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3.10 The effect of degree irregularity on a network’s total standard deviation
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3.13 Illustrative example of posterior distributions of treatment effect esti-

mates for four treatments in a network meta-analysis. The posterior

distributions have the same mean value but varying standard deviation.

Treatment T1 has the most narrow distribution, followed by T2, T3 and

T4 which has the widest distribution. . . . . . . . . . . . . . . . . . . . 180
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Linde et al (2013) [38]; presented in Rücker and Schwarzer (2014) [39]).
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4.2 (a) A fictional example of an aggregate meta-analytic network with edges

weighted and labelled by their respective (inverse-variance) weights. (b)

The resulting evidence flow network for the comparison 1-2 from the

aggregate network in (a); the comparison 1-2 is indicated by shading

these nodes with blue stripes. Edges are directed according to the sign

of the corresponding element of the hat matrix, and are weighted by the

absolute value of the hat matrix element. (c) The random walk on the

aggregate network in (a) for a walker starting at node 1 and finishing at

node 2; edges are labelled by the associated transition probabilities. . 203

4.3 An illustration of the interpretation of current. (a) An electrical network

with associated edge resistances. (b) The same network with a battery

attached across the edge 1-2 such that a unit current flows into 1 and
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expected net number of times the walker crosses an edge is given by the

currents shown in (b) for that edge [37]. The focus on the comparison

of nodes 1 and 2 in panels (b) and (c) is indicated by the blue striped

pattern of these nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.4 An illustration of a random walker moving on a network graph. The

walker starts its journey from the far left node. The arrows show the
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two nodes. The solid arrow indicates this transition. The dotted arrows

indicate the previous transitions made between nodes by the walker. . 210
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4.5 Illustration of evidence flow, streams of evidence and proportion contribu-

tions for a network of topical antibiotics without steroids for chronically

discharging ears presented in Macfadyen (2005) [46]. Node 1 is no treat-

ment; 2 is quinolone antibiotic; 3 is antiseptic; and 4 is non-quinolone

antibiotic. (a) The evidence flow network for comparison 1-2, based on

Figure 1, panel (b) in Papakonstantinou et al (2018) [9]. The edge labels

are the entries of the 1-2 row of the hat matrix, their signs are associated

with the direction of the arrows. (b) The decomposition of edge flows

into flow through paths of evidence as estimated by the algorithm in

Papakonstantinou et al. The paths of evidence shown are equivalent

to the possible paths taken by a random walker on the evidence flow

network. (c) The proportion contributions (expressed as percentages) of

each direct treatment effect to the network estimate of the 1-2 relative

treatment effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
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as presented in the box, were calculated using the methods described in

Section 4.3. The values are quoted to 3 decimal places. . . . . . . . . . 223
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in the depression data set in Section 4.2. The thickness of each edge
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1 to node 3. The direction of flow is indicated by the arrow. These

values are summarised in the box and quoted to 3 decimal places. . . . 224

4.8 Meta-analytic graph of the example in Figure 4.5 (a). We focus on the

comparison between treatments 1 and 2, as indicated by the blue striped
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5.1 An illustration of the different censoring mechanisms. The individual

experiences no censoring if the event of interest is observed within the

time frame of the study. Right censoring occurs either when the event

happens after the period of observation, or if the individual experiences

a censoring event (such as withdrawal from the trial) during the study.

An individual is left censored if the event happens before the period

of observation. Interval censoring occurs when the event status is only

observed at discrete times. In this scenario, the event time is not observed

precisely but is known to occur within a certain time window. . . . . . 263
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the final iteration (u(2)
1 ,u

(2)
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described in Section 6.2.1. For clarity, the trajectories of 6 individuals
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1(t)) in the N = 467 patients
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6.3 The longitudinal profiles of the prothrombin index (zi
1(t)) as measured

in the N = 488 patients (i = 1, . . . , N) in the Liver data set described in

Section 6.2.3. For clarity, the trajectories of 6 individuals are highlighted.

Time, t, is measured in years. . . . . . . . . . . . . . . . . . . . . . . . 285

6.4 An illustration of the interpolation method for covariates. For each

subject i, there are a discrete number of covariate observations. The

observation times tiℓ are labelled on the horizontal axis. The covariate

measurement at each observation time is indicated by a cross. The solid

line shows the interpolated covariate trajectory based on these discrete

observations. The value of a covariate at time t ̸= tiℓ is taken to be equal

to the observed value of the covariate at the observation time closest to

t. This yields a step function that changes value half way between each

pair of consecutive observations. . . . . . . . . . . . . . . . . . . . . . 295

6.5 Overall prediction error P̂E(u|t) as a function of prediction time u (in

years) for the PBC data with fixed base time t = 3 years. Prediction error

is calculated for u values from 3 to 8 years, with 0.2 year increments. A

squared loss function was used in Equation (6.26). The prediction error

plotted at each time u is an average over values of P̂E(u|t) calculated

for 20 random splits of the data into training and test data sets. The

results from models A and B of the retarded kernel approach are plotted

alongside the landmarking model and two joint models (one that uses a

linear longitudinal model for the time-dependent covariates, and another
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6.6 Overall prediction error P̂E(u|t) versus base time t (in years) for the

PBC data, with prediction windows w1 = 1 year, w2 = 2 years and

w3 = 3 years. The prediction times are u = t + w. The prediction error

is calculated for t ranging from 0 to 9,8 or 7 years for w1, w2 and w3

respectively, with 0.2 year increments. A squared loss function was used

in Equation (6.26). The prediction error plotted at each time t is an

average over values of P̂E(u|t) calculated for 20 random splits of the

data into training and test data sets. Results from models A and B

of the retarded kernel approach are plotted alongside the landmarking

model and two joint models; one that uses a linear longitudinal model

for the time-dependent covariates, and another that uses cubic splines. 303

6.7 Overall prediction error P̂E(u|t) plotted versus prediction time u (in

months) for the AIDS data with fixed base time t = 6 months. This

error is calculated for u ranging from 6 to 18 months, at 0.2 month

intervals. In Equation (6.26) a squared loss function was used. The

prediction error plotted at each time u is an average over values of

P̂E(u|t) calculated for 20 random splits of the data into training and

test data sets. The results from retarded kernel models A and B are

plotted alongside the results from the landmarking model and a joint
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with the results from model B. . . . . . . . . . . . . . . . . . . . . . . 305

24



6.8 Overall prediction error P̂E(u|t) versus base time t (in months) for the

AIDS data with three fixed prediction windows: w1 = 6 months, w2 = 9

months and w3 = 12 months. The prediction times are u = t + w.

Observations are made at times 0, 2, 6, 12, 18 months for all individuals

in this data set. Prediction errors are hence only updated at these

time points. For prediction window w1, prediction error is measured for

t = 0, 2, 6 and 12 months. For windows w2 and w3, the error is measured

at t = 0, 2 and 6 months only. In Equation (6.26) we used a squared

loss function. The prediction error plotted at each time t is an average

over values of P̂E(u|t) calculated for 20 random splits of the data into

training and test data sets. The results from retarded kernel models A

and B are plotted alongside the landmarking model and a joint model.

The results from model A cannot be seen clearly because they overlap
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6.9 Overall prediction error P̂E(u|t) plotted versus prediction time u (in
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calculated for u ranging from 3 to 10 years, with 0.2 year increments. In

Equation (6.26) we used a squared loss function. The prediction error

plotted at each time u is an average over values of P̂E(u|t) calculated

for 20 random splits of the data into training and test data sets. The

results from retarded kernel models A and B are plotted alongside the

results from the landmarking model and a joint model. . . . . . . . . . 308

6.10 Overall prediction error P̂E(u|t) plotted against base time t (in years)

for the Liver data with three fixed prediction windows, w1 = 1 year,

w2 = 2 years and w3 = 3 years. The prediction times are u = t + w. The

error is calculated for t ranging from 0 to 9,8 or 7 years, for w1, w2 and

w3 respectively, with 0.2 year intervals. In Equation (6.26) a squared

loss function was used. The prediction error plotted at each time t is

an average over values of P̂E(u|t) calculated for 20 random splits of the

data into training and test data sets. The results from retarded kernel

models A and B are plotted alongside the landmarking model and a
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6.11 Fixed base time results for the PBC data with models fitted treating

the two events (death and transplant) as a single composite event. The

plot shows overall prediction error P̂E(u|t) as a function of prediction

time u (in years) with fixed base time t = 3 years. Prediction error is

calculated for u values from 3 to 8 years, with 0.2 year increments. A

squared loss function was used in Equation (6.26) in the main paper.

The prediction error plotted at each time u is an average over values

of P̂E(u|t) calculated for 20 random splits of the data into training

and test data sets. The results from models A and B of the retarded

kernel approach are plotted alongside the landmarking model and two

joint models (one that uses a linear longitudinal model for the time-

dependent covariates, and another that uses cubic splines). Other than

the definition of the composite event, the models fitted are the same as

those described in the main paper. . . . . . . . . . . . . . . . . . . . . 322

6.12 Fixed prediction window results for the PBC data with models fitted

treating the two events (death and transplant) as a single composite

event. Plots show overall prediction error P̂E(u|t) versus base time t

(in years), with prediction windows w1 = 1 year, w2 = 2 years and

w3 = 3 years. The prediction times are u = t + w. The prediction

error is calculated for t ranging from 0 to 9,8 or 7 years for w1, w2 and

w3 respectively, with 0.2 year increments. A squared loss function was

used in Equation (6.26) in the main paper. The prediction error plotted

at each time t is an average over values of P̂E(u|t) calculated for 20

random splits of the data into training and test data sets. Results from

models A and B of the retarded kernel approach are plotted alongside

the landmarking model and two joint models; one that uses a linear

longitudinal model for the time-dependent covariates, and another that

uses cubic splines. Other than the definition of the composite event, the

models fitted are the same as those described in the main paper. . . . . 323
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6.13 Fixed base time results for the AIDS data set using the prederrJM

code (for the joint model and landmarking model) without changes

made to the inequalities. Overall prediction error P̂E(u|t) plotted versus

prediction time u (in months) for the AIDS data with fixed base time

t = 6 months. This error is calculated for u ranging from 6 to 18 months,

at 0.2 month intervals. In Equation (6.26) in the main paper a squared

loss function was used. The prediction error plotted at each time u is

an average over values of P̂E(u|t) calculated for 20 random splits of the

data into training and test data sets. The results from retarded kernel

models A and B are plotted alongside the results from the landmarking

model and a joint model. The results from model A (orange line) cannot

be seen because they overlap with the results from model B (red line). 325

6.14 Fixed prediction window results for the AIDS data set using the preder-

rJM code (for the joint model and landmarking model) without changes

made to the inequalities. Overall prediction error P̂E(u|t) versus base

time t (in months) for the AIDS data with three fixed prediction windows:

w1 = 6 months, w2 = 9 months and w3 = 12 months. The prediction

times are u = t + w. Observations are made at times 0, 2, 6, 12, 18
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error is measured for t = 0, 2, 6 and 12 months. For windows w2 and w3,

the error is measured at t = 0, 2 and 6 months only. In Equation (6.26)

in the main paper we used a squared loss function. The prediction error

plotted at each time t is an average over values of P̂E(u|t) calculated

for 20 random splits of the data into training and test data sets. The

results from retarded kernel models A and B are plotted alongside the

landmarking model and a joint model. The results from model A (orange

line) cannot be seen clearly because they overlap with the results from
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6.15 Fixed base time results for the PBC data with a decaying association in

models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final

observation time s = 0. The plot shows overall prediction error P̂E(u|t)

as a function of prediction time u (in years) with fixed base time t = 3

years. Prediction error is calculated for u values from 3 to 8 years, with

0.2 year increments. A squared loss function was used in Equation (6.26)

in the main paper. The prediction error plotted at each time u is an

average over values of P̂E(u|t) calculated for 20 random splits of the

data into training and test data sets. The results from models A and B

of the retarded kernel approach are plotted alongside the landmarking

model and two joint models (one that uses a linear longitudinal model

for the time-dependent covariates, and another that uses cubic splines).

Other than the definition of the association for s = 0 in models A and

B, the models fitted are the same as those described in the main paper

(i.e. we treat transplant events as a censoring event). . . . . . . . . . . 328

6.16 Fixed prediction window results for the PBC data with a decaying

association in models A and B, βµ(t) = aµe−t/τµ , for individuals who

have their final observation time s = 0. Plots show overall prediction

error P̂E(u|t) versus base time t (in years), with prediction windows

w1 = 1 year, w2 = 2 years and w3 = 3 years. The prediction times are

u = t + w. The prediction error is calculated for t ranging from 0 to 9,8

or 7 years for w1, w2 and w3 respectively, with 0.2 year increments. A

squared loss function was used in Equation (6.26) in the main paper.

The prediction error plotted at each time t is an average over values of

P̂E(u|t) calculated for 20 random splits of the data into training and test

data sets. Results from models A and B of the retarded kernel approach

are plotted alongside the landmarking model and two joint models; one

that uses a linear longitudinal model for the time-dependent covariates,

and another that uses cubic splines. Other than the definition of the

association for s = 0 in models A and B, the models fitted are the same

as those described in the main paper (i.e. we treat transplant events as
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6.17 Fixed base time results for the AIDS data with a decaying association

in models A and B, βµ(t) = aµe−t/τµ , for individuals who have their

final observation time s = 0. Overall prediction error P̂E(u|t) plotted

versus prediction time u (in months) with fixed base time t = 6 months.

This error is calculated for u ranging from 6 to 18 months, at 0.2 month

intervals. In Equation (6.26) in the main paper a squared loss function

was used. The prediction error plotted at each time u is an average

over values of P̂E(u|t) calculated for 20 random splits of the data into

training and test data sets. The results from retarded kernel models A

and B are plotted alongside the results from the landmarking model and

a joint model. Other than the definition of the association for s = 0 in

models A and B, the models fitted are the same as those described in

the main paper. The results from model A (orange line) cannot be seen

because they overlap with the results from model B (red line). . . . . 330
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6.18 Fixed prediction window results for the AIDS data with a decaying

association in models A and B, βµ(t) = aµe−t/τµ , for individuals who

have their final observation time s = 0. Overall prediction error P̂E(u|t)

versus base time t (in months) with three fixed prediction windows:

w1 = 6 months, w2 = 9 months and w3 = 12 months. The prediction

times are u = t + w. Observations are made at times 0, 2, 6, 12, 18

months for all individuals in this data set. Prediction errors are hence

only updated at these time points. For prediction window w1, prediction

error is measured for t = 0, 2, 6 and 12 months. For windows w2 and w3,

the error is measured at t = 0, 2 and 6 months only. In Equation (6.26)

in the main paper we used a squared loss function. The prediction error

plotted at each time t is an average over values of P̂E(u|t) calculated

for 20 random splits of the data into training and test data sets. The

results from retarded kernel models A and B are plotted alongside the

landmarking model and a joint model. Other than the definition of the

association for s = 0 in models A and B, the models fitted are the same

as those described in the main paper. The results from model A (orange

line) cannot be seen clearly because they overlap with the results from

model B (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

6.19 Fixed base time results for the Liver data with a decaying association in

models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final

observation time s = 0. Overall prediction error P̂E(u|t) plotted versus

prediction time u (in years) with fixed base time t = 3 years. This error

is calculated for u ranging from 3 to 10 years, with 0.2 year increments.

In Equation (6.26) in the main paper we used a squared loss function.

The prediction error plotted at each time u is an average over values of

P̂E(u|t) calculated for 20 random splits of the data into training and

test data sets. The results from retarded kernel models A and B are

plotted alongside the results from the landmarking model and a joint

model. Other than the definition of the association for s = 0 in models

A and B, the models fitted are the same as those described in the main
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6.20 Fixed prediction window results for the Liver data with a decaying

association in models A and B, βµ(t) = aµe−t/τµ , for individuals who

have their final observation time s = 0. Overall prediction error P̂E(u|t)

plotted against base time t (in years) for the Liver data with three fixed

prediction windows, w1 = 1 year, w2 = 2 years and w3 = 3 years. The

prediction times are u = t + w. The error is calculated for t ranging

from 0 to 9,8 or 7 years, for w1, w2 and w3 respectively, with 0.2 year

intervals. In Equation (6.26) in the main paper a squared loss function

was used. The prediction error plotted at each time t is an average

over values of P̂E(u|t) calculated for 20 random splits of the data into

training and test data sets. The results from retarded kernel models A

and B are plotted alongside the landmarking model and a joint model.

Other than the definition of the association for s = 0 in models A and

B, the models fitted are the same as those described in the main paper. 333
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Abstract
Outside the domain of traditional physics, statistical mechanics provides a framework
to describe the behaviour of systems from a diverse range of disciplines. In this thesis,
we investigate several problems in medical statistics. In particular, we focus on the
topics of network meta-analysis (NMA) and dynamic prediction. NMA is a technique
for combining data from multiple medical trials that compare different combinations
of treatment options. Dynamic prediction on the other hand, is a topic in survival
analysis. Specifically, it refers to the process of making survival predictions based on
the history of time-varying covariate measurements and updating prognosis as more
observations are made.

In the first part of the thesis we present a statistical physics perspective on network
meta-analysis. As well as introducing the technical details of the methodology for a
physics audience, we compile existing analogies between the two fields, and discuss
ideas for how statistical mechanics may be useful for NMA in the future.

A particular source of interest for statistical physicists lies in the representation
of the treatments and trials as a network graph. In Chapters 3 and 4 we present two
research projects on NMA that each stem from considerations of this graph.

First, we investigate the effect of network topology on NMA outcomes via a
simulation study. The results of this study indicate that irregularity in the number
of trials each treatment is involved in is negatively associated with the accuracy and
precision of parameter estimates.

Second, we use the graph representation of NMA to introduce an analogy between
NMA and random walks. The analogy provides insight into NMA methodology and
leads to an analytical derivation of the so-called ‘proportion contribution matrix’ that
overcomes limitations of previous algorithms used to construct this quantity.

In the next part of the thesis, we introduce the topic of survival analysis. Then,
in Chapter 6 we develop an approach to dynamic prediction that, in comparison to
standard methods, makes full use of the available data while remaining relatively
parsimonious. In applications to clinical data sets, we find that our model performs
similarly to standard approaches in terms of predictive accuracy.

The work in this thesis explores an interdisciplinary connection between statistical
mechanics and medical statistics. I hope that this work is interesting for physicists
and statisticians alike, and that it demonstrates that statistical physics ideas can make
useful contributions to medical statistics.
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Chapter 1

Introduction

1.1 A brief overview of statistical mechanics

Most of the physical systems we observe in every day life are, at a microscopic level,

comprised of many interacting components. A typical example is a gas which is made

up of a large number of individual atoms or molecules. In thermodynamics, interest

lies in the observable macroscopic properties of the gas such as its volume, pressure,

and temperature. The thermodynamic laws governing the relations between these

properties are phenomenological, obtained empirically from experiments on macroscopic

systems [1]. Statistical mechanics was born out of the desire to derive the properties

of a macroscopic system from the properties of its microscopic constituents [1, 2].

Essentially, this is done by averaging over unobservable microscopic coordinates [1].

For example, one can obtain the temperature of an ideal gas from the average kinetic

energy of the atoms that make up that gas. In this way it is the statistical description

of the individual components that tells us something about the macroscopic behaviour

of the system as a whole.

In principle, one might imagine that the behaviour of a gas could be determined by

modelling the movement of every individual particle in the system. Due to the vast

number of particles, not only are the equations of motion for such a system far too

complex to solve, the amount of information this would yield would be indigestible

[2]. Even if we somehow had access to the position and momentum of every atomic

component at each infinitesimal time step, to derive any meaningful understanding

from this would require a statistical description of the information, e.g. the number
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of collisions per second, the typical distance between atoms, or the number of atoms

with velocities in a certain range [2]. Statistical mechanics provides a framework

for obtaining this statistical description without the need to calculate the detailed

individual behaviours. This is achieved by modelling the behaviour of the particles in

a probabilistic manner.

The statistical description of particles provided by statistical mechanics explains a

number of observable macroscopic behaviours that might otherwise appear in conflict

with the microscopic laws governing the individual atoms. Perhaps most notably is the

observation that macroscopic systems evolve in accordance with a specific ‘arrow of time’.

For example, a gas initially confined to half a container spreads out to fill the space,

while a cup of tea left in a room eventually cools down. Without external interference,

one does not observe the reverse behaviours. This phenomenon is encapsulated in

the second law of thermodynamics which states that the entropy of a closed system

never decreases. The thermodynamic arrow of time therefore points in the direction of

increasing entropy. The apparent relevance of temporal direction conflicts with the fact

that the physical laws governing the motion of individual particles are time reversible.

For example, imagine that we could take a video of a collection of particles moving

over time. One would then observe that the laws governing the motion of the particles

in the video as it is played forward are the same as the laws of motion for the particles

when the video is played in reverse.

This apparent conflict is reconciled by the idea that it is the collective, rather than

the individual behaviour of the microscopic elements that determines the macroscopic

properties of a system. In large systems, collective phenomena are governed by the

probable behaviour of the interacting components. Therefore, in statistical mechanics

we make probabilistic predictions for these systems. In a simple coin flip experiment,

the proportion of times we obtain ‘heads’ from an unbiased coin approaches 1/2 as the

number of flips increases. In the same way, as the number of microscopic components of

a system becomes large, the probabilistic description of their behaviour leads to accurate

predictions of the macroscopic phenomena. Under this framework, the second law of

thermodynamics can be understood from probabilistic arguments. Specifically, states

of a system that lead to a decrease in entropy are less likely and become exceedingly

improbable for very large systems. In fact, they are so improbable that we (almost)

46



1.2. Interdisciplinary applications of statistical mechanics

never observe them.

The macroscopic properties of a system that arise from the collective behaviour of

many individual components are said to be ‘emergent’. These emergent phenomena

are properties of the system as a whole. To use an example from Phillip Anderson [3,

4], a single atom of lead cannot be superconducting; instead, superconductivity is a

property only of the macroscopic entity. Another example of emergent behaviour is

the phase transition of a gas to a liquid or solid state. In this scenario the individual

atoms themselves are neither a gas nor a solid. Rather, it is the collective behaviour

of the atoms that leads to the emergent macroscopic properties of the solid, such as

elasticity. Therefore, statistical mechanics involves modelling the emergent properties

of the macroscopic system by considering the underlying statistical behaviour of the

individual components and the forces governing their interactions.

In essence, the approach of statistical mechanics, and theoretical physics more

generally, boils down to abstraction. We cannot know the exact reasons why an

individual particle follows a particular trajectory but we can come up with a probabilistic

model which accurately describes the overall system we are interested in.

1.2 Interdisciplinary applications of statistical me-

chanics

There is something almost fundamental in asking whether we can determine observable

macroscopic properties from the stochastic behaviour of individual components. Indeed,

the techniques developed in statistical mechanics are applicable to almost all physical

systems. In this sense, statistical mechanics naturally lends itself to interdisciplinary

work [5]. For example, in biology, statistical mechanics has made significant contribu-

tions to topics such as pattern formation [6], neural networks [7], and anti-microbial

resistance [8]. In economics, properties of financial markets can be modelled via the

statistical dynamics of individual stock prices [9]. There are even applications to

sociology, where interaction based models of individual behaviour can explain social

phenomena such as voting patterns, language formation and crowd dynamics [10–12].

The work in this thesis relates to an application of statistical mechanics that has

seen much less exploration; namely, the field of medical statistics. While it is not
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uncommon for researchers with a background in physics to move into the world of data

analysis and statistical modelling, an interdisciplinary connection between the fields is

not well established.

In medicine, the health outcome for an individual is subject to some level of effective

(or ‘epistemic’) randomness. Anyone visiting a doctor’s surgery will be familiar with

this fact; prognosis is commonly discussed in terms of probability, chance and risk.

In the most basic sense, medical statistics aims to extract some underlying ‘truth’

from observations of the health outcomes of many individuals. This process involves

averaging over noisy individual observations to make statements about the population

as a whole, such as the relative efficacy of medical interventions or the effect of certain

variables on survival. There is a level of abstraction here. The models used to analyse

this data cannot encapsulate the true complex reality of the forces governing any one

person’s medical experience. Instead, we must rely on simpler, more abstract models

based on probabilistic ideas.

As in statistical mechanics, it is this abstraction that can tell us something interesting

about reality. Indeed, it was statistician George Box [13] who is credited with the

famous quote "all models are wrong, but some are useful", a philosophy that holds

relevance in many scientific disciplines. In fact, when elaborating on this idea in a

contribution to a book entitled ‘Robustness of Statistics’ [13], Box makes reference to

thermodynamics,

“...cunningly chosen parsimonious models often do provide remarkably

useful approximations. For example, the law PV = RT relating pressure P,

volume V and temperature T of an "ideal" gas via a constant R is not exactly

true for any real gas, but it frequently provides a useful approximation and

furthermore its structure is informative since it springs from a physical

view of the behavior of gas molecules.”

Evidently then, there is some overlap between statistical analysis of data and the

statistical physicist’s approach to understanding physical systems.

The applications of statistical mechanics to the fields of biology, finance and sociology

have developed over time with input from numerous researchers across the disciplinary

divides. These interdisciplinary approaches have become a fundamental aspect of their

respective fields, with entire journals and research facilities dedicated to their study.
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I believe that medical statistics and statistical physics have the potential to benefit

similarly from an exchange of ideas. The work described here takes some initial steps

towards this aim. In particular, this thesis aims to explore if a physicist’s approach to

research and techniques from statistical mechanics can contribute in a meaningful way

to medical statistics methodology.

1.3 Medical statistics topics in this thesis

The projects presented in this thesis pertain to two medical statistics methodologies;

network meta-analysis (NMA), and dynamic prediction. Network meta-analysis is

a technique involved in so-called ‘evidence synthesis’, while dynamic prediction falls

under the topic of ‘survival analysis’.

1.3.1 Evidence synthesis

Evidence synthesis refers to the process of bringing together all relevant information on

a specific research question. By collating the existing evidence base, evidence synthesis

methods summarise what is known about a particular topic. In the context of medical

research, this type of analysis promotes well-informed healthcare policy and clinical

decision making [14].

A ‘systematic review’ is a form of evidence synthesis that uses transparent, repeatable

methods to identify, evaluate and summarise the findings of all individual studies

relevant to the specific topic [15]. The review follows a strict pre-specified protocol

based on a well-defined research question. The process includes identification and

appraisal of eligible studies, data extraction, and data synthesis [14]. Motivated by the

work of Archie Cochrane in the 1970s and 80s [16, 17], systematic reviews in medicine

have seen rapid uptake and development over recent years [14, 18].

In the final step of a systematic review, one aims to provide a summary of the data

collated from the individual studies. The statistical synthesis of the relevant numerical

results is usually completed using a so-called ‘meta-analysis’.

Meta-analysis. A meta-analysis is a quantitative method for combining the results

of multiple scientific studies that answer the same research question [19, 20]. In this

thesis, we focus on the meta-analysis of medical trials.
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In medicine, a randomised controlled trial is used to compare a set of interventions

for the treatment of a particular medical condition. Participants in the trial are sampled

from the population of patients with the condition and each participant is randomly

allocated one of the treatment options. By comparing the subsequent health outcomes

between groups of patients assigned to the different treatment options, one can assess

which interventions are the most effective.

Clinical trials often involve small sample sizes drawn from a subsection of the

population of interest. By synthesising the results of all trials comparing the same

treatment interventions, meta-analysis provides a more precise estimate of their relative

effect compared with the results from individual trials [19–21].

A standard (pairwise) meta-analysis is performed on a set of trials that each compare

the same two treatment options. This provides an overall statistic that summarises the

effectiveness of one treatment compared to the other [22]. Typically, the effect of an

experimental treatment is compared with a control treatment such as a placebo or a

standard of care.

Network meta-analysis. For any given medical condition, there usually exists

more than two possible treatments. There is then interest in comparing the full set of

treatment options in order to work out which is the most effective. A naïve approach

is to perform a separate meta-analysis for each pairwise combination of treatments.

However, this is rarely possible as, in general, not all pairs of treatments will have been

compared in a head-to-head trial. Furthermore, this naïve method ignores indirect

information arising from comparisons to some common third treatment. In response

to this, network meta-analysis (NMA) emerged as a technique to combine so-called

direct and indirect evidence (concepts which we will explain in the next paragraph)

from trials comparing different combinations of treatment options [23].

Indirect evidence refers to the idea that when two treatments, A and B, have not

been compared in any head-to-head trials, one can infer their relative effect using

information from trials in which these treatments have been compared to some ‘common

comparator’ treatment C (see Figure 1.1) [24]. Essentially, if we know that treatment

A is more effective than treatment C (from trials comparing A to C) and that C is

more effective than B (from trials comparing B to C) then we can infer that A is more

effective than B. Direct evidence on the comparison of A and B refers to trials in which
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Figure 1.1: An illustration of indirect evidence. Vertices represent different treatment
options (A, B, C) and edges represent comparisons between treatments in trials.

these two treatments are compared head-to-head.

Higgins and Whitehead (1996) [25] assumed that both direct and indirect evidence

provide estimates of the same parameter (i.e. the relative treatment effect). Based

on this idea they proposed models for combining evidence from trials comparing

different combinations of treatments A, B and C, including trials that compare all three

treatments. In another seminal paper, Lumley (2002) [26] considered that indirect

evidence about A and B could arise with reference to various common comparators (e.g.

treatments C, D, E...). Combining these indirect estimates, along with any available

direct evidence, then yields an overall estimate for the relative effect of A and B based

on all the available data. Building on this work, Lu and Ades (2004, 2006) [27, 28]

proposed different parameterisations of the Higgins and Whitehead model that allowed

for the simultaneous evaluation of the relative effects between all pairs of treatments

in a wide range of scenarios. Since then, numerous other formulations have also been

developed (e.g. [29–35]).

The term ‘network meta-analysis’ was proposed by Lumley [26] who used a network

graph to visualise the various indirect comparisons between A and B. In this visualisa-

tion, vertices represent treatment options, and edges connecting the vertices indicate

comparisons between treatments in the trials.

The representation of treatments and trials as a network graph has natural appeal

to statistical physicists. Physical systems can be modelled by networks that encapsulate

structural patterns of connection between the interacting components of the system.

Statistical mechanics then provides a framework for modelling dynamic processes on

networks [36, 37], and for describing the structural properties, time evolution and
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statistical features of the networks themselves [38, 39]. Our work on network meta-

analysis focuses on the network properties of the collection of treatments and trials.

Chapter 3 investigates the effect of network topology on the outcome of the analysis

while Chapter 4 considers the properties of a random walker moving on the network of

evidence.

1.3.2 Survival analysis

In short, survival analysis involves studying the expected time until the occurrence

of an event [40]. While applications to a range of disciplines exist (for example in

economics [41], engineering [42] and sociology [43]), the work in this thesis focuses on

the survival of patients in a medical trial.

Individuals in the trial are typically characterised by a set of measurable quantities

called covariates. Each individual is then observed over time until they experience

some irreversible medical event such as death or the onset of disease. Patients who do

not experience an event by the end of the observation period are said to be censored

[44].

The principal idea is to model the probability of survival as a function of time

by extracting the relationship between patient covariates and survival based on these

time-to-event measurements. One can then predict the probability that a new patient,

for whom we have a set of covariate measurements, survives to some specified future

time. This analysis has particular clinical relevance as it provides a framework with

which to quantify and communicate personalised patient prognosis.

In the simplest case covariates are treated as constants and their values are measured

at the baseline time, i.e. at study entry. Using a parameterised or semi-parameterised

model, one then estimates the regression coefficients representing the association

between these covariates and the probability of survival. In reality however, one

often has access to repeated measurements of time-varying covariates from patients

attending follow-up appointments. The task is then to use the longitudinal trajectory

of the covariate measurements to specify a survival model and to make predictions.

In particular, clinical interest lies in predicting patient survival probabilities based on

the full history of their covariate measurements and updating prognosis as each new

observation is made. This process is known as ‘dynamic prediction’ [45–47].
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The time until an event occurs represents a stochastic process. In survival analysis,

the stochasticity is accounted for using a probabilistic model and the process is

parameterised by the covariates. It is this parameterisation that we attempt to extract

from the data. The stochastic nature of this process lends itself to statistical mechanics.

Indeed, concepts such as first hitting time models, that have their origin in the study

of statistical physics, have previously been used to model survival [48].

In dynamic prediction one aims to make predictions about the time to an event in

a stochastic process based on observations that evolve over time. From a statistical

mechanics perspective, these processes offer an interesting topic for exploration. In

Chapter 6 we propose an approach to dynamic prediction that builds on standard

survival analysis models.

1.4 Thesis structure and format

This thesis is presented in ‘journal format’ in accordance with The University of

Manchester guidelines. Chapters 2, 3, 4, and 6 contain the content of manuscripts

that have either been published or have been submitted for publication. Each of these

chapters is prefaced with a reference to the relevant journal article or pre-print, along

with the author list, and a description of the role each author played. A list of works

pertaining to these chapters is given in Section 1.5 and is ordered chronologically

(different from the ordering of the chapters).

The presentation of the manuscripts in Chapters 2, 3, 4, and 6 has been modified to

fit the requirements of The University of Manchester’s thesis format. Any typographical

errors that were spotted after submission have been corrected. Each of these chapters

uses the notation from the original manuscript meaning there are some small notational

differences between chapters. However, the notation used in each chapter is introduced

in full and is self-consistent within the chapter. We now briefly summarise the content

of each chapter.

Chapter 2: Network Meta-Analysis: A Statistical Physics Perspective.

This chapter provides a technical background to network meta-analysis. Here, we

introduce the necessary mathematical details for the projects discussed in Chapters

3 and 4. This includes the main NMA models and their assumptions, Bayesian and
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frequentist approaches to inference, details of relevant numerical algorithms, and

methods for reporting NMA results and ranking treatments. The original manuscript

to which this chapter relates had the aim of introducing network meta-analysis to

statistical physicists. Therefore, the chapter also details existing points of contact

between meta-analysis and topics from physics, and discusses ideas for how statistical

physics might contribute to NMA in the future.

Chapter 3: Degree irregularity and rank probability bias in network

meta-analysis. In this chapter we present a simulation study investigating the effect

of network topology on the outcomes of an NMA. In particular, we characterise network

topology in terms of asymmetry in the distribution of trials between the treatments.

We find that this asymmetry is associated with variation in the precision of treatment

effect estimates and a systematic bias in estimates of rank probabilities. We discuss

how these findings may be used to inform the planning future trials.

Chapter 4: Network meta-analysis and random walks. In statistical

mechanics, random walks are a popular tool for analysing networks. A random walk on

a graph is a stochastic process that describes a path made up of a succession of random

‘hops’ between vertices that are connected by an edge. In this chapter we demonstrate

a novel analogy between random walks and NMA. Using the existing interdisciplinary

analogies between (i) NMA and electrical networks [29], and (ii) electrical networks

and random walks [49], we construct a random walk on the meta-analytic network. By

analysing the average movement of the random walker, we obtain information about

the flow of evidence through the network, and the influence of certain comparisons on

the network estimates. The analogy leads to an analytical expression for the so-called

‘proportion contribution matrix’ which overcomes the limitations of previous algorithms

used to construct this quantity.

Chapter 5: Introduction to Survival Analysis. This chapter provides a

bridge between the projects on NMA and the final project in Chapter 6 on the topic of

survival analysis. We give an overview of some of the main topics in survival analysis

and introduce some technical concepts relevant for Chapter 6 such as the survival

function, hazard rates, censoring mechanisms, and the Cox proportional hazards model.

Chapter 6: Retarded kernels for longitudinal survival analysis and dy-

namic prediction. Here we develop a new approach to dynamic prediction with
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time-varying covariates. We assume that the effect of a covariate change at a certain

time decays exponentially according to some characteristic (covariate-specific) time

scale. Based on this, and requiring that our models contain standard models as a

special case, we specify two time-varying association kernels that assign less weight to

measurements made further in the past and greater weight to more recent measure-

ments. We compare our models to two standard approaches via application to three

clinical data sets.

Chapter 7: Conclusions. In conclusion, we review the findings from Chapters

3, 4, and 6. We present some final remarks on the thesis as a whole including the wider

contributions of the work, and potential avenues for future research.

Chapter 8: Supplementary material for ‘Degree irregularity and rank

probability bias in network meta-analysis’. This chapter includes supplementary

simulations and figures for Chapter 3. We separate these from the rest of the thesis so

as not to interrupt the flow of the text.

1.5 List of works

• A. L. Davies and T. Galla, “Degree irregularity and rank probability bias

in network meta-analysis”, Research Synthesis Methods 12, 316-332 (2021).

10.1002/jrsm.1454

• A. L. Davies, T. Papakonstantinou, A. Nikolakopoulou, G. Rücker and T. Galla,

“Network meta-analysis and random walks”, Statistics in Medicine, 1-24 (2022).

10.1002/sim.9346

• A. L. Davies, A. C. C. Coolen and T. Galla, “Retarded kernels for longitudinal

survival analysis and dynamic prediction”, arXiv preprint. arXiv:2110.11196

(2021). [Submitted to Statistical Methods in Medical Research]

• A. L. Davies and T. Galla, “Network Meta-Analysis: A Statistical Physics

Perspective”, arXiv preprint. arXiv:2203.11741 (2022). [Submitted to Journal

of Statistical Mechanics: Theory and Experiment]
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1.6 Contributions to software

• G. Rücker, U. Krahn, J. König, O. Efthimiou, A. L. Davies, T. Papakonstantinou

and G. Schwarzer. “netmeta: Network Meta-Analysis using Frequentist Methods”,

R Foundation for Statistical Computing (2021). R package version 2.0-0. CRAN.R-

project.org/package=netmeta
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Abstract

Network meta-analysis (NMA) is a technique used in medical statistics to combine

evidence from multiple medical trials. NMA defines an inference and information

processing problem on a network of treatment options and trials connecting the

treatments. We believe that statistical physics can offer useful ideas and tools for

this area, including from the theory of complex networks, stochastic modelling and

simulation techniques. The lack of a unique source that would allow physicists to

learn about NMA effectively is a barrier to this. In this article we aim to present

the ‘NMA problem’ and existing approaches to it coherently and in a language

accessible to statistical physicists. We also summarise existing points of contact

between statistical physics and NMA, and describe our ideas of how physics might

make a difference for NMA in the future. The overall goal of the article is to attract

physicists to this interesting, timely and worthwhile field of research.

2.1 Introduction

Physicists in general, and statistical physicists in particular, have a propensity to draw

inspirations from problems across the borders of traditional disciplines. The application

of ideas and methods from physics to questions in biology, economics and the social

sciences is therefore well established [1, 2]. The following quote by the late Dietrich

Stauffer encapsulates this [3]: ‘The basic theorem of interdisciplinary research states:

Physicists not only know everything; they know everything better.’1 Arguably, not all of

these invasions into the territory of other disciplines are useful, and physicists have

been criticised for their, at times, ill-informed attempts to address questions outside

their area of expertise [4]. On the other hand, it is also hard to deny that physics

approaches have made useful contributions to a number of different fields.

In this perspective review we highlight network meta-analysis (NMA), a topic from

medical statistics, as a field for which we think physics ideas might be useful. Meta-

analysis is a statistical technique used to combine the results of multiple trials [5–7].
1The quote continues: ‘This theorem is wrong; it is valid only for computational statistical physicists

like me’.
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The aim of such trials is to establish and compare how effective different treatment

options are. To do this, the different treatments are administered to groups of subjects

in medical trials. Individual trials often have small sample sizes and involve subjects

taken from a reduced population. Because of this, it is desirable to systematically

integrate results from different trials to obtain an overall estimate of the effect of a

given treatment and to compare treatment options. This is complicated by the fact that

trials taking place at different locations will generally involve demographically different

subject groups. The aggregation of data from different trials is not straightforward.

Conventional meta-analysis focuses on pairwise comparisons of treatments. More

recently however, NMA (also referred to as ‘indirect meta-analysis’, and ‘multiple’ or

‘mixed treatment comparison’ [8, 9]) has emerged as a technique for making inferences

about multiple competing treatments. NMA allows one to combine data from multiple

trials even when different trials test different sets of treatment options. The term

‘network meta-analysis’ derives from a graphical representation of the treatments and

trials. The nodes of the graph are the different treatment options and the connecting

edges represent comparisons made between the treatments, an illustration can be

found in Figure 2.1. NMA combines direct and indirect evidence for the assessment of

treatments. This makes it possible to compare treatments that have not been tested

together in any trial. For a textbook on NMA see [9].

NMA is based on two main concepts: microscopic models for the outcomes of the

different trials in the graph, and algorithms or procedures to carry out the actual NMA

inference.

Microscopic models. The microscopic model captures the main assumptions made on

the process leading to real-world trial outcomes. Each trial tests a subset of treatments.

In the so-called ‘random effects model’ the relative treatment effects of the treatments

in a particular trial are drawn from an underlying distribution. As a consequence,

the effect of one treatment relative to another is not necessarily the same in two

different trials. This reflects variability in local characteristics, for example, the fact

that patient groups are chosen from different demographic subsets at different locations.

In simulations of the random effects model, rates of success and failure for each trial

arm are then constructed (the treatments tested in a trial are referred to as the ‘arms’

of the trial). A treatment success or failure occurs for a particular patient with the
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Figure 2.1: The network for the ‘thrombolytic drug data’ set [10–12] comparing nine
treatments for acute myocardial infarction (heart attack). The treatments T1, . . . , T9 are
labelled in the box. They consist of eight thrombolytic drugs and one angioplasty intervention
(T7). The thickness of the edges in the network indicate the number of trials making that
comparison. The area of the node is proportional to the number of patients allocated to
that treatment. The network consists of 50 trials; two 3-arm trials (comparing T1, T3, T4 and
T1, T2, T9, respectively) and 48 2-arm trials. The multi-arm trials are not explicitly indicated
on the graph.

corresponding probability. This generates multiple layers of randomness in simulations:

random treatment effects, and a binomial distribution of successes and failures for each

trial arm.

NMA inference. The purpose of NMA is to estimate model parameters from given trial

outcomes. These can either be real-world data or synthetic data (i.e. data generated in

simulation studies used for methodological evaluation). The NMA process also provides

confidence levels for these parameters. These can be used to construct a ‘ranking’

of treatments, as best, second best and so on. In more sophisticated approaches,

probabilities are assigned that each treatment has a particular rank, reflecting the

uncertainty on inferred treatment effects. Different ranking methods are still very much

under discussion.

The NMA inference itself can either be carried out in a frequentist or a Bayesian

setting. In this paper we will describe both approaches. In Bayesian NMA prior

distributions are assumed for key model parameters, and posterior distributions are

constructed from these and the trial outcomes. This needs to be done numerically, using
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Markov Chain Monte Carlo methods (in NMA specifically, the Metropolis-in-Gibbs

algorithm is often used [13]). In the frequentist approach described here, one defines a

linear regression model dependent on the model parameters. The model can then be

fitted using generalised least squares regression or maximum likelihood. For continuous

outcomes under the assumption of normally distributed random errors these methods

are equivalent. Other procedures are also possible [14, 15], but are not discussed here.

We believe that NMA has a natural appeal to statistical physicists. Those with

experience in complex networks will find it interesting to connect the structure of

treatment-trial networks with the outcome of NMA. Computational physicists may

contribute to optimising the inference process and required sampling methods. Those

interested in stochastic simulations can naturally connect with data generation methods

used to obtain synthetic data for a given network of treatments and trials. NMA is an

inference problem on a networked structure, and we expect that physicists working

at the border to computer science and machine learning will become excited about

it; for example it is conceivable that message passing methods can become a useful

tool for NMA. Our own work (with collaborators) shows that random walks on the

meta-analytic network and related graphs can lead to additional insights and improve

methods to establish how evidence flows in NMA [16].

One main bottleneck appears to be that there is no unique source which would

allow a physicist to enter this field efficiently. While textbooks and review articles on

NMA exist [8, 9, 17–24], these are often written for medical practitioners, or users of

existing software packages. The mathematical details are frequently suppressed, or

not presented in a language physicists are used to. This can make it hard to get a

good grip on the actual mechanics of NMA. This perspective review is our attempt at

rectifying this. Our objective is to provide a technical introduction to NMA, accessible

to physicists. We have aimed to make this self-contained, but at the same time this

review is not a textbook and we have tried to keep the length to a reasonable limit. We

hope we have found a sensible middle ground. We necessarily had to make a selection

of topics we can cover, and attempted to choose those that are most helpful for others

entering this area. We also aim to point out ideas from physics which we believe to be

most promising to make a difference to NMA. We hope that this will facilitate future

work by the physics community in this timely and worthwhile area of research.
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The paper is organised as follows: Section 2.2 sets the scene, defines the necessary

notation and states the ‘NMA problem’. In Sections 2.3 and 2.4 we then present the

mathematical procedures used to carry out an NMA in a Bayesian and frequentist

setting respectively. Section 2.5 summarises how the results of an NMA are reported.

In Section 2.6 we present existing analogies connecting NMA to different systems in

physics, including resistor networks and random walks. In Section 2.7 we then outline

some more general connections between the two fields and speculate on ways in which

we think physicists may contribute to NMA in the future. Section 2.8 contains a brief

summary and discussion.

2.2 Networks of medical trials

2.2.1 General background: randomised controlled trials, meta-

analysis, and network meta-analysis

In this section we first give an informal description of the key concepts in NMA. We

turn to a more formal mathematical setup in Section 2.2.4.

2.2.1.1 Randomised controlled trials

For our purposes a trial is an experiment in which a group of subjects is used to

compare a given set of treatment options. The different treatments are referred to as

the arms of the trial. In particular, a ‘controlled’ clinical trial is one with at least two

arms. Typically, this involves one or more ‘experimental’ treatment groups representing

new treatments being tested. These are compared to the so-called ‘control’ group(s)

which could be alternative (existing) treatments, a placebo or no treatment [25].

The allocation of subjects to the different arms is randomised to avoid any bias in

treatment assignment. For example, the treatment assigned to a given subject can be

chosen with equal probability from the arms of the trial. In this scenario the trial is a

‘randomised controlled trial’ (RCT).

Once assigned to a trial arm, each subject receives the respective treatment, and

undergoes follow-up. In the simplest case the outcome for each subject is binary

(dichotomous), e.g. ‘treatment successful’ vs. ‘treatment not successful’. We can also
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think of this as ‘an event has occurred’ vs. ‘no event has occurred’. For the purposes

of this introductory review we focus on this case of binary outcomes. We exclude

censoring (e.g. patients withdrawing from the trial or otherwise not being followed up,

and therefore not producing data). More complex outcomes in trial data may consist

of a discrete set of more than two alternatives (e.g. ‘ordinal outcomes’ on a 5-point

scale), or the outcome may be continuous, see e.g. [17].

2.2.1.2 Meta-analysis

Meta-analysis in general is concerned with combining evidence from multiple trials.

The simplest case is ‘pairwise’ or ‘standard’ meta-analysis. Two treatment options are

compared in a set of different trials. The purpose of meta-analysis is then to ‘integrate’

the outcomes of the different trials, and to estimate how effective the competing

treatment options are. These estimates can then be used to decide if one of the two

treatments is to be preferred over the other, and which one.

In this process it is important to bear in mind that the outcomes of different trials

cannot always be aggregated directly. Clinical trials taking place at different locations

will draw from a local patient pool, and as a result, the general characteristics of the

subjects may differ from trial to trial (e.g. age, health or economic status, level of

education etc.) which may affect the observed treatment effects. In order to combine

evidence from multiple trials we require an underlying model – a stochastic process

with unknown parameters leading to realisations of the data observed in trials. Two of

the most common modelling approaches, fixed and random effects models, are discussed

in Section 2.2.4. Once a given model assumption has been made, the objective of

meta-analysis is to estimate parameters of the model from the data.

