__Hackers_Group#.YA3o3eieTAQ, 3
2020. Accessed: 2021-01-25.

[147] Ronald L Rivest, Adi Shamir, and Len Adleman. On digital signatures and
public-key cryptosystems. Technical report, MASSACHUSETTS INST OF
TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1977.

[148] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer,
and Laurent Sauvage. High precision fault injections on the instruction cache of
armv7-m architectures. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 62–67. IEEE, 2015.

[149] Teri Robinson. Fsb contractor breach exposes secret cyber weapons program
leveraging iot vulnerabilities. SC Magazine: https://www.scmagazine.com/

home/security-news/fsb-contractor-breach-exposes-secret-cyber-

weapons-program-leveraging-iot-vulnerabilities/, 3 2020. Accessed:
2021-01-25.

[150] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. Iot goes
nuclear: Creating a zigbee chain reaction. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 195–212. IEEE, 2017.

[151] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria. Fault
model analysis of laser-induced faults in sram memory cells. In 2013 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages 89–98. IEEE, 2013.

[152] Samsung Electronics Co., Ltd. Security Application Note - S3CC91A, 06 2015.
Revision: 2007-04-27 - Under NDA.

[153] Sarah Schafer. With capital in panic, pizza deliveries soar. https:

//www.washingtonpost.com/wp-srv/politics/special/clinton/stories/

pizza121998.htm, 12 1998. Accessed: 2021-01-24.

[154] Falk Schellenberg, Markus Finkeldey, Nils Gerhardt, Martin Hofmann, Amir
Moradi, and Christof Paar. Large laser spots and fault sensitivity analysis. In
2016 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 203–208. IEEE, 2016.

Bibliography 275

https://www.nozominetworks.com/downloads/US/Nozomi-Networks-OT-IoT-Security-Report-2020-1H.pdf
https://www.nozominetworks.com/downloads/US/Nozomi-Networks-OT-IoT-Security-Report-2020-1H.pdf
https://www.defenseworld.net/news/26558/Russian_Federal_Security_Service_Seeks_IoT_Intrusion_Devices__Hackers_Group#.YA3o3eieTAQ
https://www.defenseworld.net/news/26558/Russian_Federal_Security_Service_Seeks_IoT_Intrusion_Devices__Hackers_Group#.YA3o3eieTAQ
https://www.defenseworld.net/news/26558/Russian_Federal_Security_Service_Seeks_IoT_Intrusion_Devices__Hackers_Group#.YA3o3eieTAQ
https://www.scmagazine.com/home/security-news/fsb-contractor-breach-exposes-secret-cyber-weapons-program-leveraging-iot-vulnerabilities/
https://www.scmagazine.com/home/security-news/fsb-contractor-breach-exposes-secret-cyber-weapons-program-leveraging-iot-vulnerabilities/
https://www.scmagazine.com/home/security-news/fsb-contractor-breach-exposes-secret-cyber-weapons-program-leveraging-iot-vulnerabilities/
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm

Bibliography

[155] Jörn-Marc Schmidt and Christoph Herbst. A practical fault attack on square
and multiply. In 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, pages 53–58. IEEE, 2008.

[156] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks on crt-
based rsa: Concrete results. na, 2007.

[157] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code
in C. john wiley & sons, 2007.

[158] Martin Schobert. Degate project website. Online: https://www.degate.org/,
9 2020. Accessed: 2021-02-16.

[159] Bodo Selmke, Johann Heyszl, and Georg Sigl. Attack on a dfa protected aes by
simultaneous laser fault injections. In 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 36–46. IEEE, 2016.

[160] Adi Shamir. A polynomial time algorithm for breaking the basic merkle-hellman
cryptosystem. In 23rd Annual Symposium on Foundations of Computer Science
(sfcs 1982), pages 145–152. IEEE, 1982.

[161] Fred R Shapiro. Etymology of the computer bug: History and folklore. Amer-
ican Speech, 62(4):376–378, 1987.

[162] Silvo Inc. Semiconductor process and device simulation. Web, https://

silvaco.com/tcad/, 7 2021. Accessed: 2021-04-06.

[163] Sergei Skorobogatov. Optical fault masking attacks. In 2010 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 23–29. IEEE, 2010.

[164] Sergei Skorobogatov. Fault attacks on secure chips. Design and Security of
Cryptographic Algorithms and Devices, 2011.

[165] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks.
In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Inter-
national Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, pages 2–12, 2002.

[166] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks.
In International workshop on cryptographic hardware and embedded systems,
pages 2–12. Springer, 2002.

[167] Eugene H Spafford. The internet worm program: An analysis. ACM SIGCOMM
Computer Communication Review, 19(1):17–57, 1989.

[168] BBC staff reporter. Raspberry pi 2 is ’camera shy’. https://www.bbc.co.uk/
news/technology-31294745, 2 2015. Accessed: 2021-01-15.

[169] Richard M Stallman et al. Using and porting the GNU compiler collection,
volume 86. Free Software Foundation, 1999.

276 Bibliography

https://www.degate.org/
https://silvaco.com/tcad/
https://silvaco.com/tcad/
https://www.bbc.co.uk/news/technology-31294745
https://www.bbc.co.uk/news/technology-31294745

Bibliography

[170] Takeshi Sugawara, Daisuke Suzuki, and Toshihiro Katashita. Circuit simula-
tion for fault sensitivity analysis and its application to cryptographic lsi. In
2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 16–
23. IEEE, 2012.

[171] K Tan Tan, SH Tan, and SH Ong. Functional failure analysis on analog device
by optical beam induced current technique. In Proceedings of the 1997 6th
International Symposium on the Physical and Failure Analysis of Integrated
Circuits, pages 296–301. IEEE, 1997.

[172] The VergeArs Staff. News corp allegedly hacked uk pay-tv competitor out of
business. https://www.theverge.com/2012/3/26/2904197/news-corp-nds-
funded-tv-hacking-piracy-thoic-allegations, March 2012. Accessed:
2021-09-26.

[173] Nikolaus Theißing, Dominik Merli, Michael Smola, Frederic Stumpf, and Georg
Sigl. Comprehensive analysis of software countermeasures against fault attacks.
In Design, Automation and Test in Europe, DATE 13, Grenoble, France, March
18-22, 2013, pages 404–409, 2013.

[174] Andrew Tierney. Embedded security fails in ics. https://www.

pentestpartners.com/security-blog/embedded-security-fails-in-

ics/, 6 2020. Accessed: 2021-01-15.

[175] Karim Tobich, Philippe Maurine, Pierre Yvan Liardet, and Thomas Ordas.
Yet another fault injection technique: by forward body biasing injection. In
YACC’2012: Yet Another Conference on Cryptography, 2012.

[176] Elena Trichina and Roman Korkikyan. Multi fault laser attacks on protected
crt-rsa. In 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 75–86. IEEE, 2010.

[177] Michael Tunstall. Attacks on smart cards, 2005.

[178] J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini. Practical optical
fault injection on secure microcontrollers. In 2011 Workshop on Fault Diagnosis
and Tolerance in Cryptography, pages 91–99, 2011.

[179] Nidish Vashistha, M Tanjidur Rahman, Olivia P Paradis, and Navid Asadizan-
jani. Is backside the new backdoor in modern socs? In 2019 IEEE International
Test Conference (ITC), pages 1–10. IEEE, 2019.

[180] Raoul Velazco, Dale McMorrow, and Jaime Estela. Radiation Effects on Inte-
grated Circuits and Systems for Space Applications. Springer, 2019.

[181] James Vincent. Researchers hack cars to remotely control steering and brakes.
The Guardian, https://www.independent.co.uk/life-style/gadgets-

and-tech/researchers-hack-cars-remotely-control-steering-and-

brakes-8733723.html, 7 2013. Accessed: 2021-01-24.

Bibliography 277

https://www.theverge.com/2012/3/26/2904197/news-corp-nds-funded-tv-hacking-piracy-thoic-allegations
https://www.theverge.com/2012/3/26/2904197/news-corp-nds-funded-tv-hacking-piracy-thoic-allegations
https://www.pentestpartners.com/security-blog/embedded-security-fails-in-ics/
https://www.pentestpartners.com/security-blog/embedded-security-fails-in-ics/
https://www.pentestpartners.com/security-blog/embedded-security-fails-in-ics/
https://www.independent.co.uk/life-style/gadgets-and-tech/researchers-hack-cars-remotely-control-steering-and-brakes-8733723.html
https://www.independent.co.uk/life-style/gadgets-and-tech/researchers-hack-cars-remotely-control-steering-and-brakes-8733723.html
https://www.independent.co.uk/life-style/gadgets-and-tech/researchers-hack-cars-remotely-control-steering-and-brakes-8733723.html

Bibliography

[182] Visa Inc. Visa Security Guidelines - Multi-application Platforms, March 2009.

[183] Colin D Walter and Susan Thompson. Distinguishing exponent digits by ob-
serving modular subtractions. In Cryptographers’ Track at the RSA Conference,
pages 192–207. Springer, 2001.

[184] Steve H Weingart. Physical security devices for computer subsystems: A survey
of attacks and defences. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 302–317. Springer, 2000.

[185] Xilinx. Spartan-6 Family Overview, 10 2011. v2.0.

[186] Xilinx Inc. Datasheet - Spartan-6 Family Overview., October 2011. DS160
(v2.0).

