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Abstract: The Phase III of the European Union Emission Trading System (EU ETS) is 

significantly different from the previous Phases in terms of price trajectory and 

operational mechanism. Against this background, this study reveals the multisca le 

interplay of higher-order moments (skewness and kurtosis) between the carbon and 

energy markets, and formulates optimal portfolio strategies to manage higher-order 

moments risks at different time horizons. We detect a breakpoint, September 15, 2016, 

in the carbon-energy markets which divides Phase III into two stages corresponding to 

different market status. Our findings show that the bidirectional higher-order moments 

spillovers between the carbon and energy markets are weak at the short-run timescales 

(below 16 trading days), while the long-run (over 16 trading days) higher-order 

spillover effect is greatly enhanced. In particular, we find the spillovers in the higher-

order moments are strong when the carbon and energy markets are in bullish status.  

Furthermore, we demonstrate that carbon assets are good short-run hedge against 

exposure to spillover risks in higher-order moments of the energy markets, while the 

hedging effectiveness declines at the long-run timescales. 

Keywords: EU ETS; Energy markets; Higher-order moments; Multiscale analys is; 

Portfolio management 
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1. Introduction 

For the benefits of the carbon and energy markets risk management (Hammoudeh 

et al., 2014a, b), portfolio construction (Luo and Wu, 2016; Uddin et al., 2018), and 

energy markets regulation (Chevallier et al., 2019; International Energy Agency, 2020), 

there is significant interest in studying the interplay between the European Union 

Emissions Trading Systems (EU ETS) and energy markets.  

This study deals challenges in the crucial Phase III of EU ETS1 in terms of price 

trajectory 2  and operational mechanisms (Bocklet et al., 2019). There are three 

distinctive features of Phase III including first, auctions are the default method for 

allocating quotas (rather than free allocation),3 which allows the carbon prices to fully 

reflect the demand and supply of emission under energy price shocks. As a result, the 

non-gaussian behaviour in carbon and energy price is likely to intensify in Phase III 

(Hammoudeh et al., 2014a). Second, the European Commission (EC) directly sets a 

single EU-wide carbon emission cap instead of National Allocation Plans (NAPs). 

Moreover, the increase of the Linear Reduction Factor (LRF) contributes a stricter and 

more effective cap-settings. This will undoubtedly increase the complexity and non-

linearity of the carbon price patterns and its interplay with energy assets (Lutz et al., 

2013). 

                                                 

 
1 The EU ETS is organised in four phases: Phase I was considered as a ‘trial period’ in 2005–2007; Phase II 

coincided with the period of Kyoto Protocol commitment in 2008–2012; Phase III runs in 2013–2020 to help meet 

the European mitigation target of green gas emissions by 20% in 2020 in contrast to 1990 (European Commission, 

2017). 

2 The European Allowance (EUA), the unit of compliance, has even been hovering under €10 before 2016. The 

EUA price of EU ETS increased steadily and rose to €42  in 2020 (Intercontinental Exchange, n.d.). 

3 At least 90% of the allowances were allocated to emitters for free in Phase I/II of the EU ETS and about 90% in 

Phase II (International Carbon Action Partnership, n.d.). The resulting "windfall profits" in the power sector directly 

distort market competition, thereby distorting the interplay between energy and carbon assets. At the beginning of  

Phase III of the EU ETS, the shift to an auction-based distribution system was one of the main purposes of eliminating 

windfall profits (Hobbie et al., 2019).  
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Finally, it is claimed that the Market Stability Reserve (MSR) has significantly 

reduced the surplus allowances and caused the carbon prices surging high in Phase III 

(Chaton et al., 2018; Hepburn et al., 2016).4 This implies that the “waterbed effect” 

may be undermined (Anke et al., 2020; Hintermayer, 2020; Perino, 2018; Rosendahl, 

2019) and the long-run price signaling mechanism of the carbon market could be 

strengthened. This directly entails the impact of long-run carbon markets on energy 

markets will intensify, and vice versa. 5  Therefore, the debate on timescale 

heterogeneity of interplay between carbon and energy markets in Phase III of the EU 

ETS continuously develop (Zhu et al., 2017; Zhu et al., 2019). It remains controversia l 

and unsettled if the MSR policy could increase the long-term impact of carbon markets 

(Perino and Willner 2016, 2017)6. It is then expected that Phase III would present a 

more complex bidirectional relationship between carbon-energy prices which creates 

new challenges for investors and policy makers who concern the systemic risk of the 

carbon and energy markets. 

Considering the unique features and changes in EU ETS Phase III, this study aims 

to reveal the interplay between the carbon and energy markets to depict spillovers of 

higher-order moments, namely spillovers of asymmetric and fat-tailed risks.7  This 

                                                 
 
4 The MSR was proposed in 2015 by the European Commission to address the surplus of unused allowances which 

have been accumulated from Phase I and Phase II, and to improve the EU ETSs resilience to shocks. 

5 The "waterbed effect" means that the reduction of carbon emissions in one area (time) will contribute to carbon 

emissions in another area or time. 

6  Perino and Willner (2016, 2017) stress that the MSR does little to incent ivize abatement if it is allowance 

preserving. Chaton et al. (2018), on the other hand, point out that the MSR by substituting for private banking efforts, 

can lead to a collapse in present-day allowance prices. Despite its purported shortcomings, Kollenberg and Taschini 

(2016) argues that MSR improves the performance of the EU ETS and suggests ways to make the MSR fully flexible 

and responsive to shocks. 

7 The third-order moment is the skewness of one asset revealing the financial instability information (Da Fonseca 

and Xu 2019). The negative skewness implies the higher probability in a price drop and vice versa. Moreover, the 

fourth-order moment, the kurtosis of one asset, shows the tail and peak feature of one asset distribution. A high 

kurtosis suggests that asset returns have a “fat tail,” implying the high probability of extreme price (Bali et al., 2008). 
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paper also examines the timescale heterogeneity depending on interplay between the 

carbon and energy markets. This is addressed as a direct response to the debate on the 

distinctness envisioned between the long- and short-run price signals leadership in the 

carbon market due to the “waterbed effect” (Anke, 2020; Rosendahl, 2019), fuel-

switching cost (Chevallier, 2019) and policy conflicts (Van den Bergh, 2013)8. Mining 

this complex feature can directly help investors of the carbon and energy assets holding 

different investment horizons to better measure and manage risks given the importance 

of higher-order moments in portfolio risk management (Christoffersen et al., 2021; 

Langlois, 2020). To demonstrate the implication of higher order moments risk in 

portfolio management, this paper also formulates an optimal wavelet-based skewness-

kurtosis portfolio strategy to hedge exposure to spillovers of higher-order moments risk 

of the carbon and energy markets.9 

This study has a three-fold potential to provide new insights for understanding the 

interplay between the carbon and energy markets in Phase III of the EU ETS. First, the 

higher-order moments analysis used in this study complements the study of 

mean/variance analysis on carbon and energy markets (Aatola et al, 2013; Ji et al., 2018; 

Hammoudeh et al., 2015), tail dependence- (Reboredo, 2013; Uddin et al., 2018) and 

quantile dependence-based (Duan et al., 2021; Hammoudeh et al., 2014a), and this will 

greatly enhance our understanding of the complex carbon-energy interplay during the 

Phase of dramatic changes in the EU ETS market. Second, empirical evidence found to 

show timescale heterogeneity features which is a powerful response to the misgivings 

                                                 
 
8 The empirical analysis has vividly documented that both carbon and energy prices show distinct patterns under 

different timescales (Dai et al., 2020; Huang et al., 2021; Wang et al., 2020), and there is evidence of timescale 

heterogeneity in the mean-based or non-linear interplay between the carbon and energy markets (Yu et al., 2015; 

Zhu et al., 2015). See Section 2. 