2.2.1.3 Networks of trials and NMA

General networks of treatments and trials capture more complex situations than the

one described in Section 2.2.1.2. For example imagine that there are four different

treatment options and several trials, each comparing a subset of treatments. Not every

trial tests all four treatments, but the same pairwise comparison is perhaps made in

different trials. This generates a network of treatment options and trials.

A possible scenario is illustrated in Figure 2.2. The network consists of three trials
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Figure 2.2: Illustration of a network of treatment options and trials. (a) There are three
trials in the network (squares), and four treatments in total (circles). (b) Trial 1 has three
arms (treatments T1, T2 and T3), trial 2 is two-armed (treatments T2 and T3), and trial 3
tests treatments T1, T3 and T4. (c) Presentation of the network as a graph with only one
type of node. Each node represents one treatment, and two treatments are connected if
they have been directly compared in at least one trial. The thickness of the edge connecting
two nodes is proportional to the number of trials comparing those two treatments. This
representation does not contain full information about the network of treatments and trials.
(d) Representation as a bipartite graph of treatments and trials. This can also be understood
as a hypergraph (related concepts include incidence or Levi graphs [26]).

(indicated by square boxes), comparing different subsets of four different treatments

[panel (a)]. We label the treatments T1, . . . , T4, and indicate them as circles on the

graph. Panels (b), (c) and (d) show different graphical representations of this network;

details can be found in the figure caption. Option (c) is most commonly used in

practice.

Most notably in this example, there is no pairwise comparison between two fixed

treatments that is made in all three trials (i.e. no pair of treatment arms features in

all three trials). The pair T2–T3 appears in trials 1 and 2, so the use of conventional

(pairwise) meta-analysis would be restricted to combining information regarding this

particular pair from trials 1 and 2 only.

Network meta-analysis aims to integrate further information from the network. The

information about the pair T2–T3 from trials 1 and 2 is referred to as direct evidence for

the comparison of these two treatments. However, T2 and T3 are each also compared to

T1. For treatment option T2 this happens in trial 1, and for T3 in trials 1 and 3. These
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comparisons to a common third treatment provide indirect evidence for the comparison

of T2 and T3.

In the example, treatment options T2 and T4 are not compared directly in any trial.

However, each of the two are directly compared to T1 and T3 [see Figure 2.2 (b)]. This

indirect evidence can be used to infer information about the comparison between T2

and T4, even though there is no direct evidence.

Data example. Figure 2.1 shows the network for a real NMA data set comparing

nine treatments for acute myocardial infarction (heart attack) [10–12]. The treatments

are labelled T1, . . . , T9 and their names are given in the figure. They consist of eight

thrombolytic drugs and one angioplasty intervention (T7). The data has therefore been

referred to as the ‘thrombolytic drug’ data set [12, 27]. A heart attack occurs when

blood flow to the heart is cut off, usually resulting from blockage of one or more of the

coronary arteries. Thrombolytic drugs aim to dissolve blood clots that have blocked

arteries whereas angioplasty is a procedure that tries to relieve blockage by widening

the arteries. The data consists of 50 trials; two 3-arm trials (comparing T1, T3, T4 and

T1, T2, T9, respectively) and 48 2-arm trials. Each trial records the number of deaths in

each treatment arm that occur within 30 or 35 days of a heart attack. The network is

represented by a weighted graph where for each pair of treatments, the thickness of the

edge link is proportional to the number of trials comparing these two treatments. The

area of each node is proportional to the number of patients allocated to the treatment

represented by that node. Multi-arm trials are not explicitly indicated on the graph.

2.2.2 General notation for networks of trials and treatments

We write N for the total number of treatment options in the network. We label the

different treatments T1, T2, . . . , TN , and we will use the indices a, b when we refer to

elements of the set of treatments, i.e. a, b ∈ {T1, . . . , TN}. The number of trials in the

network is denoted by M , and we use the indices, i, j to refer to the different trials, i.e.

i, j ∈ {1, . . . , M}. We will use the words ‘trial’ and ‘study’ synonymously.

Each trial compares a subset of treatments. We write Ai ⊂ {T1, . . . , TN} for the

set of treatment options compared in trial i. Hence mi ≡ |Ai| is the number of arms

of study i. We number the arms of trial i by ℓ = 1, . . . , mi, and denote the treatment
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given to patients in arm ℓ of trial i by ti,ℓ. Each ti,ℓ (i = 1, . . . , M , ℓ = 1, . . . , mi) is a

treatment from the set {T1, . . . , TN}.

In the illustration in Figure 2.2, we have N = 4 treatments and M = 3 trials. For

trial 3, for example, we have m3 = 3 (three-armed trial), A3 = {T1, T3, T4} as well as

t3,1 = T1, t3,2 = T3 and t3,3 = T4.

We write ni,ℓ for the number of subjects receiving the ℓ-th treatment in trial i,

with ℓ = 1, . . . , mi. Focusing on binary outcomes, the data available for each patient

is whether an ‘event’ has occurred by the end of the study or not. (We note that,

depending on the context, an event can either be treatment success or an adverse event

as in the data example in Section 2.2.1.3.)

For each arm ℓ of trial i, the number of resulting events is recorded. We denote

this by ri,ℓ. This quantity takes integer values in the range 0, 1, . . . , ni,ℓ

Summarising, trial i is defined by the treatments it compares, ti,1, . . . , ti,mi
, by the

number of patients in each arm, ni,1, . . . , ni,mi
, and by the number of events in each

arm ri,1, ..., , ri,mi
.

2.2.3 Absolute outcomes and relative treatment effects: the

logit scale

We assume that the application of the treatment in arm ℓ of trial i generates events

with probability pi,ℓ independently for each of the ni,ℓ patients at the end of this trial

arm [28]. As a consequence, each ri,ℓ is a binomial random variable,

Prob(ri,ℓ = r) =

 ni,ℓ

r

 pr
i,ℓ(1 − pi,ℓ)ni,ℓ−r, (2.1)

for i = 1, . . . , M and ℓ = 1, . . . mi.

2.2.3.1 Absolute outcomes

The {pi,ℓ} can be interpreted as the ‘absolute outcomes’ for each treatment group,

they capture how likely it is that the different treatments produce ‘events’. The word

‘absolute’ indicates that these values are not expressed with reference to any other

treatment or baseline.
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In the context of binary data, absolute outcomes are frequently expressed in terms

of so-called ‘log-odds’. For a probability p (i.e. a number p ∈ [0, 1]) the term ‘odds’

refers to the ratio p/(1 − p), and the log-odds or ‘logit’ (‘logistic unit’) is defined as

logit(p) = ln p

1 − p
. (2.2)

While the original probability p is restricted to the range 0 ≤ p ≤ 1, the logit of p can

take values on the entire real axis, with limp→0 logit(p) = −∞, and limp→1 logit(p) = ∞.

Accordingly, we can express the treatment outcomes in terms of λi,ℓ ≡ logit(pi,ℓ) =

ln pi,ℓ − ln(1 − pi,ℓ). In a slight abuse of terminology we will refer to both the {λi,ℓ} and

to the {pi,ℓ} as the absolute outcomes. From the context it will be clear what we mean.

The logit transformation in Equation (2.2) is an example of a so-called ‘link function’.

Outcomes from medical trials come in many forms (e.g. time-to-event, ordered categories,

continuous measurements) and are generated from a range of distributions (e.g. normal,

binomial, Poisson). By using a link function to transform the treatment outcome

associated with a particular type of data onto the continuous scale we can then use

the same basic model for a range of different data types. The choice of logit in

Equation (2.2) is a practical choice for binomial data. Exchanging the definitions

of event vs no event (i.e. p ↔ 1 − p) only results in a sign reversal, i.e. it makes no

difference for the mathematical model and inference process. This is not true for some

other choices of the link function [29, 30].

In the following we describe the NMA model for binomial data with a logit link.

The likelihood function (defined further below) is based on a binomial distribution. To

analyse other types of data, one can use the same basic NMA model but the likelihood

and link functions vary depending on the type of this data. See References [17, 31] for

an overview of different data types and their corresponding link functions.

2.2.3.2 Relative treatment effects, transitivity and common baseline

We now introduce the so-called relative treatment effect for treatments a and b. If these

two treatments have absolute outcomes λa and λb, then we write

dab ≡ λb − λa (2.3)

for the relative treatment effect for this pair. This definition implies dab = −dba, and

daa = 0.

69



Chapter 2. Network Meta-Analysis: A Statistical Physics Perspective

In formulating this setup we assume that the relative treatment effects fulfil the

transitivity relation dab = dac +dcb for all triplets of treatments a, b and c. Alternatively,

this can be written as

dab = dcb − dca. (2.4)

Using transitivity, the relative treatment effects of all pairs in a network of N treatments,

T1, . . . , TN , are fully specified by N − 1 numbers. For example, we can designate

treatment T1 as the overall ‘global’ baseline. It is then sufficient to know dT1a, for

a ∈ {T2, . . . , TN}. These values are termed the ‘basic parameters’ [32, 33] and we

collect them in the (N − 1)-component vector d = (dT1T2 , dT1T3 , . . . , dT1TN
)⊤ (the

notation (. . . )⊤ indicates transposition). The relative treatment effect dab for any pair

of treatments a, b can then be determined from Equation (2.4) using c = T1.

Transitivity describes an assumption made in setting up the model. It is applicable

to all possible comparisons in the network. The ‘statistical manifestation’ [19] of

transitivity in observed data is referred to as consistency. I.e. if direct and indirect

evidence exist in the data for a particular comparison, then the data is consistent if

there is no discrepancy in the treatment effects obtained via the two types of evidence.

2.2.4 Fixed and random effects models

In this section we describe the random and fixed effects models used in meta-analysis.

We will abbreviate these as RE and FE models respectively. The FE model is a limiting

case of the RE model.

2.2.4.1 General idea: Modelling relative effects

The usual approach to NMA is to model the relative treatment effects rather than

the absolute outcomes. Individual trials are likely to have different characteristics in

terms of population demographics (e.g. age, socio-economic status, baseline health)

and trial procedures (such as treatment dosage or administration). It is therefore likely

that absolute outcomes, such as the number of patients who experience an event, will

vary substantially depending on these characteristics. For example, we are likely to

observe a higher proportion of deaths in a trial with an older population compared

to a younger population. It is then unrealistic to model the absolute outcomes as

70



2.2. Networks of medical trials

being comparable across all trials. A less restrictive model is to assume that differences

between treatment outcomes are similar across the trials. For example, if treatment T1

is more effective than treatment T2 then it is likely that in each trial we will observe

fewer deaths in arm T1 than in arm T2 even if the overall number of deaths in each

trial is very different.

With this in mind, we assume that each trial comparing treatments a and b is

associated with some unknown relative treatment effect ∆i,ab which represents the ‘true’

difference in effectiveness between a and b in trial i. Trial i then provides information

about ∆i,ab subject to some sampling error (due to the finite number of participants in

that trial). This information is said to be ‘observed’. The FE and RE models differ in

the assumptions placed on these ‘trial-specific’ relative effects.

The FE model assumes that each trial has the same underlying relative treatment

effects, i.e. ∆i,ab = dab ∀i. The RE model, on the other hand, is more flexible. Rather

than requiring that the trial-specific relative effects are the same in every trial (as in

the FE model), they are instead assumed to be ‘exchangeable’ [5, 34, 35]. In other

words, the true relative treatment effects in each trial are treated as random variables,

drawn from an underlying distribution [7]. This reflects the fact that differences in trial

characteristics may mean that a particular treatment option is comparatively more

effective in one trial than in another. For example, treatment T1 may be the most

effective treatment for participants of all ages, but it could yield even better results

for younger patients. Trials with a younger demographic may then observe a larger

relative effect between T1 and T2 compared with a trial of older participants. More

specifically, the RE model assumes that the relative effect of two treatments a and b is

drawn from the same distribution for any trial involving these two treatments, i.e. this

distribution is the same for all i. We are interested in the mean of this distribution.

This indicates the typical relative effect between the treatments.

The RE model therefore consists of two levels of randomness; one due to variations

between trials and the other due to sampling within a given trial. In the FE model, we

only allow for the latter.
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2.2.4.2 Transitivity of trial-specific relative effects

We assume that the trial-specific relative treatment effects fulfil the transitivity relations

in Equation (2.4). For a trial with m arms it is therefore sufficient to designate a

trial-specific baseline treatment and its absolute outcome, and the treatment effects of

the m − 1 remaining arms in the trial relative to this baseline. This will fully determine

the true absolute outcomes associated with all treatments in the trial.

In our model there are mi arms in trial i, labelled ℓ = 1, . . . , mi. Without loss of

generality we use ℓ = 1 as the trial-specific baseline treatment. We then write

∆i,1ℓ = ln pi,ℓ

1 − pi,ℓ

− ln pi,1

1 − pi,1
(2.5)

for the effect of treatment ti,ℓ in the trial relative to this baseline.

The absolute outcomes pi,ℓ of all mi arms in the trial can then be obtained from

the true absolute outcome of the baseline, pi,1, and ∆i,12, . . . , ∆i,1mi
.

2.2.4.3 Model definitions

We now formalise our model. As we have seen, the RE model consists of two level of

randomness. One is between-trial variation and the other is due to sampling in a given

trial. We describe these in turn2.

Between-trial variation. We assume that the relative treatment effects for a given

trial i are drawn from a multivariate normal distribution,
∆i,12

...

∆i,1mi

 ∼ N




dti,1ti,2

...

dti,1ti,mi

 ,Σi

 . (2.6)

The first argument is the mean, the second argument is the covariance matrix. We will

now describe these first and second moments in more detail.

Given Equation (2.6), the relative effect between two treatments a and b in a given

trial is a Gaussian random variable. In particular, the relative effect between these
2In our description the first level of randomness is the between-trial variation, whereas the second

level is the sampling randomness within a trial. This reflects the ‘mechanistic’ view a physicist might
take, and focuses on how one would generate synthetic trial data in a simulation. A statistician might
take a reverse view and see the trials as the starting point (hence sampling noise is the first level of
randomness). The synthesis of several trials then follows later, and the between-trial randomness
therefore comes second for the statistician.
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treatments varies across different trials involving a and b. The model parameters dab

are the averages of these random numbers. More precisely, for a given pair a and b the

parameters dab can be interpreted as the ‘typical’ relative effect one should expect to

see in a trial involving these treatments.

Using the transitivity relation in Equation (2.4), we can write the vector of mean

treatment effects in trial i, di = (dti,1ti,2 , . . . , dti,1ti,mi
)⊤ in terms of the vector of basic

parameters via

di = Xid. (2.7)

We note that d is a vector with N − 1 entries and that di has mi − 1 components. The

(mi − 1) × (N − 1) matrix Xi describes which treatments are compared in trial i and

is called the ‘design matrix’ of the trial. Each of the N − 1 columns of Xi represents a

treatment a ∈ {T2, . . . , TN}. The mi − 1 rows represent the comparisons of treatments

ti,ℓ (ℓ = 2, . . . , mi) to the trial-specific baseline ti,1. In a given row ℓ all entries of

Xi are zero, except those corresponding to the treatments that are being compared.

More precisely, we distinguish two cases: (i) the trial-specific baseline treatment is not

the global baseline (ti,1 ≠ T1), and (ii) the trial-specific baseline is the global baseline

(ti,1 = T1).

We focus first on case (i). In row ℓ the matrix entry for the treatment ti,ℓ that is

being compared against the trial-specific baseline is set to +1. The entry in the column

corresponding to the trial-specific baseline [which is among the {T2, . . . , TN} in case

(i)] is set to −1. All other N − 3 entries in row ℓ are zero. In situation (ii), we again

set the entry for the treatment ti,ℓ that is being compared against the trial-specific

baseline to +1. All other N − 2 entries in row ℓ are zero.

To illustrate this, consider the example network in Figure 2.3. This network consists

of N = 5 treatments and M = 2 trials. The global baseline treatment is T1. The vector

of basic parameters is d = (dT1T2 , dT1T3 , dT1T4 , dT1T5)⊤. Trial i = 1 compares treatments

A1 = {T2, T3, T4, T5} with trial-specific baseline t1,1 = T2. This is an example of option

(i) and its design matrix is

X1 =


−1 1 0 0

−1 0 1 0

−1 0 0 1

 . (2.8)

Trial i = 2 compares treatments A2 = {T1, T3, T5} and its trial-specific baseline is
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Figure 2.3: A fictional network with N = 5 treatments and M = 2 trials. Trial i = 1
compares treatments A1 = {T2, T3, T4, T5} and trial i = 2 compares A2 = {T1, T3, T5}. (a)
Standard network representation where the thickness of each edge relates to the number of
trials that make that comparison. Here, only the pair {T3, T5} appears in both trials. (b)
Network representation as a bipartite graph.

t2,1 = T1. This is an example of option (ii) and its design matrix is

X2 =

0 1 0 0

0 0 0 1

 . (2.9)

The (mi − 1) × (mi − 1) matrix Σi in Equation (2.6) describes the variance of

the relative treatment effects, ∆i,1ℓ (ℓ = 2, . . . , mi), and their correlations. Following

References [36–38], we will assume that its diagonal elements are all identical. We

write τ 2 for their common value. This is the variance of each ∆i,1ℓ. We will further

assume that the covariance between any two treatment effects is τ 2/2 (these are the

off-diagonal elements of Σi). This ensures that the relative effect ∆i,1ℓ − ∆i,1ℓ′ between

any two treatments ℓ ̸= ℓ′ in trial i has variance τ 2.3

The between-trial variance τ 2 is termed the heterogeneity variance. We will refer

to its square root, τ , as the heterogeneity parameter. Occasionally we will simply use

‘heterogeneity’ to refer to either the parameter or the variance but it should be clear

from the context what we mean. Usually this distinction in not important.

The aim of network meta-analysis is to estimate the mean relative treatment effects

dab for all pairs a ̸= b, and the heterogeneity parameter, τ . Given the transitivity

assumption in Equation (2.4) not all dab are independent. As explained earlier, we can

use treatment a = T1 as the overall global baseline treatment, and it is sufficient to
3This can be seen from Var(∆i,1ℓ − ∆i,1ℓ′) = Var(∆i,1ℓ) + Var(∆i,1ℓ′) − 2Cov(∆i,1ℓ, ∆i,1ℓ′).
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estimate dT1a for a = T2, . . . , TN [33].

Sampling noise in a given trial. In a second level of randomness the model assumes

that the application of the treatment in arm ℓ of trial i generates events with probability

pi,ℓ independently for each of the ni,ℓ patients at the end of this trial arm [28]. Each

ri,ℓ is then a binomial random variable, as described in Equation (2.1).

The RE model is summarised and illustrated in Figure 2.4. The FE model is simply

a special case of the RE model where τ = 0. As previously explained, for any fixed pair

of treatments, there is then no variation in the relative treatment effects between trials.

2.2.5 Generation of synthetic data in simulations

The different levels of randomness in the model can be understood by thinking about

how one would simulate synthetic trial data in line with the model assumptions.

We begin such a process by defining the fixed parameters of the network. First,

we pick the network configuration; the number of treatments N , the total number of

studies, M , the number of arms in each trial {mi}, the set of treatments these arms

relate to {ti,ℓ}, and the number of participants in each arm {ni,ℓ}. We then assign the

‘true’ values of the model parameters, i.e. of d = (dT1T2 , dT1T3 , . . . , dT1TN
)⊤ and τ .

Following this set-up, we generate independent realisations ν = 1, 2, ..., Ω of synthetic

trial outcomes. Specifically, for each ν:

(1) For all trials i, randomly sample the parameters ∆i,1ℓ, ℓ = 2, . . . , mi, from the

multivariate normal distribution in Equation (2.6).

(2) Using the ∆i,1ℓ, ℓ = 2, . . . , mi, and a ‘data generating model’ still to be defined (see

below), construct the probabilities pi,ℓ, ℓ = 1, . . . , mi, for all trials i in the network.

(3) For each trial arm, generate random event data (‘observations’), ri,ℓ, from the

binomial distribution in Equation (2.1).

In step (2) of the simulation procedure, the relative treatment effects ∆i,1ℓ (ℓ =

2, . . . , mi) in any one trial i do not uniquely define the absolute outcomes pi,ℓ (ℓ =

1, . . . , mi) required for step (3). Equation (2.5) can be re-arranged to give

pi,ℓ = pi,ℓ[pi,1, ∆i,1ℓ] = pi,1e∆i,1ℓ

1 + pi,1 (e∆i,1ℓ − 1) , (2.10)
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Figure 2.4: Diagram summarising the random effects model of NMA. The main input
parameters are the configuration of trials and the statistics of treatment effects. The trial
configuration is set by the number of trials M in the network, the number of arms in each
trial (mi), the treatment options used in these arms (ti,ℓ) and the number of patients in each
arm (ni,ℓ). The statistics of the treatment effects are parameterised by the mean effect of
each treatment T2, . . . , TN relative to the overall baseline treatment T1, and the heterogeneity
parameter τ . In a first step of randomness realisations of the random variables describing
the treatment effects in the different trials (pi,1 and ∆i,12, . . . , ∆i,1mi) are drawn for each
trial from the distribution in Equation (2.6), supplemented by a distribution for each pi,1.
These are then used along with Equation (2.5) to construct the absolute outcomes of the
treatments in each trial. From these, and using the number of participants (the {ni,ℓ}), the
number of events in each arm (the {ri,ℓ}) are then drawn from the binomial distributions
in Equation (2.1). The fixed effect model is the special case τ = 0. The distribution in
Equation (2.6) then turns into a delta-distribution. In this scenario, the true relative effect
between two treatments a and b does not vary between trials and is given by dab.
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so that pi,1 together with the ∆i,1ℓ (ℓ = 2, . . . , mi) specifies all absolute outcomes in

trial i.

To fully define step (2) in the above algorithm it is therefore sufficient to specify the

construction of pi,1. A discussion of possible data generating models for pi,1 is given

in Seide et al (2019) [39]. We briefly describe two possible methods, highlighting the

resulting symmetry or asymmetry introduced.

One simple procedure involves sampling pi,1 for each trial from some specified

distribution. For example one could choose a uniform distribution between two limits

(perhaps zero and one to sample the full range of outcomes) or from a normal distribution

truncated at zero at the lower end, and at one at the upper end. One then obtains

the other absolute outcomes via Equation (2.10). By using a different method for

generating the absolute outcome of the trial-specific baseline (pi,1) compared to the

other absolute outcomes in the trial (pi,ℓ ̸=1), this method introduces asymmetry into

the generation procedure. A simple way of reducing the effect of this asymmetry on

the synthetic data is to randomly select the trial-specific baseline treatments at each

iteration ν.

An alternative data generation model was proposed by Seide et al (2019) [39].

Here, one chooses the absolute outcome for the baseline treatment to be the value

that minimises the Euclidean distance of the vector (pi,1, . . . , pi,mi
) from the vector

(1/2, . . . , 1/2), i.e.

pi,1 = min
q

(q − 1
2

)2
+

mi∑
ℓ=2

(
pi,ℓ [q, ∆i,1ℓ] − 1

2

)2
, (2.11)

where pi,ℓ[·, ·] is the expression given in Equation (2.10). This method maintains

symmetry since all mi absolute outcomes in trial i are determined simultaneously.

2.2.6 The process of carrying out a network meta-analysis –

Brief overview

2.2.6.1 Frequentist versus Bayesian network meta-analysis

In Sections 2.3 and 2.4 below we describe the two main approaches to carrying out

an NMA, i.e. the steps that are used to infer parameters such as relative treatment

effects from the observed trial data. The two approaches correspond to the two main
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branches of inference in general, frequentist and Bayesian inference.

Much has been written about the difference between Bayesian and frequentist

approaches to inference (e.g. [40–44]). One central point distinguishing the two is the

conception of probability. Frequentist inference defines the probability of some event in

terms of how frequently the event occurs if we repeat some process (e.g. an experiment)

many times [40]. The Bayesian approach instead uses probability to describe the

degree of belief in a statement [45, 46]. In the Bayesian framework, parameters such as

treatment effects are considered random variables, where the randomness reflects the

remaining uncertainty after the inference process. If the distribution for a parameter is

very sharp, then this indicates that we can be fairly certain that the inferred parameter

is in a given range around the mode of that distribution. If the distribution is wide

then the strength of our beliefs is weak. In the Bayesian approach probability therefore

becomes subjective. It is not a property of the system only, but also of the prior beliefs,

and the information available to the observer. Given that probability in Bayesian

statistics reflects the degree of belief in the value of parameters, we can make statements

such as ‘Given our prior beliefs and the data we have observed, we think that treatment

A is more effective than treatment B with probability 70%’. In frequentist methodology,

probability is not an expression of our beliefs and therefore an equivalent statement

would be, for example, ‘Based on hypothesised repetitions of the experiment, treatment

A would be estimated to be more effective than treatment B 70% of the time’.

A concept used in both Bayesian and frequentist inference is the ‘likelihood function’.

For observed data D, the likelihood function is the conditional probability (or probability

density) of observing this data given a specific set of model parameters θ, P (D|θ)4.

The likelihood function is so named because it describes how likely it is to observe

the given data for different values of parameters. In fact, the likelihood is viewed as a

function of the parameters rather than the data and – somewhat confusingly – is often

written as L(θ|D).
4One way of thinking about this is as follows: Consider the map P : (D,θ) 7→ P (D, θ) as a

real-valued function of the two arguments D and θ (which each may be multi-dimensional). We can
then look at this from two perspectives: (i) Fixing θ one obtains a map D 7→ P (D, θ) describing
the probability distribution (or density) of the data for given fixed parameters. Equation (2.1) is an
example. (ii) If we fix D we obtain a map θ 7→ P (D, θ). This is the likelihood for the parameter θ,
given the (fixed) data D.
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2.2.6.2 Arm-based versus contrast-based data

In the setup so far we have treated the {ri,ℓ} (the number of events in the arm of the

trials) as the trial outcome or ‘data’ in an NMA. Since each of the ri,ℓ is associated

with an arm in a trial, data of this type is referred to as ‘arm-level’ data.

The event probabilities associated with these measurements can also be expressed

on the logit scale and used to calculate the log odds ratio (LOR) representing the

relative effect between two treatments. For example, we write yi,1ℓ for the observed

LOR between the effect of treatment ℓ in trial i and the baseline treatment in that

trial,

yi,1ℓ = ln ri,ℓ/ni,ℓ

1 − ri,ℓ/ni,ℓ

− ln ri,1/ni,1

1 − ri,1/ni,1
. (2.12)

Sometimes a trial will only report the log odds ratio of each treatment relative to

the trial-specific baseline (the {yi,1ℓ}), and not the detailed number of events in each

arm (the {ri,ℓ}). The log odds ratio is a so-called ‘summary statistic’ and data of this

type is called ‘summary-level data’.

In NMA we can choose to model data on the arm level or the summary level. We refer

to these approaches as ‘arm-based’ (AB) and ‘contrast-based’ (CB) models respectively

[22]. Arm-level data is modelled using the binomial distribution [Equation (2.1)]. The

likelihood function of the data is then also based on this binomial distribution. This

is sometimes referred to as the ‘exact-likelihood’ or ‘AB-likelihood’ [47] approach. In

contrast-based models the LORs from each trial are modelled as following a normal

distribution. This is an approximation, and the approach is also referred to as the

‘approximate-likelihood’ or the ‘CB-likelihood’ [47] model5.

Both frequentist and Bayesian inference methods can be used to evaluate both

AB and CB models. In practice, frequentist models [37, 48, 49] are usually based on

contrast-level summaries while Bayesian models [9, 17, 38] tend to use arm-level data

[50]. Clearly, if trials only report summary-level data then we are restricted to CB

models.

In the next section we summarise the general Bayesian approach to inference,
5The terms ‘contrast-based’ and ‘arm-based’ have also been used to distinguish between models of

relative treatment effects (CB) and models of absolute outcomes associated with each treatment or
‘arm’ (AB) [35]. The latter are not standard practice. All models discussed in this article are based
on relative treatment effects and we use CB/AB to distinguish between the ‘level’ of data that is used
in constructing the model.
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and describe how this is applied in an arm-based NMA model. In Section 2.4 we

first describe the contrast-based NMA model and give an overview of the frequentist

approach to inference. We then show how frequentist inference can be used to estimate

relative treatment effects in a CB model.

2.3 Bayesian Network Meta-Analysis

In this section we discuss the Bayesian approach to network meta-analysis. We use an

arm-based model and treat the number of events in each arm of each trial (the ri,ℓ) as

the raw data in the model.

2.3.1 General approach

The process of Bayesian NMA converts prior beliefs on the distribution of model

parameters into posterior distributions using the observed data. The approach is based

on Bayes theorem, which in its simplest form can be stated as P (A|B) = P (B|A) P (A)
P (B) ,

where A and B are outcomes of a probabilistic experiment. Writing θ for the parameters,

and D for the data, this becomes

P (θ|D) = P (D|θ) P (θ)
P (D) . (2.13)

We are interested in the distribution of parameters given the observed data. In this

context, we notice that the term P (D) is not a function of θ, and so we can write

P (θ|D) = const × P (D|θ)P (θ), (2.14)

where the constant on the right is to be determined from normalisation. This is the

fundamental equation for Bayesian NMA (and any other type of Bayesian inference).

The object P (θ) on the right is known as the prior distribution of parameters. It

reflects our beliefs about what the parameters might be, before we have taken into

account the data D. The expression on the left is the posterior distribution of the

parameters, it represents our updated beliefs having observed and used the data D.

The factor that connects the two is the conditional probability, or likelihood function,

P (D|θ) (see Section 2.2.6.1).
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2.3.2 Hierarchical structure of the random effects model

In NMA the parameters θ are the true relative treatment effects d and the heterogeneity

parameter τ . These are the ‘parameters of interest’ [40, 51] of the model and we will

refer to them simply as the ‘model parameters’. As described in Section 2.2.4 there

are two levels of randomness in the RE model. The first layer generates trial-specific

relative treatment effects ∆i (i = 1, . . . , M) and absolute outcomes for the baseline

treatment in each trial (the pi,1 in Figure 2.4). In a second layer, binomial outcomes

are then produced for each trial arm.

The trial-specific effects ∆i and the pi,1, are so-called ‘nuisance parameters’ [40,

51]. For the discussion of the general Bayesian approach we will call these ν. They

are random variables, and their distribution is parameterised by the model parameters

θ. The nuisance parameters in turn determine the distribution of the output data D.

This is captured by the following relation

P (D|θ) =
∫

dν Pout(D|ν)Pin(ν|θ). (2.15)

We write Pin(ν|θ) to describe the internal layer of the model (generation of nuisance

parameters from the model parameters), and Pout(D|ν) for the ‘output layer’ (generation

of data from the nuisance parameters).

Using Equation (2.14) we then have

P (θ|D) = const ×
(∫

dν Pout(D|ν)Pin(ν|θ)
)

P (θ), (2.16)

where P (θ) is the prior distribution of the parameters θ.

In Section 2.3.3 below, we focus on the construction of

U(D, ν, θ) ≡ Pout(D|ν)Pin(ν|θ)P (θ). (2.17)

This is the joint distribution of the model parameters θ, the nuisance parameters ν

and the data D.

To obtain the posterior distribution P (θ|D) one fixes D to be the observed data.

The next step then is to integrate out the nuisance parameters in Equation (2.16). The

normalisation constant in this equation can be determined at the end.

We have now reduced the problem of carrying out an NMA to two tasks:
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1. We need to construct explicit forms for the factors on the right-hand side of

Equation (2.17);

2. We need a method with which to integrate out the nuisance parameters, and to

extract the posterior distribution for θ.

We will first discuss step 1. Numerical methods for step 2 are described in Section 2.3.4.

2.3.3 Construction of the joint distribution of model parame-

ters, nuisance parameters and the data

2.3.3.1 Choice of priors for the model parameters

The parameters of interest in the model are the heterogeneity τ , and the true treatment

effects of treatments a ∈ {T2, . . . , TN} relative to the overall baseline treatment T1. The

method requires distributions capturing prior beliefs on the values these parameters

might take.

It is common to choose a Gaussian distribution as the prior for the relative treatment

effects. The prior for τ has evoked more discussion [36, 52–55], but the usual practice

is to use a uniform prior distribution between zero and some upper limit, τmax, which

can depend on the data [17, 33].

This results in the form

P (θ) = 1
τmax

11[0,τmax](τ) ×
∏

a∈{T2,...,TN }

exp
(

−
d2

T1a

2σ2
d

)
√

2πσ2
d

, (2.18)

with the indicator function 11[x,y](τ) = 1 for x ≤ τ ≤ y, and 11[x,y](τ) = 0 otherwise. The

product over a has N − 1 factors (one for each a ∈ {T2, . . . , TN}) and indicates that

the prior distribution for each of the true relative treatment effects dT1a is a Gaussian

distribution with mean zero, and variance σ2
d. In using this factorised form, we have

assumed that these parameters are a priori pairwise independent [18, 21].

It is common to use so-called ‘non-informative’ priors. These are relatively broad

distributions for each of the parameters, reflecting a situation in which little information

about the parameters is known a priori. This can be achieved by choosing values for

τmax and σ2
d that are large compared with the typical scale of the parameters τ and
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d respectively. What constitutes as ‘large’ is informed by the type of data and the

medical condition/clinical question of interest.

Occasionally it may be necessary to use an informative prior for the heterogeneity

parameter [17, 36, 56–58]. If the network contains very few trials per comparison

then there is little information about the variation between trials and the estimation

of τ is likely to be imprecise [58]. In particular, when a flat prior is used with data

that gives little information about between-trial variance then the posterior of τ

will be dominated by the prior which may lead to unrealistically high estimates of

heterogeneity [17]. Informative priors have been proposed for τ based on external data,

for example databases of existing meta-analyses that relate to the relevant data type,

medical condition and interventions [56, 57]. The use of such priors then allows us to

incorporate external information about τ into the inference process.

2.3.3.2 Distribution of nuisance parameters for given model parameters

The model parameters (d = (dT1,T2 , . . . , dT1,TN
)⊤ and τ) of the RE model determine

the distribution of relative treatment effects ∆i for each of the trials i = 1, . . . , M .

As explained in more detail in Section 2.2.4.3, the RE model assumes that each

entry of ∆i is drawn from a Gaussian distribution centred on Xid, where Xi is the

(mi − 1) × (N − 1) design matrix for trial i. The variance of each component of each

∆i is τ 2. The correlation between any two different entries of ∆i is assumed to be

τ 2/2, and there are no correlations between ∆i and ∆j for two different trials i ̸= j.

Putting this all together we have

Pin(ν|θ) =
M∏

i=1

exp
[
−1

2(∆i − Xid)⊤Σ−1
i (∆i − Xid)

]
(2π)(mi−1)/2 det(Σi)1/2 × Pbl,i(pi,1)

 , (2.19)

where for a given trial i, the matrix Σi is of size (mi − 1) × (mi − 1), and has diagonal

entries τ 2, and off-diagonal entries τ 2/2 (see Section 2.2.4.3). The term Pbl,i(pi,1) is

the distribution for the absolute outcome associated with the trial-specific baseline. It

is here common to use a non-informative distribution, such as a normal distribution

for logit(pi,1) with large variance [17, 21].
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2.3.3.3 Distribution of data for given nuisance parameters

Finally, the data is given by the number of ‘events’ in each arm of each of the trials.

The nuisance parameters pi,1 and ∆i,1ℓ (ℓ = 2, . . . , mi) for trial i translate into event

probabilities for the treatments in this trial via Equation (2.10) which we re-state here,

pi,ℓ = pi,ℓ(ν) = pi,1e
∆i,1ℓ

1 + pi,1(e∆i,1ℓ − 1) . (2.20)

For binary outcomes the distribution of the data for given nuisance parameters is

the binomial for each arm, with parameters ni,ℓ and pi,ℓ. Combining this for all arms

of all trials in the network we arrive at

Pout(D|ν) =
M∏

i=1

mi∏
ℓ=1

 ni,ℓ

ri,ℓ

 pi,ℓ(ν)ri,ℓ [1 − pi,ℓ(ν)]ni,ℓ−ri,ℓ . (2.21)

2.3.4 Computational techniques

The posterior distribution for the model parameters is obtained from

P (θ|D) = const ×
∫

dν U(D, ν, θ), (2.22)

where U is defined in Equation (2.17). Even though U is known in closed form, the

integral over ν cannot be performed analytically. Due to the high-dimensionality of

the integral, direct numerical integration is not always viable either.

One therefore resorts to computational methods to sample combined values for ν

and θ, and then considers the resulting marginal distribution for θ. The most common

techniques to do this in meta-analysis are Markov Chain Monte Carlo (MCMC) methods.

Popular MCMC software include WinBUGS [13], JAGS [59] and Stan [60].

MCMC methods are a class of algorithm based on the construction of a Markov

chain with a stationary distribution given by the target distribution. By observing

the chain after a large number of steps using Monte Carlo simulations, one eventually

produces samples from the target distribution.

The MCMC implemented in the WinBUGS software combines the celebrated

Metropolis-Hastings algorithm with Gibbs Sampling, resulting in what is called

‘Metropolis-in-Gibbs sampling’. We here briefly outline the main principles.
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2.3.4.1 Metropolis-Hastings Algorithm

We discuss this topic in a more general sense (independent of NMA) and write the

distribution from which we would like to sample as p(x). The Metropolis-Hastings

algorithm [61] is based on a Markov chain producing a trajectory xt, t = 0, 1, 2, . . . .

Each step consists of proposing a value for xt+1, followed by a decision whether to accept

or reject this proposed value. The distribution of proposed values and the acceptance

criterion only depend on xt, but not on states visited earlier in the sequence. They

are constructed such that the resulting process has stationary distribution p(x) [62].

Provided one allows for a sufficiently long equilibration time teq, the set {xt : t > teq}

represents a statistically faithful sample of the distribution p(x).

The Metropolis-Hastings Algorithm:

1. Initialise t = 0, and xt = x0 for some starting value x0.

2. Generate a proposed value x′ from the proposal distribution q(x′|xt).

3. Calculate the acceptance probability

pa(x′|xt) = min
(

1,
p(x′)
p(xt)

q(xt|x′)
q(x′|xt)

)
. (2.23)

Then accept the proposal with probability pa(x′|xt), i.e. set xt+1 = x′. Al-

ternatively, with probability 1 − pa(x′|xt) reject the proposed update, and set

xt+1 = xt.

4. Increment time by one, and go to 2.

The algorithm results in an overall probability A(x|y) = q(x|y)pa(x|y) to transition

to x if the chain is currently at y. Using the fact that exactly one of pa(x|y) and pa(y|x)

is equal to one for each pair of states x and y, one has p(x)A(y|x) = p(y)A(x|y) for

all x and y, i.e. the detailed balance condition holds. This is sufficient to demonstrate

that p(x) is indeed a stationary distribution of the process. We also need to choose

the hopping kernel q such that the stationary distribution is unique (i.e. the Markov

chain must be irreducible and aperiodic). A sufficient condition to ensure this, is that

q is positive everywhere [63]. For further details see also [64, 65].
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Figure 2.5: (a) Sample path of a Markov chain with small proposal variance and high
acceptance rate. (b) Sample path with high proposal variance and low acceptance rate. (c)
An efficient Markov chain with proposal variance tuned to obtain a ‘reasonable’ acceptance
rate. The example is for a standard normal distribution p(x). In panel (a) the standard
deviation of the hopping kernel is 0.25, resulting in an acceptance rate of 0.925, panel (b)
is for a standard deviation of 10 (acceptance rate 0.129), and panel (c) is for a standard
deviation of 2.5 (acceptance rate 0.43). The optimal acceptance rate for a model in one
dimension is approximately 0.44 [66].

The process simplifies if the proposal function (the hopping kernel) is symmetric,

q(x′|xt) = q(xt|x′). In this case the acceptance probability in step 3 of the algorithm

becomes

pa(x′|xt) = min
(

1,
p(x′)
p(xt)

)
. (2.24)

An example of a symmetric proposal function q(x′|xt) in a univariate system (xt ∈ IR) is

a normal distribution centred on the current sample value xt with a fixed variance [67].

The choice of variance is not straightforward. Choosing a value that is too high means

that most proposed values are rejected and the sequence of {xt} remains constant for

long periods of time. This scenario is illustrated in Figure 2.5 (b). On the other hand,

if the variance is too small the chain does not explore the state space and convergence

to the stationary state is slow (see Figure 2.5 (a)) [68]. Both of these scenarios make

the MCMC less efficient and mean that more iterations are required for the chain to

reach the stationary state. If the proposal variance is tuned so that the chain has a

‘reasonable’ acceptance rate then the state space is explored efficiently. A chain with

this characteristic is shown in Figure 2.5 (c).

For an n-dimensional target distribution the optimal acceptance rate has been

found to be approximately 0.44 for n = 1 and declines to 0.23 as n → ∞ [66, 68]. In

the WinBUGS software, the acceptance rate of proposed values is tuned to between

0.2 and 0.4 [13].
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2.3.4.2 Gibbs Sampling

Gibbs samplers are used to sample from multivariate distributions. They update

one variable at a time, and are used when sampling from conditional probabilities of

individual variables is easier than direct sampling from the multivariate distribution.

The algorithm cycles through the individual variables, and samples from the conditional

distribution of one variable in the target distribution given the current values of all

other variables [67, 69]. This can be shown to generate a sequence of multivariate

samples faithfully representing the joint distribution [69].

Here we describe details of the Gibbs sampling procedure for a target distribution

p(x) of n variables, where x = (x1, x2, ...., xn). The conditional probability distribution

for the variable xi given all other variables is given by

pi(xi|x−i) = p(x1, . . . , xn)
p−i(x−i)

. (2.25)

We have written x−i = (x1, . . . , xi−1, xi+1, . . . , xn) (i.e, x−i is obtained from x by remov-

ing the i-th entry). The expression p−i(x−i) =
∫

dxi p(x1, . . . , xn) in the denominator

is the marginal distribution for x−i.

The Gibbs Sampling Algorithm:

1. Initialise time at t = 0, and set xt=0 to a starting value.

2. Update entries of x in turn:

First, sample xt+1
1 from the conditional distribution p1(·|xt

2, . . . , xt
n).

Then sample xt+1
2 from p2(·|xt+1

1 , xt
3, . . . , xt

n).

Then sample xt+1
3 from p3(·|xt+1

1 , xt+1
2 , xt

4 . . . , xt
n).

. . .

Then sample xt+1
n−1 from pn−1(·|xt+1

1 , . . . , xt+1
n−2, xt

n).

Finally, sample xt+1
n from pn(·|xt+1

1 , . . . , xt+1
n−1).

At the end of this process xt+1 is available.

3. Increment time by one, and go to 2
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2.3.4.3 Metropolis-in-Gibbs

In NMA we are interested in samples from the distribution U(D, ν, θ) = Pout(D|ν) ×

Pin(ν|θ)P (θ) in Equation (2.17), for a fixed D. To generate these samples we use the

‘Metropolis-in-Gibbs’ algorithm. This is a Gibbs sampling algorithm with a Metropolis-

Hastings accept/reject step used to sample from the conditional distributions for the

individual variables, i.e. we use the Metropolis-Hastings algorithm at each single-variable

stage of the Gibbs Sampling algorithm.

Metropolis-in-Gibbs for a random effects NMA:

1. Initialise time at t = 0 and initialise the parameters: ∆0
i,ℓ, p0

i,1, τ 0 and d0
T1a for

i = 1, . . . , M , ℓ = 1, . . . , mi and a = T2, . . . , TN

2. Update the trial-specific treatment effects ∆i,ℓ. For each study i = 1, 2, ..., M and

each ℓ = 2, ..., mi:

(a) Draw ∆′
i,ℓ from the normal distribution N (∆t

i,ℓ, v∆).

(b) Set

∆t+1
i,ℓ =

 ∆′
i,ℓ with probability p∆

∆t
i,ℓ with probability 1 − p∆,

(2.26)

where

p∆ = min
(

1,
U(∆′

i,ℓ|∆t+1
i,2 , ..., ∆t+1

i,ℓ−1, ∆t
i,ℓ+1, ..., ∆t

i,mi
, pt

i,1,d
t, τ t, r)

U(∆t
i,ℓ|∆t+1

i,2 , ..., ∆t+1
i,ℓ−1, ∆t

i,ℓ+1, ..., ∆t
i,mi

, pt
i,1,d

t, τ t, r)

)
. (2.27)

NB: The parameters ∆i,ℓ, specific to trial i, are independent (under the distribu-

tion U) of parameters that are specific to other trials j ̸= i.

3. Update the trial-specific baselines. For each trial i = 1, ..., M

(a) Draw logit p′
i,1 from N (logit pt

i,1, vb). From this obtain p′
i,1.

(b) Set

pt+1
i,1 =

 p′
i,1 with probability pb

pt
i,1 with probability 1 − pb,

(2.28)

where

pb = min
(

1,
U(p′

i,1|∆
t+1
i ,dt, τ t, r)

U(pt
i,1|∆t+1

i ,dt, τ t, r)

)
. (2.29)
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We note that pi,1 is independent of all pj,1, j ̸= i under the distribution U .

4. Update the heterogeneity parameter:

(a) Draw τ ′ from N (τ t, vτ ).

(b) Set

τ t+1 =

 τ ′ with probability pτ

τ t with probability 1 − pτ ,
(2.30)

where

pτ = min
(

1,
U(τ ′|∆t+1,pt+1

1 ,dt, r)
U(τ t|∆t+1,pt+1

1 ,dt, r)

)
. (2.31)

We note that the acceptance probability pτ in step (b) is zero by construction if

τ ′ < 0 [see Equation (2.18)].

5. Update the basic parameters. For each treatment a = T2, ..., TN

(a) Draw d′
T1a from N (dt

T1a, vd).

(b) Set

d
(t+1)
T1a =

 d′
T1a with probability pd

dt
T1a with probability 1 − pd,

(2.32)

where

pd = min
1,

U(d′
T1a|∆t+1,pt+1

1 , τ t+1, dt+1
T1T2 , ..., dt+1

T1Tα−1 , dt
T1Tα+1 , ..., dt

T1TN
, r)

U(dt
T1a|∆t+1,pt+1

1 , τ t+1, dt+1
T1T2 , ..., dt+1

T1Tα−1 , dt
T1Tα+1 , ..., dt

T1TN
, r)

 ,

(2.33)

with a = Tα and α = 2, . . . , N .

6. Increment time from t to t + 1. Go to 2

We note that the acceptance probabilities p in each step of the algorithm are of the

form

p = min
(

1,
U(parameter′|other parameters, data)
U(parametert|other parameters, data)

)
, (2.34)

where parameter′ is the proposed value for the model or nuisance parameter that is

being updated, and paramatert its value in the previous iteration. Crucially, the ‘other

parameters’ and the data in the numerator and denominator in Equation (2.34) are
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the same. Using the definition P (A|B) = P (A, B)/P (B) of conditional probabilities

we can then write

p = min
(

1,
U(parameter′, other parameters, data)
U(parametert, other parameters, data)

)
. (2.35)

This means that we can use joint probabilities (or probability densities) instead of

conditional probabilities.

Using the product form of the distribution U in Equation (2.17) and the fact that

Pin, Pout and the prior further factorise, the ratios in Equation (2.35) can be simplified

even more by cancelling factors that do not depend on the parameter that is being

updated.

2.3.4.4 Assessing Convergence

The MCMC dynamics define a stochastic process with a stationary probability distri-

bution for the model parameters. The process is constructed such that this stationary

distribution is the target distribution we set out to sample from. Formally, the station-

ary distribution is reached only at infinite time, but in practice samples are effectively

drawn from the target distribution after sufficiently many iterations. In simulations,

we therefore discard the samples of the first nc iterations (this is referred to as the

‘burn-in’ in the statistics community, physicists know this as equilibration time or

transient). We then make inferences about our parameters based on samples taken in

the subsequent iterations.

To obtain accurate inferences on the parameter values we must, therefore, assess the

number of iterations required to reach stationarity. A common method to assess this

was developed by Gelman and Rubin [70] and later modified by Brooks and Gelman

[71]. The latter article gives a detailed description of the approach, we summarise the

main ideas here.

