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Abstract 

High-performance computing has attracted more and more attention due the increasing 

computation power needs in areas like machine learning, big data processing and 

analysis. Heterogenous systems that use GPGPUs as accelerators are common 

candidates for high-performance computing these days. However, the power 

consumption of GPGPU has become a significant problem when it comes to scalability, 

for example, to build a supercomputer that can perform exascale computing. Therefore, 

FPGAs, which have a better power efficiency and flexible hardware architecture, have 

become the new candidate of the accelerator of heterogenous systems. 

 

A simplified shallow water application developed using OpenCL is implemented and 

optimized on a Xilinx FPGA in this project. A series of experiments that consist of 

overhead analysis and overhead minimization are conducted. An overhead analysis that 

divides overheads into five different categories is applied to the baseline version of the 

code first. Then a series of optimization methods including loop pipelining, loop 

unrolling, burst memory transfer and using on-chip BRAM as cache are applied to the 

baseline, based on the result of overhead analysis. A principle which describes how to 

apply the optimization methods to the baseline is proposed. Overhead analysis and 

overhead minimization are iterative processes, they only stop after certain requirements 

are met. Furthermore, an experiment that aims to prove the Xilinx emulator is unreliable 

in terms of execution time prediction and performance improvement indication is also 

conducted. Two methods of efficient FPGA programming and correct execution time 

acquisition during experiments are proposed as well. 

 

A method of interpreting the latency and loop information provided in the Xilinx HLS 

tool report is explained. A simple scalability model is also proposed for experimental 

data analysis. Result shows a maximum speedup of around 45x is achieved on the main 

computation loop of the simplified shallow water application, compared to the baseline. 

However, the highly optimized, simplified shallow water application that runs on a mid-

range FPGA is still significantly outperformed by a not highly optimized simplified 

shallow water application which runs on an entry-level GPGPU. Some observations on 

power consumption are also provided. 



10 

 

Declaration 

No portion of the work referred to in this dissertation has been submitted in support of 

an application for another degree or qualification of this or any other university or other 

institute of learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

Copyright 

1. The author of this dissertation (including any appendices and/or schedules to this 

dissertation) owns certain copyright or related rights in it (the “Copyright”) and s/he 

has given The University of Manchester certain rights to use such Copyright, including 

for administrative purposes. 

2. Copies of this dissertation, either in full or in extracts and whether in hard or 

electronic copy, may be made only in accordance with the Copyright, Designs and 

Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in 

accordance with licensing agreements which the University has entered into. This page 

must form part of any such copies made. 

3. The ownership of certain Copyright, patents, designs, trademarks and other 

intellectual property (the “Intellectual Property”) and any reproductions of copyright 

works in the dissertation, for example graphs and tables (“Reproductions”), which may 

be described in this dissertation, may not be owned by the author and may be owned by 

third parties. Such Intellectual Property and Reproductions cannot and must not be 

made available for use without the prior written permission of the owner(s) of the 

relevant Intellectual Property and/or Reproductions. 

4. Further information on the conditions under which disclosure, publication and 

commercialisation of this dissertation, the Copyright and any Intellectual Property 

and/or Reproductions described in it may take place is available in the University IP 

Policy (see http://documents.manchester.ac.uk/display.aspx?DocID=24420), in any 

relevant Dissertation restriction declarations deposited in the University Library, and 

The University Library’s regulations. 

 

 

 

 

 

 

 



12 

 

Acknowledgement 

I would like to express my gratitude to my supervisor Mr. Graham Riley for his 

invaluable support, motivation, guidance, and feedback throughout this project. His 

constant motivation and enthusiasm encouraged me to produce my best work. 

I would also like to thank my family and friend for the constant support without which 

this work would not have been possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

Glossary 

Accelerator It is a hardware device that accelerate the computation. Common 

accelerators including GPGPU, FPGA and Intel Xeon Phi. Accelerator is part of the 

heterogenous computing system. 

 

API Application Programming Interface. It is “a set of subroutine definitions, 

communication protocols, and tools for building software. In general terms, it is a set 

of clearly defined methods of communication among various components.” 

(Application programming interface, 2019) 

 

BRAM Block RAM. It is a type of on-chip memory used on FPGA. 

 

Core It is a hardware component that can execute instructions while load and store data 

between itself and memory. 

 

CPU Central Processing Unit. It is a hardware that can perform arithmetic, logic, 

control and I/O operation. 

 

CU Compute Unit. It refers to a collection of processing elements according to the 

OpenCL platform model. A work group is executed on one compute unit. 

 

Data Parallelism It refers to a type of parallelism that allows different cores access and 

process different data simultaneously.  

 

DSP Digital Signal Processor. It is a type of hardware that specialized in digital signal 

processing. In FPGA, DSP is responsible for the execution of floating-point operation. 

Parallel computing can also be conducted using DSP by utilizing the SIMD instructions. 

 

FF Flip-Flop. It is a circuit that have two states and can store state information. Its state 

can be changed by applying signals on to it. Flip-Flops usually have at least one input 

and one output. Flip-Flop is one of the most important components of FPGA. 
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FPGA Field Programmable Gate Array. It is a programmable hardware which consists 

of processing system and programmable logic. Different kind of IP block will be 

generated within the programmable logic, based on the algorithm.  

 

Global Work Item Size It refers to the number of work items of all work groups. In 

short, it is the total number of work items that executes one kernel. 

 

GPGPU General Purpose Graphical Processing Unit. It is an accelerator which is 

originally designed for processing and displaying 2D and 3D computer graphics. It is 

called “general purpose” because it can be utilized to process general data efficiently 

thanks to its SIMD architecture. 

 

HDL Hardware Description Language. It is a programming model that precisely 

describes the structure and behaviour of the circuits. 

 

Heterogeneous Computing A computing method that use different types of hardware. 

For example, CPU plus accelerators. 

 

Homogeneous Computing A counterpart of heterogenous computing, which refers to 

computation that use only one type of hardware. For example, CPU. 

 

HLS High Level Synthesis. It is a process that transform the high-level programming 

language like Java and C++ to hardware description language. 

 

HPC High-Performance Computing. It is a practice that focus on solving the 

computation-intensive or data-intensive tasks efficiently. 

 

IC Integrated Circuit. It is a collection of circuits that integrated on a small piece of 

silicon.  

 

IDE Integrated Development Environment. It is a type of software which aims to 

facilitate the process of software development for developers. In general, IDE includes 

source code editor, debugger, compiler and building tools. 
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II Initial Interval. It refers to the time needed between the execution of the first iteration 

and the second iteration.  

 

Iteration Latency It refers to the time needed for one iteration to complete. 

 

Kernel It refers to a function executed on one compute unit according to the OpenCL 

execution model. 

 

Local Work Item Size It refers to the number of work items within one work group. It 

also refers to the number of dimensions as well as the magnitude of each dimension of 

one work group. 

 

LUT Look Up Table. It is one of the most important components of FPGA. Look up 

table is a truth table that store the results of Boolean operations, based on the inputs. It 

makes the execution of Boolean operation more efficient because the result can be 

obtained simply by checking the loop up table. 

 

Memory Latency It refers to the time needed for accessing external, off-chip memory. 

 

Multi-core It is a type of hardware that consists of multiple cores, for example, multi-

core CPU. 

 

NDRange It is an index space that describes the total number of work items which 

execute the kernel. The NDRange can either be 1-Dimensional, 2-Dimensional or 3-

Dimensional. 

 

OpenCL Open Computing Language. It is a programming model which is widely used 

in heterogenous computing. It can produce code that can be executed on CPU, GPGPU 

and FPGA. 

 

PCIe Peripheral Component Interconnect express. It is a standard for high-speed serial 

computer bus interface. Hardware like accelerators and hard drives can be connected 

using the PCIe on motherboard. 
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PE Processing Element. A counterpart of core. According to the OpenCL platform 

model, multiple processing elements are included in one compute unit 

 

Start Interval It refers to the time between the invocation of the first function call and 

the second function call. 

 

Trip Count It refers to the size of iteration space. 

 

VHDL Very High-Speed Integrated Circuit Hardware Description Language. It is one 

of the major HDL. 

 

Vivado It is an HLS tool provided by Xilinx, which is integrated within SDx. 

 

Work Group It refers to a collection of work items that are executed on one compute 

unit, in the OpenCL programming model. 

 

Work Item It is equivalent to thread according to the OpenCL programming model. 

  

SDAccel Software-Defined Accelerator. It is an IDE that targets the application 

development for Xilinx accelerators. 

 

SDSoC Software-Defined System on Chip. It is an Eclipse-based IDE that targets the 

embedded C/C++/OpenCL application development for heterogenous Zynq SoC and 

MPSoC (Multi-Processor SoC) system. 

 

SDx It is an Eclipse-based IDE provided by Xilinx. 

 

SIMD Single Instruction, Multiple Data. An architecture that allows different cores 

access different data but process them in the same way simultaneously. In short, 

different data will be processed using the same instruction on different core 

simultaneously. SIMD is common in GPGPU. 
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Task Parallelism It refers to a type of parallelism that allows different cores execute 

different tasks simultaneously. 
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Chapter 1 Introduction 

As we have entered the era of big data, high-performance computing has become 

increasingly important, since nowadays computation-intensive and data-intensive 

applications like weather forecasting must be computed within a limited amount of time. 

One popular way of achieving high-performance is “going parallel”, meaning using 

processors with multiple cores instead of the one with single core, because it is more 

and more difficult to achieve higher performance on a single core by simply increasing 

the clock frequency. However, even if the performance is achieved, the power 

consumption will be intolerable. 

 

It has been found that homogenous multicore architectures, for example multicore CPU, 

are not the best candidate for high-performance computing. Multicore CPU is suitable 

for executing control-dominant problems, but it does not perform well on problems that 

need only little control flow and synchronization with other threads or tasks, compared 

to GPGPU. Therefore, heterogeneous architecture, for example CPU-GPGPU, becomes 

popular these days, because it can utilize the advantages of different homogeneous 

architectures while hiding most of their disadvantages. 

 

In a heterogeneous system, devices like GPGPU, FPGA and Intel Xeon Phi are called 

accelerators. In this project, FPGA is chosen as the accelerator instead of GPGPU. This 

is because the hardware architecture of FPGA is more flexible, and the energy 

efficiency of FPGA is better compared to CPU and GPGPU, this is also mentioned in 

the work of (Georgopoulos et al., 2019). In addition, recent developments have made 

FPGAs easier to program. 

 

This project aims to implement and optimize a simplified shallow water application 

developed using OpenCL, on an ARM CPU-FPGA heterogenous system. A series of 

optimization methods selected from literatures are applied to the code one after another 

following a certain principle, which will be discussed later. Performance estimation as 

well as overhead analysis are be conducted. Other contributions of this project including 

a method of efficient FPGA programming, a way of measuring correct and accurate 

execution time of the kernels executed on the FPGA, a detailed explanation regarding 
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how to interpret the latency and loop information given in the system estimate report 

and HLS report produced when building a FPGA solution, and a model to evaluate the 

scalability of each optimization method.  

 

This dissertation is organized as follows. Chapter 2 provides some backgrounds on 

FPGA, OpenCL (the programming language used), SDx (the Xilinx tool with the 

SDSoC environment supporting FPGA development), stencil computation (as used in 

the simplified shallow water application) and optimization methods for FPGA 

applications developed using OpenCL. The literature review is also included. The 

research methodology is presented in Chapter 3, where a description regarding how the 

project is implemented is provided. Chapter 4 presents the description of a series of 

experiments with basic optimization methods. Chapter 5 describes a series of 

experiments with more advanced optimization methods. Experimental data are 

analysed in Chapter 6. Finally, Chapter 7 concludes the whole dissertation and identifies 

some future works. 

1.1. Project Aims 

The aims of this project are to implement a simplified but high-performance shallow 

water weather & climate forecasting application using OpenCL on an ARM CPU-FPGA 

heterogeneous system, while trying to program the FPGA efficiently from a high-level 

programmer’s perspective. 

1.2. Project Objectives 

In order to achieve these aims, the following objectives must be accomplished, one after 

another. 

⚫ Understand FPGA programming using OpenCL and SDSoC of the Xilinx FPGA 

available for this project. 

⚫ Getting familiar with the HLS tools which makes FPGA programming easier. 

⚫ Develop a methodology which includes performance estimation, overhead analysis, 

overhead minimization, execution time acquisition, a principle for applying 

optimization methods and a method for efficient FPGA programming. 

⚫ Implement a shallow water weather & climate forecasting application using 
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OpenCL and execute it on a single FPGA, then apply the methods to obtain high 

performance. 
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Chapter 2 Background 

This chapter introduces the essential background knowledge that is necessary for this 

project. Section 2.1 provides a general description of FPGA. Section 2.2 introduces the 

OpenCL programming language, including its platform model, execution model, kernel 

programming model and memory model. In Section 2.3, the IDE used in this project, 

called SDx, is introduced. Section 2.4 describes the principle of stencil computation, 

along with the basic idea of the shallow water weather & climate forecasting model, 

and the simplified shallow water application used in this project. Section 2.5 

summarizes a series of optimization method for FPGA application developed in 

OpenCL. Section 2.6 provides a literature review of the papers that are key to this 

project.  

2.1. FPGA Background 

 

Figure 2.1: FPGA Structure (Waidyasooriya et al., 2018) 

FPGA is a type of hardware that is programmable even after it is manufactured. “It 

contains programmable logic gates and programmable interconnects, as well as 

configurable memory modules and DSPs” (Waidyasooriya et al., 2018). The 

programmable logic, interconnects, memory modules and DSPs can be utilized to create 

any arbitrary circuits. This enables FPGA to “become” different processors and 

accelerators, for example GPGPU. A processing system is also included in the FPGA. 

Figure 2.1 shows the structure of FPGA. 
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2.2. OpenCL Background 

“OpenCL is a framework for writing programs that execute across heterogeneous 

platforms consisting of CPUs, GPGPUs, DSPs, FPGAs and other processors or 

hardware accelerators.” (OpenCL, 2019). OpenCL consists four models, namely the 

platform model, execution model, kernel programming model and memory model. 

Section 2.2.1 provide a brief description of the platform model while Section 2.2.2 

explains the execution model. Section 2.2.3 describes the kernel programming model 

briefly and Section 2.2.4 demonstrates the memory model. 

2.2.1. Platform Model 

 

Figure 2.2: OpenCL Platform Model (Waidyasooriya et al., 2018) 

As can be seen from Figure 2.2, in a CPU-FPGA heterogeneous system, CPU is the 

host while FPGAs are the devices. There are multiple compute unit within the devices 

and there are multiple processing elements (PE) within one single compute unit. PEs 

and CPU cores are counterparts. Multiple devices can be controlled by one host. 
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2.2.2. Execution Model 

 

Figure 2.3: OpenCL Execution Model (Waidyasooriya et al., 2018) 

Figure 2.3 explains the OpenCL execution model. A context is created for one or 

multiple devices. Each device can have one or multiple command queues. Command 

queues are used for communications between host and devices, commands will be 

issued by host and passed to devices through command queue. There are two types of 

objects that can be put into the command queue, memory object and program object. 

Memory objects are the objects that related to the read and write of the memory, while 

program objects are kernels which needs to be executed. Command queue can be either 

in-order or out-of-order. Each kernel can be executed by either one or multiple compute 

units. If the single work item kernel is used, then there is only one work group with one 

work item in one compute unit. If NDRange kernel is used, then all the following 

situations are possible depends on the global work item size and the local work item 

size. 

⚫ One work group with multiple work items in one compute unit. 

⚫ Multiple work groups each with multiple work items in one compute unit. 