9 In Section 2, we discuss the characteristics in detail. 
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and debates about the ability of the market’s long-run carbon price signal leadership 

(Anke, 2020; Rosendahl, 2019). It also largely extends the findings of previous 

multiscale analysis work on carbon and energy markets (Dai et al., 2020; Huang et al., 

2021; Yu et al., 2015; Zhu et al., 2019). Thirdly, to our best knowledge, this paper offers 

the first empirical attempt to formulate an optimal maximizing skewness and 

minimizing kurtosis portfolio strategy to hedge exposure to higher-order moments risk 

in the carbon and energy markets at short- and long-run time horizons respectively. It 

directly extends the work of Luo and Wu (2016), and Uddin et al. (2018). 

The rest of this paper is organised as follows. Section 2 reviews literature and 

identifies the importance and gaps of the spillovers and their heterogeneity of higher-

order moments between the carbon and energy markets at different timescales. Section 

3 introduces the econometric approaches we use in this study. Section 4 describes the 

data used in this study. Section 5 presents and discusses the empirical findings, and 

section 6 concludes and highlights the policy implications.  

2. New perspectives on the interplay between the carbon and energy markets  

There is abundant literature show that carbon prices are closely associated with 

energy prices on mean and volatility at the theoretical and empirical level especially in 

the Phase I and Phase II of the EU ETS (Aatola et al., 2013; Bunn and Fezzi, 2007; 

Chevallier, 2009, 2011b, 2012; Christiansen et al., 2005; Hammoudeh et al., 2015; Ji et 

al., 2018; Keppler and Mansanet-Bataller, 2010; Mansanet-Bataller et al., 2007; 

Reboredo, 2014; Zhang and Sun, 2016). Apparently, changes in energy prices have 

impact on carbon emissions, whether it is an income effect or a substitution effect, 

thereby affecting carbon prices, and vice versa. 
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However, as both carbon and energy assets have strong financial attributes 

(Medina and Pardo, 2013), classical mean/volatility-based analysis loses a great deal of 

panoramic information in the interplay of carbon and energy assets, especially in this 

EU ETS Phase III that has changed dramatically. If and to what extent extreme prices, 

namely asymmetric and fat-tailed risk, of carbon and energy assets will affect each other? 

Researchers argue that such higher-order moments information (Bali, 2008; 

Christoffersen et al., 2021; Harvey et al., 2010; Langlois, 2020) is precisely the primary 

risk that investors face and the main sources of systemic risk that needs to be considered 

by policy makers. Various tail modelling methods are used to show that although carbon 

prices may not co-move with energy prices closely, but they do affect the tail 

distribution of energy prices and vice versa (Chevallier et al., 2019; Marimoutou and 

Soury, 2015; Reboredo, 2013; Uddin et al., 2018). Duan et al. (2021), Hammoudeh et 

al. (2014), and Tan and Wang (2017) reveal the interplay between different price 

distributions based on geographical location, documenting the widespread existence of 

asymmetric tail dependence between carbon and energy markets. Besides, there has 

been a growing interest in the non-gaussian behaviour on carbon and energy markets 

(Yu et al., 2015), suggesting that mean-/volatility-based analysis may fail to analyse the 

underlying risk between the carbon and energy markets. Hence, it is essential to 

investigate the interplay of asymmetry or fat tail prices which are related to the third 

and fourth order moments feature of carbon and energy prices.  

Both theoretical foundations and empirical evidence imply that heterogeneity in 

higher-order moments spillovers across different timescales may exist. As a result of 

the “waterbed effect” (Anke et al., 2020; Hintermayer, 2020; Perino, 2018; Rosendahl, 

2019), the renewable energy sources (RES) policy, fossil (crude oil, coal, natural gas) 

consumption demand has been hit hard and prices have declined, which has triggered a 
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short-run decrease in carbon prices. However, regions with high fossil energy 

dependence will likely leverage the low carbon prices and increase carbon price usage  

as the development of renewable energy technologies is geographically heterogeneous, 

while carbon prices are uniform across the EU. This will then restore the carbon prices 

in long-run. Hence, because of the waterbed effect, many RES policies and the EU ETS 

may be contradictory and could affect the price steering ability of the carbon prices in 

the long-run timescales. Chevallier et al. (2021) report that the carbon pricing could 

influence the consumption of stranded energy assets, and the current carbon prices drive 

the movements of the future energy price. The heterogeneity is also related to different 

price drivers of carbon and energy assets. For example, energy assets are highly 

susceptible to international geopolitical shocks and influences (e.g., the US economic 

sanctions against Iran in 2017), while carbon prices are highly dependent on long-run 

industrial production conditions.  

Some empirical studies also show that the interaction between carbon and energy 

prices is heterogeneous in the short- and long-run timescales. The carbon, oil, coal, and 

gas markets show heterogeneous price characteristics at different timescales (Dai et al., 

2020; Huang et al., 2021; Wang et al., 2020) and such features could be embedded in 

the higher-order moments interplay between carbon and energy markets. Besides, Ortas 

and Álvarez (2016), Zhu et al. (2015) and Zhu et al. (2019) use the decomposition 

method to find the linear lead-lag relationship between carbon and energy prices, while 

Yu et al. (2015) extend the result to a non-linear aspect. 

In summary, this study addresses the gaps in previous studies from two new 

perspectives: 

1) Interplay in higher-order moments between the carbon and energy markets. 
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2) Heterogeneity of timescales in the interplay between the carbon and energy 

markets. 

Findings from new perspectives could provide both investors and policy makers new 

insights about the interplay and risk spillovers of higher-order moments between the 

carbon and energy markets during Phase III of the EU ETS. 

3. Methodology 

First, we explore structural breakpoints in a quaternary system using methods 

proposed by Matteson and James (2014), and divide the sample into various stages 

which depend on different market situations. Second, a state-of-the-art multisca le 

information network spillover analysis model, proposed by Baruník and Křehlík (2018), 

is used to reveal the higher-order moment spillover at different timescales for each stage. 

Third, a wavelet-based portfolio strategy (Dai et al., 2020; Lai et al., 2006) is designed 

to hedge against exposure to risks of high-order moments and compute the optimal 

weights of carbon and energy assets at different time frequencies. Figure 1 provides a 

stark illustration of the research design and methodology. 
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Figure 1. Research design and methodology. 

 

3.1. Step 1: Detection of structural breaks 

 A state-of-the-art non-parameter joint distribution structural breaks detection 

method proposed by Matteson and James (2014) is applied for detecting the systemic 

structural breaks. Let 𝑿𝑛 = {𝑋𝑖: 𝑖 = 1,2, . . . , 𝑛} be 𝑛 independent observations with 

𝑋𝑖~𝐹  and 𝒀𝑚 = {𝑌𝑗: 𝑗 = 1, . . . , 𝑚}  as 𝑚  independent observations with 𝑌𝑗~𝐺 . 