A Markov chain has converged (reached stationarity) when the statistics of the

samples taken do not depend on the distribution of initial conditions for the process.

The Brooks-Gelman-Rubin approach is therefore based on assessing the similarity of

samples (more precisely, distributions of samples) obtained from multiple independent

chains (realisations of the process) with different starting points.

Assume a target distribution for a scalar parameter with mean µ and variance σ2.

90



2.3. Bayesian Network Meta-Analysis

We now consider m realisations of the process, i = 1, . . . , m, with a set of over-dispersed

(i.e, widely spread compared to the expected scale of the parameter) starting values.

Each realisation is run for a burn-in of n iterations, followed by another n iterations

during which samples are taken. This generates m sets of samples of the parameter.

The sample mean of each realisation i provides an estimate µ̂i for the mean µ. We then

have m inferences about the parameter µ from the m chains. The variance between

samples within realisation i is labelled vi (the ‘within-chain variance’).

We can also obtain an inference about µ from the combined set of mn samples

from all realisations. The overall mean of this sample µ̂ is the mean of the µ̂i. One can

then construct a measure of the so-called ‘pooled variance’ V̂ that accounts for the

average within-chain variance, the variance in the value of µ̂i between realisations, and

the sampling variability. For details of this procedure see [71].

As the number of iterations n (before and after burn-in) increases, we expect the

value of the pooled variance and the average within-chain variance to stabilise and for

these variances to converge to the same value [70]. To assess the number of iterations

required for convergence we split each chain (total length 2n) into n/b batches of length

2b.

For a given integer k = 1, . . . , n/b we then calculate the pooled variance, the average

within-chain variance and their ratio R̂ based on the samples in the first k batches,

where the first half of this data is discarded as burn-in. I.e. for k = 1, we use the first

batch (length 2b), discard the first b iterations of it, and compute the variances and

their ratio based on iterations b + 1, ..., 2b. For k = 2, we use the first 4b iterations

(two batches), but again discard the first half of this, and compute the variances from

iterations 2b + 1, . . . , 4b. For higher values of k we proceed analogously.

Plotting the variances and their ratio against k (or 2kb) as shown in Figure 2.6, we

can assess the approximate number of iterations required for the variances to stabilise

and for R̂ to be sufficiently close to unity so that the chain can be assumed to have

converged [71]. More recent refinements of this method are discussed in [69].

Once the Markov chain has reached stationarity, we make inferences about the

model parameters from the samples taken in the simulations. Usually this means

calculating a central value of the distribution of samples (such as the mean or median)

and some measure of spread (such as standard deviation). We discuss how exactly the
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Figure 2.6: Examples of Brooks-Gelman-Rubin convergence plots with m = 5 chains and
batch lengths of b = 50. (a) The ratio R̂ of the pooled variance and the average within-chain
variance against the number of iterations. (b) The solid line shows (the square root of) the
pooled variance V̂ as a function of the number of iterations. The dotted line is (the square
root of) the average within-chain variance. For this example convergence is reached after
approximately 2kb = 7000 iterations (or a burn-in of 3500).

results of the NMA are reported in Section 2.5.

2.4 Frequentist Network Meta-Analysis

We now move on to the frequentist approach to network meta-analysis. In this section

we use the contrast-based variant of NMA and treat the relative treatment effects

measured in each trial as the raw data in the model. For binomial outcomes in each

trial arm, these are the log odds ratios yi,1ℓ.

This section is structured as follows: In Section 2.4.1 we introduce the contrast-

based NMA model and write it as a linear regression problem. Then, in Section 2.4.2

we discuss the frequentist approach in more general terms and describe how we estimate

regression coefficients in a linear regression model. We start by explaining the ordinary

least squares (OLS) method and then use this to derive the generalised least squares

(GLS) problem. We then explain the maximum likelihood (ML) approach and show

that this leads to the same condition as GLS. We solve the GLS/ML problem to obtain
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the so-called ‘Aitken estimator’ of the regression coefficients. In Section 2.4.3 we go

back to the NMA model. First, we use the Aitken estimator to estimate the relative

treatment effects d (Section 2.4.3.1). Finally, we explain two common methods for

estimating the heterogeneity variance τ 2 (Section 2.4.3.2).

2.4.1 Introduction and notation

We begin by outlining the assumptions of the contrast-based NMA model and writing

the inference task as a linear regression problem.

As in previous sections, the vector of relative treatment effects in each trial is

assumed to follow a normal distribution. We recall Equation (2.6), which we can write

as

∆i,1ℓ = dti,1,ti,ℓ
+ ηi,1ℓ, (2.36)

where i = 1, . . . , M , ℓ = 1, . . . , mi and ηi,1ℓ is a Gaussian random variable of mean

zero. Using transitivity [Equation (2.4)] the mean dti,1,ti,ℓ
can be constructed via

a linear relation from the vector of basic parameters d = (dT1,T2 , . . . , dT1,TN
)⊤ [cf.

Equation (2.7)]. The variance of ηi,1ℓ is given by the heterogeneity τ 2, and we note

that for a fixed i the different ηi,1ℓ, ℓ = 1, . . . , mi will in general be correlated [see

Equation (2.6)]. We can collect the relations in Equation (2.36) for all trials i and all

basic comparisons within each trial, and write more compactly

∆ = Xd + η. (2.37)

Here, X is the design matrix of the network which can be constructed from the

trial-specific design matrices described in Section 2.2.4.3, X = (X1, . . . , XM)⊤.

The matrix X has N − 1 columns and ∑M
i=1(mi − 1) rows, and each entry is either

−1, 0 or 1. Each column of X represents one of the treatments T2, ..., TN (treatment T1

is the overall baseline). The rows represent comparisons to the trial-specific baseline in

each study.

As before, we write yi,1ℓ for the observed relative effects in each trial [e.g. the log

odds ratios in Equation (2.12)]. These are assumed to follow a normal distribution

centred on the mean value ∆i,1ℓ with some random sampling error, ϵi,1ℓ. That is,

yi,1ℓ = ∆i,1ℓ + ϵi,1ℓ, (2.38)
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where the sampling errors ϵi,1ℓ within a trial are correlated. Trial i ∈ {1, . . . , M}

compares mi treatments and therefore contributes mi − 1 relative treatment effects

(comparisons of treatments ℓ = 2, . . . , mi to the trial-specific baseline treatment).

Collecting the ∑M
i=1(mi − 1) observations yi,1ℓ in the vector y, we can write the

linear model as

y = ∆ + ϵ = Xd + η + ϵ. (2.39)

The vectors η and ϵ represent the two levels of stochasticity in the RE model described

in Section 2.2.4; η ∼ N (0,Σ) models the trial-to-trial variation of relative treatment

effects, and ϵ ∼ N (0, V) models the noise on the observed relative treatment effects

resulting from the sampling in the trial arms. We recall that we are working within

a contrast-based model, where the sampling noise in the trial arms is assumed to be

Gaussian. The covariance matrices for the two types of stochasticity are Σ and V

respectively, we will discuss their mathematical form below. The two types of noise are

independent of each other, and the overall covariance matrix is then C = Σ + V, such

that the model in Equation (2.39) can be written as

y ∼ N (Xd,Σ + V). (2.40)

The covariance matrix associated with the sampling errors in the trials is of block

diagonal form, V = diag(Vi), where each trial i contributes an (mi − 1) × (mi − 1)

matrix,

Vi =



σ2
i,12 Cov(yi,12, yi,13) . . . Cov(yi,12, yi,1mi

)

Cov(yi,13, yi,12) σ2
i,13 . . .

...
... ... . . . ...

Cov(yi,1mi
, yi,12) . . . . . . σ2

i,1mi


. (2.41)

We stress that this describes sampling errors only, i.e. the matrix entries are the

variances of the components ϵi,1ℓ, ℓ = 2, . . . , mi, and the correlations between these

variables. The measurements of relative treatment effects within a multi-arm trial are

correlated because they involve a common treatment arm (the trial-specific baseline

treatment). The values that make up the matrices Vi are assumed to be known

(i.e. they are reported in the study, or can be directly calculated from the data - see

Section 2.9 of the Appendix for details). Further details can also be found in [5, 7, 17,

28, 72, 73].
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Figure 2.7: A fictional example of a network meta-analysis of N = 3 treatments, {T1, T2, T3},
and M = 4 trials. (a) Standard network representation, all treatments are included in three
trials (each pair of treatments appears in two trials). (b) Representation as a bipartite graph
indicating which treatments are compared in each trial i = 1, . . . , 4.

The covariance matrix associated with the random effects Σ represents the het-

erogeneity between trials. Similarly to V, it has block diagonal form, Σ = diag(Σi),

where the blocks are the (mi − 1) × (mi − 1) matrices Σi defined in Section 2.2.4.3.

The diagonal elements of Σi are the variances associated with the random effects and

the off diagonal elements relate to the correlations between the random effects within

a multi-arm trial. We assume that these are determined by the unknown heterogeneity

variance, τ 2, as described in Section 2.2.4.3. Determining τ 2 is therefore part of the

inference problem.

Example - NMA as a linear regression model:

Consider a network of M = 4 trials comparing N = 3 treatments, T1, T2, T3. Trials

i = 1, 2, 3 are two arm trials comparing (T1, T2), (T1, T3) and (T2, T3) respectively. Trial

i = 4 is a three-arm trial comparing all three treatments. This network is shown in

Figure 2.7. The regression model is then

y1,T1T2

y2,T1T3

y3,T2T3

y4,T1T2

y4,T1T3


=



1 0

0 1

−1 1

1 0

0 1



dT1T2

dT1T3

+



η1,T1T2

η2,T1T3

η3,T2T3

η4,T1T2

η4,T1T3


+



ϵ1,T1T2

ϵ2,T1T3

ϵ3,T2T3

ϵ4,T1T2

ϵ4,T1T3
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where

ϵ1,T1T2

ϵ2,T1T3

ϵ3,T2T3

ϵ4,T1T2

ϵ4,T1T3


∼N





0

0

0

0

0


,



σ2
1,T1T2 0 0 0 0

0 σ2
2,T1T3 0 0 0

0 0 σ2
3,T2T3 0 0

0 0 0 σ2
4,T1T2 Cov(y4,T1T2 , y4,T1T3)

0 0 0 Cov(y4,T1T3 , y4,T1T2) σ2
4,T1T3




,

where the matrix entries are the variances and covariances of the ϵi,1ℓ. We also have

η1,T1T2

η2,T1T3

η3,T2T3

η4,T1T2

η4,T1T3


∼ N





0

0

0

0

0


,



τ 2 0 0 0 0

0 τ 2 0 0 0

0 0 τ 2 0 0

0 0 0 τ 2 τ 2/2

0 0 0 τ 2/2 τ 2




.

The aim of NMA is to estimate the unknown parameters d and τ 2. In the language

of regression models, d are the ‘regression coefficients’ of the linear model and τ 2 is

the ‘variance parameter’. In frequentist NMA, the variance parameter is estimated

first, then this estimate is used in the estimate of the regression coefficients. In

the following we describe two frequentist approaches for estimating the regression

coefficients assuming knowledge of the variance parameter. We then relate this to the

contrast-based NMA model. Finally, we describe some common methods for estimating

the variance parameter.

2.4.2 General frequentist approach

Two frequentist approaches to inferring the regression coefficients of a model are based

on ‘maximum likelihood’ and ‘least squares’.

In the maximum likelihood (ML) approach one finds the values of the parameters

that maximise the likelihood or, equivalently, minimise the negative log likelihood. In

least squares regression, we start from Equation (2.39). The vector y is observed from

the trials, and the matrix X is known from the design of the trials (what treatments

are tested in each trial). We therefore wish to find the vector d that best fits the
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observed data via Equation (2.39). To do this a ‘residual’ is defined as the difference

between the observed value of the response variable (here y) and the mean value Xd

predicted by the regression model. The model parameters (here d) are then estimated

by minimising the sum of the squared residuals, i.e. we find the values of the model

parameters that ‘best fit’ the data. When measurements are associated with correlated

random errors we must use so-called ‘generalised least squares’ (GLS) regression [74].

This will be explained in more detail later. For a linear regression model under the

assumption of normally distributed errors, the ML estimates and GLS estimates are

equivalent [75, 76] and can be found analytically.

We now derive these estimates using the GLS procedure and show that this is

equivalent to obtaining the maximum likelihood estimates.

2.4.2.1 Ordinary least squares problem

We first describe this in general terms, and discuss the application to NMA further

below. Assume we observe data {yi, xi,j} on n statistical units such that i = 1, . . . , n

and j = 1, . . . , p. In the context of an NMA these would be the relative treatment

effects and the design matrix elements. The latter are treated as part of the ‘data’ for

the discussion in this section, as they are specific to individual instances of a real-world

NMA. More generally, X may contain a set of observed covariates.

The values of the response variable are collected in the vector y = (y1, y2, . . . , yn)⊤.

The predictor variables are placed in the n × p design matrix X = (x⊤
1 ,x⊤

2 , . . . ,x⊤
n )⊤,

where xi = (xi,1, xi,2, . . . , xi,p)⊤ and X is assumed to have full rank (in NMA this is

true by construction). We consider the linear regression model

y = Xβ + ϵ, (2.42)

where β is a column vector of length p containing the parameters that we wish to

estimate. The error term is assumed to be normally distributed, ϵ ∼ N (0, C(ϕ)),

with an n × n covariance matrix C(ϕ) that depends on a set of parameters ϕ. For

convenience we will write C for C(ϕ). The parameters β are the regression coefficients

of the model while ϕ represents the variance parameters. In the simplest case we

assume uncorrelated errors and equal variances such that C is a multiple of the identity

matrix. This assumption is known as the ordinary least squares (OLS) condition.
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The vector of residuals, y − Xβ, represents the difference between the observed

outputs, y, and the mean values predicted by the model in Equation (2.42). The

ordinary least squared estimates of the parameters are then obtained by minimising

the sum of the squared residuals,

β̂OLS = argmin
β

n∑
i=1

[(y − Xβ)i]2

= argmin
β

[
(y − Xβ)⊤(y − Xβ)

]
. (2.43)

2.4.2.2 Generalised least squares problem

In generalised least squares regression we relax the ordinary least squares assumption.

That is, we make no assumptions on the form of the covariance matrix C. If errors are

uncorrelated but do not necessarily have equal variances then C is a diagonal matrix.

Regression under these conditions is a special case of GLS known as ‘weighted least

squares’. If errors are correlated then C has non-zero off diagonal elements representing

the covariance between error terms.

To find the generalised least squares estimator we carry out a transformation of the

GLS model so that it fulfils the ordinary least squares condition. To this end we note

that given that C is a covariance matrix, it must be symmetric and positive-definite.

Therefore we can write C = K⊤K = KK where K is the (symmetric) square root of C

[74]. We now multiply both sides of Equation (2.42) with K−1 from the left,

K−1y = K−1Xβ + K−1ϵ. (2.44)

Defining the variables

ỹ = K−1y, X̃ = K−1X, ϵ̃ = K−1ϵ (2.45)

we obtain the model

ỹ = X̃β + ϵ̃. (2.46)

Now let us inspect the error term ϵ̃ of this model to see if it fulfils the OLS condition.

The expected value of the error is E(ϵ̃) = E(K−1ϵ) = K−1E(ϵ) = 0, as required. To

obtain the covariance matrix, we use the relation Cov(Az) = ACov(z)A⊤ which is
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valid for any random vector z and fixed matrix A. Therefore,

Cov(ϵ̃) = Cov(K−1ϵ) = K−1Cov(ϵ)(K−1)⊤

= K−1CK−1 = I, (2.47)

where we have used Cov(ϵ) = C, K−1 is symmetric, and C = KK. The errors ϵ̃

therefore fulfil the OLS condition, and Equation (2.46) hence defines an ordinary least

squares problem.

We now obtain the generalised least squares estimator by using the OLS estimator

with Equation (2.46), that is,

β̂GLS = argmin
β

[
(ỹ − X̃β)⊤(ỹ − X̃β)

]
. (2.48)

Using the definitions in Equation (2.45) we find

(ỹ − X̃β)⊤(ỹ − X̃β) = (K−1(y − Xβ))⊤(K−1(y − Xβ))

= (y − Xβ)⊤(K−1)⊤K−1(y − Xβ)

= (y − Xβ)⊤C−1(y − Xβ). (2.49)

The GLS estimator is therefore

β̂GLS = argmin
β

[
(y − Xβ)⊤C−1(y − Xβ)

]
. (2.50)

This can be solved analytically as we will see in Section 2.4.2.4. Before we return to

this we derive the maximum likelihood estimator and show that this leads to the same

condition as in Equation (2.50).

2.4.2.3 Maximum likelihood approach

The linear model in Equation (2.42) with normally distributed errors ϵ ∼ N (0, C) can

be written equivalently as

y ∼ N (Xβ, C), (2.51)

where we place no assumptions on the covariance matrix C except that it depends

on a set of variance parameters ϕ. The likelihood of this model is then simply the

multivariate normal distribution with mean vector Xβ and covariance matrix C,

L(β,ϕ|y, X) = 1
(2π)n/2(det C)1/2 exp

(
−1

2(y − Xβ)⊤C−1(y − Xβ)
)

, (2.52)
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and the log likelihood is

ln(L(β,ϕ|y, X)) = −1
2 ln(det C) − 1

2(y − Xβ)⊤C−1(y − Xβ) + const. (2.53)

Treating the variance parameters as known, we infer the regression coefficients β by

maximising the (log) likelihood with respect to β. This is equivalent to minimising the

term (y − Xβ)⊤C−1(y − Xβ),

β̂ML = argmin
β

[
(y − Xβ)⊤C−1(y − Xβ)

]
, (2.54)

which is identical to the generalised least squares problem in Equation (2.50).

2.4.2.4 Solution to the GLS and ML problem (The Aitken estimator)

Now we proceed solve Equation (2.50) [= Equation (2.54)] to find the estimator

β̂ = β̂GLS = β̂ML. We first multiply out the product (y − Xβ)⊤C−1(y − Xβ), and

then set the partial derivative with respect to β equal to zero. This leads to

∂

∂β

(
y⊤C−1y − y⊤C−1Xβ − β⊤X⊤C−1y + β⊤X⊤C−1Xβ

)
= 0. (2.55)

We address this term by term. The first term y⊤C−1y is independent of β and

therefore differentiates to zero. The second and third terms take the forms a⊤β and

β⊤a respectively, where a = −X⊤C−1y is a column vector of length p. We have

a⊤β = β⊤a, and the second and third terms of Equation (2.55) each evaluate to

−X⊤C−1y. The last term on the right-hand side of Equation (2.55) is quadratic in

β. We also note that the matrix X⊤C−1X is symmetric. Therefore the final term in

Equation (2.55) evaluates to 2X⊤C−1Xβ.

Combining these results, Equation (2.55) reduces to

−2X⊤C−1y + 2X⊤C−1Xβ = 0. (2.56)

Solving for β yields the GLS and ML estimator of the vector of regression coefficients,

β̂ = β̂GLS = β̂ML =
(
X⊤C−1X

)−1
X⊤C−1y, (2.57)

also known as the ‘Aitken estimator’ [77].

Recalling that E(y) = Xβ [see Equation (2.42)] the expectation of this estimate is

E(β̂) =
(
X⊤C−1X

)−1
X⊤C−1Xβ = β, (2.58)
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indicating that the Aitken estimator is an unbiased estimate of β.

To find the (p × p) covariance matrix of this estimate we once again make use of

the result Cov(Az) = ACov(z)A⊤ and find

Cov(β̂) =
[(

X⊤C−1X
)−1

X⊤C−1
]

Cov(y)
[(

X⊤C−1X
)−1

X⊤C−1
]⊤

=
(
X⊤C−1X

)−1
, (2.59)

where we have used Cov(y) = C and the fact that the matrices C and X⊤C−1X are

symmetric.

2.4.3 Frequentist inference for NMA

In Section 2.4.2 we derived the GLS/ML estimator of the regression coefficients for

a linear regression model [Equation (2.57)]. We now use this result to estimate the

relative treatment effects d in our NMA model from Section 2.4.1 [Equation (2.39)].

Following this, we discuss frequentist methods of estimating the heterogeneity variance

τ 2.

2.4.3.1 Estimating the mean relative treatment effects

We start from the linear regression model for a RE network meta-analysis,

y = Xd + η + ϵ, η ∼ N (0,Σ), ϵ ∼ N (0, V). (2.60)

The within-study covariance matrix V (describing the statistics of sampling noise) is

assumed to be known, whereas the between-study covariance matrix Σ depends on the

unknown heterogeneity variance τ 2.

Assuming an estimate of the heterogeneity variance τ̂ 2 (and therefore the covariance

matrix Σ̂), we find the mean relative treatment effects d via the Aitken estimator in

Equation (2.57),

d̂RE = (X⊤(V + Σ̂)−1X)−1X⊤(V + Σ̂)−1y, (2.61)

where we have labelled this explicitly as a random effects (RE) estimate, since the

estimator depends on the heterogeneity τ 2 (or an estimate τ̂ 2). It is useful to define

the inverse-variance weight matrix W = (V + Σ̂)−1. We can then write

d̂RE = (X⊤WX)−1X⊤Wy. (2.62)
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Using Equation (2.59) the covariance matrix associated with this estimator is given by

Cov(d̂RE) = (X⊤WX)−1. (2.63)

To obtain the estimator for a fixed effects (FE) model, d̂FE, we simply set τ 2 = 0. We

then have Σ = 0 and hence W = V−1.

Special case: Pairwise meta-analysis. In a pairwise meta-analysis of N = 2

treatments, each trial provides an estimate yi of the same relative treatment effect (we

write d for its true value). The design matrix X is then an M ×1 matrix, and all entries

are equal to one. The covariance matrix C is an M × M diagonal matrix with elements

equal to σ2
i + τ 2 and the within-study variances σ2

i are assumed known. The RE model

is then yi ∼ N (d, σ2
i + τ 2) for i = 1, . . . , M . The weight matrix is also diagonal and,

for a given estimate of heterogeneity τ̂ 2, its elements are equal to wi = (σ2
i + τ̂ 2)−1. We

then find that the Aitken estimator of the relative treatment effect reduces to

d̂RE =
∑M

i=1 wiyi∑M
i=1 wi

=
∑M

i=1(σ2
i + τ̂ 2)−1yi∑M

i=1(σ2
i + τ̂ 2)−1 . (2.64)

The variance of this estimate is

Var(d̂RE) = 1∑M
i=1 wi

= 1∑M
i=1(σ2

i + τ̂ 2)−1 . (2.65)

Therefore, for pairwise meta-analysis, the GLS and ML approaches recover the results

for a simple weighted mean of the sample. Again, for a fixed effect model, d̂FE is

obtained by setting τ 2 = 0, that is, wi = σ−2
i .

2.4.3.2 Estimating the heterogeneity variance

So far, we have assumed knowledge of the heterogeneity variance τ 2. We now discuss

how this is estimated. There are numerous methods for obtaining a frequentist estimate

of τ 2 in pairwise meta-analysis [5, 78–82], and there is much debate over which method

is most appropriate [83–85]. Some of these methods have also been extended to network

meta-analysis [86–90].

The most widely used methods fall into two categories: (i) the method of moments

[91], and (ii) restricted maximum likelihood (REML) approaches [92]. The former

involves defining a measure of heterogeneity based on the sum of squared residuals.

The latter involves modifying the likelihood function of the random effects model to
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remove dependence on the relative treatment effects and then maximising this modified

likelihood with respect to τ 2. We describe both approaches in turn.

Method of moments. Multiple heterogeneity estimators in pairwise meta-analysis

are based on the so-called ‘method-of-moments’ [78, 91]. Inference of the regression

coefficients in pairwise meta-analysis involves a weighted mean of the sample [Equa-

tion (2.64)]. For general weights ai (i = 1, . . . , M) associated with observations yi we

define the weighted mean,

ŷ =
∑M

i=1 aiyi∑M
i=1 ai

. (2.66)

If we set ai = (σ2
i +τ 2)−1 we recover the random effects estimate d̂RE in Equation (2.64).

Other choices of the weights will be discussed below.

We can then define a generalised version of the so-called ‘Q statistic’ [5, 78, 83] as

the weighted sum of squared residuals,

Q =
M∑

i=1
ai(yi − ŷ)2. (2.67)

The estimate of τ 2 is obtained by assuming that the empirical value of Q obtained via

Equation (2.67) from the observed data is equal to its expectation under the random

effects model [91]. That is,
M∑

i=1
ai(yi − ŷ)2 = ERE(Q) ≡ ERE

(
M∑

i=1
ai(yi − ŷ)2

)
. (2.68)

The expectation on the right is calculated assuming that observations follow the RE

model, yi ∼ N (d, σ2
i + τ 2). In Section 2.10.1 of the Appendix we show that

ERE(Q) = τ 2
(

M∑
i=1

ai −
∑M

i=1 a2
i∑M

i=1 ai

)
+
(

M∑
i=1

aiσ
2
i −

∑M
i=1 a2

i σ
2
i∑M

i=1 ai

)
. (2.69)

Using this in Equation (2.68) and re-arranging for τ 2 we find

τ̂ 2 =

∑M
i=1 ai

(
yi −

∑
j

ajyj∑
j

aj

)2
−
(∑M

i=1 aiσ
2
i −

∑M

i=1 a2
i σ2

i∑M

i=1 ai

)
∑M

i=1 ai −
∑M

i=1 a2
i∑M

i=1 ai

, (2.70)

where we have used the definition of ŷ in Equation (2.66). This is the general method-

of-moments estimator for τ 2 in pairwise meta-analysis. In practice, the expression on

the right-hand side of Equation (2.70) can come out negative. In this case one sets

τ̂ 2 = 0.
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Different choices can be made for the weights ai in Equations (2.66) and (2.67).

For example, the widely used DerSimonian and Laird (DL) estimator [5] uses the fixed

effect weights, ai = σ−2
i , so that ŷ = d̂FE. Cochran’s ANOVA (CA) estimator [93] uses

equal weights ai = 1/M while the Paule Mandel (PM) estimator [82] uses the random

effects weights ai = (σ2
i + τ 2)−1. The DL and CA estimators lead to a closed form

solution for the estimate of τ 2 [in the sense that the right-hand side of Equation (2.70)

becomes independent of τ 2]. This is not the case for the PM estimator since these

weights depend on τ 2. Equation (2.70) must then be solved numerically.

Extending the DL estimator to the case of network meta-analysis is straightforward

[87, 89, 90]. We generalise Equation (2.67) using the inverse-variance weight matrix

and obtain

Q = (y − ŷ)⊤V−1(y − ŷ). (2.71)

We recall that V−1 represents the observed within-study variances and correlations

so the expression in Equation (2.71) is analogous to using ai = σ−2
i in the pairwise

case. The vector ŷ is the set of network estimates of y obtained using the fixed effects

weights V−1. That is

ŷ = Xd̂FE = X(X⊤V−1X)−1X⊤V−1y, (2.72)

where d̂FE are the estimates of the mean relative treatment effects under the fixed effect

model, obtained by setting W = V−1 (i.e. Σ = 0) in Equation (2.62). Equations (2.71)

and (2.72) are the NMA analogue of Equations (2.67) and (2.66) in pairwise MA (when

ai = σ−2
i ).

In Section 2.10.2 of the Appendix we evaluate the expectation of Q in Equation (2.71)

and find

ERE(Q) =
M∑

i=1
(mi − 1) − (N − 1) + τ 2tr(AP), (2.73)

where, following Jackson et al (2016) [89], we have defined the matrix

A = V−1 − V−1X(X⊤V−1X)−1X⊤V−1. (2.74)

We have also defined the block diagonal matrix P such that Σ = τ 2P. Each (mi −

1) × (mi − 1) block in P represents a trial i, and has diagonal elements equal to 1 and

off-diagonal elements equal to 1/2. All other elements of P are zero.
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Similar to the pairwise case we equate the expectation in Equation (2.73) with the

empirically observed value of Q in Equation (2.71). Re-arranging for τ 2 we find

τ̂ 2 = (y − ŷ)⊤V−1(y − ŷ) − [∑M
i=1(mi − 1) − (N − 1)]

tr(AP) . (2.75)

This is the DerSimonian and Laird estimator of τ 2 in network meta-analysis. Again, if

τ̂ 2 comes out negative we set its value equal to zero.

Restricted maximum likelihood. We now explain the restricted maximum likelihood

method for estimating the variance parameter. We start by discussing this method in

a more general sense (for a linear regression problem) and then relate this to the NMA

model.

In Section 2.4.2.3 we showed that we can obtain estimates for the regression

coefficients β in a linear model of the form y = Xβ + ϵ with ϵ ∼ N (0, C) by

maximising the log likelihood in Equation (2.53) with respect to these parameters.

This led to the Aitken estimator in Equation (2.57).

The likelihood of this model is also a function of the variance parameters ϕ

characterising the covariance matrix C. The Aitken estimator assumes that these are

known, which is generally not the case. One way of obtaining the variance parameters

is to maximise the log likelihood simultaneously with respect to β and ϕ.

A problem with this approach is that the resulting estimates of the variance

parameters are generally biased [92]. This is because the variance estimate fails to

account for the loss in degrees of freedom that results from estimating β [94]. This is

well known, and can be demonstrated easily for a one dimensional normal distribution,

see Section 2.11 of the Appendix.

The restricted maximum likelihood (REML) approach was proposed by Patterson

and Thompson [92] as a method to overcome this problem. The principal idea is to

carry out a linear transformation of the variables y so that the likelihood function

for the transformed variables no longer depends on the parameters β, but only on

their estimates β̂ (which in turn depend on ϕ). This ‘restricted likelihood’ is then

maximised with respect to the variance parameters.

The restricted likelihood is given by

RL(ϕ|y, X) ∝ (det C)−1/2(det X⊤C−1X)−1/2 exp
(

−1
2(y − Xβ̂)⊤C−1(y − Xβ̂)

)
.

(2.76)
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We can arrive at this expression in several ways. One possible method involves

evaluating the marginal likelihood of the transformed variable [see [95] for details].

Alternatively, one can use a Bayesian interpretation [96]. Here, one assumes that

nothing is known about β, assigns an improper flat prior (a prior that is not properly

normalised), and integrates out β. This directly leads to

RL(ϕ|y, X) ∝
∫ ∞

−∞

1
(det C)1/2 exp

(
−1

2(y − Xβ)⊤C−1(y − Xβ)
)

dβ. (2.77)

The Gaussian integral on the right-hand side of Equation (2.77) can then be evaluated

exactly to give the result in Equation (2.76). In this context, we note that, for a given

matrix C, the integrand in Equation (2.77) is maximal at

β̂ =
(
X⊤C−1X

)−1
X⊤C−1y (2.78)

by construction [see Equation (2.57)].

From Equation (2.76), the restricted log likelihood is [94, 96]

ln(RL(ϕ|y, X)) = −1
2 ln(det C) − 1

2(y − Xβ̂)⊤C−1(y − Xβ̂)

− 1
2 ln(det X⊤C−1X) + const. (2.79)

This is similar to the original log likelihood function in Equation (2.53) but with

dependence on the maximum likelihood estimator β̂ instead of the true parameter β

and with an additional term.

A possible iterative procedure to obtain estimates of the regression and variance

parameters is now as follows: Start with an initial choice for ϕ̂. This defines C. Use

this in Equation (2.78) to obtain β̂. Use this value for β̂ in Equation (2.79) and then

maximise ln(RL(ϕ|y, X)) with respect to ϕ (keeping β̂ constant). This delivers an

updated value for ϕ̂. Then repeat, and iterate until convergence.

In this process, the maximisation of the expression in Equation (2.79) with respect

to ϕ requires numerical techniques such as the Newton-Raphson method [97], Fisher’s

scoring algorithm [98], or the expectation-maximisation (EM) algorithm [99].

In NMA the parameter estimates β̂ are the estimates of the relative treatment

effects d̂RE in Equation (2.62). The covariance matrix C is given by V + Σ where the

within-study covariance matrix V is assumed known, and the between-study covariance

matrix depends on the unknown parameter τ 2 we wish to estimate.
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In pairwise meta-analysis β̂ is the estimate of the treatment effect d̂RE in Equa-

tion (2.64), X is an M × 1 matrix of ones, and the covariance matrix C is diagonal

with elements σ2
i + τ 2 (with σ2

i assumed known). The restricted log likelihood in

Equation (2.79) then simplifies to [84, 100]

ln(RL(τ 2|y)) = −1
2

M∑
i=1

ln(σ2
i + τ 2) − 1

2

M∑
i=1

(yi − d̂RE)2

σ2
i + τ 2

− 1
2 ln

(
M∑

i=1

1
σ2

i + τ 2

)
+ const, (2.80)

where we recall that d̂RE depends on the estimate τ̂ 2 [Equation (2.64)]. Following the

above procedure we now maximise ln(RL(τ 2|y)) with respect to τ 2, while keeping d̂RE

fixed. This can be done analytically. Setting the partial derivative of the log likelihood

with respect to τ 2 equal to zero yields the REML estimator,

τ̂ 2
REML = max

0,

∑M
i=1(σ2

i + τ̂ 2
REML)−2

(
(yi − d̂RE)2 − σ2

i

)
∑M

i=1(σ2
i + τ̂ 2

REML)−2

+ 1∑M
i=1(σ2

i + τ̂ 2
REML)−1

}
, (2.81)

where the truncation at zero ensures that τ̂ 2
REML remains non-negative. The joint

system of Equations (2.81) and (2.64) can then be solved iteratively for τ̂ 2
REML and d̂RE.

Of the multiple heterogeneity estimators described here, REML is usually the

recommended option (see for example [83, 84]).

2.5 Reporting NMA Results

In Sections 2.3 and 2.4 we have explained how to obtain estimates for the model

parameters in NMA using Bayesian and frequentist methods. We now explain how

these estimates are reported and summarised for use in decision making.

2.5.1 Confidence/credible intervals in frequentist and

Bayesian inference

We focus on a particular parameter x. What is reported at the end of the inference

process is an estimate for the parameter along with a measure of precision. In frequentist

inference the parameter estimate itself is the one discussed in Section 2.4.3.1, and an
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estimate of the variance is obtained from Equation (2.63). In Bayesian inference the

parameter estimate is usually the mean or median of the samples from the posterior

distribution, and we also record the variance of the samples for the parameter [17].

In a frequentist setting uncertainty on a parameter is often expressed in terms of

confidence intervals, for example a ‘95% confidence interval’. In Bayesian inference

uncertainty is expressed in terms of ‘credible intervals’. We note the subtle difference

between these two concepts. The Bayesian interpretation is intuitive: given the observed

data, there is a 95% probability that the true (unknown) parameter lies within this

interval [44]. In a frequentist setting this would mean that if we were to repeat the

experiment and inference many times (each time constructing a 95%-confidence interval)

then 95% of these intervals would contain the true value of the parameter [44].

The ζ% confidence interval (0 ≤ ζ ≤ 100) is constructed from the parameter

estimate and its variance assuming a Gaussian distribution for the parameter with

mean x̂ and variance Var(x̂). More precisely,

CI = x̂ ± q(ζ)
√

Var(x̂), (2.82)

where q(ζ) is such that a total probability of ζ% of the Gaussian distribution is in

the interval of length 2q(ζ)
√

Var(x̂) around the mean. (Scaling out the variance, this

means
∫ q

−q dx e−x2/2/
√

2π = ζ/100.) For example, using q = 1.96 in Equation (2.82)

indicates a 95% confidence interval. In a Bayesian setting the 95% credible interval can

be obtained in a similar way from Equation (2.82), but using the mean and variance

of samples drawn from the posterior. Alternatively, one can calculate the 2.5% and

97.5% quantiles of the posterior samples.

Alternative methods for constructing confidence intervals in a frequentist analysis

are also possible. For example, a modification of the standard approach which relaxes

the normality assumption was suggested by both Hartung and Knapp [101–103] and

Sidik and Jonkman [104]. While not without its own drawbacks [105], this approach

has been found to outperform the standard method in simulation studies and thus,

may be a preferable option [106].
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2.5.2 Forest Plots

A common way to present the relative treatment effect estimates in both frequentist and

Bayesian NMA is on a forest plot [107–109]. Each basic parameter dT1a is represented by

a horizontal line centred on its estimated value d̂T1a with length equal to its confidence

(or credible) interval. For relative treatment effects measured as log odds ratios a value

of zero represents no difference in treatment effect. When the outcome from the trials

is the number of negative events or ‘failures’, a log odds ratio d̂T1a < 0 indicates that

treatment a is more effective than the baseline T1 and vice versa. A forest plot showing

the results for a frequentist analysis of the Thrombolytic drug data in Section 2.2.1.3 is

shown in Figure 2.8. A ‘caterpillar plot’ is also sometimes used [13]. This is essentially

the same as a forest plot but the relative treatment effects are sorted in order of

increasing effect size [110].

Figure 2.8: A forest plot showing the results of a frequentist (random effects) analysis of
the Thrombolytic drug data set [10–12]. The network graph and treatment labels are shown
in Figure 2.1. The global baseline treatment is T1 and has a log odds ratio of 0 by definition.
The outcome of interest is the number of deaths that occur within 30 or 35 days of a heart
attack. Therefore a log odds ratio < 0 indicates that the treatment is more effective than the
baseline T1. The horizontal lines indicate the 95%-confidence intervals about the estimated
LORs. Figure was created using the software netmeta [107] . (The grey boxes highlight the
central value and do not convey any additional information.)
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2.5.3 Ranking

The aim of a network meta-analysis is to provide clinicians with a clear statistical

summary of all relevant data so that they know what the most desirable treatment

options are for a particular condition. Relative treatment effect estimates and their

confidence/credible intervals can be difficult to interpret and draw conclusions from,

especially when many treatments have been compared [111, 112].

Ranking treatments from best to worst based on their relative effect estimates

is the simplest way of summarising the results of an NMA. For example, from the

estimated treatment effects d̂T1a in the forest plot in Figure 2.8 the treatments would

be ranked from best to worst in the order T7, T8, T3 = T6, T5, T4, T1 = T2, T9 (where we

have written a = b for treatments that are observed to be equally effective within the

reported number of digits for the treatment effects).

However, this summary does not account for the level of overlap between the

confidence intervals or the similarity between the point estimates. For example, in

the Thrombolytic drug data set treatment T8 is ranked second best using this method

despite the fact it has a very large confidence interval that covers almost the entire

width of the other intervals. On inspection of the forest plot we cannot draw any

meaningful conclusion about the effectiveness of treatment T8 but this fact is not

reflected in its rank.

2.5.3.1 Rank Probability and Rankograms

A more sophisticated method of ordering the treatments is to calculate so-called rank

probabilities [111]. That is, we calculate the probability that each treatment is best,

second best and so on. We use the notation Pa(r) to represent the probability that

treatment a has rank r. These quantities are only meaningful in a Bayesian framework

where probability describes the degree of belief in parameter values. In a Bayesian

NMA, treatments are ranked at each iteration of the MCMC according to the values

of relative treatment effect sampled at that iteration. The probability Pa(r) is then

estimated from the proportion of times treatment a was ranked r-th.

Although rank probabilities do not strictly make sense in a frequentist framework,

so-called ‘re-sampling’ methods have been developed to produce estimates of rank

probabilities based on the results of a frequentist NMA [48, 113]. Essentially, this
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Figure 2.9: Rankograms for the Thrombolytic data set in Figure 2.1. Rank probabilities
Pa(r) are plotted against rank r for each treatment in the network, a = T1, . . . , T9. Rank
probabilities were obtained from frequentist re-sampling methods (based on 1000 simulations)
using netmeta [107].

involves assuming that the distribution of the model parameters can be approximated

by a normal distribution with mean and variance equal to the values estimated from

frequentist methods (Section 2.4.3). Values of relative treatment effect are sampled

multiple times from this approximate distribution and rank probabilities are estimated

in the same way as before.

The rank probabilities can be displayed graphically using ‘rankograms’ [111]. For

each treatment, the rank probabilities Pa(r) are plotted against the rank r either as a

bar chart or a line graph. The rankograms for treatments in the Thrombolytic drug

data set are shown in Figure 2.9 as bar charts.

Ranking using probabilities reflects not only the point estimates of relative treat-

ment effects but also the uncertainties on these estimates and their overlapping confi-

dence/credible intervals. Clearly, the more overlap between intervals, the flatter the

rankograms will be. For example, in the Thrombolytic data set, while treatment T8 has

the highest probability of being second best, its rankogram is relatively flat indicating

the uncertainty in its rank.
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2.5.3.2 SUCRA and P values

The number of rank probabilities for a network increases with N2. Therefore rank

probabilities and rankograms become increasingly difficult to interpret as the number

of treatments increases [112].

Instead of rankograms, we could instead plot the cumulative probability Fa(r)

against rank r to obtain cumulative ranking curves. Here, Fa(r) is the probability that

treatment a has rank r or better,

Fa(r) =
r∑

s=1
Pa(s). (2.83)

A simple summary of rank probabilities is then the area under these curves. Salanti et

al (2011) [111] termed this measurement the ‘surface under the cumulative ranking

line’ or SUCRA. The value of SUCRA for a particular treatment a is then

SUCRAa = 1
N − 1

N−1∑
r=1

Fa(r) = 1
N − 1(N − E(r)a), (2.84)

where E(r)a is the mean or expected rank of treatment a,

E(r)a =
N∑

r=1
rPa(r). (2.85)

SUCRA takes values from 0 to 1, though these are often expressed as a percentage. If

treatment a ranks first with probability one then it will have SUCRAa = 1 (or 100%)

whereas a treatment that ranks worst with probability one will have SUCRAa = 0 (or

0%) [111]. SUCRAa can be interpreted as the average proportion of treatments worse

than a. SUCRA values provide a concise summary of treatment rankings that accounts

for the estimated relative treatment effects, uncertainty in these estimates, and the

resulting overlap in their confidence/credible intervals.

In frequentist NMA values of SUCRA can be calculated from the rank probability

estimates obtained via re-sampling methods. Alternatively, Rücker and Schwarzer [114]

proposed an analogous quantity called a ‘P score’ that does not require re-sampling.

By assuming a normal distribution for the model parameters they define

Fab = Φ
 d̂ab√

Var(d̂ab)

 , (2.86)

where Φ(.) is the CDF of the standard normal distribution. This is interpreted as the

extent of certainty that d̂ab > 0 (i.e. that a is more effective than b). The P-score for
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treatment a is then the mean of Fab over treatments b ̸= a. This is the mean extent

of certainty that a is more effective than any other treatment. Rücker and Schwarzer

[114] show that when the true probabilities are known, P-scores and SUCRA values

are identical. In practice they give very similar results.

2.6 Existing points of contact between NMA and

physics

In the previous sections we have introduced some of the essential concepts and methods

for NMA. In the remainder of the paper we now discuss how physics (in particular,

statistical physics) and physicists can contribute to this area.

For example, a number of analogies between meta-analysis and specific physical

systems have been proposed in recent years. These analogies have provided insight,

and they have helped to improve meta-analysis methodology and the visualisation of

the problem. In this section we briefly outline these analogies.

Section 2.7 then describes a few examples of more general methods used in statistical

physics which have been shown to be useful in a meta-analysis context. We also present

a number of more speculative ideas on how knowledge from physics might be used for

NMA.

2.6.1 NMA and electrical networks

Arguably the most influential of the meta-analysis analogies was developed by Rücker

(2012) [49] who demonstrated the connection between NMA and electrical network

theory. The starting point for this analogy is the observation that variance in meta-

analysis combines in the same way as resistance in an electrical network.

2.6.1.1 Variances in NMA combine like resistance in a network

In Section 2.4.3.1 we saw that for a frequentist pairwise meta-analysis, the variance

of the estimated treatment effect d̂ is an expression for the variance of the weighted

mean [Equation (2.65)] calculated in terms of the variances associated with each of

the trials. Taking the reciprocal on both sides of this equation and writing vi for the
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Figure 2.10: An illustration of the analogy between NMA and electrical networks. (a) A
pairwise meta-analysis of three trials corresponds to (b) three resistors connected in parallel.
(c) A chain of two trials connecting three treatments corresponds to (d) two resistors connected
in series. We label each treatment as Ta and each resistor as Ri. Each trial i is labelled with
the measurement of relative treatment effect made in that trial, yi,12, and the associated
variance, vi.

variance associated with the measurement in trial i we find

1
Var(d̂)

=
M∑

i=1

1
vi

. (2.87)

For a random effects model we have d̂ = d̂RE and vi = σ2
i + τ 2, whereas for a fixed effect

model d̂ = d̂FE and vi = σ2
i . As illustrated in Figure 2.10 (a), a pairwise meta-analysis

can be represented by a graph with two nodes (representing the two treatment options)

and multiple parallel connections (edges) between the nodes (representing the individual

trials comparing the treatments). The same graphical representation describes an

electrical network with resistors connected in parallel [Figure 2.10 (b)]. The effective

resistance, R, of a set of M parallel resistors Ri, i = 1, . . . , M is

1
R

=
M∑

i=1

1
Ri

. (2.88)

Therefore, resistors in parallel combine like variances in a pairwise meta-analysis.

Now consider the network in Figure 2.10 (c) comprising three treatments, T1, T2, T3,

and two trials. The first trial i = 1 compares treatments T1 and T2 and measures a

relative treatment effect y1,T1T2 with variance v1. Trial i = 2 compares treatments T2

and T3 and measures y2,T2T3 with variance v2. The network estimates of the relative
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effect between treatments T1 and T2, and between T2 and T3, respectively, are simply

the direct estimates d̂T1T2 = y1,T1T2 and d̂T2T3 = y2,T2T3 . There is no direct evidence for

the comparison of treatments T1 and T3. The network estimate of this comparison is

obtained from an indirect estimate via T2,

d̂T1T3 = y1,T1T2 + y2,T2T3 . (2.89)

Since the trials are independent, the variance associated with this estimate is

Var(d̂T1T3) = v1 + v2. (2.90)

As shown in Figure 2.10 (d) this set-up relates to an electrical network with resistors

connected in series. The effective resistance for this network is

R = R1 + R2. (2.91)

Therefore resistors in series combine like variances for indirect estimates in NMA.

The analogy with resistor circuits can be extended to networks of more than two

trials, and those combining both parallel connections and connections in series. Through

a more detailed analysis (which we do not describe here) and by comparing Ohm’s law

to the weighted mean expression in Equation (2.62), one can then establish a mapping

between relative treatment effects and potential differences (voltages).

2.6.1.2 Analogy of the NMA problem in electric circuits

In electrical network theory, graph theoretical methods are used in different ways,

for example to construct the electric potentials at the nodes from external currents,

or to compute the effective resistance between two nodes from the resistors in the

network. Rücker showed that a similar set of methods can be used in NMA to derive an

expression for the network estimates of the relative treatment effects from the observed

effects. This leads to the same results as the Aitken estimator in Equation (2.64) [49,

115].

We do not present details here, but the core of the analogy can be described as

follows [49]. The NMA problem consists of finding the network estimates for the

relative treatment effects using the effects observed in the trials (for a known network

structure and known [inverse-variance] weights of the trials). The observed effects
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will in general be inconsistent, whereas the estimates resulting from the NMA are

consistent by construction. The observed effects translate to ‘observed’ voltages across

the resistors in the network (the resistances are determined by the inverse-weights of

the trials). As a consequence of the inconsistency, voltages along loops in the network

will not add to zero. This means that no electric potentials can be assigned to the nodes

from which the voltages would arise as potential differences. The key result is now that

the problem of determining the NMA estimates for the treatment effects is equivalent

to finding the set of electric potentials so that the resulting (consistent) voltages best

approximate the observed (inconsistent) voltages6. Quality of approximation is here

measured in terms of the Euclidian norm.

2.6.1.3 Reduction of multi-armed trials

One particularly useful application of the electrical network analogy is in the context of

networks with multi-arm trials. Measurements of the different relative treatment effects

from a multi-arm trial are correlated, and the presence of such correlations can cause

complications for some NMA methodology. One therefore carries out a ‘reduction’ to

an equivalent set of two-arm trials. We here briefly describe this, for details see [49,

115].