[187] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Deshpande,
Conor Patrick, and Patrick Schaumont. Software fault resistance is futile: Effec-
tive single-glitch attacks. In 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 47–58. IEEE, 2016.

[188] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault attacks on secure
embedded software: Threats, design, and evaluation. Journal of Hardware and
Systems Security, 2(2):111–130, 2018.

[189] Michael Zhivich and Robert K Cunningham. The real cost of software errors.
IEEE Security & Privacy, 7(2):87–90, 2009.

278 Bibliography

Appendix A

Test Harness

Contents

A.1 Components . 280

A.2 Roles and Responsibilities . 282

A.2.1 Sample Alignment . 282

A.2.2 Zone Identification . 283

A.2.3 Executing a Test Campaign 284

A vital component of this investigation was the ability to automate

the collection of experimental data. The tool described here was de-

veloped to control the laser targeting and run individual experiments.

It proved to be a reliable and flexible utility that was instrumental in

collecting the data used in this study.

279

A.1. Components

The common requirement in nearly all of the experiments was to accurately fo-

cus the laser on the DUT’s surface and move the DUT precisely to target multiple

locations in a repeatable way. The solution adopted here is shown schematically in

Figure A-1.

A.1 Components

� PC workstation — Coordinates all of the other components and collects the

results of each experiment. Because it is responsible for selecting all the param-

eters for the experiment, it can record the results and other relevant parameters

without operator intervention.

� Stage Controller — The PC workstation controls this serially attached pe-

ripheral. The unit enables the PC workstation to move the controller board

Figure A-1: Test Rig Schematic

280 Appendix A. Test Harness

A.1. Components

and DUT assembly to precise positions under the microscope’s objective lens.

� X-Y Stage — A replacement for the microscope’s stage that can be electroni-

cally directed to move the DUT by the Stage Controller.

� Controller board — Multi-purpose, custom built, circuit board. Through

a connection to the PC workstation, it can re-program the DUT and deliver

control data to programs executing on the DUT. It also receives signals from

the DUT that it directs to the Laser Controller and forwards experimental

results to the PC workstation.

� Laser Controller — This component performs the fast switching of high cur-

rents needed to generate the required laser pulses. It is located as close as

possible to the Laser Diode to minimise any distortion of the power signals.

� Laser Diode — Located on the microscope’s camera port, it shines directly

through the objective lens onto the DUT.

� CCD Camera — Located in one of the microscope’s eyepieces. It delivers an

image of the DUT to the PC workstation.

Appendix A. Test Harness 281

A.2. Roles and Responsibilities

A.2 Roles and Responsibilities

The controller program’s role is to coordinate the actions of the various components.

A.2.1 Sample Alignment

A critical aspect in all fault injection experiments is the accurate alignment of the

DUT and the error stimulus. This was achieved by using a reference image of the

DUT juxtaposed with the CCD image of the device in situ on the microscope stage.

As seen in Figure A-2.

Figure A-2: Sample Alignment

The configuration has two coordinate systems. One defines the position of the XY-

Stage, and the other defines the pixel position within the reference image. Alignment

of the two images is achieved by moving the stage to align the cross-hair in the CCD

image with a recognisable landmark on the DUT, and marking the same feature on

the reference image. Both coordinate systems have an aspect ratio of 1 : 1; thus, a

unit of travel on the X-axis represents the same distance on the Y-axis. These two

282 Appendix A. Test Harness

A.2. Roles and Responsibilities

cross-referenced landmarks are sufficient to map between the coordinate systems and

account for any rotation of the DUT*. All experiments, on multiple samples of the

DUT, can then be defined in terms of the coordinate system of their shared reference

image.

A.2.2 Zone Identification

Except for the course-scaled preliminary scans of the whole chip, most experiments

are performed at many closely positioned sites within a confined region on the DUT.

The area to be scanned can be indicated on the reference image, as shown here in

Figure A-3.

Figure A-3: Zone Identification

The test harness then performs the indicated tests only on sites within the pre-

scribed zone. This simple feature saves a lot of time by avoiding the need to scan the

whole chip or having to align many individual tests at specific sites manually.

*The hand-built nature of the controller boards means the DUTs are seldom aligned perfectly,
and the microscopic size of the features of interest mean minor rotations are significant when scanning
the DUT.

Appendix A. Test Harness 283

A.2. Roles and Responsibilities

A.2.3 Executing a Test Campaign

A test campaign involves repeating a common test at many sites on the DUT. A

campaign involves running a specific test program at all relevant locations within

the Prescribed Zone. The test program is a separate executable that is invoked by

the test harness. This separation of responsibilities means the test harness remains

unmodified for many test scenarios without restricting the actions within a test.

A typical campaign’s parameters are shown here in Figure A-4. In this example,

the reference image is divided into a grid of 100× 100 squares. The program defined

by "Test.Bat" is executed once on each square in that grid coinciding with the

Prescribed Zone.

Figure A-4: Campaign Parameters

It was necessary to add delays between moving the stage and executing the test

program. The ’Move delay’ was added when the stage movement involved both X

and Y-axis changes. Sending the Y-axis change before the X-axis move had been

completed resulted in the remainder of the X move being abandoned; subsequent ex-

periments were then marginally misaligned. The delay ensures this does not happen.

The ’Execution delay’ injects a pause before the invocation of the test program.

This delay was initially required because the stage swayed after each move. Latterly,

with the improved mounting of the stage onto the microscope, this delay became

unnecessary.

A typical test script is shown here in Figure A-5. The script file sets parameters

specific to the test program before executing it; zap3.exe in this example. The

Test Harness also indicates the test coordinates (See line 7), which can be recorded

284 Appendix A. Test Harness

A.2. Roles and Responsibilities

alongside the test results.

1 echo off
2 set COMMS = -port=6 -baud =38400
3 set RANGE = -delay=1 -phase =0 -samples =32 -step=1
4 set COUNT = -repeat =10
5 set OUTPUT= -file=Test.Txt
6
7 set CTRL = -v -dx=%1 -xmax =%2 -dy=%3 -ymax =%4
8 zap3.exe %OUTPUT% %RANGE% %COUNT% %COMMS% %CTRL%

Figure A-5: Test Script

Finally, the progress of the campaign can be monitored in the test harness as the

current test site is indicated on the reference image, as shown in Figure A-6

Figure A-6: Campaign Progress

The format of a campaign’s results depends on the behaviour of the specific test

program. In most instances, each invocation of a test program appends a line of

comma-separated values (CSV) to a shared results file. This universal file format,

CSV, simplifies the task of importing the data into various analysis tools.

Appendix A. Test Harness 285

A.2. Roles and Responsibilities

286 Appendix A. Test Harness

Appendix B

Test Circuit Boards

Contents

B.1 Purpose . 288

B.2 Board 1 . 288

B.3 Board 2 . 291

B.4 Board FPGA . 294

B.4.1 FPGA program . 299

During this study, a series of circuit boards were specified and built

to control the DUT and laser apparatus. As understanding of the

DUT’s behaviour advanced, so too did the complexity of the board’s

role. Ultimately the design evolved into a simple and highly flexible

reconfigurable device. The features of these boards, their roles, and

the weaknesses that lead to their replacement are described here.

287

B.1. Purpose

B.1 Purpose

The controller boards served four purposes.

1. They provided the electrical signals, Power, Ground, Clock, . . . , to run the

DUT.

2. They enabled the DUT to be reprogrammed in-situ. In-situ reprogramming

meant the DUT did not need to be moved between experiments, and conse-

quently, time was saved by avoiding the need to realign the DUT and laser

between experiments.

3. They enabled the DUT to communicate with the host PC. This capability

enabled the host to deliver experiment parameters and for the DUT to report

results back to the host. Automating data capture is crucial to the experimental

strategy adopted here.

4. Perhaps the most critical function is to synchronise the execution of software

within the DUT with the trigger for firing a laser pulse. Accurate synchronisa-

tion gave certainty to the provenance of the data, avoiding the need to aggregate

and average many samples.

B.2 Board 1

This board provides the necessary logic signals to drive the YAG laser. The YAG

requires one signal to drive a lamp that primes the laser’s crystal and another signal

that activates the Q-switch. This timing and control are coordinated by the chip

IC1/CONTROL, seen in Figure B-2. IC1 manages the ’LAMP’ signal and ’READY’

signals. The latter initiates a delay mechanism that ultimately fires the laser. The

laser control signals are delivered via co-axial cables seen on the left of Figure B-1.

The READY signal feeds into the DUT IC6/SLAVE to initiate the execution of

experimental code and serves to enable a bank of shift registers. A pulse then ripples

288 Appendix B. Test Circuit Boards

B.2. Board 1

Figure B-1: Board 1 Populated

through the shifters driven by the same clock as the DUT. A jumper, placed on any

one of the 32 outputs of the shifter, determines the delay between the initiation of the

test program and the moment the laser fires. Another Jumper ’JP CLK’ makes the

shifter run on either the rising or falling edge of the ’CLK’, giving the opportunity to

fire the laser at half cycle intervals.

This board was well suited for the initial experiments that characterised the be-

haviour of specific instructions.

The weaknesses that led to its replacement were, i) all of the components shared

the same power source, ii) the delay was manually selected, and, iii) the delay’s

resolution was only 50% if the CPU clock cycle. The small attachment seen on the

left of Figure B-1 is a fix to allow the whole board to be reset by the controller PC.