Following Matteson and James (2014), the sample distance between 𝑑-dimensiona l 

distributions 𝑋~𝐹  and 𝑌~𝐺, for arbitrary distributions 𝐹 and 𝐺, can be computed 

by10 

𝒬(𝑿𝑛, 𝒀𝑚; 𝛼) =
𝑚𝑛

𝑚+𝑛
ℰ̂(𝑿𝑛, 𝒀𝑚; 𝛼).  (1) 

                                                 

 
10 where ℰ̂(𝑿𝑛 , 𝒀𝑚; 𝛼) =

2

𝑚𝑛
∑ ∑ |𝑋𝑖 −𝑌𝑗|

𝛼
− (

𝑛
2)
−1𝑚

𝑗=1
𝑛
𝑖=1 ∑ |𝑋𝑖 −𝑋𝑘 |

𝛼
1≤𝑖<𝑘≤𝑛 −(

𝑛
2)
−1∑ |𝑌𝑗− 𝑌𝑘|

𝛼
1≤𝑗<𝑘≤𝑚 . 
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Based on such a distance definition, we can estimate the location of systemic change 

points and hierarchically further estimate Matteson and James’s (2014) multiple change 

points. 

3.2. Step 2: Computing multi-scale higher-order moments spillover  

In this study, we consider not only the higher-order moments of individual assets 

but also the higher-order co-moments of a portfolio of assets between the carbon and 

energy markets. There are two reasons first, co-moment is regarded as an important 

factor driving price movements of individual assets. For example, the classic BEKK-

GARCH consider conditional variance and co-variance as the drivers of price 

movements of individual assets in a multivariate framework. Second, the number of co-

moment terms will substantially increase when we consider higher-order moments in a 

quaternary system. Ignoring co-movement terms will make the empirical analysis less 

rigorous as we lose a great deal of important information of the interrelationship 

presenting in higher moments. We compute the dynamic skewness, co-skewness, 

kurtosis and co-kurtosis at time 𝑡.11 Here we denote the dynamic sample skewness-

coskewness matrix and dynamic sample kurtosis-co-kurtosis matrix as 𝑀3,𝑡  and 

𝑀4,𝑡.
12 This study adopts the connectedness methodology introduced by Baruník and 

Křehlík (2018) to assess the skewness and kurtosis spillover at different timescales 

                                                 
 
11 It is one of the most recent universally accepted stylised facts that financial assets have conditional time-varying 

skewness and kurtosis (Brooks et al., 2005). A large number of researchers adopt the realised methods to calculate 

time-varying kurtosis and skewness of financial assets (Fernandez-Perez et al., 2018; Finta and Aboura, 2020) as 

carbon and energy products are seen as financial instruments. 

12 For more information on the computation process of 𝑀3,𝑡 and 𝑀4,𝑡, See Appendix A. 
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among assets13. Suppose 𝐱𝑡 = (𝑥1,𝑡 ,𝑥2,𝑡 , . . . , 𝑥𝑛,𝑡)′ is non-overlapping elements series 

of (co-)skewness or (co-)kurtosis matrix 𝑀3,𝑡 or 𝑀4,𝑡 of carbon, coal, natural gas and 

oil. First, a stationary 𝑛-variate VAR (𝑝) is rewritten as a VMA (∞) process, that is, 

𝐱𝑡 = 𝐂(𝐿)𝛜𝑡 . Diebold and Yilmaz (2012) define the spillover index from 𝑥𝑗 to 𝑥𝑖 as14 

𝜃𝑖 ,𝑗
𝐷𝑌(𝐻) =

𝜃𝑖,𝑗
𝐷𝑌(𝐻)

𝛴𝑘(𝜃𝑗,𝑘
𝐷𝑌(𝐻))

 . (2) 

Following Baruník and Křehlík (2018), we set 𝐻 to 100 in Eq. (2). To describe the 

higher-order moments spillovers in the frequency domain (i.e., at different timescales), 

Baruník and Křehlík (2018) give a Fourier transform of 𝐂𝑘(𝐿). Therefore, the spillover 

from the variation of skewness elements 𝑥𝑗 transmitting to the variation of skewness 

elements 𝑥𝑖 at a given frequency 𝜔 can be computed as: 

𝜃𝑖 ,𝑗(𝜔, 𝐻) =
𝜃𝑖,𝑗(𝜔,𝐻)

𝛴𝑘(𝜃𝑗 ,𝑘(𝜔,𝐻))
. (3) 

This relationship can be mathematically expressed through formulas as follows: 

∫ 𝜃𝑖 ,𝑗
𝜋

−𝜋
(𝜔,𝐻)𝑑𝜔 = 𝜃𝑖,𝑗

𝐷𝑌(𝐻)  where the integral denotes 𝑑 = [−𝜋, 𝜋]  implies 

integrating all the periods (i.e., no considering different timescales). The spillover from 

the variation of (co-)skewness or (co-)kurtosis elements 𝑥𝑗  transmitting to the 

variation of (co-)skewness or (co-)kurtosis elements 𝑥𝑖 at a particular timescale band  

𝑑 = [𝑎,𝑏] can be obtained as: 

𝜃𝑖 ,𝑗(𝑑, 𝐻) = ∫ 𝜃𝑖,𝑗
𝑏

𝑎
(𝜔,𝐻)𝑑𝜔. (4) 

                                                 
 
13 This technique can be regarded as an extension to the time-frequency domain of the better-known spillover index 

measuring approach proposed by Diebold and Yilmaz (2012) which has been widely applied in energy markets 

spillover network analysis (Elsayed et al., 2020; Lau et al., 2017; Geng et al., 2020; Hu et al., 2020; Ma et al., 2021). 

14 𝐂(𝐿) = 𝐈𝑛 + 𝐂1𝐿 +𝐂2𝐿
2+. .. is ∞-th order 𝑛x𝑛 lag-polynomial, 𝐂𝑘 = 𝐁1𝐂𝑘−1 +𝐁1𝐂𝑘−1+. . .+𝐁𝑝𝐂𝑘−𝑝(𝐂0 =

𝐈𝑛), and 𝛜𝑡 ∼ 𝑖. 𝑖. 𝑑(𝟎, 𝚺), and 𝜃𝑖,𝑗
𝐷𝑌(𝐻) =

𝜎𝑗𝑗
−1∑ (𝐻−1

𝑘=𝑜 𝑒𝑖′𝐂𝑘𝚺𝑒𝑗)
2

∑ (𝐻−1
𝑘=0 𝑒𝑖′𝐂𝑘𝚺𝐂𝑘′𝑒𝑖)

. 
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This study uses the network to represent the spillover between individual and non-

overlapping elements of 𝑀3,𝑡  and 𝑀4,𝑡 , and we exclude the amount of self-to-self 

spillover. The higher-order moments spillover index “FROM” 𝑥𝑖 to different assets 

and higher-order moments spillover index “TO” 𝑥𝑖 from different assets in a network 

graph (See Appendix A for details). 

