

OPTIMIZATION OF SIMPLIFIED

SHALLOW WATER OPENCL

APPLICATION ON FPGA

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

2019

By

Ruiqi Ye

10292968

Supervisor: Graham Riley

School of Computer Science

2

Content
Abstract ... 9

Declaration.. 10

Copyright .. 11

Acknowledgement .. 12

Glossary .. 13

Chapter 1 Introduction.. 18

1.1. Project Aims... 19

1.2. Project Objectives .. 19

Chapter 2 Background .. 21

2.1. FPGA Background ... 21

2.2. OpenCL Background ... 22

2.2.1. Platform Model ... 22

2.2.2. Execution Model ... 23

2.2.3. Kernel Programming Model ... 24

2.2.4. Memory Model ... 25

2.3. Other Programming Models .. 26

2.4. SDx Background .. 27

2.5. Stencil Computation Background .. 28

2.5.1. Shallow Water Forecasting Model Background ... 29

2.5.2. The Simplified Shallow Water Application Used in this Project 29

2.6. Optimization Methods for OpenCL Application on Xilinx FPGA 31

2.6.1. Kernel Optimizations .. 31

2.6.2. Host Optimizations ... 35

2.6.3. SDx-related Optimizations.. 36

2.7. Literature Review... 36

2.7.1. Papers Focused on Performance Modelling ... 36

2.7.2. Papers Focused on Performance Optimization 38

2.7.3. Paper Focused on Overhead Analysis... 45

2.8. Summary .. 46

Chapter 3 Research Methodology .. 47

3.1. Performance Estimation ... 47

3.2. Overhead Analysis ... 48

3.3. Overhead Minimization ... 48

3.4. The Principle of Applying Optimization Method .. 49

3.5. A Method of Efficient FPGA Programming .. 50

3

3.6. Execution Time Acquisition .. 52

3.7. Summary .. 53

Chapter 4 Experiments with Basic Optimization Methods 54

4.1. Baseline .. 55

4.2. The Unreliable Emulator.. 57

4.3. Iteration 1: -O3 Optimization .. 57

4.4. Iteration 2: Loop Pipelining... 58

4.5. Iteration 3: Using Local Memory and Burst Memory Transfer 59

4.6. Iteration 4: Loop Unrolling ... 60

4.7. Summary .. 61

Chapter 5 Experiment with Advanced Optimization Methods 62

5.1. Iteration 5: Array Partitioning ... 62

5.2. Iteration 6: Data Vectorization .. 63

5.3. Iteration 7: Overlapping Data Transfer with Kernel Computation 64

5.4. Iteration 8: Restrict Keyword and Concurrent Execution of Kernels 66

5.5. Iteration 9: Dataflow and Function Inline ... 68

5.6. Iteration 10: Merging Array Update Kernel with Periodic Continuation

Kernel ... 69

5.7. Summary .. 71

Chapter 6 Experimental Data Analysis ... 72

6.1. Latency and Loop Information Interpretation .. 73

6.2. The Scalability Model .. 74

6.3. Why Emulator is unreliable ... 75

6.4. Data from Experiments with Basic Optimizations .. 78

6.5. Data from Experiments with Advanced Optimizations 86

6.5.1. Iteration 5, 6 and 7.. 86

6.5.2. Iteration 8.. 90

6.5.3. Iteration 9.. 93

6.5.4. Iteration 10.. 97

6.6. Comparison between Estimated Speedup and Achieved Speedup 97

6.7. Data with Bigger Problem Size.. 98

6.8. Performance Comparison among CPU, GPGPU and FPGA 99

6.9. Summary .. 102

Chapter 7 Conclusion and Future work .. 104

7.1. List of Contributions .. 104

7.2. Future Work ... 105

Bibliography ... 107

4

Word Count: 21195 (Main body only)

5

List of Figures

Figure 2.1: FPGA Structure (Waidyasooriya et al., 2018) 21

Figure 2.2: OpenCL Platform Model (Waidyasooriya et al., 2018) 22

Figure 2.3: OpenCL Execution Model (Waidyasooriya et al., 2018) 23

Figure 2.4: OpenCL Kernel Programming Model (Waidyasooriya et al., 2018) . 24

Figure 2.5: OpenCL Memory Model (Waidyasooriya et al., 2018) 25

Figure 2.6: Host Code of Kernel Execution.. 29

Figure 2.7: Kernel Code of Kernel L100 .. 29

Figure 2.8: Kernel Code of Kernel L100_pc .. 30

Figure 2.9: Execution of Function Calls L100_read(), L100_calc() and

L100_write() after Applying Dataflow Directive ... 34

Figure 3.1: Flow Chart of a Method of Efficient FPGA Programming 52

Figure 4.1: Example Code Snippet of Kernel foobar with a Local Work Group Size

of 128 * 64 * 8 (Gorlani, 2017) .. 55

Figure 4.2: Kernel foobar being Compiled (Gorlani, 2017) 55

Figure 4.3: Baseline Host Code of the Initialization of Command Queue, Buffers

and Kernels, plus Data Copy .. 56

Figure 4.4: Baseline Host Code of Kernel Execution and the Copy-Back of Data

... 56

Figure 4.5: Timing Function based on gettimeofday() ... 57

Figure 4.6: Kernel Code of Loops in Kernel L200 Being Manually Pipelined 58

Figure 4.7: Kernel Code of Loops in Kernel L200_pc Being Manually Pipelined

... 58

Figure 4.8: Kernel Code of Local Memory and Burst Memory Transfer Being Used

in Kernel L100 .. 59

Figure 4.9: Kernel Code of Local Memory and Burst Memory Transfer Being Used

in Kernel L100_pc .. 59

Figure 4.10: Kernel Code of the Inner Loop in Kernel L100 Being Completely

Unrolled .. 60

Figure 4.11: Kernel Code of the Loops in Kernel L100_pc Being Completely

Unrolled .. 60

Figure 5.1: Kernel Code of the Local Arrays in Kernel L100 Being Partitioned . 62

Figure 5.2: Kernel Code of the Local Arrays in Kernel L100_pc Being Partitioned

... 63

Figure 5.3: Kernel Code of the Local Arrays in Kernel L100 Being Vectorized

Automatically .. 63

Figure 5.4: Kernel Code of the Local Arrays in Kernel L100_pc Being Vectorized

Automatically .. 64

Figure 5.5: Host Code of Using enqueueMigrateMemObjects() to Overlap Data

Transfer with Kernel Computation ... 65

Figure 5.6: Kernel Code of Kernel L100 Being Optimized by Using Fewer

async_work_group_copy() ... 65

Figure 5.7: Host Code of Conducting Concurrent Execution of Kernels by Using

One Out-of-Order Command Queue .. 66

Figure 5.8: Host Code of Executing Kernels Concurrently by Using One Out-of-

Order Command Queue .. 66

Figure 5.9: Host Code of Conducting Concurrent Execution of Kernels by Using

Two In-Order Command Queue ... 67

6

Figure 5.10: Host Code of Executing Kernels Concurrently by Using Two In-Order

Command Queue .. 67

Figure 5.11: Kernel Code of Kernel L100_cu Being Optimized by Using Keyword

“__restrict” .. 68

Figure 5.12: Kernel Code of Packing async_work_group_copy() into “write_u_p”

Function .. 68

Figure 5.13: Kernel Code of Packing async_work_group_copy() into “read_u_p”

Function .. 68

Figure 5.14: Kernel Code of Packing Array Update Code into “Calculation”

Function .. 68

Figure 5.15: Kernel Code of Using Function Calls in Kernel L100_cu, as well as

Function Calls Pipelining and Function Inline ... 69

Figure 5.16: Host code that shows Periodic Continuation Kernels are merged with

Array Update Kernels ... 70

Figure 5.17: Kernel Code of Periodic Continuation Operation merged into Kernel

L100_cu .. 70

7

List of Tables

Table 4.1: Summary of Experiments Described in Chapter 4 61

Table 5.1: Summary of the Experiments Described in Chapter 5 71

Table 6.1: Latency Information of Kernel L100 of the Baseline Code................. 73

Table 6.2: Loop Information of Kernel L100 of the Baseline Code 73

Table 6.3: Hardware Resource Utilization of the Baseline Code 74

Table 6.4: Partial Loop Information of Iteration 2 ... 82

Table 6.5: Partial Loop Information of Iteration 3 ... 82

Table 6.6: Speedup of Main Loop and the Throughput of Iteration 3 and 4 85

Table 6.7: Partial Loop Information of Iteration 5* ... 87

Table 6.8: Average Latency Reported for each Kernel in Iteration 7 and 8. 91

Table 6.9: Average Latency and Start Interval of Kernel L100_cu in Iteration 9 94

Table 6.10: Start Interval and Average Latency of Kernel L100 and L100_cu of

Baseline and Iteration 1, 2, 3, 4, 5, 6, 7, 8 and 9 ... 94

Table 6.11: Specifications of Intel i7-6700 CPU and Nvidia GT730 GPGPU ... 100

Table 6.12: The Speedup of Main Loop and the Throughput of Baseline and

Iteration 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 ... 102

8

List of Diagrams

Diagram 6.1: Execution Time of Different Section of the Baseline Code between

Emulator and FPGA .. 75

Diagram 6.2: The Execution Time of each Kernel of the Baseline Code on Emulator

... 76

Diagram 6.3: The Execution Time of each Kernel of the Baseline Code on FPGA

... 76

Diagram 6.4: Execution Time of Different Section between the Baseline Code and

Iteration 3 on Emulator .. 77

Diagram 6.5: Execution Time of Different Section between the Baseline Code and

Iteration 3 on FPGA ... 78

Diagram 6.6: Speedup of each Section of Iteration 1, 2, 3 and 4 Compared to

Baseline ... 79

Diagram 6.7: Average Latency of each Kernel of Iteration 1, 2, 3 and 4 Compared

to Baseline ... 79

Diagram 6.8: FF Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to

Baseline ... 80

Diagram 6.9: LUT Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to

Baseline ... 80

Diagram 6.10: DSP Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to

Baseline ... 81

Diagram 6.11: BRAM_18K Usage of each Kernel of Iteration 1, 2, 3 and 4

Compared to Baseline ... 81

Diagram 6.12: Speedup of each Section of Iteration 5, 6 and 7 Compared to

Baseline and Iteration 3.. 86

Diagram 6.13: Average Latency of each Kernel of Iteration 5, 6 and 7 Compared

to Baseline and Iteration 3 ... 87

Diagram 6.14: Speedup of each Section of Iteration 8 Compared to Baseline and

Iteration 7* ... 90

Diagram 6.15: Speedup of each Section of Iteration 9 Compared to Baseline and

Iteration 8** ... 93

Diagram 6.16: Speedup of each Section of Iteration 10 Compared to Baseline and

Iteration 8** ... 97

Diagram 6.17: Estimated Speedup and Achieved Speedup of each Optimization

Iteration ... 98

Diagram 6.18: Speedup of Each Section of Iteration 10 Compared to Baseline on

Problem Size 127 * 127 .. 99

Diagram 6.19: Speedup of Each Section on CPU, GPGPU and FPGA under

Problem Size 65 * 65 .. 100

Diagram 6.20: Speedup of Each Section on CPU, GPGPU and FPGA under

Problem Size 127 * 127 .. 101

9

Abstract

High-performance computing has attracted more and more attention due the increasing

computation power needs in areas like machine learning, big data processing and

analysis. Heterogenous systems that use GPGPUs as accelerators are common

candidates for high-performance computing these days. However, the power

consumption of GPGPU has become a significant problem when it comes to scalability,

for example, to build a supercomputer that can perform exascale computing. Therefore,

FPGAs, which have a better power efficiency and flexible hardware architecture, have

become the new candidate of the accelerator of heterogenous systems.

A simplified shallow water application developed using OpenCL is implemented and

optimized on a Xilinx FPGA in this project. A series of experiments that consist of

overhead analysis and overhead minimization are conducted. An overhead analysis that

divides overheads into five different categories is applied to the baseline version of the

code first. Then a series of optimization methods including loop pipelining, loop

unrolling, burst memory transfer and using on-chip BRAM as cache are applied to the

baseline, based on the result of overhead analysis. A principle which describes how to

apply the optimization methods to the baseline is proposed. Overhead analysis and

overhead minimization are iterative processes, they only stop after certain requirements

are met. Furthermore, an experiment that aims to prove the Xilinx emulator is unreliable

in terms of execution time prediction and performance improvement indication is also

conducted. Two methods of efficient FPGA programming and correct execution time

acquisition during experiments are proposed as well.

A method of interpreting the latency and loop information provided in the Xilinx HLS

tool report is explained. A simple scalability model is also proposed for experimental

data analysis. Result shows a maximum speedup of around 45x is achieved on the main

computation loop of the simplified shallow water application, compared to the baseline.

However, the highly optimized, simplified shallow water application that runs on a mid-

range FPGA is still significantly outperformed by a not highly optimized simplified

shallow water application which runs on an entry-level GPGPU. Some observations on

power consumption are also provided.

10

Declaration

No portion of the work referred to in this dissertation has been submitted in support of

an application for another degree or qualification of this or any other university or other

institute of learning.

11

Copyright

1. The author of this dissertation (including any appendices and/or schedules to this

dissertation) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright, including

for administrative purposes.

2. Copies of this dissertation, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs and

Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has entered into. This page

must form part of any such copies made.

3. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of copyright

works in the dissertation, for example graphs and tables (“Reproductions”), which may

be described in this dissertation, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not be

made available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property and/or Reproductions.

4. Further information on the conditions under which disclosure, publication and

commercialisation of this dissertation, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the University IP

Policy (see http://documents.manchester.ac.uk/display.aspx?DocID=24420), in any

relevant Dissertation restriction declarations deposited in the University Library, and

The University Library’s regulations.

12

Acknowledgement

I would like to express my gratitude to my supervisor Mr. Graham Riley for his

invaluable support, motivation, guidance, and feedback throughout this project. His

constant motivation and enthusiasm encouraged me to produce my best work.

I would also like to thank my family and friend for the constant support without which

this work would not have been possible.

13

Glossary

Accelerator It is a hardware device that accelerate the computation. Common

accelerators including GPGPU, FPGA and Intel Xeon Phi. Accelerator is part of the

heterogenous computing system.

API Application Programming Interface. It is “a set of subroutine definitions,

communication protocols, and tools for building software. In general terms, it is a set

of clearly defined methods of communication among various components.”

(Application programming interface, 2019)

BRAM Block RAM. It is a type of on-chip memory used on FPGA.

Core It is a hardware component that can execute instructions while load and store data

between itself and memory.

CPU Central Processing Unit. It is a hardware that can perform arithmetic, logic,

control and I/O operation.

CU Compute Unit. It refers to a collection of processing elements according to the

OpenCL platform model. A work group is executed on one compute unit.

Data Parallelism It refers to a type of parallelism that allows different cores access and

process different data simultaneously.

DSP Digital Signal Processor. It is a type of hardware that specialized in digital signal

processing. In FPGA, DSP is responsible for the execution of floating-point operation.

Parallel computing can also be conducted using DSP by utilizing the SIMD instructions.

FF Flip-Flop. It is a circuit that have two states and can store state information. Its state

can be changed by applying signals on to it. Flip-Flops usually have at least one input

and one output. Flip-Flop is one of the most important components of FPGA.

14

FPGA Field Programmable Gate Array. It is a programmable hardware which consists

of processing system and programmable logic. Different kind of IP block will be

generated within the programmable logic, based on the algorithm.

Global Work Item Size It refers to the number of work items of all work groups. In

short, it is the total number of work items that executes one kernel.

GPGPU General Purpose Graphical Processing Unit. It is an accelerator which is

originally designed for processing and displaying 2D and 3D computer graphics. It is

called “general purpose” because it can be utilized to process general data efficiently

thanks to its SIMD architecture.

HDL Hardware Description Language. It is a programming model that precisely

describes the structure and behaviour of the circuits.

Heterogeneous Computing A computing method that use different types of hardware.

For example, CPU plus accelerators.

Homogeneous Computing A counterpart of heterogenous computing, which refers to

computation that use only one type of hardware. For example, CPU.

HLS High Level Synthesis. It is a process that transform the high-level programming

language like Java and C++ to hardware description language.

HPC High-Performance Computing. It is a practice that focus on solving the

computation-intensive or data-intensive tasks efficiently.

IC Integrated Circuit. It is a collection of circuits that integrated on a small piece of

silicon.

IDE Integrated Development Environment. It is a type of software which aims to

facilitate the process of software development for developers. In general, IDE includes

source code editor, debugger, compiler and building tools.

15

II Initial Interval. It refers to the time needed between the execution of the first iteration

and the second iteration.

Iteration Latency It refers to the time needed for one iteration to complete.

Kernel It refers to a function executed on one compute unit according to the OpenCL

execution model.

Local Work Item Size It refers to the number of work items within one work group. It

also refers to the number of dimensions as well as the magnitude of each dimension of

one work group.

LUT Look Up Table. It is one of the most important components of FPGA. Look up

table is a truth table that store the results of Boolean operations, based on the inputs. It

makes the execution of Boolean operation more efficient because the result can be

obtained simply by checking the loop up table.

Memory Latency It refers to the time needed for accessing external, off-chip memory.

Multi-core It is a type of hardware that consists of multiple cores, for example, multi-

core CPU.

NDRange It is an index space that describes the total number of work items which

execute the kernel. The NDRange can either be 1-Dimensional, 2-Dimensional or 3-

Dimensional.

OpenCL Open Computing Language. It is a programming model which is widely used

in heterogenous computing. It can produce code that can be executed on CPU, GPGPU

and FPGA.

PCIe Peripheral Component Interconnect express. It is a standard for high-speed serial

computer bus interface. Hardware like accelerators and hard drives can be connected

using the PCIe on motherboard.

16

PE Processing Element. A counterpart of core. According to the OpenCL platform

model, multiple processing elements are included in one compute unit

Start Interval It refers to the time between the invocation of the first function call and

the second function call.

Trip Count It refers to the size of iteration space.

VHDL Very High-Speed Integrated Circuit Hardware Description Language. It is one

of the major HDL.