Appendix B. Test Circuit Boards 289

B.2. Board 1

S
piceO

rder 1
S

piceO
rder 2

S
piceO

rder 1
S

piceO
rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1

S
piceO

rder 2

S
piceO

rder 1
S

piceO
rder 2

S
piceO

rder 1
S

piceO
rder 2

S
piceO

rder 1
S

piceO
rder 2

SpiceOrder 1 SpiceOrder 2

SpiceOrder 1 SpiceOrder 2

SpiceOrder 1 SpiceOrder 2

C
trl

S
lave

74H
C

595N

74H
C

595N

74H
C

595N

100n

120p

12M
H

z

G
N

D

330
330

74H
C

595N

R
141426

74LS
04N

74LS
04N

74LS
04N

74LS
04N

74LS
04N

74LS
04N

G
N

D

G
N

D

VCC

VCC

VCCG
N

D 47u
10n

10n
10n

10n
10n

10n
10n

VCCG
N

D

VCCG
N

D

G
N

D

R
141426

G
N

D

M
A

X
232

D
-S

U
B

9-H
5M

09R
A

1u1u

1u1u

VCCG
N

D

P
G

203J
10n

G
N

D

N
E

555N

G
N

D

VCC

0.1u

VCC

10K

3K3K

470K

1.8K

1K

VCC

P
R

O
G

_C
1

2
3

4
5

6

P
R

O
G

_S
1

2
3

4
5

6

(P
C

IN
T

0/A
D

C
0/A

R
E

F
/M

IS
O

)P
A

0
13

(P
C

IN
T

1/A
D

C
1/A

IN
00/T

O
C

C
0/T

X
D

0/M
O

S
I)P

A
1

12

(P
C

IN
T

2/A
D

C
2/A

IN
01/T

O
C

C
1/R

X
D

0/S
S

)P
A

2
11

V
C

C
1

G
N

D
14

(P
C

IN
T

3/A
D

C
3/A

IN
10/T

O
C

C
2/T

0/X
C

K
0/S

C
K

)P
A

3
10

(P
C

IN
T

4/A
D

C
4/A

IN
11/T

O
C

C
3/T

1/R
X

D
1/S

C
L/S

C
K

)P
A

4
9

(P
C

IN
T

5/A
D

C
5/A

C
O

0/T
O

C
C

4/T
2/T

X
D

1/M
IS

O
)P

A
5

8

(P
C

IN
T

6/A
D

C
6/A

C
O

1/T
O

C
C

5/X
C

K
1/S

D
A

/M
O

S
I)P

A
6

7

(P
C

IN
T

7/A
D

C
7/T

O
C

C
6/IC

P
1/T

X
D

0/S
S

)P
A

7
6

(P
C

IN
T

11/A
D

C
9/R

E
S

E
T

/D
W

)P
B

3
4

(P
C

IN
T

10/A
D

C
8/C

LK
O

/T
O

C
C

7/IC
P

2/R
X

D
0)P

B
2

5

(P
C

IN
T

9/A
D

C
10/X

TA
L2/IN

T
0)P

B
1

3

(P
C

IN
T

8/A
D

C
11/X

TA
L1/C

LK
I)P

B
0

2

IC
2

Q
B

1

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

S
C

L
10

S
C

K
11

R
C

K
12

G
13

S
E

R
14

Q
A

15

Q
H

*
9

IC
3

Q
B

1

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

S
C

L
10

S
C

K
11

R
C

K
12

G
13

S
E

R
14

Q
A

15

Q
H

*
9

IC
4

Q
B

1

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

S
C

L
10

S
C

K
11

R
C

K
12

G
13

S
E

R
14

Q
A

15

Q
H

*
9

C
1

C
3

Q
1

2
1

R
1

R
2

IC
7

Q
B

1

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

S
C

L
10

S
C

K
11

R
C

K
12

G
13

S
E

R
14

Q
A

15

Q
H

*
9

JP
31

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32

JP
41

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32

T
R

IG
_Q

JP
_C

LK
123

IC
5A

1
2

IC
5B

3
4

IC
5C

5
6

IC
5D

9
8

IC
5E

11
10

IC
5F

13
12

JP
_Q
123

C
2

C
4

C
5

C
6

C
7

C
8

C
9

C
10

(P
C

IN
T

0/A
D

C
0/A

R
E

F
/M

IS
O

)P
A

0
13

(P
C

IN
T

1/A
D

C
1/A

IN
00/T

O
C

C
0/T

X
D

0/M
O

S
I)P

A
1

12

(P
C

IN
T

2/A
D

C
2/A

IN
01/T

O
C

C
1/R

X
D

0/S
S

)P
A

2
11

V
C

C
1

G
N

D
14

(P
C

IN
T

3/A
D

C
3/A

IN
10/T

O
C

C
2/T

0/X
C

K
0/S

C
K

)P
A

3
10

(P
C

IN
T

4/A
D

C
4/A

IN
11/T

O
C

C
3/T

1/R
X

D
1/S

C
L/S

C
K

)P
A

4
9

(P
C

IN
T

5/A
D

C
5/A

C
O

0/T
O

C
C

4/T
2/T

X
D

1/M
IS

O
)P

A
5

8

(P
C

IN
T

6/A
D

C
6/A

C
O

1/T
O

C
C

5/X
C

K
1/S

D
A

/M
O

S
I)P

A
6

7

(P
C

IN
T

7/A
D

C
7/T

O
C

C
6/IC

P
1/T

X
D

0/S
S

)P
A

7
6

(P
C

IN
T

11/A
D

C
9/R

E
S

E
T

/D
W

)P
B

3
4

(P
C

IN
T

10/A
D

C
8/C

LK
O

/T
O

C
C

7/IC
P

2/R
X

D
0)P

B
2

5

(P
C

IN
T

9/A
D

C
10/X

TA
L2/IN

T
0)P

B
1

3

(P
C

IN
T

8/A
D

C
11/X

TA
L1/C

LK
I)P

B
0

2

T
R

IG
_LA

M
P

JP
71234567

JP
81234567

JP
91234567

JP
10
1234567

M
A

X
232

C
1+

1

C
1-

3

C
2+

4

C
2-

5

T
1IN

11

T
2IN

10

R
1O

U
T

12

R
2O

U
T

9

V
+

2

V
-

6

T
1O

U
T

14

T
2O

U
T

7

R
1IN

13

R
2IN

8

X
1-1

X
1-2

X
1-3

X
1-4

X
1-5

X
1-6

X
1-7

X
1-8

X
1-9

C
11

C
12

C
13

C
14

JP
_T

R
IG

123

X
2

54321

C
15

G
N

D
1

1
G

N
D

2
1

G
N

D
3

1
G

N
D

4
1

D
E

LA
Y

T
R

2
Q

3

R
4

C
V

5
T

H
R

6

D
IS

7

V
+

8
G

N
D

1

C
16

TRIG_IO
1
2

D
LY

_C
12

D
LY

_R
12

R
5

R
4

R
7

R3

R6

R8

G
N

D

G
N

D

C
LK

C
LK

C
LK

C
LK

C
LK

_P
A

5
_P

A
5

_P
A

4

_P
A

4

_P
B

3

_P
B

3

_P
A

6

_P
A

6

V
C

C

V
C

C

C
T

O
S

C
T

O
S

C
T

O
S

C
T

O
S

T
R

IG

T
R

IG

T
R

IG

R
E

A
D

Y

R
E

A
D

Y

R
E

A
D

Y

R
E

A
D

Y

R
E

A
D

Y

LA
M

P

LA
M

P

LA
M

P

P
B

3

P
B

3

P
A

7

P
A

7

P
A

6

P
A

6

P
A

5

P
A

5

P
A

5

P
A

4

P
A

4
P

A
4

P
A

3

P
A

3
P

A
0

P
A

0

_P
A

0

_P
A

0

_P
A

3

_P
A

3
_P

A
7

_P
A

7

S
T

O
C

S
T

O
C

S
T

O
C

S
T

O
C

T
X

D

R
X

D
R

T
S

C
T

S
LO

O
P

B
A

C
K

LO
O

P
B

A
C

K

+

++

++

Figure B-2: Board 1 Schematic

290 Appendix B. Test Circuit Boards

B.3. Board 2

B.3 Board 2

This board addressed the issues discovered when using Board 1. The delay between

the ’Ready’ signal and the laser Q-Switch triggering is managed by a programmable

timer. This timer has a quarter cycle resolution and can be set from the control PC,

removing the need for physical interaction with the board. See the ’SYS_CLK’ &

’CTR_CLK’ signals in Figure B-4. The DUT ’TARGET’ has an independent power

source that is separately controllable by the host PC.

The soft-programmable delay meant this board was well suited for testing the

effects of pulses at different times within an executing program. This capability

greatly simplified the exploitation of the results from the earlier static characterisation

exercise.

An inconvenience of this board is that the laser trigger ’T_TRIG_Q’ is fed directly

to the DUT without additional delay. ’T_TRIG_Q’ initiates an interrupt in the DUT

causing it to report its status to the host PC. Interrupt latency in the DUT means the

state reporting interrupt service routine is invoked four cycles after the laser pulse.

This delay is insufficient for experiments that require multiple instructions to execute

after the laser has fired. This minor inconvenience was resolved by adding a further

delay between the laser trigger and the DUT. It can be seen in small circuit attached

below the main PCB in Figure B-3.

This board and its predecessor were sufficient for categorising and exploiting the

effects of single errors. The YAG laser is only capable of generating single pulses, and

devices complemented each others’ capabilities.