⚫ Multiple work groups each with one work item in one compute unit. 
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2.2.3. Kernel Programming Model 

 

Figure 2.4: OpenCL Kernel Programming Model (Waidyasooriya et al., 2018) 

Figure 2.4 demonstrates the OpenCL kernel programming model. Functions executed 

on device are called kernel. Another new concept is called NDRange kernel. As can be 

seen from Figure 2.4, a NDRange kernel can be made up of multiple work group while 

a work group can consist multiple work item. Work groups and work items in a single 

NDRange kernel can be divided into N dimension, where the maximum number of N 

is three. “The size of NDRange and work groups can be specified by host program.” 

(Waidyasooriya et al., 2018). The work items are tagged with both local ID and global 

ID, the local ID of work items in different work group might be the same but the global 

ID is unique for different work items. “The local ID is to identify the work items within 

a work group while global ID is to identify the work items within the NDRange” 

(Waidyasooriya et al., 2018). 
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2.2.4. Memory Model 

 

Figure 2.5: OpenCL Memory Model (Waidyasooriya et al., 2018) 

The OpenCL memory model is described in Figure 2.5. Host and devices have separate 

memory, called host memory and device memory respectively. Devices cannot access 

host memory, so the data in host memory must be transferred to the global memory 

before it can be processed by device. Global memory can be accessed by both host and 

device. Constant memory is a read-only memory. Each work group has its own local 

memory and cannot be accessed by other work groups, but it can be accessed by all the 

work items within the same work group. Each work item also has its own private 

memory, which cannot be accessed by other work items. On the FPGA board used in 

this project, both host memory and global memory refer to the same external and off-

chip DDR memory, while local and private memory refer to the on-chip memory. 



26 

 

2.3. Other Programming Models 

⚫ OmpSs. OmpSs is a directive-based programming model developed by the 

Barcelona Supercomputing Centre which aims to extend OpenMP by adding new 

directives to support asynchronous parallelism and heterogenous computing. “It 

can also be understood as new directives extending other accelerator-based APIs 

like CUDA or OpenCL.”. (“The OmpSs Programming Model | Programming 

Models @ BSC,” n.d.) Asynchronous parallelism is supported in OmpSs by 

utilizing data dependencies between different tasks of the program. While 

heterogenous computing is supported by using a newly-introduced construct called 

the target construct. Architectures supported by OmpSs including Intel 32-bit and 

64-bit platforms, IBM Power8 platforms and ARM 32-bit and 64-bit platforms. 

⚫ Maxeler high-performance dataflow computing system. Maxeler technology is a 

company that focus on the domain of high-performance computing. Maxeler high-

performance dataflow computing system is one of the software they developed, 

which consist of MaxIDE, MaxCompiler, MaxOS and MaxGenFD. MaxIDE is an 

Eclipsed-based IDE, which means the programs execute on the Maxeler system 

can be developed in Java. The MaxCompiler splits an application into three parts, 

namely kernel, manager configuration and CPU application, to allow the 

application utilize the dataflow engine configuration. Kernels implement the 

computational component of the application. Manager configuration connects 

kernels to CPU, RAM, other kernels and dataflow engines. CPU application 

interacts with the dataflow engine to read and write data to kernels and RAM. 

“MaxelerOS provides the data choreography needed to balance resources, 

maximize utilization, minimize overheads, and manage the application 

acceleration process at runtime.”. (“MaxelerOS | Maxeler Technologies,” n.d.) 

“Maxeler MaxGen systems are domain-specific compilers that enable 

programmers to easily harness the full power of Maxeler solutions without needing 

a detailed understanding of the underlying hardware.”. (“MaxGenFD | Maxeler 

Technologies,” n.d.) 

⚫ Vivado HLS. Vivado HLS “accelerates IP creation by enabling C, C++ and System 

C specifications to be directly targeted into Xilinx programmable devices without 

the need to manually create RTL” (Vivado High-Level Synthesis, 2019) 
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⚫ VHDL. “VHDL is an HDL used in electronic design automation to describe digital 

and mixed-signal systems such as FPGA and IC. VHDL can also be used as a 

general-purpose parallel programming language.” (VHDL, 2019) 

2.4. SDx Background 

SDx is an IDE provided by Xilinx for SDSoC and SDAccel development. SDx includes 

HLS tools like Vivado and is made for Zynq® UltraScale+™ available for this project. 

SDx has significantly eased the burden of software engineers for programming FPGA. 

Because Vivado can translate high-level language like C and Java to HDL, a process 

which is known as high level synthesis. Then the bitstream which builds the hardware 

architecture of FPGA can be generated by the compiler. The existence of Vivado 

enables software engineers to program FPGA without using HDL like Verilog, and 

learning lots of hardware knowledge. Emulators are also provided in SDx to emulate 

application in a hardware or software environment, in order to verify the functional 

correctness. It also provides reports regarding performance estimate and hardware 

resource utilization.  

 

Two reports are provided by SDx, namely the system estimate report and the HLS report. 

System estimate report provides the estimated clock frequency for execution, hardware 

resource utilization and latency information of each kernel. It should be noted that the 

estimated clock frequency doesn’t necessarily equal to the clock frequency set in the 

SDx project setting page. Hardware resource utilization contains information of the 

usage of FF, LUT, DSP and BRAM_18K of each kernel. Latency information includes 

the start interval, best case latency, worst case latency and average case latency of each 

kernel. Start interval means “the amount of clock cycles that has to pass between 

invocations of a compute unit for a given kernel.”. While the best, average and worst 

case latency refer to “how much clock cycles it takes the compute unit to generate the 

results of one NDRange data tile for the kernel” (“SDAccel Environment Profiling and 

Optimization Guide,” 2019). The best, worst and average case latency will be the same 

if there are no dependencies between loop iterations. 

 

One HLS report will be generated for each kernel. The HLS report not only provide the 

hardware resource utilization and the latency information for the given kernel, it also 
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provides an analysis of the loops within the kernel. The following information are given 

in the analysis,  

⚫ Latency, which represent the total number of clock cycle that is needed for the 

whole iteration to complete.  

⚫ Iteration latency, which means the clock cycle needed for a single iteration to 

complete.  

⚫ Trip count, which describes the size of the iteration space.  

⚫ Initial interval (II), which explains the number of clock cycles needed for a loop 

iteration to start executing, after the previous iteration starts. It is worth noting that 

both achieved II and target II are provided here. The target II will also be 1, which 

is the optimum II.  

⚫ The “pipelined” indicates whether the loop is pipelined or not. 

2.5. Stencil Computation Background 

Stencil computation is widely used in domains like computational fluid dynamics, 

electromagnetic simulation based on the finite-difference time-domain methods, and 

iterative solvers of linear equation systems (Sano et al., 2014). Stencil computation 

means update the value of a certain point on a grid, based on the value of its neighbours. 

Stencil itself is an area consists of multiple grid point.  

 

There are different methods to compute a stencil, for example Jacobi iteration and 

Gauss Seidel iteration. Jacobi iteration only needs the values of the grid point from the 

previous iteration to calculate the new one, which exposes more parallelism by 

eliminating data dependency. Unlike Jacobi iteration, Gauss Seidel iteration needs both 

values from the previous and current iteration of the grid point for the computation, 

which makes it more difficult to be parallelized.  

 

Both Jacobi iteration and Gauss Seidel iteration are so-called “iteration to converge” 

computation, meaning the result will converge eventually after multiple iterations, and 

only one grid array is needed for computation. However, there are other kinds of stencil 

computation which needs multiple grid arrays. For example, “time-stepping” 

computation like shallow water equation.  
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Section 2.5.1 provides a description of the common shallow water weather & climate 

forecasting model, while Section 2.5.2 describes the simplified shallow water 

application used in this project in details, with the help of the code snippet. 

2.5.1. Shallow Water Forecasting Model Background 

“The shallow water equations are a set of hyperbolic partial differential equations (or 

parabolic if viscous shear is considered) that describe the flow below a pressure surface 

in a fluid (sometimes, but not necessarily, a free surface).” (Shallow water equations, 

2019). Shallow water algorithm is a “time-stepping” stencil computation which 

requires multiple grid arrays. The update of the value at each grid point relies on the 

values of the previous updated grid array. After all the grid arrays are updated, the first 

grid array will be updated again, and so on. Shallow water weather & climate 

forecasting model is an example of sophisticated weather and climate prediction model. 

2.5.2. The Simplified Shallow Water Application Used in this Project 

 

Figure 2.6: Host Code of Kernel Execution 

 

Figure 2.7: Kernel Code of Kernel L100 
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Figure 2.8: Kernel Code of Kernel L100_pc 

The basic idea behind the simplified shallow water application is quite straight-forward. 

Figure 2.6 demonstrates how it is implemented. The elements of array cu and array h 

will first be updated in kernel L100, based on the elements of array u and array p. The 

periodic continuation operation of array cu and array h will then be conducted in kernel 

L100_pc. After that, the elements of array u and array p will be updated based on the 

elements of array cu and array h in kernel L200. Then the periodic continuation 

operation of array u and array p will be conducted in kernel L200_pc. After all this, the 

elements of array cu and array h will be updated again. This process will keep iterating 

until the value of the elements in array u and array p is converged. The update of array 

cu and array h, as well as the update of array u and array p, can be done in parallel. This 

is because Jacobi iteration is used here, which means, for example, in iteration 2, the 

update of array cu and array h only required the array u and array p from iteration 1, 

which is already available. The situation is similar for the update of array u and array p 

in iteration 2. 

 

Figure 2.7 and Figure 2.8 provides more details regarding how the update of array cu 

and array h, as well as their periodic continuation operation are implemented. For 

example, the update of grid point cu(1, 0) is based on grid point p(1, 0), p(0, 0), p(1, 1) 

and u(1, 0). The update of grid point h(0, 0) is based on grid point u(1, 0) and p(0, 0). 

Periodic continuation operation is basically the copy of grid point. In kernel L100_pc, 

the values of the last row in array cu will be copied to the first row, then the values of 

the left-most column in array cu will be copied to the right-most column. After that the 
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grid point cu(65, 0) will be copied to cu(0, 65). In terms of array h, the values of the 

first row in array h will be copied to the last row, then the values of the right-most 

column in array h will be copied to the left-most column. After that the grid point h(0, 

65) will be copied to h(65, 0). The update as well as the periodic continuation operation 

of array u and array p is similar with the one of array cu and array h. 

 

Periodic continuation operation leads to “halo”, which is an extra circle of data 

surrounding the original array. Therefore, the problem size is different from the array 

size. The existence of halo is to provide a better memory access pattern for the system 

with cache. For example, without halo, if grid point cu(0, 0) needs to be updated, it will 

require the value from grid point p(0, 0), p(64, 0), p(0, 1) and u(0, 0). It is obvious that 

the access to grid point p(64, 0) is not a stride-1 access, and the value of grid point p(64, 

0) is not likely to be in the cache as well. However, if halo is available, then the update 

of grid point cu(0, 0) will become the update of grid point cu(1, 0) which is based on 

grid point p(1, 0), p(0, 0), p(1, 1) and u(1, 0). Although the access to grid point p(0, 0) 

is still not stride-1 access, the value of grid point p(0, 0) is very likely to be in the cache, 

which still provides a better memory access pattern compared to the one without halo. 

2.6. Optimization Methods for OpenCL Application on 

Xilinx FPGA 

This section summarizes a series of methods, learned from the literature, for optimizing 

FPGA application developed using OpenCL. The literature from which these methods 

are derived is summarized in Section 2.7.2. Section 2.6.1 describes the optimizations 

used in kernel code. Section 2.6.2 demonstrates optimizations used in host code. 

Section 2.6.3 explains optimizations that are related to the IDE SDx. 

2.6.1. Kernel Optimizations 

A series of methods that can be used to optimize kernel code are listed as follows, 

⚫ On-chip memory. Using on-chip memory as cache can reduce the memory access 

latency. This means storing data in BRAM, which is also known as local memory 

in the OpenCL memory model. This can be implemented by declaring the variable 

as “__local”. 
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⚫ Burst memory transfer. The burst mode can be triggered when copying data 

between off-chip memory and on-chip memory. Burst memory transfer aims to 

improve the data transfer efficiency by combining multiple consecutive memory 

access into one. Hence, the memory bandwidth can be utilized in a more efficient 

way. This can be implemented by using function async_work_group_copy(). 

⚫ Loop unrolling. Loop unrolling can improve the parallelism between iterations. It 

can achieve a better throughput compared to loops that are not unrolled. This can 

be implemented by using directive “opencl_unroll_hint(n)”. The unrolling factor 

can be specified by changing parameter n. If n is not specified, the loop will be 

completely unrolled by default. The directive needs to be put ahead of the loop 

body. 

⚫ Loop pipelining. Loop pipelining can improve the parallelism between iterations. 

According to Fifield et al (Fifield et al., 2016), loop pipelining can achieve the best 

throughput. This can be implemented by using directive “xcl_pipeline_loop”. 

Section 4.4 provides a detail explanation regarding where to put the 

“xcl_pipeline_loop” directive in a nested loop.  

⚫ Array partitioning. By partitioning the array, the number of logics which can access 

(read/write) data simultaneously in each clock cycle can be increased. For example, 

each BRAM block has two data ports, meaning that a maximum of two logics can 

access data simultaneously in each clock cycle. However, if it is partitioned using 

directive (cyclic, 2), then each BRAM block will have four data ports, because the 

array data is distributed to two physical memories. This means that a maximum of 

four logics can access data simultaneously in each clock cycle.  

 

This can be implemented using directive “xcl_array_partition(type, factor, 

dimension)”. There are three types of array partitioning method, namely cyclic, 

block and complete. The type of array partitioning can be specified by changing 

the “type” parameter. “The original array will be split into equally sized blocks of 

consecutive elements of the original array, if it is partitioned in a block way. The 

original array will be split into equally sized blocks interleaving the elements of 

the original array, if it is partitioned in a cyclic way. The default operation of 

complete partition is to split the array into its individual elements. This means 

implementing the array as a collection of registers” (“SDSoC Profiling and 
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Optimization Guide,” 2019). It should be noted that there is an array size threshold 

of 1024 for complete partition, meaning that arrays with size larger than 1024 

cannot be partitioned in a complete way. The factor parameter “can be used to 

specify the number of arrays which are created for block and cyclic partition. This 

parameter is not applicable in complete partition. For multi-Dimensional arrays, 

the dimension option can be used to specify which dimension is partitioned.” 

(“SDSoC Profiling and Optimization Guide,” 2019). The directive needs to be 

placed after the declaration of a variable. 

⚫ Data vectorization. Data vectorization can utilize memory bandwidth in a more 

efficient way by transferring multiple data, instead of one, each clock cycle. This 

can be implemented either automatically by using directive “vec_type_hint(type)”, 

or manually by declaring variables as, for example, float2, float4, float8 or float16. 

The type parameter of the “vec_type_hint” directive represent the type of data 

(double, float and etc) that needs to be vectorized. The directive needs to be placed 

ahead of the function body. 

⚫ The restrict keyword. According to (Zohouri et al., 2016), the restrict keyword can 

be used so that compiler will avoid making conservative decision like pointer 

aliasing. Hence, compiler will be able to parallelize loops if there are no 

dependencies exist. This can be implemented by declaring a pointer as “__restrict”. 

⚫ Dataflow directive. The dataflow directive can pipeline the execution of the 

function calls in each kernel. This can be implemented by using directive 

“xcl_dataflow”. The directive needs to be placed ahead of the function body. Figure 

2.9 below demonstrates how function calls L100_read(), L100_calc() and 

L100_write() are pipelined inside kernel L100_cu. 
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Figure 2.9: Execution of Function Calls L100_read(), L100_calc() and L100_write() after Applying Dataflow 

Directive 

⚫ Function inline. Instead of making function calls, function inline will replace the 

function call with the function body itself. This may increase the code size, but it 

also eliminates the time using for function calls, hence improves the performance. 

This can be implemented by using directive “always_inline”. The directive needs 

to be placed ahead of the function body. 

⚫ Work item pipelining. The work items in a NDRange kernel can be pipelined by 

using directive “xcl_pipeline_workitems”. It should be noted that this optimization 

is only available when using NDRange kernel.  