3.4. Step 3: Computing multiscale portfolio weights against skewness and kurtosis risk 

After discovering the interplay of higher-order moments between the carbon and 

energy markets, this study demonstrates how to compute the weight 𝜔𝑡  of carbon and 

energy assets in a portfolio to hedge against exposure to risk of higher-order moments. 

We attempt to 1) maximise skewness to increase the upside (winning) probability, that 

is maximizing 𝑠𝑡(𝜔𝑡) = 𝜔𝑡′𝑀3𝑡 (𝜔𝑡⊗𝜔𝑡)  and 2) minimise kurtosis to reduce the 

probability of occurrence of extreme returns in portfolio, that is minimzing 𝑘𝑡(𝜔𝑡) =

𝜔𝑡 ′𝑀4𝑡(𝜔𝑡 ⊗𝜔𝑡 ⊗𝜔𝑡), and explore whether EUA is an excellent tool for hedging the 

risk of higher order moments in the energy and carbon markets. Suppose 𝜔𝑡 ′ =

(𝜔1𝑡 , 𝜔2𝑡 , 𝜔3𝑡 , 𝜔4𝑡)′ is the weights of carbon, coal, natural gas, and oil assets at time 𝑡, 

and they are not allowed during the time short positions are in place.15 We obtain the 

following multi-object nonlinear program (NLP). 

{
  
 

  
 
𝑚𝑎𝑥 𝜇𝑡(𝜔𝑡) = 𝜔𝑡 ′𝑀1𝑡

𝑚𝑖𝑛 𝜎𝑡(𝜔𝑡) = 𝜔𝑡 ′𝑀2𝑡𝜔𝑡
𝑚𝑎𝑥 𝑠𝑡(𝜔𝑡) = 𝜔𝑡 ′𝑀3𝑡(𝜔𝑡 ⊗𝜔𝑡 )

𝑚𝑖𝑛 𝑘𝑡(𝜔𝑡) = 𝜔𝑡 ′𝑀4𝑡(𝜔𝑡 ⊗𝜔𝑡 ⊗𝜔𝑡 )

𝑠. 𝑡. 𝜔𝑡1 = 1

𝜔𝑡𝑖 ≥ 0, (𝑖 = 1, . . . ,4)

, (5) 

                                                 

 
15 Although we have chosen futures data as a proxy for the so-called partial assets, our research is not aimed at 

speculators, but rather at the major players in the energy and carbon markets. This includes power plants and 

generators, that mostly holders of spot assets; therefore we have imposed restrictions that do not allow short  selling.  
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where ⊗ is Kronecker product, and 𝑀1𝑡 , 𝑀2𝑡 , 𝑀3𝑡  and 𝑀4𝑡  refers to the first- to 

fourth-order moment matrix of carbon and energy assets at time 𝑡. The solution of 

optimal weights 𝜔𝑡  could be referred to Appendix B. To compute the optimal weights 

under different timescales, we use a wavelet method (Dai et al., 2020) to decompose 

the raw returns into short- and long-run timescales16. 

4. Data description 

The EUA futures contracts, which is denominated in euros and traded on the 

Intercontinental Exchange (ICE) Futures Europe electronic platform, is selected as the 

proxy for carbon prices. The future price of EUA can better reflect the market supply 

and demand than spot prices because of its high trading volume. The energy sectors 

consist of oil futures (Brent oil futures, USD/bbl, see Alberola et al. (2008)), Coal 

(Europe Coal 6,000 kcal delivered CIF ARA forward month 1, USD/metric ton, see 

Hintermann (2010)) and natural gas futures (TTFG1MON Comdty, Euro/MWh, see 

Hintermann (2010)) which are used as proxies for the European energy assets.17 Data 

were collected from the Bloomberg Terminal.18 This time span of this study ranges 

from January 3, 2013 to November 1, 2019 (or a total of 1,717 days), which covers 

Phase III of the EU ETS. The daily closing price series are converted into natural 

logarithm returns as 𝑅𝑡 = 100 ∗ 𝑙 𝑛 (
𝑝𝑡

𝑝𝑡−1
).  

                                                 
 
16 See Appendix C. 

17 The price series of four assets are converted into USD in order to exclude the effects of foreign exchange by the 

daily EUR/USD exchange rate. 

18 Although some studies have considered spread price and electricity prices as part of the energy sectors, this study 

has not selected them given as crude oil refining products, such as heating oil, and cruises have highly consistent 

price trajectories (Keppler and Mansanet-Bataller, 2010). Moreover, using renewable energy companies’ stock index 

as a proxy for renewable energy prices has a particular bias because the stock price will be more affected by other 

factors, not just the carbon market. In addition, electricity markets across Europe are not uniform, there is no leading 

electricity price, and the switch price or spread price can be considered as a linear combination of coal and gas  

(Chevallier et al., 2019). 
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Table 1 shows significant evidence of the unconditional skewness in the sample 

data, which implies the asymmetric rise or declining probability of return distributions. 

Furthermore, unconditional kurtosis exhibits high value which indicates the “fat-tail” 

features of the four assets’ returns. The Augmented-Dickey-Fuller (ADF) and Phillips-

Perron (PP) unit root test shows that all returns are stationary and the Ljung-Box(LB)-

Q test documents that the autocorrelation in the four returns series. 

 

Table 1 

Descriptive statistics of four assets returns. 

 Mean SD. Skewness Kurtosis J-B test ADF PP LB-Q 

EUA 0.064 3.215 -1.119 16.466 13331.023*** -12.346*** -1633.753*** 18.254*** 

Coal -0.01 1.537 0.536 9.64 3236.047*** -11.935*** -1525.794*** 25.595*** 

Gas -0.03 2.393 1.889 27.01 42262.724*** -13.521*** -1513.507*** 14.609** 

Oil -0.038 1.931 0.168 6.156 720.629*** -11.685*** -1808.588*** 2.044 

Note: The JB test denotes the Jarque-Bera tests. ADF represents the Augmented Dickey–Fuller test. PP denotes the 

Phillips-Perron test. LB-Q denotes the Ljung-Box test holding the null hypothesis that the series has no 
autoregression. Subscript "*", "**" and "***" denote significance at the 1%, 5% and 10% level, respectively. 

 

5. Empirical findings 

In this paper, we define the short-run timescales as a period of below 16 trading 

days and the long-run timescales as a period of over 16 trading days. The reasons for 

this are twofold. First, we consider short-run timescales to be under a one-month period 

(22 trading days) and long-run timescales to be over a one-month period (22 trading 

days). Second, the period of the wavelet decomposed mode must be a diploid number  

(2𝑛 where 𝑛 is a positive integer), thus we choose the period closest to one month (22 

trading days), i.e. 16 trading days as the watershed of short- and long-run timescales. 
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5.1. Price structural breaks in the joint energy and carbon markets  

The Matteson and James (2014) test results indicate that September 15, 2016 is a 

critical change point in a quaternary system comprising of carbon, oil, coal, and gas. 