We focus on a single multi-arm trial with m-arms. The corresponding (sub) network

involving the m treatments is then fully connected. The idea is to find a network

consisting of m(m − 1)/2 pairwise trials which is ‘equivalent’ to the multi-arm trial in

the sense that the variances of the network estimates of relative treatment effects in

the pairwise network [given by Equation (2.63)] are the same as the variances in the

graph describing the multi-arm trial.

As discussed above, variances in NMA combine like resistances in electric networks,

i.e. the variances of network estimates are obtained from the individual trial variances

in the same way as effective resistance is obtained from the physical resistors in electric

circuits7. The reduction problem for the multi-armed trial is therefore equivalent
6These potentials are only unique up to an overall additive constant. This reflects the fact that

NMA tries to estimate relative treatment effects rather than absolute outcomes.
7The effective resistance between two nodes results as U/I from the current I that flows into the

network if a battery of voltage U is attached to the two target nodes. Effective resistance accounts for
any direct connection between the target nodes, and for all indirect connections through other nodes
in the graph.
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to finding the individual resistances {Rab} in an electric network given the effective

resistances between pairs of nodes. It is well known (see e.g. [116]) that

Reff
ab = L+

aa + L+
bb − 2L+

ab, (2.92)

where L is the graph Laplacian describing the electric network, and where + denotes the

pseudo-inverse. The graph Laplacian is defined by the individual (physical) resistors

via Lab = −R−1
ab for a ̸= b, and Laa = ∑

b R−1
ab .

The reduction problem therefore maps onto the problem of finding the elements

of the graph Laplacian L in Equation (2.92) for given effective resistances {Reff
ab } (i.e.

given variances in the multi-armed trial). The individual physical resistors (variances

associated with the individual two-armed trials) can then be extracted from the off-

diagonal elements of the Laplacian. Further details of the reduction method are given

in Section 2.12 of the Appendix.

We perform this reduction for every multi-arm trial in a meta-analytic network, and

use effect estimates from the multi-arm trials to assign estimates to the two-arm trials.

This leads to a network of two-arm trials that is equivalent to the original network (i.e.

it produces the same network estimates and variances). Methodology that does not

allow for correlations can then be used on this new network.

Further details of the analogy between NMA and electrical networks can be found

in [49, 115].

2.6.2 Random Walks

Random walks are a familiar concept to statistical physicists. Random hopping

processes on networks are of particular interest in a number of areas [117–119]. In brief,

a random walk on a network is a stochastic process describing a series of hops between

nodes that are connected by an edge. We focus on discrete time such that each time

step is associated with one hop across an edge.

There is a well-known analogy between random walks and electrical networks [120–

123], briefly summarised in the next section. Using the work of Rücker [49] described

in Section 2.6.1 we were able to extend this analogy to network meta-analysis [16].
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2.6.2.1 Random walks and resistor networks

Each edge in an electrical resistor network has an associated resistance. Given such a

network, one now constructs a random walk as follows: For a random walker currently

at node a, the probability with which the walker hops from a to b in the next step is

proportional to the inverse-resistance associated with the edge ab. More precisely, one

defines the transition matrix elements as

Pab = R−1
ab∑

c ̸=a R−1
ac

, (2.93)

where Rab is the resistance of the resistor connecting nodes a and b.

Various physical quantities in the electric network then have interpretations in the

random-walk picture. A good summary can be found in [123]. For example, consider

the following scenario: A battery is attached to two nodes a and b in the resistor

network. We assume that the network only has one single connected component. The

voltage of the battery is chosen such that one Ampère of current goes into node a from

the battery (and consequently one Ampère goes from node b back into the battery).

This then induces currents Icd through all edges cd (the resistors) in the network. Now

imagine we release a random walker at node a, and it performs the random walk defined

by Equation (2.93). We stop the walk when the walker reaches node b (this will happen

eventually given that the network consists of a single component). We can record the

net number of times the walker will have crossed edge cd before it reaches node b (hops

from d to c contribute negatively to this value). One can then show [123] that the

expected net number of crossings from c to d is given by the current Icd in the electric

network with the battery attached to nodes a and b.

2.6.2.2 Random walks and flow of evidence in network meta-analysis

Starting from the existing analogies between electrical networks and NMA on the one

hand, and electrical networks and random walks on the other, we (along with Rücker,

Papakonstantinou and Nikolakopoulou) [16] proposed an analogy between NMA and

random walks. In the following, we briefly summarise the main ideas.

We have seen that resistance in an electrical network is analogous to variance

in an NMA. Therefore inverse-resistance is associated with inverse-variance weight.

Writing wab for the weight associated with edge ab in a network meta-analysis (see
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Figure 2.11: An illustration of the analogy between NMA and random walks. Panel (a)
shows an NMA with five treatments a = T1, T2, T3, T4, T5. Each edge is labelled with the
inverse-variance weight associated with that treatment comparison, wab. Panel (b) shows
the transition probabilities for a random walker on the network in (a) who is currently at
node T1. At the next time step this walker can move to node T2, T3 or T5 with probabilities
proportional to the edge weights.

Section 2.4.3.1), we define the transition matrix of a random walker via

Pab = wab∑
c̸=a wac

. (2.94)

This is illustrated in Figure 2.11.

In [16] we found that the expected net number of times a walker crosses each edge

is equal to the so-called ‘evidence flow’ through that edge. This is a concept introduced

by König et al (2013) [124]. We do not give full definitions here. Broadly speaking

the flow variable f
(ab)
cd is a coefficient that describes how much the observed relative

effect between treatments c and d contributes to the network estimate of the relative

effect between a and b. The coefficients are related to the entries of the matrix on

the right-hand side of Equation (2.62). They describe how different pieces of direct

evidence in a network meta-analysis combine to give the overall network estimates of

relative treatment effects. It turns out [124] that these coefficients have the properties

of a flow. For example, the flow out of a node c ̸= a, b, ∑x f (ab)
cx , equals the flow into

node c, ∑x f (ab)
xc , indicating that flow is conserved at c. The flow variables are defined

such that they are non-negative. A value of f
(ab)
cd > 0 indicates a positive flow from c

to d, the transposed variable f
(ab)
dc is then zero.

For a comparison ab, the evidence flow variables {f
(ab)
cd } can be used to define

a directed weighted graph. This is for a fixed choice of a and b meaning there is

one directed graph for each comparison ab. Nodes in this graph again represent the
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treatment options, but the weights of the (now directed) edges are given by the flow of

evidence {f
(ab)
cd }.

2.6.2.3 Random walks, streams of evidence and proportion contributions

In [16] we then defined a second random walk. All walkers start at a and move on the

directed graph just described. The construction is such that walkers can never return

to a node they have already visited (the graph is acyclic), and all walks end at b (node

b is absorbing). We can think of these walkers as collecting evidence along their way.

They start at node a, hop to intermediate nodes and record differences in treatment

effects (similar to differences in height in a mechanical set-up). When a walker arrives

at b it reports the total difference in altitude it has experienced. Due to inconsistencies,

this reported difference may be different along different paths connecting a and b. The

average of what the walkers report turns out to be the network estimate of the relative

treatment effect between a and b [16].

In addition, the probability of a walker taking a certain path from a to b is given by

the product of the transition probabilities in the edges along that path. This expression

can be used to calculate so-called ‘streams of evidence’ [125], and what is referred to

as the ‘proportion contribution matrix’ [126]. In particular, we used the random walk

transition probabilities to derive an analytical expression for the contribution each

treatment comparison makes to each overall treatment effect estimate. As discussed in

more detail in [16], this random walk approach overcomes some limitations of previous

algorithms used to construct this quantity. The random-walk method has recently

been implemented in the software package netmeta [107].

The random walk analogy is a recent addition to network meta-analysis. As a

result, only a small proportion of the random walk literature has been explored in this

context. We therefore feel that there is scope to extend the analogy. We hope that the

introduction to NMA we give in this paper will help other statistical physicists with an

interest in random walks on networks to join these efforts.

2.6.3 System of springs

Papakonstantinou et al (2021) [127] visualised the meta-analysis problem as a system

of springs. In a similar vein to the electrical network analogy, they observe that when
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connecting systems of springs the inverse of the spring constant combines in the same

way as variance in meta-analysis.

Figure 2.12: (a) An illustration of a parallel system of springs. The springs are fixed on
one side corresponding to the baseline treatment. The open ends are then forced to the same
length so that their natural lengths are displaced by some distance. This is equivalent to a
pairwise meta-analysis. (b) A system of springs connected in series. This is equivalent to an
indirect comparison in meta-analysis. We label each treatment as Ta. Each spring is labelled
by its natural length, li, and the inverse of its spring constant, k−1

i . l is the effective length
of the spring system. The different thicknesses of the springs represent their different spring
constants.

Hooke’s law states that the force, f , needed to displace a spring by length x is

f = kx, where k is a measure of the stiffness of the spring known as the spring constant.

The potential energy stored in such a spring is

U = 1
2kx2. (2.95)

Consider a set of M springs fixed at one end and arranged in parallel as shown in

Figure 2.12 (a). Each spring has a different spring constant, ki, and a different natural

length, li. The open ends of the spring are then connected so that the springs are

forced to assume the same length, called the ‘effective length’ l of the spring. Each

spring has therefore been displaced by a different amount, xi = li − l. The resulting

equilibrium length of the springs, l̂, is such that the total force on T2 vanishes, i.e.∑
i kixi = 0. (Equivalently, this length minimises the energy stored in the system,
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l̂ = argmin
l

[∑M
i=1 ki(li − l)2

]
.) One finds,

l̂ =
∑M

i=1 kili∑M
i=1 ki

. (2.96)

This expression is in the form of a weighted mean. Comparing it to the estimate from

a pairwise meta-analysis in Equation (2.64), one observes that we can draw an analogy

between the parallel system of springs and a pairwise MA. We interpret the spring

constant as inverse-variance weight. The spring constant associated with the ‘effective

spring’ is

k =
M∑

i=1
ki. (2.97)

Comparing this to Equation (2.87), it is clear that variance in a pairwise meta-analysis

combines in the same way as the inverse of the spring constant for a set of parallel

springs.

One can also make this analogy for springs connected in series. As shown in

Figure 2.12 (b), the effective length of a chain of springs connected together is simply

the sum of their natural lengths. The effective spring constant is then

1
k

=
M∑

i=1

1
ki

. (2.98)

Comparing this to Equation (2.90), we observe that the inverse of the spring constants

of springs connected in series combine like variances for an indirect estimate in meta-

analysis.

The natural length of each spring can be interpreted as the measurement of the

relative treatment effect in each trial. The displacements xi then relate to the residuals

associated with the relative treatment effects (i.e. differences between the relative effects

measured in each trial and those predicted by the model). Minimising the energy is

analogous to the process of minimising the sum of squared weighted residuals described

in Sections 2.4.2.1 and 2.4.2.2.

This analogy provides a useful visualisation of the meta-analysis process. That

is, combining the data from multiple medical trials is like minimising the energy in a

system of springs. The energy stored in the final equilibrium system then represents a

measure of disagreement between the different pieces of evidence. Though this analogy

has been demonstrated for a set of relatively simple configurations, it has not yet been
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extended to a general network meta-analysis. This would require a much more complex

spring system. Further details can be found in [127].

2.6.4 Balance of torques in a mechanical system

Another visualisation of meta-analysis based on a mechanical system was proposed

by Bowden and Jackson (2016) [128]. In this analogy, the process of finding the

minimum sum of weighted residuals (or, equivalently, maximising the likelihood, see

Sections 2.4.2.2 and 2.4.2.3) is equated to balancing torques in a system of weights.

This is the same as finding the position of the centre of mass.

Figure 2.13 shows a mechanical system consisting of a bar with M objects of different

masses, mi, hanging at various positions xi along the bar. The bar is supported by a

pivot. The system of masses (or weights) is balanced when the pivot is placed such

that the torques exerted by the masses balance, i.e. ∑M
i=1 mig(xi − xpivot) = 0, where

g is the acceleration due to gravity. Writing the weights of the different masses as

wi = mig the balance of torques leads to

xpivot = xCoM ≡
∑M

i=1 wixi∑M
i=1 wi

, (2.99)

i.e. the pivot must be located at the centre of mass (in one dimension) defined by the

system of weights.

As before, we compare this to the pairwise meta-analysis estimate in Equation (2.64)

in order to establish the analogy. The position of each mass along the bar then represents

the observed relative treatment effect in each trial and the physical weight of each

object represents the inverse-variance weight associated with each observation.

The problem of finding the position of the centre of mass provides a visual rep-

resentation of finding the best estimate of the relative treatment effect in a pairwise

meta-analysis. Bowden and Jackson used this visualisation to create an online visuali-

sation tool. The visualisation shows how different modelling assumptions (for example,

fixed effects vs random effects) or the addition/removal of certain studies affect the

position of the centre of mass. When the user makes a change to the model or the

data, an animation shows the change in balance of the system. This was found to help

identify the presence of small-study bias, a phenomenon where smaller studies report a

systematically larger relative treatment effect than larger studies [129]. This analogy
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Figure 2.13: An illustration of pairwise meta-analysis as a centre of mass problem. Each
mass is labelled by its position along the rod, xi, and the force acting on it, mig, which is equal
to its weight. The position of each object represents the measurement of relative treatment
effect in each trial. The physical weight of each object represents the inverse-variance weight
of each measurement. The centre of mass, xCoM, is the position of the pivot that balances
the torques. Finding this position is equivalent to finding the estimate of relative treatment
effect in a pairwise meta-analysis.

has not been extended to indirect estimates or network meta-analysis. For details, see

[128].

2.7 Ideas for future work: a research programme at

the interface of statistical physics and network

meta-analysis

In this section we now present a series of broader ideas on how statistical physics might

contribute to the field of NMA in the future. Some of these have been formulated in

existing literature (e.g. Markov chain methods to rank treatments in Section 2.7.1),

others are more speculative.

2.7.1 Markov chain approaches to ranking

Markov chain approaches have been used as ranking methods in a variety of fields

[130–132]. Most notably, Google’s PageRank algorithm [130] ranks web pages in their

search engine results. Broadly summarising, the algorithm is based on a Markov chain

that models a ‘random surfer’ who, after being randomly assigned an initial webpage,
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moves from page to page by randomly clicking links. The algorithm also allows for

a damping mechanism that works by assigning a certain probability with which the

surfer is re-set to a random page at each step (this ensures that pages with no incoming

links are also visited from time to time). The stationary distribution of the Markov

chain then informs the ranking of the webpages. Broadly speaking, a page with more

incoming links is more likely to be visited and therefore attracts a higher probability

at stationarity, resulting in a higher rank.

As discussed in Section 2.5.3 ranking treatments is an important output of NMA

and has received much attention in the literature [133–140]. Chaimani et al [137]

developed a ranking method for NMA based on the PageRank algorithm.

As in the random-walk framework, each state of the Markov chain is a treatment

in the network. At each discrete time step the process moves from one treatment to

another. Transitions represent a preference between two treatments: When the process

is currently in state a, the probability of transitioning to b in the next time step is

related to the probability that treatment b is more effective than treatment a [114]. The

stationary distribution of the Markov chain can then be used to rank the treatments,

where a higher probability of being selected indicates a more effective treatment.

The initial distribution of the Markov chain can be chosen so that it reflects clinically

important factors other than the treatment effects, for example the cost or safety of

the treatments [137]. Similar to the PageRank algorithm, Chaimani et al introduce a

re-setting mechanism: at every time step there is a non-zero probability of hopping to

a state drawn from the initial distribution. This means that the stationary distribution

of the Markov chain now depends on this initial distribution as well as the transition

probabilities. This allows one to incorporate information about a range of factors that

influence decision making.

2.7.2 Using network theory to characterise meta-analytic

graphs

A natural point of contact between NMA and statistical physics is the theory of

networks. It is widely recognised that the accuracy and precision of NMA outcomes

are likely to be affected by network topology. Indeed, researchers are encouraged to
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provide graphical and qualitative descriptions of network geometry [141]. Based on

concepts from the theory of networks, researchers have defined topological indices to

describe the geometry of meta-analytic networks and related these to the outcomes of

NMA [142–144]. We give a few examples in this section, recognising that this existing

work is only an initial step. We think that there is significant scope to extend these

activities.

In network theory, the degree of a vertex is the number of edges the vertex shares.

A graph is described as ‘regular’ if all vertices have the same degree. From these

definitions we [142] defined a measure of ‘degree irregularity’ of the graph of treatment

options. This measure is given by

h2 = 1
N

∑
a

(ka − k̄)2, (2.100)

and quantifies the variation in the number of studies involving each treatment. We

define ka as the weighted degree of node a (here, the weight of an edge is given by the

number of trials comparing the two treatments connected by the edge). The quantity

k̄ = 1
N

∑
a ka is the mean degree in the network. Through simulations of NMA, we

found that smaller values of h2 were associated with more precise treatment effects and

smaller bias on rank probabilities.

Tonin et al (2019) [143] adapted metrics from graph theory in order to numerically

describe network geometry in NMA. They performed a systematic review of 167

published NMAs and used 11 metrics to describe the topology of each network. By

performing a sensitivity analysis on each metric and assessing the level of correlation

between the metrics, they identified four indicators that were the most useful for

describing network geometry. These are (i) Density: A measure of ‘connectedness’

equal to the number of edges in the network divided by the total number of edges

possible for N vertices; (ii) Percentage of common comparators: The percentage of

vertices with more than one connecting edge relative to the total number of vertices N ;

(iii) Percentage of strong edges: The percentage of edges with more than one study

relative to the total number of edges; (iv) Median thickness and dispersion measure:

The median number of studies per edge and the IQR (interquartile range).

Tonin et al recommended that in order to characterise the network of evidence from

an NMA these measures, in addition to the number of vertices, the number of edges,

and the number of trials per edge, should be reported alongside the network graph.
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This existing work shows that concepts used in network theory to characterise the

topology of networks can be linked to the outcome of NMA. We think that further

work to explore these ideas will be very worthwhile. Significant expertise exists in the

complex networks community, and a large number of tools have been developed to

characterise, for example, the clustering properties of networks, as well as measures of

centrality and assortativity. Techniques are available to detect communities in networks,

and more general motifs. It will be exciting to see if and how these concepts can be

used to study networks of medical trials. Finding good indicators of network topology

for NMA performance also leads to the possibility to suggest targeted additions to

an existing meta-analytic network. In other words, these methods from the theory of

(complex) networks could be used to propose future trials to be added to a meta-analysis

that promise to be the most useful for improving the overall estimate of treatment

effects. This could include concepts from chemical graph theory, e.g. topological indices

discussed in [145].

2.7.3 Network meta-analysis, constrained optimisation and

statistical mechanics

Counting is very much at the heart of statistical physics. Boltzmann’s entropy,

S = k ln Ω, is defined based on the number of accessible microstates Ω of a system.

Establishing the statistical physics of the microcanonical ensemble then boils down

to accurately counting the number of microstates associated with a given macrostate.

In the canonical and grand-canonical ensembles microstates are ‘weighted’ by the

appropriate Boltzmann factors, and the counting is formalised in the canonical and

grand-canonical partition functions. Anyone who has taken a course in statistical

physics will remember the subtleties associated with determining the number of ways

a given number of Fermions or Bosons can be distributed across a set of energy states.

The Boltzmann weights in the partition functions for the different ensembles can

be obtained from the extremisation principles of classical thermodynamics. Depending

on circumstances, a system will tend to the state of extremal entropy, Helmholtz free

energy or grand potential for example. Using this, the idea of equal a priori probabilities

in isolated systems, and the entropy S = k ln Ω for the combination of the system
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of interest and the relevant surrounding baths, the canonical and grand-canonical

partition functions can be obtained8.

It is no surprise that connections can be established to other areas facing counting

and extremisation problems. Examples are the closely related areas of ‘constrained

optimisation’ and ‘constraint satisfaction’ in mathematics and computer science. Con-

strained optimisation problems involve finding the minimum (or maximum) of a function

f(x), subject to constraints on the variable x = (x1, . . . , xn). These constraints can

come as a set of equations connecting the xi, as inequalities or as a combination

of equalities and inequalities. One example is graph partitioning, i.e. the problem

of partitioning the set of nodes of a network into a given number of subsets while

minimising the number of edges between these subsets. Another instance of constrained

optimisation is the ‘knapsack problem’ (see e.g. [148]).

Constraint satisfaction problems are problems in which the variable x must satisfy a

set of constraints. Often these are formulated on graphs. A good example is the graph

colouring problem (more precisely, we describe the vertex colouring problem). Assume

we have a graph consisting of N nodes, connected by a set of links. The problem now

consists of assigning a colour to each node so that no two neighbouring nodes have the

same colour. The xi, i = 1, . . . , N here represent the colours, and the constraints are

local (each node of degree k ≥ 1 in the network leads to a constraint involving this

node and its neighbours). Other constraint satisfaction problems are the celebrated

travelling salesman and random k-satisfiability problems [149–151].

The methods used to address such problems include techniques such as message-

passing (including belief propagation) and the cavity method. These tools are also

relevant for spin glass problems in physics, and it is therefore natural for a statistical

physicist to work at the interface of optimisation and computer science. Physicists

have also been instrumental in characterising the typical properties of instances of

constraint satisfaction or optimisation problems, this will be discussed further below

(Section 2.7.4).

It is hard to avoid seeing possible connections between NMA and these classes

of problems. For example, it is natural to ask if ranking in NMA can be phrased as
8We highlight the alternative information-theoretic approach to statistical physics, beautifully

introduced by Jaynes [146, 147].
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a constrained optimisation or satisfaction problem. It is perhaps useful to think of

the meta-analytic network as a bipartite graph, with one type of node representing

treatment options and the other trials [e.g. Figure 2.2 (d)]. If there are N treatment

nodes in the graph, then the ranking task consists of assigning the ranks 1, . . . , N

to those nodes, while satisfying constraints set by the trials or minimising a cost

defined by the trials (each trial provides noisy information on the relative ranks of

some treatments). The NMA problem hence falls into a class of broader problems:

We start from a set of N objects (the treatment options), who each have an unknown

quality (treatment effect). We have noisy estimates of the relative qualities of subsets

of these objects (from the trials), and we now wish to estimate the intrinsic property

of each object. If this is not possible, what can we say about the relative comparison

between pairs of objects, or a ranking of the objects in terms of quality?

While details would have to be thought through carefully we think that it is well

possible that parallels between NMA and existing optimisation or satisfaction problems

can be established. There is then potential for statistical physicists to contribute via

the methods mentioned above (message passing, cavity method, etc.). We think this is

an exciting perspective for future work.

2.7.4 Network meta-analysis and disordered systems

Related to the previous item there may be interest in looking at the typical properties

of the NMA problem and its solution. This is a common approach in constrained

optimisation and satisfaction problems. Instead of looking at single instances of these

problems, one assumes the network is drawn from an ensemble of graphs, and then

asks what the average or typical properties of problems in this ensemble are. For

example, how many solutions to the optimisation or satisfaction problem are there,

what subspace do they form in the overall state space (e.g. is there one connected

manifold of solutions vs fragmented clusters) and what is the typical quality of the

solution (i.e. how many of the constraints can be fulfilled)?

To answer these questions, an average over assignments of the graph and constraints

needs to be taken. One can then make use of tools from the physics of spin glasses and

disordered systems, such as the replica method, dynamic mean field theory or cavity

approaches. This allows one to characterise the energy landscape associated with these
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problems, the geometry of the solution space, and most importantly the performance

of algorithms to find solutions to the optimisation or satisfaction problem.

It is conceivable that a similar approach could be taken in NMA. Based on known

statistical features of meta-analytic graphs [144, 152] one could define an ensemble of

random NMA problems (i.e. the configuration of trials, treatment options and their

connections is drawn from a distribution). One could then try to assess how features

of the ensemble (e.g. connectivity, regularity etc.) affect the outcome of the NMA

problems in the ensemble. This would allow one to step away from single instances,

and instead to say more about typical cases.

2.7.5 Machine learning approaches to systematic reviews and

Bayesian MCMC

The field of machine learning interfaces with statistical physics, and there is increasing

interest by physicists in machine learning methods. There are multiple ways in which

machine learning can contribute to the field of NMA, and this therefore defines another

point of contact with statistical mechanics.

One way in which machine learning can be used in NMA relates to the Bayesian

approach in Section 2.3. Methods from machine learning have been proposed as

alternatives to MCMC in general. This includes techniques such as expectation

propagation [153], variational Bayesian inference [154] and integrated nested Laplace

approximations [155, 156].

A perhaps even stronger link to machine learning presents itself in the process of

data acquisition for an NMA. In this paper, we have so far focused on the procedure of

carrying out an NMA given a set of data from multiple trials. In reality, the process of

compiling the data starts by performing a ‘systematic review’ of the existing trials for

a particular medical problem. This is a systematic screening of the literature, using

well defined procedures, followed by a process to decide which trials are adopted for

the NMA. This decision making again uses well defined protocols and criteria. As part

of this process a large number of journal articles must be searched, and appropriate

data must be identified and extracted.

This obviously lends itself to automation, which speeds up the process, saves
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resources, and removes human error and inconsistencies that arise when a team of

multiple researchers collects the data. Machine learning methods have indeed been

employed to automate or semi-automate this process [157–159].

Given these contact points between NMA and machine learning, we think that

researchers working at the interface of statistical physics and machine learning may

find interest in applying the ideas and methods they are familiar with to the field of

evidence synthesis. Their experience may then lead to the development of algorithms

that improve on existing methods.

2.7.6 Simulation techniques

Simulation techniques play an important role in NMA. Most evidently, Monte-Carlo

sampling is necessary to carry out a Bayesian NMA (Section 2.3). Further, ‘simulation

studies’ can provide insight into NMA [160]. These are studies in which trial data

is generated synthetically (simulated). This allows one, for example, to test how

NMA fares on different networks, and how different features of the graph affect NMA

outcomes [142, 161, 162]. The simulation proceeds along the random effects model

described in Section 2.2.4, we note again the hierarchical structure and the different

levels of randomness. In simulation studies one typically has to look at many instances

of networks, and average over a large number of realisations of synthetic data. Efficient

simulation methods for the generation of data are therefore key.

Statistical physicists are obviously familiar with simulation methods for random

processes. Acknowledging that simulation studies are an established part of statistics

(and consequently, that there is significant existing expertise), this defines another

point of contact, and a prospective avenue for statistical physicists to contribute to the

field of NMA and evidence synthesis more generally.

2.7.7 Meta-analysis in particle physics

As a final, more speculative thought, we note that meta-analysis is used in particle

physics to obtain the best estimates of particle properties such as masses, widths and

lifetimes [163]. Expertise developed in this area might also be useful for meta-analysis

and network meta-analysis in medical statistics.
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2.8 Summary

Most of the existing NMA literature is naturally written by medical statisticians for

medical statisticians, or for researchers actively using NMA tools and software packages

in clinical practice. As a consequence, it is not easy to find an account of the essentials

of NMA presented in a language physicists would be used to. The objective of this

perspective review is to make a first step towards rectifying this. We hope the paper

is a useful introduction to network meta-analysis for statistical physicists. It should

be noted that the paper was also written by statistical physicists. This means that

we work from a limited perspective. The selection of topics and the presentation is

subject to personal bias.

Naturally, we could only include what we considered to be the most essential aspects

of NMA. Topics which could have been covered in a more extensive review include

inconsistency [27], individual participant data [164], multi-component interventions

[165], multiple outcomes [166], bias adjustment methods [18] and goodness-of-fit

assessment [17]. In making our selection of the material for this paper, we aimed to

focus on the concepts, ideas and methods, which would best enable the reader to access

the wider literature. We tried to write a self-contained systematic introduction which

could serve as a starting point for the reader to then explore the field more effectively.

We also hope that the paper highlights the importance of the area of evidence

synthesis. Our review is successful if it excites others and if it convinces the members

of the community that network meta-analysis is a field in which statistical mechanics

can make a difference.

2.9 Appendix A: Estimating within-study variances

and correlations of observed treatment effects

In this appendix we discuss how the matrix Vi in Equation (2.41) [see Section 2.4.1] is

estimated from trial data. This matrix describes the variance and correlations within a

trial due to fluctuations arising from the finite number of subjects in the different arms

of the trial (i.e. sampling errors).
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2.9.1 General setup and estimating the variance of observed

treatment effects

For binomial data, the observed relative treatment effects in trial i are given by the log

odds ratios,

yi,1ℓ = logit(p̂i,ℓ) − logit(p̂i,1) = ln p̂i,ℓ

1 − p̂i,ℓ

− ln p̂i,1

1 − p̂i,1
, (2.101)

where p̂i,ℓ = ri,ℓ/ni,ℓ is the proportion of events in arm ℓ of trial i. The variances,

σ2
i,1ℓ, and covariances, Cov(yi,1ℓ, yi,1ℓ′), associated with these observations define the

covariance matrix Vi in Equation (2.41). These values can be estimated from the data.

To do so we first work out the random sampling variance associated with the values

p̂i,ℓ.

The number of events measured in arm ℓ of trial i is a binomial random variable

ri,ℓ ∼ Bin(ni,ℓ, pi,ℓ). It has mean E(ri,ℓ) = ni,ℓpi,ℓ and variance Var(ri,ℓ) = ni,ℓpi,ℓ(1−pi,ℓ).

Using Var(bx) = b2Var(x) (for random variable x and constant b), we find

Var(p̂i,ℓ) = pi,ℓ(1 − pi,ℓ)
ni,ℓ

. (2.102)

Assuming ni,ℓ is large, and propagating the errors for the logit function to linear order

then leads to

Var[logit(p̂i,ℓ)] =
(

∂ logit(p̂i,ℓ)
∂p̂i,ℓ

)2

Var(p̂i,ℓ)

=
(

1
p̂i,ℓ(1 − p̂i,ℓ)

)2
pi,ℓ(1 − pi,ℓ)

ni,ℓ

. (2.103)

We get an estimate of this variance by setting pi,ℓ = p̂iℓ,

V̂ar[logit(p̂i,ℓ)] = [ni,ℓp̂i,ℓ(1 − p̂i,ℓ)]−1 =
[
ri,ℓ

(
1 − ri,ℓ

ni,ℓ

)]−1

. (2.104)

Since the values p̂i,ℓ for different ℓ are independent, the variance of yi,1ℓ is σ2
i,1ℓ =

Var(yi,1ℓ) = Var[logit(p̂i,ℓ)] + Var[logit(p̂i,1)] which we can estimate using Equation

(2.104),

σ̂2
i,1ℓ =

[
ri,ℓ

(
1 − ri,ℓ

ni,ℓ

)]−1

+
[
ri,1

(
1 − ri,1

ni,1

)]−1

(2.105)

[5, 28, 72]. The conventional assumption is that the estimates σ̂2
i,1ℓ can be used in the

matrix Vi in Equation (2.41) in place of the true variances [7, 72].
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2.9.2 Estimating correlations between different observed treat-

ment effects in the trial

The observations yi,1ℓ of the relative treatment effects within a trial are correlated

because they all involve the same common treatment arm ti,1. To calculate the

covariance between the observations we start from the general relation

Var(A − B) = Var(A) + Var(B) − 2Cov(A, B), (2.106)

for two random variables A and B. Setting A = yi,1ℓ and B = yi,1ℓ′ for ℓ ̸= ℓ′ we find

Cov(yi,1ℓ, yi,1ℓ′) = 1
2 [Var(yi,1ℓ) + Var(yi,1ℓ′) − Var(yi,1ℓ − yi,1ℓ′)] . (2.107)

We evaluate the final term on the right hand side of Equation (2.107) using Equa-

tion (2.101),

Var(yi,1ℓ − yi,1ℓ′) = Var {[logit(p̂i,ℓ) − logit(p̂i,1)] − [logit(p̂i,ℓ′) − logit(p̂i,1)]}

= Var [logit(p̂i,ℓ) − logit(p̂i,ℓ′)]

= Var[logit(p̂i,ℓ)] + Var[logit(p̂i,ℓ′)], (2.108)

where in the last line we have used the fact that the absolute outcomes in different

arms within a trial are independent. Recalling that Var(yi,1ℓ) = Var[logit(p̂i,ℓ)] +

Var[logit(p̂i,1)] we find [17]

Cov(yi,1ℓ, yi,1ℓ′) = Var[logit(p̂i,1)], (2.109)

which we can estimate via Equation (2.104),

Ĉov(yi,1ℓ, yi,1ℓ′) =
[
ri,1

(
1 − ri,1

ni,1

)]−1

. (2.110)

Again, the convention is to assume that the estimate of the covariance in Equa-

tion (2.110) can be used in place of the true covariance [17].

2.9.3 Limitations of estimating within study variance

It is evident from Equations (2.101) and (2.105) that the values yi,1ℓ and σ̂2
i,1ℓ are

correlated (both expressions depend on the variables (ri,ℓ, ni,ℓ) and (ri,1, ni,1)) [72]. This
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causes a systematic relationship between the magnitude and weight of the observations

which leads to a bias on the overall effect estimates [15, 72].

Estimation of yi,1ℓ and σ2
i,1ℓ from the observed data also causes problems when

events are observed for either no patients in a trial arm, or for all patients in an

arm. By inspection of Equations (2.101) and (2.105), we notice that if ri,ℓ = 0 or

ri,ℓ = ni,ℓ then yi,1ℓ and σ̂2
i,1ℓ will be undefined. A common ad-hoc method to avoid

this problem is to add a value of 0.5 to every ri,ℓ and ni,ℓ. This has been found to

produce biased estimates of effect size [15, 167, 168]. In fact, this limitation, along with

the assumption that within-study variances are known, is the main criticism of the

frequentist inverse-variance approach to NMA [169, 170]. Alternative methods such as

the Mantel-Haenszel method and generalised linear mixed models (GLMM) have been

recommended [14, 15].

2.10 Appendix B: Expectation of Q under the ran-

dom effects model

2.10.1 Pairwise meta-analysis

In this section we evaluate the expectation of Q,

ERE(Q) = ERE

(
M∑

i=1
ai(yi − ŷ)2

)
, (2.111)

where ŷ is defined in Equation (2.66) and the observations yi are assumed to follow the

random effects (RE) model,

yi ∼ N (d, σ2
i + τ 2). (2.112)

Using ERE(yi − ŷ) = 0, we find

ERE

(
M∑

i=1
ai(yi − ŷ)2

)
=

M∑
i=1

aiVar (yi − ŷ) . (2.113)

We can then obtain the variance of yi − ŷ using

Var (yi − ŷ) = Var(yi) + Var(ŷ) − 2Cov(yi, ŷ). (2.114)

From the RE model in Equation (2.112) we know Var(yi) = σ2
i + τ 2. We now wish to

obtain the second and third terms of Equation (2.114) in terms of Var(yi). To do so we
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use standard properties of variances and covariances, and the fact that Cov(yi, yj) = 0

for i ̸= j (for a pairwise meta-analysis, the observations yi are independent).

To calculate Var(ŷ) we use Equation (2.66) in the main paper and find

Var(ŷ) = Var
(∑M

i=1 aiyi∑M
i=1 ai

)
=
(

1∑M
i=1 ai

)2 M∑
i=1

a2
i Var(yi). (2.115)

For Cov(yi, ŷ) we have

Cov(yi, ŷ) = Cov
(

yi,

∑M
i=1 aiyi∑M

i=1 ai

)

= 1∑M
i=1 ai

aiCov(yi, yi) +
M∑
j ̸=i

ajCov(yi, yj)


= 1∑M
i=1 ai

aiVar(yi). (2.116)

Substituting these results into Equation (2.114) yields

Var (yi − ŷ) = Var(yi) +
∑M

j=1 a2
jVar(yj)(∑M

j=1 aj

)2 − 2aiVar(yi)∑M
j=1 aj

. (2.117)

Now substituting this into Equation (2.113) and using Var(yi) = σ2
i + τ 2 we find the

expectation of Q under the random effects model to be

ERE(Q) =
M∑

i=1
aiVar(yi) +

M∑
i=1

ai

∑M
j=1 a2

jVar(yj)(∑M
j=1 aj

)2 − 2∑M
i=1 a2

i Var(yi)∑M
j=1 aj

=
M∑

i=1
ai(σ2

i + τ 2) −
∑M

i=1 a2
i (σ2

i + τ 2)∑M
i=1 ai

= τ 2
(

M∑
i=1

ai −
∑M

i=1 a2
i∑M

i=1 ai

)
+
(

M∑
i=1

aiσ
2
i −

∑M
i=1 a2

i σ
2
i∑M

i=1 ai

)
. (2.118)

This is the result quoted in Equation (2.69) in the main paper.

2.10.2 Network meta-analysis

In this section we evaluate the expectation of Q under the random effects model for

network meta-analysis. We now have [Equation (2.71)]

Q = (y − ŷ)⊤V−1(y − ŷ) (2.119)

and [Equation (2.72)]

ŷ = X(X⊤V−1X)−1X⊤V−1y. (2.120)
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To simplify Equation (2.119) we follow Jackson et al (2016) [89] and define the matrix

A = V−1 − V−1X(X⊤V−1X)−1X⊤V−1 (2.121)

such that

y − ŷ = VAy. (2.122)

Therefore,

Q = (VAy)⊤V−1(VAy)

= y⊤AVAy (2.123)

since both V and A are symmetric. The former is symmetric by definition, the latter

can be shown to be symmetric by taking the transpose of the right hand side of

Equation (2.121). By explicit evaluation we find

AVA = A[I − X(X⊤V−1X)−1X⊤V−1]

= A − [V−1 − V−1X(X⊤V−1X)−1X⊤V−1]X(X⊤V−1X)−1X⊤V−1

= A − V−1X(X⊤V−1X)−1X⊤V−1 + V−1X(X⊤V−1X)−1X⊤V−1

= A (2.124)

such that

Q = y⊤Ay. (2.125)

As in the pairwise case we take the expectation of Q under the random effects

model. Defining ξ = η + ϵ, we re-write the RE model [Equation (2.39) in the main

paper] as

y = Xd + ξ, ξ ∼ N (0, V + Σ). (2.126)

This leads to

ERE(Q) = ERE[(Xd + ξ)⊤A(Xd + ξ)]

= ERE(d⊤X⊤AXd + d⊤X⊤Aξ + ξ⊤AXd + ξ⊤Aξ). (2.127)

By explicit evaluation we find

X⊤A = X⊤V−1 − X⊤V−1X(X⊤V−1X)−1X⊤V−1 = 0

AX = V−1X − V−1X(X⊤V−1X)−1X⊤V−1X = 0, (2.128)
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and hence,

ERE(Q) = ERE(ξ⊤Aξ). (2.129)

For any vector z with mean µz and covariance matrix Vz, one has E(z⊤Bz) =

tr(BVz) +µ⊤
z Bµz where B is a square matrix and tr(.) indicates the trace of a matrix.

This identity can be checked directly, see also [171] (Theorem 4, pg 75, Chapter 2).

The vector ξ in Equation (2.129) has mean 0 and covariance matrix V+Σ, therefore

ERE(Q) = tr[A(V + Σ)]

= tr(AV) + τ 2tr(AP). (2.130)

In the last step we have written Σ = τ 2P where P is a block diagonal matrix. Each

(mi − 1) × (mi − 1) block (representing trial i) has diagonal elements equal to 1 and

off-diagonal elements equal to 1/2. All other elements are zero. Using the fact the

trace is invariant under cyclic permutations we find

tr(AV) = tr
[
V−1V − V−1X(X⊤V−1X)−1X⊤V−1V

]
= tr

[
I∑

i
(mi−1)

]
− tr

[
V−1X(X⊤V−1X)−1X⊤

]
=

M∑
i=1

(mi − 1) − tr
[
(X⊤V−1X)−1X⊤V−1X

]

=
M∑

i=1
(mi − 1) − tr [IN−1]

=
M∑

i=1
(mi − 1) − (N − 1) (2.131)

where ∑M
i=1(mi − 1) is the lateral dimension of V (the number of observations in y)

and N − 1 is the lateral dimension of X⊤V−1X (the number of mean relative treatment

effects we wish to estimate). The expression in Equation (2.131) is the number of

degrees of freedom associated with the regression (that is, the difference between the

number of data points and the number of parameters9).
9This can be understood via a simple example: imagine calculating the mean from 10 values. Here

the number of data points is 10 and the number of parameters is 1. We only need 9 of those values
plus the mean to fully specify the 10 values. The number of degrees of freedom is then 9 (which is
equal to the number of data points minus the number of parameters).
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2.11 Appendix C: Bias in maximum likelihood vari-

ance estimation

Consider a random variable y = (y1, . . . , yN)⊤ with normal distribution, y ∼ N (µ, σ2).

The likelihood function is then

L =
N∏

i=1

1√
2πσ2

e−(yi−µ)2/2σ2
. (2.132)

Maximising the likelihood function with respect to µ and σ2 leads to the expressions

ŷ = 1
N

N∑
i=1

yi (2.133)

σ̂2 = 1
N

N∑
i=1

(yi − µ)2. (2.134)

The result of the joint maximisation with respect to µ and σ therefore leads to the

maximum likelihood estimators,

ŷ = 1
N

N∑
i=1

yi (2.135)

σ̂2 = 1
N

N∑
i=1

(yi − ŷ)2, (2.136)

that is, we have to substitute the maximum likelihood estimate ŷ into the expression

for σ̂2.

To show that the expected value of the variance estimator σ̂2 is not equal to the

true variance σ2 we re-write Equation (2.136) as

σ̂2 = 1
N

N∑
i=1

[(yi − µ) − (ŷ − µ)]2, (2.137)

which, after some rearranging and using the fact that ŷ − µ = 1
N

∑N
i=1(yi − µ), gives

σ̂2 =
[

1
N

N∑
i=1

(yi − µ)2
]

− (ŷ − µ)2. (2.138)

The expectation of σ̂2 is then

E
[
σ̂2
]

= E
[

1
N

N∑
i=1

(yi − µ)2
]

− E
[
(ŷ − µ)2

]
. (2.139)

The first term is the true variance σ2. The second term is the variance of ŷ,

E
[
(ŷ − µ)2

]
= Var(ŷ) = Var

(
1
N

N∑
i=1

yi

)
= 1

N2

N∑
i=1

Var(yi) = σ2

N
. (2.140)
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Therefore,

E
[
σ̂2
]

= σ2 − σ2

N
= N − 1

N
σ2, (2.141)

indicating that the ML variance estimator is biased downwards by σ2

N
. For large samples

N → ∞, this bias becomes negligible.

2.12 Appendix D: Adjusting multi-arm trial weights

using a result from electrical network theory

Here we explain the method for adjusting variances associated with measurements in a

network meta-analysis in order to account for correlations introduced by multi-arm

trials [49, 115]. This is based on the method described in Gutman and Xiao (2004)

[116] for reconstructing the individual resistances in an electrical network from the

effective resistances between pairs of nodes.

We focus on a multi-arm trial i which compares mi treatments. This trial yields

a total of qi = mi(mi−1)
2 treatment effect estimates and associated variances vi,ab. For

a random effects model these variances are vi,ab = σ2
i,ab + τ̂ 2 where τ̂ 2 is an estimate

of the between trial heterogeneity. In a fixed effect model vi,ab = σ2
i,ab. We write

these variances in an mi × mi matrix, Ṽi. We label this matrix Ṽi to distinguish it

from the (mi − 1) × (mi − 1) matrix Vi defined in the main paper. Each row and

column of Ṽi represents a treatment in trial i. The diagonal elements are equal to zero

and each off-diagonal element is the variance associated with the comparison of the

corresponding pair of treatments. For example, in a multi-arm trial i that compares

treatments {T1, T2, T3}, the variance matrix is

Ṽi =


0 vi,T1T2 vi,T1T3

vi,T1T2 0 vi,T2T3

vi,T1T3 vi,T2T3 0

 . (2.142)

The aim now is to reconstruct the (inverse-variance) weights for a set of three

two-arm trials that yield network estimates of relative treatment effects whose variances

are equal to the variances in Ṽi. To this end, we use a method from electrical theory

for back calculation of edge resistances given a set of effective resistances [49, 116].
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We saw in Section 2.6.1 that the effective resistances in an electrical network

are related to the pseudo-inverse of the Laplacian. In NMA, effective resistances

are associated with the variances Ṽi observed in the multi-arm trial. A result from

electrical network theory is that we can construct the pseudo-inverse of the Laplacian

directly from the effective resistances [116]. Using this result for an mi-armed trial

with ‘effective’ variances Ṽi gives the mi × mi matrix

L+
i = −1

2

(
Ṽi − 1

mi

(ṼiOi + OiṼi) + 1
m2

i

OiṼiOi

)
(2.143)

where Oi is an mi × mi matrix of ones [49]. An equivalent more compact expression

(used in [115]) is

L+
i = − 1

2m2
i

B⊤
i BiṼiB⊤

i Bi (2.144)

where Bi is the edge-incidence matrix for trial i that describes what edges (treatment

comparisons) are present in the trial [115]. Bi has dimensions qi × mi, where we recall

qi = mi(mi−1)
2 . Each row of Bi represents a pairwise comparison in the trial, and each

column represents a treatment. There is a 1 in the column corresponding to the baseline

treatment for that comparison and a −1 in the column representing the treatment

compared to that baseline. All other entries are zero.

Once we have the pseudo-inverse of the Laplacian we can work out the Laplacian

using Li = (L+
i )+ and [49, 172]

L+
i = (Li − 1

mi

Oi)−1 + 1
mi

Oi, (2.145)

(L+
i )+ = (L+

i − 1
mi

Oi)−1 + 1
mi

Oi. (2.146)

In an electrical network the graph Laplacian is defined by the individual (physical)

resistors, Lab = −R−1
ab for a ̸= b, and Laa = ∑

b R−1
ab . Therefore the values Rab are

obtained by inspection of the off diagonal elements of L. Similarly, in the NMA context,

the adjusted (inverse-variance) edge weights for multi-arm trial i can be obtained from

the off diagonal elements of the Laplacian Li. For the three-arm trial,

Li =


w̃i,T1T2 + w̃i,T1T3 −w̃i,T1T2 −w̃i,T1T3

−w̃i,T1T2 w̃i,T1T2 + w̃i,T2T3 −w̃i,T2T3

−w̃i,T1T3 −w̃i,T2T3 w̃i,T1T3 + w̃i,T2T3

 , (2.147)

where w̃i,ab are the adjusted edge weights that describe the inverse-variances for a

network of two-arm trials which is equivalent to the multi-arm trial.
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split into an Appendix and a Supplementary Material chapter (Chapter 8). The former

appears immediately after the main text. The latter contains a large number of figures
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the following, we refer to Chapter 8 as the ‘Supplementary Material’. The manuscript

was authored by Annabel L Davies2 and Tobias Galla2,3.

ALD designed the study, contributed to discussions guiding the work, performed all

of the simulations, wrote the first draft of the manuscript, produced all of the figures

and edited the manuscript. TG designed the study, contributed to discussions guiding

the work and edited the manuscript.

1A. L. Davies and T. Galla, “Degree irregularity and rank probability bias in network meta-analysis”,
Res. Synth. Meth. 12, 316-332 (2021). 10.1002/jrsm.1454

2Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester,
M13 9PL, United Kingdom.

3Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de
Mallorca, Spain

153

http://doi.org/10.1002/jrsm.1454


Chapter 3. Degree irregularity and rank probability bias in network meta-analysis

Abstract

Network meta-analysis (NMA) is a statistical technique for the comparison of

treatment options. Outcomes of Bayesian NMA include estimates of treatment

effects, and the probabilities that each treatment is ranked best, second best and

so on. How exactly network topology affects the accuracy and precision of these

outcomes is not fully understood. Here we carry out a simulation study and find

that disparity in the number of trials involving different treatments leads to a

systematic bias in estimated rank probabilities. This bias is associated with an

increased variation in the precision of treatment effect estimates. Using ideas

from the theory of complex networks, we define a measure of ‘degree irregularity’

to quantify asymmetry in the number of studies involving each treatment. Our

simulations indicate that more regular networks have more precise treatment effect

estimates and smaller bias of rank probabilities. Conversely, these topological

effects are not observed for the accuracy of treatment effect estimates. This

reinforces the importance of taking into account multiple measures, rather than

making decisions based on a single metric. We also find that degree regularity is

a better indicator for the accuracy and precision of parameter estimates in NMA

than both the total number of studies in a network and the disparity in the number

of trials per comparison. These results have implications for planning future trials.