Vivado It is an HLS tool provided by Xilinx, which is integrated within SDx.

Work Group It refers to a collection of work items that are executed on one compute

unit, in the OpenCL programming model.

Work Item It is equivalent to thread according to the OpenCL programming model.

SDAccel Software-Defined Accelerator. It is an IDE that targets the application

development for Xilinx accelerators.

SDSoC Software-Defined System on Chip. It is an Eclipse-based IDE that targets the

embedded C/C++/OpenCL application development for heterogenous Zynq SoC and

MPSoC (Multi-Processor SoC) system.

SDx It is an Eclipse-based IDE provided by Xilinx.

SIMD Single Instruction, Multiple Data. An architecture that allows different cores

access different data but process them in the same way simultaneously. In short,

different data will be processed using the same instruction on different core

simultaneously. SIMD is common in GPGPU.

17

Task Parallelism It refers to a type of parallelism that allows different cores execute

different tasks simultaneously.

18

Chapter 1 Introduction

As we have entered the era of big data, high-performance computing has become

increasingly important, since nowadays computation-intensive and data-intensive

applications like weather forecasting must be computed within a limited amount of time.

One popular way of achieving high-performance is “going parallel”, meaning using

processors with multiple cores instead of the one with single core, because it is more

and more difficult to achieve higher performance on a single core by simply increasing

the clock frequency. However, even if the performance is achieved, the power

consumption will be intolerable.

It has been found that homogenous multicore architectures, for example multicore CPU,

are not the best candidate for high-performance computing. Multicore CPU is suitable

for executing control-dominant problems, but it does not perform well on problems that

need only little control flow and synchronization with other threads or tasks, compared

to GPGPU. Therefore, heterogeneous architecture, for example CPU-GPGPU, becomes

popular these days, because it can utilize the advantages of different homogeneous

architectures while hiding most of their disadvantages.

In a heterogeneous system, devices like GPGPU, FPGA and Intel Xeon Phi are called

accelerators. In this project, FPGA is chosen as the accelerator instead of GPGPU. This

is because the hardware architecture of FPGA is more flexible, and the energy

efficiency of FPGA is better compared to CPU and GPGPU, this is also mentioned in

the work of (Georgopoulos et al., 2019). In addition, recent developments have made

FPGAs easier to program.

This project aims to implement and optimize a simplified shallow water application

developed using OpenCL, on an ARM CPU-FPGA heterogenous system. A series of

optimization methods selected from literatures are applied to the code one after another

following a certain principle, which will be discussed later. Performance estimation as

well as overhead analysis are be conducted. Other contributions of this project including

a method of efficient FPGA programming, a way of measuring correct and accurate

execution time of the kernels executed on the FPGA, a detailed explanation regarding

19

how to interpret the latency and loop information given in the system estimate report

and HLS report produced when building a FPGA solution, and a model to evaluate the

scalability of each optimization method.

This dissertation is organized as follows. Chapter 2 provides some backgrounds on

FPGA, OpenCL (the programming language used), SDx (the Xilinx tool with the

SDSoC environment supporting FPGA development), stencil computation (as used in

the simplified shallow water application) and optimization methods for FPGA

applications developed using OpenCL. The literature review is also included. The

research methodology is presented in Chapter 3, where a description regarding how the

project is implemented is provided. Chapter 4 presents the description of a series of

experiments with basic optimization methods. Chapter 5 describes a series of

experiments with more advanced optimization methods. Experimental data are

analysed in Chapter 6. Finally, Chapter 7 concludes the whole dissertation and identifies

some future works.

1.1. Project Aims

The aims of this project are to implement a simplified but high-performance shallow

water weather & climate forecasting application using OpenCL on an ARM CPU-FPGA

heterogeneous system, while trying to program the FPGA efficiently from a high-level

programmer’s perspective.

1.2. Project Objectives

In order to achieve these aims, the following objectives must be accomplished, one after

another.

⚫ Understand FPGA programming using OpenCL and SDSoC of the Xilinx FPGA

available for this project.

⚫ Getting familiar with the HLS tools which makes FPGA programming easier.

⚫ Develop a methodology which includes performance estimation, overhead analysis,

overhead minimization, execution time acquisition, a principle for applying

optimization methods and a method for efficient FPGA programming.

⚫ Implement a shallow water weather & climate forecasting application using

20

OpenCL and execute it on a single FPGA, then apply the methods to obtain high

performance.

21

Chapter 2 Background

This chapter introduces the essential background knowledge that is necessary for this

project. Section 2.1 provides a general description of FPGA. Section 2.2 introduces the

OpenCL programming language, including its platform model, execution model, kernel

programming model and memory model. In Section 2.3, the IDE used in this project,

called SDx, is introduced. Section 2.4 describes the principle of stencil computation,

along with the basic idea of the shallow water weather & climate forecasting model,

and the simplified shallow water application used in this project. Section 2.5

summarizes a series of optimization method for FPGA application developed in

OpenCL. Section 2.6 provides a literature review of the papers that are key to this

project.

2.1. FPGA Background

Figure 2.1: FPGA Structure (Waidyasooriya et al., 2018)

FPGA is a type of hardware that is programmable even after it is manufactured. “It

contains programmable logic gates and programmable interconnects, as well as

configurable memory modules and DSPs” (Waidyasooriya et al., 2018). The

programmable logic, interconnects, memory modules and DSPs can be utilized to create

any arbitrary circuits. This enables FPGA to “become” different processors and

accelerators, for example GPGPU. A processing system is also included in the FPGA.

Figure 2.1 shows the structure of FPGA.

22

2.2. OpenCL Background

“OpenCL is a framework for writing programs that execute across heterogeneous

platforms consisting of CPUs, GPGPUs, DSPs, FPGAs and other processors or

hardware accelerators.” (OpenCL, 2019). OpenCL consists four models, namely the

platform model, execution model, kernel programming model and memory model.

Section 2.2.1 provide a brief description of the platform model while Section 2.2.2

explains the execution model. Section 2.2.3 describes the kernel programming model

briefly and Section 2.2.4 demonstrates the memory model.

2.2.1. Platform Model

Figure 2.2: OpenCL Platform Model (Waidyasooriya et al., 2018)

As can be seen from Figure 2.2, in a CPU-FPGA heterogeneous system, CPU is the

host while FPGAs are the devices. There are multiple compute unit within the devices

and there are multiple processing elements (PE) within one single compute unit. PEs

and CPU cores are counterparts. Multiple devices can be controlled by one host.

23

2.2.2. Execution Model

Figure 2.3: OpenCL Execution Model (Waidyasooriya et al., 2018)

Figure 2.3 explains the OpenCL execution model. A context is created for one or

multiple devices. Each device can have one or multiple command queues. Command

queues are used for communications between host and devices, commands will be

issued by host and passed to devices through command queue. There are two types of

objects that can be put into the command queue, memory object and program object.

Memory objects are the objects that related to the read and write of the memory, while

program objects are kernels which needs to be executed. Command queue can be either

in-order or out-of-order. Each kernel can be executed by either one or multiple compute

units. If the single work item kernel is used, then there is only one work group with one

work item in one compute unit. If NDRange kernel is used, then all the following

situations are possible depends on the global work item size and the local work item

size.

⚫ One work group with multiple work items in one compute unit.

⚫ Multiple work groups each with multiple work items in one compute unit.

⚫ Multiple work groups each with one work item in one compute unit.

24

2.2.3. Kernel Programming Model

Figure 2.4: OpenCL Kernel Programming Model (Waidyasooriya et al., 2018)

Figure 2.4 demonstrates the OpenCL kernel programming model. Functions executed

on device are called kernel. Another new concept is called NDRange kernel. As can be

seen from Figure 2.4, a NDRange kernel can be made up of multiple work group while

a work group can consist multiple work item. Work groups and work items in a single

NDRange kernel can be divided into N dimension, where the maximum number of N

is three. “The size of NDRange and work groups can be specified by host program.”

(Waidyasooriya et al., 2018). The work items are tagged with both local ID and global

ID, the local ID of work items in different work group might be the same but the global

ID is unique for different work items. “The local ID is to identify the work items within

a work group while global ID is to identify the work items within the NDRange”

(Waidyasooriya et al., 2018).

25

2.2.4. Memory Model

Figure 2.5: OpenCL Memory Model (Waidyasooriya et al., 2018)

The OpenCL memory model is described in Figure 2.5. Host and devices have separate

memory, called host memory and device memory respectively. Devices cannot access

host memory, so the data in host memory must be transferred to the global memory

before it can be processed by device. Global memory can be accessed by both host and

device. Constant memory is a read-only memory. Each work group has its own local

memory and cannot be accessed by other work groups, but it can be accessed by all the

work items within the same work group. Each work item also has its own private

memory, which cannot be accessed by other work items. On the FPGA board used in

this project, both host memory and global memory refer to the same external and off-

chip DDR memory, while local and private memory refer to the on-chip memory.

26

2.3. Other Programming Models

⚫ OmpSs. OmpSs is a directive-based programming model developed by the

Barcelona Supercomputing Centre which aims to extend OpenMP by adding new

directives to support asynchronous parallelism and heterogenous computing. “It

can also be understood as new directives extending other accelerator-based APIs

like CUDA or OpenCL.”. (“The OmpSs Programming Model | Programming

Models @ BSC,” n.d.) Asynchronous parallelism is supported in OmpSs by

utilizing data dependencies between different tasks of the program. While

heterogenous computing is supported by using a newly-introduced construct called

the target construct. Architectures supported by OmpSs including Intel 32-bit and

64-bit platforms, IBM Power8 platforms and ARM 32-bit and 64-bit platforms.

⚫ Maxeler high-performance dataflow computing system. Maxeler technology is a

company that focus on the domain of high-performance computing. Maxeler high-

performance dataflow computing system is one of the software they developed,

which consist of MaxIDE, MaxCompiler, MaxOS and MaxGenFD. MaxIDE is an

Eclipsed-based IDE, which means the programs execute on the Maxeler system

can be developed in Java. The MaxCompiler splits an application into three parts,

namely kernel, manager configuration and CPU application, to allow the

application utilize the dataflow engine configuration. Kernels implement the

computational component of the application. Manager configuration connects

kernels to CPU, RAM, other kernels and dataflow engines. CPU application

interacts with the dataflow engine to read and write data to kernels and RAM.

“MaxelerOS provides the data choreography needed to balance resources,

maximize utilization, minimize overheads, and manage the application

acceleration process at runtime.”. (“MaxelerOS | Maxeler Technologies,” n.d.)

“Maxeler MaxGen systems are domain-specific compilers that enable

programmers to easily harness the full power of Maxeler solutions without needing

a detailed understanding of the underlying hardware.”. (“MaxGenFD | Maxeler

Technologies,” n.d.)

⚫ Vivado HLS. Vivado HLS “accelerates IP creation by enabling C, C++ and System

C specifications to be directly targeted into Xilinx programmable devices without

the need to manually create RTL” (Vivado High-Level Synthesis, 2019)

27

⚫ VHDL. “VHDL is an HDL used in electronic design automation to describe digital

and mixed-signal systems such as FPGA and IC. VHDL can also be used as a

general-purpose parallel programming language.” (VHDL, 2019)

2.4. SDx Background

SDx is an IDE provided by Xilinx for SDSoC and SDAccel development. SDx includes

HLS tools like Vivado and is made for Zynq® UltraScale+™ available for this project.

SDx has significantly eased the burden of software engineers for programming FPGA.

Because Vivado can translate high-level language like C and Java to HDL, a process

which is known as high level synthesis. Then the bitstream which builds the hardware

architecture of FPGA can be generated by the compiler. The existence of Vivado

enables software engineers to program FPGA without using HDL like Verilog, and

learning lots of hardware knowledge. Emulators are also provided in SDx to emulate

application in a hardware or software environment, in order to verify the functional

correctness. It also provides reports regarding performance estimate and hardware

resource utilization.

Two reports are provided by SDx, namely the system estimate report and the HLS report.

System estimate report provides the estimated clock frequency for execution, hardware

resource utilization and latency information of each kernel. It should be noted that the

estimated clock frequency doesn’t necessarily equal to the clock frequency set in the

SDx project setting page. Hardware resource utilization contains information of the

usage of FF, LUT, DSP and BRAM_18K of each kernel. Latency information includes

the start interval, best case latency, worst case latency and average case latency of each

kernel. Start interval means “the amount of clock cycles that has to pass between

invocations of a compute unit for a given kernel.”. While the best, average and worst

case latency refer to “how much clock cycles it takes the compute unit to generate the

results of one NDRange data tile for the kernel” (“SDAccel Environment Profiling and

Optimization Guide,” 2019). The best, worst and average case latency will be the same

if there are no dependencies between loop iterations.

One HLS report will be generated for each kernel. The HLS report not only provide the

hardware resource utilization and the latency information for the given kernel, it also

28

provides an analysis of the loops within the kernel. The following information are given

in the analysis,

⚫ Latency, which represent the total number of clock cycle that is needed for the

whole iteration to complete.

⚫ Iteration latency, which means the clock cycle needed for a single iteration to

complete.

⚫ Trip count, which describes the size of the iteration space.

⚫ Initial interval (II), which explains the number of clock cycles needed for a loop

iteration to start executing, after the previous iteration starts. It is worth noting that

both achieved II and target II are provided here. The target II will also be 1, which

is the optimum II.

⚫ The “pipelined” indicates whether the loop is pipelined or not.

2.5. Stencil Computation Background

Stencil computation is widely used in domains like computational fluid dynamics,

electromagnetic simulation based on the finite-difference time-domain methods, and

iterative solvers of linear equation systems (Sano et al., 2014). Stencil computation

means update the value of a certain point on a grid, based on the value of its neighbours.

Stencil itself is an area consists of multiple grid point.

There are different methods to compute a stencil, for example Jacobi iteration and

Gauss Seidel iteration. Jacobi iteration only needs the values of the grid point from the

previous iteration to calculate the new one, which exposes more parallelism by

eliminating data dependency. Unlike Jacobi iteration, Gauss Seidel iteration needs both

values from the previous and current iteration of the grid point for the computation,

which makes it more difficult to be parallelized.

Both Jacobi iteration and Gauss Seidel iteration are so-called “iteration to converge”

computation, meaning the result will converge eventually after multiple iterations, and

only one grid array is needed for computation. However, there are other kinds of stencil

computation which needs multiple grid arrays. For example, “time-stepping”

computation like shallow water equation.

29

Section 2.5.1 provides a description of the common shallow water weather & climate

forecasting model, while Section 2.5.2 describes the simplified shallow water

application used in this project in details, with the help of the code snippet.

2.5.1. Shallow Water Forecasting Model Background

“The shallow water equations are a set of hyperbolic partial differential equations (or

parabolic if viscous shear is considered) that describe the flow below a pressure surface

in a fluid (sometimes, but not necessarily, a free surface).” (Shallow water equations,

2019). Shallow water algorithm is a “time-stepping” stencil computation which

requires multiple grid arrays. The update of the value at each grid point relies on the

values of the previous updated grid array. After all the grid arrays are updated, the first

grid array will be updated again, and so on. Shallow water weather & climate

forecasting model is an example of sophisticated weather and climate prediction model.

2.5.2. The Simplified Shallow Water Application Used in this Project

Figure 2.6: Host Code of Kernel Execution

Figure 2.7: Kernel Code of Kernel L100

30

Figure 2.8: Kernel Code of Kernel L100_pc

The basic idea behind the simplified shallow water application is quite straight-forward.

Figure 2.6 demonstrates how it is implemented. The elements of array cu and array h

will first be updated in kernel L100, based on the elements of array u and array p. The

periodic continuation operation of array cu and array h will then be conducted in kernel

L100_pc. After that, the elements of array u and array p will be updated based on the

elements of array cu and array h in kernel L200. Then the periodic continuation

operation of array u and array p will be conducted in kernel L200_pc. After all this, the

elements of array cu and array h will be updated again. This process will keep iterating

until the value of the elements in array u and array p is converged. The update of array

cu and array h, as well as the update of array u and array p, can be done in parallel. This

is because Jacobi iteration is used here, which means, for example, in iteration 2, the

update of array cu and array h only required the array u and array p from iteration 1,

which is already available. The situation is similar for the update of array u and array p

in iteration 2.

Figure 2.7 and Figure 2.8 provides more details regarding how the update of array cu

and array h, as well as their periodic continuation operation are implemented. For

example, the update of grid point cu(1, 0) is based on grid point p(1, 0), p(0, 0), p(1, 1)

and u(1, 0). The update of grid point h(0, 0) is based on grid point u(1, 0) and p(0, 0).

Periodic continuation operation is basically the copy of grid point. In kernel L100_pc,

the values of the last row in array cu will be copied to the first row, then the values of

the left-most column in array cu will be copied to the right-most column. After that the

31

grid point cu(65, 0) will be copied to cu(0, 65). In terms of array h, the values of the

first row in array h will be copied to the last row, then the values of the right-most

column in array h will be copied to the left-most column. After that the grid point h(0,

65) will be copied to h(65, 0). The update as well as the periodic continuation operation

of array u and array p is similar with the one of array cu and array h.

Periodic continuation operation leads to “halo”, which is an extra circle of data

surrounding the original array. Therefore, the problem size is different from the array

size. The existence of halo is to provide a better memory access pattern for the system

with cache. For example, without halo, if grid point cu(0, 0) needs to be updated, it will

require the value from grid point p(0, 0), p(64, 0), p(0, 1) and u(0, 0). It is obvious that

the access to grid point p(64, 0) is not a stride-1 access, and the value of grid point p(64,

0) is not likely to be in the cache as well. However, if halo is available, then the update

of grid point cu(0, 0) will become the update of grid point cu(1, 0) which is based on

grid point p(1, 0), p(0, 0), p(1, 1) and u(1, 0). Although the access to grid point p(0, 0)

is still not stride-1 access, the value of grid point p(0, 0) is very likely to be in the cache,

which still provides a better memory access pattern compared to the one without halo.