⚫ Optimum local work group size specification. The local work group size of a 

NDRange kernel that yields the best performance will always be the problem size. 

For example, for problem size of 65 * 65, the local work group size with best 

performance will be a two-Dimensional work group with size of 65 on each 

dimension. However, a smaller local work group size will consume fewer hardware 

resource, which is useful since the hardware resource on a single FPGA is limited. 

Hence, the optimum work group size should be chosen carefully if applicable. It 

should be noted that this optimization is only available when using NDRange 

kernel. 

⚫ Pipe. Pipe is a FIFO memory object in the OpenCL programming language, it is 

very useful when it comes to streaming data between kernels. When the BRAM is 

not big enough to cache all the data, it will be a good idea to stream data from host 
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memory to device memory directly without using external memory, in order to 

minimize data access latency. Pipe can be implemented by using directive 

“xcl_reqd_pipe_depth(n)”, along with function write_pipe_block() and 

read_pipe_block(). Parameter n defines the size of the pipe. It should be noted that 

when pipe is utilized to stream data, it is assumed implicitly that the work items 

are executed sequentially.  

⚫ Zero copy of data. “The ZERO_COPY pragma means that the hardware function 

accesses the data directly from shared memory through an AXI master bus 

interface.” (“SDx Pragma Reference Guide,” 2019). This can be done by using 

pragma “#pragma SDS data zero_copy()”. The pragma should be placed ahead of 

the function body. 

⚫ Merging array update kernel with periodic continuation kernel. The array update 

kernel can be merged with the periodic continuation kernel if the whole array is 

cached in BRAM, to reduce memory access overhead. For example, kernel 

L100_cu and kernel L100_pc_cu can be merged. This allows periodic continuation 

operation to be conducted immediately after array update is complete, to avoid 

unnecessary data transfer. 

2.6.2. Host Optimizations 

A series of methods that can be used to optimize host code are listed as follows, 

⚫ Overlapping data transfer between host memory and device memory, with the 

kernel computation. This can be implemented by using function 

enqueueMigrateMemObjects(). Function enqueueWriteBuffer() and 

enqueueReadBuffer() need to be replaced by enqueueMigrateMemObjects(). It 

should be noted that synchronization is needed when using 

enqueueMigrateMemObjects() in order to obtain the correct result. The parameter 

“CL_MEM_USE_HOST_PTR” is also be needed when declaring the buffers used 

by enqueueMigrateMemObjects(). 

⚫ Concurrent execution of kernels. This can be implemented by using either multiple 

in-order command queues or one out-of-order command queue. Parameter 

“CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE” will be necessary 

when declaring the command queue, if out-of-order command queue is used. 

⚫ OpenCL API execution model. Different API should be used to reduce overhead of 
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kernel enqueuing. “For the data parallel case, use the clEnqueueNDRange API. For 

the task parallel case, use the clEnqueueTask API.” (“SDAccel Environment 

Profiling and Optimization Guide,” 2019) 

2.6.3. SDx-related Optimizations 

A series of methods that are related to SDx are listed as follows, 

⚫ The number of compute unit. The number of compute unit can be specified for each 

kernel in the project setting page. The number of compute unit available for each 

kernel ranges from 1 to 60. 

⚫ The data motion network clock frequency. The data motion network clock 

frequency can be set in the project setting page. The clock frequency available 

ranges from 75MHz to 600MHz. 

⚫ The port data width. The port data width for each kernel can be set in the project 

setting page. The width available ranges from 32 bits to 512 bits. The data width 

can also be set as auto. 

⚫ Dedicated memory port for each global array. This can be implemented by ticking 

the “Max Memory Port” option in the project setting page for each kernel. After 

this option is selected, each global array within that certain kernel will be assigned 

with a dedicated memory port. 

2.7. Literature Review 

This section provides a detailed review to the papers that are key to this project. Papers 

in Section 2.7.1 mainly focused on performance modelling. Section 2.7.2 reviews the 

papers that conduct performance optimization to FPGA application. Section 2.7.3 

provide a review on a paper that carried out some good overhead analysis. It should be 

noted in Section 2.7.2, the papers written by Sano et al and Mondigo et al provides both 

performance optimization and model for performance estimation. 

2.7.1. Papers Focused on Performance Modelling 

da Silva et al. (da Silva et al., 2013) have proposed a performance model for FPGA by 

combing the traditional roofline model with the HLS tools. The roofline model provides 

a performance estimation of the target algorithm by considering the computational 
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performance (CP), memory bandwidth (BW) and computational intensity (CI). The CP 

refers to the maximum number of floating-point operations that the processor can 

achieve. While CI refer to algorithm complexity, which is the number of operations 

executed per byte access from memory. CP and BW is related to the hardware 

architecture itself while CI is related to the application.  

 

However, traditional roofline model cannot be applied to estimate the performance of 

FPGA, because the hardware architecture of FPGA is not fixed and can be influenced 

by the application. This means CP in this case is directly relates to CI. By connecting 

the computational power with the resource consumption, an extended roofline model is 

introduced. A new concept called the scalability (SC) is introduced as well. The SC 

refer to the number of PE, which can be obtained by dividing the available resources 

on FPGA by the resources each PE consumes. The performance of a FPGA can then be 

acquired by multiply SC with the performance of PE. The computation of CI is also 

modified by dividing the number of operations in one iteration, with the number of 

memory access for input and output values. 

 

HLS tools play an important role in the extended roofline model. Because they provide 

optimizations and information like FPGA resource utilization, latency, and throughput. 

A class of window-based image processing applications along with two different HLS 

tools are served as case study in their work. They demonstrated that the extended 

roofline model is accurate enough to estimate the performance of FPGA based on the 

information provided by the HLS tools. The extended roofline is also flexible enough 

to be combined with any HLS tools. 

 

Parker (Parker, 2017) has shed some lights on the topic of how to calculate the peak 

floating-point capabilities of DSP, GPGPU and FPGA in this white paper. One common 

way of determining the peak FLOPS (floating-point operation per second) rate is to 

multiply the sum of the adders and multipliers by the maximum operation frequency. 

Because FLOP is defined as an addition or multiplication of single or double precision 

number. Other operations like division, square root, FFT (fast Fourier transform) and 

matrix operation needs to be constructed using adders and multipliers as well. 
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However, when it comes to FPGA, the method mentioned above might not be able to 

produce the reliable peak FLOPS rate, due to the following challenges. First, the 

floating-point precision level implemented on FPGA is not restricted to the industrial-

standard single and double precision. In fact, multiple precision levels are implemented. 

Another challenge is that it is difficult to determine the routing resources that is needed 

to implement the floating-point operation. While things like large barrel shifter which 

consumes a large amount of programmable routing are required when implementing 

floating-point operation. In addition, not all the programmable logic on FPGA can be 

fully utilized, since it will lead to the reduction of the clock frequency. 

 

In order to calculate the peak FLOPS on FPGA, Parker has proposed two methods. The 

first one is to use the benchmark provided by the FPGA vendors. Another way is to use 

only add or subtract function, and build as many adders as possible using DSP48E, then 

build the remaining adders using pure logic, in order to maximize the floating-point 

rating. However, he also mentioned that the second method is not a benchmark that is 

recognized by the industry, and such design has no application benefits. Parker also 

believed that for FPGA without hard floating-point circuits, using the vendor-calculated 

theoretical GFLOPS numbers is quite unreliable. 

 

In summary, Parker believed that in order to obtain the peak FLOPS performance of 

devices with different architectures, for simplicity, it can be done by multiplying the 

sum of the adders and multipliers by the maximum operation frequency. But ultimately, 

relevant benchmark provided by the vendors should be used for a more accurate FLOPS 

performance result. 

 

Some other performance modelling includes a performance modelling of the 3-

Dimensional stencil computation on a stream-based FPGA, proposed by (Dohi et al., 

2013), a performance modelling of pipelined linear algebra architectures on FPGAs 

developed by (Skalicky et al., 2013) and a method of evaluating FPGAs for floating-

point performance proposed by (Strenski et al., 2008). 

2.7.2. Papers Focused on Performance Optimization 

Cong et al. (Cong et al., 2018) have proposed a best-effort guideline for improving 
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FPGA programming productivity as well as FPGA accelerator performance. The 

guideline makes FPGA programming easier by easing the burden of the software 

programmers, allowing them to learn fewer hardware knowledge.  

 

Furthermore, the guideline improves the performance of the FPGA accelerator by using 

five refinement steps of HLS, namely explicit data caching, pipelining, processing 

element duplication, computation overlapping and scratchpad reorganization. Explicit 

data caching means explicitly copy the data for the computation to the BRAM of the 

FPGA. Here BRAM is considered as the cache of FPGA. Pipelining is similar with 

CPU pipelines. However, FPGA designers can construct very deep pipeline with 

hundreds or even thousands of stages. Processing element duplication is similar with 

multithreading programming. The processing units of FPGA and CPU cores is 

counterparts. Computation overlapping in this case means constructing a three-stage 

coarse-grained pipeline for better resource utilization. Scratchpad reorganization refers 

to the using of larger-width data type to better utilize memory bandwidth. 

 

They demonstrated that by applying their guideline, the performance of the FPGA 

accelerator can be 42~29,030x faster, compared to the performance of the non-

optimized, naïve FPGA accelerator. The optimized FPGA accelerator is also up to 

112.8x faster than a single Xeon CPU core. 

 

Targett et al. (Targett et al., 2015) have proposed a method of accelerating C-grid 

shallow water model by using lower precision variable and FPGA. They tried to stop 

using double precision floating point variable and represent the variable with less bits. 

By reducing the mantissa length of the variables, the spare computing resources can be 

used to simulate climate change at a higher resolution, which may eventually improve 

accuracy.  

 

They also proposed an accuracy verification method, to make sure the accuracy will be 

acceptable after the precision is lowered. This is accomplished by first calculating the 

mean and standard deviation of the fields, then the mean and standard deviation of the 

errors. After that the maximum value of mean and standard deviation is picked out and 

compared with the acceptable mean and standard deviation. 
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They demonstrated that the mantissa length of the variable can be reduced to 14 bits 

while maintaining an acceptable error. Their reduced precision FPGA implementation 

runs 5.4x faster than the double precision FPGA implementation, and 12x faster than 

the multi-threaded CPU implementation. What’s more, their reduced precision FPGA 

implementation uses 39 times less energy than the CPU implementation. For the same 

power consumption, the reduced precision FPGA implementation can compute a 

100*100 grid while the CPU implementation can only compute a 29 * 29 grid. 

 

Düben (Düben, 2018) has proposed a method to reduce the overall data usage and data 

volume by using a new number format which exploits the similarities between 

ensemble member. The data usage is reduced by reducing the number of bits that 

represent the information required for the forecasting model. The ensemble mean is 

removed from the ensemble data and is combined with a normalization by local 

ensemble range. By doing this the precision is reduced so does the number of bits which 

represents the number. 

 

The new number format is realized in a standard shallow water model using Fortran. It 

performs well for long-term, climate-type simulations. However, disadvantages still 

exist. When utilizing the new number format, ensemble members will be combined into 

one single simulation which make it impossible to parallelize them. Another 

disadvantage is that a single simulation with the new number format will take more 

time compared to the calculation of a single ensemble member. What’s more, the total 

number of floating-point operations is likely to be increased for the entire ensemble 

forecast. 

 

Sano et al. (Sano et al., 2014) have proposed a custom computing machine (CCM) 

called scalable streaming-array (SSA) for conducting stencil computation over multiple 

FPGAs.  

 

The scalable streaming-array is made up of multiple FPGA, with one master FPGA and 

multiple slave FPGAs. On each FPGA, there is one ISRU (Input Stream Routing Unit), 

one OSRU (Output Stream Routing Unit) and multiple PSM (Pipelined Stage Model). 

Each PSM consists of multiple PE, which forms an array connected by a bidirectional 
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1-Dimensional torus network. The SSA is literally a linear array of PSM, the input 

values streaming through the ISRU and are assigned to the PEs of the first PSM. Each 

PE will calculate several stencils base on the value they receive and the value stored in 

their local buffer. After the calculation is completed, the result will be sent to the 

corresponding PEs in the next following PSM. The PEs in the same PSM will also needs 

to communicate with the above and lower PEs to exchange the value they received, 

since each PE doesn’t have all the value it needs to finish the stencil computation. The 

final output will come from the OSRU which is a single stream.  

 

The scalable streaming-array is designed in this way due to the low operational intensity 

of stencil computation, as well as the number of iterations needed for allowing the result 

to converge. Since FPGA is famous for its deep pipeline, each PSM is responsible for 

the calculation of one iteration. In this way, all the iterations are pipelined, which means 

multiple iteration computation can be done using a single data stream, and no large 

memory bandwidth will be needed. Hence, memory access latency is concealed.  

 

A performance model is also proposed for estimating peak performance, scalability and 

speedup. They demonstrated their scalable streaming-array architecture on multiple 

high-end and low-end FPGAs. Both 2-Dimensional and 3-Dimensional Jacobi 

computation are used as benchmark. Their design showed a good agreement with the 

performance model, and achieved performance of 260 GFlop/s and 236 GFlop/s for 2-

Dimensional and 3-Dimensional Jacobi computation, which are 87.4% and 83.9% of 

the peak performance respectively, with a memory bandwidth of only 2.0 GB/s. In 

terms of power consumption, the scalable streaming-array architecture provided 

excellent performance per power of 1.30 GFlop/s/W and 1.07 GFlop/s/W for the 2-

Dimensional and 3-Dimensional Jacobi computation respectively. Their design also 

showed good scalability. 

 

Mondigo et al. (Mondigo et al., 2019) proposed a scalable architecture with deep 

pipelined stream. What they proposed in this paper is based on the one developed by 

(Sano et al., 2014). The major contribution of this paper is as follows, it first explained 

how temporal and spatial parallelism can be achieved, then it presents an inter-FPGA 

communication subsystem. Finally, it perfected the performance model Sano et al 
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proposed by considering the inter-FPGA communication overhead, overheads 

introduced by the temporal parallelism and spatial parallelism. 

 

Temporal parallelism can be achieved by cascading multiple SPE (Streaming 

Processing Element) to form a deep pipeline. Spatial parallelism can be achieved by 

having multiple parallelized unit pipelines in each SPE.  

 

The inter-FPGA communication subsystem proposed in this paper is implemented base 

on a FC (Flow Control) core and a Serial-Lite III (SL3) core. FC core includes TX 

buffer, RX buffer and credit counter to deal with incoming data stream and backpressure. 

Both link latency and the depth of the communication buffers will affect the inter-FPGA 

communication overhead. While the deep pipeline introduced by the temporal 

parallelism will also lead to overhead. Furthermore, the wider input/output data stream 

bandwidth introduced by the spatial overhead will cause overhead if either the memory 

bandwidth or communication link bandwidth is insufficient. By taking all these factors 

into consideration, the performance model can estimate the theoretical performance 

accurately. The theoretical performance is different from peak performance by 

considering the overheads. 

 

They demonstrated their design on multiple cascaded Arria 10 FPGAs using tsunami 

simulation as benchmark. They found out that the highest scaled performance for 8 

cascaded Arria 10 FPGAs is achieved with a single pipeline of 5 SPEs, which obtained 

a scaled performance of 2.5 TFlops and a parallel efficiency of 98%. 

 

Fifield et al (Fifield et al., 2016) have proposed several methods for optimizing OpenCL 

application on Xilinx FPGA. In their slide, they first introduced the FPGA architecture 

and its difference between CPU and GPGPU. Then they talked about the difficulties for 

programming FPGA.  

 

They proposed several ways of optimizing OpenCL kernels running on Xilinx FPGA, 

including common optimization like loop unrolling, loop pipelining, work item 

pipelining, data vectorization, burst memory transfer, array partitioning and the usage 

of local memory instead of global memory. However, they also proposed some other 
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unique optimization methods. For example, specifying a better local work group size, 

using pipes to stream data between kernels and using multiple external memory DDR 

banks. 