We demonstrate that choosing trials which reduce the network’s irregularity can

improve the precision and accuracy of parameter estimates from NMA.

3.1 Introduction

Meta-analysis is an important statistical technique used to combine the results of

multiple randomised controlled trials. Often, individual trials have small sample sizes

and involve subjects taken from a reduced population. Because of this, it is desirable

to systematically integrate results from different trials that address the same clinical

question. Over the last four decades meta-analysis has therefore become invaluable for

the comparison of treatment options [1].
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Conventional meta-analysis focuses on pairwise comparisons of treatments. More

recently however, network meta-analysis (NMA) has emerged as a technique for making

inferences about multiple competing treatments. NMA allows one to combine data from

multiple trials even when different trials test different sets of treatment options. The

term ‘network meta-analysis’ derives from a graphical representation of the treatments

and trials. The nodes of the network graph are the different treatment options and

the connecting edges represent comparisons made between the treatments in the trials.

NMA combines both direct and indirect evidence for the assessment of treatments.

This makes it possible to compare treatments that have not been tested together in

any trial [1–4].

NMA has undergone substantial development over recent years. At the same time,

it is also recognised that further research is required to fully understand its limitations

and to improve the method [5, 6]. In this context, simulation studies are frequently

used to evaluate the performance of NMA and the factors affecting its accuracy [7].

This approach involves setting up a model (e.g. a fixed-effect or random-effect model

[2, 8]) with parameters whose numerical values can be fixed at the beginning. The

model is used to produce synthetic trial data [9]. Estimates of the model parameters

are then obtained by feeding this data into the NMA method. These estimates can

then be compared against the known model parameters.

A key strength of this approach is the ability to systematically vary the parameters

of the model. For example, different relative treatment effects can be explored, or the

structure of the network of treatments and trials can be changed. This allows one to

systematically investigate the performance of NMA in a range of different scenarios, and

to determine the nature of any inaccuracies or biases. To do this, however, Bayesian

NMAs must be carried out for many realisations of the synthetic trial data. The overall

computational effort can be considerable because the NMA method relies on extensive

Markov Chain Monte Carlo sampling [10, 11].

The primary outcomes of an NMA are estimates of relative treatment effects, and

the corresponding credible intervals. This allows one to rank treatments based on these

relative effects, providing a convenient summary for clinical decision making. However,

simply ranking treatments as best, second best and so on can be misleading as it does

not take into account the level of overlap between credible intervals [12].
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As a consequence, a number of other metrics have been developed to compare

treatments. One such metric focuses on so-called ‘rank probabilities’. These quantify

the degree of certainty with which each treatment is believed to be the most effective,

second most effective, etc., based on the available trial data. This is a natural object in

a Bayesian setting [13], but can also be achieved in frequentist NMA using resampling

[14]. Results are often reported in terms of so-called SUCRA values (‘surface under the

cumulative ranking curve’). These values condense rank probabilities into a numerical

summary [13], and reflect both the magnitude and the uncertainty of treatment

effect estimates [6, 15, 16]. SUCRA endpoints can also be obtained from frequentist

approaches without the need for resampling [16].

Ranking methods have attracted considerable interest in recent years [15, 17–21]. It

is generally recognised that the accuracy of ranking statistics and the treatment effect

estimates are likely to be affected by the topology of the network of treatments and

trials [5, 18, 22–24]. PRISMA guidelines (‘Preferred Reporting Items for Systematic

Reviews and Meta-Analyses’) therefore recommend that authors provide graphical and

qualitative descriptions of network geometry [6].

A previous simulation study found that the probability of being ranked first is

overestimated for the treatment that is tested in the fewest studies in a given network,

and underestimated for the treatment included in the most studies [25]. It has been

suggested that this is due to differences in the precision of treatment effect estimates

[16]. Overall it is generally accepted that reporting only the probability of being best

can lead to erroneous conclusions [15, 18, 26]. Indeed, the current advice from the

PRISMA guidelines is to report the probability that each treatment has each rank [6].

In practice however, the most common ranking statistic in NMAs continues to

be the probability that each treatment is ranked best [27]. Previous research on the

utility of rank probabilities has also focused almost exclusively on the probability

of being ranked best. As a result there is very limited evidence on the validity of

reporting the full set of rank probabilities or the SUCRA values. Furthermore, due to

a lack of appropriate data-generating models and the high computing power required

to carry out Bayesian NMAs, simulation studies have been limited to fixed-effects

models or networks of two-arm trials only [25, 28]. Some progress been made in relating

characteristics of network geometry to the outcome of NMA [22, 23, 29]. However, it
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is largely unexplored how exactly these metrics relate to the performance of ranking

statistics and treatment effect estimates [5].

The purpose of our work is to study how the structure of the network affects the

probability that each treatment is ranked first, second and so on. In particular we

go beyond the probability of being ranked best. We also investigate the mechanisms

by which the network affects rank probabilities. Building on recent advances in data-

generating methods [30], our simulation studies include random-effects models and

networks of multi-arm trials. In order to characterise network geometry we introduce a

measure of asymmetry in the number of studies per treatment which we call ‘degree

irregularity’. Similar quantities have been used to characterise networks in other fields

[31–33]. The network is said to be regular if all treatments are tested in the same

number of studies, and it becomes increasingly more irregular the more this number

varies across treatments. Through simulations of multiple network geometries we

investigate how this metric affects the precision and accuracy of the treatment effect

estimates, and the quality of rank probability estimates and SUCRA values. These

results provide a simple method for the identification of additional trials as potential

candidates to complement an existing network of evidence.

The remainder of this paper is set out as follows: In Section 3.2 we present the

relevant background information and methods. We begin by outlining the random-

effects model for a network of multi-arm trials and the Bayesian approach to NMA.

Following this we define the key outcomes of NMA and the relevant ranking statistics.

The design of the simulation and networks are described along with details of the data-

generating models. We also introduce treatment-focused and network-level quantities

that allow us to compare within and between networks how well the NMA process

retrieves model parameters used to generate synthetic input data. Section 3.3 contains

our main results. First, we present within-network and between-network comparisons

for networks with equally effective treatments and two-arm trials. We then test how

well these results generalise to scenarios in which the true treatment effects vary across

treatments, and we study networks involving multi-arm trials. We also compare the

results from three different data-generating models. In Section 3.4 we summarise and

discuss our main findings. We provide an example that demonstrates how our results

can be used to inform the choice of future trials.
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3.2 Methods

3.2.1 General setup: network of trials

We consider a collection of N treatments, which we label a = T1, T2, . . . , TN . The

network contains M trials, denoted i = 1, . . . , M . Each trial compares a subset of

treatments, Ai ⊂ {T1, . . . , TN}; mi = |Ai| is the number of treatments in trial i. We

use the notation ti,ℓ to label the treatments compared in trial i, where ℓ = 1, . . . , mi.

Each ti,ℓ is therefore a treatment from the set {T1, . . . , TN}.

As an example, consider a network of smoking cessation data reported by Hasselblad

[34]. Four treatments are compared: T1 = no contact (control), T2 = self-help, T3 =

individual counselling and T4 = group counselling. The network is shown in Figure 3.1

and consists of 24 trials. Trial i = 2 in Hasselblad [34] compares m2 = 3 treatments

such that t2,1 = T1 (no contact), t2,2 = T3 (individual counselling) and t2,3 = T4 (group

counselling). Trial i = 6, on the other hand, compares m6 = 2 treatments; t6,1 = T2

(self-help) and t6,2 = T3 (individual counselling). In Figure 3.1(a), these two trials are

highlighted by dashed and dotted lines respectively. Figure 3.1(b) depicts the whole

network as a weighted graph [35] where for each pair of treatments, the thickness of

the link is proportional to the number of trials comparing these two treatments. The

diameter of each node is proportional to the number of participants that have received

the treatment represented by the node.

The treatments in trial i are referred to as the arms of the trial. For a given trial i,

the treatment in arm ℓ is administered to ni,ℓ patients. We assume a binary outcome,

i.e. the application of the treatment to a particular patient either produces an ‘event’,

or it does not. The number of resulting events, ri,ℓ, is then recorded for each trial and

arm. This means that trial i is defined by the treatments it compares, ti,1, . . . , ti,mi
,

and by the number of patients in each arm, ni,ℓ. The trial reports dichotomous data of

the form ri,1, ..., , ri,mi
.

The model assumes that the application of the treatment in arm ℓ of trial i generates

events with probability pi,ℓ independently for each of the ni,ℓ patients at the end of this

trial arm [36]. As a consequence of this setup, each ri,ℓ is a binomial random variable,

ri,ℓ ∼ Bin(ni,ℓ, pi,ℓ), (3.1)
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Figure 3.1: Graphical representation of the network of treatments and trials for smoking
cessation [34].The four treatments are: T1 = no contact (control), T2 = self-help, T3 =
individual counselling and T4 = group counselling. In panel (a), trials i = 2 (a 3-arm study)
and i = 6 (a 2-arm study) are highlighted by dashed and dotted lines respectively. The
thickness of each edge in panel (b) is proportional to the number of studies that make that
comparison, and the diameter each node is proportional to the number of participants who
received that treatment.

for i = 1, . . . , M and ℓ = 1, . . . mi.

We use a random-effects model, i.e. pi,ℓ may be different from pi′,ℓ′ in different trials

(i ̸= i′), even if ti,ℓ = ti′,ℓ′ . That is to say, the effectiveness of any fixed treatment

a ∈ {T1, . . . , TN} may be different in different trials. Following the generalised linear

model framework, the probabilities pi,ℓ are described on the logit scale [37].

Our analysis focuses on relative treatment effects. To this end, we refer to treatment

ti,ℓ=1 as the ‘baseline’ treatment of trial i. We write µi = logit pi,1 for the absolute

outcome of this trial-specific baseline. For ℓ ̸= 1 we then define the relative treatment

effect δi,1ℓ,

δi,1ℓ ≡ logit(pi,ℓ) − µi, (3.2)

where logit(p) = ln p − ln(1 − p) for 0 < p < 1. The trial-specific baseline treatment

outcome, µi, is the log odds of the event probability in arm ℓ = 1 of trial i, while

the relative treatment effect is the log odds ratio of treatment ℓ ̸= 1 compared to the

trial-specific baseline.

3.2.2 Random-effects model

The random effects model we use assumes the exchangeability of relative treatment

effects [38–40]. This indicates that the relative effect of two treatments a and b is

drawn from the same distribution for any trial involving these two treatments.
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We assume that the relative treatment effects for a given trial i are drawn from a

multivariate normal distribution
δi,12

...

δi,1mi

 ∼ N




dti,1ti,2

...

dti,1ti,mi

 ,Σi

 . (3.3)

This means that the relative effect δi,1ℓ of the ℓ-th treatment in trial i (compared to

the baseline treatment of trial i) is drawn from a Gaussian distribution with mean

dti,1,ti,ℓ
. The latter quantity is the mean effect of treatment ti,ℓ relative to the baseline

treatment ti,1 of trial i. That is to say, it is the average relative treatment effect one

would see in a large sample of trials comparing these two treatments. We assume that

these unknown mean relative treatment effects fulfil the consistency relations

dab = dac − dbc. (3.4)

The (mi−1)×(mi−1) covariance matrix Σi in Equation (3.3) describes the between-trial

variance of the relative treatment effects, and their correlations. Following References

[4, 41, 42], we will assume that its diagonal elements are all identical. We write τ 2 for

their common value. This is the variance of each δi,1ℓ. We will further assume that

the covariance between any two treatment effects is τ 2/2 (these are the off-diagonal

elements of Σi). This ensures that the relative effect δi,1ℓ − δi,1ℓ′ between any two

treatments ℓ ̸= ℓ′ in trial i has variance τ 2.

The aim of network meta-analysis is to estimate the mean treatment effects dab for

all pairs a ̸= b, and the heterogeneity parameter, τ . Given the consistency assumption

(3.4), not all dab are independent. As a consequence, we can use treatment a = T1 as the

overall global baseline treatment, and it is sufficient to estimate dT1a for a = T2, . . . , TN

[43].

3.2.3 Bayesian network meta-analysis

We write d = (dT1T2 , dT1T3 , . . . , dT1TN
) for the vector of mean treatment effects relative

to the global baseline. The vector n contains the numbers of patients in all arms in the

network and r contains the trial outcomes. Bayesian NMA aims to construct posterior

distributions for the model parameters, (d, τ), conditional on the data, (r,n). This is
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achieved using appropriate likelihood functions and prior distributions [4, 44]. We use

non-informative prior distributions for the model parameters. Specifically, we assume

independent univariate Gaussian distributions N (0, 108) for each of the parameters µi

and dab. The prior for τ is assumed to be a uniform distribution over the interval from

0 to 5 [2, 45].

For this setup, the posterior distributions of the model parameters can usually

not be obtained analytically. We therefore rely on MCMC methods, specifically the

Metropolis-in-Gibbs algorithm [10, 11, 46, 47]. Following Kibret et al (2014) [25], we

used a burn-in of 5 × 103 and a thinning factor of 10. Samples were drawn from the

posterior distributions for 2 × 104 iterations after burn-in.

3.2.4 Reporting NMA outcomes

The primary outcomes from an NMA are the final estimates of the model parameters

and their uncertainty (the latter is usually indicated by a 95% credible interval). In

addition, Bayesian NMA allows for the calculation of rank probabilities {Pa(r)}. The

quantity Pa(r) is the probability that treatment a is ranked r-th. At each MCMC

iteration the treatments are ranked from best (rank r = 1) to worst (rank r = N)

based on the values of dT1a sampled at that iteration. The rank probabilities are then

estimated from the proportion of times each treatment received each rank.

Treatment effect estimates and ranking probabilities become more difficult to

interpret as the number of treatments in the network increases [15, 18]. In order to

simplify this information, Salanti et al (2011) introduced a numerical summary, the

so-called ‘surface under the cumulative ranking’ curve (SUCRA) [13]. The value of

SUCRA for treatment a is defined as

SUCRAa = 1
N − 1

N−1∑
r=1

Fa(r), (3.5)

where Fa(r) is the probability that treatment a has rank r or better [13, 16],

Fa(r) =
r∑

s=1
Pa(s). (3.6)

We write the mean or expected rank as

E(r)a =
N∑

r=1
rPa(r). (3.7)
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It is straightforward to see that [16]

SUCRAa = 1
N − 1(N − E(r)a). (3.8)

In this notation SUCRA takes values between zero and one.

3.2.5 Network design

The simulations reported in the main paper are restricted to networks with N = 4

treatments. This is mostly to keep the search space of possible graphs manageable, and

in order to be efficient in the identification of the key factors determining the accuracy

and precision of NMA parameter estimates. Simulations reported in Section 8.9.1 of

the Supplementary Material demonstrate that our principal results continue to be valid

for larger networks.

Figure 3.2 shows the five network geometries we have used: (a) star, (b) loop, (c)

complete loop, (d) tadpole, and (e) ladder. These geometries were chosen as they are

commonly observed in real-life network meta-analyses; combinations of these have been

previously studied in [23, 25, 28, 43].

Within the constraints of these geometries, the number of studies per comparison

was varied (i.e. the number of trials involving a particular pair of treatments). To

describe the specific geometry of a network we use the vector of the number of studies

per comparison, K = (KT1T2 , KT1T3 , KT1T4 , KT2T3 , KT2T4 , KT3T4), where Kab = Kba is

the number of studies that compare treatments a and b. The entries of K define the

strengths (or weights) of the edges in the network of treatments.

We note, however, that the full setup of the treatment–trial network is not fully

specified by K alone. This is because the same number of comparisons per pair of

treatments can be achieved by different combinations of two-arm and multi-arm trials.

From K we can obtain the number of studies involving treatment a,

ka =
∑
b̸=a

Kab. (3.9)

In the theory of networks this quantity is referred to as the ‘weighted degree’ of node

a [35]. We will occasionally use slightly more casual language, and refer to ka as the

‘number of studies per treatment’. We also define the average number of studies that a
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Figure 3.2: Network diagrams of the five network geometries considered in this study: (a)
star (b) loop (c) complete loop (d) tadpole (e) ladder.

treatment is involved in (the ‘mean degree’),

k̄ = 1
N

∑
a

ka. (3.10)

The overbar in our notation thus indicates an average over the N nodes of the network.

In network theory, a graph is said to be ‘regular’ if all nodes have the same degree

[35]. With this in mind, we introduce a measure of ‘degree irregularity’ of the network,

h2 = 1
N

∑
a

(ka − k̄)2. (3.11)

This quantifies the variation in the number of studies per treatment. In particular,

h2 = 0 when all nodes are involved in the same number of trials (ka = k̄ for all a). When

we make comparisons between networks we use the normalised network irregularity,

h2/k̄2. This is akin to the concept of a ‘topological index’ or ‘molecular descriptor’ in

chemical graph theory [48], and we note that similar measures of graph irregularity

have also been used for example in the social sciences [31].

We note that there is a direct mapping between h2/k̄2 and the so-called ‘probability

of inter-specific encounter index’ (PIE). This index is a measure of ecological diversity,

and was introduced to network meta-analysis by Salanti et al (2008) [22, 23]. Further

details can be found in Appendix Section 3.5.

Some of the key quantities we use in our analysis are summarised in Table 3.1.
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Table 3.1: Summary of key quantities used in our analysis, and notation for different types
of averages.

Variable Definition
N Total number of treatments in the network
M Total number of studies in the network
dab True mean relative treatment effect between treatments a and b
τ Heterogeneity parameter
ka Number of studies involving treatment a

k̄ Mean degree of the network (mean number of studies a treatment is
involved in)

h2/k̄2 Normalised degree irregularity
SD(d)a Treatment-specific standard deviation of the treatment effect estimate
∆Pa(r) Bias of the rank probability estimate
SDtot Total standard deviation of treatment effect estimates in the network
|∆P |tot Total rank probability bias in the network
|∆SUCRA|tot Total SUCRA bias in the network
E(· · · )a Average over the distribution of ranks for treatment option a
⟨· · · ⟩ Average over realisations of synthetic data
· · · Average over nodes of the network

3.2.6 Simulation method

In our simulations we generate dichotomous trial data for a specified network geometry

and for known model parameters (d, τ). An NMA is performed for multiple independent

realisations of simulated data, and the resulting estimates of the model parameters

are recorded for each realisation. More specifically, we used the following numerical

protocol:

(1) Define the fixed parameters of the network such as the total number of studies, M ,

the vector of number of studies per comparison, K, the number of participants in

each arm, ni,ℓ, and the true model parameter values (d, τ).

(2) Generate and analyse independent realisations ν = 1, 2, ..., Ω of synthetic trial

outcomes. Specifically, for each ν:

(a) For all trials i, randomly sample the {δi,1ℓ}, ℓ = 2, . . . , mi, from the multivariate

normal distribution in Equation (3.3).

(b) Using the {δi,1ℓ} and one of the three data-generating models (see Section 3.2.7),

construct the probabilities pi,ℓ, ℓ = 1, . . . , mi, for all trials i in the network.
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We note that the values for the pi,ℓ vary from realisation to realisation in this

process.

(c) For each trial arm, generate random event data, ri,ℓ, from the binomial distri-

bution in Equation (3.1).

(d) Use the vector of events, r, and vector of participants, n, to carry out a

Bayesian NMA.

(e) Determine the treatment effects with respect to the baseline T1 and use the

consistency relation in Equation (3.4) to output the estimated model parame-

ters, d̂
(ν)
ab , for all a, b ∈ {T1, . . . , TN}. Also output the estimated heterogeneity

parameter, τ̂ (ν), and the bias of rank probabilities,

∆P (ν)
a (r) = P̂ (ν)

a (r) − P bl
a (r). (3.12)

In this equation P̂ (ν)
a (r) is the probability that treatment a has rank r in

the NMA of realisation ν. The quantity P bl
a (r) is the ‘baseline’ probability

for treatment a to be ranked r-th, obtained directly from the true relative

treatment effects used to generate the synthetic data. Further details can be

found below after Equation (3.13).

(3) Calculate the mean and standard deviations of the estimated model parameters

over realisations, for example

⟨d̂ab⟩ = 1
Ω

Ω∑
ν=1

d̂
(ν)
ab ,

SD(d̂ab) =

√√√√ 1
Ω − 1

Ω∑
ν=1

(d̂(ν)
ab − ⟨d̂ab⟩)2, (3.13)

with similar definitions for ⟨τ̂⟩, SD(τ̂), ⟨∆Pa(r)⟩ and SD(∆Pa(r)). In these expres-

sions, angular brackets indicate an average over independent realisations of the

simulated data.

We stress that a suitable baseline comparator is required to compute bias on rank

probabilities. We use the ‘baseline’ probabilities P bl
a (r). These are obtained from

ranking the treatments based on the true relative treatment effects. Equivalently they

are the rank probabilities one would obtain from an NMA if it were able to estimate

the relative treatment effects used to generate the synthetic data with perfect accuracy

and no uncertainty.
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3.2.7 Data generation for simulation studies

The relative treatment effects δi,1ℓ (ℓ = 2, . . . , mi) in any one trial i do not uniquely

define the absolute outcomes pi,ℓ. This is because the outcome of the trial-specific

baseline, pi,1, is not determined by the {δi,1ℓ}. Equation (3.2) can be re-arranged to

give

pi,ℓ = pi,ℓ[pi,1, δi,1ℓ] = pi,1 exp(δi,1ℓ)
1 + pi,1 (exp(δi,1ℓ) − 1) , (3.14)

so that pi,1 together with the {δi,1ℓ} (ℓ = 2, . . . , mi) specifies all absolute outcomes in

trial i.

To fully define step (2)(b) in the above algorithm it is therefore sufficient to specify

the construction of pi,1. In the context of the random-effects model and to allow for

the inclusion of multi-arm trials, we use three data-generating models (DGM) based

on those presented by Seide et al (2019) [30].

The first DGM, which we will call ‘Euclidean’, chooses the outcome for the base-

line treatment to be the value that minimises the Euclidean distance of the vector

(pi,1, . . . , pi,mi
) from the vector (1/2, . . . , 1/2), i.e.

pi,1 = min
q

(q − 1
2

)2
+

mi∑
ℓ=2

(
pi,ℓ [q, δi,1ℓ] − 1

2

)2
, (3.15)

where pi,ℓ[·, ·] is the expression given in Equation (3.14). This is referred to as ‘DGM

“Fixed” Modified’ in Seide et al (2019) [30]. The other two methods are variations of

the DGM “Fixed" in Seide et al (2019) [30] which we will refer to as ‘Uniform’ and

‘Normal’ respectively. The former samples pi,1 from a uniform distribution between

zero and one, whilst the latter samples it from a normal distribution N (0.5, 0.04), with

variance σ2 = 0.04, truncated at zero at the lower end, and at one at the upper end.

To ensure our results were not due to the data-generating model, all simulations were

performed using each method and the results compared.

The data generation, simulation algorithm and MCMC method used to carry out

the Bayesian NMA were performed using a tailor-made C++ code, an example of which

is provided here: https://github.com/AnnieDavies/Supplementary-Material-Davies-

Galla-2020.
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3.2.8 Quantities indicating and characterising the accuracy

and precision of estimates from NMA

In this section we introduce quantities that measure how accurate and precise the

parameter estimates from the NMA are. We begin with indicators for individual

treatments in the graph (as opposed to aggregate measures characterising a graph as a

whole).

As a first step, we define the mean bias of the relative treatment effect,

⟨∆dab⟩ = ⟨d̂ab⟩ − dab, (3.16)

for each pair of treatments a and b. For each fixed treatment a we can then define the

mean bias

⟨∆d⟩a = 1
N − 1

∑
b̸=a

⟨∆dab⟩. (3.17)

This quantity indicates a systematic bias in the relative effect of treatment a compared

to other treatments in the graph. If ⟨∆d⟩a < 0 then the relative effect of treatment

a is underestimated on average, and if ⟨∆d⟩a > 0 it is overestimated. Similarly, the

standard deviation of the treatment effect for treatment a in comparison to the other

treatments in the graph is defined as

SD(d)a = 1
N − 1

∑
b ̸=a

SD(d̂ab). (3.18)

Bias of SUCRAa values and bias of probability ranks, ⟨∆Pa(r)⟩, are specific to individual

treatments by construction. The former can be written in terms of the latter,

⟨∆SUCRAa⟩ = −
∑

r r⟨∆Pa(r)⟩
N − 1 . (3.19)

We stress again that a suitable baseline comparator is required to define bias on rank

probabilities.

Next we define network-level indicators allowing comparisons of the accuracy and

precision of parameter estimates between networks. We introduce the total magnitude

of the bias of rank probability,

|∆P |tot =
∑

a

∑
r

|⟨∆Pa(r)⟩|, (3.20)
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and the total magnitude of the bias of SUCRA,

|∆SUCRA|tot =
∑

a

|⟨∆SUCRAa⟩|. (3.21)

To be able to compare numerical values for these two quantities with each other, we

express these indicators as proportions of the maximum values they can take, see

Appendix Section 3.6 for further details.

Finally, we introduce the total standard deviation and total bias of treatment effects,

SDtot =
∑

a

SD(d)a, (3.22)

|∆d|tot =
∑

a

|⟨∆d⟩a|. (3.23)

Refer to Table 3.1 for a summary of some of these quantities.

3.3 Results

The set of simulated networks was chosen to cover a range of values for the degree

irregularity h2/k̄2. It includes all network geometries in Figure 3.2, with varying

values of K = (KT1T2 , KT1T3 , KT1T4 , KT2T3 , KT2T4 , KT3T4). In all networks we used an

equal number of participants per arm, ni,ℓ = 25. In the motivating simulations

performed by Kibret et al (2014) [25], comparable results were found for values of

ni,ℓ = 25, 50, 100. Therefore, to keep the number of simulation scenarios manageable

we chose to investigate only one of these values. Results for networks with an unequal

number of participants per arm are discussed in Section 3.3.7. Again, following the

work of Kibret et al (2014) [25] we used Ω = 103 independent realisations of synthetic

trial outcomes for any fixed set of model parameters (d, τ). Finally, based on typical

values of τ reported in real NMAs (e.g. [49]), we chose τ = 0.1 throughout. For equally

effective treatments (see below), this value is somewhat arbitrary. For the values d

used in Section 3.3.3, this value ensured a small overlap in the true distributions of

the relative treatment effects. These values themselves were chosen based on results

reported in [49] for the smoking cessation network described in Section 3.2.1. Error

bars in our figures are typically smaller than the size of the markers.

In Sections 3.3.1 and 3.3.2 we first focus on networks with equally effective treat-

ments, d = (dT1T2 , dT1T3 , dT1T4) = (0, 0, 0). We then have P bl
a (r) = 1/4 for all
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Figure 3.3: The effect of the number of studies per treatment on the bias on rank probabilities,
∆Pa(r), for r = 1, 2, 3, 4. These plots are for a star network with K = (1, 5, 15, 0, 0, 0).

a ∈ {T1, . . . , T4} and r ∈ {1, . . . , 4} (based on the true treatment effects, all four

treatments have equal rank). Any systematic effect observed in the outcome of NMA

is therefore a result of the structure of the network only. Networks with treatments of

varying effectiveness are discussed in Section 3.3.3.

3.3.1 Comparisons within networks

In Figure 3.3 we plot bias of rank probability against number of studies per treatment,

ka, for a star network with K = (1, 5, 15, 0, 0, 0). Similar plots for other network

geometries can be found in the Supplementary Material (Figures 8.1 to 8.16). This

data consistently shows that the probability to be ranked best or worst, Pa(1) and

Pa(4) respectively, is overestimated for the treatment included in the fewest studies

(lowest degree ka). The probabilities Pa(2) and Pa(3) are underestimated. The reverse

is found for the treatment included in the most studies.

The bias of rank probability for the treatments with the most and fewest studies

appears to be common in all networks. We find that the bias of the remaining two

treatments can be affected by the position of their respective nodes in the network.

Figure 3.4 shows the bias of Pa(1) for a ladder network with K = (1, 0, 0, 5, 0, 15).

In this example treatment T2 is included in fewer studies (kT2 = 6) than treatment

T4 (kT4 = 15) but has more direct comparisons (it is directly compared to T1 and T3

whereas treatment T4 is only directly compared to T3). The bias on Pa(1) for treatment
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Figure 3.4: Ladder network with K = (1, 0, 0, 5, 0, 15). An example demonstrating the
effect of node position on rank probability bias.

a = T2 is found to be more negative than that of treatment a = T4.

We conclude that disparity in the number of studies per treatment generates a

trend in bias of rank probabilities. It is natural to ask if a similar trend is found for

bias of treatment effect estimates. This appears not to be the case (see Figures 8.1 to

8.16 in the Supplementary Material).

Instead, the trend in ∆Pa(r) is associated with a systematic pattern in the standard

deviation of treatment effect estimates, see Figure 3.5. We find that SD(d)a tends to

decrease with the number of studies treatment a is involved in. The standard deviation,

SD(d)a, is particularly high for treatments with ka/M ≲ 0.1 and appears to flatten out

for those included in a larger proportion of studies. We note, however, that Figure

3.5 includes data from multiple networks. On inspection of individual networks, we

find a slight but consistent decrease in SD(d)a as the number of studies of treatment a

increases (see Figures 8.1 to 8.16 in the Supplementary Material). This data suggests

that bias in the rank probabilities may originate from a variation in the uncertainties

of the different treatment effect estimates. A possible mechanism for this is discussed

in Section 3.4.

3.3.2 Comparisons between networks

So far we have mostly compared the outcome of NMA for different treatments within

a given network. In this section we make comparisons between different networks. One

main observation is a positive association between the degree irregularity of a network,
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Figure 3.5: Standard deviation of treatment effect estimates. On the horizontal axis, we
use the normalised number of studies, ka/M , to capture how well connected a treatment is in
the network. Each network contributes four data points, one for each treatment. The figure
includes the data from all irregular networks we simulated.

h2/k̄2, and the total bias on rank probabilities, |∆P |tot. The data shown as red circles

in Figure 3.6 demonstrate this for networks with equally effective treatments.

While we find no relationship between irregularity and total bias of relative treatment

effects, |∆d|tot, (see Figure 8.21 in the Supplementary Material) Figure 3.7 shows that

the total standard deviation of the estimates of relative treatment effects, SDtot,

increases with h2/k̄2. Therefore networks with a more homogeneous distribution of

studies lead not only to lower bias of rank probabilities, but also to more precise

estimates of relative treatment effects. This is also a possible explanation for the

vertical spread in Figure 3.5. Different data points for a given value of ka/M can be

from networks with varying degrees of irregularity and hence they result in different

values of SD(d)a.

We find that the total bias in rank probability estimates, |∆P |tot, and the total

standard deviation of treatment effect estimates, SDtot, are not systematically affected

by the total number of studies in the network (Figures 8.22 and 8.23 in the Supple-

mentary Material). This has implications for the planning of future studies to be

added to an existing network. Naively, one may assume that adding any study to an

existing network will improve parameter estimates because the amount of evidence is

increased. However our results suggest that, in terms of bias on rank probabilities and

the precision of treatment effect estimates, this is only true if the addition of the study
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Figure 3.6: The effect of degree irregularity on a network’s total rank probability bias for
networks with equally effective treatments and non-equally effective treatments.

Figure 3.7: The effect of degree irregularity on a network’s total standard deviation, SDtot,
for networks with equally effective treatments and non-equally effective treatments.
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Figure 3.8: The effect of degree irregularity on a network’s total SUCRA bias for networks
with equally effective treatments and non-equally effective treatments.

reduces the degree irregularity, h2/k̄2, of the network.

The data shown as red circles in Figure 3.8 demonstrate that, for networks with

equally effective treatments, network irregularity has no effect on the total bias of

SUCRA values across the network. Comparing the data in Figures 3.6 and 3.8 we

find that the bias of SUCRA is approximately ten times smaller than that of the rank

probabilities. This is consistent with the data in Figure 3.3 which shows that the

biases of Pa(2) and Pa(3) are almost the exact negative of the biases of Pa(1) and

Pa(4). These biases cancel in the calculation of SUCRA in Equation (3.5). The same

reasoning also explains why, when making within-network comparisons, the number

of studies per treatment has no effect on the bias of SUCRAa (see Figure 8.17 in the

Supplementary Material).

3.3.3 Treatments of varying effectiveness

The data presented so far is for networks with equally effective treatments, d = (0, 0, 0).

In order to test the robustness of our findings, we now focus on a case in which the four

treatments have different effectiveness. Specifically, we choose d = (0.5, 1.0, 1.4), and

study the same network geometries as before. Treatment T1 is now the most effective,

followed by T2, then T3 and treatment T4 is the least effective. Therefore the baseline

rank probabilities are P bl
T1(1) = P bl

T2(2) = P bl
T3(3) = P bl

T4(4) = 1 and all other P bl
a (r) are

zero. In order to understand this, recall that rank probabilities capture uncertainty in
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the treatment effect estimates. In simulations we know the true treatment effects with

certainty. When no two treatments are equally effective, the baseline probabilities then

take values of zero and one.

As shown in Figure 3.7, the relationship between SDtot and degree irregularity is

the same as in the case of equally effective treatments (d = (0, 0, 0)); the numerical

values of SDtot are also found to be largely similar, there is no systematic increase or

reduction in the standard deviation.

The qualitative effect of degree irregularity, h2/k̄2, on the total magnitude of the

bias of rank probabilities, |∆P |tot, is similar compared to the case of equally effective

treatments (Figure 3.6). For h2/k̄2 ≳ 0.2 we find that the bias is larger for treatments

with varying effectiveness than for equally effective treatments.

In our analysis of the case d = (0.5, 1.0, 1.4) we find that the standard deviations,

SD(dab), range from approximately 0.1 to 1.0. This means that there is significant

overlap in the distributions of the estimated treatment effects. As a consequence of

this, the treatments appear to be similarly effective on average. For treatments with

varying effectiveness, the baseline rank probabilities (constructed from the relative

treatment effects used to generate the synthetic data) take values of either zero or

one. For networks with four equally effective treatments, all P bl
a (r) are equal to 0.25.

It is therefore natural that the bias of rank probabilities is greater for networks of

treatments with different effectiveness, at least when the magnitude of SD(dab) is of

the same order or larger than the disparity in true treatment effects.

Figure 3.8 shows that, in contrast to the results for networks with equally effective

treatments, |∆SUCRA|tot increases with h2/k̄2 for d = (0.5, 1.0, 1.4). On inspection of

the biases of rank probabilities within a given network (Figure 8.20 in the Supplement)

we find that the relationship between rank probability bias and the number of studies

per treatment is affected by the efficacy of the treatments that have been compared.

Unlike in Figure 3.3 (where d = (0, 0, 0)), the biases on Pa(2) and Pa(3) are not equal

to −Pa(1) and −Pa(4) so there is no net cancellation of biases in the calculation of

SUCRAa. The total bias on rank probabilities increases for more irregular networks

(higher values of h2/k̄2), and as a consequence the bias on SUCRA also increases with

the irregularity of the graph.

The data in Figures 3.6 to 3.8 indicate that reducing the network’s irregularity
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improves the precision of treatment effect estimates and reduces bias on ranking

statistics in the case of treatments with varying degrees of effectiveness. Our conclusions

regarding the use of network regularity for the planning of future studies are therefore

also valid in this more realistic scenario.

3.3.4 Multi-arm trials

The results presented so far are for networks made up exclusively of two-arm trials.

However, approximately 85% of network meta-analyses in the literature contain multi-

arm trials [50]. We therefore test if our findings generalise to networks including

multi-arm trials. We focus on complete-loop networks (Figure 3.2(c)) as this allows

us to introduce three-arm and four-arm trials without changing the overall shape of

the network (a full loop remains a full loop if further trials are added to it). The

networks simulated in this section are designed specifically to cover a wide range of

degree irregularities. We note that including more multi-arm trials in a network will,

in general, reduce its irregularity.

For a given value of the degree irregularity, h2/k̄2, we generated synthetic trial

data on complete-loop networks with different combinations of two-arm, three-arm

and four-arm trials. We focus on the case of equally effective treatments, and report

the outcome at network-level. Results for comparisons of different treatments within

networks are provided in the Supplementary Material (Figures 8.25 to 8.47). In all

cases, the relationship between bias of rank probability and the number of studies per

treatment follows the same pattern as in Figure 3.3.

We show |∆P |tot, SDtot and |∆SUCRA|tot as a function of network irregularity in

Figures 3.9 to 3.11 respectively. The data from networks involving multi-arm trials is

indicated by blue squares; we include the data for networks of two-arm trials (red circles)

to allow comparison. As for the case of two-arm trials, the total magnitude of the bias

of rank probabilities and the total standard deviation of treatment effects increase with

h2/k̄2, while the bias on SUCRA is largely unaffected by network irregularity. When

networks are sufficiently irregular, the presence of multi-arm trials appears to reduce

SDtot with respect to networks consisting only of two-arm trials (Figure 3.10).

These results show that our findings concerning both within-network and between-

network comparisons can be generalised to networks containing multi-arm trials.
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Figure 3.9: The effect of degree irregularity on a network’s total rank probability bias. Data
from networks with multi-arm trials is shown as blue squares.

Figure 3.10: The effect of degree irregularity on a network’s total standard deviation of
treatment effect estimates. Data from networks with multi-arm trials is shown as blue squares.
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Figure 3.11: The effect of degree irregularity on a network’s total bias on SUCRA values.
Data from networks with multi-arm trials is shown as blue squares.

3.3.5 Data-generating models

All data so far was produced using the data-generating model ‘Normal’ (see Sec-

tion 3.2.7). We also carried out a similar analysis using data from the ‘Euclidean’ and

‘Uniform’ methods. The only difference we observe is in the magnitude of the standard

deviation of treatment effects. While the relationship between network irregularity,

h2/k̄2, and total standard deviation, SDtot, was not affected by the choice of DGM, the

values of SDtot were lowest for the ‘Euclidean’ method and highest for the ‘Uniform’

method. This is not surprising as the ‘Euclidean’ method restricts the range of absolute

outcomes that can be sampled and thus reduces variation in the event rates. The

‘Uniform’ method is the least restrictive in this sense. All other results were consistent

between the three DGMs (see Figures 8.48 to 8.50 in the Supplementary Material).

This demonstrates that the effects we observe are due to the network geometry, and

are not specific to any data-generating model.

3.3.6 Bias of the heterogeneity parameter, τ

The data in Figure 3.12 shows that bias of the heterogeneity parameter, τ , decreases

with the total number of studies in the network. This is the case irrespective of whether

the treatments have uniform or varying effects (d = 0 or d ̸= 0), and for networks

with two-arm and multi-arm trials. The bias of τ is not affected by the network’s

irregularity h2/k̄2 (see Figure 8.51 in the Supplementary Material). Therefore adding
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Figure 3.12: The effect of the total number of studies in a network on the accuracy of the
estimate for the heterogeneity parameter τ . Panel (a) is for networks made up exclusively
of two-arm trials and compares networks with equally effective and non-equally effective
treatments. Panel (b) includes networks with d = (0, 0, 0) only and networks with multi-arm
trials are shown as blue squares.

any trial to the network improves the accuracy of the estimate of τ .

The true value of τ in Figure 3.12 is 0.1; we note that τ is considerably overestimated

in all cases we tested. To understand this, it is useful to recall that τ characterises

the variation of the relative effects between any two treatments across trials in the

random-effects model. Additional randomness originates from the sampling of event

numbers in each trial arm. This is the case both in real-world trial data and in

simulation studies (in the latter the sampling is from the binomial distributions for the

respective trial arms). Some of this sampling noise may be attributed to between-trial

variability by the NMA method, leading to an overestimation of τ .

A more likely cause of this bias, however, is our choice of prior distribution for

τ . Naïvely, we used a uniform distribution between 0 and 5 (since this is commonly

used in practice [2, 45]). However, compared to our choice of τ = 0.1, the upper

limit of 5 is huge. In networks with few studies, the prior distribution may dominate

the posterior therefore leading to a large upward bias on τ (as observed). We note

that, although other choices of the heterogeneity prior would have likely improved

our estimates, this result is unlikely to affect our other findings. In particular, we

have demonstrated that bias on the rank probabilities originates from disparity in the

precision of treatment effects. While the estimate of τ may affect the absolute values

of precision, the differences in precision between treatments are driven by other factors,

namely the network structure.
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3.3.7 Robustness tests

The simulations reported so far are for networks with four treatments and an equal

number of participants per arm, ni,ℓ = 25. In order to ensure the robustness of

our results we first simulated networks of ten treatments with varying irregularity.

In agreement with our results for smaller networks, networks with smaller degree

irregularity are again found to have more precise treatment effect estimates and smaller

bias of rank probabilities (details can be found in Section 8.9.1 of the Supplementary

Material). Next, we generated networks of trials in which the number of participants

per arm are random numbers sampled from a flat distribution between 20 and 100.

Figures 8.53 and 8.54 in the Supplementary Material show that the effect of degree

irregularity is not impacted.

3.4 Summary and Discussion

3.4.1 Variation of treatment effect uncertainty is associated

with biased rank probabilities

We have carried out simulation studies of network meta-analysis in random-effects

models. These simulations reveal that disparity in the number of studies different

treatments are involved in can lead to variation between the standard deviations of

effect estimates. This in turn appears to generate a systematic bias in estimated rank

probabilities. In line with previous simulations of NMA for fixed-effects models [25], the

probability of a treatment being ranked best is overestimated for treatments included

in the fewest number of studies, and underestimated for treatments which are part of

a large number of studies. In addition, our study of networks with four treatments

found the same trend for the probability of being ranked last. The probability of being

ranked second and third best is subject to a bias in the opposite direction. These

trends correspond to an increased standard deviation of treatment effect estimates for

treatments compared in a smaller number of studies.

A general connection between standard deviation of effect estimates and bias of

rank probabilities has previously been recognised in Rücker et al (2015) [16]. Our

work establishes further details of the mechanics leading to biased rank probabilities.
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Figure 3.13: Illustrative example of posterior distributions of treatment effect estimates
for four treatments in a network meta-analysis. The posterior distributions have the same
mean value but varying standard deviation. Treatment T1 has the most narrow distribution,
followed by T2, T3 and T4 which has the widest distribution.

We illustrate this in Figure 3.13, where we show a fictitious example of posterior

distributions for the effectiveness of four different treatments. The four distributions

have equal mean values, but varying standard deviations. The distribution of treatment

T4, which has the largest standard deviation, has higher density than the other

treatments at very large and very small values of the treatment effect. This means

that although the most probable value of the effect of treatment T4 is the same as for

the other treatments, T4 is more likely than the other treatments to have an effect

that is the largest or the smallest. Therefore treatment T4 has the highest probability

of being ranked best and the highest probability of being ranked worst. Conversely,

treatment T1 has the lowest standard deviation. Therefore, it is less likely to have

extreme values of treatment effect and thus has a higher probability of being ranked

second or third. Rücker et al (2015) [16] used a similar explanation to demonstrate

that the probability that one treatment is better than another can be misleading when

the posterior distributions of their effects have considerable overlap.

This stylised example demonstrates that biased rank probabilities can result if the

uncertainty on some treatment effects is larger than on others. This effect is also to be

expected when the distributions of treatment effects have different means, provided

the differences in these means are small compared to their standard deviations.

Our analysis shows that the posterior distributions of treatment effect estimates
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are the most narrow for treatments included in the most studies and widest for those

that have been studied the least. As a consequence, biases of rank probabilities may

arise if different treatments are involved in disparate numbers of studies, i.e. for large

irregularity of the network.

The systematic variation in the width of posterior distributions does not, however,

lead to systematic bias of SUCRA values. Since SUCRA involves a sum over the rank

probabilities, the bias on these estimates is cancelled out. For networks with equally

effective treatments, this cancellation is almost exact. As a result we observe very small

total SUCRA bias for all values of network irregularity. In the more realistic scenario

of treatments with varying efficacy, our simulations show that total bias of SUCRA

does increase with irregularity, though this bias is consistently lower than that of the

rank probabilities. SUCRA values therefore appear to be the more reliable ranking

statistic.

Current advice in existing guidelines [6] is to report rank probabilities and treatment

effects. In addition to known limitations on reporting the probability of being best,

our study highlights that the full set of rank probabilities can be biased in irregular

networks. It is interesting to observe that our simulations find no trend in the bias

of treatment effect estimates in any of the simulated scenarios. This reinforces the

importance of taking into account multiple measures, rather than making decisions

based on a single metric. The weight given to different metrics may vary depending on

circumstances. If the network is irregular rank probabilities become less reliable, and

more weight could be given to effect estimates along with measures such as SUCRA.

The simulations presented in this paper are an explicit demonstration of biases

that can occur in the comparison of multiple treatments. We have also suggested

how they might originate from the structure of the network of treatments and trials.

Understanding the origins of bias, we think, is vital for interpreting ranking statistics in

network meta-analyses, and contributes to our understanding of the NMA method and

its limitations. However, it is perhaps also interesting to consider the interpretation of

‘bias’ in the context of a Bayesian analysis. In particular, Bayesian probabilities reflect

our subjective beliefs based on the available data and any prior evidence. Therefore

it is not immediately clear how exactly such a belief can be quantified in terms of

‘bias’. In our work we defined bias to be the difference between the estimated rank
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probabilities and what we called ‘baseline probabilities’. These latter values reflect

the rank probabilities one would obtain from an NMA if it were able to estimate the

relative treatment effects with perfect accuracy and no uncertainty. Although such a

result is never attainable in practice, deviations from these values are still informative.

For example, we have demonstrated that the conclusions drawn from estimated rank

probabilities do not necessarily reflect the data. In particular, our results show that a

high probability of being best or worst may actually reflect imprecision in estimated

treatment effects rather than the magnitude of the effects themselves. Therefore, our

definition of ‘bias’ is still a useful concept to consider when interpreting the results of

an NMA.

We note that the definition of degree irregularity in Equation (3.11) does not

explicitly account for variation in the number of participants across arms. It would

be interesting to investigate if and how the definition of degree irregularity could be

modified to take into account varying numbers of participants. For example, one could

modify Equations (3.10) and (3.11) so that in the calculation of the mean degree and

h2, treatments are weighted by the number of participants rather than the number of

trials. Further work could then investigate how quantities such as rank probabilities

and SUCRA values are affected by variation in participant numbers.

3.4.2 Planning future studies to reduce the irregularity of the

network

Planning future clinical trials based on existing evidence from network meta-analysis

can reduce the resources and number of participants required to obtain results of a given

precision [51–53]. While the design of future trials based on pairwise meta-analysis

has received significant attention [54–56], methods using the outcome of network meta-

analysis are less developed. Current approaches in this area [52, 57] are computationally

intensive and become increasingly laborious as the network becomes more complex.

Our results show that the degree irregularity of a network, h2/k̄2, can provide guidance

on the choice of future trials without the need for extensive simulations. The degree of

a treatment in the graph is the number of trials it is involved in, and the irregularity

of a network describes how this degree varies across treatments. This is easily obtained
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Figure 3.14: Example of three different geometries that can be created by adding a fixed
number of studies to an existing network.

from the network.

Irregularity is a better indicator of the accuracy and precision of parameter estimates

from a network meta-analysis than the total number of studies in the network. As

we have shown, networks with a more homogeneous distribution of studies between

treatments have more precise treatment effect estimates and smaller bias of rank

probabilities.