2.6. Optimization Methods for OpenCL Application on

Xilinx FPGA

This section summarizes a series of methods, learned from the literature, for optimizing

FPGA application developed using OpenCL. The literature from which these methods

are derived is summarized in Section 2.7.2. Section 2.6.1 describes the optimizations

used in kernel code. Section 2.6.2 demonstrates optimizations used in host code.

Section 2.6.3 explains optimizations that are related to the IDE SDx.

2.6.1. Kernel Optimizations

A series of methods that can be used to optimize kernel code are listed as follows,

⚫ On-chip memory. Using on-chip memory as cache can reduce the memory access

latency. This means storing data in BRAM, which is also known as local memory

in the OpenCL memory model. This can be implemented by declaring the variable

as “__local”.

32

⚫ Burst memory transfer. The burst mode can be triggered when copying data

between off-chip memory and on-chip memory. Burst memory transfer aims to

improve the data transfer efficiency by combining multiple consecutive memory

access into one. Hence, the memory bandwidth can be utilized in a more efficient

way. This can be implemented by using function async_work_group_copy().

⚫ Loop unrolling. Loop unrolling can improve the parallelism between iterations. It

can achieve a better throughput compared to loops that are not unrolled. This can

be implemented by using directive “opencl_unroll_hint(n)”. The unrolling factor

can be specified by changing parameter n. If n is not specified, the loop will be

completely unrolled by default. The directive needs to be put ahead of the loop

body.

⚫ Loop pipelining. Loop pipelining can improve the parallelism between iterations.

According to Fifield et al (Fifield et al., 2016), loop pipelining can achieve the best

throughput. This can be implemented by using directive “xcl_pipeline_loop”.

Section 4.4 provides a detail explanation regarding where to put the

“xcl_pipeline_loop” directive in a nested loop.

⚫ Array partitioning. By partitioning the array, the number of logics which can access

(read/write) data simultaneously in each clock cycle can be increased. For example,

each BRAM block has two data ports, meaning that a maximum of two logics can

access data simultaneously in each clock cycle. However, if it is partitioned using

directive (cyclic, 2), then each BRAM block will have four data ports, because the

array data is distributed to two physical memories. This means that a maximum of

four logics can access data simultaneously in each clock cycle.

This can be implemented using directive “xcl_array_partition(type, factor,

dimension)”. There are three types of array partitioning method, namely cyclic,

block and complete. The type of array partitioning can be specified by changing

the “type” parameter. “The original array will be split into equally sized blocks of

consecutive elements of the original array, if it is partitioned in a block way. The

original array will be split into equally sized blocks interleaving the elements of

the original array, if it is partitioned in a cyclic way. The default operation of

complete partition is to split the array into its individual elements. This means

implementing the array as a collection of registers” (“SDSoC Profiling and

33

Optimization Guide,” 2019). It should be noted that there is an array size threshold

of 1024 for complete partition, meaning that arrays with size larger than 1024

cannot be partitioned in a complete way. The factor parameter “can be used to

specify the number of arrays which are created for block and cyclic partition. This

parameter is not applicable in complete partition. For multi-Dimensional arrays,

the dimension option can be used to specify which dimension is partitioned.”

(“SDSoC Profiling and Optimization Guide,” 2019). The directive needs to be

placed after the declaration of a variable.

⚫ Data vectorization. Data vectorization can utilize memory bandwidth in a more

efficient way by transferring multiple data, instead of one, each clock cycle. This

can be implemented either automatically by using directive “vec_type_hint(type)”,

or manually by declaring variables as, for example, float2, float4, float8 or float16.

The type parameter of the “vec_type_hint” directive represent the type of data

(double, float and etc) that needs to be vectorized. The directive needs to be placed

ahead of the function body.

⚫ The restrict keyword. According to (Zohouri et al., 2016), the restrict keyword can

be used so that compiler will avoid making conservative decision like pointer

aliasing. Hence, compiler will be able to parallelize loops if there are no

dependencies exist. This can be implemented by declaring a pointer as “__restrict”.

⚫ Dataflow directive. The dataflow directive can pipeline the execution of the

function calls in each kernel. This can be implemented by using directive

“xcl_dataflow”. The directive needs to be placed ahead of the function body. Figure

2.9 below demonstrates how function calls L100_read(), L100_calc() and

L100_write() are pipelined inside kernel L100_cu.

34

Figure 2.9: Execution of Function Calls L100_read(), L100_calc() and L100_write() after Applying Dataflow

Directive

⚫ Function inline. Instead of making function calls, function inline will replace the

function call with the function body itself. This may increase the code size, but it

also eliminates the time using for function calls, hence improves the performance.

This can be implemented by using directive “always_inline”. The directive needs

to be placed ahead of the function body.

⚫ Work item pipelining. The work items in a NDRange kernel can be pipelined by

using directive “xcl_pipeline_workitems”. It should be noted that this optimization

is only available when using NDRange kernel.

⚫ Optimum local work group size specification. The local work group size of a

NDRange kernel that yields the best performance will always be the problem size.

For example, for problem size of 65 * 65, the local work group size with best

performance will be a two-Dimensional work group with size of 65 on each

dimension. However, a smaller local work group size will consume fewer hardware

resource, which is useful since the hardware resource on a single FPGA is limited.

Hence, the optimum work group size should be chosen carefully if applicable. It

should be noted that this optimization is only available when using NDRange

kernel.

⚫ Pipe. Pipe is a FIFO memory object in the OpenCL programming language, it is

very useful when it comes to streaming data between kernels. When the BRAM is

not big enough to cache all the data, it will be a good idea to stream data from host

35

memory to device memory directly without using external memory, in order to

minimize data access latency. Pipe can be implemented by using directive

“xcl_reqd_pipe_depth(n)”, along with function write_pipe_block() and

read_pipe_block(). Parameter n defines the size of the pipe. It should be noted that

when pipe is utilized to stream data, it is assumed implicitly that the work items

are executed sequentially.

⚫ Zero copy of data. “The ZERO_COPY pragma means that the hardware function

accesses the data directly from shared memory through an AXI master bus

interface.” (“SDx Pragma Reference Guide,” 2019). This can be done by using

pragma “#pragma SDS data zero_copy()”. The pragma should be placed ahead of

the function body.

⚫ Merging array update kernel with periodic continuation kernel. The array update

kernel can be merged with the periodic continuation kernel if the whole array is

cached in BRAM, to reduce memory access overhead. For example, kernel

L100_cu and kernel L100_pc_cu can be merged. This allows periodic continuation

operation to be conducted immediately after array update is complete, to avoid

unnecessary data transfer.

2.6.2. Host Optimizations

A series of methods that can be used to optimize host code are listed as follows,

⚫ Overlapping data transfer between host memory and device memory, with the

kernel computation. This can be implemented by using function

enqueueMigrateMemObjects(). Function enqueueWriteBuffer() and

enqueueReadBuffer() need to be replaced by enqueueMigrateMemObjects(). It

should be noted that synchronization is needed when using

enqueueMigrateMemObjects() in order to obtain the correct result. The parameter

“CL_MEM_USE_HOST_PTR” is also be needed when declaring the buffers used

by enqueueMigrateMemObjects().

⚫ Concurrent execution of kernels. This can be implemented by using either multiple

in-order command queues or one out-of-order command queue. Parameter

“CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE” will be necessary

when declaring the command queue, if out-of-order command queue is used.

⚫ OpenCL API execution model. Different API should be used to reduce overhead of

36

kernel enqueuing. “For the data parallel case, use the clEnqueueNDRange API. For

the task parallel case, use the clEnqueueTask API.” (“SDAccel Environment

Profiling and Optimization Guide,” 2019)

2.6.3. SDx-related Optimizations

A series of methods that are related to SDx are listed as follows,

⚫ The number of compute unit. The number of compute unit can be specified for each

kernel in the project setting page. The number of compute unit available for each

kernel ranges from 1 to 60.

⚫ The data motion network clock frequency. The data motion network clock

frequency can be set in the project setting page. The clock frequency available

ranges from 75MHz to 600MHz.

⚫ The port data width. The port data width for each kernel can be set in the project

setting page. The width available ranges from 32 bits to 512 bits. The data width

can also be set as auto.

⚫ Dedicated memory port for each global array. This can be implemented by ticking

the “Max Memory Port” option in the project setting page for each kernel. After

this option is selected, each global array within that certain kernel will be assigned

with a dedicated memory port.

2.7. Literature Review

This section provides a detailed review to the papers that are key to this project. Papers

in Section 2.7.1 mainly focused on performance modelling. Section 2.7.2 reviews the

papers that conduct performance optimization to FPGA application. Section 2.7.3

provide a review on a paper that carried out some good overhead analysis. It should be

noted in Section 2.7.2, the papers written by Sano et al and Mondigo et al provides both

performance optimization and model for performance estimation.

2.7.1. Papers Focused on Performance Modelling

da Silva et al. (da Silva et al., 2013) have proposed a performance model for FPGA by

combing the traditional roofline model with the HLS tools. The roofline model provides

a performance estimation of the target algorithm by considering the computational

37

performance (CP), memory bandwidth (BW) and computational intensity (CI). The CP

refers to the maximum number of floating-point operations that the processor can

achieve. While CI refer to algorithm complexity, which is the number of operations

executed per byte access from memory. CP and BW is related to the hardware

architecture itself while CI is related to the application.

However, traditional roofline model cannot be applied to estimate the performance of

FPGA, because the hardware architecture of FPGA is not fixed and can be influenced

by the application. This means CP in this case is directly relates to CI. By connecting

the computational power with the resource consumption, an extended roofline model is

introduced. A new concept called the scalability (SC) is introduced as well. The SC

refer to the number of PE, which can be obtained by dividing the available resources

on FPGA by the resources each PE consumes. The performance of a FPGA can then be

acquired by multiply SC with the performance of PE. The computation of CI is also

modified by dividing the number of operations in one iteration, with the number of

memory access for input and output values.

HLS tools play an important role in the extended roofline model. Because they provide

optimizations and information like FPGA resource utilization, latency, and throughput.

A class of window-based image processing applications along with two different HLS

tools are served as case study in their work. They demonstrated that the extended

roofline model is accurate enough to estimate the performance of FPGA based on the

information provided by the HLS tools. The extended roofline is also flexible enough

to be combined with any HLS tools.

Parker (Parker, 2017) has shed some lights on the topic of how to calculate the peak

floating-point capabilities of DSP, GPGPU and FPGA in this white paper. One common

way of determining the peak FLOPS (floating-point operation per second) rate is to

multiply the sum of the adders and multipliers by the maximum operation frequency.

Because FLOP is defined as an addition or multiplication of single or double precision

number. Other operations like division, square root, FFT (fast Fourier transform) and

matrix operation needs to be constructed using adders and multipliers as well.

38

However, when it comes to FPGA, the method mentioned above might not be able to

produce the reliable peak FLOPS rate, due to the following challenges. First, the

floating-point precision level implemented on FPGA is not restricted to the industrial-

standard single and double precision. In fact, multiple precision levels are implemented.

Another challenge is that it is difficult to determine the routing resources that is needed

to implement the floating-point operation. While things like large barrel shifter which

consumes a large amount of programmable routing are required when implementing

floating-point operation. In addition, not all the programmable logic on FPGA can be

fully utilized, since it will lead to the reduction of the clock frequency.

In order to calculate the peak FLOPS on FPGA, Parker has proposed two methods. The

first one is to use the benchmark provided by the FPGA vendors. Another way is to use

only add or subtract function, and build as many adders as possible using DSP48E, then

build the remaining adders using pure logic, in order to maximize the floating-point

rating. However, he also mentioned that the second method is not a benchmark that is

recognized by the industry, and such design has no application benefits. Parker also

believed that for FPGA without hard floating-point circuits, using the vendor-calculated

theoretical GFLOPS numbers is quite unreliable.

In summary, Parker believed that in order to obtain the peak FLOPS performance of

devices with different architectures, for simplicity, it can be done by multiplying the

sum of the adders and multipliers by the maximum operation frequency. But ultimately,

relevant benchmark provided by the vendors should be used for a more accurate FLOPS

performance result.

Some other performance modelling includes a performance modelling of the 3-

Dimensional stencil computation on a stream-based FPGA, proposed by (Dohi et al.,

2013), a performance modelling of pipelined linear algebra architectures on FPGAs

developed by (Skalicky et al., 2013) and a method of evaluating FPGAs for floating-

point performance proposed by (Strenski et al., 2008).

2.7.2. Papers Focused on Performance Optimization

Cong et al. (Cong et al., 2018) have proposed a best-effort guideline for improving

39

FPGA programming productivity as well as FPGA accelerator performance. The

guideline makes FPGA programming easier by easing the burden of the software

programmers, allowing them to learn fewer hardware knowledge.

Furthermore, the guideline improves the performance of the FPGA accelerator by using

five refinement steps of HLS, namely explicit data caching, pipelining, processing

element duplication, computation overlapping and scratchpad reorganization. Explicit

data caching means explicitly copy the data for the computation to the BRAM of the

FPGA. Here BRAM is considered as the cache of FPGA. Pipelining is similar with

CPU pipelines. However, FPGA designers can construct very deep pipeline with

hundreds or even thousands of stages. Processing element duplication is similar with

multithreading programming. The processing units of FPGA and CPU cores is

counterparts. Computation overlapping in this case means constructing a three-stage

coarse-grained pipeline for better resource utilization. Scratchpad reorganization refers

to the using of larger-width data type to better utilize memory bandwidth.

They demonstrated that by applying their guideline, the performance of the FPGA

accelerator can be 42~29,030x faster, compared to the performance of the non-

optimized, naïve FPGA accelerator. The optimized FPGA accelerator is also up to

112.8x faster than a single Xeon CPU core.

Targett et al. (Targett et al., 2015) have proposed a method of accelerating C-grid

shallow water model by using lower precision variable and FPGA. They tried to stop

using double precision floating point variable and represent the variable with less bits.

By reducing the mantissa length of the variables, the spare computing resources can be

used to simulate climate change at a higher resolution, which may eventually improve

accuracy.

They also proposed an accuracy verification method, to make sure the accuracy will be

acceptable after the precision is lowered. This is accomplished by first calculating the

mean and standard deviation of the fields, then the mean and standard deviation of the

errors. After that the maximum value of mean and standard deviation is picked out and

compared with the acceptable mean and standard deviation.

40

They demonstrated that the mantissa length of the variable can be reduced to 14 bits

while maintaining an acceptable error. Their reduced precision FPGA implementation

runs 5.4x faster than the double precision FPGA implementation, and 12x faster than

the multi-threaded CPU implementation. What’s more, their reduced precision FPGA

implementation uses 39 times less energy than the CPU implementation. For the same

power consumption, the reduced precision FPGA implementation can compute a

100*100 grid while the CPU implementation can only compute a 29 * 29 grid.

Düben (Düben, 2018) has proposed a method to reduce the overall data usage and data

volume by using a new number format which exploits the similarities between

ensemble member. The data usage is reduced by reducing the number of bits that

represent the information required for the forecasting model. The ensemble mean is

removed from the ensemble data and is combined with a normalization by local

ensemble range. By doing this the precision is reduced so does the number of bits which

represents the number.

The new number format is realized in a standard shallow water model using Fortran. It

performs well for long-term, climate-type simulations. However, disadvantages still

exist. When utilizing the new number format, ensemble members will be combined into

one single simulation which make it impossible to parallelize them. Another

disadvantage is that a single simulation with the new number format will take more

time compared to the calculation of a single ensemble member. What’s more, the total

number of floating-point operations is likely to be increased for the entire ensemble

forecast.

Sano et al. (Sano et al., 2014) have proposed a custom computing machine (CCM)

called scalable streaming-array (SSA) for conducting stencil computation over multiple

FPGAs.

The scalable streaming-array is made up of multiple FPGA, with one master FPGA and

multiple slave FPGAs. On each FPGA, there is one ISRU (Input Stream Routing Unit),

one OSRU (Output Stream Routing Unit) and multiple PSM (Pipelined Stage Model).

Each PSM consists of multiple PE, which forms an array connected by a bidirectional

41

1-Dimensional torus network. The SSA is literally a linear array of PSM, the input

values streaming through the ISRU and are assigned to the PEs of the first PSM. Each

PE will calculate several stencils base on the value they receive and the value stored in

their local buffer. After the calculation is completed, the result will be sent to the

corresponding PEs in the next following PSM. The PEs in the same PSM will also needs

to communicate with the above and lower PEs to exchange the value they received,

since each PE doesn’t have all the value it needs to finish the stencil computation. The

final output will come from the OSRU which is a single stream.

The scalable streaming-array is designed in this way due to the low operational intensity

of stencil computation, as well as the number of iterations needed for allowing the result

to converge. Since FPGA is famous for its deep pipeline, each PSM is responsible for

the calculation of one iteration. In this way, all the iterations are pipelined, which means

multiple iteration computation can be done using a single data stream, and no large

memory bandwidth will be needed. Hence, memory access latency is concealed.

A performance model is also proposed for estimating peak performance, scalability and

speedup. They demonstrated their scalable streaming-array architecture on multiple

high-end and low-end FPGAs. Both 2-Dimensional and 3-Dimensional Jacobi

computation are used as benchmark. Their design showed a good agreement with the

performance model, and achieved performance of 260 GFlop/s and 236 GFlop/s for 2-

Dimensional and 3-Dimensional Jacobi computation, which are 87.4% and 83.9% of

the peak performance respectively, with a memory bandwidth of only 2.0 GB/s. In

terms of power consumption, the scalable streaming-array architecture provided

excellent performance per power of 1.30 GFlop/s/W and 1.07 GFlop/s/W for the 2-

Dimensional and 3-Dimensional Jacobi computation respectively. Their design also

showed good scalability.

Mondigo et al. (Mondigo et al., 2019) proposed a scalable architecture with deep

pipelined stream. What they proposed in this paper is based on the one developed by

(Sano et al., 2014). The major contribution of this paper is as follows, it first explained

how temporal and spatial parallelism can be achieved, then it presents an inter-FPGA

communication subsystem. Finally, it perfected the performance model Sano et al

42

proposed by considering the inter-FPGA communication overhead, overheads

introduced by the temporal parallelism and spatial parallelism.