By dividing the Phase III of the EU ETS into two stages according to the structural 

break in a quaternary system, we can distinguish the similarities and differences in 

spillover of higher-order moments between the carbon and energy markets under 

various market situations. This could advance the existing studies which only examine 

the structural breaks of individual carbon markets, for example Phase I and II of the EU 

ETS (e.g., Alberola et al., 2008; Balcılar et al., 2016).  
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Figure 2. The change point in a quaternary system of energy and carbon. 
Note: Matteson and James’s (2014) change point (September 15, 2016) is marked in red. Since the price ranges of the four assets 
are very different, original prices are converted to normalised prices in the top graph, allowing the prices of the assets to be 

uniformly distributed between 0 and 1. 

 

Figure 2 clearly shows the difference in prices and returns of carbon and energy 

markets between Stage 1 and Stage 2 which correspond to the time periods before and 

after the structural break, i.e. September 15, 2016. The carbon price stayed in a relative 

stable and low level in Stage 1 despite the free allocation of allowances was removed 
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in Phase III. This could attribute to surplus supply brought forward from the large 

number of allowances banked in Phase II. During the same period, energy prices  

plummeted which was largely influenced by the Shale Gas Revolution, the European 

Debt Crisis, Ukrainian Crisis, and so on. The carbon and energy markets are slumped 

towards a bearish market in Stage 1.  

In Stage 2, the EU ETS reforms has contributed significantly to the surge in carbon 

prices, while the energy markets reverted to high price levels and showed extraordinary 

volatility characteristics, especially for coal and natural gas. These factors are 

responsible for the sharp rise in the carbon market, especially as the breakpoint is close 

to September 10, 2015 when the MSR policy was proposed by European Commiss ion. 

It can be said that the carbon market and energy prices are in a bullish market at Stage 

2. 

Table 2 summarises and compares the price movements of carbon and energy 

assets between the two stages. By examining the spillovers of higher-order moments in 

Stage 1 and Stage 2 separately, we will be able to find out whether the implementat ion 

of reform policies such as the MSR, and the recovery in carbon and energy prices has 

an impact on the price transmission mechanism between the carbon and energy markets.   

 

Table 2.  

Two stages in Phase III of the EU ETS 
Stage Period Energy market Carbon market Market 

condition 

1 2013/1/3-

2016/9/15 

Prices continued to plummet, 

particularly due to the Shale Gas 

Revolution and so on. 

Prices remained very low 

around 10 EUR.19 

Bearish 

market 

2 2016/9/16-

2019/11/1 

Prices have been volatile especially 

for coal and gas. 

Prices have risen rapidly as a 

result of the carbon market  
reforms. 

Bullish 

market 

                                                 

 
19 A large amount of the EUA credits have been banked from Phase II to Phase III. Besides, there are still many 

oversupply allowances that are given to emitters for free, whereby these two reasons contribute to the EUA prices 

plummeting. 



18 

 

 

5.2. Short-run spillovers of higher-order moments  

In this sub-section, we examine the spillover of higher-order moments between the 

carbon and energy markets at short-run(below 16 trading days). Short-run skewness 

reflects the impact of unexpected market sentiment, such as geopolitical conflicts, on 

the probability of assets price movements. In Stage 1, as it shown in left panel of Figure 

3, there exists a weak skewness and co-skewness spillovers between the carbon and 

energy markets, the biggest of these spillovers is 1.7% from S124 to S222. This implies 

that the co-skewness of carbon, coal and natural gas transmit 1.7% to the skewness 

variation of coal market. The thickness of the edges shows that that the short-run 

skewness spillover from energy market to the carbon market is not significant in Stage 

1. The short-term skewness spillovers from the carbon market to the crude oil and 

natural gas markets are weak. As discussed in the sub-section 5.1, the carbon and energy 

markets were in a bearish market condition in Stage 1. Hence the weak skewness and 

co-skewness spillovers implies that the left skewness of the energy assets prices were 

not substantially affected by the carbon market, and vice versa.   
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Figure 3. Short-run skewness spillover between the carbon and energy markets. 

Note: See Appendix A for detailed explanation of Figure 3. This Figure presents the skewness spillover index. Each asset is 

presented by “1”, “2”, “3” and “4”, whereby “1” denotes the carbon market, “2” denotes the coal market, “3” denotes the gas 

market, and “4” denotes the oil market. S123 denotes the co-skewness of carbon, coal and natural gas. S111 refers to the skewness 

of carbon. The specific definitions can refer to Eq. (A.1). The thickness of the edge represents the size of the spillover. An edge 

whose colour is the same as that of the node represents the spillover from one node (of the same colour) to another node. For 

display purposes, we have marked the top ten edges with the highest spillover in %, which is calculated by Eq. (4). 

 

The recent implementation of the MSR and LRF policies falls in Stage 2, thus the 

spillovers of higher-order moments between the carbon and the energy market of this 

stage could uncover the spillover transmission across the markets after the reform20. 

Surprisingly, the total sum of short-run skewness is slightly more modest compared 

Stage 1 despite both the carbon and energy markets had high price volatility and in 

particular, the price of EUA rises rapidly in Stage 2. To note that the skewness spillover 

transmission between coal and carbon is relative stronger compared to other pairs. This 

could relate to the fact that many carbon emitting industries mainly consume coal, and 

                                                 

 
20 Including the political agreements which have strengthened the MSR and increased Linear Reduction Factor in 

2017. 
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thus the market news of carbon emission policy reforms such as the MSR could have a 

short-term impact on the skewness of coal price. However there is lack of interaction 

between the electricity and carbon as plants are less motivated to change their energy 

consumption structure at short-run timescales when carbon prices rise. The benefits 

gained by a electricity plant shutting down a coal generator in favor of a gas generator 

are far less than the costs incurred by a plant shutdown. 

 

Figure 4. Short-run kurtosis spillover between carbon and energy markets. 

Note: See Appendix A for detailed explanation of Figure 4. This Figure presents the kurtosis spillover index. Each asset is presented 

by “1,”“2,” “3,” and “4,” whereby “1” refers to the carbon market, “2” refers to the coal market, “3” refers to the gas market, “4” 

refers to the oil market. S1234 denotes the co-kurtosis between the portfolio of carbon, coal, natural gas and oil. K1111 refers to 

the kurtosis of carbon. For the co-kurtosis of carbon and coal, there are three definitions as K1122, K1112, and K1222. In kurtosis 

spillover analysis, we select K1122 as the optimal term reflecting the co-kurtosis between carbon and coal. The same applies to 

K1144 and K1133. The specific definitions can refer to Eq. (A.2). An edge whose colour is the same as that of the node represents 

the spillover from one node (of the same colour) to another node. For display purposes, we have marked the top ten edges with the 

highest amount of we have marked the top ten edges with the highest spillover in %, which is calculated by Eq. (4). 

 

Kurtosis spillover involves the fourth-order moment which indicates how the 

probability of extreme returns occurrence of one asset affects that of another asset. The 

left panel of Figure 4 shows that the carbon and energy markets have low degree of 

short-run kurtosis spillover in Stage 1, with its highest magnitude of 1.8%, which is 

spillover from the K1144 to K1111. As discussed in the sub-section 5.1, the decline of 
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energy prices is strongly associated with the long-run supply and demand of the energy 

market. For example, the Shale Gas Revolution has made the US a major energy 

exporter, and a substantial increase in crude oil supply has been the dominant factor for 

the decline in all energy prices. As a result, any price changes due to short-run shocks 

do not contribute to kurtosis spillover between the carbon and energy markets. In Stage 

2 the short-run kurtosis spillover became weaker as magnitudes of kurtosis spillovers 

are less than 1%. This implies that high carbon prices do not seem to influence the short-

run kurtosis in the energy markets and vice versa. 