Appendix B. Test Circuit Boards 291

B.3. Board 2

Figure B-3: Board 2 Populated

292 Appendix B. Test Circuit Boards

B.3. Board 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1
S

pi
ce

O
rd

er
 2

SpiceOrder 1SpiceOrder 2

SpiceOrder 1 SpiceOrder 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

SpiceOrder 1

SpiceOrder 2

S
pi

ce
O

rd
er

 1
S

pi
ce

O
rd

er
 2

S
pi

ce
O

rd
er

 1
S

pi
ce

O
rd

er
 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1
S

pi
ce

O
rd

er
 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

S
pi

ce
O

rd
er

 1

S
pi

ce
O

rd
er

 2

C
tr

l
Ta

rg
et

R
14

14
26

G
N

D

G
N

D

VCC

VCC G
N

D

10
n

10
n

10
n

10
n

10
n

10
n

G
N

D

VCC

G
N

D

G
N

D

R
14

14
26

G
N

D

10
n

G
N

D

VCC

P
G

20
3J

G
N

D

IR
LM

L2
24

4T
R

P
B

F

10
K

1K

10K

100nF

40
M

H
z

G
N

D

74
H

C
T

74
N

74
H

C
T

74
N

VCC

VCC

47
u

74
H

C
59

5N
C

D
74

H
C

40
10

3E

74
H

C
T

00
N

74
H

C
T

00
N

10
0p

10
0K

33
R

VCC

74
H

C
59

5N

G
N

D

74
H

C
T

25
3N

G
N

D

N
C

7W
Z

16
P

6X

N
C

7W
Z

16
P

6X

G
N

D

10
n

10
n

10
n

G
N

D

33
R

74
H

C
T

00
N

74
H

C
T

00
N

G
N

D

VCC_T

VCC_T

VCC_T

VCC_T

VCC_T

N
C

7W
Z

16
P

6X

74
12

3N

74
12

3N

10
n

74
H

C
T

74
N

VCC

74
H

C
T

74
N

VCC

10
n

N
C

7W
Z

16
P

6X

10
n

10
n

74
H

C
T

08
N

74
H

C
T

08
N

74
H

C
T

08
N

74
H

C
T

08
N

10
n

P
R

O
G

_C
1

2
3

4
5

6

P
R

O
G

_T
1

2
3

4
5

6

(P
C

IN
T

0/
A

D
C

0/
A

R
E

F
/M

IS
O

)P
A

0
13

(P
C

IN
T

1/
A

D
C

1/
A

IN
00

/T
O

C
C

0/
T

X
D

0/
M

O
S

I)
P

A
1

12

(P
C

IN
T

2/
A

D
C

2/
A

IN
01

/T
O

C
C

1/
R

X
D

0/
S

S
)P

A
2

11

V
C

C
1

G
N

D
14

(P
C

IN
T

3/
A

D
C

3/
A

IN
10

/T
O

C
C

2/
T

0/
X

C
K

0/
S

C
K

)P
A

3
10

(P
C

IN
T

4/
A

D
C

4/
A

IN
11

/T
O

C
C

3/
T

1/
R

X
D

1/
S

C
L/

S
C

K
)P

A
4

9

(P
C

IN
T

5/
A

D
C

5/
A

C
O

0/
T

O
C

C
4/

T
2/

T
X

D
1/

M
IS

O
)P

A
5

8

(P
C

IN
T

6/
A

D
C

6/
A

C
O

1/
T

O
C

C
5/

X
C

K
1/

S
D

A
/M

O
S

I)
P

A
6

7

(P
C

IN
T

7/
A

D
C

7/
T

O
C

C
6/

IC
P

1/
T

X
D

0/
S

S
)P

A
7

6

(P
C

IN
T

11
/A

D
C

9/
R

E
S

E
T

/D
W

)P
B

3
4

(P
C

IN
T

10
/A

D
C

8/
C

LK
O

/T
O

C
C

7/
IC

P
2/

R
X

D
0)

P
B

2
5

(P
C

IN
T

9/
A

D
C

10
/X

TA
L2

/IN
T

0)
P

B
1

3

(P
C

IN
T

8/
A

D
C

11
/X

TA
L1

/C
LK

I)
P

B
0

2

T
R

IG
G

E
R

_Q

C
C

1
C

C
3

C
C

4
C

C
5

C
C

6
C

C
7

(P
C

IN
T

0/
A

D
C

0/
A

R
E

F
/M

IS
O

)P
A

0
13

(P
C

IN
T

1/
A

D
C

1/
A

IN
00

/T
O

C
C

0/
T

X
D

0/
M

O
S

I)
P

A
1

12

(P
C

IN
T

2/
A

D
C

2/
A

IN
01

/T
O

C
C

1/
R

X
D

0/
S

S
)P

A
2

11

V
C

C
1

G
N

D
14

(P
C

IN
T

3/
A

D
C

3/
A

IN
10

/T
O

C
C

2/
T

0/
X

C
K

0/
S

C
K

)P
A

3
10

(P
C

IN
T

4/
A

D
C

4/
A

IN
11

/T
O

C
C

3/
T

1/
R

X
D

1/
S

C
L/

S
C

K
)P

A
4

9

(P
C

IN
T

5/
A

D
C

5/
A

C
O

0/
T

O
C

C
4/

T
2/

T
X

D
1/

M
IS

O
)P

A
5

8

(P
C

IN
T

6/
A

D
C

6/
A

C
O

1/
T

O
C

C
5/

X
C

K
1/

S
D

A
/M

O
S

I)
P

A
6

7

(P
C

IN
T

7/
A

D
C

7/
T

O
C

C
6/

IC
P

1/
T

X
D

0/
S

S
)P

A
7

6

(P
C

IN
T

11
/A

D
C

9/
R

E
S

E
T

/D
W

)P
B

3
4

(P
C

IN
T

10
/A

D
C

8/
C

LK
O

/T
O

C
C

7/
IC

P
2/

R
X

D
0)