 

Muslim et al (Muslim et al., 2017) has presented an HLS-based FPGA implementation 

of several algorithms, including KNN (K-Nearest Neighbour) algorithm, Monte Carlo 

methods for financial models and bitonic sorting algorithm. They also conducted a 

performance comparison between FPGA and some high-end GPGPU in terms of 

execution time and power consumption.  

 

The optimizations they used including work item pipelining, loop pipelining, loop 

unrolling, burst memory transfer, using on-chip memory, using on-chip pipes for inter-

kernel communication, using multiple compute units and using dedicated memory port 

for each global array. Besides, Muslim et al also tried optimizing the algorithm itself. 

For example, they developed two version of the KNN algorithm. The first version only 

implemented the distance calculation in the kernel. In the second version however, they 

implemented both the distance calculation and the nearest neighbour estimation in two 

different kernels. Muslim et al believed FPGA will perform better for applications that 

doesn’t require too many accesses to slow external DRAM, due to its limited memory 

bandwidth with it. (compared to GPGPU which has a larger memory bandwidth 

interface with external DRAM). They also believed that loop pipelining will yield a 

better performance than loop unrolling since the number of memory port is limited. 

They claimed that optimizing FPGA application is about guiding the compiler to 

generate optimized code and memory architecture for each kernel. 

 

They concluded that FPGAs are more energy-efficient than GPGPUs. If FPGA-specific 

optimizations are applied, FPGA can yield better performance than GPGPU in some 

test cases as well. For example, when they run Monte Carlo method for Black-Scholes 

financial model with European vanilla option, The Virtex-7-series FPGA is 2x faster 

than K4200 GPGPU, and the device power of this FPGA is only 11% of the GTX960 

GPGPU. In the case of Black-Scholes model with Asian option, Virtex-7 is at least 2x 

faster than the GTX960 GPGPU and consumes only 13% of the energy. When they 

applied the Monte Carlo method on Heston Model with European vanilla option, The 



44 

 

Virtex-7 is 4x faster than the GTX960 GPGPU and uses 7% of the GPGPU energy for 

this algorithm. In the case of Heston Model with European barrier option, the Virtex-7 

FPGA has 5x performance and consumes only 8% of the energy for the same amount 

of workload, compared to GTX960 GPGPU. 

 

Both Conte (Conte, 2019) and Gorlani (Gorlani, 2017) developed an optimized 

molecular dynamics application on FPGA. Molecular dynamics computation is a 

certain kind of stencil computation. 

 

They both introduced optimization methods like using on-chip memory, burst memory 

transfer, work item pipelining, loop pipelining, loop unrolling, array partitioning, data 

vectorization and specifying a better local work size.  

 

Gorlani developed two optimized version of molecular dynamics application, namely 

the “plain version” and the “unroll version”. The plain version is developed based on 

the baseline version by utilizing optimization methods like work item pipelining, burst 

memory transfer and on-chip memory. The unroll version is developed based on the 

plain version by further optimizing it using loop unrolling. Gorlani also introduced the 

principles of the NDRange kernel. The multiple work items within the NDRange kernel 

will be executed in a loop (or a nested loop, depends on the dimension of the NDRange 

kernel), the index of the loop is the magnitude of each dimension of the NDRange 

kernel. By conducting a series of experiment, Gorlani also managed to prove that in 

terms of data vectorization, larger vector size will lead to higher data throughput. 

What’s more, burst memory transfer is fundamental to achieving better performance, 

the increase of programmable logic clock frequency will also lead to higher data 

throughput, especially in the case of burst data access. 

 

Conte developed his optimized version of molecular dynamics application by 

optimizing the neighbour_build kernel and force_compute kernel respectively. The 

neighbour_build kernel is optimized by using on-chip memory, data vectorization and 

burst memory transfer, while the force_compute kernel is optimized by using on-chip 

memory, data vectorization, burst memory transfer and array partitioning. Conte also 

introduced the relationship between memory port and memory interface and 



45 

 

demonstrated how to improve performance by using multiple memory ports. In fact, 

the reason why array partitioning might be able to achieve better performance is that by 

partitioning the array, multiple memory ports will be utilized simultaneously. Hence, 

the memory bandwidth is used in a more efficient way. 

 

Their optimized molecular dynamics application both achieve improved performance 

after applying some of the optimization methods, compare to their baseline version. In 

Conte’s molecular dynamics application, the optimized neighbour_build kernel yields 

a performance improvement of 11% compared with the baseline version, while the 

optimized force_compute kernel yields a performance improvement of 28% compared 

with the baseline version. 

2.7.3. Paper Focused on Overhead Analysis 

Riley et al. (Riley et al., 1997) have proposed a method for developing high-

performance parallel program by utilizing a technique called overhead analysis. 

Molecular dynamic serves as a case study here. The overhead analysis tries to measure, 

identify and explain all sorts of overhead, then minimize them accordingly. To conduct 

overhead analysis, a computable solution for the problem needs to be found first, then 

a candidate implementation needs to be selected and implemented. After that, the 

execution behaviour needs to be understood. After the overhead analysis is finished, a 

new candidate implementation or even a new computable solution might be chosen 

depends on the circumstances. 

 

The overhead analysis is an iterative process and both the performance and cost of the 

application need to be considered. The process will be stopped if one of the following 

situations is satisfied, an acceptable performance is achieved, the improvement of the 

performance is not cost-effective, or efforts run out. A series of overheads are 

mentioned here including, insufficient parallelism overhead, algorithmic overhead, 

load imbalance overhead, scheduling overhead, synchronization overhead, remote 

access overhead and compiler overhead. The situation is summarised using 

performance curve, including a naïve ideal curve, a realistic ideal curve and an achieved 

curve.  
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They demonstrated that by using overhead analysis to understand the observed 

behaviour of the application, the programmers only need to spend a limited amount of 

effort to find out the most significant effect that limits the performance. Therefore, the 

available development resource can be better utilized. 

2.8. Summary 

The background knowledge needed for this project is presented in detail in this chapter. 

A general FPGA background is provided, as well as the background of OpenCL 

language, which includes the platform model, execution model, kernel programming 

model and the memory model. The IDE used in this project called SDx is discussed. 

What’s more, the stencil computation, which is the computation that shallow water 

model belongs to, is demonstrated in detail as well. The common shallow water model 

along with the simplified one is also described. Furthermore, a series of optimization 

methods for FPGA application developed using OpenCL are presented, which includes 

optimization for kernel, host and optimization related to SDx. Finally, a literature 

review is provided including papers focused on performance modelling, performance 

optimization and overhead analysis.  
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Chapter 3 Research Methodology 

This chapter introduces the research methodology used in this project. Section 3.1 

provides a description regarding how performance estimation is conducted in this 

project. Section 3.2 demonstrates the method for carrying out overhead analysis. 

Section 3.3 describes a series of optimization method which are applied to the 

simplified shallow water application, all of these are selected from the methods listed 

in Section 2.6. Section 3.4 explains how the optimization methods are applied to the 

simplified shallow water application. Section 3.5 demonstrate a method for efficient 

FPGA programming. Section 3.6 provide a description about how to obtain the 

execution time accurately and correctly. 

 

This project implements a simplified shallow water weather & climate forecasting 

application using C++, OpenCL and an IDE called SDx, provided by Xilinx. An 

overhead analysis is first carried out towards the baseline code. After that, a series of 

optimization methods are applied to the baseline code one after another, following a 

certain principle, which is described in Section 3.4, to tackle the corresponding 

overhead. A performance estimation is conducted with the most optimized code in each 

optimization iteration, to evaluate the gap between the estimated performance and the 

achieved performance. Methods of efficient FPGA programming and accurate 

execution time acquisition are also developed and applied. 

 

Further details of the experimental set up can be found in Chapter 6. 

3.1. Performance Estimation 

Performance estimation is to estimate the execution time of a certain algorithm that 

implemented on FPGA, based on the latency information and clock frequency provided 

by the system estimate report. The estimated execution time can be obtained using the 

following formula, 

𝑇 =  ∑(
𝐶𝑖

𝑓𝑒𝑠𝑡
)

𝑛

𝑖=1

 

where T is the estimated execution time, fest is the estimated clock frequency, Ci is the 
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latency (in terms of clock cycle) of kernel i. It should be noted that if kernels are 

executed concurrently, then only the latency of one of the kernels needs to be put into 

the above formula, assuming there are no load imbalance overheads. However, if load 

imbalance overheads exist, then the latency of the kernel which requires the longest 

execution time should be selected. 

3.2. Overhead Analysis 

The overhead analysis needs to be made to identify and then explain the overheads. The 

overhead analysis techniques can be referred to the ones proposed by (Riley et al., 1997). 

Overheads are roughly divided into five categories, namely non-parallel code overhead, 

load imbalance overhead, scheduling overhead, synchronization overhead and memory 

access overhead. The existence of sequential code results in non-parallel code overhead. 

Load imbalance overhead occurs due to the different amount of work possessed by each 

processor core. Scheduling overhead is the extra code or instruction for scheduling tasks 

to different processor cores, compared to sequential code. Synchronization overhead is 

the overhead introduced by synchronization mechanism like lock or barrier. Memory 

access overhead occurs when data is not in the cache (in this case BRAM) or not in the 

local memory, so processor must take extra time to fetch data from global memory or 

remote memory. 

3.3. Overhead Minimization 

After the overheads are identified and explained, they need to be minimized accordingly. 

A series of optimization methods that applied to the simplified shallow water 

application are listed as follows, 

 

In terms of kernel optimization, 

⚫ On-chip memory. 

⚫ Burst memory transfer. 

⚫ Loop unrolling. 

⚫ Loop pipelining. 

⚫ Array partitioning. 

⚫ Data vectorization. 
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⚫ The restrict keyword. 

⚫ Dataflow directive. 

⚫ Function inline. 

 

In terms of host optimization, 

⚫ Overlapping data transfer between host memory and device memory, with the 

kernel computation. 

⚫ Concurrent execution of kernels. 

 

Other optimization methods including the usage of a better computable solution. For 

example, kernel L100 can be broke down into kernel L100_cu and L100_h, so the 

computation of array cu and array h can be done simultaneously, as will be mentioned 

in Section 5.4. This changing in computable solution will become very useful when it 

comes to the optimization of concurrent execution of kernels. Furthermore, array update 

kernel and periodic continuation kernel, for example kernel L100_cu and kernel 

L100_pc_cu, can be merged to reduce memory access overhead, which will be 

mentioned in Section 5.6. 

 

The overhead analysis and minimization are iterative processes. These two processes 

only stop if at least one of the following conditions are met: time or efforts are running 

out, or the performance is acceptable, or the improvement of the performance is no 

longer cost-effective. 

3.4. The Principle of Applying Optimization Method 

A series of optimization methods are applied to the simplified shallow water application 

one after another. The optimization process is guided by both the execution time and 

the information obtained from the system estimate report and HLS report, including 

hardware resource utilization, latency and loop information. The basic idea is, if the 

application yields a worse performance after applying a certain optimization method, 

this optimization method will be put aside, and the code will be rolled back to the 

previous version to try another optimization method. If a significant change in terms of 

performance fails to be observed after applying a certain optimization method, this 

optimization method will still be kept. 



50 

 

When it comes to the situation that more than one optimization methods can improve 

the performance of the application, but only one of them can be chose, then the 

scalability of the hardware, as well as latency, should be considered. For example, the 

decision must be made when it comes to using whether loop pipelining or loop unrolling 

to increase the parallelism between iterations. The hardware resource utilization should 

be reflected by the performance and the latency. This means a better performance and 

a lower latency will be expected if more hardware resources are consumed.  

3.5. A Method of Efficient FPGA Programming 

There are two ways to program the FPGA efficiently, namely relying more on system 

estimate report and HLS report to guide the optimization process, and using emulator 

to verify functional correctness. It should be noted that these two methods could be 

used together. 

 

As mentioned in Section 3.4, the optimization process should be guided by both 

execution time and the information from the system estimate report and HLS report. 

However, since it takes at least half an hour to obtain the execution time data, due to 

the time-consuming hardware compilation (choose actual hardware as compilation 

target). It would be a better idea if the system estimate report and HLS report is relied 

more than the actual execution time. The latency information within the system estimate 

report, which consists the start interval and the best, worst and average case latency, 

should reflects the performance.  

 

It is worth noting that obtaining the system estimate report and HLS report is much less 

time-consuming compared to obtaining the execution time. The system estimate report 

and the HLS report produced by the emulation compilation (choose emulator as the 

compilation target) is the same as the one produced by the hardware compilation. 

However, it only takes around five minutes for the emulation compilation to complete. 

Therefore, in order to program the FPGA efficiently, the code should not be compiled 

and run on actual FPGA unless significant change of latency information provided by 

the system estimate report is observed (except for host optimization, because change in 

host code will not change the system estimate report. The code needs to be compiled 

and run on FPGA after host optimization is applied).  
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Although emulator should not be used as a source of execution time or an indicator of 

performance improvement, it is quite useful when it comes to verify the functional 

correctness. Because hardware compilation usually takes more than half an hour to 

finish, it is impractical to verify the functional correctness by executing the code on 

FPGA. Hence, FPGA should not be used for the verification of functional correctness. 

However, emulation compilation only takes around five minutes to complete, while 

starting the emulator is going to take another five minutes. This means it only takes 

around ten minutes to obtain an output when using emulator. Comparing with the time 

that is needed for obtaining an output using FPGA, emulator is clearly a better candidate 

for functional correctness verification.  

 

It should be noticed that the emulator needs to be stopped and restarted each time after 

modifications are made to the code. This is to make sure the output from the emulator 

is correct. What’s more, it is also recommended to use different SDx project for 

hardware compilation and emulation compilation. This is because if the code is 

compiled using emulation compilation first, and hardware compilation later, error will 

arise when executing the code on FPGA. The reason behind this is not known yet and 

will be left for future work. 

 

In conclusion, after applying a certain optimization method, the code should be first 

compiled using emulation compilation, obtain the system estimate report and HLS 

report then execute it using emulator. If the output is incorrect, then the code should be 

modified. If the output is correct, then the system estimate report and HLS report should 

be checked. If there is no significant change in terms of latency, then this optimization 

will be kept, and another optimization method can be applied to the code. If there is a 

significant change, then the code should be compiled using hardware compilation and 

executed on FPGA, to obtain the execution time. A flow chart of a method of efficient 

FPGA programming is demonstrated as Figure 3.1 
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Figure 3.1: Flow Chart of a Method of Efficient FPGA Programming 

3.6. Execution Time Acquisition 

It should be first noticed that all the execution time measured when executing the code 

using emulator is not accurate. Therefore, the execution time should only be logged 

when executing code on FPGA. Furthermore, the emulator should not be used as an 

indicator of performance improvement either. Sometimes after certain optimization is 

applied, performance improvement might not able to observe when executing the code 

using emulator. However, when the exact same code is executed using FPGA, 

performance improvement (sometimes even significant one) can be observed. 

 

Another worth-noting point is about how to measure the execution time of kernels 

correctly and accurately. First, the kernel needs to be synchronized every time it finishes 
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execution. Because in OpenCL kernels are executed asynchronously. Although this will 

introduce more synchronization overhead, it is the foundation of acquiring accurate 

timing result. Secondly, the execution time of each kernel needs to be accumulated since 

the kernels are executed in a loop. Finally, the function used to measure the execution 

time should be chose carefully. For simplicity the time function of the C library is used 

instead of the event profiling function provided by OpenCL. However, it should be 

noted that the gettimeofday() function should be used instead of the clock() and time() 

function from the time library of C. The problem with time() is that its resolution is not 

high enough. While the problem with clock() is that, clock() function actually measures 

the execution time by counting the clock tick of the processor. Considering a 

heterogenous system of ARM CPU and FPGA is used, and the kernels are executed 

asynchronously, if the clock() function is utilized, then only the time for the host to call 

the kernels, instead of the execution time of the kernels, will be measured. This is 

because the ARM CPU might switch to sleep mode after calling the kernels, so the 

clock tick will no longer be counted, which leads to inaccurate result produced by the 

clock() function. 