In summary, we report that the spillovers in the higher-order moments between the 

carbon and energy markets at the short-run timescales are weak, despite the potential 

impactful drivers of spillovers such as implementation of reform policies in the carbon 

market and the price rising in carbon. This finding expands our knowledge of the short-

run nature of the drivers of the carbon market. Number of studies such as Keppler and 

Mansanet-Bataller (2010), Zhu et al. (2019) found a short-run impact of energy markets 

on the carbon market. To advance this area of research, our findings evidence the 

seeming inability of energy assets to drive the asymmetric fat-tailed return distributions 

of carbon prices at the short-run timescales.  

The previous studies such as Ji et al. (2018) and Geng et al. (2021) do not consider 

co-moment of higher-order moments. As pointed out in the section 2, the neglect of the 

co-moment of higher-order moments will make empirical studies less rigorous. 

Specifically, spillovers of the co-skewness and co-kurtosis are assigned to individua l 

skewness/kurtosis terms (e.g., S222 or K3333) when the co-moment is ignored. This 

may mislead us into overestimating or underestimating the spillovers of higher-order 

moments between the carbon and energy markets. However the relatively weak co-

moment of higher-order moments shown in Figure 3 and Figure 4 could be benefic ia l 
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for investors to hedge exposure to the risk of the higher-order moments between energy 

and carbon assets. We will continue this discussion in the sub-section 5.4. 

5.3. Long-run spillovers in higher-order moments 

The left panel of Figure 5 shows the long-run skewness spillover is notably stronger 

than the short-run case in Stage 1. The source of skewness spillover is not only from 

the co-skewness between the carbon and energy market but also from individual energy 

markets. For example, the oil market contributes 11.8% skewness spillover on the 

carbon market. There is a downward trend in crude oil prices in Stage, as seen in Figure 

2, which could motivate carbon emitters to use crude oil as a raw material for production 

in a longer timescale, thus contributing to the increase in carbon prices. Since this is a 

fundamental supply of demand change at long-run time scale, the negative skewness 

coefficient of the crude oil market adversely affect the carbon price. As coal and natural 

gas are oil indexed, the long-run decline in crude oil prices makes energy assets cheaper, 

and consumers of coal and gas will take advantages of the decreasing oil price by 

changing the structure of energy consumption, thus increasing carbon emission and 

contributing to the change in carbon prices in long-run.  

In Stage 2, the co-skewness between the carbon and energy markets bursts into 

huge spillover effects for example the spillovers from S134 to S124 is 33.6% as shown 

in the right panel of Figure 5. Evidently the long-run skewness transmission of the 

carbon market becomes stronger. Furthermore, the carbon market profoundly affects 

the asymmetric up and down probabilities of the coal market and has a steering spillover 

effect on the gas market i.e. the carbon market dominately transmits 18.7% to coal 

market. 
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Figure 5. Long-run skewness-coskewness spillover between carbon and energy 

markets. 

Note: See Appendix A for detailed explanation of Figure 5, also see Figure 3. 

 

The long-run kurtosis spillover reveals the extent to which the carbon market 

affects extreme returns in the energy markets, and vice versa. The left panel of Figure 

6 shows that the carbon market receives a considerable amount of long-run kurtosis 

from the individual energy market during Stage 1. This indicates that the long- term 

extreme price movement of the carbon market is subject to changes in the energy market. 

However, this situation reversed during Stage 2. In addition to the coal market, the 

carbon market had a net impact on the emergence of extreme prices in the crude oil and 

natural gas markets. This finding implies that the carbon market price leadership 

become stronger in Stage 2. This may be related to the high carbon prices triggered by 

the reforms in Phase III of the EU ETS.  
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Figure 6. Long-run kurtosis-co-kurtosis spillover between the carbon and energy 

markets. 

Note: See Appendix A for detailed explanation of Figure 6, also see Figure 4. 

 

Evidently, the long-run transmission intensity of skewness and kurtosis of the 

carbon market on energy assets has been strengthened after the implementation of the 

MSR and other policies especially during Stage 2. This responds to concerns of some 

members in the academic community about the "water-bed effect" which may reduce 

the effectiveness of the EU ETS. Keppler and Mansanet-Bataller (2010) claimed that 

the carbon price in Phase I and Phase II of the EU ETS was affected by the energy 

markets. Our findings support that the carbon market is able to transmit price 

information to the energy market in terms of higher-order moments. The strong long-

run spillovers in higher-order moments between the energy and carbon portfolio 

suggest that investors should focus on asymmetric price movements as well as risk of 

extreme price when constructing a carbon-energy markets portfolio.  

The manifestation of significant spillover of higher-order moments at long-run is 

an extension of the findings of Zhu et al. (2019), whereby they document the long-run 
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returns(the first-order moment) drivers of carbon markets include coal, oil and gas. 

After removing the effects of co-moment, we still find a strong long-run higher-order 

moment spillover between energy and carbon markets. The heterogeneity in the 

interplay of higher-order moments between the carbon and energy markets at short- and 

long-run timescales inspire us to construct a portfolio of carbon and energy markets to 

allow investors to hedge risk exposure of spillover of higher-order moments in the 

subsequent sub-section. 

5.4. Portfolio risk management with multiscale higher-order co-moments 

Here we apply the previous findings into portfolio risk management. Sub-section 

5.2 and 5.3 reports that weak higher-order moments interplay between the energy and 

carbon markets in the short-run and such interactions enhanced at long-run timescale. 

We use programming Eq.(B.5) to compute the optimal portfolio weights hedging 

against higher-order moments risk in carbon and energy markets. 

Overall, the short-run optimal portfolio weights are relatively invariant. In many 

time periods short-run portfolio investors only need to hold a single asset to satisfy the 

optimal portfolio requirements. EUA plays an important role in portfolio optimisat ion 

during both Stage 1 and Stage 2. It can be seen from the Figure 7 that the area of short-

run optimal weight of EUA in Stage 1 is significantly greater than that in Stage 2. This 

implies that the carbon market could be used to hedge against exposure to the risks in 

higher-order moments of the energy markets in short-run.  
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Figure 7. Short-run higher-order moments optimal portfolio weights. 

Note: In upper Figure, “Stage 1/2” means a portfolio strategy of programming Eq.(5) during Stage 1/2. “Stage 1 no carbon” means 
a portfolio strategy of programming Eq.(5) during Stage 1/2 without carbon assets, that is we apply programming Eq.(5) among 
oil, coal and gas three assets. “Stage 1/2 no skewness/kurtosis” is the traditional mean-variance portfolio framework during Stage 

1/2, that is we set 𝜆 = (1,1,0,0)′ in programming Eq.(B.5). “Stage 1/2 no variance” means a portfolio strategy maximizing the 
portfolio returns, maximizing the portfolio skewness and minimizing the portfolio kurtosis, that is we ser 𝜆 = (1,0,1,1)′ in 

programming Eq.(B.5). 
 