Degree irregularity is therefore a useful metric for working out which comparisons

could be made in future studies to improve the parameter estimates of an existing

NMA. For example, consider a network of four treatments with K = (1, 0, 0, 19, 0, 1)

and h2/k̄2 = 0.82 as shown on the left in Figure 3.14. Now imagine resources are

available to add ten new two-arm studies to this network. If (a) we add all ten studies

to the most connected comparison (T2 − T3) then we obtain K = (1, 0, 0, 29, 0, 1), and

the network’s irregularity increases to 0.88. We may be more inclined to populate a

comparison that currently has no direct evidence such as T1 − T3 [(b) in Figure 3.14]

or T1 − T4 [(c)]. The former leads to K = (1, 10, 0, 19, 0, 1) and reduces h2/k̄2 to 0.48,

while the latter has K = (1, 0, 10, 19, 0, 1) and reduces h2/k̄2 to 0.08. These three

possible ‘future’ networks are shown on the right-hand side in Figure 3.14.
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By simulating the original network and the three ‘future’ networks whilst keeping

all other network characteristics constant, we compare how adding the extra ten studies

affects the results. Table 3.2 summarises the total standard deviation and total rank

probability bias of these four networks.

Table 3.2: Degree irregularity, precision and accuracy of NMA parameter estimates for the
networks in Figure 3.14.

Network M h2/k̄2 SDtot |∆P |tot

Original: 21 0.82 4.44 1.74
(a): 31 0.88 4.36 1.73
(b): 31 0.48 3.24 1.47
(c): 31 0.08 1.68 0.16

For network (a) the precision and accuracy of the NMA parameter estimates (as

measured by SDtot and |∆P |tot respectively) are approximately the same as for the

original network, whereas (b) and (c) show a considerable reduction in SDtot and

|∆P |tot. The improvement in both quantities for network (c) is markedly greater

than in network (b) even though in both cases the ten new studies were added to a

comparison with no existing direct evidence.

This example demonstrates that equality in the number of studies per treatment

is more important than equality in the number of studies per comparison. A similar

example involving a network of ten treatments is discussed in Section 8.9.1 in the

Supplementary Material.

Choosing future studies that reduce degree irregularity may therefore help to improve

the precision of treatment effect estimates and the accuracy of rank probabilities, though

this is, of course, subject to constraints in practice. For example a treatment may

appear in comparatively few trials for good reasons, such as cost, negative side effects,

or the treatment is outdated. In other scenarios one treatment option outranks all

others by a very large margin [58, 59]. It is then largely irrelevant whether the SUCRA

value of this treatment option can be made more precise as this would unlikely change

the overall ranking of the treatment. Nevertheless, we think it is useful to be aware

how degree regularity affects the precision and accuracy of NMA. This metric can then

be used as one contributing factor in the planning of future trials, along with practical

and clinical considerations.
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As a final remark, we note that we have focused on network meta-analyses in a

Bayesian setting. While quantities such as rank probabilities and SUCRA are more nat-

ural in Bayesian analysis, similar quantities can be obtained in a frequentist framework

based on resampling methods [14]. Furthermore, Rücker et al (2015) [16] proposed a

frequentist analogue to SUCRA calculated without resampling. Quantitatively, this was

found to be nearly identical to SUCRA derived from a Bayesian NMA. This, along with

other work which has found that treatment ranking in Bayesian and frequentist NMA

are consistent [60], leads us to expect that the results in this paper would generalise to

frequentist network meta-analysis.

3.5 Appendix A: Degree irregularity and probabil-

ity of inter-specific encounter (PIE)

In network meta-analysis (NMA) the probability of inter-specific encounter (PIE) index

measures the probability that two randomly sampled treatment groups (trial arms)

from the network are associated with two different treatments [22, 23]. The sampling

is understood to occur without replacement. This diversity measure was originally

introduced in ecology [61], and first applied in the context of NMA by Salanti et al.

(2008) [22, 23].

The probability that the two sampled arms represent different treatments is given

by

PIE = 1 −
∑

a

(
ka

ktot

)(
ka − 1
ktot − 1

)
, (3.24)

where ktot is the total number of arms in the network,

ktot =
∑

a

ka = Nk̄. (3.25)

We recall that k̄ = N−1∑
a ka is the mean degree of a node in the weighted network,

and N the total number of treatments.

In Equation (3.24), ka/ktot is the probability that a randomly picked trial arm is

of type a, and (ka − 1)/(ktot − 1) is the probability that an arm sampled randomly

from the remaining ktot − 1 arms is also of type a. Using Equation (3.25) and a modest
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amount of algebra one shows that PIE can be written in the more commonly used form

PIE = ktot

ktot − 1

1 −
∑

a

(
ka

ktot

)2
 . (3.26)

PIE is a probability and takes values between zero and one. PIE’ is defined as PIE

normalised with respect to the maximum value of PIE for a given number of studies,

PIE′ = PIE
max(PIE) . (3.27)

At fixed N PIE takes its maximum value when ka = k̄ for all treatments a. This means

that the fraction of arms associated with any one treatment is ka/ktot = 1/N for all a.

In this case therefore

max(PIE) = ktot

ktot − 1

(
1 − 1

N

)
. (3.28)

In order to relate h2 to PIE’ we start from Equation (3.11) in the main paper. We

have

h2 = 1
N

∑
a

(ka − k̄)2

= 1
N

(∑
a

k2
a − 2k̄

∑
a

ka + Nk̄2
)

= 1
N

(∑
a

k2
a − Nk̄2

)
. (3.29)

Therefore, using Equation (3.25),

h2

k̄2
= 1

Nk̄2

∑
a

k2
a − 1 (3.30)

= N

k2
tot

∑
a

k2
a − 1. (3.31)

From the definitions of PIE and max(PIE) we have

PIE′ =
1 −∑

a

(
ka

ktot

)2

1 − 1
N

=
N − N

k2
tot

∑
a k2

a

N − 1

=
N −

(
h2

k̄2 + 1
)

N − 1 . (3.32)

Therefore

PIE′ = 1 − 1
N − 1

h2

k̄2
. (3.33)
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3.6 Appendix B: Maximum total bias

To compare the extent of total rank probability bias and total SUCRA bias, we express

these measures as a proportion of the maximum bias that is possible to observe in each

case. In this section we calculate the values of these maxima.

3.6.1 Maximum total rank probability bias

The sets of true and estimated rank probability biases, Pa(r) and P̂a(r), each form

doubly stochastic matrices. We call these matrices P and P̂ such that their elements

are Pij = PTi
(j) and P̂ij = P̂Ti

(j). The properties of a doubly stochastic matrices are

N∑
i=1

Pij = 1,
N∑

j=1
Pij = 1, Pij ≥ 0. (3.34)

That is to say, all matrix elements are positive, and all elements in any row of P sum

to one, and similarly, the sum of elements in any column is one. Analogous relations

hold for P̂ .

The total rank probability bias can be written as

|∆P |tot =
N∑

i=1

N∑
j=1

|Pij − P̂ij|. (3.35)

We can work out the maximum of this quantity by using the triangle inequality

|Pij − P̂ij| ≤ Pij + P̂ij. (3.36)

Therefore

|∆P |tot ≤
N∑

i=1

N∑
j=1

(Pij + P̂ij)

=
N∑

i=1

N∑
j=1

Pij︸ ︷︷ ︸
=1

+
N∑

i=1

N∑
j=1

P̂ij︸ ︷︷ ︸
=1

= N + N = 2N. (3.37)

This bound is tight, for example it is saturated if P is the identity matrix, and P̂ a

permutation matrix mapping no number onto itself.

For N = 4 treatments one has

max (|∆P |tot) = 8. (3.38)
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3.6.2 Maximum total SUCRA bias

To work out the maximum value of total SUCRA bias we first write it in terms of the

{∆Pa(r)},

|∆SUCRA|tot =
∑

a

|∆SUCRAa| =
∑

a

∣∣∣∣∣−
∑

r rP̂a(r) −∑
r rPa(r)

N − 1

∣∣∣∣∣ , (3.39)

Therefore we have

|∆SUCRA|tot = 1
N − 1

∑
a

∣∣∣∣∣−∑
r

r∆Pa(r)
∣∣∣∣∣ . (3.40)

Again using the doubly stochastic matrices P and P̂ to represent the true and

estimated rank probabilities, we can write

|∆SUCRA|tot = 1
N − 1

N∑
i=1

|
N∑

j=1
j(Pij − P̂ij)|. (3.41)

The minimum possible value of ∑N
j=1 jPij is 1 and the maximum is N . Similarly,∑N

j=1 jP̂ij takes values between 1 and N . Therefore for a fixed value of i

|
N∑

j=1
j(Pij − P̂ij)| ≤ N − 1. (3.42)

However, due to the doubly stochastic nature of P and P̂ , equality can hold in this

relation for only two values of i, namely one in which ∑N
j=1 jPij = 1 and ∑N

j=1 jP̂ij = N ,

and the other for which the reverse holds.

The next largest value that
∣∣∣∑N

j=1 j(Pij − P̂ij)
∣∣∣ can take is N − 3 (for ∑N

j=1 jPij =

N − 1 and ∑N
j=1 jP̂ij = 2 or vice versa). Following this pattern, the maximum values

of
∣∣∣∑N

j=1 j(Pij − P̂ij)
∣∣∣ are N − 1, N − 3, N − 5, N − 7, ..., N − 7, N − 5, N − 3, N − 1.

For even N = 2k this gives

max
 N∑

i=1
|

N∑
j=1

j(Pij − P̂ij)|
 = 2

k−1∑
l=0

(2k − 1 − 2l)

= 2
[
k(2k − 1) − 2

k−1∑
l=0

l︸ ︷︷ ︸
=(k−1)k/2

]

= 2k2 = N2

2 . (3.43)

For N = 4 treatments we have

max(|∆SUCRA|tot) = 1
N − 1

N2

2 = 8
3 . (3.44)
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Technically, the above argument only produces a lower bound on the maximum value

of |∆SUCRA|tot. However, we have tested the relation in Equation (3.43) numerically

using large samples of randomly generated doubly stochastic matrices. We have found

no instances in which the maximum value indicated is higher than the bound in

Equation (3.43).

Data Availability Statement

The data that supports the findings of this study was generated via simulations, using

the algorithm described in the manuscript. An example of the type of code used in our

analysis can be found here https://github.com/AnnieDavies/Supplementary-Material-

Davies-Galla-2020.
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Chapter 4. Network meta-analysis and random walks

Abstract

Network meta-analysis (NMA) is a central tool for evidence synthesis in clinical

research. The results of an NMA depend critically on the quality of evidence being

pooled. In assessing the validity of an NMA, it is therefore important to know

the proportion contributions of each direct treatment comparison to each network

treatment effect. The construction of proportion contributions is based on the

observation that each row of the hat matrix represents a so-called ‘evidence flow

network’ for each treatment comparison. However, the existing algorithm used

to calculate these values is associated with ambiguity according to the selection

of paths. In this work we present a novel analogy between NMA and random

walks. We use this analogy to derive closed-form expressions for the proportion

contributions. A random walk on a graph is a stochastic process that describes a

succession of random ‘hops’ between vertices which are connected by an edge. The

weight of an edge relates to the probability that the walker moves along that edge.

We use the graph representation of NMA to construct the transition matrix for a

random walk on the network of evidence. We show that the net number of times a

walker crosses each edge of the network is related to the evidence flow network.

By then defining a random walk on the directed evidence flow network, we derive

analytically the matrix of proportion contributions. The random-walk approach

has none of the associated ambiguity of the existing algorithm.

4.1 Introduction

Network meta-analysis (NMA) has been established as a central tool of evidence

synthesis in clinical research [1–3]. Combining direct and indirect evidence from

multiple randomised controlled trials, NMA makes it possible to compare interventions

that have not been tested together in any trial [4–6]. The term ‘network meta-

analysis’ derives from the fact that one can mathematically represent the collection

of interventions and trials as a graph. A graph consists of a set of nodes and a set of

edges connecting pairs of nodes. The nodes of an NMA graph represent the different
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treatment options, and edges are comparisons made between the treatments in the

trials. In line with Rücker (2012) [7] we will refer to networks of treatment options and

comparisons between treatments as ‘meta-analytic graphs’.

An NMA combines data from multiple trials, each comparing different combinations

of treatment options. The accuracy of the conclusions from an NMA depends on

potential biases associated with individual trials, and on assumptions such as between-

trial homogeneity and consistency between direct and indirect evidence. In this context

it is useful to study the so-called ‘flow of evidence’ [8] in the network. This describes

the influence different network components have on the estimates of treatment effects.

For example, the comparison between two particular treatments may enter as indirect

evidence into the estimate of the relative effect of two different nodes in the network.

Understanding how exactly evidence flows in the graph then allows one to assess the

impact of potential bias originating from different pieces of evidence in the network

[8–10].

Previous literature has, for example, looked at the relative influence of direct

evidence compared to indirect evidence [11, 12]. Other work has been concerned

with measures of network geometry, capturing the frequency with which different

comparisons are represented in the trials underpinning an NMA [13, 14]. One then asks

how the network structure affects NMA estimates of treatment effects, heterogeneity

and rank metrics [13–18]. The ‘hat matrix’ in a two-step (‘aggregate’) NMA model

[11] describes how the overall estimates of treatment effects from the network can

be expressed in terms of the direct estimates obtained from the trial data. König et

al (2013) [8] observed that each row of the hat matrix represents an evidence flow

network for a particular treatment effect. König et al then visualised the evidence flow

on weighted directed acyclic graphs in which nodes represent treatments, and edges

indicate the direction and quantity of evidence flow through each direct comparison.

Based on this observation, Papakonstantinou et al (2018) [9] introduced ‘streams’

of evidence and developed a numerical algorithm to calculate these streams. The

streams of evidence are then used to derive the ‘proportion contribution’ of each direct

comparison to each treatment effect in the graph. This allows one to quantify how

limitations of individual studies impact on the estimates obtained from the network.

Indeed, the algorithm in Papakonstantinou et al is implemented in software such as
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CINeMA (confidence in network meta-analysis) [10] and ROB-MEN (risk-of-bias due

to missing evidence in NMA) [19], used in clinical practice for the evaluation of results

from an NMA.

More widely, the study of networks plays a key role in a variety of disciplines

including ecology, economics, electrical engineering and sociology [20–22]. Through

the representation of treatment options and comparisons in trials as a graph, one can

therefore take advantage of the extensive literature in network theory, and of ideas

developed in the disciplines in which networks are studied. For example one of us [7]

used the graph representation of NMA to make the connection between meta-analytic

and electrical networks. This allows one to demonstrate that graph theoretical tools

routinely applied to electrical networks are also of use in NMA. This approach has

since led to advancements in NMA methodology such as frequentist ranking methods

[23] and component NMA [24]. It is also the basis for the software package netmeta

[25].

In this paper we present a new analogy between random walks and NMA. A

random walk on a graph is a stochastic process consisting of a succession of ‘hops’

between vertices connected by edges. Random walks are of interest for a wide range

of applications, including statistical physics, biology, ecology, genetics, transport and

economics (for a selection of references see [26–30]). Random walks are also a popular

tool to study the properties of networks themselves [31–33].

It is well known that there is a connection between random walks and electrical

networks [34–37]. In this context, edges of the electric network are conducting con-

nections (wires). The correspondence between random walks and electrical networks

can be established by asserting that the probability that a random walker currently at

node a moves to node b in the next step is proportional to the conductance (inverse

resistance) of the edge connecting a and b. Quantities in the electrical network such as

currents along edges or electric potentials at the nodes then have an interpretation in

the random-walk picture. For further details we refer to Doyle and Snell (2000) [37].

Motivated by the connection between electrical networks and NMA on the one hand,

and that of electrical networks and random walks on the other, we construct a random

walk on the meta-analytic network. We show that the random-walk picture we develop

can be used to study the flow of evidence in the NMA network. In particular there is a
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random-walk interpretation of the elements in the hat matrix. Further, we construct a

second random-walk model, this time on the evidence flow network. From this we derive

an analytical expression for proportion contributions which overcomes the limitations

of Papakonstantinou et al [9]. In particular, the algorithm in Papakonstantinou et

al selects only a subset of paths on the evidence flow network. This means that

paths of evidence that potentially contribute risk of bias are missed. Furthermore,

the paths identified by the algorithm are not unambiguous and instead depend on the

order in which certain steps are carried out. In contrast, the random-walk approach

identifies all possible paths of evidence and delivers an unambiguous analytical result

for proportion contributions. In addition, unlike the method in Papakonstantinou et

al, the random-walk approach is able to handle networks with multi-arm trials.

The remainder of this paper is set out as follows: We present a motivating data

set in Section 4.2. In Section 4.3 we provide the relevant background information. We

describe an aggregate-level frequentist NMA model and show how the associated hat

matrix can be interpreted as evidence flow. In Section 4.4 we introduce the analogies

between NMA, electrical networks and random walks. Using the analogies to electrical

networks in both the NMA and random-walk literature, we then express the flow of

evidence in an NMA in terms of properties of random walks on the aggregate network.

In Section 4.5 we introduce a second random-walk model, now on the directed evidence

flow network. We use this to analytically derive the matrix of proportion contributions.

In Section 4.6, we apply our method to the motivating data set and demonstrate

that the random-walk approach overcomes the limitations of the numerical algorithm

previously proposed by Papakonstantinou et al (2018) [9]. We summarise our results

in Section 4.7 and discuss potential future impact of the analogy between NMA and

random walks.

4.2 Motivating Example

We use an NMA of psychological treatments for patients with depressive disorders [38]

to motivate our work. The data is described in detail in Rücker and Schwarzer (2014)

[39]. For convenience we will occasionally refer to this as the ‘depression data set’. The

NMA compares N = 11 treatments based on M = 26 randomised controlled trials. Of
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Figure 4.1: A network of psychological treatments for depression (original data from Linde
et al (2013) [38]; presented in Rücker and Schwarzer (2014) [39]). We use numerical labels
from 1 to 11, these are the same as in Rücker and Schwarzer (2014) [39]. Two treatments
are connected by an edge if a direct comparison of the two treatments was made in at least
one trial; the edge width indicates the number of trials that make the comparison. The
network contains one 4-arm trial (comparing treatments 1-6-7-9), eight 3-arm trials (3-5-9,
2-6-8, 1-6-11, 1-3-9, 2-6-11, 2-6-8, 3-6-9, and 3-4-9) and 17 2-arm trials. Multi-arm trials are
not explicitly indicated in the network graph. The data, including the number of trials per
comparison, is described in detail in Rücker and Schwarzer (2014) [39].

these one is a four-arm trial, eight are three-arm trials and 17 contain just two arms.

In total, the trials provide K = 20 pairs of treatments which are directly compared in

at least one trial. The primary outcome of the trials was a binary variable representing

patient response after treatment completion. The odds ratio (OR) was used as the

measure of relative treatment effect. The graph representing this set of treatments and

trials is shown in Figure 4.1. Vertices in the graph are treatments, and edges represent

comparisons between pairs of treatments (two vertices are connected if they have been

directly compared in at least one trial). The graph therefore has N = 11 vertices and

K = 20 edges. The thickness of the edges in the figure represent the number of trials

making the different comparisons.

NMA aims at estimating treatment effects for all pairs of interventions within this

network. One aim of our paper is to determine the contribution (as a proportion) of

each direct comparison to these estimates.
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4.3 Network meta-analysis model

4.3.1 Definitions and notation

Among the multiple equivalent frequentist formulations of NMA [6, 11, 13, 39, 40] we

choose a so-called ‘aggregate level’ (or two-step) approach [11] to the graph theoretical

model developed in Rücker (2012) [7]. Rücker’s original (one-step) model is implemented

in the R package netmeta [25]. In Section 4.8.1 of the Appendix we outline how the

aggregate-level graph theoretical approach relates to other frequentist NMA models.

We consider a network of N treatments, denoted a = 1, . . . , N , and M studies,

i = 1, . . . , M . Throughout this article we will use the lower case letters a, b, c and d to

refer to treatment nodes. Occasionally we also use x and y as dummy indices referring

to nodes in sums or products. Study i compares a subset of ni treatments (i.e. ni is

the number of treatments in trial i). We use a random-effects model where we focus on

relative, rather than absolute effects. To this end, we write Yi,ab for the observed effect

of treatment b in trial i relative to treatment a. We denote the variance associated with

this observation by σ2
i,ab. The heterogeneity, τ 2, in the network can be estimated, for

example, using the method-of-moments approach [41]. The estimated heterogeneity is

added to the within-trial variance estimate from each study to make the total variance

σ2
i,ab + τ 2.

Trial i contributes qi = ni(ni−1)/2 observed relative treatment effects and associated

variances. For a trial with ni = 2, comparing treatments a and b, the weight assigned is

given by the inverse variance, wi,ab = 1/(σ2
i,ab + τ 2). In order to account for correlations

induced by multi-arm trials (ni ≥ 3), we use an adjustment method described in detail

in References [7, 39, 42]. The method involves adjusting the variances associated with

each pairwise comparison in a multi-arm trial. For multi-arm trial i this results in

qi ≥ 3 weights, wi,ab, where a and b run through all treatments compared in that

trial. This defines a complete sub-graph of qi two-arm trials which is equivalent to the

multi-arm trial.

4.3.2 Aggregate-level description

The set of adjusted weights {wi,ab} for all trials i = 1, . . . , M defines a network of ∑M
i=1 qi

two-arm trials. This network is equivalent to the original network of M (potentially
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multi-arm) trials in that the resulting relative treatment effect estimates from the

network of two-arm trials described by {wi,ab} are the same as those obtained from the

original network [39].

We write Mab for the set of trials i ∈ {1, . . . , M} comparing treatments a and b.

Using the weights {wi,ab}, we perform a pairwise meta-analysis across each of the K

edges in the network. For the edge connecting nodes a and b, the direct estimate is

calculated as the weighted mean,

θ̂dir
ab =

∑
i∈Mab

wi,abYi,ab∑
i∈Mab

wi,ab

. (4.1)

This results in K direct estimates of the relative treatment effects, θ̂dir
ab , which we collect

in the vector θ̂dir. The weight associated with the direct estimate θ̂dir
ab (and to be used

in the subsequent analysis) is given by

wab =
∑

i∈Mab

wi,ab. (4.2)

The direct estimates of the relative treatment effects have been termed ‘aggregate’

data [8, 43]. Therefore, Equations (4.1) and (4.2) describe the observations and

inverse-variance weights for an aggregate-level model.

The aggregate model can be represented by an ‘aggregate network’ where wab is

the weight associated with the edge ab. We collect the aggregate edge weights in a

K × K diagonal matrix, W = diag(wab). Figure 4.2 (a) shows a fictional example

of an aggregate network with five treatments a = 1, 2, 3, 4, 5. The aggregate weight

matrix for this example is W = diag(1, 3, 4, 6, 5, 2, 7). We write B for the K × N

edge-incidence matrix of the aggregate network. Each column of B corresponds to

a treatment in the network and each row corresponds to an edge. To construct the

matrix, one of the two treatments in each edge is designated as the ‘baseline treatment’

for this edge without loss of generality. Entries are +1 in the column corresponding

to the ‘baseline’ treatment of the comparison represented by that row, and −1 in the

column corresponding to the treatment compared to that baseline. For the example in
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4.3. Network meta-analysis model

Figure 4.2: (a) A fictional example of an aggregate meta-analytic network with edges
weighted and labelled by their respective (inverse-variance) weights. (b) The resulting evidence
flow network for the comparison 1-2 from the aggregate network in (a); the comparison 1-2 is
indicated by shading these nodes with blue stripes. Edges are directed according to the sign
of the corresponding element of the hat matrix, and are weighted by the absolute value of
the hat matrix element. (c) The random walk on the aggregate network in (a) for a walker
starting at node 1 and finishing at node 2; edges are labelled by the associated transition
probabilities.

Figure 4.2 (a) the edge incidence matrix can be chosen as

B =



1 −1 0 0 0

1 0 −1 0 0

1 0 0 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 0 1 0 −1

0 0 0 1 −1



, (4.3)

where the columns represent treatments 1, 2, 3, 4, and 5, and the rows represent the

edges (direct comparisons) 1-2, 1-3, 1-5, 2-3, 2-4, 3-5, and 4-5. In the following we will

use this hyphenated notation when we refer to specific comparisons (e.g. 1-2 for the

comparison between treatments 1 and 2). When we refer to a comparison between

unspecified treatments a and b, we will then use the notation ab, to avoid confusion

with ‘a minus b’.
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4.3.3 Hat matrix and network estimates

The network estimates of the relative treatment effects θ̂net
ab are obtained via

θ̂net = Hθ̂dir, (4.4)

where the hat matrix associated with the aggregate model is [39]

H = B(B⊤WB)+B⊤W . (4.5)

The hat matrix has dimension K × K where each row and each column correspond

to one edge. We denote the element in the ab row and cd column by H
(ab)
cd . The

matrix L = B⊤WB, with dimensions N × N and rank N − 1, is the Laplacian of the

aggregate network. The matrix L+ = (B⊤WB)+ is its pseudo-inverse [7, 42]. The

hat matrix describes how the direct evidence combines to give the network estimates.

Each network estimate is a weighted linear combination of direct and indirect evidence.

The coefficients of the estimates θ̂dir for each network treatment effect are found in the

corresponding row of H . The diagonal elements of H give the coefficients for the direct

evidence while the off-diagonal elements indicate the contribution of indirect evidence.

The larger the diagonal elements, the more weight is given to direct evidence [8]. For the

example in Figure 4.2 we calculate H using Equation (4.5), W = diag(1, 3, 4, 6, 5, 2, 7)

and B given in Equation (4.3). The resulting hat matrix is quoted in Equation (4.32)

in the Appendix.

4.3.4 Evidence flow

König et al (2013) [8] noted that each row in the hat matrix can be interpreted as

a flow network. Focusing on one row of the hat matrix, the magnitude of the flow

of evidence between two nodes is given by the absolute value of the element in the

corresponding column of H . The direction is determined by the sign of the element of

the hat matrix. For the ab-row of the hat matrix one defines evidence flows f
(ab)
cd (from

c to d) and f
(ab)
dc (from d to c) as follows [8]:

if H
(ab)
cd > 0 : f

(ab)
cd = H

(ab)
cd , f

(ab)
dc = 0,

if H
(ab)
cd < 0 : f

(ab)
cd = 0, f

(ab)
dc = |H(ab)

cd |. (4.6)
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Flows are non-negative, and only one of f
(ab)
cd and f

(ab)
dc is non-zero. We note that

setting one of the coefficients for each pair of nodes to zero is a choice. Alternatively,

one could have chosen conventions such that f
(ab)
cd = −f

(ab)
dc for all pairs c and d. This

is an equivalent re-parameterisation, but is less convenient for our subsequent workings.

We comment further on this in Section 4.10 of the Appendix.

It is important to note that each comparison ab gives rise to a separate network of

flows. We refer to these graphs as ‘evidence flow networks’. The edges of these graphs

are directional and point in the direction of positive flow. Due to the properties of the

hat matrix each of these evidence flow networks is acyclic. Specifically, in the network

corresponding to the comparison ab, node a only has outgoing edges, and node b only

incoming edges. The flow network then has the following properties:

1. The total outflow from a is equal to one, ∑x f (ab)
ax = 1;

2. the sum of inflows to node b is also one, ∑x f
(ab)
xb = 1;

3. and at every intermediate node, c ≠ a, b, the sum of outflows equals the sum of

inflows, ∑x f (ab)
cx = ∑

x f (ab)
xc .

These properties were stated in König et al (2013) [8], and an algebraic proof for the

first and the second property was given in Papakonstantinou et al (2018) [9]. We

provide a heuristic argument for all three properties in Section 4.11 of the Appendix.

These three properties make an interpretation as a ‘flow’ natural. We adopt the

term ‘flow of evidence’ used in previous literature [8, 9], noting that it is perhaps not

immediately clear what precisely ‘evidence’ is mathematically, and how it can flow from

one node to another. The random-walk picture we develop later in this paper offers

a possible interpretation, which we will discuss in Section 4.4.3 and in the Appendix

(Section 4.10).

Figure 4.2 (b) shows the evidence flow network for the comparison 1-2 for the

aggregate network in Figure 4.2 (a). The values of flow shown in Figure 4.2 (b)

correspond to the first row of the matrix H given in Equation (4.32) in the Appendix.
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4.4 NMA, electrical networks and random walks

In this section we set up the analogies between NMA, electrical networks and random

walks. A summary of these analogies can be found in Table 4.1.

4.4.1 NMA and electrical networks

The connection between meta-analytic and electrical networks was first introduced

by one of us [7]. In the meta-analytic network, treatments are nodes connected by

edges representing pairwise comparisons. On the other hand, edges in an electrical

network represent resistors that connect at the nodes. If two (or more) nodes of an

electric network are connected to the poles of a battery then an electric potential (a

real-valued scalar quantity) can be associated with each node in the network. The

potential in turn results in voltages (=differences in electric potential) across all edges.

The potential difference between two nodes connected by a path on the graph is the

sum of the voltages along each edge of the path. If there are multiple paths connecting

two nodes then the sum of voltages is independent of the path. Voltages along a cycle

on the network sum to zero.

The voltages in turn induce currents across the edges (current=voltage divided

by resistance). Currents may also flow into or out of a node from or to the external

battery (often referred to simply as the ‘exterior’). The sum of currents entering each

node equals the sum of currents leaving that node (Kirchhoff’s current law, see for

example Urbano (2019) [44]).

The analogy between NMA and electric networks is based on the observation that

resistances in parallel and sequential electrical circuits combine in the same way as

variances of treatment effects in an NMA. Variance therefore corresponds to resistance.

One can show that relative treatment effects are the analogue of voltages measured

across edges, and weighted treatment effects the analogue of electrical current (see

Rücker (2012) [7] for details). This allows one to use graph theoretical tools, routinely

applied to electrical networks, to address questions in NMA.

In Rücker (2012) [7] no voltages or external currents are applied directly to the

electric circuit representing the NMA network (i.e. there is no external battery). Instead,

the starting point is given by measurements of treatment effects (voltages) across the
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Chapter 4. Network meta-analysis and random walks

edges of the network. These are understood to be the true treatment effects subject

to some random additive error. It is then shown in Rücker (2012) [7] that finding

the NMA estimates of treatment effects corresponds to finding the set of consistent

voltages across all edges that minimises the (Euclidian) distance to these observed

treatment effects.

Here, we extend this analogy and show that the elements of the hat matrix have an

interpretation in the electric-circuit picture. More precisely, the elements of the row in

the hat matrix corresponding to the comparison between treatments a and b can be

obtained as follows: Connect a battery to nodes a and b in the electric circuit so that

one unit of current flows from the exterior into node a, and out of the network (to the

exterior) from node b. The external currents into/out of all other nodes are maintained

at zero. This reflects the properties 1-3 of the coefficients f
(ab)
cd in Section 4.3.4. These

derive from the properties of the hat matrix via Equation (4.6), which in turn are a

consequence of the function of the hat matrix to project onto the space of consistent

relative treatment effects (see Rücker (2012) [7]). This set-up induces currents across

the edges in the network. Our main result is then the following: The current along

edge cd is identical to the hat matrix element H
(ab)
cd . A detailed mathematical proof

can be found in Section 4.12 of the Appendix.

We illustrate this with a simple network of four nodes in Figure 4.3. Panel (a) shows

a generic electrical circuit resulting from a meta-analytic graph with four treatment

options and with direct comparisons between all pairs of treatments except treatments

1 and 4. We focus on the row in the hat matrix corresponding to the comparison

between treatments 1 and 2. Using Equation (4.4) we have for this example

θ̂net
1-2 = H

(1-2)
1-2 θ̂dir

1-2 + H
(1-2)
1-3 θ̂dir

1-3 + H
(1-2)
2-3 θ̂dir

2-3 + H
(1-2)
2-4 θ̂dir

2-4 + H
(1-2)
3-4 θ̂dir

3-4. (4.7)

Our result indicates that the coefficients H
(1-2)
cd can be obtained from the setup shown

in Figure 4.3 (b). A battery is attached to nodes 1 and 2 and the voltage of the battery

is chosen such that one unit of current flows into node 1 (from the battery) and out

of node 2 (into the battery). This induces currents in the five edges (resistors) of the

electric circuit. These currents are the hat matrix elements in Equation (4.7). Via

Equation (4.6) these then determine the flow of evidence.
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4.4. NMA, electrical networks and random walks

Figure 4.3: An illustration of the interpretation of current. (a) An electrical network with
associated edge resistances. (b) The same network with a battery attached across the edge
1-2 such that a unit current flows into 1 and out of 2. The current in edge cd is labelled
Icd. Current is measured in ampéres, hence the unit current is labelled as ‘1 Amp’. The
direction of the current induced in the edges is shown. (c) A possible path taken by a
random walker starting at node 1 and stopping at node 2. The sequence of nodes visited is
1 −→ 3 −→ 4 −→ 3 −→ 2. For this particular realisation of the random walk, the net number of
times the walker crosses edges 1-3 and 3-2 is one, while all other edges are crossed net zero
times. The expected net number of times the walker crosses an edge is given by the currents
shown in (b) for that edge [37]. The focus on the comparison of nodes 1 and 2 in panels (b)
and (c) is indicated by the blue striped pattern of these nodes.

4.4.2 Electrical networks and random walks

4.4.2.1 Definitions and notation

As illustrated in Figure 4.4, a random walk on a graph is a stochastic process consisting

of a succession of ‘hops’ between neighbouring nodes (nodes connected by an edge). We

use the word ‘path’ to describe the sequence of nodes visited by the walker, including

repeat visits to individual nodes. We always assume that time is discrete. The walk

is then a Markov process described by an N × N transition matrix, T , where N is

the number of nodes in the network. The element Tab of this matrix is the probability

that a walker, currently at node a, moves to node b in the next time step. These

probabilities only depend on the current position of the walker, and not on the path

taken to reach that position. One has ∑b Tab = 1 for all a, i.e. T is a stochastic matrix.

The connection between random walks and electrical networks has been recognised

for some time [34–36] and is described extensively in Doyle and Snell (2000) [37]. Here

we will only summarise the concepts and known results that are most relevant for our
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Figure 4.4: An illustration of a random walker moving on a network graph. The walker
starts its journey from the far left node. The arrows show the path taken by the walker for
one realisation of the random walk. The figure indicates the ‘current’ position of the walker
as it hops between two nodes. The solid arrow indicates this transition. The dotted arrows
indicate the previous transitions made between nodes by the walker.

work.

Starting from an electrical network with given resistances Rab a random walk process

can be constructed by defining the transition probabilities (a ̸= b)

Tab = R−1
ab∑

c ̸=a R−1
ac

. (4.8)

This definition indicates that transitions from one node to another occur in proportion

to the inverse resistance of the direct connection between the two nodes (if there is no

direct connection, then no hop can occur between the two nodes). We set Taa = 0 for

all a. The denominator in Equation (4.8) ensures normalisation (∑b Tab = 1).

We always assume the network does not divide into multiple disconnected com-

ponents. As a result, the transition matrix defined in Equation (4.8) is such that a

walker starting at any node a will eventually reach any other node b ̸= a with finite

probability.

4.4.2.2 Interpretation of electrical current

Electrical current can be interpreted in the random-walk picture as follows [37]: When

a voltage is applied between two nodes a and b such that the total current flowing into

a and out of b from the exterior is 1, the current induced in each edge, cd, is equal to

the expectation value for the net number of times a random walker, starting at a and

walking until it reaches b, moves along the edge from c to d. The net number of times

the walker moves from c to d is the number of crossings in the direction from c to d

minus the number of crossings in the opposite direction.
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To describe this mathematically we need to ensure that no more hops occur when

the walker reaches the designated end point b. In other words, this node must become

absorbing. This is achieved by setting the elements Tbc to zero for all c. For later

convenience we denote the resulting modified transition matrix by T (ab), recognising that

the modifications made only depend on the choice of b, and not on a. Mathematically,

we have T
(ab)
bc = 0 for all c ̸= b, and T

(ab)
cd = Tcd for c ̸= b and all d. We set T

(ab)
bb to

unity.

Now consider random walks starting at node a and then following the process defined

by the transition matrix T (ab). All walks therefore end at node b. The probability that

a walker takes a particular path π connecting a and b can be written as

P (ab)(π) =
∏

{xy∈π}
T (ab)

xy , (4.9)

where the notation {xy ∈ π} indicates the set of pairs of successive nodes in the path

π. We note that P (ab)(π) is non-zero if and only if the path π starts at a and ends

when b is reached for the first time.

The average number of net crossings from node c to node d along paths starting at

a and ending at b can therefore be obtained as

N
(ab)
cd =

∑
π

P (ab)(π)Ncd(π), (4.10)

where Ncd(π) is the net number of crossings from c to d along path π. We note that

this quantity can be negative; this occurs if the walker makes more transitions from d

to c than from c to d. The sum in Equation (4.10) extends over all paths connecting a

and b.

To develop some intuition, consider again the electrical network in Figure 4.3 (a).

Assume that we are interested in the scenario where the external current flows into

node 1 and out of node 2, but not into or out of any of the other nodes. We then

start the random-walk process at node 1, and use transition probabilities as defined in

Equation (4.8) until the walker reaches node 2. In the first step, the walker either hops

to node 2 (this occurs with probability T1-2) or to node 3 (with probability T1-3). If

the walker hops to node 2, the walk stops and the path taken by the walker is 1 −→ 2.

Otherwise, the walker is at node 3 and in the next step it can transition to 2, 4 or back

to 1 with respective probabilities T3-2, T3-4 and T3-1. This process continues until the
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walker eventually reaches node 2. The current through the edge cd is then given by

the expected net number of times such a walker crosses the edge from c to d before it

arrives at node 2. A crossing in the direction from d to c contributes negatively to this

value.

Since the random walker can move in both directions along the network edges, there

are infinitely many paths the walker can take as it travels from node 1 to node 2 in this

example. Figure 4.3 (c) shows one possible path, 1 −→ 3 −→ 4 −→ 3 −→ 2. The probability

the random walker takes this path is given by the product of the individual transition

probabilities along the path, that is

P (1-2)(1 −→ 3 −→ 4 −→ 3 −→ 2) = T1-3T3-4T4-3T3-2. (4.11)

Although P (ab)(π) can be obtained relatively easily for each path π, carrying out

the sum in Equation (4.10) by exhaustive enumeration of all relevant paths is not

practicable. This is because there are generally infinitely many paths starting and

ending at the designated nodes (due to the possibility to hop back to nodes visited

earlier).

The analogy between electrical circuits and random walks [37] however can be used

to calculate the expected number of net crossings through an edge analytically. This is

detailed in Sections 4.13 and 4.14 of the Appendix, see in particular Equation (4.72).

The expected number of net crossings can also be obtained from simulations of the

random-walk process. An ensemble of walkers is released at the starting point a. Each

walker then independently hops from node to node on the network with transition

rates as in Equation (4.8) until it hits the designated endpoint (node b). The process

then stops. For each walker the net number of crossings from c to d can be recorded,

and this is then averaged over the ensemble of walkers.

4.4.3 Random walk on a meta-analytic network

As described above, conductance (inverse resistance) in an electrical network has an

analogue in terms of both NMA, and random walks. Exploiting these analogies, we

now define a random-walk process on a meta-analytic network via the transition rates

Tab = wab∑
c̸=a wac

, (4.12)
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with weights wab associated with the edges as discussed in Section 4.3.2, see in particular

Equation (4.2).

In order to study walks starting at node a and ending at b we use the matrix T (ab)

as defined in Section 4.4.2.2. This enforces absorption of the walker at node b when this

node is reached. For the example aggregate network in Figure 4.2 (a), the transition

matrix for a random walk starting at node 1 and ending at node 2 is

T (1-2) =



0 1/8 3/8 0 4/8

0 1 0 0 0

3/11 6/11 0 0 2/11

0 5/12 0 0 7/12

4/13 0 2/13 7/13 0


. (4.13)

Each row and column of T (1-2) represents a treatment in the network, a = 1, 2, 3, 4, 5.

Given that we focus on the comparison between treatments 1 and 2, node 1 is the

start point of the walk, and node 2 is absorbing. Therefore, the row corresponding to

treatment 2 contains only zeroes except for the diagonal element which is equal to one

(when the walker reaches node 2 it stays there indefinitely). The entries in each row

of the matrix in Equation (4.13) sum to one. The diagonal elements of T (1-2) (except

for the element relating to node 2) are zero. This indicates that, with the exception

of the absorbing state, the random walker cannot stay at the same place at any step.

Figure 4.2 (c) illustrates the dynamics of the random walk from node 1 to node 2 for

this example.

In Section 4.4.1 we made the connection between the flow of electric current and

the flow of evidence in an NMA. Using the interpretation of current as a random walk

we can now establish the following analogy: For the comparison of treatments a and

b, the hat matrix element H
(ab)
cd that defines the flow of evidence through the direct

comparison cd is equal to the expected net number of times a random walker starting

at node a on the aggregate NMA network moves along the edge from c to d before it

reaches node b. In other words, we equate

H
(ab)
cd = N

(ab)
cd , (4.14)

and define the flow of evidence f
(ab)
cd in terms of H

(ab)
cd via Equation (4.6).
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The random-walk picture that we have developed provides a possible interpretation

for the concept of ‘flow of evidence’. Namely, it is random walkers starting at a and

ending at b that ‘flow’ along the network based on the rules defined by the transition

rates Tcd. A more detailed discussion of this interpretation can be found in Section 4.10

in the Appendix.

In summary, we have used existing analogies between electric circuits and random

walks on the one hand, and network meta-analysis and electric circuits on the other to

introduce an interpretation of the flow of evidence in network meta-analysis in terms

of random walks. The analogies between all three areas are highlighted in Table 4.1.

4.5 Proportion contribution

In this section we present a random-walk interpretation and construction of the so-called

‘proportion contribution matrix’ [9]. As explained in more detail below, the definition

of these proportion contributions originates from the fact that we can interpret each

row of the hat matrix as a flow network [8, 9]. For this task, therefore, the random

walk now no longer takes place on the meta-analytic network. Instead, walkers move

on the evidence flow network. The entries of the proportion contribution matrix in

NMA can then be obtained from this random walk.

We show that the random-walk approach overcomes the limitations of the algorithm

proposed for the evaluation of proportion contributions in Papakonstantinou et al (2018)

[9]. In particular, it provides an analytical expression for proportion contributions that

removes ambiguity associated with the selection of paths. Furthermore, unlike the

numerical algorithm of Papakonstantinou et al [9], the random-walk approach identifies

all paths of evidence so that all potential sources of bias are taken into account. In

Section 4.5.1 we introduce the concept of proportion contributions. In 4.5.2 we describe

the algorithm in Papakonstantinou et al [9] and its limitations. We then present and

discuss the random-walk approach in Section 4.5.3.

4.5.1 Background and definition

In NMA it is important to assess the influence of individual study bias on the estimates

obtained from the network. To this end, the CINeMA framework and software [10, 45]
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provides a user friendly system to assess confidence in the results from an NMA. One

function of the software is to display the relative influence of evidence that comes from

studies with high, moderate and low risk of bias on each network treatment effect. This

assessment involves calculating the matrix of so-called ‘proportion contributions’ [9].

This matrix describes how much each direct treatment effect contributes to each network

treatment effect as a relative proportion. The idea of the proportion contribution matrix

is based on the hat matrix. The elements of the hat matrix are the coefficients of the

linear relation between network estimates and direct estimates in the NMA as described

in Equation (4.4). These coefficients can be positive or negative. The proportion

contribution matrix uses the properties of the hat matrix and translates the elements

of H to positive proportion contributions, where the total contribution is normalised

to one. We now explain this in more detail using the work of Papakonstantinou et al

(2018) [9].

Consider the example network in Figure 4.5 (a). This relates to an NMA of the

four topical antibiotics given in the figure caption for the treatment of chronically

discharging ears [46]. To keep the text concise we label the treatments 1, 2, 3 and 4.

In accordance with Equation (4.4), the network estimate of comparison 1-2 is given by

the linear equation (4.7), which we repeat here for clarity,

θ̂net
1-2 = H

(1-2)
1-2 θ̂dir

1-2 + H
(1-2)
1-3 θ̂dir

1-3 + H
(1-2)
2-3 θ̂dir

2-3 + H
(1-2)
2-4 θ̂dir

2-4 + H
(1-2)
3-4 θ̂dir

3-4. (4.15)

We can think of the expression on the right-hand side as a combination of different

direct and indirect estimates of θ1-2. The direct estimate is simply θ̂dir
1-2. We obtain one

indirect estimate using node 3 and the consistency equation,

θ̂
ind(1)
1-2 = θ̂dir

1-3 − θ̂dir
2-3. (4.16)

A second indirect estimate is found via nodes 3 and 4,

θ̂
ind(2)
1-2 = θ̂dir

1-3 − (θ̂dir
2-4 − θ̂dir

3-4). (4.17)

These three ways of estimating θ1-2 correspond to so-called ‘paths of evidence’ on the

evidence flow network [9]. We label these paths πi (i = 1, 2, 3). As illustrated in

Figure 4.5 (b), these are π1 = 1 −→ 2, π2 = 1 −→ 3 −→ 2, and π3 = 1 −→ 3 −→ 4 −→ 2. We

can now write the network estimate θ̂net
1-2 as a linear combination of the estimates θ̂dir

1-2,
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Figure 4.5: Illustration of evidence flow, streams of evidence and proportion contributions
for a network of topical antibiotics without steroids for chronically discharging ears presented
in Macfadyen (2005) [46]. Node 1 is no treatment; 2 is quinolone antibiotic; 3 is antiseptic;
and 4 is non-quinolone antibiotic. (a) The evidence flow network for comparison 1-2, based on
Figure 1, panel (b) in Papakonstantinou et al (2018) [9]. The edge labels are the entries of the
1-2 row of the hat matrix, their signs are associated with the direction of the arrows. (b) The
decomposition of edge flows into flow through paths of evidence as estimated by the algorithm
in Papakonstantinou et al. The paths of evidence shown are equivalent to the possible paths
taken by a random walker on the evidence flow network. (c) The proportion contributions
(expressed as percentages) of each direct treatment effect to the network estimate of the 1-2
relative treatment effect.

θ̂
ind(1)
1-2 , and θ̂

ind(2)
1-2 . That is,

θ̂net
1-2 = ϕ1θ̂

dir
1-2 + ϕ2θ̂

ind(1)
1-2 + ϕ3θ̂

ind(2)
1-2

= ϕ1θ̂
dir
1-2 + ϕ2(θ̂dir

1-3 − θ̂dir
2-3) + ϕ3(θ̂dir

1-3 − θ̂dir
2-4 + θ̂dir

3-4). (4.18)

The coefficients, ϕi, define the flow of evidence through each path πi, see Papakon-

stantinou et al (2018) [9].

Figure 4.5 (b) shows how the flows in each edge, described by the hat matrix

coefficients, are deconstructed into the flows through each path of evidence, described

by the coefficients ϕi. In this example, only the edge 1-3 is used for more than one path.

When calculating the flow through each path, the flow in edge 1-3 is ‘split’ between

the paths π2 = 1 −→ 3 −→ 2, and π3 = 1 −→ 3 −→ 4 −→ 2 according to the flow in the

subsequent edges along those two paths.

A so-called ‘stream’ of evidence [9] is a pair consisting of a path and the flow

associated with this path, Si = (πi, ϕi). The proportion contribution of each direct
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comparison cd to the network estimate of each comparison ab, is then defined as [9]

p
(ab)
cd =

∑
i: cd∈πi

ϕi

|πi|
, (4.19)

where |πi| is the number of edges that make up the path. The sum extends over all

paths in the evidence flow network for the comparison ab that contain the edge cd.

We note that all such paths start at a and end at b, and, because the evidence flow

network is acyclic, multiple visits to the same node do not occur.