 

The “time” command of Linux is also used to obtain the real time, user time and system 

time of the application. By comparing the real time against the execution time measured 

within the code, the accuracy and correctness of the timing result can be verified. 

3.7. Summary 

The methodology used in this project is presented in detail in this chapter. The model 

of performance estimation is discussed, while the overhead analysis is based on a 

method that classify the overheads into non-parallel code overhead, load imbalance 

overhead, scheduling overhead, synchronization overhead and memory access 

overhead. A series of methods including loop unrolling, loop pipelining and array 

partitioning are used to minimize the overhead. In order to guide the optimization 

process and program the FPGA efficiently, the dependence on emulator, system 

estimate report and HLS report is emphasized. Finally, the gettimeofday() function from 

the C library should be used instead of clock() and time() function to obtain the accurate 

and correct execution time. 
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Chapter 4 Experiments with Basic 

Optimization Methods 

This chapter describes the experiments conducted in this project with some basic 

optimization methods. Section 4.1 demonstrates the baseline code. Section 4.2 explains 

the reason why emulator cannot be used as the source of execution time as well as the 

indicator of performance improvement. Section 4.3 describes the using of compiler 

option of -O3 optimization. Section 4.4 provides a description of optimizing simplified 

shallow water application by manually pipelining the loop. Section 4.5 demonstrate the 

optimization of using burst memory transfer and caching data into the on-chip BRAM. 

Section 4.6 explains the optimization using loop unrolling. The results of the 

experiments described in this chapter are analysed in Chapter 6. 

 

All the experiments are conducted using problem size of 65 * 65, with an iteration count 

of 4000 (except for the experiment conducted in Section 4.2), under optimization -O0 

(except for the experiment conducted in Section 4.3), using data motion network clock 

frequency of 99.99 MHz, as well as the single work item kernel of OpenCL. All the 

experiments are conducted iteratively, meaning that each experiment is based on the 

previous one. However, it should be noted that the actual array size is 66*66, due to the 

existence of “halo”, which is discussed in Section 2.5.2. What’s more, the clock 

frequency that gets set is not necessarily going to be the clock frequency which the 

hardware executes with. 

 

The reason why no experiments are conducted using NDRange kernel of OpenCL is 

that, it is believed the performance of the baseline code which uses a single work item 

kernel, is nearly the same as the one using NDRange kernel with the optimum work 

group size. When the code is being compiled, the compiler will turn the code in the 

NDRange kernel into a nested loop, where the iteration space of the loop is the same as 

the work group size.  
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Figure 4.1: Example Code Snippet of Kernel foobar with a Local Work Group Size of 128 * 64 * 8 (Gorlani, 

2017) 

 

Figure 4.2: Kernel foobar being Compiled (Gorlani, 2017) 

Figure 4.1 and Figure 4.2 demonstrates what will happen to kernel foobar, which has a 

local work group size of 128 * 64 * 8, when it is compiled. The code is going to be 

executed in a nested loop after the kernel is compiled. The iteration space of each layer 

of the loop is the same as the magnitude of each dimension of the local work group. For 

example, the magnitude of x-dimension of the local work group is 128, so the iteration 

space of the outer loop is 128 as well. The situations are the same between the 

magnitude of y-dimension of the local work group and the iteration space of the 

medium loop, as well as the magnitude of z-dimension of the local work group and the 

iteration space of the inner loop. 

4.1. Baseline 

This experiment aims to turn a simplified shallow water application, which is developed 

using C++ and OpenCL, and meant to be executed on GPGPU, into a version that can 
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be executed on Xilinx FPGA. The execution time, as well as the hardware resource 

utilization, latency and loop information are logged to serve as a baseline.  

 

Figure 4.3: Baseline Host Code of the Initialization of Command Queue, Buffers and Kernels, plus Data 

Copy 

 

Figure 4.4: Baseline Host Code of Kernel Execution and the Copy-Back of Data 
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Figure 4.5: Timing Function based on gettimeofday() 

Figure 4.3 and Figure 4.4 demonstrate the host C++ code of the simplified shallow 

water application. The host code includes getting the Xilinx platform and device, 

loading the XCL binary file, as well as the declaration of an in-order command queue, 

kernels and buffers. After that, the data needed for computation will be transferred from 

the host memory to the device’s global memory. The execution of the kernels will get 

started once the data transfer is completed. The kernels will be synchronized every time 

after they finish execution, so the execution time of each kernel can be measured. After 

all the kernels finish execution, the data will be copied back to host memory. Figure 4.5 

shows the timing function based on the gettimeofday() function from the C library.  

4.2. The Unreliable Emulator 

This experiment is to demonstrate that emulator cannot be used as the source of 

execution time as well as the indicator of performance improvement. The baseline code 

is executed on both emulator and FPGA with an iteration count of 2. Then the execution 

time from both emulator and FPGA are recorded respectively and compared against 

each other. The reason why the simplified shallow water application only executes with 

2 iterations is that, the execution time of the code running on emulator is significantly 

longer than the execution time of the code running on FPGA. If the simplified shallow 

water application executes with 4000 iterations on emulator, the execution time will be 

so long that it becomes impractical. An optimized version of simplified shallow water 

application (from Section 4.5) is also executed on both emulator and FPGA, the 

execution time obtained from both emulator and FPGA are logged respectively and 

compared against each other.  

4.3. Iteration 1: -O3 Optimization 

This experiment is investigating the option of optimizing the simplified shallow water 

application using one of the easiest ways, the -O3 optimization option provided by the 
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compiler. This experiment builds on the baseline experiment conducted in Section 4.1. 

4.4. Iteration 2: Loop Pipelining 

This experiment is investigating the option of manually pipelining the loops in kernel 

L100_pc, L200 and L200_pc by using the “xcl_pipeline_loop” directive as mentioned 

in Section 2.6.1.  

 

Figure 4.6: Kernel Code of Loops in Kernel L200 Being Manually Pipelined 

 

Figure 4.7: Kernel Code of Loops in Kernel L200_pc Being Manually Pipelined 

Figure 4.6 and Figure 4.7 shows how the “xcl_pipeline_loop” directive is used to 

manually pipeline the loops in kernel L200 and L200_pc. The situation in kernel 

L100_pc is similar with the one in L200_pc. The reason why the “xcl_pipeline_loop” 

directive is put in the inner loop of kernel L200 is that, “the pipeline optimization 

directive should be placed at the level where a sample of data is processed. Data 

samples—a frame of data—typically supplied as an array or pointer with data accessed 

through pointer arithmetic during each transaction” (“SDSoC Profiling and 

Optimization Guide,” 2019). This experiment builds on the baseline experiment 
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conducted in Section 4.1. 

4.5. Iteration 3: Using Local Memory and Burst Memory 

Transfer 

This experiment is investigating the option of using function async_work_group_copy() 

to trigger burst memory transfer. What’s more, the data will be stored in BRAM by 

declaring the array within the kernel function as “__local”. Both methods are mentioned 

in Section 2.6.1. 

 

Figure 4.8: Kernel Code of Local Memory and Burst Memory Transfer Being Used in Kernel L100 

 

Figure 4.9: Kernel Code of Local Memory and Burst Memory Transfer Being Used in Kernel L100_pc 

Figure 4.8 and Figure 4.9 demonstrate how this is implemented in kernel L100 and 

L100_pc, the situation in kernel L200 and L200_pc is similar. In Figure 4.8, the first 

four async_work_group_copy() statements are defined as “load” operation, while the 

last four async_work_group_copy() statements are defined as “store” operation. The 
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nested loop between the async_work_group_copy() statements are defined as “calc” 

operation. This experiment builds on the baseline experiment conducted in Section 4.1. 

4.6. Iteration 4: Loop Unrolling 

This experiment is investigating the option of unrolling the loops in kernel L100, 

L100_pc, L200 and L200_pc, using “opencl_unroll_hint” directive as mentioned in 

Section 2.6.1. This experiment aims to compare the different effect posed on 

performance when using loop pipelining and loop unrolling. 

 

Figure 4.10: Kernel Code of the Inner Loop in Kernel L100 Being Completely Unrolled 

 

Figure 4.11: Kernel Code of the Loops in Kernel L100_pc Being Completely Unrolled 

Figure 4.10 and Figure 4.11 demonstrates how this is implemented in kernel L100 and 

L100_pc. The situation in kernel L200 and L200_pc is similar. An experiment of 

unrolling the loops in kernels L100, L100_pc, L200 and L200_pc using a factor of 8 is 
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also conducted. It can be achieved by simply replacing directive “opencl_unroll_hint” 

with “opencl_unroll_hint(8)”. This experiment is based on the experiment conducted 

in Section 4.5. 

4.7. Summary 

The experiments described in this chapter are summarized in the following table,  

 

Optimization -O3 

Optimization 

Loop 

Pipelining 

Local Memory and Burst 

Memory Transfer 

Loop 

Unrolling 

Baseline X X X X 

Iteration 1 √ X X X 

Iteration 2 X √ X X 

Iteration 3 X √ (auto*) √ X 

Iteration 4 X X √ √ 

*: auto means the loops are pipelined automatically by the compiler after optimizations 

local memory and burst memory transfer are applied. 

Table 4.1: Summary of Experiments Described in Chapter 4 
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Chapter 5 Experiment with Advanced 

Optimization Methods 

This chapter describes the experiments conducted in this project with some more 

advanced optimization methods. Section 5.1 demonstrates the optimization using array 

partitioning. Section 5.2 explains how to optimize the code using automatic data 

vectorization. Section 5.3 describes the optimization of overlapping data transfer with 

kernel computation. Section 5.4 provide a description of optimizing simplified shallow 

water application by using the restrict keyword and the concurrent execution of kernels. 

Section 5.5 demonstrate the optimization of using function calls pipelining and function 

inline. Section 5.6 provides a description of merging array update operation with 

periodic continuation operation. The results of the experiments described in this chapter 

are analysed in Chapter 6. 

5.1. Iteration 5: Array Partitioning 

This experiment is investigating the option of partitioning the array using 

“xcl_array_partition()” directive as mentioned in Section 2.6.1. Array partitioning can 

solve the “limited memory port” warning message arise during the compilation. 

 

Figure 5.1: Kernel Code of the Local Arrays in Kernel L100 Being Partitioned 
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Figure 5.2: Kernel Code of the Local Arrays in Kernel L100_pc Being Partitioned 

Figure 5.1 and Figure 5.2 show how this is implemented in kernel L100 and L100_pc. 

The situation in L200 and L200_pc is similar. The loops in kernel L100_pc and 

L200_pc is unrolled using a factor of 2 because it can minimize the initial interval to 1. 

This experiment is based on the experiment conducted in Section 4.5. 

5.2. Iteration 6: Data Vectorization 

This experiment is investigating the option of vectorizing the array elements 

automatically by using “vec_type_hint” directive as mentioned in Section 2.6.1.  

 

Figure 5.3: Kernel Code of the Local Arrays in Kernel L100 Being Vectorized Automatically 
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Figure 5.4: Kernel Code of the Local Arrays in Kernel L100_pc Being Vectorized Automatically 

Figure 5.3 and Figure 5.4 shows how this can be implemented in kernel L100 and 

L100_pc. The situation in kernel L200 and L200_pc is similar. This experiment is based 

on the experiment conducted in Section 5.1. 

5.3. Iteration 7: Overlapping Data Transfer with Kernel 

Computation 

This experiment is investigating the option of overlapping the data transfer between 

host and device along with the kernel computation, by using function 

enqueueMigrateMemObjects() as mentioned in Section 2.6.2.  
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Figure 5.5: Host Code of Using enqueueMigrateMemObjects() to Overlap Data Transfer with Kernel 

Computation 

 

Figure 5.6: Kernel Code of Kernel L100 Being Optimized by Using Fewer async_work_group_copy() 

Figure 5.5 demonstrates how this is implemented in host code. The 

enqueueWriteBuffer() and enqueueReadBuffer() function needs to be replaced with 

enqueueMigrateMemObjects(), with different parameter. The parameter 

“CL_MEM_USE_HOST_PTR” needs to be added to the declaration of buffer_p and 

buffer_u as well. It is worth noting that the enqueueMigrateMemObjects() function 

needs to be synchronized to obtain the correct result. Figure 5.6 demonstrates another 

optimization by using fewer async_work_group_copy() function. This means only the 

data that is necessary for computation will be copied in and out between the on-chip 

and off-chip memory. This experiment is based on the experiment conducted in Section 

5.2. 
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5.4. Iteration 8: Restrict Keyword and Concurrent 

Execution of Kernels 

This experiment is investigating the option of using multiple in-order command queues 

or one out-of-order command queue to execute the kernels concurrently. What’s more, 

the “__restrict” keyword is also utilized for compiler optimization. The optimization 

methods of “__restrict” keyword and concurrent execution of kernels are mentioned in 

Section 2.6.1 and Section 2.6.2 respectively. 

 

Figure 5.7: Host Code of Conducting Concurrent Execution of Kernels by Using One Out-of-Order 

Command Queue 

 

Figure 5.8: Host Code of Executing Kernels Concurrently by Using One Out-of-Order Command Queue 

Figure 5.7 and Figure 5.8 shows how this can be implemented using one out-of-order 

command queue in host code. Kernel L100 is broken down into two separate kernels 
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called L100_cu and L100_h for better parallelization. Because the computation of array 

cu and h can be conducted simultaneously. The same method has been applied to kernel 

L200 as well, where it is broken down into kernel L200_u and L200_p.  

 

Figure 5.9: Host Code of Conducting Concurrent Execution of Kernels by Using Two In-Order Command 

Queue 

 

Figure 5.10: Host Code of Executing Kernels Concurrently by Using Two In-Order Command Queue 

Figure 5.9 and Figure 5.10 demonstrates how concurrent execution of kernels can be 

achieved by using two in-order command queues. In this further optimized version, 

kernel L100_pc is broken down into two separate kernels called L100_pc_cu and 

L100_pc_h for better parallelization. Because the periodic continuation operation of 

array cu and h can be conducted simultaneously. The same method has been applied to 

kernel L200_pc as well, where it is broken down into kernel L200_pc_u and L200_pc_p. 
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All array-cu-related computations are put into one command queue, while all array- h-

related computations are put into another command queue. The situation of the 

computation of array u and array p is similar. 

 

Figure 5.11: Kernel Code of Kernel L100_cu Being Optimized by Using Keyword “__restrict” 

Figure 5.11 shows how to use the “__restrict” keyword in kernel L100_cu. The situation 

in all other kernels is similar. This experiment is based on the experiment conducted in 

Section 5.3. 

5.5. Iteration 9: Dataflow and Function Inline 

This experiment is investigating the option of pipelining the function calls in each 

kernel by using directive “xcl_dataflow” and achieving function inline by using 

directive “always_inline” as mentioned in Section 2.6.1. In order to apply this 

optimization to the kernel code, some modifications need to be made by packing the 

async_work_group_copy() function and computation code into function calls. It is 

worth noting that all the periodic continuation kernels cannot be optimized using 

“xcl_dataflow” directive.  