P
B

2
5

(P
C

IN
T

9/
A

D
C

10
/X

TA
L2

/IN
T

0)
P

B
1

3

(P
C

IN
T

8/
A

D
C

11
/X

TA
L1

/C
LK

I)
P

B
0

2

T
R

IG
_L

A
M

P

JP
T

1
1 2 3 4 5 6 7

JP
T

2
1 2 3 4 5 6 7

JP
C

1
1 2 3 4 5 6 7

JP
C

2
1 2 3 4 5 6 7

C
C

8

G
N

D
1

1
G

N
D

2
1

G
N

D
3

1
G

N
D

4
1

H
O

S
T-

IO
1 2 3 4 5 6

X
1

5 4 3 2 1

JP
_P

W
R

1 2 3
T

1

R
3

R2

R1

C1

T
P

_A 1

T
P

_B 1

O
S

C

V
D

D

V
S

S
O

U
T

C
O

N

714

81

IC
5A C

LR
1

D
2

C
LK

3

P
R

E
4

Q
5

Q
6

IC
5B C

LR
13

D
12

C
LK

11

P
R

E
10

Q
9

Q
8

C
3

IC
1

Q
B

1

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

S
C

L
10

S
C

K
11

R
C

K
12

G
13

S
E

R
14

Q
A

15

Q
H

*
9

V
C

C
16

~
M

R
2

~
T

E
3

~
P

L_
(A

S
Y

N
C

)
9

C
P

1

~
P

E
_(

S
Y

N
C

)
15

P
0

4

P
1

5

P
2

6

P
3

7

P
4

10

P
5

11

P
6

12

P
7

13

G
N

D
8

~
T

C
14

IC
3

IC
7A

1 2
3

IC
7B

4 5
6

C
12

R
4

R
5

IC
2

Q
B

1

Q
C

2

Q
D

3

Q
E

4

Q
F

5

Q
G

6

Q
H

7

S
C

L
10

S
C

K
11

R
C

K
12

G
13

S
E

R
14

Q
A

15

Q
H

*
9

IC
6 1G

1
B

2

1C
3

3
1C

2
4

1C
1

5
1C

0
6

1Y
7

2Y
9

2C
0

10

2C
1

11

2C
2

12

2C
3

13

A
14

2G
15

V
C

C
5

A
1

1

A
2

3

G
N

D
2

Y
1

6

Y
2

4

B
1

V
C

C
5

A
1

1

A
2

3

G
N

D
2

Y
1

6

Y
2

4

B
2

T
C

1
T

C
2

T
C

3

R
6

IC
7C

9 10
8

IC
7D

12 13
11

V
C

C
5

A
1

1

A
2

3

G
N

D
2

Y
1

6

Y
2

4

B
3

IC
8A A

1

B
2

C
LR

3
Q

4

Q
13

C
14

R
/C

15

IC
8B A

9

B
10

C
LR

11
Q

12

Q
5

C
6

R
/C

7

T
C

4

IC
9A C

LR
1

D
2

C
LK

3

P
R

E
4

Q
5

Q
6

IC
9B C

LR
13

D
12

C
LK

11

P
R

E
10

Q
9

Q
8

C
C

9
V

C
C

5

A
1

1

A
2

3

G
N

D
2

Y
1

6

Y
2

4

B
4

T
C

5

C
C

10

IC
4A

1 2
3

IC
4B

4 5
6

IC
4C

9 10
8

IC
4D

12 13
11

P
T

P
C

H
O

S
T-

A
U

X
1 2 3 4 5 6

C
C

2

N
$4

1
N

$4
1

N
$4

1

N
$4

1

N
$4

1

V
C

C

V
C

C

V
C

C

C
_L

A
M

P

C
_L

A
M

P

C
_L

A
M

P

C
_L

A
M

P

C
T

S
_H

O
S

T
V

C
C

_H
O

S
T

V
C

C
_H

O
S

T

V
C

C
_H

O
S

T

T
X

D
_H

O
S

T

T
X

D
_H

O
S

T

R
X

D
_H

O
S

T

R
X

D
_H

O
S

T

T
_V

C
C

T
_V

C
C

T
_V

C
C

T
_V

C
C

R
T

S
_H

O
S

T

S
Y

S
_C

LK

S
Y

S
_C

LK

S
Y

S
_C

LK

S
Y

S
_C

LK

C
T

R
_C

LK

C
T

R
_C

LK

C
_P

R
E

S
E

T
_L

O
A

D

C
_P

R
E

S
E

T
_L

O
A

D

C
_P

R
E

S
E

T
_L

O
A

D

C
O

U
N

T
E

R
_R

U
N

C
C

LK
_S

E
L0

C
C

LK
_S

E
L0

C
C

LK
_S

E
L1

C
C

LK
_S

E
L1

V
C

C
_A

U
X

T
_C

O
U

N
T

E
R

_R
U

N

T
_C

O
U

N
T

E
R

_R
U

N

T
_C

O
U

N
T

E
R

_R
U

N

T
_S

Y
S

_C
LK

T
_S

Y
S

_C
LK

T
_S

Y
S

_C
LK

C
_C

T
O

T

C
_C

T
O

T

C
_C

T
O

T

C
_T

T
O

C

C
_T

T
O

C

C
_T

T
O

C

T
_L

A
M

P
T

_L
A

M
P

T
_L

A
M

P

T
_P

A
3

T
_P

A
3

T
_P

A
6

T
_P

A
6

T
_P

A
7

T
_P

A
7

C
_P

R
E

S
E

T
_V

A
LU

E

C
_P

R
E

S
E

T
_V

A
LU

E

C
_P

R
E

S
E

T
_V

A
LU

E

C
_P

R
E

S
E

T
_C

LK

C
_P

R
E

S
E

T
_C

LK

C
_P

R
E

S
E

T
_C

LK

T
_C

T
O

T

T
_C

T
O

T

T
_C

T
O

T

T
_T

T
O

C

T
_T

T
O

C

T
_T

T
O

C

T
_T

X
D

T
_T

X
D

T
_T

X
D

T
_R

X
D

T
_R

X
D

T
_R

X
D

T
_P

B
3

T
_P

B
3

T
R

IG
_Q

T
R

IG
_Q

T
_T

R
IG

_Q

T
_T

R
IG

_Q

T
_T

R
IG

_Q

C
_P

B
3

C
_P

B
3

T
X

D
_A

U
X

T
X

D
_A

U
X

T
X

D
_A

U
X

R
X

D
_A

U
X

R
X

D
_A

U
X

R
X

D
_A

U
X

C
T

S
_A

U
X

C
T

S
_A

U
X

C
T

S
_A

U
X

R
T

S
_A

U
X

R
T

S
_A

U
X

R
T

S
_A

U
X

+

O
ne

 s
ho

t w
he

n
de

gl
itc

he
d

T
C

 g
oe

s
lo

w
.

C
on

tr
ol

 M
P

U
. A

lw
ay

s
ru

nn
in

g
w

he
n

th
e

bo
ar

d
is

 p
ow

er
ed

Ta
rg

et
l M

P
U

. C
on

tr
ol

le
d

vi
a

R
T

S
 (

T
_V

C
C

)

B
uf

fe
rs

 a
ll

si
gn

al
s

be
tw

ee
n

Ta
rg

et
 M

P
U

an
d

liv
e

bo
ar

d.

S
yn

c
R

un
 s

ig
na

l
w

ith
 c

ou
nt

er
 c

lo
ck

D
eg

lit
ch

 fo
r

cl
ea

n
ed

ge
 to

 o
ne

sh
ot

.
N

ot
e:

 1
 c

yc
le

 a
di

tio
na

l d
el

ay
!

C
lo

ck
 G

en
er

at
io

n

H
os

t i
nt

er
fa

ce
 a

nd
 p

ow
er

 c
on

tr
ol

Figure B-4: Board 2 Schematic

Appendix B. Test Circuit Boards 293

B.4. Board FPGA

B.4 Board FPGA

The last board in the series was developed to support multiple laser pulses. Unlike the

YAG laser, laser diodes can be repeatedly fired, and timing multiple such events was

beyond the capability of the earlier boards. Here a Spartan6 [185] FPGA evaluation

board [128] is mounted on the underside of the main controller board’s PCB, see

Figure B-6. This FPGA was then programmed to provide all of the signals required

to support the DUT.

As before, the DUT was independently powered to enable it to be fully reset

between experiments. This power isolation necessitated buffering between the FPGA

and the DUT. The configuration for each of the DUT’s pins, as input or output, was

managed by jumper settings seen on either side of the DUT in Figure B-5. The DUT

communicates with the host PC via a serial link in the same way as the earlier boards.

The laser control signal is sent via a standard CAT6 ethernet RJ45 socket directly

from the FPGA. This signalling mechanism allows the laser’s power control to be

co-located with the diode, ensuring the minimum of signal distortion between the

FPGA and the diode itself.

The controller board was also made to fit the glass plate receptacle on the mi-

croscope’s stage. This arrangement simplified the mounting of the controller board

under the microscope’s objective lens.

294 Appendix B. Test Circuit Boards

B.4. Board FPGA

Figure B-5: Board FPGA

Figure B-6: Board FPGA Rear

Appendix B. Test Circuit Boards 295

B.4. Board FPGA

VCC

G
N

D

G
N

D

2244 P-channel

10
K

10
K

1K

10
0n

G
N

D

470

470

10
n

10
n

10
n

10
n

10
n

47
u

G
N

D
G

N
D

VCC

47
u

47
u

G
N

D

78
05

T
V

P
1

3 2 1

T
P

_V
E

X
T

T
P

_3
.3

V
T

P
_F

P
G

A

JP1 1
2

R
S

23
2_

A
1 2 3 4 5 6

R
S

23
2_

B
1 2 3 4 5 6

T1

T
P

_T
V

C
C

R
1

R
2

R3

C
4

VCC

TGT

R4

R5

C
5

C
6

C
7

C
8

C
9

C
3

T
P

_T
V

C
C

1

C
2

C
1

S
V

6

135

246 G
N

D
1

G
N

D
2

G
N

D
3

G
N

D
4

G
N

D
5

G
N

D
6

G
N

D
7

G
N

D
8

IC
1

G
N

D

V
I

1

2

V
O

3
V

E
X

T
3.