For simple examples, such as the one in Figure 4.5, one can obtain the path flows ϕi

by directly comparing coefficients in Equations (4.15) and (4.18). Using the properties

of the hat matrix in Section 4.3.4 one can then also see that ϕi ≥ 0 for all i, and

that ∑i ϕi = 1. This means that the proportion contributions in Equation (4.19) are

also non-negative, and sum to one. Figure 4.5 (c) shows the proportion contributions,

expressed as percentages, for the example in Figure 4.5 (a).

For larger, more connected networks it is not immediately clear how to obtain the

ϕi. In particular, when there are more paths than edges, expressing the ϕi in terms

of the coefficients of the hat matrix is non-trivial. Papakonstantinou et al [9] present

an iterative algorithm to identify streams for a general evidence flow network. The

starting point for this algorithm is the hat matrix. In the initial implementation of the

algorithm, Papakonstantinou et al (2018) [9] used a hat matrix that did not account

for correlations due to multi-arm trials (it treated each comparison in a multi-arm trial

as an independent two-arm study). In this work, we instead implement the algorithm

using the hat matrix of the aggregate model defined in Equation (4.5). We will now

briefly describe the algorithm.

4.5.2 Existing iterative numerical algorithm to determine

streams of evidence

Broadly speaking, each iteration of the algorithm consists of the following steps: (i)

A path in the evidence flow network is selected. (ii) The minimum flow through the

edges making up the path is identified. This is assigned as the flow associated with

the path. (iii) The flow of the path is subtracted from the values of flow in the edges

that make up that path. This means that the edge corresponding to the minimum flow

in that path is removed from the graph. (iv) A new path is then selected from the
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remaining graph. The process repeats until all the evidence flow in the edges has been

assigned to a path.

Different methods for selecting the paths in step (i) give rise to multiple variants of

the algorithm. For example, paths may be selected at random or in order from shortest

to longest. We refer to these approaches as ‘Random’ and ‘Shortest’ respectively. The

Shortest algorithm is implemented in the software netmeta using a breadth first search

algorithm [47]. Each time the Random algorithm is run it selects the paths in a different

order and, potentially, gives a different outcome. For reasons of reproducibility, this

version of the algorithm is not implemented in current software. For simple networks

such as the example in Figure 4.5, the order of selection does not affect the outcome.

However, for more complicated networks this is not the case. In some graphs, the

flow of evidence is fully exhausted before every possible path has been selected. The

remaining paths can then not be associated with any flow. Critically, this approach

means that many paths of evidence are not identified and their contribution (along

with any potential bias) is not accounted for. The set of paths that are missed in this

way can depend on the order in which paths are selected by the algorithm. Examples

of this behaviour are presented in Supplementary File 3 in Papakonstantinou et al

(2018) [9] and in Section 4.6.2 of this paper.

One potential remedy consists of averaging results from the Random algorithm

by Papakonstantinou et al [9] over a large number of realisations. We call this

method ‘Average’. Provided enough realisations are generated, the Average algorithm

will eventually identify every evidence path. However, because of the nature of the

algorithm, the number of times a particular path is sampled by this method can depend

on features of the network not directly related to the path. In step (iii) of the algorithm

the edge associated with the smallest flow in a particular path is removed from the

network. This means that any other path containing this edge can no longer be selected.

As a result, paths that do not share edges with any other paths will be selected in

every run of the algorithm, whereas paths which do share edges with other paths will

be sampled less often. It is therefore not clear how to interpret average proportion

contributions determined in this way. Furthermore, this approach is computationally

intensive as it relies on repeating the (already iterative) algorithm many times. For

this reason, this version of the algorithm is not implemented in current software.
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To overcome these limitations, we develop a random-walk approach for deriving

the streams of evidence. We will now describe this.

4.5.3 Random walk on the evidence flow network

To obtain the evidence streams we define a random walk on the evidence flow network for

comparison ab. We denote the transition matrix for this model by U (ab) to distinguish

it from the random-walk on the aggregate NMA network defined in Section 4.4.3. We

note that there is a different evidence flow network for each treatment comparison ab.

We indicate this by the superscript (ab). Since the evidence flow network has directed

edges the walker can only move in one direction along each edge (in the direction

of evidence flow). Node a in the evidence flow network for comparison ab has only

outgoing edges, and node b only incoming edges. We also note that the evidence flow

network is acyclic [8]. This means that a walker can never visit any node more than

once.

It is important to distinguish carefully between the random-walk model on the

aggregate network and that on the evidence flow network. In Section 4.4.3 we defined a

transition matrix for a random walker moving from node a to node b on the aggregate

meta-analytic network. The walker was allowed to move in both directions along the

edges of the network. We labelled this transition matrix T (ab) where the superscript

indicates the start and end nodes of the walk, i.e. the treatment comparison we are

interested in. By analysing the average movement of the walker, we obtained the

evidence flow. In this section we focus instead on a random walk on the evidence flow

network, and our aim is to construct streams of evidence. The two approaches are

summarised in Table 4.2.

To illustrate this, we consider the evidence flow network for comparison 1-2 in

Figure 4.5 (a). We now construct a transition matrix for a random walk on this directed

acyclic graph assuming that the walker starts at node 1. In contrast to random walks

on the undirected meta-analytic graphs in Section 4.4.3, the walker can only move in

one direction across each edge as indicated by the direction of evidence flow. If the

flow f
(ab)
cd = 0 (because the associated hat matrix element H

(ab)
cd ≤ 0), then no hop from

c to d can occur. Each possible transition occurs with probabilities proportional to

the evidence flows indicated in Figure 4.5 (a). More generally, for the evidence flow
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network of comparison ab, the elements of the transition matrix U (ab) are given by

U
(ab)
cd = f

(ab)
cd∑

x ̸=c f
(ab)
cx

=



H
(ab)
cd∑

x̸=c
H

(ab)
cx

if H
(ab)
cd > 0

0 if H
(ab)
cd < 0.

(4.20)

For the comparison ab, the walker remains at b indefinitely once it gets there, i.e. we

have U
(ab)
bb = 1, and the probability of transitioning from b to any other node c ̸= b is

U
(ab)
bc = 0. All other elements of the matrix U (ab) are given by Equation (4.20).

For the example in Figure 4.5 (a), the transition matrix for a random walk on this

graph is

U (1-2) =



0 0.635 0.365 0

0 1 0 0

0 0.251
0.251+0.114 0 0.114

0.251+0.114

0 1 0 0


=



0 0.635 0.365 0

0 1 0 0

0 0.688 0 0.312

0 1 0 0


. (4.21)

The third row of U (1-2) corresponds to transitions from node 3. From Equation (4.20)

and the edge flows shown in Figure 4.5 (a), we find that if the walker is at node 3,

then it moves to either node 2 or node 4 with probabilities 0.251/(0.251 + 0.114) and

0.114/(0.251 + 0.114) respectively. Similar calculations are done to find the elements in

the other rows. Once arrived at 2 the walker remains there indefinitely. This behaviour

is described by the second row of U (1-2).

The walker can take one of three paths from 1 to 2: π1 = 1 −→ 2, π2 = 1 −→ 3 −→ 2,

or π3 = 1 −→ 3 −→ 4 −→ 2. These are the same as the paths of evidence defined in

Section 4.5.1 and are illustrated in Figure 4.5 (b). The probability of a walker taking a

certain path is given by the product of the individual transition probabilities associated

with each edge along that path (Equation (4.9)). For example, the probability that a

random walker takes the path 1 −→ 3 −→ 2 is P (1-2)(π2) = U
(1-2)
1-3 U

(1-2)
3-2 = 0.365 × 0.688.

The probability that a walker takes a given path can also be measured from

simulations of the random-walk process on the evidence flow network. To do this one

simulates a large ensemble of independent walkers, and measures the proportions of

walkers taking each path. We can think of this as flows of walkers through the different

paths. We use this interpretation to provide a general analytical definition of the flow
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of evidence through a particular path: for the evidence flow network for comparison ab,

we define

ϕi = P (ab)(πi) =
∏

cd∈πi

U
(ab)
cd . (4.22)

With this definition we can construct decompositions such as the one in Equation (4.18)

for all networks. From the ϕi the proportion contributions can then be calculated via

Equation (4.19).

For the example in Figure 4.5 (a), Equation (4.22) leads to the streams,

S1 =(π1, ϕ1) : π1 = 1 −→ 2 ϕ1 = U
(1-2)
1-2

= 0.635 (4.23)

S2 =(π2, ϕ2) : π2 = 1 −→ 3 −→ 2 ϕ2 = U
(1-2)
1-3 U

(1-2)
3-2

= 0.365 × 0.251
0.251 + 0.114 = 0.251 (4.24)

S3 =(π3, ϕ3) : π3 = 1 −→ 3 −→ 4 −→ 2 ϕ3 = U
(1-2)
1-3 U

(1-2)
3-4 U

(1-2)
4-2

=0.365× 0.114
0.251 + 0.114 ×1=0.114 (4.25)

For this simple example the random-walk approach results in the same evidence streams

(and therefore proportion contributions) as the algorithm by Papakonstantinou et al,

see Figure 4.5 (b).

The random-walk approach provides an analytical construction of the proportion

contributions. Unlike the iterative algorithm, the outcome is unambiguous. In the

following section we demonstrate how the random-walk approach can be used for the

more intricate network from Section 4.2.

4.6 Application to real data set

We now apply the random-walk approach to the data set described in Section 4.2.

Following Rücker and Schwarzer (2014) [39], we choose a fixed-effect model (τ 2 = 0).

The edge weights in the aggregate network were obtained using the methods described

in Section 4.3 and are shown in Figure 4.6.
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Figure 4.6: The aggregate network for the depression data set in Section 4.2. Treatments 1
to 11 are defined in Figure 4.1. Here the thickness of each edge ab represents the associated
weight, wab. The aggregate weights, as presented in the box, were calculated using the
methods described in Section 4.3. The values are quoted to 3 decimal places.

4.6.1 Evidence flows

First, we use the random-walk approach described in Section 4.4.3 to obtain the

evidence flows for a certain comparison. We focus on the comparison of treatments 1

(tricyclic or tetracyclic antidepressants) and 3 (psychotherapy + usual care). To this

end, we define the transition matrix for a random walker on the aggregate network

(Figure 4.6) starting at node 1 and ending at node 3. Using Equation (4.12) we find

T (1-3) =

1 2 3 4 5 6 7 8 9 10 11



1 0 0 0.298 0 0 0.173 0.070 0 0.368 0 0.091

2 0 0 0 0 0 0.517 0 0.335 0 0 0.149

3 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0.563 0 0 0 0 0 0.437 0 0

5 0 0 0.232 0 0 0 0 0 0.768 0 0

6 0.039 0.321 0.046 0 0 0 0.014 0.210 0.262 0 0.107

7 0.162 0 0 0 0 0.147 0 0 0.156 0.535 0

8 0 0.498 0 0 0 0.502 0 0 0 0 0

9 0.060 0 0.562 0.068 0.109 0.190 0.011 0 0 0 0

10 0 0 0 0 0 0 1 0 0 0 0

11 0.093 0.420 0 0 0 0.487 0 0 0 0 0

.

(4.26)
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Figure 4.7: The evidence flow network for the comparison of treatments 1 and 3 in the
depression data set in Section 4.2. The thickness of each edge corresponds to the expected net
number of times a random walker crosses each edge of the aggregate network in Figure 4.6
as it travels from node 1 to node 3. The direction of flow is indicated by the arrow. These
values are summarised in the box and quoted to 3 decimal places.

We have labelled the rows and columns according to the treatments they represent

and we quote the values of the entries in the matrix to 3 decimal places. The third

row of T (1-3) is constructed such that once the walker reaches node 3 (the end node) it

remains there indefinitely.

As described in Section 4.4.3, the evidence flow through each direct comparison

for the network comparison 1-3 is obtained from the expected net number of times a

walker crosses each edge as it travels from node 1 to node 3 on the aggregate network

(Figure 4.6). The expected net number of times a walker crosses each edge can be

estimated by simulating a large ensemble of random walkers, each moving independently

as described by the transition matrix T (1-3). For each walker we count the net number

of times it crosses the designated edge, and we then subsequently average over all

walkers. The more walkers we simulate, the more accurate our estimation.

Alternatively, we can use the analogy to electrical networks described in Section 4.4.2

to obtain an analytical result for this value in terms of electric current. These methods

are described in more detail in Section 4.14 of the Appendix. We choose the analytical

approach which results in the evidence flow network shown in Figure 4.7. We find that
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for the comparison of treatments 1 and 3, most of the evidence flows directly from 1 to

3 or indirectly via treatment 9. Comparing Figures 4.6 and 4.7 we observe that the

pairwise comparison of treatments 7 and 10 is the only piece of direct evidence that

has no influence on the network comparison 1-3.

The hat matrix of the aggregate model for this data is given in Section 4.15.1 of the

Appendix. The flow network obtained from the row of the hat matrix corresponding to

the comparison of treatments 1 and 3 is identical to the network in Figure 4.7.

4.6.2 Proportion contributions

Next, we calculate the proportion contributions for the network comparison 1-3. To do

this we first define the transition matrix for a random walker moving from node 1 to

node 3 on the evidence flow network (Figure 4.7). From Equation (4.20) we find

U (1-3) =

1 2 3 4 5 6 7 8 9 10 11



1 0 0 0.353 0 0 0.152 0.044 0 0.380 0 0.072

2 0 0 0 0 0 0.755 0 0.245 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0 0 0 0

6 0 0 0.259 0 0 0 0 0 0.741 0 0

7 0 0 0 0 0 0.371 0 0 0.629 0 0

8 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0.899 0.061 0.040 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0

11 0 0.415 0 0 0 0.585 0 0 0 0 0

,

(4.27)

where we have again labelled the rows and columns. Matrix entries are quoted to 3

decimal places. The third row indicates that once a walker reaches node 3 it remains

there indefinitely. Since treatment 10 is disconnected from all other nodes in the

evidence flow network (Figure 4.7), the probability of transitioning to this node from

any other is zero. Similarly, if the walker starts at node 10, it remains there forever

(U (1-3)
10-10 = 1).

The set of all possible paths that a random walker can take on the evidence flow
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network can be found using a recursive algorithm [48]. The probability with which

the walker takes a particular path is calculated from Equation (4.22). This is the

flow of evidence through that path. For the comparison of treatments 1 and 3 in the

depression data set, we find 27 distinct paths. These paths and their associated flow ϕi

make up the evidence streams presented in Table 4.3. We find ϕi ≥ 0 and ∑i ϕi = 1.

Using these values we can construct the network estimate θ̂net
1-3 as a linear combination

of direct and indirect estimates following each evidence path listed in Table 4.3. This

leads to the same odds ratios as those quoted in Rücker and Schwarzer (2014) [39] up

to the precision provided.

Table 4.3 also contains the streams identified by the algorithm in Papakonstantinou

et al (2018) [9] (see Section 4.5.1). We present the results for three versions of the

algorithm, Shortest, Random and Average. The results for the Random algorithm

are obtained from one single run. Each result in the column labelled ‘Average’ is an

average over 108 runs of the Random algorithm. From Table 4.3, it is clear that the

streams identified by the iterative algorithm depend on the order in which paths are

selected. For this example, fewer than half of the possible paths are identified by the

Shortest and Random algorithms (paths not detected are indicated by the symbol ‘-’).

Therefore, these versions of the algorithm fail to take into account multiple evidence

paths that contribute to the NMA (and potentially have a high risk of bias).

Compared to the Shortest and Random versions of the algorithm, the Average

algorithm produces results which are more similar to flows obtained from the random-

walk approach. However, as described in Section 4.5.1, the frequency with which a

path is selected across different runs depends on whether it shares edges with other

paths in the network. Therefore, the results of the Average algorithm do not necessarily

converge to the results from the random-walk approach even as the number of iterations

becomes large.

Using Table 4.3 and Equation (4.19), we calculate the proportion contribution

of each direct estimate to the network comparison of treatments 1 and 3 from the

random-walk approach. These contributions are presented as percentages in the second

column of Table 4.4. The direct evidence from trials comparing treatments 1 and 3

has the largest contribution followed by indirect evidence from trials comparing 3 and

9, and 1 and 9. Table 4.4 also contains the proportion contributions obtained from
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4.6. Application to real data set

Table 4.3: Evidence streams (paths and their associated flow) for the network comparison
of treatments 1 and 3 in the depression data set in Section 4.2. Results obtained from the
random-walk (RW) approach are presented along with the results from three versions of the
algorithm in Papakonstantinou et al (2018) [9]. ‘Shortest’ refers to the algorithm where paths
are selected from shortest to longest. ‘Random’ describes the variant in which paths are
selected at random, and ‘Average’ is the average over 108 iterations of the Random algorithm.
Values are rounded to 4 decimal places. The Shortest and Random algorithms fail to identify
all possible paths, as indicated by the symbol ‘-’.

Stream, Si Path, πi
Associated flow, ϕi

RW approach Algorithm
(analytical) Shortest Random Average

S1 =(π1, ϕ1) 1, 3 0.3526 0.3526 0.3526 0.3526
S2 =(π2, ϕ2) 1, 6, 3 0.0394 0.0622 0.0549 0.0303
S3 =(π3, ϕ3) 1, 6, 9, 3 0.1015 0.0901 0.0974 0.1091
S4 =(π4, ϕ4) 1, 6, 9, 4, 3 0.0069 - - 0.0082
S5 =(π5, ϕ5) 1, 6, 9, 5, 3 0.0045 - - 0.0048
S6 =(π6, ϕ6) 1, 7, 6, 3 0.0042 - - 0.0055
S7 =(π7, ϕ7) 1, 7, 6, 9, 3 0.0108 0.0162 - 0.0061
S8 =(π8, ϕ8) 1, 7, 6, 9, 4, 3 0.0007 - 0.0162 0.0024
S9 =(π9, ϕ9) 1, 7, 6, 9, 5, 3 0.0005 - - 0.0021
S10 =(π10, ϕ10) 1, 7, 9, 3 0.0246 0.0274 0.0274 0.0171
S11 =(π11, ϕ11) 1, 7, 9, 4, 3 0.0017 - - 0.0060
S12 =(π12, ϕ12) 1, 7, 9, 5, 3 0.0011 - - 0.0043
S13 =(π13, ϕ13) 1, 9, 3 0.3414 0.3798 0.3604 0.3656
S14 =(π14, ϕ14) 1, 9, 4, 3 0.0231 - 0.0194 0.0090
S15 =(π15, ϕ15) 1, 9, 5, 3 0.0153 - - 0.0052
S16 =(π16, ϕ16) 1, 11, 2, 6, 3 0.0058 - - 0.0076
S17 =(π17, ϕ17) 1, 11, 2, 6, 9, 3 0.0150 - - 0.0085
S18 =(π18, ϕ18) 1, 11, 2, 6, 9, 4, 3 0.0010 0.0062 - 0.0034
S19 =(π19, ϕ19) 1, 11, 2, 6, 9, 5, 3 0.0007 0.0163 0.0225 0.0030
S20 =(π20, ϕ20) 1, 11, 2, 8, 6, 3 0.0019 - 0.0073 0.0024
S21 =(π21, ϕ21) 1, 11, 2, 8, 6, 9, 3 0.0049 - - 0.0027
S22 =(π22, ϕ22) 1, 11, 2, 8, 6, 9, 4, 3 0.0003 - - 0.0012
S23 =(π23, ϕ23) 1, 11, 2, 8, 6, 9, 5, 3 0.0002 0.0073 - 0.0010
S24 =(π24, ϕ24) 1, 11, 6, 3 0.0109 - - 0.0163
S25 =(π25, ϕ25) 1, 11, 6, 9, 3 0.0280 0.0126 0.0409 0.0170
S26 =(π26, ϕ26) 1, 11, 6, 9, 4, 3 0.0019 0.0294 - 0.0054
S27 =(π27, ϕ27) 1, 11, 6, 9, 5, 3 0.0013 - 0.0011 0.0033
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Table 4.4: Proportion contributions, expressed as percentages, for the network comparison
of treatments 1 and 3 in the depression data set. Results obtained from the random walk
(RW) approach are presented along with the results from three versions of the algorithm in
Papakonstantinou et al (2018) [9]. Shortest refers to the algorithm where paths are selected
from shortest to longest. Random is when paths are selected at random. Average is the
average over 108 iterations of the Random algorithm. Values are rounded to 1 decimal place.

Direct evidence, ab
Proportion contribution, p

(1-3)
ab

RW approach Algorithm
Shortest Random Average

1-3 35.3% 35.3% 35.3% 35.3%
1-6 5.6 % 6.1 % 6.0% 5.5%
1-7 1.3 % 1.3% 1.2% 1.3%
1-9 18.3 % 19.0% 18.7% 18.8%
1-11 1.7% 1.4% 1.6% 1.7%
2-6 0.5% 0.4% 0.4% 0.5%
2-8 0.1% 0.1% 0.1% 0.1%
2-11 0.6% 0.5% 0.5% 0.6%
3-4 1.1% 0.7% 1.0% 0.9%
3-5 0.7% 0.4% 0.4% 0.6%
3-6 2.7% 3.1% 2.9% 2.5%
3-9 22.6% 23.6% 23.2% 23.3%
4-9 1.1% 0.7% 1.0% 0.9%
5-9 0.7% 0.4% 0.4% 0.6%
6-7 0.4% 0.4% 0.3% 0.4%
6-8 0.1 % 0.1% 0.1% 0.1%
6-9 5.1% 4.8% 5.0% 5.2%
6-11 1.1% 0.9% 1.0% 1.1%
7-9 0.9% 0.9% 0.9% 0.8%
7-10 0% 0% 0% 0%

the three versions of the algorithm (Shortest, Random and Average). As before, these

results depend on the order in which paths are selected.

4.7 Summary and Discussion

4.7.1 The analogy between random walks and evidence flow,

and the role of the graph theoretical model

In this paper, we have presented a novel analogy between NMA and random walks.

Edge weights from the aggregate graph theoretical NMA model define a transition

matrix for a random walk on the network of evidence. The walker moves around on the

aggregate network along edges corresponding to direct evidence. The movement of the
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random walker contains information about the propagation of evidence through the

network. In particular, we have shown that the expected net number of times a walker

crosses an edge can be interpreted as the evidence flow through the direct comparison

represented by that edge. Therefore, we can obtain the elements of the hat matrix of

the aggregate model from the random-walk process on the aggregate network.

The flow of evidence defined by König et al (2013) [8] is based on a two-step version

of the standard frequentist NMA model (see Section 4.8 of the Appendix). In the first

step, the direct estimates are obtained by pooling evidence from trials making the same

comparisons. For two-arm trials, a pairwise meta-analysis is performed. For multi-arm

trials that compare a particular subset of treatments, an NMA is performed on the

sub-graph described by the multi-arm trial design. The direct estimates are therefore

separated into evidence that comes from two-arm trials and evidence from multi-arm

trials. This is reflected in the hat matrix of this model. Consequently, in König et al’s

evidence flow networks, the flow through multi-arm trials is displayed separately. This

is an interesting feature but, as the authors note, it is only feasible for simple networks

[8].

In our definition of evidence flow, we have instead used a two-step version of the

so-called graph theoretical model [7]. We make use of the fact that the adjusted weights

describe a network of two-arm trials which is equivalent to the network of multi-arm

trials. The direct estimates are then obtained from pairwise meta-analyses using the

adjusted edge weights. The elements in the row of the hat matrix for a particular

comparison then assign a single value of flow to each direct treatment comparison in

the network. The flow through an edge therefore represents the combined contribution

from all studies, two-arm and multi-arm, that make that comparison. While this means

that the specific contribution of multi-arm studies is not displayed, our approach makes

it easier to display evidence flow networks for graphs with a large number nodes, edges

and multi-arm trials of varying designs. In addition, it is this property of the aggregate

level graph theoretical approach that means we are able to make the analogy to random

walks in the general case (i.e. networks including multi-armed trials).

As explained in Section 4.8 of the Appendix, the standard NMA model, the graph

theoretical model and the aggregate level versions of both these models, all yield the

same network treatment effect estimates [8, 39]. For networks containing exclusively

229



Chapter 4. Network meta-analysis and random walks

two-arm trials, the hat matrices of the two aggregate level models are the same.

Therefore, for these networks, the evidence flow networks we define are the same as

those in König et al.

The graph theoretical approach provides a straightforward visualisation of the flow

of evidence for each treatment comparison. Random effects models and networks with

multi-arm trials can be accounted for with no extra complications. For networks with

both of these characteristics, heterogeneity needs to be combined with the original

observed variances (i.e. one needs to use σ2
i,ab + τ 2 instead of σ2

i,ab) before adjusting the

weights to deal with multi-arm trials [39, 42].

4.7.2 The random walk derivation of evidence streams over-

comes the limitations of previous algorithms

We have shown that the random-walk analogy for NMA leads to an analytical derivation

of evidence streams. In doing so, we defined a second transition matrix, this time

for a random walker moving on the evidence flow network. For each comparison of

treatments ab there is one separate evidence flow network. The network is directed and

it has no cycles. Walkers can only move in one direction along each edge, according to

the direction of flow. All paths on this graph start at a and end at b. As the walker

travels from a to b it moves along paths of direct and indirect evidence. Imagining a

large number of independent random walkers undergoing this process, we interpret

the proportion of walkers flowing through a particular path as the flow of evidence

through that path, i.e. the flow of evidence through a path is the probability of a walker

taking that path. This can be expressed analytically as the product of the transition

probabilities along the edges that make up the path.

The analytical definition of evidence streams leads directly to an analytical derivation

of the so-called proportion contributions defined in Papakonstantinou et al (2018) [9].

The result is unambiguous in contrast with previously proposed algorithms whose

output depends on the order in which paths are selected. Furthermore, individual runs

of the algorithm in Papakonstantinou et al can fail to identify all paths of evidence on the

evidence flow network. This means that in the calculation of proportion contributions,

multiple paths of evidence and their potential bias are not taken into account. Running
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the algorithm many times and subsequently performing an average, we are eventually

able to identify every path of evidence. However, the frequency with which a given

path is selected depends strongly on the number of other paths with which it shares

edges. As a result, the average flow obtained in this way does not accurately reflect

the contribution of each path. The random-walk approach overcomes these limitations.

All possible paths of evidence are identified and they are each assigned a value of flow

that reflects the properties of the hat matrix. Therefore, all possible sources of bias are

taken into account in the calculation of the proportion contributions.

In our application to real data, we observe that the differences between the propor-

tion contributions obtained from the random walk approach and those obtained via

the Average algorithm are relatively small. We would expect larger differences between

the two approaches when the network contains fewer independent paths, i.e. when

many pairs of paths have shared edges. This increases the bias in path selection in

the Average algorithm. Potential characteristics that may lead to this scenario include

networks that are highly connected, and networks that contain ‘central’ nodes or edges.

For multi-arm trials, the method presented in Papakonstantinou et al (2018) [9]

naïvely treats each pairwise comparison in a multi-arm trial as an independent two-arm

study. This does not account for correlations due to multi-arm trials. By instead

using the adjusted weights from the graph theoretical model, we are able to define a

network of two-arm trials that is equivalent to the original network of multi-arm trials.

Therefore, an additional advantage of the methods presented in this paper, is that

networks with multi-arm trials are handled more appropriately.

The CINeMA software currently relies on the algorithm in Papakonstantinou et

al to calculate the relative contribution of studies with high, moderate and low risk

of bias to each network treatment effect. Similarly, ROB-MEN (risk of bias due to

missing evidence in network meta-analysis [19]) also uses the contribution matrix.

Due to the advantages of the random-walk approach in deriving evidence streams

we expect that applications such as these would benefit in terms of accuracy from

the implementation of the method described in this paper. The recently updated

PRISMA guidelines [49] require systematic reviewers to assess their body of evidence

for risk of bias. The results of our paper mean that existing software tools to help

researchers make this assessment can now be made more reliable. To this end, we have
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implemented the aggregate hat matrix in netmeta [25], along with the random-walk

approach to proportion contributions, see Section 4.16 in the Appendix for details.

The work described in this article focusses on improving the construction of the

proportion contributions defined in Papakonstantinou et al (2018) [9]. However, other

attempts to quantify the influence of different pieces of evidence in NMA have also

been proposed. In particular, Rücker et al (2020) [50] developed a method for defining

the ‘statistical importance’ of an individual study for a particular NMA estimate. In

this approach, the importance of a study is based on the loss of precision (increase in

variance) in a network estimate when that study is removed from the network. These

values are uniquely defined and have an intuitive interpretation but cannot be expressed

as a relative ‘proportion’. The advantage of our approach is that, along with being

uniquely defined and having an interpretation in terms of a random walk, contributions

can be expressed as proportions that sum to one. As a result, our approach can be

used in software such as CINeMA to illustrate the relative contributions of studies with

varying levels of bias.

4.7.3 Potential future impact

We believe that the analogy between NMA and random walks is interesting and that

it provides new insight into NMA methodology. In our work we have explored the

applications of only a small subset of the random-walk literature; there is, therefore,

scope for the impact of this analogy to be investigated further. We hope that by

presenting this analogy, more ideas will be shared between the two disciplines and

additional practical applications of the random walk-approach will be developed in the

future.

For example, we have looked at the interpretation of the number of times a

walker crosses each edge in the network. However, there is potentially also interest

in investigating the number of times the walker visits each node. The random walk

transition probabilities are proportional to the respective edge weights. Therefore,

a walker is more likely to travel across an edge corresponding to a more precise

treatment effect estimate. The expected number of times a walker visits a certain

node will depend on how many connections the node has, and the weight (i.e. the

inverse variance) associated with each of these connections. A node corresponding to a
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treatment that is involved in many direct comparisons will be visited more often than a

node corresponding to a treatment with comparatively few connections. Furthermore,

the larger the weight associated with the edges connected to a certain node, the more

often the random walker will visit that node. Potentially, this value provides a measure

of vertex centrality that accounts for both connectivity and the precision of treatment

effect estimates. There may also be interest in measuring random walk variation. The

variability in the information gathered along different paths traversed by a walker

moving on the evidence flow network may indicate inconsistency between paths of

indirect evidence. Finally, we may also be able to use the random-walk analogy in the

methodology for planning future studies based on an NMA. By considering a random

walk on the network with the addition of the proposed study, it may be possible to

work out how much the addition of that study will contribute to the overall results.

In summary, by using the analogy to electrical networks as an intermediate step, we

have made a novel connection between NMA and random walks. The interdisciplinary

analogy provides new insight into NMA methodology. In particular, the analogy leads to

an analytical derivation of the proportion contribution matrix without the ambiguity of

existing numerical algorithms. Our approach can therefore be used to reliably quantify

the contribution of individual study limitations to the resulting network treatment

effects. We hope that this paper will provide a starting point for future developments

of NMA methodology that can benefit from ideas in the random-walk literature.

Data Availability Statement

The data, results and associated codes used in this work can be found in the GitHub

repository here https://github.com/AnnieDavies/NMA_and_RW.
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4.8 Appendix A: Frequentist NMA

4.8.1 Standard and graph theoretical approaches (‘reduce

dimensions’ vs. ‘reduce weights’)

4.8.1.1 Standard frequentist NMA

The standard frequentist approach to NMA is a regression analysis [6, 13, 40]. The

method relies on a design matrix X which is constructed to have full rank. Each

ni-arm trial contributes ni − 1 independent observations from which we aim to estimate

N − 1 independent network treatment effects. Therefore, the matrix X has dimensions∑
i(ni − 1) × (N − 1). The ‘global baseline’ treatment is chosen as treatment 1.

Each column of X then refers to a treatment ∈ {2, . . . , N}. The rows represent the

comparisons to the trial-specific baseline in each study. For a given row, the entry in

the column corresponding to the treatment that is compared with the trial-specific

baseline treatment is +1. If the trial specific baseline treatment is not the global

baseline treatment, there is a −1 in the column corresponding to the trial-specific

baseline. All other elements in the row are zero.

The so-called ‘information matrix’ is defined as X⊤V −1X where V is the block-

diagonal variance-covariance matrix. Each trial contributes an (ni − 1) × (ni − 1)

block to V with observed variances on the diagonal and covariances (due to multi-arm

trials) off the diagonal. The inverse of this matrix, V −1, is distinct from the matrix

W in the main text. The latter is a diagonal K × K matrix that contains the weight

associated with each edge in the network after the adjustment for multi-arm trials and

the aggregation of direct estimates.

The hat matrix of the standard model is [8, 39]

H(standard) = X(X⊤V −1X)−1X⊤V −1. (4.28)

4.8.1.2 Graph theoretical approach

Rücker introduced an alternative graph theoretical approach to NMA based on electrical

network theory [7]. This model is formulated around an edge-vertex incidence matrix

B0 with dimensions ∑i
ni(ni−1)

2 × N , where ∑i
ni(ni−1)

2 is the total number of pairwise

comparisons in the network. We write B0 for this matrix to distinguish it from the

234



4.8. Appendix A: Frequentist NMA

(similar) matrix B in the aggregate model described in Section 4.3.2 of the main

paper. Each ni-arm study contributes ni(ni−1)
2 rows to B0. Each column represents a

treatment ∈ {1, . . . , N}. Unlike the design matrix, B0 does not have full rank. Indeed,

the elements in each row of B0 sum to zero [7, 39]. Entries of B0 are +1 in the column

corresponding to the ‘baseline’ treatment of the comparison represented by that row,

and −1 in the column corresponding to the treatment compared to that baseline.

We write W0 for the weight matrix of this model. Again, this is distinct from the

matrix W in the main paper. W0 has dimensions
(∑

i
ni(ni−1)

2

)
×
(∑

i
ni(ni−1)

2

)
and

contains on its diagonal the adjusted weights, wi,ab, defined in the main paper. We

obtain the adjusted weights from a method described in References [7, 39, 42] which

accounts for the correlations introduced by multi-arm trials. An important result of

this method is that the adjusted weights describe the weights associated with a network

of two-arm trials that is equivalent to the original network of multi-arm trials in the

sense that the resulting relative treatment effect estimates from the network of two-arm

trials are the same as those from the original network. By using these weights, we

can therefore apply any NMA methodology that is only valid for networks of two-arm

trials. The hat matrix of this model is,

H(graph) = B0(B⊤
0 W0B0)+B⊤

0 W0. (4.29)

4.8.1.3 ‘Reduce dimension’ vs ‘reduce weights’

The design matrix X contains the same information about the structure of the network

as B0 but has lower dimensions and full rank. For this reason Rücker and Schwarzer

(2014) [39] termed the standard model the ‘reduce dimension’ approach. The alternative

(graph theoretical) method relies on reducing the weights associated with observations

from multi-arm trials. Therefore, this was termed the ‘reduce weights’ approach [39].

In Rücker and Schwarzer (2014) the authors proved that, although their respective

hat matrices are different, the two approaches give rise to the same network treatment

effect estimates and are, therefore, equivalent.
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4.8.2 Two-step models and evidence flow

The concept of evidence flow was introduced by König et al (2013) [8]. Their approach

was based on a two-step, or ‘aggregate’, version of the reduce dimensions (standard)

model [11, 43]:

Step 1. In the first step, evidence from all trials making the same comparisons is

pooled. For two-arm trials, a pairwise meta-analysis is performed. For multi-arm trials

with a particular design, an NMA is performed on the sub-graph described by the

multi-arm design. The results from this first step define the direct evidence.

Step 2. In step two, the direct estimates are used as observations in a linear

regression model.

The hat matrix associated with this model defines the evidence flow. Since the direct

evidence is separated into evidence from two-arm trials and evidence from multi-arm

trials, König et al display the flow through multi-arm trials separately on the evidence

flow networks. The authors note that, with this approach, there is no unique way

to represent evidence flow through multi-arm trials. Furthermore, explicitly showing

multi-arm trials on evidence flow networks becomes increasingly difficult for large,

highly connected networks.

In the main paper, we instead describe a two-step (aggregate) version of the reduce

weights (=graph theoretical) approach. The fact that the reduce weights model defines

a matrix of two-arm trials that is equivalent to the matrix of multi-arm trials makes the

two-step approach simpler. In the first step, we perform a pairwise meta-analysis across

each edge using the adjusted weights. In the second step, we combine this aggregate

(direct) data in a network meta-analysis. This approach yields exactly the same relative

treatment effect estimates as the one-step reduce weights approach and, consequently,

the reduce-dimensions approach. This equivalence also holds true for random effects

models. One then needs to account for heterogeneity, i.e. σ2
i,ab is replaced by σ2

i,ab + τ 2,

before using the adjustment method [7, 39, 42] to obtain the adjusted weights.

For networks containing exclusively two-arm trials, the hat matrices from the two

aggregate models are exactly equal. Therefore, in this scenario, our evidence flow

networks are the same as those defined by König et al [8]. The differences arise in

the presence of multi-arm trials. Our approach does not explicitly show the flow

through multi-arm trials. Instead, the flow through each edge represents the pooled
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contribution from all studies that make that comparison. This is only made possible

by using the reduce weights method to define a network of two-arm trials. Since each

edge is associated with only one value of evidence flow, our approach makes it easier to

construct evidence flow networks for complicated networks, i.e. those with many nodes,

many connections, and many different multi-arm trials. This also makes it possible to

calculate the proportion contribution matrix for networks of multi-arm trials. With the

evidence flow networks defined by König et al [8], this was not possible as the presence

of multi-arm trials meant there were multiple values of flow associated with each edge.

4.9 Appendix B: Hat matrix for the fictional exam-

ple

For the fictional example in Figure 4.2, the aggregate weight matrix is

W = diag(1, 3, 4, 6, 5, 2, 7).

From Equation (4.3) in the main paper we recall that the edge incidence matrix is

B =



1 −1 0 0 0

1 0 −1 0 0

1 0 0 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 0 1 0 −1

0 0 0 1 −1



, (4.30)

where the columns represent treatments 1, 2, 3, 4, and 5, and the rows represent the

edges (direct comparisons) 1-2, 1-3, 1-5, 2-3, 2-4, 3-5, and 4-5. The hat matrix is

calculated using

H = B(B⊤WB)+B⊤W , (4.31)
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which is Equation (4.5) in the main paper. The resulting matrix, with values quoted

to 2 decimal places, is

H =



0.21 0.40 0.39 −0.46 −0.33 −0.07 −0.33

0.13 0.53 0.33 0.28 −0.14 −0.19 −0.14

0.10 0.25 0.65 −0.09 0.19 0.16 0.19

−0.08 0.14 −0.06 0.74 0.18 −0.12 0.18

−0.07 −0.09 0.15 0.22 0.72 0.13 −0.28

−0.03 −0.28 0.32 −0.37 0.33 0.35 0.33

−0.05 −0.06 0.11 0.16 −0.20 0.09 0.80



, (4.32)

where the rows and columns represent the edges (direct comparisons) 1-2, 1-3, 1-5,

2-3, 2-4, 3-5, and 4-5. Figure 4.2 (b) in the main paper shows the evidence flow

network for comparison 1-2, as indicated by the values in the first row of the matrix in

Equation (4.32).

4.10 Appendix C: Further comments on choice of

coefficients f
(ab)
cd and interpretation of evidence

flow

4.10.1 Convention for coefficients f
(ab)
cd

For each pair of nodes c and d, one of the coefficients f
(ab)
cd and f

(ab)
dc in Equation (4.6)

of the main paper is positive, and the other is zero. The coefficients fulfill the relations

labelled 1, 2 and 3 in Section 4.3.4 of the main paper. These properties in turn suggest

that the positive coefficients f
(ab)
cd have an interpretation as flows. Property 3 for

example states that the sum of inflows equals the sum of outflows at nodes other than

a and b.

Alternatively, one could have chosen a convention in which f
(ab)
cd = −f

(ab)
dc for all

pairs c and d. This is the choice made in König et al (2013) [8] and is perhaps more

in-line with an expectation that the flow from c to d ought to be the negative of the

flow from d to c. It is important to note though, that these options are alternative, but

ultimately equivalent, parameterisations of the same problem. It is purely a matter of
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choice and convenience which one to use.

Our choice follows the conventions in Papakonstantinou et al (2018) [9]. For each

pair cd there is then only one non-zero flow variable. This minimises the number

of relevant quantities in the ensuing equations. This in turn makes the definitions

of the transition rates U
(ab)
cd in Equation (4.20) straightforward. These have to be

non-negative.

The broader idea is that for each pair c and d only one flow is non-zero, that from

c to d, or that from d to c. Which one it is indicates the direction of the flow. The

positive value of that flow variable describes the magnitude of the flow.

4.10.2 Interpretation of evidence flow

We adopted the term ‘evidence flow’ from existing literature [8, 9]. Although the term

has been in use for a number of years, we find it hard to extract from the existing

literature what exactly is the nature of these flows. For example, it is not easy to

pinpoint what precisely the word ‘evidence’ means in mathematical terms. Neither is

it immediately clear how evidence can be located at a node, and how it then ‘flows’

from one node to another. Nevertheless, it is apparent that the three properties of the

coefficients f
(ab)
cd in Section 4.3.4 of the main paper (previously stated by König et al

[8]), describe properties that one would associate with a flow.

The random-walk picture developed in this paper can contribute to developing a

better understanding of what exactly it is that is flowing. Namely, it is random walkers

starting at a and ending at b that ‘flow’ along the network based on the rules defined

by the transition matrix T defined in Equation (4.12) of the main manuscript. More

precisely, when the coefficient f
(ab)
cd is positive, it captures the net number of times a

walker starting at a and ending at b passes through the edge cd. All walkers start at

a and end at b. For such a walker, the net number of departures out of node a must

be one (property 1 in Section 4.3.4), and the net number of arrivals into b is also one

(property 2). No walkers can be created or destroyed at any of the other nodes, and

neither can they remain indefinitely at any of these nodes. Therefore the total number

of times the walker arrives at any node other than a and b is the same as the number

of times it leaves that node. This is what property 3 in Section 4.3.4 describes.
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Figure 4.8: Meta-analytic graph of the example in Figure 4.5 (a). We focus on the
comparison between treatments 1 and 2, as indicated by the blue striped colour of the nodes
representing these treatments. Arrows show the sign conventions for the direction of evidence
flow. Direct evidence for the relative treatment effects from the trial data are also indicated
next to each comparison.

4.11 Appendix D: Heuristic argument for proper-

ties of the hat matrix and evidence flow

In this section we give a brief heuristic argument for the properties of the hat matrix

in Section 4.3.4 of the main paper. These properties were stated in König et al (2013)

[8], an algebraic proof for some of the properties was given in Papakonstantinou et

al (2018) [9]. We present our argument using the example in Figure 4.5 of the main

paper, but this can be generalised to more complex networks.

The network in Figure 4.5 (a) is the evidence flow network for the comparison

between treatments 1 and 2. It contains four nodes. For illustration and to fix sign

conventions for the flow of evidence, the network is shown again in Figure 4.8. Without

loss of generality we assume that the direction of all edges are chosen such that

H
(1-2)
cd > 0 for all edges cd shown in Figure 4.8. This means that f

(1-2)
cd = H

(1-2)
cd for all

cd.

The three properties in Section 4.3.4 translate into

1. f
(1-2)
1-2 + f

(1-2)
1-3 = 1;

2. f
(1-2)
1-2 + f

(1-2)
3-2 + f

(1-2)
4-2 = 1;

3. f
(1-2)
1-3 = f

(1-2)
3-2 + f

(1-2)
3-4 and f

(1-2)
3-4 = f

(1-2)
4-2 .

We address these one-by-one. To do this we use Equation (4.7) from the main paper,

f
(1-2)
cd = H

(1-2)
cd , and the above sign convention to note that
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θ̂net
1-2 = f

(1-2)
1-2 θ̂dir

1-2 + f
(1-2)
1-3 θ̂dir

1-3 + f
(1-2)
3-2 θ̂dir

3-2 + f
(1-2)
4-2 θ̂dir

4-2 + f
(1-2)
3-4 θ̂dir

3-4. (4.33)

4.11.1 f
(1-2)
1-2 + f

(1-2)
1-3 = 1

Imagine we have one set of direct estimates,

θ̂dir = (θ̂dir
1-2, θ̂dir

1-3, θ̂dir
3-2, θ̂dir

3-4, θ̂dir
4-2), (4.34)

resulting in a network estimate θ̂net
1-2 via Equation (4.33).

Imagine now a different set of direct estimates

θ̂′dir = (θ̂′dir
1-2 , θ̂′dir

1-3 , θ̂′dir
3-2 , θ̂′dir

3-4 , θ̂′dir
4-2 ), (4.35)

such that

θ̂′dir
1-2 = θ̂dir

1-2 + ∆,

θ̂′dir
1-3 = θ̂dir

1-3 + ∆,

θ̂′dir
3-2 = θ̂dir

3-2,

θ̂′dir
3-4 = θ̂dir

3-4,

θ̂′dir
4-2 = θ̂dir

4-2. (4.36)

We write θ̂′net
1-2 for the network estimate from the dataset θ̂′dir.

Using the sign convention in which θ̂dir
cd denotes the effect of treatment d minus

that of c, Equation (4.36) indicates that the direct effect of treatment 2 compared

to treatment 1 in the dataset θ̂′dir is ∆ units greater than in dataset θ̂dir. Similarly,

the relative effect of treatment 3 relative to treatment 1 is ∆ units higher. Given

that treatments 2 and 3 are the only ones treatment 1 is compared to directly in this

network (see Figure 4.8) we would then expect

θ̂′net
1-2 = θ̂net

1-2 + ∆. (4.37)

Using Equation (4.33) and its analogue for the dashed treatment effects, we find

θ̂′net
1-2 − θ̂net

1-2 = ∆
(
f

(1-2)
1-2 + f

(1-2)
1-3

)
, (4.38)

and we therefore conclude

f
(1-2)
1-2 + f

(1-2)
1-3 = 1. (4.39)
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4.11.2 f
(1-2)
1-2 + f

(1-2)
3-2 + f

(1-2)
4-2 = 1

We again imagine a second set of data, now with

θ̂′dir
1-2 = θ̂dir

1-2 + ∆,

θ̂′dir
1-3 = θ̂dir

1-3,

θ̂′dir
3-2 = θ̂dir

3-2 + ∆,

θ̂′dir
3-4 = θ̂dir

3-4,

θ̂′dir
4-2 = θ̂dir

4-2 + ∆. (4.40)

This means that treatment 2 is now consistently doing better (or consistently doing

worse) by ∆ units in relation to all treatments it is compared to directly in the network.

The overall effect of this must be that

θ̂′net
1-2 = θ̂net

1-2 + ∆, (4.41)

i.e. the effect of treatment 2 relative to that of treatment 1 is now ∆ units greater.

Using again Equation (4.33) for the data sets θ̂dir and θ̂′dir respectively, we now have

θ̂′net
1-2 − θ̂net

1-2 = ∆
(
f

(1-2)
1-2 + f

(1-2)
3-2 + f

(1-2)
4-2

)
, (4.42)

from Equation (4.40). Therefore

f
(1-2)
1-2 + f

(1-2)
3-2 + f

(1-2)
4-2 = 1. (4.43)

4.11.3 f
(1-2)
1-3 = f

(1-2)
3-2 + f

(1-2)
3-4 and f

(1-2)
3-4 = f

(1-2)
4-2

The first of these identities can be shown by looking at

θ̂′dir
1-2 = θ̂dir

1-2,

θ̂′dir
1-3 = θ̂dir

1-3 − ∆,

θ̂′dir
3-2 = θ̂dir

3-2 + ∆,

θ̂′dir
3-4 = θ̂dir

3-4 + ∆,

θ̂′dir
4-2 = θ̂dir

4-2, (4.44)

and by realising that this means that treatment 3 now performs ∆ units worse (or

better) compared to all treatments it is directly compared to. This cannot affect the
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network estimate of the treatment effect of 2 compared to 1, i.e. we expect θ̂′net
1-2 = θ̂net

1-2 .

This leads to f
(1-2)
1-3 = f

(1-2)
3-2 + f

(1-2)
3-4 .

The identity f
(1-2)
3-4 = f

(1-2)
4-2 can be demonstrated in a similar way.