 

Figure 5.12: Kernel Code of Packing async_work_group_copy() into “write_u_p” Function 

 

Figure 5.13: Kernel Code of Packing async_work_group_copy() into “read_u_p” Function 

 

Figure 5.14: Kernel Code of Packing Array Update Code into “Calculation” Function 
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Figure 5.15: Kernel Code of Using Function Calls in Kernel L100_cu, as well as Function Calls Pipelining 

and Function Inline 

Figure 5.12 demonstrates how the async_work_group_copy() functions are packed into 

“write_u_p” function. The situations in other “write” functions are similar. Figure 5.13 

demonstrates how the async_work_group_copy() functions are packed into “read_u_p” 

function. The situations in other “read” functions are similar. Figure 5.14 shows how 

the array update codes are packed into “calculation” functions. Figure 5.15 explains 

how to replace the original code with function calls in kernel L100_cu, as well as the 

usage of directive “xcl_dataflow” and “always_inline”. Situation in all other array 

update kernels are similar. This experiment is based on the experiment conducted in 

Section 5.4. 

5.6. Iteration 10: Merging Array Update Kernel with 

Periodic Continuation Kernel 

This experiment is investigating the option of merging the array update kernel with the 

periodic continuation kernel, as mentioned in Section 2.6.1. In the previous design, 

array update operation and periodic continuation operation are conducted in two 

different kernels, which means data will be transferred between global memory and 

local memory four times, as demonstrated in Figure 4.8, Figure 4.9 and Figure 5.10. 

This is unnecessary because periodic continuation can be conducted right after array 

update is complete, since all the whole array is cached in BRAM. By merging array 

update kernel with periodic continuation kernel, data only needs to be transfer twice 

between global memory and local memory. 
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Figure 5.16: Host code that shows Periodic Continuation Kernels are merged with Array Update Kernels 

 

Figure 5.17: Kernel Code of Periodic Continuation Operation merged into Kernel L100_cu 

Figure 5.16 demonstrates the main computation loop in the host code of iteration 10, 

where periodic continuation kernels no longer exist. While Figure 5.17 shows how this 

is implemented in kernel L100_cu. Situations in other kernels are similar. This 

experiment is based on the experiment conducted in Section 5.4, because periodic 

continuation operation cannot be optimized using function calls pipelining and function 

inline. 
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5.7. Summary 

The experiments described in this chapter are summarized in the following table,  

Optimization Array 

Partitioning 

Data 

Vectorization 

Overlapping 

Data Transfer 

and 

Computation 

Restrict 

Keyword 

and Kernel 

Concurrent 

Execution 

Dataflow 

and 

Function 

inline 

Kernel 

Merging 

Iteration 5 √ X X X X X 

Iteration 6 √ √ X X X X 

Iteration 7 √ √ √ X X X 

Iteration 8 √ √ √ √ X X 

Iteration 9 √ √ √ √ √ X 

Iteration 10 √ √ √ √ X √ 

Table 5.1: Summary of the Experiments Described in Chapter 5 
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Chapter 6 Experimental Data Analysis 

This project are evaluated using an ARM CPU-FPGA heterogeneous system on a single 

Zynq® UltraScale+™ MPSoC ZCU102 board. Evaluation conducted with multiple 

Zynq® UltraScale+™ MPSoC ZCU102 boards is left for future work.  

 

Both speedup, hardware resource utilization and latency information are considered 

during the evaluation. The speedup can be obtained by using the following formula,  

Speedup = TBaseline / TOptimized 

where TBaseline is the execution time of the baseline code, while TOptimized is the execution 

time of the optimized code. 

 

The information of hardware resources utilization as well as latency can be obtained 

from the system estimate report and HLS report. Interpretation of the information is 

discussed in Section 6.1. Power consumption of the application is discussed in Section 

6.8. 

 

The results are summarised in diagrams and tables indicating speedup, latency and 

hardware resource utilization. 

 

In terms of performance, the achieved performance of the simplified shallow water 

weather & climate forecasting application implemented in this project is compared 

against the performance of an existing, sequential C version of simplified shallow water 

application executing on modern CPU. The performance of the simplified shallow 

water application runs on FPGA is also compared with the performance of the 

application that runs on modern GPGPU. (Pappas, 2012) also provides some 

performance data of the original shallow water application executing on CPUs and 

GPGPUs.  

 

What’s more, since several increasingly sophisticated, simplified shallow water 

applications are implemented, the speedup, latency and hardware resource utilization 

are compared incrementally against each implementation. 
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All the experiments are executed three times, the execution time is the average of the 

three runs. The standard deviation is also calculated. If the results are not consistent, 

meaning that the standard deviation is not small enough, the experiment will be run two 

more times. The result of the first run is always be forfeited to avoid any start-up 

overhead. The execution time of the main computation loop as well as the whole 

application are logged, the execution time of each kernel, are logged as well if it is 

applicable and necessary. The hardware resource utilization, latency information as 

well as the loop information, which can be obtained from the system estimate report 

and HLS report, are also recorded. 

6.1. Latency and Loop Information Interpretation 

This section explains how to interpret the latency information and the loop information 

provided in the system estimate report and HLS report. The latency and loop 

information of kernel L100 of the baseline code serves as an example here.  

Kernel Start Interval Best case Average case Worst case 

L100 17190 17189 17189 17189 

Table 6.1: Latency Information of Kernel L100 of the Baseline Code 

Kernel Loop Min 

latency 

Max 

latency 

Iteration 

latency 

Achieved 

II 

Target 

II 

Trip 

count 

Pipelined 

L100 calc** 17187 17187 292 4 1 4225 yes 

**: calc stands for the update of array cu and array h. 

Table 6.2: Loop Information of Kernel L100 of the Baseline Code 

Table 6.1 and Table 6.2 demonstrate the latency and loop information of kernel L100 

of the baseline code. The terms used in Table 6.1 are defined in Section 2.4. In Table 

6.1, the start interval is very close to the best, average and worst case of latency, which 

means the functions in kernel L100 are not overlapped by default. Function calls 

overlapping is discussed in the definition of dataflow directive in Section 2.6.1. The 

minimum and maximum latency in Table 6.2 is very close to the best, average and worst 

case latency in Table 6.1, although they are not the same. Here pipelined indicates the 

inner loop is pipelined 

 

It should be noted that, in a pipelined loop,  

Latencytotal ≈ [ Achieved II * (Trip count – 1) ] + Iteration latency 
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This is because the achieved II represent the number of clock cycles each iteration 

(except the first one) needed to produce the result in a pipelined loop. However, for the 

result of the first iteration it will always be the number of iteration latency. This equation 

can be verified by using the data in Table 6.2. The right side of the equation equals, 

[ 4 * (4225 – 1) ] + 292 = 17188 

which is very close to total latency 17187. 

6.2. The Scalability Model 

A simple scalability model is presented here which aims to discover the relationship 

between the hardware resource utilization and speedup obtained for each 

implementation, versus the baseline. This model is useful when it comes to the situation 

that one optimization method needs to be selected from multiple optimization methods 

by a developer.  

 

The basic idea behind this model is an IP block is generated based on the code which 

consumes a certain amount of hardware resource. The total amount of hardware 

resource on a single FPGA is limited, so the number of IP blocks which can be generated 

and included can be calculated. Assuming all the generated IP blocks can run in parallel, 

after the execution time of each IP block on a given problem size is obtained, the 

throughput, which is defined below, can then be acquired. Take the baseline code as an 

example:  

Kernel FF LUT DSP BRAM_18K 

L100 3692 4003 16 6 

L200 3682 5905 16 2 

L100_pc 3440 4194 0 2 

L200_pc 3440 4194 0 2 

Total 14254 18296 32 12 

Table 6.3: Hardware Resource Utilization of the Baseline Code 

Table 6.3 demonstrates the amount of hardware resource needed for each kernel. From 

Table 6.3 it can be deduced that a copy of IP block that consists of a total number of 

14254 FFs, 18296 LUTs, 32 DSPs and 12 BRAM_18Ks is generated. The FPGA used 

in this project has a total number of 548160 FFs, 274080 LUTs, 2520 DSPs and 1824 

BRAM_18Ks. Hence, at most 14 copies of such IP block can be generated. Since the 
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execution time of the baseline code is around 106 seconds with a problem size of 65 * 

65 elements, which implies a throughput of approximately 40 elements per second. 

With 14 copies of IP blocks and perfect scalability, a throughput of (65 * 65 * 14) / 106 

which is around 558 elements per second can be achieved. 

 

In conclusion, the scalability model can be summarized as follow, 

𝑁ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = min (⌊
𝐹𝐹𝑡𝑜𝑡𝑎𝑙

𝐹𝐹𝑠𝑖𝑛𝑔𝑙𝑒
⌋ , ⌊

𝐿𝑈𝑇𝑡𝑜𝑡𝑎𝑙

𝐿𝑈𝑇𝑠𝑖𝑛𝑔𝑙𝑒
⌋ , ⌊

𝐷𝑆𝑃𝑡𝑜𝑡𝑎𝑙

𝐷𝑆𝑃𝑠𝑖𝑛𝑔𝑙𝑒
⌋ , ⌊

𝐵𝑅𝐴𝑀𝑡𝑜𝑡𝑎𝑙

𝐵𝑅𝐴𝑀𝑠𝑖𝑛𝑔𝑙𝑒
⌋)  

Throughput = ( Problem size * Nhardware ) / T 

where Nhardware represent the number of IP block being generated. FFtotal, LUTtotal, 

DSPtotal and BRAMtotal is the total number of FF, LUT, DSP and BRAM on a single 

FPGA respectively. FFsingle, LUTsingle, DSPsingle and BRAMsingle is the number of FF, 

LUT, DSP and BRAM a generated IP block consists respectively. T represents the 

execution time of main computation loop within one generated IP block. 

6.3. Why Emulator is unreliable 

This section explains in detail, with the help of experimental data, why the emulator is 

unreliable in terms of execution time measurement.  

 

Diagram 6.1: Execution Time of Different Section of the Baseline Code between Emulator and FPGA 
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Diagram 6.2: The Execution Time of each Kernel of the Baseline Code on Emulator 

 

Diagram 6.3: The Execution Time of each Kernel of the Baseline Code on FPGA 

Diagram 6.1 demonstrates the execution time of each kernel, as well as the main loop 

and the whole application, when executing the baseline code on both emulator and 

FPGA. It is obvious that the difference between the execution time measured on FPGA 

and the one measured on emulator is significant, in every kernel as well the time of the 

main loop and the whole application. Hence, the execution time measured on emulator 

is not accurate. 
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Diagram 6.2 and Diagram 6.3 provide some more evidence regarding why the 

execution time measured on emulator is not accurate. Diagram 6.2 describes the 

execution time of each kernel when executing the baseline code on emulator. Clearly 

kernel L100 is the one that dominates the execution time. Diagram 6.3 demonstrates 

the execution time of each kernel when executing the baseline code on FPGA. In this 

case, it is obvious that kernel L200 is the one that dominates the execution time. When 

cross referencing with the baseline system estimate report, it can be found out that the 

average latency for kernel L200 is significantly larger than the other kernels, which 

means Diagram 6.3 should be the accurate one instead of Diagram 6.2. 

 

Diagram 6.4: Execution Time of Different Section between the Baseline Code and Iteration 3 on Emulator 
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Diagram 6.5: Execution Time of Different Section between the Baseline Code and Iteration 3 on FPGA 

Diagram 6.4 demonstrates the execution time between baseline and iteration 3 on 

emulator, of each kernel as well the main loop and the whole application. Diagram 6.5 

presents the execution time between baseline and iteration 3 on FPGA, of each kernel 

as well the main loop and the whole application. Iteration 3 is an optimization that 

significantly improves the performance, this can be seen from Diagram 6.5, the 

execution time of each kernel as well as the main loop and the whole application is 

shortened. However, this is not the case in emulator. As Diagram 6.4 shows, there is no 

significant change in execution time after applying iteration 3. Even there is a change 

in execution time, it only makes the performance becomes worse. Therefore, the 

emulator should not be used as an indicator of performance improvement. Because 

performance improvement on FPGA doesn’t necessarily means performance 

improvement on emulator.  

6.4. Data from Experiments with Basic Optimizations 

This section analyses the speedup, hardware resource utilization, latency and loop 

information from the experiments conducted in Chapter 4.  
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Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Diagram 6.6: Speedup of each Section of Iteration 1, 2, 3 and 4 Compared to Baseline 

 

Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Diagram 6.7: Average Latency of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline 
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Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Diagram 6.8: FF Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline 

 

Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Diagram 6.9: LUT Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline 
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Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Diagram 6.10: DSP Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline 

 

Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Diagram 6.11: BRAM_18K Usage of each Kernel of Iteration 1, 2, 3 and 4 Compared to Baseline 
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Kernel Loop Min 

latency 

Max 

latency 

Iteration 

latency 

Achieved 

II 

Target 

II 

Trip 

count 

Pipelined 

L200 calc* 2395575 2395575 567 N/A N/A 4225 No 

L100_pc pc1* 34905 34905 537 N/A N/A N/A No 

pc2** 34905 34905 537 N/A N/A N/A No 

L200_pc pc1 34905 34905 537 N/A N/A N/A No 

pc2 34905 34905 537 N/A N/A N/A No 

calc* means the loop for updating the array. 

pc1* means the first periodic continuation loop. 

pc2** means the second periodic continuation loop. 

Table 6.4: Partial Loop Information of Iteration 2 

Kernel Loop Min 

latency 

Max 

latency 

Iteration 

latency 

Achieved 

II 

Target 

II 

Trip 

count 

Pipelined 

L100 calc* 8471 8471 24 2 1 4225 Yes 

L200 calc 8471 8471 24 2 1 4225 Yes 

L100_pc pc1* 65 65 2 1 1 65 Yes 

pc2** 65 65 2 1 1 65 Yes 

L200_pc pc1 65 65 2 1 1 65 Yes 

pc2 65 65 2 1 1 65 Yes 

calc* means the loop for updating the array. 

pc1* means the first periodic continuation loop. 

pc2** means the second periodic continuation loop. 

Table 6.5: Partial Loop Information of Iteration 3 

Diagram 6.6 shows the speedup of each kernel, as well as the main loop, whole 

application and real time of iteration 1, 2, 3 and 4 against the baseline. Diagram 6.7 

shows the average latency of each kernel of baseline, iteration 1, 2, 3 and 4. Diagram 

6.8 (FF), Diagram 6.9 (LUT), Diagram 6.10 (DSP) and Diagram 6.11 (BRAM_18K) 

show the hardware resource utilization of each kernel when executing baseline code as 

well as iteration 1, 2, 3 and 4. 

 

By analysing the baseline code, which is mentioned in Section 2.5.2 and Section 4.1, 

the non-parallel code overhead as well the memory access overhead is the most 

significant overhead initially, because none of the code is parallelized and all the data 

are stored in the slow off-chip memory in the baseline. Synchronization overheads also 
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exist because kernels need to be synchronized for measuring the execution time. 

However, these synchronizations are inevitable and they shouldn’t be the main 

overhead. There shouldn’t be any load imbalance overhead and scheduling overhead 

either. 

 

In order to tackle the non-parallel code and memory access overheads, the compiler 

option of -O3 optimization is first applied in iteration 1. Surprisingly, the -O3 

optimization doesn’t bring any significant change in terms of speedup, in every kernel 

as well as the main loop, whole application and real time. According to Diagram 6.7, 

there is no significant change in the average latency of each kernel either. The reason 

behind this is yet unknown and will be left for future work. Hence, it is decided that the 

-O3 compiler optimization option is not be used in future experiments, because it needs 

to be made sure that the optimizations are not introduced by the compiler. 

 

As Diagram 6.7 shows, for baseline and iteration 1, the average latency in kernel L200 

as well as kernel L100_pc and L200_pc is significantly higher than kernel L100. 

Therefore, iteration 2 aims to minimize the non-parallel code overhead in kernel L200, 

L100_pc and L200_pc by manually pipelining the loops in these kernels. However, 

there is still no significant change in terms of average latency in kernel L200, L100_pc 

and L200_pc, and speedup is not obtained for iteration 2 as would be expected, 

according to the efficient FPGA programming principle mentioned in Section 3.5. The 

reason why the average latency in kernel L200, L100_pc and L200_pc is not changed 

significantly is that the loops in these kernels are still not pipelined in the end, despite 

the “xcl_pipeline_loop” directive being placed manually and explicitly ahead or within 

the appropriate loop in the kernel code. The evidence can be found in Table 6.4. It is 

believed that one of the reasons why the compiler is unable to pipeline the loops is 

because of the memory access latency overhead. The investigation of the other reasons 

will be left for future work. It should be noted that the experiment to completely unroll 

the loops in kernel L200, L100_pc and L200_pc is not conducted due to the extremely 

long and impractical compilation time required.  