Temporal parallelism can be achieved by cascading multiple SPE (Streaming

Processing Element) to form a deep pipeline. Spatial parallelism can be achieved by

having multiple parallelized unit pipelines in each SPE.

The inter-FPGA communication subsystem proposed in this paper is implemented base

on a FC (Flow Control) core and a Serial-Lite III (SL3) core. FC core includes TX

buffer, RX buffer and credit counter to deal with incoming data stream and backpressure.

Both link latency and the depth of the communication buffers will affect the inter-FPGA

communication overhead. While the deep pipeline introduced by the temporal

parallelism will also lead to overhead. Furthermore, the wider input/output data stream

bandwidth introduced by the spatial overhead will cause overhead if either the memory

bandwidth or communication link bandwidth is insufficient. By taking all these factors

into consideration, the performance model can estimate the theoretical performance

accurately. The theoretical performance is different from peak performance by

considering the overheads.

They demonstrated their design on multiple cascaded Arria 10 FPGAs using tsunami

simulation as benchmark. They found out that the highest scaled performance for 8

cascaded Arria 10 FPGAs is achieved with a single pipeline of 5 SPEs, which obtained

a scaled performance of 2.5 TFlops and a parallel efficiency of 98%.

Fifield et al (Fifield et al., 2016) have proposed several methods for optimizing OpenCL

application on Xilinx FPGA. In their slide, they first introduced the FPGA architecture

and its difference between CPU and GPGPU. Then they talked about the difficulties for

programming FPGA.

They proposed several ways of optimizing OpenCL kernels running on Xilinx FPGA,

including common optimization like loop unrolling, loop pipelining, work item

pipelining, data vectorization, burst memory transfer, array partitioning and the usage

of local memory instead of global memory. However, they also proposed some other

43

unique optimization methods. For example, specifying a better local work group size,

using pipes to stream data between kernels and using multiple external memory DDR

banks.

Muslim et al (Muslim et al., 2017) has presented an HLS-based FPGA implementation

of several algorithms, including KNN (K-Nearest Neighbour) algorithm, Monte Carlo

methods for financial models and bitonic sorting algorithm. They also conducted a

performance comparison between FPGA and some high-end GPGPU in terms of

execution time and power consumption.

The optimizations they used including work item pipelining, loop pipelining, loop

unrolling, burst memory transfer, using on-chip memory, using on-chip pipes for inter-

kernel communication, using multiple compute units and using dedicated memory port

for each global array. Besides, Muslim et al also tried optimizing the algorithm itself.

For example, they developed two version of the KNN algorithm. The first version only

implemented the distance calculation in the kernel. In the second version however, they

implemented both the distance calculation and the nearest neighbour estimation in two

different kernels. Muslim et al believed FPGA will perform better for applications that

doesn’t require too many accesses to slow external DRAM, due to its limited memory

bandwidth with it. (compared to GPGPU which has a larger memory bandwidth

interface with external DRAM). They also believed that loop pipelining will yield a

better performance than loop unrolling since the number of memory port is limited.

They claimed that optimizing FPGA application is about guiding the compiler to

generate optimized code and memory architecture for each kernel.

They concluded that FPGAs are more energy-efficient than GPGPUs. If FPGA-specific

optimizations are applied, FPGA can yield better performance than GPGPU in some

test cases as well. For example, when they run Monte Carlo method for Black-Scholes

financial model with European vanilla option, The Virtex-7-series FPGA is 2x faster

than K4200 GPGPU, and the device power of this FPGA is only 11% of the GTX960

GPGPU. In the case of Black-Scholes model with Asian option, Virtex-7 is at least 2x

faster than the GTX960 GPGPU and consumes only 13% of the energy. When they

applied the Monte Carlo method on Heston Model with European vanilla option, The

44

Virtex-7 is 4x faster than the GTX960 GPGPU and uses 7% of the GPGPU energy for

this algorithm. In the case of Heston Model with European barrier option, the Virtex-7

FPGA has 5x performance and consumes only 8% of the energy for the same amount

of workload, compared to GTX960 GPGPU.

Both Conte (Conte, 2019) and Gorlani (Gorlani, 2017) developed an optimized

molecular dynamics application on FPGA. Molecular dynamics computation is a

certain kind of stencil computation.

They both introduced optimization methods like using on-chip memory, burst memory

transfer, work item pipelining, loop pipelining, loop unrolling, array partitioning, data

vectorization and specifying a better local work size.

Gorlani developed two optimized version of molecular dynamics application, namely

the “plain version” and the “unroll version”. The plain version is developed based on

the baseline version by utilizing optimization methods like work item pipelining, burst

memory transfer and on-chip memory. The unroll version is developed based on the

plain version by further optimizing it using loop unrolling. Gorlani also introduced the

principles of the NDRange kernel. The multiple work items within the NDRange kernel

will be executed in a loop (or a nested loop, depends on the dimension of the NDRange

kernel), the index of the loop is the magnitude of each dimension of the NDRange

kernel. By conducting a series of experiment, Gorlani also managed to prove that in

terms of data vectorization, larger vector size will lead to higher data throughput.

What’s more, burst memory transfer is fundamental to achieving better performance,

the increase of programmable logic clock frequency will also lead to higher data

throughput, especially in the case of burst data access.

Conte developed his optimized version of molecular dynamics application by

optimizing the neighbour_build kernel and force_compute kernel respectively. The

neighbour_build kernel is optimized by using on-chip memory, data vectorization and

burst memory transfer, while the force_compute kernel is optimized by using on-chip

memory, data vectorization, burst memory transfer and array partitioning. Conte also

introduced the relationship between memory port and memory interface and

45

demonstrated how to improve performance by using multiple memory ports. In fact,

the reason why array partitioning might be able to achieve better performance is that by

partitioning the array, multiple memory ports will be utilized simultaneously. Hence,

the memory bandwidth is used in a more efficient way.

Their optimized molecular dynamics application both achieve improved performance

after applying some of the optimization methods, compare to their baseline version. In

Conte’s molecular dynamics application, the optimized neighbour_build kernel yields

a performance improvement of 11% compared with the baseline version, while the

optimized force_compute kernel yields a performance improvement of 28% compared

with the baseline version.

2.7.3. Paper Focused on Overhead Analysis

Riley et al. (Riley et al., 1997) have proposed a method for developing high-

performance parallel program by utilizing a technique called overhead analysis.

Molecular dynamic serves as a case study here. The overhead analysis tries to measure,

identify and explain all sorts of overhead, then minimize them accordingly. To conduct

overhead analysis, a computable solution for the problem needs to be found first, then

a candidate implementation needs to be selected and implemented. After that, the

execution behaviour needs to be understood. After the overhead analysis is finished, a

new candidate implementation or even a new computable solution might be chosen

depends on the circumstances.

The overhead analysis is an iterative process and both the performance and cost of the

application need to be considered. The process will be stopped if one of the following

situations is satisfied, an acceptable performance is achieved, the improvement of the

performance is not cost-effective, or efforts run out. A series of overheads are

mentioned here including, insufficient parallelism overhead, algorithmic overhead,

load imbalance overhead, scheduling overhead, synchronization overhead, remote

access overhead and compiler overhead. The situation is summarised using

performance curve, including a naïve ideal curve, a realistic ideal curve and an achieved

curve.

46

They demonstrated that by using overhead analysis to understand the observed

behaviour of the application, the programmers only need to spend a limited amount of

effort to find out the most significant effect that limits the performance. Therefore, the

available development resource can be better utilized.

2.8. Summary

The background knowledge needed for this project is presented in detail in this chapter.

A general FPGA background is provided, as well as the background of OpenCL

language, which includes the platform model, execution model, kernel programming

model and the memory model. The IDE used in this project called SDx is discussed.

What’s more, the stencil computation, which is the computation that shallow water

model belongs to, is demonstrated in detail as well. The common shallow water model

along with the simplified one is also described. Furthermore, a series of optimization

methods for FPGA application developed using OpenCL are presented, which includes

optimization for kernel, host and optimization related to SDx. Finally, a literature

review is provided including papers focused on performance modelling, performance

optimization and overhead analysis.

47

Chapter 3 Research Methodology

This chapter introduces the research methodology used in this project. Section 3.1

provides a description regarding how performance estimation is conducted in this

project. Section 3.2 demonstrates the method for carrying out overhead analysis.

Section 3.3 describes a series of optimization method which are applied to the

simplified shallow water application, all of these are selected from the methods listed

in Section 2.6. Section 3.4 explains how the optimization methods are applied to the

simplified shallow water application. Section 3.5 demonstrate a method for efficient

FPGA programming. Section 3.6 provide a description about how to obtain the

execution time accurately and correctly.

This project implements a simplified shallow water weather & climate forecasting

application using C++, OpenCL and an IDE called SDx, provided by Xilinx. An

overhead analysis is first carried out towards the baseline code. After that, a series of

optimization methods are applied to the baseline code one after another, following a

certain principle, which is described in Section 3.4, to tackle the corresponding

overhead. A performance estimation is conducted with the most optimized code in each

optimization iteration, to evaluate the gap between the estimated performance and the

achieved performance. Methods of efficient FPGA programming and accurate

execution time acquisition are also developed and applied.

Further details of the experimental set up can be found in Chapter 6.

3.1. Performance Estimation

Performance estimation is to estimate the execution time of a certain algorithm that

implemented on FPGA, based on the latency information and clock frequency provided

by the system estimate report. The estimated execution time can be obtained using the

following formula,

𝑇 = ∑(
𝐶𝑖

𝑓𝑒𝑠𝑡
)

𝑛

𝑖=1

where T is the estimated execution time, fest is the estimated clock frequency, Ci is the

48

latency (in terms of clock cycle) of kernel i. It should be noted that if kernels are

executed concurrently, then only the latency of one of the kernels needs to be put into

the above formula, assuming there are no load imbalance overheads. However, if load

imbalance overheads exist, then the latency of the kernel which requires the longest

execution time should be selected.

3.2. Overhead Analysis

The overhead analysis needs to be made to identify and then explain the overheads. The

overhead analysis techniques can be referred to the ones proposed by (Riley et al., 1997).

Overheads are roughly divided into five categories, namely non-parallel code overhead,

load imbalance overhead, scheduling overhead, synchronization overhead and memory

access overhead. The existence of sequential code results in non-parallel code overhead.

Load imbalance overhead occurs due to the different amount of work possessed by each

processor core. Scheduling overhead is the extra code or instruction for scheduling tasks

to different processor cores, compared to sequential code. Synchronization overhead is

the overhead introduced by synchronization mechanism like lock or barrier. Memory

access overhead occurs when data is not in the cache (in this case BRAM) or not in the

local memory, so processor must take extra time to fetch data from global memory or

remote memory.

3.3. Overhead Minimization

After the overheads are identified and explained, they need to be minimized accordingly.

A series of optimization methods that applied to the simplified shallow water

application are listed as follows,

In terms of kernel optimization,

⚫ On-chip memory.

⚫ Burst memory transfer.

⚫ Loop unrolling.

⚫ Loop pipelining.

⚫ Array partitioning.

⚫ Data vectorization.

49

⚫ The restrict keyword.

⚫ Dataflow directive.

⚫ Function inline.

In terms of host optimization,

⚫ Overlapping data transfer between host memory and device memory, with the

kernel computation.

⚫ Concurrent execution of kernels.

Other optimization methods including the usage of a better computable solution. For

example, kernel L100 can be broke down into kernel L100_cu and L100_h, so the

computation of array cu and array h can be done simultaneously, as will be mentioned

in Section 5.4. This changing in computable solution will become very useful when it

comes to the optimization of concurrent execution of kernels. Furthermore, array update

kernel and periodic continuation kernel, for example kernel L100_cu and kernel

L100_pc_cu, can be merged to reduce memory access overhead, which will be

mentioned in Section 5.6.

The overhead analysis and minimization are iterative processes. These two processes

only stop if at least one of the following conditions are met: time or efforts are running

out, or the performance is acceptable, or the improvement of the performance is no

longer cost-effective.

3.4. The Principle of Applying Optimization Method

A series of optimization methods are applied to the simplified shallow water application

one after another. The optimization process is guided by both the execution time and

the information obtained from the system estimate report and HLS report, including

hardware resource utilization, latency and loop information. The basic idea is, if the

application yields a worse performance after applying a certain optimization method,

this optimization method will be put aside, and the code will be rolled back to the

previous version to try another optimization method. If a significant change in terms of

performance fails to be observed after applying a certain optimization method, this

optimization method will still be kept.

50

When it comes to the situation that more than one optimization methods can improve

the performance of the application, but only one of them can be chose, then the

scalability of the hardware, as well as latency, should be considered. For example, the

decision must be made when it comes to using whether loop pipelining or loop unrolling

to increase the parallelism between iterations. The hardware resource utilization should

be reflected by the performance and the latency. This means a better performance and

a lower latency will be expected if more hardware resources are consumed.

3.5. A Method of Efficient FPGA Programming

There are two ways to program the FPGA efficiently, namely relying more on system

estimate report and HLS report to guide the optimization process, and using emulator

to verify functional correctness. It should be noted that these two methods could be

used together.

As mentioned in Section 3.4, the optimization process should be guided by both

execution time and the information from the system estimate report and HLS report.

However, since it takes at least half an hour to obtain the execution time data, due to

the time-consuming hardware compilation (choose actual hardware as compilation

target). It would be a better idea if the system estimate report and HLS report is relied

more than the actual execution time. The latency information within the system estimate

report, which consists the start interval and the best, worst and average case latency,

should reflects the performance.

It is worth noting that obtaining the system estimate report and HLS report is much less

time-consuming compared to obtaining the execution time. The system estimate report

and the HLS report produced by the emulation compilation (choose emulator as the

compilation target) is the same as the one produced by the hardware compilation.

However, it only takes around five minutes for the emulation compilation to complete.

Therefore, in order to program the FPGA efficiently, the code should not be compiled

and run on actual FPGA unless significant change of latency information provided by

the system estimate report is observed (except for host optimization, because change in

host code will not change the system estimate report. The code needs to be compiled

and run on FPGA after host optimization is applied).

51

Although emulator should not be used as a source of execution time or an indicator of

performance improvement, it is quite useful when it comes to verify the functional

correctness. Because hardware compilation usually takes more than half an hour to

finish, it is impractical to verify the functional correctness by executing the code on

FPGA. Hence, FPGA should not be used for the verification of functional correctness.

However, emulation compilation only takes around five minutes to complete, while

starting the emulator is going to take another five minutes. This means it only takes

around ten minutes to obtain an output when using emulator. Comparing with the time

that is needed for obtaining an output using FPGA, emulator is clearly a better candidate

for functional correctness verification.

It should be noticed that the emulator needs to be stopped and restarted each time after

modifications are made to the code. This is to make sure the output from the emulator

is correct. What’s more, it is also recommended to use different SDx project for

hardware compilation and emulation compilation. This is because if the code is

compiled using emulation compilation first, and hardware compilation later, error will

arise when executing the code on FPGA. The reason behind this is not known yet and

will be left for future work.

In conclusion, after applying a certain optimization method, the code should be first

compiled using emulation compilation, obtain the system estimate report and HLS

report then execute it using emulator. If the output is incorrect, then the code should be

modified. If the output is correct, then the system estimate report and HLS report should

be checked. If there is no significant change in terms of latency, then this optimization

will be kept, and another optimization method can be applied to the code. If there is a

significant change, then the code should be compiled using hardware compilation and

executed on FPGA, to obtain the execution time. A flow chart of a method of efficient

FPGA programming is demonstrated as Figure 3.1

52

Figure 3.1: Flow Chart of a Method of Efficient FPGA Programming

3.6. Execution Time Acquisition

It should be first noticed that all the execution time measured when executing the code

using emulator is not accurate. Therefore, the execution time should only be logged

when executing code on FPGA. Furthermore, the emulator should not be used as an

indicator of performance improvement either. Sometimes after certain optimization is

applied, performance improvement might not able to observe when executing the code

using emulator. However, when the exact same code is executed using FPGA,

performance improvement (sometimes even significant one) can be observed.

Another worth-noting point is about how to measure the execution time of kernels

correctly and accurately. First, the kernel needs to be synchronized every time it finishes

53

execution. Because in OpenCL kernels are executed asynchronously. Although this will

introduce more synchronization overhead, it is the foundation of acquiring accurate

timing result. Secondly, the execution time of each kernel needs to be accumulated since

the kernels are executed in a loop. Finally, the function used to measure the execution

time should be chose carefully. For simplicity the time function of the C library is used

instead of the event profiling function provided by OpenCL. However, it should be

noted that the gettimeofday() function should be used instead of the clock() and time()

function from the time library of C. The problem with time() is that its resolution is not

high enough. While the problem with clock() is that, clock() function actually measures

the execution time by counting the clock tick of the processor. Considering a

heterogenous system of ARM CPU and FPGA is used, and the kernels are executed

asynchronously, if the clock() function is utilized, then only the time for the host to call

the kernels, instead of the execution time of the kernels, will be measured. This is

because the ARM CPU might switch to sleep mode after calling the kernels, so the

clock tick will no longer be counted, which leads to inaccurate result produced by the

clock() function.

The “time” command of Linux is also used to obtain the real time, user time and system

time of the application. By comparing the real time against the execution time measured

within the code, the accuracy and correctness of the timing result can be verified.

3.7. Summary

The methodology used in this project is presented in detail in this chapter. The model

of performance estimation is discussed, while the overhead analysis is based on a

method that classify the overheads into non-parallel code overhead, load imbalance

overhead, scheduling overhead, synchronization overhead and memory access

overhead. A series of methods including loop unrolling, loop pipelining and array

partitioning are used to minimize the overhead. In order to guide the optimization

process and program the FPGA efficiently, the dependence on emulator, system

estimate report and HLS report is emphasized. Finally, the gettimeofday() function from

the C library should be used instead of clock() and time() function to obtain the accurate

and correct execution time.

54

Chapter 4 Experiments with Basic

Optimization Methods

This chapter describes the experiments conducted in this project with some basic

optimization methods. Section 4.1 demonstrates the baseline code. Section 4.2 explains

the reason why emulator cannot be used as the source of execution time as well as the

indicator of performance improvement. Section 4.3 describes the using of compiler

option of -O3 optimization. Section 4.4 provides a description of optimizing simplified

shallow water application by manually pipelining the loop. Section 4.5 demonstrate the

optimization of using burst memory transfer and caching data into the on-chip BRAM.