In the long-run timescales, the weights of carbon allowance in the skewness-

kurtosis framework is constantly changing and requires a new carbon position almost 

every moment as shown in Figure 8. This suggests that investors may have to adjust 

their investment positions frequently. Comparing the results of several portfolio 

frameworks as shown in the lower panel of Figure 8, we find that the average weights 

of the carbon market are higher during Stage 1 i.e. exceeding 20%, which clearly 

outweigh the proportion of carbon allowances in the short-run portfolio. 
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Figure 8. Long-run higher-order moments optimal portfolio weights. 

Note: See Figure 7. 

 

Figure 9 shows the out-of-sample portfolio wealth chart for high-order moments 

hedging strategy in the short-run by programming Eq. (B.5). The advantage of the 

skewness and kurtosis hedging frameworks is significantly improved than that of naive 

strategy (i.e., the equal-weight strategy). The weak short-run higher-order spillover 

(especially co-moment) is a direct result of the weak interdependence between energy 

and carbon at higher-order moments. This is precisely the reason why the asset portfolio 

(hedging higher-order moments) constructed in this study works well. The weak 

spillovers in higher-order moments enable investors to better use the carbon market to 

manage and diversify risk in higher-order moments of the energy markets. At the long-

run timescales, the optimal portfolio wealth considering skewness-kurtosis does not 

seem to outperform the naive strategy (as much as it does at short timescales) as the 

higher-order moment spillovers between carbon and energy markets are stronger at the 
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long-run timescales which do not facilitate the construction of portfolio hedging against 

higher-order moments risk (i.e. asymmetric and fat-tailed risk)21.  

 

Figure 9. out-of-sample higher-order moments optimal portfolio performance. 

Note: The optimal portfolio accumulation wealth plot is an initial investment of $1. The plot is based on the results of the out-of-

sample portfolio back-testing. The portfolio returns are obtained based on a two-step procedure. We use a fixed rolling window of 

99 days length at t ime t to predict the higher order moments of the asset sample at t ime t+1, that is, we predict the out-of-sample 

higher order moments at 1618 days using 1717 days of sample data. We then employ programming Eq.(B.5) for calculating the 

optimal weights and use the real returns data to derive Figure 9. “Naïve weight” refers to equal weight of 0.25 for all time. “Optimal 

weight,” “Optimal weight - 2” refers to 𝜆 = (1,1,1,1)′ and (1,0,1,1)′ in programming Eq.(B.5). An interpretation of cumulative 

returns at different time scales can be found in Appendix C. 

 

 

6. Conclusion and policy implications 

 The new price trajectories and the polices implemented in the carbon and energy 

markets make Phase III of EU ETS complicated to understand. This study contributes 

to the literature by examining the spillovers of higher-order moments between the 

carbon and energy markets and a multiscale analysis enable us to reveal the 

                                                 

 
21 It makes logical sense, if we assume that the higher order moment spillover between energy and carbon reaches 

100%, then no matter how much weights are adjusted it will not help. 



29 

 

heterogeneity in different time frequencies. We also demonstrate an application of 

portfolio risk management strategy with multiscale higher-order co-moments. This  

application demonstrates that the heterogeneity of spillovers of higher-order moments 

allows investors with different time horizon to manage and diversify risk. 

We detect a critical breakpoint of carbon and energy markets, September 15, 2016, 

which divides Phase III into two stages. The carbon and energy markets have bearish 

movements before the breakpoint, and this period is defined as Stage 1. Stage 2 covers 

the period after the breakpoint, and during this stage the carbon and energy markets 

follow overall bullish movements. The division of Phase III helps us thoroughly analyse 

the interplay between the carbon and energy markets according to different market 

status.  

The spillovers in higher-order moments between the energy and carbon markets 

are weak at short-run timescales (period less than 16 trading days). This shows that the 

probability of asymmetric changes in carbon price and the emergence of extreme prices 

hardly affect the energy market in short-run. Likewise, the higher-order moments of 

energy assets are not significantly affected by the carbon market at short-run timescales. 

The spillovers of co-skewness of between the carbon market and the energy market’s 

asset is also relatively small. The weak skewness and co-skewness spillovers implies 

that the left skewness of the energy assets prices are not likely to be affected by short-

run shocks such as political sentiments but long-run macroeconomic factors such as the 

Shale revolution.  

At the long-run timescales (over 16 trading days), the strength of the spillovers in 

higher-order moments between the carbon and energy markets increases by a large 

extent. The spillovers in higher-order moments from the carbon and energy markets 

during Stage 2 are much stronger than that of Stage 1. This indicates that price 
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movements in the carbon market largely affect the probability of asymmetric increases 

and decreases in other energy markets during Stage 2. The enhanced long-run 

transmission of skewness and kurtosis of the carbon market on energy assets could 

attribute to the implementation of the MSR and other policies during Stage 2 which 

reduce the surplus EUA banked from Phase I and II. The auctions become the default 

method for allocating quotas (rather than free allocation) in Phase III, this could also 

improve the carbon market efficiency with a proper supply of demand mechanism in 

place. Our findings support that the carbon market can transmit price information to the 

energy market in terms of higher-order moments. This responds to concerns of some 

members in the academic community about the “water-bed effect” which may reduce 

the effectiveness of the EU ETS.  

The portfolio construction with carbon and energy assets shows us the investment 

implications of risk spillovers of higher-orders moments at different timescales. Our 

findings report that the portfolio performance improves when we long the carbon 

allowance in short investment horizon. However, the long-run the optimal strategy in 

higher-order moments is less effective as evidenced by the less satisfying portfolio 

performance. It is apparently due to the fact the spillover effects are considerably 

stronger in long-run and thus leads a diminished risk diversification. EUA is more 

suitable as a hedge against higher order moment risk at the short-run timescales, both 

in terms of portfolio performance and the cost of holding the position. 

This study reminds policymakers should acknowledge that the interplay between 

the carbon and energy markets is not restricted to the spillovers of price and volatility, 

it is important to consider how the probability of asymmetric increases and decreases 

of carbon price, and the probability of extreme carbon prices affect energy prices, and 

vice versa. The previous studies report findings that there is lack of leadership of the 
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EU ETS to energy markets by merely examining the interplay between prices or price 

volatilities of the carbon and energy markets. Our results offer new perspective, that is 

policymakers should not only purely focus on the general level of price signaling, but 

also the systemic risk to energy markets in light of the significant spillovers of higher-

order moments in the carbon and energy markets.  

One criticism of the EU ETS market is its "waterbed effect," which can distort the 

long-term price of the EU ETS (Perino, 2018; Rosendahl, 2019). This study shows that 

the EU ETS releases strong price signals to the energy market when the market is at 

long-run, particularly in bullish market. The energy market also influences the price 

characteristics in higher-order moments of the carbon market at long timescales. This 

suggests that despite the "waterbed effect", information on the probability of 

asymmetric increases or decreases and the probability of extreme prices still actively 

transmit between the two markets in long-run scale.  

The empirical results show that changes in carbon prices do not appear to affect 

the risk in higher-order moments in the energy markets at the short-run timescales. This 

suggests that policymakers do not have to immediately react to each short-term shocks 

of energy market. In contrast, the spillovers in higher-order moments in the energy 

market from rising carbon prices is evident in the long term. As mentioned earlier, the 

spillovers in higher-order moments contain not only price signals but also systemic risks. 