 

Iteration 3 aims to tackle the memory access overhead by caching all the data into the 

on-chip BRAM. In order to minimize the data transfer overhead, burst memory transfer 
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is used as well, which enables the read or write of four words in each clock cycle. These 

optimization methods are mentioned in Section 2.6.1. In iteration 3, the speedup of 

kernel L200 is improved by around 81x compared to baseline, while the speedup of 

main loop, whole application and real time is improved by around 21x compared to 

baseline, according to Diagram 6.6. The speedup of kernel L100, L100_pc and L200_pc 

is improved by around 2.5x as well. The average latency of kernel L200 is improved 

by around 106x, while the average latency of kernel L100_pc and L200_pc is improved 

by around 6x. However, although the speedup of kernel L100 is improved, its average 

latency is worsened by around 32%. Also, it should be noted that after caching data in 

on-chip BRAM, all the loops in kernel L100_pc and L200_pc, as well as the inner loop 

in kernel L100 and L200 are pipelined automatically by the compiler. This can be seen 

in Table 6.5. The reason why they can be pipelined by the compiler might be the 

significant minimization of the memory access overhead. Therefore, the local memory 

as well as the burst memory transfer will continue to be used in the future experiments. 

There is no need to manually pipeline the loops as well. 

 

Iteration 4 is intended to parallelize the loops by unrolling them. This optimization 

method is mentioned in Section 2.6.1. In this iteration, the loops are unrolled in two 

ways, one using an unrolling factor of 8 (iteration 4*), and another that completely 

unrolls the loops (iteration 4). The experiments conducted here are trying to answer the 

following question, which is better, loop pipelining or loop unrolling? According to 

Diagram 6.6 and Diagram 6.7, the speedup of kernel L200 is improved by around 104x 

compared to baseline, while the speedup of main loop, whole application and real time 

is improved by around 24x compared to baseline, after unrolling the inner loop 

completely. The speedup of kernel L100 is improved by around 3.4x, while the speedup 

of kernel L100_pc, L200_pc is improved by around 2.5x. The average latency of kernel 

L100 and L200 is improved by around 27.6% as well, after unrolling their inner loop 

completely. It seems that loop unrolling is better than loop pipelining based on the 

speedup and latency data.  

 

However, when the hardware resource utilization is considered, things are quite 

different. According to Diagram 6.8, Diagram 6.9 and Diagram 6.10, complete loop 

unrolling consumes a lot more FF, LUT and DSP compared to loop pipelining. Since 
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the hardware resources on each FPGA is limited, this is when the scalability problem 

arises. By utilizing the model introduced in Section 6.2, the data in Table 6.4 can be 

obtained. 

Optimization 

Iteration 

Speedup of Main 

Loop (x) 

Throughput 

(Number of 

Elements per 

Second) 

Number of IP 

Blocks 

Iteration 3 21.96232006 8579 10 

Iteration 4 24.60873861 2944 3 

Iteration 4* 24.31443444 4849 5 

Iteration 4* means unrolling the loops in each kernel using a factor of 8. 

Table 6.6: Speedup of Main Loop and the Throughput of Iteration 3 and 4 

According to Table 6.4, even though iteration 4 has the best speedup, its throughput is 

the worst, due to the significant amount of hardware resource it consumes. In fact, 

iteration 4* which unrolls the loops using an unroll factor of 8 is a more scalable option. 

With its speedup very close to iteration 4, iteration 4* has a better throughput because 

it consumes fewer hardware resources. In conclusion, loop pipelining will be used in 

the future experiments since it is the most scalable way of parallelizing loops. 

 

Diagram 6.8, Diagram 6.9, Diagram 6.10 and Diagram 6.11 reveal some other 

interesting facts. According to Diagram 6.8, there is an increment in the use of FF when 

the loops in kernel L100 and L200 are pipelined (iteration 3). However, it is worth 

noting that when the loops in kernel L100_pc and L200_pc are pipelined (iteration 3), 

the number of FF that is used decreases. What’s more, there is significant increase when 

the loops in each kernel are unrolled (iteration 4 and 4*). But there is also a decrease 

in the amount of FF that is used in kernel L100_pc and L200_pc when their loops are 

unrolled using a factor of 8 (iteration 4*), compared to baseline. Diagram 6.9 

demonstrates the fact that the use of LUT is incremented after the loops in each kernel 

are pipelined. There is another significant increment (especially in kernel L100 and 

L200) when the loops are completely unrolled or unrolled using a factor of 8. It can be 

seen from Diagram 6.10, the use of DSP is tripled after the loops are unrolled in each 

kernel. It should be noted that kernel L100_pc and L200_pc doesn’t use any DSPs 

because no floating-point computation is done in the periodic continuation kernels. 

Another interesting fact is that no DSP is used after manually pipelining the loops in 



86 

 

kernel L200. This is probably because the floating-point operations are conducted using 

LUTs, which is revealed in Diagram 6.9. An in-depth investigation of this will be left 

for future work. According to Diagram 6.11, there is a significant increment in the 

amount of BRAM_18K that is used in iteration 3 (pipelining), 4 and 4* (unrolling). 

This is because data are cached in the BRAM in these iterations. The next section 

considers the advanced optimization described in Chapter 5. 

6.5. Data from Experiments with Advanced Optimizations 

This section analyses the speedup, hardware resource utilization, latency and loop 

information from the experiments described in Chapter 5.  

6.5.1. Iteration 5, 6 and 7 

Diagram 6.12 and Diagram 6.13 demonstrates the speedup and average latency of each 

kernel, as well as the speedup of the main loop, whole application and real time of 

baseline, iteration 3, 5, 6 and 7. Iteration 3 is included for comparison 

 

Iteration 5* means unrolling the loops in kernel L100_pc and L200_pc using a factor 

of 2. 

Iteration 7* means using fewer async_work_group_copy() 

Diagram 6.12: Speedup of each Section of Iteration 5, 6 and 7 Compared to Baseline and Iteration 3 
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Iteration 5* means unrolling the loops in kernel L100_pc and L200_pc using a factor 

of 2. 

Iteration 7* means using fewer async_work_group_copy() 

Diagram 6.13: Average Latency of each Kernel of Iteration 5, 6 and 7 Compared to Baseline and Iteration 3 

Kernel Loop Min 

latency 

Max 

latency 

Iteration 

latency 

Achieved 

II 

Target 

II 

Trip 

count 

Pipelined 

L100_pc pc1* 32 32 2 1 1 1 Yes 

pc2** 33 33 2 1 1 1 Yes 

L200_pc pc1 32 32 2 1 1 1 Yes 

pc2 33 33 2 1 1 1 Yes 

pc1* means the first periodic continuation loop. 

pc2** means the second periodic continuation loop. 

Table 6.7: Partial Loop Information of Iteration 5* 

Iteration 5 aims to deal with the warning message of “limited memory port” which 

arises during compilation, as mentioned in Section 5.1, by partitioning the array into 

multiple physical memories to provide more memory ports, which is mentioned in 

Section 2.6.1. According Diagram 6.12, the speedup of L200 is improved by around 

116x compared to baseline, in iteration 5. The speedup of main loop, whole application 

and real time is improved by around 27x as well. A decrement in average latency of 

around 37% can also be observed in kernel L100 and L200 from Diagram 6.13, 

compared with iteration 3. While the decrement in average latency of the periodic 

continuation kernels is around 27%. Therefore, all the array will continue to be 
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partitioned in the future experiments. 

 

Iteration 5* unrolls the loops in kernel L100_pc and L200_pc with a factor 2, to 

minimize the initial interval, which is mentioned in Section 2.4, to 1. The initial interval 

is indeed minimized according to Table 6.7. However, no significant improvement is 

observed in terms of speedup in Diagram 6.12 for any kernel or the main loop, whole 

application and real time. There is also no significant improvement in average latency 

in any kernel according to Diagram 6.13. 

 

Iteration 6 investigates the option of utilizing the memory bandwidth in a better way 

by data vectorization, which is mentioned in Section 2.6.1. For simplicity, data 

vectorization is achieved here by using directive “vec_type_hint” to vectorize the data 

automatically. However, no significant improvement is observed in terms of speedup in 

any kernel and main loop, whole application and real time. There is no significant 

improvement in average latency in any kernel either. Data in Diagram 6.12 and Diagram 

6.13 suggest that the automatic data vectorization doesn’t appear to work in the 

simplified shallow water application. The reason behind this might be the complexity 

of the code which hinders the data from being vectorized automatically. Despite the 

failure in observing any significant improvement of speedup or average latency, the 

automatic data vectorization will still be kept and used in the future experiments.  

 

Iteration 7 applies the option of overlapping the data transfer between host and device 

with kernel computation, which is mentioned in Section 2.6.2, to improve performance. 

Again, no significant improvement is observed in terms of speedup in any kernel or 

main loop, whole application and real time. The reason behind this might be, that the 

speedup brought by the overlapping is counteracted by the newly-introduced 

synchronization overhead, as well as the unaligned memory allocator, which might lead 

to more memory copy. The enqueueMigrateMemObjects() function which achieves the 

overlapping needs to be synchronized each time it finishes execution in order to obtain 

the correct result, which is mentioned in Section 5.3. However, function 

enqueueWriteBuffer() and enqueueReadBuffer(), the ones that are replaced by 

enqueueMigrateMemObjects() don’t need to be synchronized. It should be noted that 

the hardware resource utilization data cannot reflects whether the optimization of 
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overlapping of data transfer between host and device with kernel computation is 

working or not. This is because this optimization is a host optimization which means it 

won’t change the generated system estimate report. Despite the failure in observing any 

significant improvement of speedup, the overlapping of data transfer and kernel 

computation will still be kept and used in the future experiments. 

 

Iteration 7* optimizes the code by using fewer async_work_group_copy() calls as 

mentioned in Section 2.6.1. It should be noted that async_work_group_copy() function 

is treated as a loop by the compiler. Decreasing the number of 

async_work_group_copy() calls that are used can decrease the average latency and 

improve the performance. For example, in kernel L100, only array u and array p need 

to be copied in, while only array cu and array h needs to be copied out. This is 

demonstrated in Figure 5.6. Therefore, kernel L100 and L200 can use four fewer 

async_work_group_copy() calls respectively. This leads to a speedup, which is more 

significant for L200, according to Diagram 6.12. 
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6.5.2. Iteration 8 

 

Iteration 7* means using fewer async_work_group_copy() 

Iteration 8* means using one out-of-order command queue to achieve the concurrent 

execution of kernels. 

Iteration 8** means breaking down the periodic continuation kernels so they can be 

better parallelized 

Diagram 6.14: Speedup of each Section of Iteration 8 Compared to Baseline and Iteration 7* 
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Kernel Latency of 

Iteration 7* 

Kernel Latency of 

Iteration 8 

Latency of 

Iteration 8* 

Kernel Latency of 

Iteration 8** 

L100 9145 L100_cu 7922 7923 L100_cu 7922 

L100_h 7912 7913 L100_h 7912 

L200 9145 L200_p 7922 7923 L200_p 7922 

L200_u 7912 7913 L200_u 7912 

L100_pc 8237 L100_pc 8237 8238 L100_pc_cu 2520 

L100_pc_h 5919 

L200_pc 8237 L200_pc 8237 8238 L200_pc_p 5919 

L200_pc_u 2520 

Iteration 7* means using fewer async_work_group_copy() 

Iteration 8* means using one out-of-order command queue to achieve the concurrent 

execution of kernels. 

Iteration 8** means breaking down the periodic continuation kernels so they can be 

better parallelized 

Table 6.8: Average Latency Reported for each Kernel in Iteration 7 and 8. 

Iteration 8 aims to increase parallelism by executing the kernels concurrently, which is 

mentioned in Section 2.6.2. Diagram 6.14 demonstrates the speedup of the main loop, 

whole application and real time of baseline, iteration 7* and iteration 8. The latency of 

each kernel of iteration 7* and iteration 8 is presented in Table 6.5. It should be noted 

that in order to allow the concurrent execution of kernels, the execution time of kernel 

L100_cu, L100_h, L200_p, L200_u, L100_pc_cu, L100_pc_h, L200_pc_p and 

L200_pc_u are not measured explicitly, because the kernels need to be synchronized to 

obtain the correct execution time, while synchronization between kernels means kernels 

will be executed in a sequential way. Hence, in Diagram 6.14 only the speedups of main 

loop, whole application and real time are showed. Figure 5.10 provides a detailed 

description of this. 

 

According to Diagram 6.14, the speedup of iteration 8 in terms of main loop, whole 

application and real time is worsened by around 2.8% compared to the one in iteration 

7*. This is because although the non-parallel code overhead is minimized, a scheduling 

overhead is introduced for executing kernels in two in-order command queues. It should 

also be noted that the speedup of iteration 8* in terms of main loop, whole application 
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and real time is worsened by around 1.8% compared to the one in iteration 8. This 

suggest that it might be better to achieve the concurrent execution of kernels using 

multiple in-order command queues instead of one out-of-order command queue. 

Iteration 8** achieved the best speedup by further breaking down the periodic 

continuation kernels and executing them in parallel. Figure 5.9 provides a description 

of this. Kernel L100_pc is divided into kernel L100_pc_cu and L100_pc_h respectively, 

the periodic continuation of array cu is conducted in kernel L100_pc_cu while the 

periodic continuation of array h is conducted in kernel L100_pc_h. The situation of 

kernel L200_pc is similar. Therefore, multiple in-order command queue will be used to 

achieve the concurrent execution of kernel in the future experiment. 

 

As can be seen from Table 6.5, the latency reported during compilation of kernel 

L100_cu and L100_h is 7922 and 7912 respectively, since they are executed in parallel, 

the latency of kernel L100 is decreased from 9145 to 7922, according to Table 6.8. The 

situation of kernel L200 is similar. Furthermore, the latency of kernel L100_pc_cu and 

L100_pc_h is 2520 and 5919 respectively. Since they are now executed in parallel, the 

latency of kernel L100_pc is decreased from 8237 to 5919, according to Table 6.8. The 

situation of kernel L200_pc is similar. It is worth noting that, although the non-parallel 

code overhead in the periodic continuation kernels is minimized, a load imbalance 

overhead is then introduced. For example, as can be seen in Table 6.5, the latency of 

kernel L100_pc_cu and L100_pc_h is not the same. When they are executed in parallel, 

kernel L100_pc_cu needs to wait for kernel L100_pc_h to finish. The situation of kernel 

L200_pc_p and kernel L200_pc_u is similar. 
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6.5.3. Iteration 9 

 

Iteration 8** means breaking down the periodic continuation kernels so they can be 

better parallelized 

Iteration 9* means optimizing the code using only function pipelining.  

Iteration 9** means optimizing the code using both function pipelining and function 

inline. 

Diagram 6.15: Speedup of each Section of Iteration 9 Compared to Baseline and Iteration 8** 
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 Start 

Interval 

Latency of 

Iteration 9 

 Start 

Interval 

Latency of 

Iteration 9* 

Latency of 

Iteration 9** 

L100_cu 7924 7923 L100_cu 4249 5473 5473 

L100_cu_calc 4248 4248 L100_cu

_entry 

0 0 0 

 L100_cu

_read 

2451 2451 2451 

L100_cu

_calc 

4248 4248 4248 

L100_cu

_write 

1224 1224 1224 

Iteration 9* means optimizing the code using only function pipelining.  

Iteration 9** means optimizing the code using both function pipelining and function 

inline. 