Section 4.6 explains the optimization using loop unrolling. The results of the

experiments described in this chapter are analysed in Chapter 6.

All the experiments are conducted using problem size of 65 * 65, with an iteration count

of 4000 (except for the experiment conducted in Section 4.2), under optimization -O0

(except for the experiment conducted in Section 4.3), using data motion network clock

frequency of 99.99 MHz, as well as the single work item kernel of OpenCL. All the

experiments are conducted iteratively, meaning that each experiment is based on the

previous one. However, it should be noted that the actual array size is 66*66, due to the

existence of “halo”, which is discussed in Section 2.5.2. What’s more, the clock

frequency that gets set is not necessarily going to be the clock frequency which the

hardware executes with.

The reason why no experiments are conducted using NDRange kernel of OpenCL is

that, it is believed the performance of the baseline code which uses a single work item

kernel, is nearly the same as the one using NDRange kernel with the optimum work

group size. When the code is being compiled, the compiler will turn the code in the

NDRange kernel into a nested loop, where the iteration space of the loop is the same as

the work group size.

55

Figure 4.1: Example Code Snippet of Kernel foobar with a Local Work Group Size of 128 * 64 * 8 (Gorlani,

2017)

Figure 4.2: Kernel foobar being Compiled (Gorlani, 2017)

Figure 4.1 and Figure 4.2 demonstrates what will happen to kernel foobar, which has a

local work group size of 128 * 64 * 8, when it is compiled. The code is going to be

executed in a nested loop after the kernel is compiled. The iteration space of each layer

of the loop is the same as the magnitude of each dimension of the local work group. For

example, the magnitude of x-dimension of the local work group is 128, so the iteration

space of the outer loop is 128 as well. The situations are the same between the

magnitude of y-dimension of the local work group and the iteration space of the

medium loop, as well as the magnitude of z-dimension of the local work group and the

iteration space of the inner loop.

4.1. Baseline

This experiment aims to turn a simplified shallow water application, which is developed

using C++ and OpenCL, and meant to be executed on GPGPU, into a version that can

56

be executed on Xilinx FPGA. The execution time, as well as the hardware resource

utilization, latency and loop information are logged to serve as a baseline.

Figure 4.3: Baseline Host Code of the Initialization of Command Queue, Buffers and Kernels, plus Data

Copy

Figure 4.4: Baseline Host Code of Kernel Execution and the Copy-Back of Data

57

Figure 4.5: Timing Function based on gettimeofday()

Figure 4.3 and Figure 4.4 demonstrate the host C++ code of the simplified shallow

water application. The host code includes getting the Xilinx platform and device,

loading the XCL binary file, as well as the declaration of an in-order command queue,

kernels and buffers. After that, the data needed for computation will be transferred from

the host memory to the device’s global memory. The execution of the kernels will get

started once the data transfer is completed. The kernels will be synchronized every time

after they finish execution, so the execution time of each kernel can be measured. After

all the kernels finish execution, the data will be copied back to host memory. Figure 4.5

shows the timing function based on the gettimeofday() function from the C library.

4.2. The Unreliable Emulator

This experiment is to demonstrate that emulator cannot be used as the source of

execution time as well as the indicator of performance improvement. The baseline code

is executed on both emulator and FPGA with an iteration count of 2. Then the execution

time from both emulator and FPGA are recorded respectively and compared against

each other. The reason why the simplified shallow water application only executes with

2 iterations is that, the execution time of the code running on emulator is significantly

longer than the execution time of the code running on FPGA. If the simplified shallow

water application executes with 4000 iterations on emulator, the execution time will be

so long that it becomes impractical. An optimized version of simplified shallow water

application (from Section 4.5) is also executed on both emulator and FPGA, the

execution time obtained from both emulator and FPGA are logged respectively and

compared against each other.

4.3. Iteration 1: -O3 Optimization

This experiment is investigating the option of optimizing the simplified shallow water

application using one of the easiest ways, the -O3 optimization option provided by the

58

compiler. This experiment builds on the baseline experiment conducted in Section 4.1.

4.4. Iteration 2: Loop Pipelining

This experiment is investigating the option of manually pipelining the loops in kernel

L100_pc, L200 and L200_pc by using the “xcl_pipeline_loop” directive as mentioned

in Section 2.6.1.

Figure 4.6: Kernel Code of Loops in Kernel L200 Being Manually Pipelined

Figure 4.7: Kernel Code of Loops in Kernel L200_pc Being Manually Pipelined

Figure 4.6 and Figure 4.7 shows how the “xcl_pipeline_loop” directive is used to

manually pipeline the loops in kernel L200 and L200_pc. The situation in kernel

L100_pc is similar with the one in L200_pc. The reason why the “xcl_pipeline_loop”

directive is put in the inner loop of kernel L200 is that, “the pipeline optimization

directive should be placed at the level where a sample of data is processed. Data

samples—a frame of data—typically supplied as an array or pointer with data accessed

through pointer arithmetic during each transaction” (“SDSoC Profiling and

Optimization Guide,” 2019). This experiment builds on the baseline experiment

59

conducted in Section 4.1.

4.5. Iteration 3: Using Local Memory and Burst Memory

Transfer

This experiment is investigating the option of using function async_work_group_copy()

to trigger burst memory transfer. What’s more, the data will be stored in BRAM by

declaring the array within the kernel function as “__local”. Both methods are mentioned

in Section 2.6.1.

Figure 4.8: Kernel Code of Local Memory and Burst Memory Transfer Being Used in Kernel L100

Figure 4.9: Kernel Code of Local Memory and Burst Memory Transfer Being Used in Kernel L100_pc

Figure 4.8 and Figure 4.9 demonstrate how this is implemented in kernel L100 and

L100_pc, the situation in kernel L200 and L200_pc is similar. In Figure 4.8, the first

four async_work_group_copy() statements are defined as “load” operation, while the

last four async_work_group_copy() statements are defined as “store” operation. The

60

nested loop between the async_work_group_copy() statements are defined as “calc”

operation. This experiment builds on the baseline experiment conducted in Section 4.1.

4.6. Iteration 4: Loop Unrolling

This experiment is investigating the option of unrolling the loops in kernel L100,

L100_pc, L200 and L200_pc, using “opencl_unroll_hint” directive as mentioned in

Section 2.6.1. This experiment aims to compare the different effect posed on

performance when using loop pipelining and loop unrolling.

Figure 4.10: Kernel Code of the Inner Loop in Kernel L100 Being Completely Unrolled

Figure 4.11: Kernel Code of the Loops in Kernel L100_pc Being Completely Unrolled

Figure 4.10 and Figure 4.11 demonstrates how this is implemented in kernel L100 and

L100_pc. The situation in kernel L200 and L200_pc is similar. An experiment of

unrolling the loops in kernels L100, L100_pc, L200 and L200_pc using a factor of 8 is

61

also conducted. It can be achieved by simply replacing directive “opencl_unroll_hint”

with “opencl_unroll_hint(8)”. This experiment is based on the experiment conducted

in Section 4.5.

4.7. Summary

The experiments described in this chapter are summarized in the following table,

Optimization -O3

Optimization

Loop

Pipelining

Local Memory and Burst

Memory Transfer

Loop

Unrolling

Baseline X X X X

Iteration 1 √ X X X

Iteration 2 X √ X X

Iteration 3 X √ (auto*) √ X

Iteration 4 X X √ √

*: auto means the loops are pipelined automatically by the compiler after optimizations

local memory and burst memory transfer are applied.

Table 4.1: Summary of Experiments Described in Chapter 4

62

Chapter 5 Experiment with Advanced

Optimization Methods

This chapter describes the experiments conducted in this project with some more

advanced optimization methods. Section 5.1 demonstrates the optimization using array

partitioning. Section 5.2 explains how to optimize the code using automatic data

vectorization. Section 5.3 describes the optimization of overlapping data transfer with

kernel computation. Section 5.4 provide a description of optimizing simplified shallow

water application by using the restrict keyword and the concurrent execution of kernels.

Section 5.5 demonstrate the optimization of using function calls pipelining and function

inline. Section 5.6 provides a description of merging array update operation with

periodic continuation operation. The results of the experiments described in this chapter

are analysed in Chapter 6.

5.1. Iteration 5: Array Partitioning

This experiment is investigating the option of partitioning the array using

“xcl_array_partition()” directive as mentioned in Section 2.6.1. Array partitioning can

solve the “limited memory port” warning message arise during the compilation.

Figure 5.1: Kernel Code of the Local Arrays in Kernel L100 Being Partitioned

63

Figure 5.2: Kernel Code of the Local Arrays in Kernel L100_pc Being Partitioned

Figure 5.1 and Figure 5.2 show how this is implemented in kernel L100 and L100_pc.

The situation in L200 and L200_pc is similar. The loops in kernel L100_pc and

L200_pc is unrolled using a factor of 2 because it can minimize the initial interval to 1.

This experiment is based on the experiment conducted in Section 4.5.

5.2. Iteration 6: Data Vectorization

This experiment is investigating the option of vectorizing the array elements

automatically by using “vec_type_hint” directive as mentioned in Section 2.6.1.

Figure 5.3: Kernel Code of the Local Arrays in Kernel L100 Being Vectorized Automatically

64

Figure 5.4: Kernel Code of the Local Arrays in Kernel L100_pc Being Vectorized Automatically

Figure 5.3 and Figure 5.4 shows how this can be implemented in kernel L100 and

L100_pc. The situation in kernel L200 and L200_pc is similar. This experiment is based

on the experiment conducted in Section 5.1.

5.3. Iteration 7: Overlapping Data Transfer with Kernel

Computation

This experiment is investigating the option of overlapping the data transfer between

host and device along with the kernel computation, by using function

enqueueMigrateMemObjects() as mentioned in Section 2.6.2.

65

Figure 5.5: Host Code of Using enqueueMigrateMemObjects() to Overlap Data Transfer with Kernel

Computation

Figure 5.6: Kernel Code of Kernel L100 Being Optimized by Using Fewer async_work_group_copy()

Figure 5.5 demonstrates how this is implemented in host code. The

enqueueWriteBuffer() and enqueueReadBuffer() function needs to be replaced with

enqueueMigrateMemObjects(), with different parameter. The parameter

“CL_MEM_USE_HOST_PTR” needs to be added to the declaration of buffer_p and

buffer_u as well. It is worth noting that the enqueueMigrateMemObjects() function

needs to be synchronized to obtain the correct result. Figure 5.6 demonstrates another

optimization by using fewer async_work_group_copy() function. This means only the

data that is necessary for computation will be copied in and out between the on-chip

and off-chip memory. This experiment is based on the experiment conducted in Section

5.2.

66

5.4. Iteration 8: Restrict Keyword and Concurrent

Execution of Kernels

This experiment is investigating the option of using multiple in-order command queues

or one out-of-order command queue to execute the kernels concurrently. What’s more,

the “__restrict” keyword is also utilized for compiler optimization. The optimization

methods of “__restrict” keyword and concurrent execution of kernels are mentioned in

Section 2.6.1 and Section 2.6.2 respectively.

Figure 5.7: Host Code of Conducting Concurrent Execution of Kernels by Using One Out-of-Order

Command Queue

Figure 5.8: Host Code of Executing Kernels Concurrently by Using One Out-of-Order Command Queue

Figure 5.7 and Figure 5.8 shows how this can be implemented using one out-of-order

command queue in host code. Kernel L100 is broken down into two separate kernels

67

called L100_cu and L100_h for better parallelization. Because the computation of array

cu and h can be conducted simultaneously. The same method has been applied to kernel

L200 as well, where it is broken down into kernel L200_u and L200_p.

Figure 5.9: Host Code of Conducting Concurrent Execution of Kernels by Using Two In-Order Command

Queue

Figure 5.10: Host Code of Executing Kernels Concurrently by Using Two In-Order Command Queue

Figure 5.9 and Figure 5.10 demonstrates how concurrent execution of kernels can be

achieved by using two in-order command queues. In this further optimized version,

kernel L100_pc is broken down into two separate kernels called L100_pc_cu and

L100_pc_h for better parallelization. Because the periodic continuation operation of

array cu and h can be conducted simultaneously. The same method has been applied to

kernel L200_pc as well, where it is broken down into kernel L200_pc_u and L200_pc_p.

68

All array-cu-related computations are put into one command queue, while all array- h-

related computations are put into another command queue. The situation of the

computation of array u and array p is similar.

Figure 5.11: Kernel Code of Kernel L100_cu Being Optimized by Using Keyword “__restrict”

Figure 5.11 shows how to use the “__restrict” keyword in kernel L100_cu. The situation

in all other kernels is similar. This experiment is based on the experiment conducted in

Section 5.3.

5.5. Iteration 9: Dataflow and Function Inline

This experiment is investigating the option of pipelining the function calls in each

kernel by using directive “xcl_dataflow” and achieving function inline by using

directive “always_inline” as mentioned in Section 2.6.1. In order to apply this

optimization to the kernel code, some modifications need to be made by packing the

async_work_group_copy() function and computation code into function calls. It is

worth noting that all the periodic continuation kernels cannot be optimized using

“xcl_dataflow” directive.

Figure 5.12: Kernel Code of Packing async_work_group_copy() into “write_u_p” Function

Figure 5.13: Kernel Code of Packing async_work_group_copy() into “read_u_p” Function

Figure 5.14: Kernel Code of Packing Array Update Code into “Calculation” Function

69

Figure 5.15: Kernel Code of Using Function Calls in Kernel L100_cu, as well as Function Calls Pipelining

and Function Inline

Figure 5.12 demonstrates how the async_work_group_copy() functions are packed into

“write_u_p” function. The situations in other “write” functions are similar. Figure 5.13

demonstrates how the async_work_group_copy() functions are packed into “read_u_p”

function. The situations in other “read” functions are similar. Figure 5.14 shows how

the array update codes are packed into “calculation” functions. Figure 5.15 explains

how to replace the original code with function calls in kernel L100_cu, as well as the

usage of directive “xcl_dataflow” and “always_inline”. Situation in all other array

update kernels are similar. This experiment is based on the experiment conducted in

Section 5.4.

5.6. Iteration 10: Merging Array Update Kernel with

Periodic Continuation Kernel

This experiment is investigating the option of merging the array update kernel with the

periodic continuation kernel, as mentioned in Section 2.6.1. In the previous design,

array update operation and periodic continuation operation are conducted in two

different kernels, which means data will be transferred between global memory and

local memory four times, as demonstrated in Figure 4.8, Figure 4.9 and Figure 5.10.

This is unnecessary because periodic continuation can be conducted right after array

update is complete, since all the whole array is cached in BRAM. By merging array

update kernel with periodic continuation kernel, data only needs to be transfer twice

between global memory and local memory.

70

Figure 5.16: Host code that shows Periodic Continuation Kernels are merged with Array Update Kernels

Figure 5.17: Kernel Code of Periodic Continuation Operation merged into Kernel L100_cu

Figure 5.16 demonstrates the main computation loop in the host code of iteration 10,

where periodic continuation kernels no longer exist. While Figure 5.17 shows how this

is implemented in kernel L100_cu. Situations in other kernels are similar. This

experiment is based on the experiment conducted in Section 5.4, because periodic

continuation operation cannot be optimized using function calls pipelining and function

inline.

71

5.7. Summary

The experiments described in this chapter are summarized in the following table,

Optimization Array

Partitioning

Data

Vectorization

Overlapping

Data Transfer

and

Computation

Restrict

Keyword

and Kernel

Concurrent

Execution

Dataflow

and

Function

inline

Kernel

Merging

Iteration 5 √ X X X X X

Iteration 6 √ √ X X X X

Iteration 7 √ √ √ X X X

Iteration 8 √ √ √ √ X X

Iteration 9 √ √ √ √ √ X

Iteration 10 √ √ √ √ X √

Table 5.1: Summary of the Experiments Described in Chapter 5

72

Chapter 6 Experimental Data Analysis

This project are evaluated using an ARM CPU-FPGA heterogeneous system on a single

Zynq® UltraScale+™ MPSoC ZCU102 board. Evaluation conducted with multiple

Zynq® UltraScale+™ MPSoC ZCU102 boards is left for future work.

Both speedup, hardware resource utilization and latency information are considered

during the evaluation. The speedup can be obtained by using the following formula,

Speedup = TBaseline / TOptimized

where TBaseline is the execution time of the baseline code, while TOptimized is the execution

time of the optimized code.

The information of hardware resources utilization as well as latency can be obtained

from the system estimate report and HLS report. Interpretation of the information is

discussed in Section 6.1. Power consumption of the application is discussed in Section

6.8.

The results are summarised in diagrams and tables indicating speedup, latency and

hardware resource utilization.

In terms of performance, the achieved performance of the simplified shallow water

weather & climate forecasting application implemented in this project is compared

against the performance of an existing, sequential C version of simplified shallow water

application executing on modern CPU. The performance of the simplified shallow

water application runs on FPGA is also compared with the performance of the

application that runs on modern GPGPU. (Pappas, 2012) also provides some

performance data of the original shallow water application executing on CPUs and

GPGPUs.

What’s more, since several increasingly sophisticated, simplified shallow water

applications are implemented, the speedup, latency and hardware resource utilization

are compared incrementally against each implementation.

73

All the experiments are executed three times, the execution time is the average of the

three runs. The standard deviation is also calculated. If the results are not consistent,

meaning that the standard deviation is not small enough, the experiment will be run two

more times. The result of the first run is always be forfeited to avoid any start-up

overhead. The execution time of the main computation loop as well as the whole

application are logged, the execution time of each kernel, are logged as well if it is

applicable and necessary. The hardware resource utilization, latency information as

well as the loop information, which can be obtained from the system estimate report

and HLS report, are also recorded.

6.1. Latency and Loop Information Interpretation

This section explains how to interpret the latency information and the loop information

provided in the system estimate report and HLS report. The latency and loop

information of kernel L100 of the baseline code serves as an example here.