3V

H
O

S
T

1_
5V

H
O

S
T

1_
C

T
S

H
O

S
T

1_
T

X
D

H
O

S
T

1_
R

X
D

H
O

S
T

1_
R

T
S

H
O

S
T

1_
R

T
S

H
O

S
T

2_
C

T
S

H
O

S
T

2_
T

X
D

H
O

S
T

2_
R

X
D

H
O

S
T

2_
R

T
S

T
_V

C
C

T
_V

C
C

H
O

S
T

2_
5V

+

+

+

Figure B-7: Board FPGA Power Schematic

296 Appendix B. Test Circuit Boards

B.4. Board FPGA

T
IN
Y
24
/4
4/
84
-S
S
U

G
N
D

N
C
7W

Z
16
P
6X

N
C
7W

Z
16
P
6X

N
C
7W

Z
16
P
6X

N
C
7W

Z
16
P
6X

N
C
7W

Z
16
P
6X

N
C
7W

Z
16
P
6X

G
N
D

G
N
D

IC
2 G
N
D

14

V
C
C

1

(P
C
IN
T
7/
IC
P
/O
C
0B
/A
D
C
7)
P
A
7

6

(P
C
IN
T
6/
O
C
1A
/S
D
A
/M
O
S
I/A
D
C
6)
P
A
6

7

(P
C
IN
T
5/
O
C
1B
/M
IS
O
/D
O
/A
D
C
5)
P
A
5

8

(P
C
IN
T
4/
T
1/
S
C
L/
U
S
C
K
/A
D
C
4)
P
A
4

9

(P
C
IN
T
3/
T
0/
A
D
C
3)
P
A
3

10

(P
C
IN
T
2/
A
IN
1/
A
D
C
2)
P
A
2

11

(P
C
IN
T
1/
A
IN
0/
A
D
C
1)
P
A
1

12

(P
C
IN
T
0/
A
R
E
F
/A
D
C
0)
P
A
0

13

(P
C
IN
T
11
/R
E
S
E
T
/D
W
)P
B
3

4

(P
C
IN
T
10
/IN
T
0/
O
C
0A
/C
K
O
U
T
)P
B
2

5

(P
C
IN
T
9/
X
TA
L2
)P
B
1

3

(P
C
IN
T
8/
X
TA
L1
/C
LK
I)
P
B
0

2

T
1-
7 1 2 3 4 5 6 7

T
8-
14 1 2 3 4 5 6 7

P
R
O
G

1
2

3
4

5
6

T
P
1

V
C
C

5

A
1

1

A
2

3

G
N
D

2

Y
1

6

Y
2

4

U
1

V
C
C

5

A
1

1

A
2

3

G
N
D

2

Y
1

6

Y
2

4

U
2

V
C
C

5

A
1

1

A
2

3

G
N
D

2

Y
1

6

Y
2

4

U
3

J2

135

246

J3

135

246

J4

135

246

J5

135

246

J6

135

246

J7

135

246

V
C
C

5

A
1

1

A
2

3

G
N
D

2

Y
1

6

Y
2

4

U
4

J1
3

135

246

J1
2

135

246

V
C
C

5

A
1

1

A
2

3

G
N
D

2

Y
1

6

Y
2

4

U
5

J1
1

135

246

J1
0

135

246

V
C
C

5

A
1

1

A
2

3

G
N
D

2

Y
1

6

Y
2

4

U
6

J9

135

246

J8

135

246

T
P
2

T
P
3

T
_V
C
C

T
_V
C
C

T
_V
C
C

T
_V
C
C

T
_V
C
C

G
N
DT
_T
X
D

T
_T
X
D

T
_T
X
D

T
_C
LK

T
_C
LK

T
_C
LK

T
_P
B
1

T
_P
B
1

T
_P
B
1

T
_P
B
3

T
_P
B
3

T
_P
B
3

T
_P
A
7

T
_P
A
7

T
_P
A
7

T
_P
A
6

T
_P
A
6

T
_P
A
6

T
_P
A
0

T
_P
A
0

T
_P
A
0

T
_P
A
2

T
_P
A
2

T
_P
A
2

T
_R
X
D

T
_R
X
D

T
_R
X
D

T
_P
B
2

T
_P
B
2

T
_P
B
2

T
_P
A
3

T
_P
A
3

T
_P
A
3

T
_P
A
1

T
_P
A
1

T
_P
A
1

_P
20
_F
P
G
A
_P
B
1

_P
35
_F
P
G
A
_P
B
2

_P
34
_F
P
G
A
_P
B
3

_P
28
_F
P
G
A
_P
A
7

_P
33
_F
P
G
A
_P
A
0

_P
31
_F
P
G
A
_P
A
2

H
O
S
T
1_
T
X
D

_P
29
_F
P
G
A
_P
A
6

_P
30
_F
P
G
A
_P
A
3

_P
32
_F
P
G
A
_P
A
1

H
O
S
T
1_
R
X
D

_P
21
_F
P
G
A
_C
LK

Figure B-8: Board FPGA DUT

Appendix B. Test Circuit Boards 297

B.4. Board FPGA

04
46
20
00
02

10
10

10
10

F
P
G
A
_P
1 135

246
79

810
111315

121416
1719

1820
212325

222426
2729

2830
3133

3234363840

353739

X
1

1 2 3 4 5 6 7 8

S
V
1

1234567891011121314151617181920
S
V
2

1234567891011121314151617181920
F
P
G
A
_P
2 135

246
79

810
111315

121416
1719

1820
212325

222426
2729

2830
3133

3234363840

353739
S
V
3

1234567891011121314151617181920
S
V
4

1234567891011121314151617181920

R
6

R
7

JP
4

1
2

3
4

S
V
5

1 2 3 4 5 6 7 8

JP
_X
4

1
2

3
4

R
_X
6

R
_X
7

V
C
C

V
C
C

V
C
C

V
C
C

_P
18

_P
17

_P
16

_P
15

_P
14

_P
13

_P
12

_P
11

_P
9

_P
8

_P
7

_P
6

_P
5

_P
4

_P
3

_P
2

_P
1

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

_N
18

_N
17

_N
16

_N
15

_N
14

_N
13

_N
12

_N
11

_N
9

_N
8

_N
7

_N
6

_N
5

_N
4

_N
3

_N
2

_N
1

_N
23

_N
25

_N
24

_N
22

_N
22

_N
19

_N
19

_N
26

_N
27

_N
28

_N
29

_N
30

_N
31

_N
32

_N
33

_N
34

_N
35

_N
20

_N
21

_P
23

_P
25

_P
24

_P
22

_P
22

_P
19

_P
19

_P
26

_P
27

_P
28
_F
P
G
A
_P
A
7

_P
29
_F
P
G
A
_P
A
6

_P
30
_F
P
G
A
_P
A
3

_P
31
_F
P
G
A
_P
A
2

_P
32
_F
P
G
A
_P
A
1

_P
33
_F
P
G
A
_P
A
0

_P
34
_F
P
G
A
_P
B
3

_P
35
_F
P
G
A
_P
B
2

_P
20
_F
P
G
A
_P
B
1

_P
21
_F
P
G
A
_C
LK

_P
10

_N
10

V
E
X
T

Figure B-9: Board FPGA Connections

298 Appendix B. Test Circuit Boards

B.4. Board FPGA

B.4.1 FPGA program

Figure B-10: Simulation

The FPGA is programmed to support multiple timers.

Each timer consists of two counters. One defines the de-

lay before a laser entablement signal gets generated, the

other defines the duration of that signal.

The counters for all the timers are connected in a

chain to form an extended shift register. This configura-

tion enables the pulse times for all the timers to be pro-

grammed into the device via a two-wire Clock & Data

protocol. Given the simplicity of the task and the size

of the supporting FPGA, the number of timers that can

be implemented far exceeds the number required for any

conceivable experiment.

Figure B-10 shows the FPGA operation within the

development environment. ’DIN’ & ’DCLK’ are used to

preset the timers. Values are clocked in to define the

delay and duration for each timer.

A pulse on the ’GO’ signal starts the counters. This

pulse is generated by the DUT to indicate that it has

started to execute a sample program. After the pre-

scribed delays, the output signal ’p1’ then exhibits two

pulses, the duration of which had also been set earlier.

Within the FPGA, signal ’p1’ is routed to the LVDS

connection and on to directly control the laser diode.

The ’CLK’ signal is generated internally and defines

the rate at which the timers count down. The same sig-

nal, divided by four, drives the DUT ensuring the laser

firing and program execution remain synchronised.

Appendix B. Test Circuit Boards 299

B.4. Board FPGA

300 Appendix B. Test Circuit Boards

Appendix C

Defensive C-Compiler

Contents

C.1 Operation . 303

C.2 Samples . 304

C.2.1 Call & Return Defences 304

C.2.2 Branching Defences . 307

C.2.3 Data Placement . 310

We developed DCC, our Defensive C Compiler from K&R’s YACC

grammar defined "The C Programming Language (Ed.2)" [43]. Here

we describe the program structure and source files. We also show how

it is used, samples of the code it generates, and how to extend it.

301

The complete set of source code files for DCC can be found at https://github.

com/digitallocksmiths/DCC. The application can be built with Microsoft Visual

Studio "Community Edition", and the directory structure of the files making up the

DCC source code bundle is shown here in Figure C-1.

DCC — Project files

Source — Source-code parser

Utilities — Host platform features

GenAvr — AVR Code generator functions

Tools — Additional build tools

Samples — Test code fragments

Figure C-1: DCC Project Directory Structure.

DCC — Visual Studio project files.

Source — Code for file I/O, input file parsing and IR generation. This code is independent

from the targetted CPU.

Utilities — Funtions that access windows platform specific features. If the project is ported

to an alternative host operating system, these files will probably need updating.

Features such as console colour printing and application versioning are managed

here.

GenAvr — The code generator for AVR. These files translate the IR into AVR assembler

files. If an alternative target CPU is required, these files are the ones to modify.

Tools — Extra executables used in this projects. Yacc.Exe translates the ’C’ YACC

grammar into compilable source files.

Samples — Small snippits of parsable ’C’ code, used to test the output of the code generator.

302 Appendix C. Defensive C-Compiler

https://github.com/digitallocksmiths/DCC
https://github.com/digitallocksmiths/DCC

C.1. Operation

C.1 Operation

The compiler can be executed from a shell command line.

> CC_Avr <input file> <output file> <options>

<input file> — The C sourcecode file to be translated. In the absence of this parameter the

default filename of Code.c will used.

<output file> — The filename for the translated output. In the absence of a this parameter the

input file name will be used with the extension replaced with .Asm.

<options> — May be any number of the following.

-v Verbose. Prints information about the parameters being used.

-debug_output Echo the text being sent to the output file to <stdout>. This feature is

useful when debugging the code generator. The output is instantaneous

rather than cached and delayed, as happens with the target file updating.

-debug_expr Pretty-print to <stdout> each expression within the IR as it is being pro-

cessed. This feature is useful when debugging the translator and when

implementing expression transformations for optimization.

-Debug_objects Pretty-print to <stdout> each IR feature. This is, more or less, the parse

tree of the C source code. It provides a useful reference for understanding

the IR and is of particular value when implementing a code generator.

-d1=<int> Defence setting for Call & Return. -d1=0 is undefended. -d1=n adds the

defence shown in Figure C-4. When n controls the number of consecu-

tive "jmp SysTrap" statements to insert. Additional statements provide

immunity from consecutive skip errors.

-d2=<int> Defence setting for unconditional jump statements. -d2=0 is undefended.

-d2=n adds the prescribed number of "jmp SysTrap" statements after un-

conditional jump statements. Unconditional jumps typically occur at the

end of a loop’s body code to return to that loop’s test condition, or to exit

Appendix C. Defensive C-Compiler 303

C.2. Samples

from an if’s then clause by jumping over the else body code, as seen in

lines 44..46 of Figure C-7.