Table 6.9: Average Latency and Start Interval of Kernel L100_cu in Iteration 9 

Optimization 

Iteration 

Kernel Start Interval Average Latency 

Baseline L100 17190 17189 

Iteration 1 L100 17190 17189 

Iteration 2 L100 17190 17189 

Iteration 3 L100 22623 22622 

Iteration 4* L100 16374 16373 

Iteration 5** L100 14042 14041 

Iteration 6 L100 14042 14041 

Iteration 7*** L100 9146 9145 

Iteration 8**** L100_cu 7923 7922 

Iteration 9***** L100_cu 4249 5473 

*: Completely unroll the loops in each kernel. 

**: Unroll the loops in kernel L100_pc and L200_pc using a factor of 2. 

***: Using fewer async_work_group_copy() calls. 

****: Using two in-order command queues along with eight kernels. 

*****: Using both function pipelining and function inline. 

Table 6.10: Start Interval and Average Latency of Kernel L100 and L100_cu of Baseline and Iteration 1, 2, 3, 

4, 5, 6, 7, 8 and 9 
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Iteration 9 investigates the option of function inline and pipelining the function calls 

within a kernel, which is mentioned in Section 2.6.1. Diagram 6.15 demonstrate the 

speedup of the main loop, whole application and real time of baseline, iteration 8** 

and iteration 9. Table 6.6 present the start interval and latency information of kernel 

L100_cu in iteration 9, 9* and 9** respectively, it helps explain how function 

pipelining works. It should be noted that iteration 9, which is not optimized using either 

function pipelining or function inline, serves as a baseline here, it simply replaces all 

the original code with function calls. Figure 5.15 provides a description of how this is 

implemented in kernel L100_cu. Table 6.10 describes the start interval and average 

latency of some kernels of baseline and iteration 1, 2, 3, 4, 5, 6, 7, 8 and 9. For 

simplicity, only the start interval and average latency of kernel L100 and L100_cu is 

demonstrated. The situation of other kernels is similar. 

 

It should be noted that periodic continuation kernels cannot be optimized using function 

pipelining and function inline due to some compilation errors. What’s more, the kernels 

cannot be optimized using only function inline because it triggers an “LLVM-link failed” 

compilation error. These issues are left for future investigation.  

 

According to Diagram 6.15, there is no significant change in speedup after applying 

function pipelining or both function pipelining and function inline. This suggest either 

function pipelining or function inline is not working. However, some interesting facts 

can be obtained from Table 6.6. After replacing all the original code with function calls, 

the latency of kernel L100_cu is 7923, which is very close to the latency of kernel 

L100_cu in iteration 8** (7922). The latency of the computation function 

(L100_cu_calc) of array cu is 4248. It is worth noting that the start interval is the same 

as the average latency now. After the function pipelining is applied, not only the latency 

of the whole kernel and the computation function (L100_cu_calc), but also the latency 

of the memory read function (L100_cu_read), memory write function (L100_cu_write) 

and the entry point (L100_cu_entry) is available. Furthermore, according to Table 6.10, 

for the first time among all the conducted experiments, it can be observed that the start 

interval of kernel L100_cu is significantly different from its average latency. 

Considering the fact that start interval is the minimum number of clock cycles that has 

to pass between the invocations of the compute unit for a given kernel, and average 
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latency is the number of clock cycles needed for the given kernel to finish execution, it 

can be concluded that the functions within kernel L100_cu are pipelined. Some more 

evidences, including the average latency of kernel L100_cu in iteration 9*, which is 

smaller than the one in iteration 9, suggests that the functions in kernel L100_cu are 

now not executed in a strict one-after-another way. What’s more, the start interval still 

equals the average latency in the memory read function, array update function and 

memory read function, suggesting that it is the functions themselves rather than what 

is inside the function that are pipelined. However, there is still no change in latency 

after applying function inline, implying that it is not working. The situation in kernel 

L100_h, L200_p and L200_u is similar 

 

It is interesting to observe that the speedup achieved suggests the function pipelining is 

not working while the latency information tells a completely opposite story. The reason 

behind this might be that “the absolute counts of cycles and latency are based on 

estimates identified during synthesis, especially with advanced transformations, such 

as pipelining and dataflow; these numbers might not accurately reflect the final results” 

according to (“SDAccel Environment Profiling and Optimization Guide,” 2019). 

However, despite the failure in observing any significant improvement of speedup, 

function pipelining and function inline will still be kept and used in the future 

experiments. 
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6.5.4. Iteration 10 

 

Iteration 8** means breaking down the periodic continuation kernels so they can be 

better parallelized 

Diagram 6.16: Speedup of each Section of Iteration 10 Compared to Baseline and Iteration 8** 

Iteration 10 investigates the option of merging array update kernel with periodic 

continuation kernel, which is mentioned in Section 2.6.1. Figure 5.17 provides a 

description regarding how this is implemented in kernel L100_cu. According to 

Diagram 6.16, the speedups of main loop, whole application and real time are improved 

by around 17%, due to the elimination of unnecessary data transfer. However, it should 

be noted that load imbalance overhead still exists due to the difference in latency of the 

periodic continuation operation of array cu and array h, as well as array u and array p, 

as mentioned in Table 6.8. 

6.6. Comparison between Estimated Speedup and 

Achieved Speedup 

In this section, the estimated speedup is obtained and compared against the achieved 

speedup. In order to acquire the estimated speedup, the estimated execution time needs 

to be calculated first, by utilizing the method introduced in Section 3.1.  
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Diagram 6.17: Estimated Speedup and Achieved Speedup of each Optimization Iteration 

The speedups of the main computation loop serve as the achieved speedups here, in 

order to make it comparable. Because only the latency of kernels can be obtained from 

the system estimate report, which means only the latency of the computation, but not 

the whole application, is reflected. According to Diagram 6.17, gaps between estimated 

speedup and achieved speedup start to appear since iteration 3. The gaps suggest that 

there is still a significant amount of overhead needs to be minimized. The speedup gap 

becomes increasingly large as more and more optimizations are applied to the 

application, which implies that the use of optimization will introduce some other 

overheads. For example, execute kernels concurrently minimizes the non-parallel code 

overhead while introducing scheduling overhead and load imbalance overhead at the 

same time, as mentioned in Section 6.5.2. However, it should be noted that the latency 

information obtained from the system estimate report doesn’t always accurately reflect 

what is really happening when the application is executed on FPGA, as mentioned in 

Section 6.5.3 

6.7. Data with Bigger Problem Size 

In this section, a larger problem size of 127 * 127 is applied to the simplified shallow 

water application to evaluate its performance. For simplicity, the larger problem size is 

only evaluated for baseline and iteration 10, since iteration 10 has the best speedup. 
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What’s more, only the execution time of the main loop, whole application and real time 

is measured. 

 

Diagram 6.18: Speedup of Each Section of Iteration 10 Compared to Baseline on Problem Size 127 * 127 

According to Diagram 6.18, a speedup of around 45x is achieved. By comparing 

Diagram 6.18 with Diagram 6.16, problem size 127 * 127 yields a better speedup. This 

phenomenon can probably be explained by Gustafson’s Law, as more FFs, LUTs and 

BRAMs are used under problem size of 127 * 127. However, it should also be noted 

that it is a typical phenomenon that increasing problem size usually leads to better 

speedup. An in-depth analysis will be left for future work. 

6.8. Performance Comparison among CPU, GPGPU and 

FPGA 

In this section, the performance of iteration 10, which is the simplified shallow water 

application that yields the best speedup so far, is compared against the performance of 

the simplified shallow water application that is implemented on CPU and GPGPU. The 

simplified shallow water application implemented on CPU is a sequential program 

developed using C, while the simplified shallow water application implemented on 

GPGPU is a program that is not highly optimized and developed using OpenCL. An 

Intel i7-6700 CPU and a Nvidia GT730 GPGPU is used in this section, their 

specifications are listed in Table 6.11. The performance of the simplified shallow water 
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application running on CPU is utilized as the baseline. For simplicity, only the 

execution time of main loop, whole application and real time are measured. Both 

problem size 65 * 65 and 127 * 127 are evaluated. 

Specifications Intel i7-6700 CPU Nvidia GT730 GPGPU 

Number of Cores 4 384 

Base Clock Frequency 3.40 GHz 902 MHz 

CPU Cache / GPGPU 

VRAM (MB) 

8 2048 

Memory Bandwidth 

(GB/s) 

34.1 14.4 

Thermal Design Power 

(W) 

65 23 

Table 6.11: Specifications of Intel i7-6700 CPU and Nvidia GT730 GPGPU 

 

Diagram 6.19: Speedup of Each Section on CPU, GPGPU and FPGA under Problem Size 65 * 65 
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Diagram 6.20: Speedup of Each Section on CPU, GPGPU and FPGA under Problem Size 127 * 127 

According to Diagram 6.19 and Diagram 6.20, the GPGPU yields the best speedup in 

terms of main loop, whole application and real time, under both problem size, while 

FPGA yields the worst. It should be noted that i7-6700 is a high-end Intel CPU while 

GT730 is an entry-level GPGPU, the Zynq® UltraScale+™ MPSoC ZCU102 board is 

a mid-range FPGA. What’s more, the simplified shallow water application running on 

CPU is a sequential program, and the one running on GPGPU is not highly optimized 

either. However, the simplified shallow water application running on FPGA is a highly 

optimized one. In conclusion, if power consumption is not considered, GPGPU is still 

the best candidate for high-performance computing. However, it should be noted that if 

power consumption is considered, FPGA is still the most power efficient accelerator 

according to the work of (Targett et al., 2015), (Muslim et al., 2017), (Roozmeh and 

Lavagno, 2018), (Zohouri et al., 2016), (Nagasu et al., 2017), (Gan et al., 2013) and 

(Zhang et al., 2015). 

 

The power consumption of FPGA is not obtained in this project due to the limited 

amount of time and the complexity of obtaining such data. Unlike CPU and GPGPU, 

the power of FPGA heavily depends on the hardware resource utilization, physical 

interface and design activity, for example clock frequency. Therefore, in order to 

acquire the power of FPGA, certain power monitoring software and hardware needs to 

be used in combination. The acquisition of the power consumption of FPGA will be left 
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for future work. 

6.9. Summary 

An explanation regarding how to interpret the latency and loop information provided 

in the system estimate report and HLS report has been presented in this chapter. A 

simple scalability model for exploring the relationship between the speedup and 

hardware resource utilization is developed. The reason why the emulator is unreliable 

is also explained in detail. 

 

The experimental data analysis of this project is summarized in the following table. For 

simplicity, only the speedup of the main loop is presented here, along with throughput 

which is defined in Section 6.2. 

Optimization 

Iteration 

Speedup of 

Main Loop 

(x) 

Throughput (Number of 

Elements per Second) 

Number of IP 

Blocks 

Baseline 1 558 14 

Iteration 1 0.99989303 558 14 

Iteration 2 N/A N/A N/A 

Iteration 3 21.96232006 8759 10 

Iteration 4* 24.60873861 2944 3 

Iteration 5** 27.39488569 9833 9 

Iteration 6 27.36177188 9821 9 

Iteration 7*** 30.22993021 10851 9 

Iteration 8**** 33.22599969 7951 6 

Iteration 9***** 33.21620692 6624 5 

Iteration 10 38.8561501 13947 9 

*: Completely unroll the loops in each kernel. 

**: Unroll the loops in kernel L100_pc and L200_pc using a factor of 2. 

***: Using fewer async_work_group_copy() calls.  

****: Using two in-order command queues along with eight kernels. 

*****: Using both function pipelining and function inline. 

Table 6.12: The Speedup of Main Loop and the Throughput of Baseline and Iteration 1, 2, 3, 4, 5, 6, 7, 8, 9 

and 10 
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According to Table 6.7, iteration 10 yields the best speedup as well as throughput.  

 

In conclusion, the non-parallel code overhead and memory access overhead are 

minimized by using loop pipelining, local memory, burst memory transfer, array 

partitioning, concurrent execution of kernels and kernel merging. However, other 

overheads also arise, including load imbalance overhead and scheduling overhead. 

These two overheads are all brought by the concurrent execution of kernels. Table 6.8 

explains the load imbalance overhead seen between kernel L100_pc_cu and L100_pc_h, 

while Diagram 6.14 demonstrates the scheduling overhead of using two in-order 

command queues to execute kernels concurrently. The minimization of these overheads 

is left for future work. 

 

The speedup of the simplified shallow water application is also obtained for a larger 

problem size of 127 * 127. The performance of iteration 10 is compared against the 

performance of the simplified shallow water application executing on a modern CPU 

and GPGPU.  
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Chapter 7 Conclusion and Future work 

This project implements and optimizes a simplified shallow water weather & climate 

forecasting application on an ARM CPU-FPGA heterogeneous system using OpenCL. 

A maximum speedup of the main loop of around 45x is achieved under problem size 

127*127, compared with baseline. Background knowledge including the background 

of FPGA, OpenCL, stencil computation and a series of optimization methods are 

introduced. A detailed literature review is also conducted. The research methodologies 

necessary for this project, including performance estimation, overhead analysis, 

overhead minimization, execution time acquisition, the principle for applying 

optimization methods as well as a method for efficient FPGA programming are 

demonstrated. All the experiments conducted in this project, are explained in detail with 

the help of code snippets, based on several optimization iterations. The reason why the 

emulator is unreliable is discussed; a scalability model which aims to investigate the 

relationship between speedup and hardware resource utilization is introduced and 

demonstrated. A method of interpreting the latency and loop information obtained from 

the system estimate report and HLS report is explained. The experimental data are 

analysed using diagrams and tables that represent the speedup, average latency and 

hardware resource utilization. The overheads are also analysed and the reasons that lead 

to these overheads, as well as the reason why the overheads are minimized are explained. 

The performance of executing the highly optimized, simplified shallow water 

application on FPGA is compared with the performance of executing a not highly 

optimized simplified shallow water application on CPU and GPGPU. 

7.1. List of Contributions 

A series of contributions of this project is listed as follows: 

⚫ Implement and optimize a simplified shallow water application using OpenCL on 

an ARM CPU-FPGA heterogenous system, achieving a maximum speedup of the 

main loop of around 45x under problem size 127*127, compared with baseline. 

⚫ A method of efficient FPGA programming is discovered. 

⚫ The discovery of how to measure the execution time of kernel in a simple but 

correct and accurate way. The reason behind this is also understood.  
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⚫ The discovery of the unreliability of SDx emulator, in terms of the measurement of 

execution time and the indication of performance improvement.  

⚫ The understanding of how to interpret the latency and loop information provided 

by the system estimate report and HLS report.  

⚫ The discovery of a simple scalability model which investigates the relationship 

between hardware resource utilization and speedup. 

7.2. Future Work 

Some possible future works are listed as follows: 

 

Optimizing the simplified shallow water application using some other kernel 

optimization methods, which includes, 

⚫ Partitioning arrays in a block way. 

⚫ Manually vectorize the data using variable types like float2, float4, float8 and 

float16. 

⚫ Using memory object pipes for inter-kernel data transfer and data streaming. 

⚫ Using pragma “SDS data_zero_copy” for efficient data transfer between host 

memory and device memory. 

 

Optimizing the simplified shallow water host code using another OpenCL API 

execution model named clEnqueueTask. 

 

Optimizing the simplified shallow water application using SDx-related optimizations, 

which includes: 

⚫ The number of compute units of each kernel. 

⚫ The data motion network clock frequency. 

⚫ The port data width of each kernel. 

⚫ Using dedicated memory ports for each global array. 

 

Other future work includes the optimizations on the computable solution level, which 

includes: 

⚫ Using 2D-NDRange kernel. 

⚫ Initializing array u and array p on FPGA. 
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⚫ Stop conducting periodic continuation since they are prepared for systems with 

cache.  

⚫ Overlapping the execution of kernels. 

⚫ Optimizing the simplified shallow water application on multiple FPGA. 
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