Kernel Start Interval Best case Average case Worst case

L100 17190 17189 17189 17189

Table 6.1: Latency Information of Kernel L100 of the Baseline Code

Kernel Loop Min

latency

Max

latency

Iteration

latency

Achieved

II

Target

II

Trip

count

Pipelined

L100 calc** 17187 17187 292 4 1 4225 yes

**: calc stands for the update of array cu and array h.

Table 6.2: Loop Information of Kernel L100 of the Baseline Code

Table 6.1 and Table 6.2 demonstrate the latency and loop information of kernel L100

of the baseline code. The terms used in Table 6.1 are defined in Section 2.4. In Table

6.1, the start interval is very close to the best, average and worst case of latency, which

means the functions in kernel L100 are not overlapped by default. Function calls

overlapping is discussed in the definition of dataflow directive in Section 2.6.1. The

minimum and maximum latency in Table 6.2 is very close to the best, average and worst

case latency in Table 6.1, although they are not the same. Here pipelined indicates the

inner loop is pipelined

It should be noted that, in a pipelined loop,

Latencytotal ≈ [Achieved II * (Trip count – 1)] + Iteration latency

74

This is because the achieved II represent the number of clock cycles each iteration

(except the first one) needed to produce the result in a pipelined loop. However, for the

result of the first iteration it will always be the number of iteration latency. This equation

can be verified by using the data in Table 6.2. The right side of the equation equals,

[4 * (4225 – 1)] + 292 = 17188

which is very close to total latency 17187.

6.2. The Scalability Model

A simple scalability model is presented here which aims to discover the relationship

between the hardware resource utilization and speedup obtained for each

implementation, versus the baseline. This model is useful when it comes to the situation

that one optimization method needs to be selected from multiple optimization methods

by a developer.

The basic idea behind this model is an IP block is generated based on the code which

consumes a certain amount of hardware resource. The total amount of hardware

resource on a single FPGA is limited, so the number of IP blocks which can be generated

and included can be calculated. Assuming all the generated IP blocks can run in parallel,

after the execution time of each IP block on a given problem size is obtained, the

throughput, which is defined below, can then be acquired. Take the baseline code as an

example:

Kernel FF LUT DSP BRAM_18K

L100 3692 4003 16 6

L200 3682 5905 16 2

L100_pc 3440 4194 0 2

L200_pc 3440 4194 0 2

Total 14254 18296 32 12

Table 6.3: Hardware Resource Utilization of the Baseline Code

Table 6.3 demonstrates the amount of hardware resource needed for each kernel. From

Table 6.3 it can be deduced that a copy of IP block that consists of a total number of

14254 FFs, 18296 LUTs, 32 DSPs and 12 BRAM_18Ks is generated. The FPGA used

in this project has a total number of 548160 FFs, 274080 LUTs, 2520 DSPs and 1824

BRAM_18Ks. Hence, at most 14 copies of such IP block can be generated. Since the

75

execution time of the baseline code is around 106 seconds with a problem size of 65 *

65 elements, which implies a throughput of approximately 40 elements per second.

With 14 copies of IP blocks and perfect scalability, a throughput of (65 * 65 * 14) / 106

which is around 558 elements per second can be achieved.

In conclusion, the scalability model can be summarized as follow,

𝑁ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = min (⌊
𝐹𝐹𝑡𝑜𝑡𝑎𝑙

𝐹𝐹𝑠𝑖𝑛𝑔𝑙𝑒
⌋ , ⌊

𝐿𝑈𝑇𝑡𝑜𝑡𝑎𝑙

𝐿𝑈𝑇𝑠𝑖𝑛𝑔𝑙𝑒
⌋ , ⌊

𝐷𝑆𝑃𝑡𝑜𝑡𝑎𝑙

𝐷𝑆𝑃𝑠𝑖𝑛𝑔𝑙𝑒
⌋ , ⌊

𝐵𝑅𝐴𝑀𝑡𝑜𝑡𝑎𝑙

𝐵𝑅𝐴𝑀𝑠𝑖𝑛𝑔𝑙𝑒
⌋)

Throughput = (Problem size * Nhardware) / T

where Nhardware represent the number of IP block being generated. FFtotal, LUTtotal,

DSPtotal and BRAMtotal is the total number of FF, LUT, DSP and BRAM on a single

FPGA respectively. FFsingle, LUTsingle, DSPsingle and BRAMsingle is the number of FF,

LUT, DSP and BRAM a generated IP block consists respectively. T represents the

execution time of main computation loop within one generated IP block.

6.3. Why Emulator is unreliable

This section explains in detail, with the help of experimental data, why the emulator is

unreliable in terms of execution time measurement.

Diagram 6.1: Execution Time of Different Section of the Baseline Code between Emulator and FPGA

0.001

0.01

0.1

1

10

L100 L200 L100_pc L200_pc Main Loop Whole

Application

E
x
ec

u
ti

o
n
 T

im
e

L
o

g
ar

it
h
m

ic
 S

ca
le

Sections

Execution Time between Emulator and FPGA on

Baselline

Emulator FPGA

76

Diagram 6.2: The Execution Time of each Kernel of the Baseline Code on Emulator

Diagram 6.3: The Execution Time of each Kernel of the Baseline Code on FPGA

Diagram 6.1 demonstrates the execution time of each kernel, as well as the main loop

and the whole application, when executing the baseline code on both emulator and

FPGA. It is obvious that the difference between the execution time measured on FPGA

and the one measured on emulator is significant, in every kernel as well the time of the

main loop and the whole application. Hence, the execution time measured on emulator

is not accurate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline

P
er

ce
n
ta

g
e

o
f

T
im

e

The Execution time of Each Kernel of Baseline on

Emulator

L100 L200 L100_pc L200_pc

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Iteration 3

P
er

ce
n
ta

g
e

o
f

T
im

e

The Execution time of Each Kernel of Baseline on

FPGA

L100 L200 L100_pc L200_pc

77

Diagram 6.2 and Diagram 6.3 provide some more evidence regarding why the

execution time measured on emulator is not accurate. Diagram 6.2 describes the

execution time of each kernel when executing the baseline code on emulator. Clearly

kernel L100 is the one that dominates the execution time. Diagram 6.3 demonstrates

the execution time of each kernel when executing the baseline code on FPGA. In this

case, it is obvious that kernel L200 is the one that dominates the execution time. When

cross referencing with the baseline system estimate report, it can be found out that the

average latency for kernel L200 is significantly larger than the other kernels, which

means Diagram 6.3 should be the accurate one instead of Diagram 6.2.

Diagram 6.4: Execution Time of Different Section between the Baseline Code and Iteration 3 on Emulator

0.01

0.1

1

10

L100 L200 L100_pc L200_pc Main Loop Whole

Application

E
x
ec

u
ti

o
n
 T

im
e

L
o

g
ar

it
h
m

ic
 S

ca
le

Kernels

Execution Time between Baseline and Iteration 3 on

Emulator

Baseline Iteration 3

78

Diagram 6.5: Execution Time of Different Section between the Baseline Code and Iteration 3 on FPGA

Diagram 6.4 demonstrates the execution time between baseline and iteration 3 on

emulator, of each kernel as well the main loop and the whole application. Diagram 6.5

presents the execution time between baseline and iteration 3 on FPGA, of each kernel

as well the main loop and the whole application. Iteration 3 is an optimization that

significantly improves the performance, this can be seen from Diagram 6.5, the

execution time of each kernel as well as the main loop and the whole application is

shortened. However, this is not the case in emulator. As Diagram 6.4 shows, there is no

significant change in execution time after applying iteration 3. Even there is a change

in execution time, it only makes the performance becomes worse. Therefore, the

emulator should not be used as an indicator of performance improvement. Because

performance improvement on FPGA doesn’t necessarily means performance

improvement on emulator.

6.4. Data from Experiments with Basic Optimizations

This section analyses the speedup, hardware resource utilization, latency and loop

information from the experiments conducted in Chapter 4.

0.0001

0.001

0.01

0.1

1

L100 L200 L100_pc L200_pc Main Loop Whole

Application

E
x
ec

u
ti

o
n
 T

im
e

L
o

g
ar

it
h
m

ic
 S

ca
le

Kernels

Execution Time between Baseline and Iteration 3 on

FPGA

Baseline Iteration 3

79

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Diagram 6.6: Speedup of each Section of Iteration 1, 2, 3 and 4 Compared to Baseline

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Diagram 6.7: Average Latency of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline

0

20

40

60

80

100

120

L100 L200 L100_pc L200_pc Main Loop Whole

Application

Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of each Section of Iteration 1, 2, 3 and 4

Compared to Baseline

Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 4*

1

10

100

1000

10000

100000

1000000

10000000

L100 L200 L100_pc L200_pc

A
v
er

ag
e

L
at

en
cy

 L
o

g
ar

it
h
m

ic
 S

ca
le

Kernels

Average Latency of each Kernel of Iteration 1, 2, 3 and 4

Compared to Baseline

Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 4*

80

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Diagram 6.8: FF Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Diagram 6.9: LUT Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline

0

5000

10000

15000

20000

25000

30000

35000

40000

L100 L200 L100_pc L200_pc

N
u
m

b
er

 o
f

F
F

Kernels

FF Usage of each Kernel of Iteration 1, 2, 3 and 4

Compared to Baseline

Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 4*

0

5000

10000

15000

20000

25000

30000

35000

l100 l200 l100_pc l200_pc

N
u
m

b
er

 o
f

L
U

T

Kernels

LUT Usage of each Kernel of Iteration 1, 2, 3 and 4

Compared to Baseline

Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 4*

81

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Diagram 6.10: DSP Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Diagram 6.11: BRAM_18K Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline

0

10

20

30

40

50

60

70

L100 L200 L100_pc L200_pc

N
u
m

b
er

 o
f

D
S

P

Kernels

DSP Usage of each Kernel of Iteration 1, 2, 3 and 4

Compared to Baseline

Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 4*

0

10

20

30

40

50

60

70

L100 L200 L100_pc L200_pc

N
u
m

b
er

 o
f

B
R

A
M

_
1

8
K

Kernels

BRAM_18K Usage of each Kernel of Iteration 1, 2, 3

and 4 Compared to Baseline

Baseline Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 4*

82

Kernel Loop Min

latency

Max

latency

Iteration

latency

Achieved

II

Target

II

Trip

count

Pipelined

L200 calc* 2395575 2395575 567 N/A N/A 4225 No

L100_pc pc1* 34905 34905 537 N/A N/A N/A No

pc2** 34905 34905 537 N/A N/A N/A No

L200_pc pc1 34905 34905 537 N/A N/A N/A No

pc2 34905 34905 537 N/A N/A N/A No

calc* means the loop for updating the array.

pc1* means the first periodic continuation loop.

pc2** means the second periodic continuation loop.

Table 6.4: Partial Loop Information of Iteration 2

Kernel Loop Min

latency

Max

latency

Iteration

latency

Achieved

II

Target

II

Trip

count

Pipelined

L100 calc* 8471 8471 24 2 1 4225 Yes

L200 calc 8471 8471 24 2 1 4225 Yes

L100_pc pc1* 65 65 2 1 1 65 Yes

pc2** 65 65 2 1 1 65 Yes

L200_pc pc1 65 65 2 1 1 65 Yes

pc2 65 65 2 1 1 65 Yes

calc* means the loop for updating the array.

pc1* means the first periodic continuation loop.

pc2** means the second periodic continuation loop.

Table 6.5: Partial Loop Information of Iteration 3

Diagram 6.6 shows the speedup of each kernel, as well as the main loop, whole

application and real time of iteration 1, 2, 3 and 4 against the baseline. Diagram 6.7

shows the average latency of each kernel of baseline, iteration 1, 2, 3 and 4. Diagram

6.8 (FF), Diagram 6.9 (LUT), Diagram 6.10 (DSP) and Diagram 6.11 (BRAM_18K)

show the hardware resource utilization of each kernel when executing baseline code as

well as iteration 1, 2, 3 and 4.

By analysing the baseline code, which is mentioned in Section 2.5.2 and Section 4.1,

the non-parallel code overhead as well the memory access overhead is the most

significant overhead initially, because none of the code is parallelized and all the data

are stored in the slow off-chip memory in the baseline. Synchronization overheads also

83

exist because kernels need to be synchronized for measuring the execution time.

However, these synchronizations are inevitable and they shouldn’t be the main

overhead. There shouldn’t be any load imbalance overhead and scheduling overhead

either.

In order to tackle the non-parallel code and memory access overheads, the compiler

option of -O3 optimization is first applied in iteration 1. Surprisingly, the -O3

optimization doesn’t bring any significant change in terms of speedup, in every kernel

as well as the main loop, whole application and real time. According to Diagram 6.7,

there is no significant change in the average latency of each kernel either. The reason

behind this is yet unknown and will be left for future work. Hence, it is decided that the

-O3 compiler optimization option is not be used in future experiments, because it needs

to be made sure that the optimizations are not introduced by the compiler.

As Diagram 6.7 shows, for baseline and iteration 1, the average latency in kernel L200

as well as kernel L100_pc and L200_pc is significantly higher than kernel L100.

Therefore, iteration 2 aims to minimize the non-parallel code overhead in kernel L200,

L100_pc and L200_pc by manually pipelining the loops in these kernels. However,

there is still no significant change in terms of average latency in kernel L200, L100_pc

and L200_pc, and speedup is not obtained for iteration 2 as would be expected,

according to the efficient FPGA programming principle mentioned in Section 3.5. The

reason why the average latency in kernel L200, L100_pc and L200_pc is not changed

significantly is that the loops in these kernels are still not pipelined in the end, despite

the “xcl_pipeline_loop” directive being placed manually and explicitly ahead or within

the appropriate loop in the kernel code. The evidence can be found in Table 6.4. It is

believed that one of the reasons why the compiler is unable to pipeline the loops is

because of the memory access latency overhead. The investigation of the other reasons

will be left for future work. It should be noted that the experiment to completely unroll

the loops in kernel L200, L100_pc and L200_pc is not conducted due to the extremely

long and impractical compilation time required.

Iteration 3 aims to tackle the memory access overhead by caching all the data into the

on-chip BRAM. In order to minimize the data transfer overhead, burst memory transfer

84

is used as well, which enables the read or write of four words in each clock cycle. These

optimization methods are mentioned in Section 2.6.1. In iteration 3, the speedup of

kernel L200 is improved by around 81x compared to baseline, while the speedup of

main loop, whole application and real time is improved by around 21x compared to

baseline, according to Diagram 6.6. The speedup of kernel L100, L100_pc and L200_pc

is improved by around 2.5x as well. The average latency of kernel L200 is improved

by around 106x, while the average latency of kernel L100_pc and L200_pc is improved

by around 6x. However, although the speedup of kernel L100 is improved, its average

latency is worsened by around 32%. Also, it should be noted that after caching data in

on-chip BRAM, all the loops in kernel L100_pc and L200_pc, as well as the inner loop

in kernel L100 and L200 are pipelined automatically by the compiler. This can be seen

in Table 6.5. The reason why they can be pipelined by the compiler might be the

significant minimization of the memory access overhead. Therefore, the local memory

as well as the burst memory transfer will continue to be used in the future experiments.

There is no need to manually pipeline the loops as well.

Iteration 4 is intended to parallelize the loops by unrolling them. This optimization

method is mentioned in Section 2.6.1. In this iteration, the loops are unrolled in two

ways, one using an unrolling factor of 8 (iteration 4*), and another that completely

unrolls the loops (iteration 4). The experiments conducted here are trying to answer the

following question, which is better, loop pipelining or loop unrolling? According to

Diagram 6.6 and Diagram 6.7, the speedup of kernel L200 is improved by around 104x

compared to baseline, while the speedup of main loop, whole application and real time

is improved by around 24x compared to baseline, after unrolling the inner loop

completely. The speedup of kernel L100 is improved by around 3.4x, while the speedup

of kernel L100_pc, L200_pc is improved by around 2.5x. The average latency of kernel

L100 and L200 is improved by around 27.6% as well, after unrolling their inner loop

completely. It seems that loop unrolling is better than loop pipelining based on the

speedup and latency data.

However, when the hardware resource utilization is considered, things are quite

different. According to Diagram 6.8, Diagram 6.9 and Diagram 6.10, complete loop

unrolling consumes a lot more FF, LUT and DSP compared to loop pipelining. Since

85

the hardware resources on each FPGA is limited, this is when the scalability problem

arises. By utilizing the model introduced in Section 6.2, the data in Table 6.4 can be

obtained.

Optimization

Iteration

Speedup of Main

Loop (x)

Throughput

(Number of

Elements per

Second)

Number of IP

Blocks

Iteration 3 21.96232006 8579 10

Iteration 4 24.60873861 2944 3

Iteration 4* 24.31443444 4849 5

Iteration 4* means unrolling the loops in each kernel using a factor of 8.

Table 6.6: Speedup of Main Loop and the Throughput of Iteration 3 and 4

According to Table 6.4, even though iteration 4 has the best speedup, its throughput is

the worst, due to the significant amount of hardware resource it consumes. In fact,

iteration 4* which unrolls the loops using an unroll factor of 8 is a more scalable option.

With its speedup very close to iteration 4, iteration 4* has a better throughput because

it consumes fewer hardware resources. In conclusion, loop pipelining will be used in

the future experiments since it is the most scalable way of parallelizing loops.

Diagram 6.8, Diagram 6.9, Diagram 6.10 and Diagram 6.11 reveal some other

interesting facts. According to Diagram 6.8, there is an increment in the use of FF when

the loops in kernel L100 and L200 are pipelined (iteration 3). However, it is worth

noting that when the loops in kernel L100_pc and L200_pc are pipelined (iteration 3),

the number of FF that is used decreases. What’s more, there is significant increase when

the loops in each kernel are unrolled (iteration 4 and 4*). But there is also a decrease

in the amount of FF that is used in kernel L100_pc and L200_pc when their loops are

unrolled using a factor of 8 (iteration 4*), compared to baseline. Diagram 6.9

demonstrates the fact that the use of LUT is incremented after the loops in each kernel

are pipelined. There is another significant increment (especially in kernel L100 and

L200) when the loops are completely unrolled or unrolled using a factor of 8. It can be

seen from Diagram 6.10, the use of DSP is tripled after the loops are unrolled in each

kernel. It should be noted that kernel L100_pc and L200_pc doesn’t use any DSPs

because no floating-point computation is done in the periodic continuation kernels.