-d3=<int> Defence setting for Conditional branch statements. -d3=0 is undefended.

-d3=n adds the prescribed number of "jmp SysTrap" statements after

conditional branches. Conditional branches are implemented as specific

branches on both the positive and negative test conditions with a fall

through being trapped, as seen in lines 30..34 of Figure C-7.

C.2 Samples

One feature common to all of the compiled output is the extensive code commenting.

Extensive commenting assists code reviewers by demonstrating the nature of defences

and their coverage.

C.2.1 Call & Return Defences

The code shown in Figure C-2 demonstrates simple call and return behaviour. The

output from an undefended compilation is shown in Figure C-3 and the defended

equivalent in Figure C-4.

1 void Called(void) {
2 ;
3 }
4
5 void Caller(void) {
6 Called ();
7 }

Figure C-2: Call & Return — Source Code

304 Appendix C. Defensive C-Compiler

C.2. Samples

1
2 // Commandline parameters Samples\Code.c -d1=0
3
4 ; ###
5 ; # Function: Called
6 ; ###
7 ; # Params: <none >
8 ; # Locals: <none >
9 ; # Return: void

10 ; ###
11 .global Called
12 Called: ; #### no frame needed ############### ; no parameters or locals
13 ; #### body text ##################### ;
14 ; ==== Compound Statement ============ ; L_Statement_compound_000001
15 ; Compound Body ------- ; L_Statement_compound_000001
16 ; Compound End -------- ; L_Statement_compound_000001
17 ; #### exit ########################## ;
18 L_Exit_000000: ret ; 4:
19
20
21
22 ; ###
23 ; # Function: Caller
24 ; ###
25 ; # Params: <none >
26 ; # CPU : <return addr > @Y+3 size=2
27 ; # CPU : <saved fptr > @Y+1 size=2
28 ; # Locals: <none >
29 ; # Return: void
30 ; ###
31 .global Caller
32 Caller: ; #### frame setup ################### ;
33 push r29 ; 2: (YH) preserve Frame
34 push r28 ; 2: (YL)
35 in r29 , _IO_SPH ; 1: FP <- SP
36 in r28 , _IO_SPL ; 1:
37 ; #### body text ##################### ;
38 ; ==== Compound Statement ============ ; L_Statement_compound_000003
39 ; Compound Body ------- ; L_Statement_compound_000003
40 ; ==== Expr Statement ================ ; L_Statement_Expression_000004
41 call Called ; 3: Invoke the function
42 ; :
43 ; Expr end ------------ ; L_Statement_Expression_000004
44 ; Compound End -------- ; L_Statement_compound_000003
45 ; #### exit ########################## ;
46 L_Exit_000002: out _IO_SPH , r29 ; 1: SP <- Y
47 out _IO_SPL , r28 ; 1:
48 pop r28 ; 2: FP <- preserved Frame
49 pop r29 ; 2:
50 ret ; 4:

Figure C-3: Call & Return — Undefended Output

Appendix C. Defensive C-Compiler 305

C.2. Samples

1
2 // Commandline parameters Samples\Code.c -d1=1
3
4 ; ###
5 ; # Function: Called
6 ; ###
7 ; # Params: <none >
8 ; # Locals: <none >
9 ; # Return: void

10 ; ###
11 .global Called
12 Called: ; #### no frame needed ############### ; no parameters or locals
13 ; #### intended call check ########### ;
14 subi r16 , lo8(Called -1) ; 1: Check the call was deliberate
15 breq L_OK_000001 ; 2: Clean setup , or
16 jmp SysTrap ; 2: Accidental arrival?
17 L_OK_000001: ; #### body text ##################### ;
18 ; ==== Compound Statement ============ ; L_Statement_compound_000002
19 ; Compound Body ------- ; L_Statement_compound_000002
20 ; Compound End -------- ; L_Statement_compound_000002
21 ; #### exit ########################## ;
22 L_Exit_000000: ldi r16 , lo8(Called +1) ; 1: Returner ’s identity
23 ret ; 4:
24
25
26
27 ; ###
28 ; # Function: Caller
29 ; ###
30 ; # Params: <none >
31 ; # CPU : <return addr > @Y+3 size=2
32 ; # CPU : <saved fptr > @Y+1 size=2
33 ; # Locals: <none >
34 ; # Return: void
35 ; ###
36 .global Caller
37 Caller: ; #### frame setup ################### ;
38 push r29 ; 2: (YH) preserve Frame
39 push r28 ; 2: (YL)
40 in r29 , _IO_SPH ; 1: FP <- SP
41 in r28 , _IO_SPL ; 1:
42 ; #### intended call check ########### ;
43 subi r16 , lo8(Caller -1) ; 1: Check the call was deliberate
44 breq L_OK_000004 ; 2: Clean setup , or
45 jmp SysTrap ; 2: Accidental arrival?
46 L_OK_000004: ; #### body text ##################### ;
47 ; ==== Compound Statement ============ ; L_Statement_compound_000005
48 ; Compound Body ------- ; L_Statement_compound_000005
49 ; ==== Expr Statement ================ ; L_Statement_Expression_000006
50 ldi r16 , lo8(Called -1) ; 1: Defended call
51 call Called ; 3: Invoke the function
52 subi r16 , lo8(Called +1) ; 1: Check who returned
53 breq L_OK_000007 ; 2: Expected returner?
54 jmp SysTrap ; 2: Accept no substitutes.
55 L_OK_000007: ; :
56 ; Expr end ------------ ; L_Statement_Expression_000006
57 ; Compound End -------- ; L_Statement_compound_000005
58 ; #### exit ########################## ;
59 L_Exit_000003: ldi r16 , lo8(Caller +1) ; 1: Returner ’s identity
60 out _IO_SPH , r29 ; 1: SP <- Y
61 out _IO_SPL , r28 ; 1:
62 pop r28 ; 2: FP <- preserved Frame
63 pop r29 ; 2:
64 ret ; 4:

Figure C-4: Call & Return — Defended Output

306 Appendix C. Defensive C-Compiler

C.2. Samples

C.2.2 Branching Defences

The code shown in Figure C-5 demonstrates defended branch behaviour. The output

from an undefended compilation is shown in Figure C-6 and the defended equivalent

in Figure C-7.

1 void Test(char x, char y) {
2 char z;
3 if (y) {
4 z=x;
5 }
6 else {
7 z=y;
8 }
9 }

Figure C-5: Branching Test — Source Code

Appendix C. Defensive C-Compiler 307

C.2. Samples

1
2 // Commandline parameters Samples\Code.c -d2=0 -d3=0
3
4 ; ###
5 ; # Function: Test
6 ; ###
7 ; # Param: y @Y+7 size=1 char , Class[_____]
8 ; # CPU : <return address > @Y+4 size=3
9 ; # : <saved fptr > @Y+2 size=2

10 ; # Param: x r2 size=1 char , Class[_____]
11 ; # Locals: z @Y+1 size=1 char , Class[_____]
12 ; # : sizeof(locals) = 1
13 ; # Return: void
14 ; ###
15 .global Test
16 Test: ; #### frame setup ################### ;
17 push r29 ; 2: (YH) preserve Frame
18 push r28 ; 2: (YL)
19 in r29 , _IO_SPH ; 1: FP <- SP
20 in r28 , _IO_SPL ; 1:
21 sbiw r28 , 1 ; 2: FP -= sizeof(locals))
22 out _IO_SPH , r29 ; 1: SP <- FP
23 out _IO_SPL , r28 ; 1:
24 mov r2, r20 ; 1: First parameter is regified
25 ; #### body text ##################### ;
26 ; ==== Compound Statement ============ ; L_Statement_compound_000001
27 ; Compound Body ------- ; L_Statement_compound_000001
28 ; ==== If Statement ================== ; L_Statement_If_000002
29 ldd r20 , Y+7 ; 1: reg8 <== Local y @Frame :7
30 tst r20 ; 1: Cast Byte to Flag
31 breq L_IfElse_000004 ; 1/2: branch if FALSE
32 ; : fall through on TRUE
33 L_IfThen_000003: ; If Then ------------ ; L_Statement_If_000002
34 ; ==== Compound Statement ============ ; L_Statement_compound_000006
35 ; Compound Body ------- ; L_Statement_compound_000006
36 ; ==== Expr Statement ================ ; L_Statement_Expression_000007
37 mov r20 , r2 ; 1: reg8 <== register variable x
38 std Y+1, r20 ; 2: local <== reg z
39 ; Expr end ------------ ; L_Statement_Expression_000007
40 ; Compound End -------- ; L_Statement_compound_000006
41 rjmp L_IfDone_000005 ; 1/2:
42 L_IfElse_000004: ; If Else ------------ ; L_Statement_If_000002
43 ; ==== Compound Statement ============ ; L_Statement_compound_000008
44 ; Compound Body ------- ; L_Statement_compound_000008
45 ; ==== Expr Statement ================ ; L_Statement_Expression_000009
46 ldd r20 , Y+7 ; 1: reg8 <== Local y @Frame :7
47 std Y+1, r20 ; 2: local <== reg z
48 ; Expr end ------------ ; L_Statement_Expression_000009
49 ; Compound End -------- ; L_Statement_compound_000008
50 L_IfDone_000005: ; If End -------------- ; L_Statement_If_000002
51 ; Compound End -------- ; L_Statement_compound_000001
52 ; #### exit ########################## ;
53 L_Exit_000000: adiw r28 , 1 ; 2: Y += sizeof(locals)
54 out _IO_SPH , r29 ; 1: SP <- Y
55 out _IO_SPL , r28 ; 1:
56 pop r28 ; 2: FP <- preserved Frame
57 pop r29 ; 2:
58 ret ; 4:

Figure C-6: Branching Test — Undefended Output

308 Appendix C. Defensive C-Compiler

C.2. Samples

1
2 // Commandline parameters Samples\Code.c -d2=2 -d3=2
3
4 ; ###
5 ; # Function: Test
6 ; ###
7 ; # Param: y @Y+7 size=1 char , Class[_____]
8 ; # CPU : <return address > @Y+4 size=3
9 ; # : <saved fptr > @Y+2 size=2

10 ; # Param: x r2 size=1 char , Class[_____]
11 ; # Locals: z @Y+1 size=1 char , Class[_____]
12 ; # : sizeof(locals) = 1
13 ; # Return: void
14 ; ###
15 .global Test
16 Test: ; #### frame setup ################### ;
17 push r29 ; 2: (YH) preserve Frame
18 push r28 ; 2: (YL)
19 in r29 , _IO_SPH ; 1: FP <- SP
20 in r28 , _IO_SPL ; 1:
21 sbiw r28 , 1 ; 2: FP -= sizeof(locals))
22 out _IO_SPH , r29 ; 1: SP <- FP
23 out _IO_SPL , r28 ; 1:
24 mov r2, r20 ; 1: First parameter is regified
25 ; #### body text ##################### ;
26 ; ==== Compound Statement ============ ; L_Statement_compound_000001
27 ; Compound Body ------- ; L_Statement_compound_000001
28 ; ==== If Statement ================== ; L_Statement_If_000002
29 ldd r20 , Y+7 ; 1: reg8 <== Local y @Frame :7
30 tst r20 ; 1: Cast Byte to Flag
31 breq L_IfElse_000004 ; 1/2: branch if FALSE
32 brne L_Dft_000006 ; 1/2: not -breq defence
33 jmp SysTrap ; : Defence against skipping
34 jmp SysTrap ; :
35 L_Dft_000006: ; : defended fall through.
36 L_IfThen_000003: ; If Then ------------ ; L_Statement_If_000002
37 ; ==== Compound Statement ============ ; L_Statement_compound_000007
38 ; Compound Body ------- ; L_Statement_compound_000007
39 ; ==== Expr Statement ================ ; L_Statement_Expression_000008
40 mov r20 , r2 ; 1: reg8 <== register variable x
41 std Y+1, r20 ; 2: local <== reg z
42 ; Expr end ------------ ; L_Statement_Expression_000008
43 ; Compound End -------- ; L_Statement_compound_000007
44 rjmp L_IfDone_000005 ; 1/2:
45 jmp SysTrap ; : Defence against skipping
46 jmp SysTrap ; :
47 L_IfElse_000004: ; If Else ------------ ; L_Statement_If_000002
48 ; ==== Compound Statement ============ ; L_Statement_compound_000009
49 ; Compound Body ------- ; L_Statement_compound_000009
50 ; ==== Expr Statement ================ ; L_Statement_Expression_000010
51 ldd r20 , Y+7 ; 1: reg8 <== Local y @Frame :7
52 std Y+1, r20 ; 2: local <== reg z
53 ; Expr end ------------ ; L_Statement_Expression_000010
54 ; Compound End -------- ; L_Statement_compound_000009
55 L_IfDone_000005: ; If End -------------- ; L_Statement_If_000002
56 ; Compound End -------- ; L_Statement_compound_000001
57 ; #### exit ########################## ;
58 L_Exit_000000: adiw r28 , 1 ; 2: Y += sizeof(locals)
59 out _IO_SPH , r29 ; 1: SP <- Y
60 out _IO_SPL , r28 ; 1:
61 pop r28 ; 2: FP <- preserved Frame
62 pop r29 ; 2:
63 ret ; 4:

Figure C-7: Branching Test — Defended Output

Appendix C. Defensive C-Compiler 309

C.2. Samples

C.2.3 Data Placement

An area of interest for code reviewers is the location and initialization states of global

data resources. Figure C-8 shows various global variables and Figure C-9 shows the

resulting compiled output. Preservation of variable names and annotations for ele-

ments of structures enables reviewers to quickly confirm where variables are allocated,

as well as if and how they are initialized.

1 int a; // uninitialized var
2 int b = 1; // initialized var
3
4 typedef struct { char cF; int iF; } S;
5
6 S s1; // uninitialized structure
7 S s2 = { 2, 3}; // initialized structure

Figure C-8: Variable Declaration — Source Code

1
2 ; #########################
3 ; # Start of INIT segment #
4 .section INIT , "a" ; #########################
5 ; This is the source of the initialization data
6 ;: b ; (int)
7 .word 1 ; 0x0001 -> b
8 ;: s2 ; structure ’’
9 .byte 2 ; 0x02 -> s2.cF

10 .word 3 ; 0x0003 -> s2.iF
11
12 ; #########################
13 .section .data ; # Start of DATA segment #
14 ; #########################
15 ; This is where the initialization data will be copied to
16 .global b
17 b: .space 2 ; (int)
18 .global s2
19 s2: .space 3 ; structure ’’
20
21 ; ########################
22 .section .bss ; # Start of BSS segment #
23 ; ########################
24 ; Here starts the uninitialized data
25 .global a
26 a: .space 2 ; (int)
27 .global s1
28 s1: .space 3 ; structure ’’

Figure C-9: Variable Declaration — Output

310 Appendix C. Defensive C-Compiler

C.2. Samples

Appendix C. Defensive C-Compiler 311

	Cover
	Declaration
	Acknowledgements
	Abstract

	Contents
	List of Contents
	List of Tables
	List of Figures
	List of Abbreviations

	Forward
	Introduction
	Research Questions
	Nature of Errors
	Practicalities of Error Induction
	Defences
	Deployment

	Methodology
	Significance
	Publications

	Structure of this Thesis

	Background
	Threats
	Motivation
	Mitigation
	Relevance

	Attacks
	Logical Attacks
	Brute Force
	Analytical Attacks
	Exploiting Flaws

	Side-Channel Attacks
	Heat, Light and Sound
	EM Radiation
	Timing
	Power
	SPA
	DPA

	Physical Attacks

	Errors
	History of Fault Attacks Techniques
	Consequences of Faulty Execution
	Mechanisms of Fault Injection
	Glitch Attacks
	Body Biasing Injection Attacks
	EM Attacks
	Light Attacks

	Lasers
	Implementation Practicalities
	Static - Bit-Flip
	Laser Error Induction in a Running Program

	Defence Techniques
	Observations

	Categorising Errors
	Fault Models
	Target Specific Factors
	Simulation vs. Physical Results

	Test Strategy
	Choice of Target
	Attack Mechanism
	Synchronization
	Bespoke Equipment
	Specialist Tools

	Experiments
	Familiarisation
	Dedicated Tool Development
	DUT life support PCB
	Experiment Invocation
	Test Campaign
	Results Analysis

	First Results and Tool Revision
	Revised Controller Board
	Instruction Behaviour Under Attack
	Targeting Individual Instructions
	No Operation Tests.
	Single Register Update Tests.
	Arithmetic Tests.
	Memory Access Tests.
	Conditional Branch Tests.
	Aggregated results..
	Error categorization.

	Targeting Running Code
	Testing the Skip Hypothesis

	Power and Aperture

	Data and Interpretation
	Summary

	A New Laser Workstation
	Components
	Laser Diode
	Refinements
	Validation
	Integration
	Functional Testing

	Multi-Pulse Proof of Capability
	Creeping Barrage - Blind Attack on Known Code
	Summary

	Testing Security Defences
	Practicalities
	Defensive Coding
	Fault Model
	Testing Defences

	Defences
	Unprotected
	Double Test
	Retest at Destination
	Inverse Test
	Double Data
	Data Inverse
	Checksum
	Redundant Representation
	Repeat Calculation
	Modified Compensated
	Alternative Algorithm
	Inverse Calculation
	Jump Id
	Waymark - Late Test
	Waymark - On the Fly

	Results and Analysis
	Results
	Normal Termination
	Trapping
	Crashing
	Out-of-Order Processing

	Application
	Summary

	Automating Defence Generation
	Background
	Defensive C Compiler
	A Defensive Object-code Generator.

	Defending Execution Path
	Call and Return
	Branching
	Branch Instruction
	Branch Arithmetic

	Code Efficiency
	Large Application
	Call Intensive Code
	Branch Intensive Code
	Code Size
	Code Performance

	Summary
	Room for Improvement

	Security Impact
	Implications
	Accessibility
	Repeatability
	Attackers
	Defenders
	Exploitations
	Development, Review and Certification

	Strategies

	Conclusions and Further Work
	Original Goals
	Characterization
	Repeatability
	Defence Refinement
	Defence Automation

	Future Research Directions
	Logistical Obstacles
	Pursuable Properties
	Improving the Compiler

	The Last Word

	Bibliography
	Test Harness
	Components
	Roles and Responsibilities
	Sample Alignment
	Zone Identification
	Executing a Test Campaign

	Test Circuit Boards
	Purpose
	Board 1
	Board 2
	Board FPGA
	FPGA program

	Defensive C-Compiler
	Operation
	Samples
	Call & Return Defences
	Branching Defences
	Data Placement