Therefore, we suggest that policy makers should allow carbon prices to increase 

gradually in the next phase, namely, Phase IV. The EU ETS policy makers may also 

want to prioritise cap adjustment and the banking policy in the discussions on structural 

reform of the EU carbon market in Phase IV. Our research contributes similar insights 

to the construction of carbon markets in the emerging markets such as China (Zhou et 

al., 2019; Zhou et al., 2020). 
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Appendix A: Computaion of higher order moments matrix. 

The dynamic sample skewness-co-skewness matrix is a 4 ∗ 42 form computed as 

𝑀3,𝑡 = 𝐸[(𝑅𝑡 −𝜇𝑡)(𝑅𝑡 −𝜇𝑡)
𝑇⨂(𝑅𝑡− 𝜇𝑡)

𝑇] = {𝑆𝑖,𝑗,𝑘 ,𝑡}, (A.1) 

where 𝑆𝑖,𝑗,𝑘,𝑡 =
1
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𝑙=𝑡−99 ) is the sample co-skewness among the carbon and energy portfolio s, 

𝑖, 𝑗,𝑘, 𝑡 = {carbon,coal, gas,oil}. Moreover, the dynamic sample kurtosis-co-kurtos is 

matrix is a 4 ∗ 43 form computed as 

𝑀4,𝑡 = 𝐸[(𝑅𝑡 −𝜇𝑡)(𝑅𝑡 −𝜇𝑡)
𝑇⨂(𝑅𝑡− 𝜇𝑡)

𝑇⨂(𝑅𝑡− 𝜇𝑡)
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among carbon and energy portfolios, 𝑖, 𝑗, 𝑘, 𝑡 = {carbon,coal, gas, oil}. 

 

The spillover network of Figure 3 to Figure 6 is illustrated in Figure A.1. 
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Figure A.1. Illustration of spillover network. 

Appendix B. Solution of programming Eq.(5). 

To find the optimal weights of programming Eq.(5), following the polynomial goal 

programming technology of Lai et al. (2006), we first split programming Eq.(5) into 

four NLPs as follows. 

{

𝑚𝑎𝑥 𝜇𝑡(𝜔𝑡) = 𝜔𝑡′𝑀1𝑡

𝑠. 𝑡. 𝜔𝑡1 = 1

𝜔𝑡 𝑖 ≥ 0, (𝑖 = 1, . . . ,4)

, (B.1) 

{

𝑚𝑖𝑛 𝜎𝑡 (𝜔𝑡) = 𝜔𝑡′𝑀2𝑡𝜔𝑡
𝑠. 𝑡. 𝜔𝑡1 = 1

𝜔𝑡 𝑖 ≥ 0, (𝑖 = 1, . . . ,4)

, (B.2) 

{

𝑚𝑎𝑥 𝑠𝑡(𝜔𝑡) = 𝜔𝑡 ′𝑀3𝑡(𝜔𝑡 ⊗𝜔𝑡 )

𝑠. 𝑡. 𝜔𝑡1 = 1

𝜔𝑡𝑖 ≥ 0, (𝑖 = 1, . . . ,4)

, (B.3) 

{

𝑚𝑖𝑛 𝑘𝑡(𝜔𝑡) = 𝜔𝑡 ′𝑀4𝑡(𝜔𝑡 ⊗𝜔𝑡 ⊗𝜔𝑡 )

𝑠. 𝑡. 𝜔𝑡1 = 1

𝜔𝑡 𝑖 ≥ 0,(𝑖 = 1, . . . ,4)

. (B.4) 

Solving them individually, we obtain the optimal solution of programming Eq.(B.1) to 

Eq.(B.4), 𝜇𝑡
∗, 𝜎𝑡

∗, 𝑠𝑡
∗ and 𝑘𝑡

∗. Then we solve the following programming with a vector 
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𝜆 = (𝜆1,𝜆2, 𝜆3,𝜆4)′ controlling how much we care about mean, variance, skewness 

and kurtosis. The optimal 𝜔𝑡
∗ of programming Eq.(B.5) is the approximation of the 

optimal weights to programming Eq.(4) function. 

{
 
 
 
 

 
 
 
 𝑚𝑖𝑛 𝑍𝑡 = |

𝑑1

𝜇𝑡
∗ |
𝜆1 + |

𝑑2

𝜎𝑡
∗ |
𝜆2 + |

𝑑3

𝑠𝑡
∗ |
𝜆3 + |

𝑑4

𝑘𝑡
∗ |
𝜆4

𝜔𝑡′𝑀1𝑡 +𝑑1 = 𝜇𝑡
∗

𝜔𝑡′𝑀2𝑡𝜔𝑡 −𝑑2 = 𝜎𝑡
∗

𝜔𝑡′𝑀3𝑡(𝜔𝑡 ⊗𝜔𝑡 ) + 𝑑3 = 𝑠𝑡
∗

𝜔𝑡′𝑀4𝑡(𝜔𝑡 ⊗𝜔𝑡 ⊗𝜔𝑡) − 𝑑4 = 𝑘𝑡
∗

𝑠. 𝑡. 𝜔𝑡1 = 1

𝜔𝑡𝑖 ≥ 0, (𝑖 = 1, . . . ,4)

𝑑𝑗 ≥ 0, (𝑗 = 1, . . . ,4)

. (B.5) 

In this study, we select 𝜆 = (1,1,1,1)′ and (1,0,1,1)′ to measure the optimal weights 

of energy and carbon assets against higher-order moments risk. 

Appendix C. Wavelet decomposition. 

Following Dai et al. (2020), the returns 𝑅𝑡 can be decomposed into: 

𝑅𝑡 =∑ 𝑆𝐽,𝑘𝜙𝐽,𝑘(𝑡)𝑘 +∑ 𝐷𝐽,𝑘𝜓𝐽,𝑘(𝑡)𝑘 +∑ 𝐷𝐽−1,𝑘𝜓𝐽−1,𝑘(𝑡)𝑘 +···+ ∑ 𝐷1,𝑘𝜓1,𝑘(𝑡)𝑘  

   =𝑆𝐽(𝑡) + 𝐷𝐽(𝑡) +  𝐷𝐽−1(𝑡) +   ····  +  𝐷2(𝑡) +  𝐷1(𝑡) (C.1) 

An inner product calculation can be used to calculate coefficients, that is 

𝑆𝐽,𝑘 = ∫ 𝜙𝐽 ,𝑘(𝑡)𝑅(𝑡) ⅆ𝑡
+∞

−∞
 (C.2) 

𝐷𝑗,𝑘 = ∫ 𝜓𝑗 ,𝑘(𝑡)𝑅(𝑡) ⅆ𝑡
+∞

−∞
 (C.3) 

The 𝑆𝐽(𝑡), 𝐷𝐽(𝑡), …, 𝐷1(𝑡) are various sub-components that represent different 

center frequencies in the returns 𝑅𝑡. When calculating cumulative returns, cumulat ive 

returns at different time scales can only be interpreted as real world cumulative returns 

after dividing by the periodic component. 
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