Another interesting fact is that no DSP is used after manually pipelining the loops in

86

kernel L200. This is probably because the floating-point operations are conducted using

LUTs, which is revealed in Diagram 6.9. An in-depth investigation of this will be left

for future work. According to Diagram 6.11, there is a significant increment in the

amount of BRAM_18K that is used in iteration 3 (pipelining), 4 and 4* (unrolling).

This is because data are cached in the BRAM in these iterations. The next section

considers the advanced optimization described in Chapter 5.

6.5. Data from Experiments with Advanced Optimizations

This section analyses the speedup, hardware resource utilization, latency and loop

information from the experiments described in Chapter 5.

6.5.1. Iteration 5, 6 and 7

Diagram 6.12 and Diagram 6.13 demonstrates the speedup and average latency of each

kernel, as well as the speedup of the main loop, whole application and real time of

baseline, iteration 3, 5, 6 and 7. Iteration 3 is included for comparison

Iteration 5* means unrolling the loops in kernel L100_pc and L200_pc using a factor

of 2.

Iteration 7* means using fewer async_work_group_copy()

Diagram 6.12: Speedup of each Section of Iteration 5, 6 and 7 Compared to Baseline and Iteration 3

0

20

40

60

80

100

120

140

160

L100 L200 L100_pc L200_pc Main Loop Whole

Application

Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of each Section of Iteration 5, 6 and 7

Compared to Baseline and Iteration 3

Baseline Iteration 3 Iteration 5 Iteration 5* Iteration 6 Iteration 7 Iteration 7*

87

Iteration 5* means unrolling the loops in kernel L100_pc and L200_pc using a factor

of 2.

Iteration 7* means using fewer async_work_group_copy()

Diagram 6.13: Average Latency of each Kernel of Iteration 5, 6 and 7 Compared to Baseline and Iteration 3

Kernel Loop Min

latency

Max

latency

Iteration

latency

Achieved

II

Target

II

Trip

count

Pipelined

L100_pc pc1* 32 32 2 1 1 1 Yes

pc2** 33 33 2 1 1 1 Yes

L200_pc pc1 32 32 2 1 1 1 Yes

pc2 33 33 2 1 1 1 Yes

pc1* means the first periodic continuation loop.

pc2** means the second periodic continuation loop.

Table 6.7: Partial Loop Information of Iteration 5*

Iteration 5 aims to deal with the warning message of “limited memory port” which

arises during compilation, as mentioned in Section 5.1, by partitioning the array into

multiple physical memories to provide more memory ports, which is mentioned in

Section 2.6.1. According Diagram 6.12, the speedup of L200 is improved by around

116x compared to baseline, in iteration 5. The speedup of main loop, whole application

and real time is improved by around 27x as well. A decrement in average latency of

around 37% can also be observed in kernel L100 and L200 from Diagram 6.13,

compared with iteration 3. While the decrement in average latency of the periodic

continuation kernels is around 27%. Therefore, all the array will continue to be

1

10

100

1000

10000

100000

1000000

10000000

L100 L200 L100_pc L200_pc

A
v
er

ag
e

L
at

en
cy

 L
o

g
ar

it
h
m

ic
 S

ca
le

Kernels

Average Latency of each Kernel of Iteration 5, 6 and 7

Compared to Baseline and Iteration 3

Baseline Iteration 3 Iteration 5 Iteration 5* Iteration 6 Iteration 7 Iteration 7*

88

partitioned in the future experiments.

Iteration 5* unrolls the loops in kernel L100_pc and L200_pc with a factor 2, to

minimize the initial interval, which is mentioned in Section 2.4, to 1. The initial interval

is indeed minimized according to Table 6.7. However, no significant improvement is

observed in terms of speedup in Diagram 6.12 for any kernel or the main loop, whole

application and real time. There is also no significant improvement in average latency

in any kernel according to Diagram 6.13.

Iteration 6 investigates the option of utilizing the memory bandwidth in a better way

by data vectorization, which is mentioned in Section 2.6.1. For simplicity, data

vectorization is achieved here by using directive “vec_type_hint” to vectorize the data

automatically. However, no significant improvement is observed in terms of speedup in

any kernel and main loop, whole application and real time. There is no significant

improvement in average latency in any kernel either. Data in Diagram 6.12 and Diagram

6.13 suggest that the automatic data vectorization doesn’t appear to work in the

simplified shallow water application. The reason behind this might be the complexity

of the code which hinders the data from being vectorized automatically. Despite the

failure in observing any significant improvement of speedup or average latency, the

automatic data vectorization will still be kept and used in the future experiments.

Iteration 7 applies the option of overlapping the data transfer between host and device

with kernel computation, which is mentioned in Section 2.6.2, to improve performance.

Again, no significant improvement is observed in terms of speedup in any kernel or

main loop, whole application and real time. The reason behind this might be, that the

speedup brought by the overlapping is counteracted by the newly-introduced

synchronization overhead, as well as the unaligned memory allocator, which might lead

to more memory copy. The enqueueMigrateMemObjects() function which achieves the

overlapping needs to be synchronized each time it finishes execution in order to obtain

the correct result, which is mentioned in Section 5.3. However, function

enqueueWriteBuffer() and enqueueReadBuffer(), the ones that are replaced by

enqueueMigrateMemObjects() don’t need to be synchronized. It should be noted that

the hardware resource utilization data cannot reflects whether the optimization of

89

overlapping of data transfer between host and device with kernel computation is

working or not. This is because this optimization is a host optimization which means it

won’t change the generated system estimate report. Despite the failure in observing any

significant improvement of speedup, the overlapping of data transfer and kernel

computation will still be kept and used in the future experiments.

Iteration 7* optimizes the code by using fewer async_work_group_copy() calls as

mentioned in Section 2.6.1. It should be noted that async_work_group_copy() function

is treated as a loop by the compiler. Decreasing the number of

async_work_group_copy() calls that are used can decrease the average latency and

improve the performance. For example, in kernel L100, only array u and array p need

to be copied in, while only array cu and array h needs to be copied out. This is

demonstrated in Figure 5.6. Therefore, kernel L100 and L200 can use four fewer

async_work_group_copy() calls respectively. This leads to a speedup, which is more

significant for L200, according to Diagram 6.12.

90

6.5.2. Iteration 8

Iteration 7* means using fewer async_work_group_copy()

Iteration 8* means using one out-of-order command queue to achieve the concurrent

execution of kernels.

Iteration 8** means breaking down the periodic continuation kernels so they can be

better parallelized

Diagram 6.14: Speedup of each Section of Iteration 8 Compared to Baseline and Iteration 7*

0

5

10

15

20

25

30

35

Main Loop Whole Application Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of each Section of Iteration 8 Compared to

Baseline and Iteration 7*

Baseline Iteration 7* Iteration 8 Iteration 8* Iteration 8**

91

Kernel Latency of

Iteration 7*

Kernel Latency of

Iteration 8

Latency of

Iteration 8*

Kernel Latency of

Iteration 8**

L100 9145 L100_cu 7922 7923 L100_cu 7922

L100_h 7912 7913 L100_h 7912

L200 9145 L200_p 7922 7923 L200_p 7922

L200_u 7912 7913 L200_u 7912

L100_pc 8237 L100_pc 8237 8238 L100_pc_cu 2520

L100_pc_h 5919

L200_pc 8237 L200_pc 8237 8238 L200_pc_p 5919

L200_pc_u 2520

Iteration 7* means using fewer async_work_group_copy()

Iteration 8* means using one out-of-order command queue to achieve the concurrent

execution of kernels.

Iteration 8** means breaking down the periodic continuation kernels so they can be

better parallelized

Table 6.8: Average Latency Reported for each Kernel in Iteration 7 and 8.

Iteration 8 aims to increase parallelism by executing the kernels concurrently, which is

mentioned in Section 2.6.2. Diagram 6.14 demonstrates the speedup of the main loop,

whole application and real time of baseline, iteration 7* and iteration 8. The latency of

each kernel of iteration 7* and iteration 8 is presented in Table 6.5. It should be noted

that in order to allow the concurrent execution of kernels, the execution time of kernel

L100_cu, L100_h, L200_p, L200_u, L100_pc_cu, L100_pc_h, L200_pc_p and

L200_pc_u are not measured explicitly, because the kernels need to be synchronized to

obtain the correct execution time, while synchronization between kernels means kernels

will be executed in a sequential way. Hence, in Diagram 6.14 only the speedups of main

loop, whole application and real time are showed. Figure 5.10 provides a detailed

description of this.

According to Diagram 6.14, the speedup of iteration 8 in terms of main loop, whole

application and real time is worsened by around 2.8% compared to the one in iteration

7*. This is because although the non-parallel code overhead is minimized, a scheduling

overhead is introduced for executing kernels in two in-order command queues. It should

also be noted that the speedup of iteration 8* in terms of main loop, whole application

92

and real time is worsened by around 1.8% compared to the one in iteration 8. This

suggest that it might be better to achieve the concurrent execution of kernels using

multiple in-order command queues instead of one out-of-order command queue.

Iteration 8** achieved the best speedup by further breaking down the periodic

continuation kernels and executing them in parallel. Figure 5.9 provides a description

of this. Kernel L100_pc is divided into kernel L100_pc_cu and L100_pc_h respectively,

the periodic continuation of array cu is conducted in kernel L100_pc_cu while the

periodic continuation of array h is conducted in kernel L100_pc_h. The situation of

kernel L200_pc is similar. Therefore, multiple in-order command queue will be used to

achieve the concurrent execution of kernel in the future experiment.

As can be seen from Table 6.5, the latency reported during compilation of kernel

L100_cu and L100_h is 7922 and 7912 respectively, since they are executed in parallel,

the latency of kernel L100 is decreased from 9145 to 7922, according to Table 6.8. The

situation of kernel L200 is similar. Furthermore, the latency of kernel L100_pc_cu and

L100_pc_h is 2520 and 5919 respectively. Since they are now executed in parallel, the

latency of kernel L100_pc is decreased from 8237 to 5919, according to Table 6.8. The

situation of kernel L200_pc is similar. It is worth noting that, although the non-parallel

code overhead in the periodic continuation kernels is minimized, a load imbalance

overhead is then introduced. For example, as can be seen in Table 6.5, the latency of

kernel L100_pc_cu and L100_pc_h is not the same. When they are executed in parallel,

kernel L100_pc_cu needs to wait for kernel L100_pc_h to finish. The situation of kernel

L200_pc_p and kernel L200_pc_u is similar.

93

6.5.3. Iteration 9

Iteration 8** means breaking down the periodic continuation kernels so they can be

better parallelized

Iteration 9* means optimizing the code using only function pipelining.

Iteration 9** means optimizing the code using both function pipelining and function

inline.

Diagram 6.15: Speedup of each Section of Iteration 9 Compared to Baseline and Iteration 8**

0

5

10

15

20

25

30

35

Main Loop Whole Application Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of each Section of Iteration 9 Compared to

Baseline and Iteration 8**

Baseline Iteration 8** Iteration 9 Iteration 9* Iteration 9**

94

 Start

Interval

Latency of

Iteration 9

 Start

Interval

Latency of

Iteration 9*

Latency of

Iteration 9**

L100_cu 7924 7923 L100_cu 4249 5473 5473

L100_cu_calc 4248 4248 L100_cu

_entry

0 0 0

 L100_cu

_read

2451 2451 2451

L100_cu

_calc

4248 4248 4248

L100_cu

_write

1224 1224 1224

Iteration 9* means optimizing the code using only function pipelining.

Iteration 9** means optimizing the code using both function pipelining and function

inline.

Table 6.9: Average Latency and Start Interval of Kernel L100_cu in Iteration 9

Optimization

Iteration

Kernel Start Interval Average Latency

Baseline L100 17190 17189

Iteration 1 L100 17190 17189

Iteration 2 L100 17190 17189

Iteration 3 L100 22623 22622

Iteration 4* L100 16374 16373

Iteration 5** L100 14042 14041

Iteration 6 L100 14042 14041

Iteration 7*** L100 9146 9145

Iteration 8**** L100_cu 7923 7922

Iteration 9***** L100_cu 4249 5473

*: Completely unroll the loops in each kernel.

**: Unroll the loops in kernel L100_pc and L200_pc using a factor of 2.

***: Using fewer async_work_group_copy() calls.

****: Using two in-order command queues along with eight kernels.

*****: Using both function pipelining and function inline.

Table 6.10: Start Interval and Average Latency of Kernel L100 and L100_cu of Baseline and Iteration 1, 2, 3,

4, 5, 6, 7, 8 and 9

95

Iteration 9 investigates the option of function inline and pipelining the function calls

within a kernel, which is mentioned in Section 2.6.1. Diagram 6.15 demonstrate the

speedup of the main loop, whole application and real time of baseline, iteration 8**

and iteration 9. Table 6.6 present the start interval and latency information of kernel

L100_cu in iteration 9, 9* and 9** respectively, it helps explain how function

pipelining works. It should be noted that iteration 9, which is not optimized using either

function pipelining or function inline, serves as a baseline here, it simply replaces all

the original code with function calls. Figure 5.15 provides a description of how this is

implemented in kernel L100_cu. Table 6.10 describes the start interval and average

latency of some kernels of baseline and iteration 1, 2, 3, 4, 5, 6, 7, 8 and 9. For

simplicity, only the start interval and average latency of kernel L100 and L100_cu is

demonstrated. The situation of other kernels is similar.

It should be noted that periodic continuation kernels cannot be optimized using function

pipelining and function inline due to some compilation errors. What’s more, the kernels

cannot be optimized using only function inline because it triggers an “LLVM-link failed”

compilation error. These issues are left for future investigation.

According to Diagram 6.15, there is no significant change in speedup after applying

function pipelining or both function pipelining and function inline. This suggest either

function pipelining or function inline is not working. However, some interesting facts

can be obtained from Table 6.6. After replacing all the original code with function calls,

the latency of kernel L100_cu is 7923, which is very close to the latency of kernel

L100_cu in iteration 8** (7922). The latency of the computation function

(L100_cu_calc) of array cu is 4248. It is worth noting that the start interval is the same

as the average latency now. After the function pipelining is applied, not only the latency

of the whole kernel and the computation function (L100_cu_calc), but also the latency

of the memory read function (L100_cu_read), memory write function (L100_cu_write)

and the entry point (L100_cu_entry) is available. Furthermore, according to Table 6.10,

for the first time among all the conducted experiments, it can be observed that the start

interval of kernel L100_cu is significantly different from its average latency.

Considering the fact that start interval is the minimum number of clock cycles that has

to pass between the invocations of the compute unit for a given kernel, and average

96

latency is the number of clock cycles needed for the given kernel to finish execution, it

can be concluded that the functions within kernel L100_cu are pipelined. Some more

evidences, including the average latency of kernel L100_cu in iteration 9*, which is

smaller than the one in iteration 9, suggests that the functions in kernel L100_cu are

now not executed in a strict one-after-another way. What’s more, the start interval still

equals the average latency in the memory read function, array update function and

memory read function, suggesting that it is the functions themselves rather than what

is inside the function that are pipelined. However, there is still no change in latency

after applying function inline, implying that it is not working. The situation in kernel

L100_h, L200_p and L200_u is similar

It is interesting to observe that the speedup achieved suggests the function pipelining is

not working while the latency information tells a completely opposite story. The reason

behind this might be that “the absolute counts of cycles and latency are based on

estimates identified during synthesis, especially with advanced transformations, such

as pipelining and dataflow; these numbers might not accurately reflect the final results”

according to (“SDAccel Environment Profiling and Optimization Guide,” 2019).

However, despite the failure in observing any significant improvement of speedup,

function pipelining and function inline will still be kept and used in the future

experiments.

97

6.5.4. Iteration 10

Iteration 8** means breaking down the periodic continuation kernels so they can be

better parallelized

Diagram 6.16: Speedup of each Section of Iteration 10 Compared to Baseline and Iteration 8**

Iteration 10 investigates the option of merging array update kernel with periodic

continuation kernel, which is mentioned in Section 2.6.1. Figure 5.17 provides a

description regarding how this is implemented in kernel L100_cu. According to

Diagram 6.16, the speedups of main loop, whole application and real time are improved

by around 17%, due to the elimination of unnecessary data transfer. However, it should

be noted that load imbalance overhead still exists due to the difference in latency of the

periodic continuation operation of array cu and array h, as well as array u and array p,

as mentioned in Table 6.8.

6.6. Comparison between Estimated Speedup and

Achieved Speedup

In this section, the estimated speedup is obtained and compared against the achieved

speedup. In order to acquire the estimated speedup, the estimated execution time needs

to be calculated first, by utilizing the method introduced in Section 3.1.

0

5

10

15

20

25

30

35

40

45

Main Loop Whole Application Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of each Section of Iteration 10 Compared to

Baseline and Iteration 8**

Baseline Iteration 8** Iteration 10

98

Diagram 6.17: Estimated Speedup and Achieved Speedup of each Optimization Iteration

The speedups of the main computation loop serve as the achieved speedups here, in

order to make it comparable. Because only the latency of kernels can be obtained from

the system estimate report, which means only the latency of the computation, but not

the whole application, is reflected. According to Diagram 6.17, gaps between estimated

speedup and achieved speedup start to appear since iteration 3. The gaps suggest that

there is still a significant amount of overhead needs to be minimized. The speedup gap

becomes increasingly large as more and more optimizations are applied to the

application, which implies that the use of optimization will introduce some other

overheads. For example, execute kernels concurrently minimizes the non-parallel code

overhead while introducing scheduling overhead and load imbalance overhead at the

same time, as mentioned in Section 6.5.2. However, it should be noted that the latency

information obtained from the system estimate report doesn’t always accurately reflect

what is really happening when the application is executed on FPGA, as mentioned in

Section 6.5.3

6.7. Data with Bigger Problem Size

In this section, a larger problem size of 127 * 127 is applied to the simplified shallow

water application to evaluate its performance. For simplicity, the larger problem size is

only evaluated for baseline and iteration 10, since iteration 10 has the best speedup.

0

20

40

60

80

100

120

S
p

ee
d

u
p

 (
x
)

Optimization Iteration

Estimated Speedup and Achieved Speedup of each

Optimization Iteration

Estimated Speedup Achieved Speedup

99

What’s more, only the execution time of the main loop, whole application and real time

is measured.

Diagram 6.18: Speedup of Each Section of Iteration 10 Compared to Baseline on Problem Size 127 * 127

According to Diagram 6.18, a speedup of around 45x is achieved. By comparing

Diagram 6.18 with Diagram 6.16, problem size 127 * 127 yields a better speedup. This

phenomenon can probably be explained by Gustafson’s Law, as more FFs, LUTs and

BRAMs are used under problem size of 127 * 127. However, it should also be noted

that it is a typical phenomenon that increasing problem size usually leads to better

speedup. An in-depth analysis will be left for future work.

6.8. Performance Comparison among CPU, GPGPU and

FPGA

In this section, the performance of iteration 10, which is the simplified shallow water

application that yields the best speedup so far, is compared against the performance of

the simplified shallow water application that is implemented on CPU and GPGPU. The

simplified shallow water application implemented on CPU is a sequential program

developed using C, while the simplified shallow water application implemented on

GPGPU is a program that is not highly optimized and developed using OpenCL. An

Intel i7-6700 CPU and a Nvidia GT730 GPGPU is used in this section, their

specifications are listed in Table 6.11. The performance of the simplified shallow water

0

5

10

15

20

25

30

35

40

45

50

Main Loop Whole Application Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of Each Section of Iteration 10 Compared to

Baseline on Problem Size of 127 * 127

Baseline Iteration 10

100

application running on CPU is utilized as the baseline. For simplicity, only the

execution time of main loop, whole application and real time are measured. Both

problem size 65 * 65 and 127 * 127 are evaluated.

Specifications Intel i7-6700 CPU Nvidia GT730 GPGPU

Number of Cores 4 384

Base Clock Frequency 3.40 GHz 902 MHz

CPU Cache / GPGPU

VRAM (MB)

8 2048

Memory Bandwidth

(GB/s)

34.1 14.4

Thermal Design Power

(W)

65 23

Table 6.11: Specifications of Intel i7-6700 CPU and Nvidia GT730 GPGPU

Diagram 6.19: Speedup of Each Section on CPU, GPGPU and FPGA under Problem Size 65 * 65

0

0.5

1

1.5

2

2.5

Main Loop Whole Application Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of Each Section on CPU, GPGPU and FPGA

under Problem Size of 65 * 65

CPU GPGPU FPGA

101

Diagram 6.20: Speedup of Each Section on CPU, GPGPU and FPGA under Problem Size 127 * 127

According to Diagram 6.19 and Diagram 6.20, the GPGPU yields the best speedup in

terms of main loop, whole application and real time, under both problem size, while

FPGA yields the worst. It should be noted that i7-6700 is a high-end Intel CPU while

GT730 is an entry-level GPGPU, the Zynq® UltraScale+™ MPSoC ZCU102 board is

a mid-range FPGA. What’s more, the simplified shallow water application running on

CPU is a sequential program, and the one running on GPGPU is not highly optimized

either. However, the simplified shallow water application running on FPGA is a highly

optimized one. In conclusion, if power consumption is not considered, GPGPU is still

the best candidate for high-performance computing. However, it should be noted that if

power consumption is considered, FPGA is still the most power efficient accelerator

according to the work of (Targett et al., 2015), (Muslim et al., 2017), (Roozmeh and

Lavagno, 2018), (Zohouri et al., 2016), (Nagasu et al., 2017), (Gan et al., 2013) and

(Zhang et al., 2015).

The power consumption of FPGA is not obtained in this project due to the limited

amount of time and the complexity of obtaining such data. Unlike CPU and GPGPU,

the power of FPGA heavily depends on the hardware resource utilization, physical

interface and design activity, for example clock frequency. Therefore, in order to

acquire the power of FPGA, certain power monitoring software and hardware needs to

be used in combination. The acquisition of the power consumption of FPGA will be left

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Main Loop Whole Application Real Time

S
p

ee
d

u
p

 (
x
)

Sections

Speedup of Each Section on CPU, GPGPU and FPGA

under Problem Size 127 * 127

CPU GPGPU FPGA

102

for future work.

6.9. Summary

An explanation regarding how to interpret the latency and loop information provided

in the system estimate report and HLS report has been presented in this chapter. A

simple scalability model for exploring the relationship between the speedup and

hardware resource utilization is developed. The reason why the emulator is unreliable

is also explained in detail.

The experimental data analysis of this project is summarized in the following table. For

simplicity, only the speedup of the main loop is presented here, along with throughput

which is defined in Section 6.2.

Optimization

Iteration

Speedup of

Main Loop

(x)

Throughput (Number of

Elements per Second)

Number of IP

Blocks

Baseline 1 558 14

Iteration 1 0.99989303 558 14

Iteration 2 N/A N/A N/A

Iteration 3 21.96232006 8759 10

Iteration 4* 24.60873861 2944 3

Iteration 5** 27.39488569 9833 9

Iteration 6 27.36177188 9821 9

Iteration 7*** 30.22993021 10851 9

Iteration 8**** 33.22599969 7951 6

Iteration 9***** 33.21620692 6624 5

Iteration 10 38.8561501 13947 9

*: Completely unroll the loops in each kernel.

**: Unroll the loops in kernel L100_pc and L200_pc using a factor of 2.

***: Using fewer async_work_group_copy() calls.

****: Using two in-order command queues along with eight kernels.

*****: Using both function pipelining and function inline.

Table 6.12: The Speedup of Main Loop and the Throughput of Baseline and Iteration 1, 2, 3, 4, 5, 6, 7, 8, 9

and 10

103

According to Table 6.7, iteration 10 yields the best speedup as well as throughput.

In conclusion, the non-parallel code overhead and memory access overhead are

minimized by using loop pipelining, local memory, burst memory transfer, array

partitioning, concurrent execution of kernels and kernel merging. However, other

overheads also arise, including load imbalance overhead and scheduling overhead.

These two overheads are all brought by the concurrent execution of kernels. Table 6.8

explains the load imbalance overhead seen between kernel L100_pc_cu and L100_pc_h,

while Diagram 6.14 demonstrates the scheduling overhead of using two in-order

command queues to execute kernels concurrently. The minimization of these overheads

is left for future work.

The speedup of the simplified shallow water application is also obtained for a larger

problem size of 127 * 127. The performance of iteration 10 is compared against the

performance of the simplified shallow water application executing on a modern CPU

and GPGPU.

104

Chapter 7 Conclusion and Future work

This project implements and optimizes a simplified shallow water weather & climate

forecasting application on an ARM CPU-FPGA heterogeneous system using OpenCL.

A maximum speedup of the main loop of around 45x is achieved under problem size

127*127, compared with baseline. Background knowledge including the background

of FPGA, OpenCL, stencil computation and a series of optimization methods are

introduced. A detailed literature review is also conducted. The research methodologies

necessary for this project, including performance estimation, overhead analysis,

overhead minimization, execution time acquisition, the principle for applying

optimization methods as well as a method for efficient FPGA programming are

demonstrated. All the experiments conducted in this project, are explained in detail with

the help of code snippets, based on several optimization iterations. The reason why the

emulator is unreliable is discussed; a scalability model which aims to investigate the

relationship between speedup and hardware resource utilization is introduced and

demonstrated. A method of interpreting the latency and loop information obtained from

the system estimate report and HLS report is explained. The experimental data are

analysed using diagrams and tables that represent the speedup, average latency and

hardware resource utilization. The overheads are also analysed and the reasons that lead

to these overheads, as well as the reason why the overheads are minimized are explained.

The performance of executing the highly optimized, simplified shallow water

application on FPGA is compared with the performance of executing a not highly

optimized simplified shallow water application on CPU and GPGPU.

7.1. List of Contributions

A series of contributions of this project is listed as follows:

⚫ Implement and optimize a simplified shallow water application using OpenCL on

an ARM CPU-FPGA heterogenous system, achieving a maximum speedup of the

main loop of around 45x under problem size 127*127, compared with baseline.

⚫ A method of efficient FPGA programming is discovered.

⚫ The discovery of how to measure the execution time of kernel in a simple but

correct and accurate way. The reason behind this is also understood.

105

⚫ The discovery of the unreliability of SDx emulator, in terms of the measurement of

execution time and the indication of performance improvement.

⚫ The understanding of how to interpret the latency and loop information provided

by the system estimate report and HLS report.

⚫ The discovery of a simple scalability model which investigates the relationship

between hardware resource utilization and speedup.

7.2. Future Work

Some possible future works are listed as follows:

Optimizing the simplified shallow water application using some other kernel

optimization methods, which includes,

⚫ Partitioning arrays in a block way.

⚫ Manually vectorize the data using variable types like float2, float4, float8 and

float16.

⚫ Using memory object pipes for inter-kernel data transfer and data streaming.

⚫ Using pragma “SDS data_zero_copy” for efficient data transfer between host

memory and device memory.

Optimizing the simplified shallow water host code using another OpenCL API

execution model named clEnqueueTask.

Optimizing the simplified shallow water application using SDx-related optimizations,

which includes:

⚫ The number of compute units of each kernel.

⚫ The data motion network clock frequency.

⚫ The port data width of each kernel.

⚫ Using dedicated memory ports for each global array.

Other future work includes the optimizations on the computable solution level, which

includes:

⚫ Using 2D-NDRange kernel.

⚫ Initializing array u and array p on FPGA.

106

⚫ Stop conducting periodic continuation since they are prepared for systems with

cache.

⚫ Overlapping the execution of kernels.

⚫ Optimizing the simplified shallow water application on multiple FPGA.

107

Bibliography

Application programming interface. (2019). [Online]. Available at:

https://en.wikipedia.org/wiki/Application_programming_interface (Accessed 1

Sep. 2019).

Cong, J., Fang, Z., Hao, Y., Wei, P., Yu, C.H., Zhang, C., Zhou, P., 2018. Best-Effort

FPGA Programming: A Few Steps Can Go a Long Way. arXiv:1807.01340.

Conte, A. (2019). FPGA based acceleration of a particle simulation High

performance computing application. Master. Politecnico di Torino.

da Silva, B., Braeken, A., D’Hollander, E.H., Touhafi, A., 2013. Performance

Modeling for FPGAs: Extending the Roofline Model with High-Level

Synthesis Tools. International Journal of Reconfigurable Computing.

https://doi.org/10.1155/2013/428078

Dohi, K., Fukumoto, K., Shibata, Y., Oguri, K., 2013. Performance modeling and

optimization of 3-D stencil computation on a stream-based FPGA accelerator,

in: 2013 International Conference on Reconfigurable Computing and FPGAs

(ReConFig). Presented at the 2013 International Conference on

Reconfigurable Computing and FPGAs (ReConFig), pp. 1–6.

https://doi.org/10.1109/ReConFig.2013.6732318

Düben, P.D., 2018. A New Number Format for Ensemble Simulations. Journal of

Advances in Modeling Earth Systems Volume 10, pp. 2983–2991.

https://doi.org/10.1029/2018MS001420

Fifield, J., Keryell, R., Ratigner, H., Styles, H., Wu, J., 2016. Optimizing OpenCL

applications on Xilinx FPGA, in: Proceedings of the 4th International

Workshop on OpenCL - IWOCL ’16. Presented at the the 4th International

Workshop, ACM Press, Vienna, Austria, pp. 1–2.

https://doi.org/10.1145/2909437.2909447

Gan, L., Fu, H., Luk, W., Yang, C., Xue, W., Huang, X., Zhang, Y., Yang, G., 2013.

Accelerating solvers for global atmospheric equations through mixed-

precision data flow engine, in: 2013 23rd International Conference on Field

Programmable Logic and Applications. Presented at the 2013 23rd

International Conference on Field programmable Logic and Applications, pp.

1–6. https://doi.org/10.1109/FPL.2013.6645508

Georgopoulos, K., Mavroidis, I., Lavagno, L., Papaefstathiou, I., Bakanov, K., 2019.

Energy-Efficient Heterogeneous Computing at exaSCALE—ECOSCALE, in:

Kachris, C., Falsafi, B., Soudris, D. (Eds.), Hardware Accelerators in Data

Centers. Springer International Publishing, Cham, pp. 199–213.

https://doi.org/10.1007/978-3-319-92792-3_11

Gorlani, P. (2017). FPGA in HPC: High Level Synthesys of OpenCL kernels for

Molecular Dynamics. Master. Scuola Internazionale Superiore di Studi

Avanzati.

MaxelerOS | Maxeler Technologies, n.d. URL

https://www.maxeler.com/products/software/maxeleros/ (accessed 8.14.19).

MaxGenFD | Maxeler Technologies, n.d. URL

https://www.maxeler.com/products/software/maxgenfd/ (accessed 8.14.19).

Mondigo, A., Ueno, T., Sano, K., Takizawa, H., 2019. Scalability Analysis of Deeply

Pipelined Tsunami Simulation with Multiple FPGAs. IEICE Trans. Inf. &

Syst. E102.D, pp. 1029–1036. https://doi.org/10.1587/transinf.2018RCP0007

Muslim, F.B., Ma, L., Roozmeh, M., Lavagno, L., 2017. Efficient FPGA

108

Implementation of OpenCL High-Performance Computing Applications via

High-Level Synthesis. IEEE Access Volume 5, pp. 2747–2762.

https://doi.org/10.1109/ACCESS.2017.2671881

Nagasu, K., Sano, K., Kono, F., Nakasato, N., 2017. FPGA-based tsunami simulation:

Performance comparison with GPUs, and roofline model for scalability

analysis. Journal of Parallel and Distributed Computing Volume 106, pp. 153–

169. https://doi.org/10.1016/j.jpdc.2016.12.015

OpenCL. (2019). [Online]. Available at: https://en.wikipedia.org/wiki/OpenCL

(Accessed: 1 April 2019).

Pappas, M. (2012). Parallelisation of Shallow Water Simulation For Heterogenous

Architectures. MSc. The University of Manchester.

Parker, M., 2017. Understanding Peak Floating-Point Performance Claims.

Technical report (white paper): Intel, WP-01222-1.1

Riley, G.D., Bull, J.M., Gurd, J.R., 1997. Performance Improvement Through

Overhead Analysis: A Case Study in Molecular Dynamics, in: Proceedings of

the 11th International Conference on Supercomputing, ICS ’97. ACM, New

York, NY, USA, pp. 36–43. https://doi.org/10.1145/263580.263589

Roozmeh, M., Lavagno, L., 2018. Design space exploration of multi-core RTL via

high level synthesis from OpenCL models. Microprocessors and Microsystems

Volume 63, pp. 199–208. https://doi.org/10.1016/j.micpro.2018.09.009

Sano, K., Hatsuda, Y., Yamamoto, S., 2014. Multi-FPGA Accelerator for Scalable

Stencil Computation with Constant Memory Bandwidth. IEEE Transactions on

Parallel and Distributed Systems Volume 25, pp. 695–705.

https://doi.org/10.1109/TPDS.2013.51

"SDAccel Environment Profiling and Optimization Guide", UG1207, Xilinx, 2019.

"SDSoC Profiling and Optimization Guide", UG1235, Xilinx, 2019.

"SDx Pragma Reference Guide", UG1253, Xilinx, 2019.

Shallow water equations. (2019). [Online]. Available at:

https://en.wikipedia.org/wiki/Shallow_water_equations (Accessed: 1 April

2019).

Skalicky, S., López, S., Łukowiak, M., Letendre, J., Ryan, M., 2013. Performance

Modeling of Pipelined Linear Algebra Architectures on FPGAs, in: Brisk, P.,

de Figueiredo Coutinho, J.G., Diniz, P.C. (Eds.), Reconfigurable Computing:

Architectures, Tools and Applications, Lecture Notes in Computer Science.

Springer Berlin Heidelberg, pp. 146–153.

Strenski, D., Simkins, J., Walke, R., Wittig, R., 2008. Evaluating FPGAs for floating-

point performance, in: 2008 Second International Workshop on High-

Performance Reconfigurable Computing Technology and Applications.

Presented at the 2008 Second International Workshop on High-Performance

Reconfigurable Computing Technology and Applications, pp. 1–6.

https://doi.org/10.1109/HPRCTA.2008.4745680

Targett, J.S., Niu, X., Russell, F., Luk, W., Jeffress, S., Düben, P., 2015. Lower

precision for higher accuracy: Precision and resolution exploration for

shallow water equations, in: 2015 International Conference on Field

Programmable Technology (FPT). Presented at the 2015 International

Conference on Field Programmable Technology (FPT), pp. 208–211.

https://doi.org/10.1109/FPT.2015.7393152

The OmpSs Programming Model | Programming Models @ BSC, n.d. URL

https://pm.bsc.es/ompss (accessed 8.14.19).

VHDL. (2019). [Online]. Available at: https://en.wikipedia.org/wiki/VHDL (Accessed

109

1 Sep. 2019).

Vivado High-Level Synthesis. (2019). [Online]. Available at:

https://www.xilinx.com/products/design-tools/vivado/integration/esl-

design.html (Accessed 1 Sep. 2019).

Waidyasooriya, H.M., Hariyama, M., Uchiyama, K., 2018. Design of FPGA-Based

Computing Systems with OpenCL. Springer International Publishing.

https://doi.org/10.1007/978-3-319-68161-0

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J., 2015. Optimizing FPGA-

based Accelerator Design for Deep Convolutional Neural Networks, in:

Proceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, FPGA ’15. ACM, New York, NY, USA, pp. 161–

170. https://doi.org/10.1145/2684746.2689060

Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M., Matsuoka, S., 2016.

Evaluating and Optimizing OpenCL Kernels for High Performance

Computing with FPGAs, in: SC ’16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis. Presented at the SC ’16: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, pp.

409–420. https://doi.org/10.1109/SC.2016.34