4.12 Appendix E: Electric current and evidence

flow

In this section we demonstrate the relationship between electrical current and evidence

flow. Consider an electrical network with N nodes and K edges. We define the vector of

nodal or ‘external’ currents as J = (J1, J2, . . . , JN )⊤. These represent currents flowing

between a node of the network and an external sink or source. Our sign convention is

such that a positive entry Ja > 0 indicates that a current goes into node a, whereas if

Ja < 0, a current goes out of node a. We write I = (I1, I2, . . . , IK)⊤ for the currents in

the edges k = ab, k = 1, 2, . . . , K. A positive value of Iab indicates a flow of current

from a to b, and we set Iba = −Iab.

We define V = {Vab} as the vector of voltages (potential differences) across the

edges. That is, Vab = va − vb where va and vb are the potentials at nodes a and b

respectively. Ohm’s law [51] can then be written as

I = CV , (4.45)

where C is the K × K diagonal matrix of conductances (inverse resistances, Cab =

(Rab)−1). Using this and Kirchhoff’s laws, Rücker [7] demonstrated that V can be

written as

V = B(B⊤CB)+J , (4.46)

where B is the edge-incidence matrix of the network defined in Section 4.3 of the main

paper. Substituting this into Ohm’s Law (Equation (4.45)) yields the edge currents,

I = CB
(
B⊤CB

)+
J . (4.47)

To make the analogy to evidence flow, we consider an electrical network with a

battery attached across the nodes corresponding to the treatment comparison we are
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interested in. For comparison ab the external current at node a is Ja = +1, at b we

have Jb = −1. The current Jc at every other node c /∈ {a, b} is zero.

We can do this in turn for each of the K edges in the network. For convenience we

label these k = 1, . . . , K. We write J (k) for the vector of nodal currents resulting in a

situation where the battery is connected to the start and end points of edge k.

We then have K relations of the form in Equation (4.47),

I(k) = CB
(
B⊤CB

)+
J (k). (4.48)

We collect the internal currents I(k) in a K × K matrix Ĩ =
(
I(1) I(2) . . . I(K)

)
.

Similarly, we define the N × K matrix J̃ =
(
J (1) J (2) . . . J (K)

)
. We then have

Ĩ = CB
(
B⊤CB

)+
J̃ . (4.49)

As an example, consider a simple network of three nodes 1,2,3 and where all possible

edges (1-2, 1-3, 2-3) are present. Let k = 1 represent the edge 1-2, k = 2 represent 1-3,

and k = 3 represent 2-3. The matrix of nodal currents is then

J̃ =


1 1 0

−1 0 1

0 −1 −1

 . (4.50)

Each row of J represents a node, and each column represents a different placement

of the battery. The first column corresponds to a battery attached across edge 1-

2. Therefore, there is a +1 in the row corresponding to node 1, a −1 in the row

corresponding to node 2 and a 0 for node 3. Similar reasoning is used to construct the

other columns.

From this construction, it is clear that the matrix of nodal currents for this setup is

equal to the transpose of the edge incidence matrix,

J̃ = B⊤. (4.51)

We can write the resulting matrix of edge currents in terms of its composite elements,

Ĩ =


I

(1-2)
1-2 I

(1-3)
1-2 I

(2-3)
1-2

I
(1-2)
1-3 I

(1-3)
1-3 I

(2-3)
1-3

I
(1-2)
2-3 I

(1-3)
2-3 I

(2-3)
2-3

 , (4.52)
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where I
(ab)
cd is the current through edge cd when a battery is attached across edge ab.

In the evidence flow analogy, we interpret the flow of current I
(ab)
cd as the flow of

evidence through edge cd for the network comparison ab. If the analogy holds (a

proof follows below), we can write the elements of the hat matrix in terms of the edge

currents. For the simple example above we have

H =


I

(1-2)
1-2 I

(1-2)
1-3 I

(1-2)
2-3

I
(1-3)
1-2 I

(1-3)
1-3 I

(1-3)
2-3

I
(2-3)
1-2 I

(2-3)
1-3 I

(2-3)
2-3

 . (4.53)

From Equations (4.52) and (4.53), it is clear that we need to prove that Ĩ⊤ = H .

We now do this for a general setup. Taking the transpose of Equation (4.49), we

find

Ĩ⊤ = J̃⊤
(
(B⊤CB)+

)⊤
B⊤C⊤. (4.54)

From the definition of the pseudo-inverse it is possible to show that (A+)⊤ = (A⊤)+

for a general matrix A (see Stoer and Bulirsch (2002) [52]). Using J̃ = B⊤ and the

fact that matrices C and L = B⊤CB are symmetric (C⊤ = C and L⊤ = L) we find

Ĩ⊤ = B
(
B⊤CB

)+
B⊤C. (4.55)

We now recall that the hat matrix of the aggregate model is (see Equation (4.5) in the

main paper)

H = B(B⊤WB)+B⊤W . (4.56)

The weight associated with each edge in the aggregate network wab is given by the

conductance (=inverse resistance) of that edge Cab = R−1
ab , see Section 4.4.1 in the

main paper. The matrices W and C contain these weights and conductances on their

respective diagonals (W = diag(wab) and C = diag(Cab)), and we therefore have

C = W . (4.57)

Substituting this into Equation (4.55), we find

Ĩ⊤ = H , (4.58)

which is what we wanted to prove.
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4.13 Appendix F: Random walks and electric net-

works

In this section, we demonstrate the relationship between electric current and random

walks. This relationship is well known [37], and we include it here for completeness.

4.13.1 Dirichlet problem for electric circuits

We start from Ohm’s law. Rather than using matrix notation as in Section 4.12, we

formulate Ohm’s law for the current Icd in the edge cd,

Icd = Ccd(vc − vd), (4.59)

where vc and vd are the potentials at nodes c and d respectively. We have used the

sign conventions of Doyle and Snell (2000) [37] to define the direction of current. As

mentioned above we have Icd = −Idc.

In this section we focus on the scenario where a unit current flows into node a (from

the exterior) and out of node b (to the exterior). No flows between the network and

the exterior are possible at any other nodes. To create such a situation we imagine a

battery connected to nodes a and b. The potential at b is set to zero, and that at a is

va = v∗
a, with v∗

a such that the external current into a is equal to unity (the external

current out of b is then also equal to unity). The asterisk indicates the choice of va

resulting in a unit current into a. An illustration of this setup is shown in Figure 4.3

(b) in the main paper.

We use the superscript (ab) to indicate a battery attached across ab as described

above, that is, we use I
(ab)
cd . Kirchhoff’s law states that the total current at any node

c ̸= a, b is zero,

∑
d

I
(ab)
cd = 0 ∀c ̸= a, b. (4.60)

Substituting Equation (4.59) into Equation (4.60) and rearranging yields for c ̸= a, b

vc =
∑

d

Ccd∑
x Ccx

vd =
∑

d

vdTcd, (4.61)

where we have used the definition of transition probabilities in Equation (4.8) in the

main paper.
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One can define a Laplacian matrix for this setup, L(ab) = 1 − T (ab), where 1 is the

identity matrix [33]. A twice continuously differentiable function f : c 7→ fc is then

called harmonic if it satisfies the Laplace equation [53], L(ab)f = 0.

Equation (4.61) indicates that the function c 7→ vc is harmonic at all points c ≠ a, b.

It also has boundary values at a and b: va = v∗
a is chosen such that the current going

into node a from the exterior is one, and we have vb = 0. This constitutes a Dirichlet

problem [34]. The uniqueness principle for Dirichlet problems then implies that vc is

uniquely determined for all c, given the boundary conditions at a and b. For further

details see Doyle and Snell (2000) [37].

4.13.2 Dirichlet problem for random walks

We will now show that a quantity related to the expected net number of times a

random walker visits a particular node c while travelling from a to b fulfills the same

Laplace equation, and shares the same boundary conditions as the electric potentials

in Section 4.13.1. The uniqueness of the solution of the Dirchlet problem then allows

one to establish the analogy between electric networks and random walks. We now

describe this in more detail.

We consider a walker starting at node a and reaching absorption when it arrives at

node b. We write uc for the expected number of times the walker visits node c before

reaching b (with the convention that the final arrival at b does not constitute a visit to

b, i.e. we have ub = 0). The following relation then holds for c ̸= a, b,

uc =
∑

d

udTdc. (4.62)

This equation can be understood as follows: In order to arrive at node c the walker

must previously visit a neighbouring node d. The quantity ud is the expected number

of times this occurs. From such a node d the walker must then transition to c to

contribute to uc. This occurs with probability Tdc. Summing over all d results in

Equation (4.62).

Equation (4.62) is of a similar form to Equation (4.61) in the electrical network.

However Tdc appears on the right-hand side of Equation (4.62), whereas one has Tcd in

Equation (4.61). We therefore write Tdc in terms of Tcd. Using Equation (4.8) from the
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main paper, the definition Cab = R−1
ab , and the fact that Ccd = Cdc, we find

Tdc = Tcd
∑

x Ccx∑
x Cdx

. (4.63)

Substituting this into Equation (4.62) and re-arranging gives

uc∑
x Ccx

=
∑

d

ud∑
x Cdx

Tcd. (4.64)

Therefore, the object c 7→ uc/(∑x Ccx) is harmonic at all points c ̸= a, b. Given that

ub = 0, we have the boundary condition ub/(∑x Cbx) = 0. We note that Equation (4.64)

and the boundary condition ub = 0 can be derived for any quantity u that is proportional

to the number of visits at the different nodes. The Laplace equation and the boundary

condition therefore only fix uc up to a factor. The uniqueness theorem for the Dirichlet

problem also confirms that uc/(∑x Ccx) is proportional to vc from Section 4.13.1 for all

c. The constant of proportionality is fixed by the boundary condition for ua.

We now show that the choice ua = (∑x Cax)v∗
a (with v∗

a as in Section 4.13.1) is

required if we want uc to be the expected number of times a walker starting at a visits

node c before it reaches b. This choice implies

vc = uc∑
x Ccx

(4.65)

for all c ̸= a, b by virtue of the uniqueness theorem, and using Equations (4.61) and

(4.64). In other words, uc/(∑x Ccx) is then not only proportional to vc, but identical

to vc for all c.

We now prove that this is the appropriate choice. All we need to check is that the

normalisation of the uc is consistent with the interpretation of uc as the number of

times the walker visits node c. To do this we keep in mind that the walker starts at a

and finishes at b. Over the course of the walk returns to node a are possible. The net

number of times the walker leaves node a however must be one, given that it starts at

a and ends at b (this is the number of times the walker leaves a minus the number of

times it arrives at a, not counting the initial placement of the walker at a). If uc is

the number of times a walker visits c during the walk, then the expected net number

of departures from node c is given by ∑
d(ucTcd − udTdc). Therefore we must have∑

c(uaTac − ucTca) = 1. This condition is necessary for the correct normalisation of

the uc, and it is also sufficient to verify that the boundary condition ua = (∑x Cax)v∗
a

delivers this. This is what we will do next.
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The boundary condition ua = (∑x Cax)v∗
a leads to Equation (4.65) as explained

above. Substituting Equation (4.65) into Ohm’s law (Equation (4.59)), we find

I
(ab)
cd = Ccd

(
uc∑
x Ccx

− ud∑
x Cdx

)
(4.66)

= uc
Ccd∑
x Ccx

− ud
Cdc∑
x Cdx

, (4.67)

where, in the second step, we have used Ccd = Cdc. Finally, using Equation (4.8), we

find

I
(ab)
cd = ucTcd − udTdc. (4.68)

The setup in Section 4.13.1 is such that the current into node a (from the exterior) is

equal to one. This means that the total current from node a to all its neighbours in the

network is also one, ∑c I(ab)
ac = 1. We conclude that ∑c(uaTac − ucTca) = 1, confirming

the correct normalisation of the uc.

In Section 4.14 we show how to obtain these edge currents analytically.

4.14 Appendix G: Calculating the flow of evidence

using the random walk approach

4.14.1 Details of the calculation

The interpretation of the flow of evidence as a random walk can be stated as follows:

For the network comparison of treatments a and b, the hat matrix element H
(ab)
cd that

defines the flow of evidence through the direct comparison cd (via Equation (4.6) in the

main paper) is equal to the expected net number of times a random walker, starting at

a on the aggregate NMA network and walking until it reaches b, moves along the edge

from c to d.

In Section 4.4.3 of the main paper we demonstrated how to construct a transition

matrix for a random walker on the aggregate network. For a particular comparison

ab, we can use the transition matrix T (ab) to simulate a large ensemble of independent

random walkers on the aggregate network starting their journey at a and stopping

once they reach b. For each walker we count the number of times it moves across the

different network edges in each direction. From this, we find the net number of times
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the walker moves along a particular edge. By averaging these values over all of the

simulated random walkers, we obtain an estimate of the evidence flow network for this

comparison. The more walkers we simulate, the better our estimate of the evidence

flow.

By using the analogy between random walks and electrical networks, we can also

obtain an analytical result for the evidence flow. To do so we make use of the equations

in Section 4.13. First, we apply a 1 volt battery between nodes a and b so that the

voltage at a is va = 1 and at b is vb = 0. With these boundary conditions we then solve

the simultaneous equations described by Equation (4.61),

vc =
∑

d

vdTcd, (4.69)

to obtain the nodal voltages, vc, for all nodes c ̸= a, b. Using Ohm’s law, we find the

edge currents for the case of a 1 volt battery,

I ′(ab)
cd = Ccd(vc − vd) = wcd(vc − vd), (4.70)

these are indicated by I ′(ab)
cd to distinguish them from the normalised currents I

(ab)
cd in

Section 4.13. In Equation (4.70) we have used the fact that the conductance of edge cd

is equal to the aggregate weight associated with that edge, Ccd = wcd. To make the

analogy to evidence flow we require that the total external current flowing into node a

is 1. Therefore, to obtain the required currents we must normalise the currents I ′(ab)
cd

by dividing through by the total current flowing into a when va = 1, that is

I
(ab)
cd = I ′(ab)

cd∑
x I ′(ab)

ax

. (4.71)

As shown in Section 4.13, these currents are equal to the expected net number of times

a random walker crosses each edge cd. Therefore, from Equation (4.71) we obtain

an analytical expression for the evidence flow network in terms of random walkers as

follows:

H
(ab)
cd = N

(ab)
cd = wcd(vc − vd)∑

x wax(va − vx) , (4.72)

and f
(ab)
cd is obtained from H

(ab)
cd via Equation (4.6). The potentials vx are obtained

from Equation (4.69).
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4.14.2 Implementing the calculation

The above calculation can be written as a linear equation in matrix form. We provide

this notation as it is useful for implementation. As above, we focus on the comparison

ab in a network of N nodes such that our initial boundary conditions are va = 1 and

vb = 0. From Equation (4.69) we write, for c ̸= a, b,

vc =
∑

d

vdTcd = Tca +
∑

d̸=a,b

vdTcd, (4.73)

where we have inserted the known potentials, va = 1 and vb = 0. Using the fact that

Tcc = 0 (for c ̸= b) we eliminate the term d = c on the right-hand side, and obtain

vc −
∑

d̸=a,b,c

vdTcd = Tca (4.74)

for c ̸= a, b. We collect the potentials vc, c ̸= a, b in a vector vred of length N − 2.

This is the vector of unknown potentials we wish to calculate. Similarly, we write the

transition probabilities Tca, c ̸= a, b as an (N − 2)-vector, T (ab)
·a . Therefore, we re-write

Equation (4.74) in matrix form as

(1 − T
(ab)
red )vred = T (ab)

·a (4.75)

where 1 is the (N − 2) × (N − 2) identity matrix, and T
(ab)
red is a reduced version of T (ab)

obtained from the full N × N transition matrix by removing the rows and columns

corresponding to nodes a and b.

We then solve this equation for the vector of unknown potentials,

vred = (1 − T
(ab)
red )−1T (ab)

·a . (4.76)

To obtain the full vector v of the potentials at all nodes, we use the fact that va = 1

and vb = 0 and the entries of vred.

The set of potential differences vc − vd in Equation (4.70) is then obtained by

applying the edge-vertex incidence matrix to the vector of potentials, Bv. Finally,

multiplying by the weight matrix, W , we obtain the vector of non-normalised edge

currents (Equation (4.70) in matrix notation),

I ′(ab) = WBv. (4.77)
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The normalised currents are then found by dividing through by the total current flowing

from node a into the network,

I(ab) = 1∑
x I ′(ab)

ax

I ′(ab)
. (4.78)

4.15 Appendix H: Application to real data

4.15.1 Evidence flow from hat matrix

The edge-vertex incidence matrix for the aggregate network of the depression data set

(see Figure 4.6 in the main paper) is

B =

1 2 3 4 5 6 7 8 9 10 11



1-3 1 0 −1 0 0 0 0 0 0 0 0

1-6 1 0 0 0 0 −1 0 0 0 0 0

1-7 1 0 0 0 0 0 −1 0 0 0 0

1-9 1 0 0 0 0 0 0 0 −1 0 0

1-11 1 0 0 0 0 0 0 0 0 0 −1

2-6 0 1 0 0 0 −1 0 0 0 0 0

2-8 0 1 0 0 0 0 0 −1 0 0 0

2-11 0 1 0 0 0 0 0 0 0 0 −1

3-4 0 0 1 −1 0 0 0 0 0 0 0

3-5 0 0 1 0 −1 0 0 0 0 0 0

3-6 0 0 1 0 0 −1 0 0 0 0 0

3-9 0 0 1 0 0 0 0 0 −1 0 0

4-9 0 0 0 1 0 0 0 0 −1 0 0

5-9 0 0 0 0 1 0 0 0 −1 0 0

6-7 0 0 0 0 0 1 −1 0 0 0 0

6-8 0 0 0 0 0 1 0 −1 0 0 0

6-9 0 0 0 0 0 1 0 0 −1 0 0

6-11 0 0 0 0 0 1 0 0 0 0 −1

7-9 0 0 0 0 0 0 1 0 −1 0 0

7-10 0 0 0 0 0 0 1 0 0 −1 0

(4.79)
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where we have labelled the columns by the treatment and the rows by the direct

treatment comparison that they represent. From the depression data (see Rücker and

Schwarzer (2014) [39]) we obtain the adjusted weights using the adjustment method

for multi-arm trials (see Refs. [7, 39, 42]). Using these weights, and Equations (4.1)

and (4.2) in the main paper, we perform a pairwise meta-analysis across each edge.

The resulting aggregate weight matrix W is given in Equation (4.81) on page 254. We

have labelled the rows and columns by their respective direct treatment comparison.

The values are rounded to 3 decimal places.

The hat matrix of the aggregate model is calculated using

H = B(B⊤WB)+B⊤W . (4.80)

The resulting H matrix for the depression data set is given in Equation (4.82) on page

255. The numerical values for the matrix entries are shown to 3 decimal places. The

rows and columns are labelled by the treatment comparison they represent. The first

row of the hat matrix refers to the network comparison of treatments 1 and 3. By

comparing this row to Figure 4.7 in the main text, it is clear that the evidence flow

network defined by the hat matrix is equivalent to the evidence flow network obtained

from the random-walk approach.
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4.16 Appendix I: Implementation in netmeta

Here we outline how to use the updated netmeta package to obtain the results in this

manuscript.

To obtain the aggregate hat matrix from Equation (4.5) for a netmeta object net1

use:

HatAgg <- hatmatrix(net1, method = "Davies", type = "short")

then the hat matrix for the fixed effect model is HatAgg$fixed and for the random

effect model it is HatAgg$random.

To obtain the proportion contribution matrix using the random-walk method use:

cont.rw <- netcontrib(net1, method = "randomwalk",

hatmatrix.F1000 = FALSE)

The argument hatmatrix.F1000 = FALSE is the default but we include it here for

transparency. As before, the fixed effect result is obtained from cont.rw$fixed and

the random effect result from cont.rw$random.

To obtain the proportion contribution matrix using the Shortest algorithm (from

Papakonstantinou et al (2018) [9]) use:

cont.sp <- netcontrib(net1, method = "shortestpath",

hatmatrix.F1000 = FALSE)

Again, the fixed effect result is obtained from cont.sp$fixed, the random effect result

from cont.sp$random and hatmatrix.F1000 = FALSE is the default argument.

If you wish to obtain results consistent with the original implementation of the

algorithm in Papakonstantinou et al (2018) [9] set the argument hatmatrix.F1000 =

TRUE as this uses the hat matrix which doesn’t take into account multi-arm trials. This

is not recommended in general but may be useful for reproducibility.
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Chapter 5

Introduction to Survival Analysis

The research project to be presented in Chapter 6 is on the topic of survival analysis.

In this chapter we give a short introduction to some of the main concepts in survival

analysis in order to bridge the gap between the projects. A number of relevant technical

concepts, such as linear regression models and maximum likelihood, have already been

introduced in the context of network meta-analysis. Most of the required mathematical

details are provided in Chapter 6 and its accompanying appendices.

We do not aim to give a comprehensive overview of survival analysis in this chapter.

Instead we present the main concepts that are relevant to the work in Chapter 6.

5.1 Time-to-event data

Survival analysis refers to a collection of statistical techniques for the analysis of data

where the outcome of interest is the time until an event occurs [1–3]. This type of

analysis appears in a number of areas such as engineering [4] (where one is interested

in the lifetime of industrial components), and economics [5] (where events of interest

include job acquisition, retirement or failure of a business). We focus on survival

analysis in the context of medical research. Here, the subjects under study are patients

with a particular condition, and the typical outcome is death or some other event

connected to the condition such as a heart attack, stroke or relapse of cancer. The

event times of each individual in the data set (i = 1, . . . , N) are considered to be

independent of each other. These observed event times are used to fit a survival model.

A key aim of survival analysis is then to make predictions about the probability that
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some patient or patients who are not part of data set used to fit the model survive to a

particular time.

5.2 Censoring

A key feature of survival data is that not all individuals in the sample are observed

to experience the event during the course of the study. Therefore, the event times

of these individuals are unknown and the data is said to be ‘censored’. The most

common type of censoring is so-called ‘right censoring’. This can occur in a number

of ways, for example (i) studies do not proceed indefinitely and usually have a set

end-date, meaning an individual may not have experienced the event by this date,

(ii) the individual may be lost to follow-up (i.e. the researchers lose contact with the

individual over the course of the study, perhaps due to withdrawal from the trial), or

(iii) the individual experiences another event that makes further follow-up impossible

(e.g. if the event of interest is a heart attack but the patient dies from some other

unrelated cause before the end of the study) [1, 2]. With this type of censoring we

have a lower-bound estimate for the event time. That is, we know that the true event

time is later than the censoring time.

Other mechanisms for censored data include ‘left’ and ‘interval’ censoring. Left

censoring is the least common in practice and refers to data in which the event occurs

before the period of observation [6]. For example, if one is interested in the time it

takes students in a class to learn a particular task, those who already know how to

do the task before the beginning of the study are left censored. In the case of interval

censored data, the available information is that the event occurred within a certain

time window. For example, if the event is the relapse of a cancer, occurrence of the

event can only be identified at discrete follow-up appointments (i.e. when a doctor

makes a diagnosis). This means that once recurrence is observed, all we know is that

the event time was some point between the previous appointment and the current one.

The different types of censoring are illustrated in Figure 5.1.

Standard survival analysis methods assume that the censoring mechanism is non-

informative [1, 3]. In other words, the fact that an individual is censored contains no

information about the subsequent survival of that patient. Informative censoring may
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5.3. Survival and hazard function

Figure 5.1: An illustration of the different censoring mechanisms. The individual experiences
no censoring if the event of interest is observed within the time frame of the study. Right
censoring occurs either when the event happens after the period of observation, or if the
individual experiences a censoring event (such as withdrawal from the trial) during the study.
An individual is left censored if the event happens before the period of observation. Interval
censoring occurs when the event status is only observed at discrete times. In this scenario,
the event time is not observed precisely but is known to occur within a certain time window.

occur, for example, if a patient withdraws from the study due to a worsening of the

condition.

Censoring is a characteristic feature of time-to-event data that calls for specialised

methods of analysis [1, 7]. Even when the censoring mechanism is said to be ‘non-

informative’ the censoring time carries information about the survival of the patient.

Therefore, in survival models individuals for whom the outcome is not observed are still

involved in the analysis [6]. In our work we consider non-informative right censoring

only.

5.3 Survival and hazard function

Of primary interest in survival analysis is the survival function, S(t). For some specified

time t relative to the time origin (t = 0), this is defined as the probability of survival

to at least time t. Equivalently, it is the probability that the event occurs after time t,

S(t) = P (T > t), (5.1)

where T is a random variable representing the event time. Fitting a survival function to

the time-to-event data provides a crucial summary of the survival of the study cohort
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which can then be used to make survival predictions about other individuals. The

survival function has the following properties; (i) the probability of survival at the

time origin is one, S(0) = 1, (ii) it is a non-increasing function, S(t′) ≤ S(t) if t′ ≥ t,

and (iii) the probability of survival approaches zero for large times, lim
t−→∞

S(t) = 0 (i.e.

if uncensored, everyone will eventually experience the event) [2, 3]. We note that (i)

and (ii) are mathematical necessities, whereas (iii) is an assumption. For the standard

approaches described here, it is also assumed that each patient can only experience the

event once. An example of a survival function is shown in Figure 5.2 (b).

Another important function related to survival is the hazard rate, h(t). This is

defined as the probability per unit time that the event occurs at time t, given that no

event has occurred prior to this time,

h(t) = lim
∆t−→0

[
P (t < T ≤ t + ∆t|T > t)

∆t

]
. (5.2)

It can be thought of as the instantaneous event rate for an individual who has already

survived to time t [1, 2].

While the hazard describes the instantaneous potential of an event occurring, the

survival function is the cumulative probability that no event has happened by a given

time. The two are intrinsically related via

S(t) = e−
∫ t

0 h(t′)dt′
. (5.3)

The hazard function is then a vehicle through which we can model the survival function

[1]. We derive this expression in the following section.

5.3.1 The relation between survival function and hazard rate

To derive the relation in Equation (5.3), we define the probability that the event occurs

by time t as F (t) = P (T ≤ t) = 1 − S(t). Defining p(t) as the probability density of

event times, we can write

F (t) =
∫ t

0
p(t′)dt′. (5.4)

We then turn to the numerator in Equation (5.2). Using the expression for condi-

tional probabilities, P (A|B) = P (A,B)
P (B) , we find

h(t) = lim
∆t−→0

[
P (t < T ≤ t + ∆t)

∆t S(t)

]
, (5.5)
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5.4. Non-parametric survival model: Kaplan-Meier

Figure 5.2: (a) An example of a (fictional) hazard function h(t) with (b) its corresponding
survival function S(t), and (c) its probability density of event times, p(t).

where we have used P (t < T ≤ t+∆t, T > t) = P (t < T ≤ t+∆t) and P (T > t) = S(t).

Evaluating the numerator in Equation (5.5) gives

P (t < T ≤ t + ∆t) =
∫ t+∆t

t
p(t′)dt′

=
∫ t+∆t

0
p(t′)dt′ −

∫ t

0
p(t′)dt′

= F (t + ∆t) − F (t), (5.6)

such that

h(t) = lim
∆t−→0

[
F (t + ∆t) − F (t)

∆t

]
1

S(t) = dF (t)
dt

1
S(t) . (5.7)

Given Equations (5.4) and (5.7), the distribution of event times is related to the survival

and hazards functions via p(t) = h(t)S(t). An illustration of these three functions is

shown in Figure 5.2 for a particular (fictional) hazard function h(t).

Using F (t) = 1 − S(t) in Equation (5.7) leads to

h(t) = −dS(t)
dt

1
S(t) , (5.8)

which we can write as

h(t) = −d ln S(t)
dt

. (5.9)

Rearranging this expression for S(t) (and using the fact that S(0) = 1) leads directly

to Equation (5.3).

5.4 Non-parametric survival model: Kaplan-Meier

A central aim in survival analysis is to obtain an estimate of the survival function

from the (censored) time-to-event data. A simple non-parametric approach is the
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so-called ‘Kaplan-Meier’ or ‘product limit’ estimator [8]. Essentially, one approximates

the survival curve with a step function that changes value at every observed event time

Ti. The estimator is written as

Ŝ(t) =
∏

i:Ti≤t

(1 − ri

ni

), (5.10)

where ri is the number of (non-censoring) events that occur at Ti, and ni is the number

of individuals in the sample known to be event free (i.e. have not yet been censored or

experienced an event) by time Ti [3, 8].

There is clinical interest in investigating the effect of certain variables on survival

probability. A categorical variable is one that takes only a finite number of distinct

values. Individuals can then be categorised into groups according to this variable.

For data of this type, one can construct different Kaplan-Meier curves for each group

and compare their characteristics [1]. Often this is done for two treatment groups to

investigate whether one treatment produces more preferable survival outcomes than

another.

In this approach, comparisons are usually made via a statistical test that indicates

whether or not there is a significant difference between the groups [3, 9]. However, this

does not provide a quantitative summary of the extent of this difference. For example,

we can conclude that treatment A has better survival outcomes than treatment B

but we cannot say by how much [10]. Moreover, this approach only considers one

characteristic of the cohort while in reality there are likely to be a number of patient

characteristics that affect survival. This can be particularly problematic if the groups

under investigation systematically differ in relation to some other medically relevant

variable. For example, the patients in one treatment group may be older than those

in the second group. This means that any observed differences in survival outcomes

between the groups could be due to age rather than treatment. In this scenario age is

a ‘confounding variable’ [1].

To control for confounding variables and to quantify the extent of their effect on

survival, more sophisticated methods are required. The work in Chapter 6 builds on

the celebrated Cox proportional hazards regression model. We introduce this model in

the next section.
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5.5. Semi-parametric survival model: Cox proportional hazards

5.5 Semi-parametric survival model: Cox propor-

tional hazards

The proportional hazards (PH) model introduced by Cox in 1972 [11] remains the

most widely used method for modelling time-to-event data. It is a regression model

that describes how the hazard rate, h(t), depends on a set of p predictor variables

zµ, µ = 1, . . . , p. The survival function is then specified via Equation (5.3) and can

be used to make predictions. The predictor variables are called covariates in survival

analysis and refer to both continuous and categorical patient-specific characteristics

measured at some time origin (t = 0). Typical covariates include age, gender, treatment

group and measurements of so-called ‘biomarkers’. A biomarker (or ‘biological marker’)

refers to a measurable indicator of a biological system that provides insight into its

physiological state. Examples include measurements of weight and blood pressure, as

well as laboratory tests of samples such as blood, urine and biological tissue.

The Cox model is a linear regression on the logarithm of the hazard rate and is

written as,

h(t) = h0(t)e
∑p

µ=1 βµzµ , (5.11)

where the regression coefficients βµ are referred to as the association parameters. These

quantify the relationship between each covariate and the hazard, e.g. if βµ > 0 then

covariate zµ is positively correlated with the hazard rate and thus has a negative

association with survival. The larger βµ, the stronger this association.

The function h0(t) in Equation (5.11) is the base hazard rate. This is the value the

hazard takes if all covariates are zero, zµ = 0, ∀µ. The log base hazard rate is the time

varying intercept of the regression model on ln h(t). A key feature of Cox’s PH model

is that it makes no assumptions about the form of h0(t), and the function is estimated

non-parametrically. This is particularly appealing as it means that the survival times

are not assumed to follow a particular distribution thus allowing for extra flexibility

[10, 12]. Because of this feature, the model is said to be semi-parametric.

As shown in Equation (5.11), the covariates are modelled such that they act

multiplicatively on the hazard function. This is the ‘proportional hazards’ assumption;

the hazard rate of the event in any particular covariate group is a constant multiple of
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the hazard in any other [10]. Consider a particular covariate zµ and assume all other

covariates zν , ν ̸= µ are fixed. The ratio of hazards (HR) for two values zµ = z′ and

zµ = z′′ is then

HR = h0(t)eβµz′+
∑

ν ̸=µ
βνzν

h0(t)eβµz′′+
∑

ν ̸=µ
βνzν

= eβµ(z′−z′′). (5.12)

Hazard ratios are therefore characterised by the variables eβµ . For binary covariates

(i.e. z′ = 1 and z′′ = 0), these variables are equal to the hazard ratios. The association

parameters βµ then define the log hazard ratios. If the proportional hazards assumption

holds, plotting the function h(t) against t for two covariate groups should lead to curves

that do not cross at any point.

Estimating the parameters βµ provides insight into the association between different

covariates and survival. It also allows the survival model to be fitted so that we can

make predictions about new individuals for whom we have covariate measurements.

The standard method for obtaining these estimates is a maximum-likelihood approach.

5.5.1 Likelihood function for censored data

To work out the likelihood function for a censored data set one must consider what

information is available about the individuals in the sample. For each individual, one

either observes their true event time T ∗
i , or some non-informative censoring time, Ci.

The observed event time is then Ti = min(T ∗
i , Ci). The event indicator δi = I(T ∗

i ≤ Ci)

is defined such that it equals 1 when the event is observed (Ti = T ∗
i ) and 0 when it is

censored (Ti = Ci).

In Chapter 6 we write the likelihood as L(θ|D) = P(D|θ) where D represents

the data and θ is the set of model parameters we wish to infer. For the standard

Cox PH model described here, D = {Ti, δi, zi
µ; i = 1, . . . , N, µ = 1, . . . , p} and θ =

{h0(t), βµ; µ = 1, . . . , p}. We have written zi
µ for the value of covariate µ associated

with individual i.

The distribution of the true event times is governed by the survival function

S(t|θ, zi
µ) = P (T ∗

i > t|θ, zi
µ) and corresponding density function p(t|θ, zi

µ) which depend

on the parameters θ and covariates zi
µ via the parameterisation of the hazard function

in Equation (5.11). For non-informative censoring, the censoring times Ci are assumed

to be stochastically independent from each other and the true event times. Their
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distribution is governed by a survival function P (Ci > t) and corresponding density

function that do not depend on the model parameters θ [3].

Each individual in the data set contributes to the likelihood function. The nature

of this contribution depends on whether we observe the event of interest or a censoring

event for that individual. The likelihood describes the conditional probability (or

probability density) of observing the data given a specific set of model parameters

θ. Therefore, any information that does not depend on θ does not contribute to the

likelihood. We now explain the contributions of observed (non-censored) and censored

individuals in turn.

For individuals who are not subject to censoring, one knows (i) their precise event

time, T ∗
i = Ti, and (ii) that their censoring time is later than this time, Ci > Ti. Item

(i) corresponds to the probability density p(Ti|θ, zi
µ), and item (ii) corresponds to the

censoring survival function P (Ci > Ti) (with no θ dependence). The contribution to

the likelihood is then [3]

Levent
i (θ|D) = p(Ti|θ, zi

µ) = S(Ti|θ, zi
µ)h(Ti|θ, zi

µ). (5.13)

On the other hand, the available information for censored individuals is their precise

censoring time Ci = Ti and that their true event time exceeds this time, T ∗
i > Ti. This

information corresponds to the censoring probability density (which does not depend

on θ), and the survival function S(t|θ, zi
µ) = P (T ∗

i > t|θ, zi
µ). The contribution of these

individuals to the likelihood is then [3]

Lcens
i (θ|D) = S(Ti|θ, zi

µ). (5.14)

Both observed and censored individuals survive up to time Ti meaning both con-

tributions to the likelihood contain the survival function S(Ti|θ, zi
µ). For observed

samples, the additional contribution of the instantaneous hazard corresponds to the

extra information that the event occurred at Ti.

The likelihood function of the whole data set is then [3]

L(θ|D) =
N∏

i=1
Li(θ|D)

=
N∏

i=1
Levent

i (θ|D)δiLcens
i (θ|D)(1−δi)

=
N∏

i=1
h(Ti|θ, zi

µ)δiS(Ti|θ, zi
µ). (5.15)
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Writing the survival function in terms of the hazard via Equation (5.3) leads to the log

likelihood,

ln L(θ|D) =
N∑

i=1
δi ln h(Ti|θ, zi

µ) −
N∑

i=1

∫ Ti

0
h(t|θ, zi

µ)dt. (5.16)

To infer the parameters in the Cox model, we insert the semi-parameterised hazard

function [Equation (5.11)] into Equation (5.16) and find

ln L(θ|D) =
N∑

i=1
δi ln h0(Ti) +

N∑
i=1

δi

p∑
µ=1

βµzi
µ −

N∑
i=1

∫ Ti

0
h0(t)e

∑p

µ=1 βµzi
µdt. (5.17)

The task now is to maximise the log likelihood with respect to the model parameters θ.

We begin with the base hazard. Taking the functional derivative of Equation (5.17)

with respect to h0(t) and setting it equal to zero yields an expression for the base

hazard in terms of the association parameters βµ,

h0(t) =
∑N

i=1 δiδ(t − Ti)∑N
i=1 I(t ∈ [0, Ti])e

∑p

µ=1 βµzi
µ

. (5.18)

This expression, known as the ‘Breslow estimator’1, was first derived by Breslow (1972)

[13] in his discussion of Cox’s original paper [14].

Inserting the Breslow estimator back into Equation (5.17) we obtain an expression

for the log likelihood,

ln L(θ|D) =
∑

i

δi ln
 ∑

k δkδ(Ti − Tk)∑
j I(Ti ∈ [0, Tj])e

∑
µ

βµzj
µ

+
N∑

i=1
δi

p∑
µ=1

βµzi
µ

−
N∑

i=1
e
∑

µ
βµzi

µ

∫ Ti

0

∑
k δkδ(t − Tk)∑

j I(t ∈ [0, Tj])e
∑

µ
βµzj

µ

dt

= −
∑

i

δi ln
∑

j

I(Ti ∈ [0, Tj])e
∑

µ
βµzj

µ

+
N∑

i=1
δi

p∑
µ=1

βµzi
µ

−
N∑

i=1
e
∑

µ
βµzi

µ
∑

k

δk
I(Tk ∈ [0, Ti])∑

j I(Tk ∈ [0, Tj])e
∑

µ
βµzj

µ

+ const

= −
∑

i

δi ln
∑

j

I(Ti ∈ [0, Tj])e
∑

µ
βµzj

µ

+
N∑

i=1
δi

p∑
µ=1

βµzi
µ + const, (5.19)

where we have written ‘const’ for terms that are constant in βµ. The log likelihood

in Equation (5.19) is a function of the data and association parameters only. To

fully specify the hazard and survival functions for the Cox PH model, one must now

maximise this expression with respect to the parameters βµ. This requires numerical

methods. In Chapter 6 we make use of Powell minimisation.
1The term ‘Breslow estimator’ is also used to refer to the estimate of the cumulative base hazard

H0(t) =
∫ t

0 h0(t′)dt′ with h0(t) given in Equation (5.18).

270



5.5. Semi-parametric survival model: Cox proportional hazards

5.5.2 Powell minimisation

Powell’s method [15] is a multidimensional minimisation algorithm. In our work we use

it in the context of maximum likelihood, i.e. to minimise the negative log likelihood

with respect to the vector of association parameters β = (β1, . . . , βp).

Powell minimisation is based on a series of so-called ‘line minimisations’ that each

use a simple one-dimensional minimisation scheme. Consider a function f(.) to be

minimised with respect to an n-dimensional parameter x. The general idea is as

follows: begin from some initial position vector x0 and choose some directional vector

u. Minimise f(x) along the vector u using a one-dimensional minimisation algorithm

(e.g. Brent’s method [16]) and move the position vector to the position of this minimum.

Then pick a new direction and minimise the function along this vector, and so on until

the function is no longer decreasing.

The task is then to pick a set of directions along which to perform the line min-

imisations. A convenient choice is a set in which minimisation in one direction is not

‘spoiled’ by subsequent minimisation in another. Such non-interfering directions are

called ‘conjugate directions’. For a quadratic function with a set of n independent

conjugate directions, one cycle of n line minimisations leads directly to the minimum

of the function [16, 17]. For functions that are not quadratic, repeated cycles of the n

line minimisations converge quadratically to the minimum [17].

Powell (1964) [15] proposed a method to produce n mutually conjugate directions,

ui, i = 1, . . . , n. We describe the basic procedure below. An illustration of the

procedure for a 2-dimensional quadratic function is shown in Figure 5.3.

Powell minimisation (basic procedure):

1. Initialise t = 0. Initialise the set of directions as the basis vectors, u(0)
i = ei,

i = 1, . . . , n. Initialise the position vector x
(0)
0 .

2. For i = 1, . . . , n: starting at x
(t)
i−1, minimise f(.) along the direction u

(t)
i and

define x
(t)
i as the position of the minimum.

3. For i = 1, . . . , n − 1: update the direction vectors by setting u
(t+1)
i = u

(t)
i+1.

4. Update the final direction vector via u(t+1)
n = x(t)

n − x
(t)
0 .
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5. Starting at x(t)
n , minimise f(.) along the direction u(t+1)

n and define x
(t+1)
0 as the

position of the minimum.

6. Set t = t + 1 and go to 2.

Powell showed that, for a quadratic function f(.), k iterations of the above procedure

produces a set of directions ui whose final k members are mutually conjugate [15].

Therefore, n iterations of the basic procedure (i.e. n(n+1) individual line minimisations)

will exactly minimise a quadratic function [16, 17].

Non-quadratic functions require repeated cycles of the basic procedure. A problem

with Powell’s method is that the process of iteratively discarding u1 in favour of xn −x0

eventually results in a set of directions that are linearly dependent. When this happens,

the algorithm only minimises f(.) over a subspace of the full n-dimensions [17].

A number of modifications to Powell’s method have been suggested to overcome

this [16, 17]. A straightforward technique is to simply re-initialise the basis vectors

ui = ei after every n or n + 1 iterations of the basic procedure [17]. Another method

involves discarding the direction of largest decrease [18]. In this approach, the direction

xn −x0 is still assigned as the new direction but instead of discarding u1, one discards

the direction in which f(.) showed the greatest decrease during minimisation. This

direction is likely to make the largest contribution to xn −x0 and therefore its removal

should avoid a build up of linear dependence2.

The modified procedure is repeated until the function no longer decreases (i.e.

subsequent iterations produce a value of f(x) which is the same as previous iterations

to within some specified tolerance). At convergence one obtains the position of the

minimum. In the context of Cox’s PH model, this position corresponds to the maximum

likelihood estimates of the regression parameters βµ.

The maximum likelihood estimates of βµ can be used to make statements about

the relationship between different covariates and survival. Via Equation (5.18) one

can then estimate the base hazard function and fully specify the hazard model via

Equation (5.11). This leads to a fitted survival model [Equation (5.3)] from which
2There are some exceptions to this rule. For example, at certain iterations it may be better not to

choose a new direction at all. See [17] for details.
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Figure 5.3: An illustration of the basic Powell minimisation procedure in 2 dimensions. The
blue concentric circles indicate the quadratic function to be minimised. The thin grey arrows
show the directions ui at each iteration. Equalities in brackets indicate that the variable on
the right is assigned the value of the variable on the left. The black dots show the position
vector after each line minimisation (indicated by thick red arrows). The function is quadratic
in 2-dimensions, therefore the algorithm converges to the exact minimum of the function
after 2 iterations of the basic procedure (i.e. after n(n + 1) = 6 line minimisations). The
directions at the final iteration (u(2)

1 ,u
(2)
2 ) are conjugate.

predictions can be made. For a new individual, measurements of their covariates zi
µ

are obtained and, using the fitted association parameters in the survival model, one

can estimate the probability that they survive to some specified future time.

5.6 Extensions to standard survival analysis models

In this chapter we have introduced some of the main concepts of survival analysis

with reference to the simplest type of time-to-event data. In reality, survival data

may exhibit a number of characteristics that require more sophisticated modelling

approaches. For example, individuals in the cohort may be at risk from more than one

clinically relevant event. These events are considered ‘competing’ when the occurrence

of one event means we are no longer able to observe another. This is related to the idea

of informative censoring, i.e. the event of interest is censored by the occurrence of some

competing event that itself carries information about the patient’s health or condition.

One may also be interested in modelling the risks from multiple events related to the

condition of interest. Data of this type requires a ‘competing risks’ model [19].

273



Chapter 5. Introduction to Survival Analysis

Survival data could also include observations of multiple events for a single individual;

these may be different (potentially correlated) events or repeated incidents of the same

event. For example, a person may suffer from multiple strokes. Additional modelling

considerations are needed for data with recurrent events [20].

Cox’s model assumes that hazards are proportional, that is, the hazard rate in one

covariate ‘group’ is a constant multiple of the hazard in another group. Researchers

must check that this assumption is valid for their data set, for example by plotting the

hazard curves for different groups [10, 12]. If the PH assumption does not hold, then a

non-proportional hazards model is required [21, 22].

Another possible complication is ‘dimensional mismatch’ where one has access to

large number of covariate measurements compared with the number of patients in the

sample. For example, recent advancements in genome medicine mean that one often

has access to genetic covariates which may include as many as 106 variables [7, 23]. To

avoid ‘overfitting’ problems, regression models typically require the number of samples

to be much larger than the number of fitted parameters [24, 25]. This means that

standard methods are restricted in the number of covariates they can model and we

lose out on a wealth of available information. Sophisticated analysis methods have

been developed to overcome these issues [7, 23], though such methods are themselves

not a panacea (see e.g. [26]).

In Chapter 6 we focus on data with time-varying covariate measurements. It

is common that patients with a particular condition will attend follow-up medical

appointments over the course of the study. Covariates that may fluctuate or progress

over time can then be measured at these appointments. Temporal changes in these

variables are expected to carry information about patient survival, for example, an

increase in a certain covariate may indicate a worsening of the condition. It then makes

sense to include the full history of these measurements in the survival model and to

update predictions as new measurements become available. This process is known as

‘dynamic prediction’ and will be discussed in detail in the proceeding chapter.
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Abstract

Predicting patient survival probabilities based on observed covariates is an im-

portant assessment in clinical practice. These patient-specific covariates are often

measured over multiple follow-up appointments. It is then of interest to predict

survival based on the history of these longitudinal measurements, and to update

predictions as more observations become available. The standard approaches to

these so-called ‘dynamic prediction’ assessments are joint models and landmark

analysis. Joint models involve high-dimensional parameterisations, and their com-

putational complexity often prohibits including multiple longitudinal covariates.

Landmark analysis is simpler, but discards a proportion of the available data at

each ‘landmark time’. In this work we propose a ‘retarded kernel’ approach to

dynamic prediction that sits somewhere in between the two standard methods

in terms of complexity. By conditioning hazard rates directly on the covariate

measurements over the observation time frame, we define a model that takes

into account the full history of covariate measurements but is more practical and

parsimonious than joint modelling. Time-dependent association kernels describe

the impact of covariate changes at earlier times on the patient’s hazard rate at later

times. Under the constraints that our model (i) reduces to the standard Cox model

for time-independent covariates, and (ii) contains the instantaneous Cox model as

a special case, we derive two natural kernel parameterisations. Upon application to

three clinical data sets, we find that the predictive accuracy of the retarded kernel

approach is comparable to that of the two existing standard methods.

6.1 Introduction

Survival analysis is a well-established field of medical statistics that involves modelling

the probability of survival until some specified irreversible event such as death or the

onset of disease. Of particular clinical interest is the prediction of patient-specific

survival based on a set of observed biomarkers or ‘covariates’ [1]. Such predictions

aid clinicians in making treatment and testing decisions, and provide personalised
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information for patients about their health [2].

Cox’s proportional hazards (PH) model [3] remains the most widely used model

in survival analysis [4, 5]. In this context, survival is assumed to depend on a set of

covariates, zµ, µ = 1, . . . , p, measured at some baseline time. The hazard, h(t), is the

probability per unit time of the event happening at time t given that no event has

occurred up to that time. In Cox’s PH model this hazard is defined as

h(t) = h0(t)e
∑p

µ=1 βµzµ , (6.1)

where the βµ (with µ = 1, . . . , p) are the so-called association parameters. The base

hazard rate, h0(t), is the value of the hazard for covariate values zµ = 0 ∀µ. The name

‘proportional hazards’ refers to the fact that, due to the exponential form of the hazard

function, the effect of each covariate on the hazard is multiplicative. In this work we

will call the model in Equation (6.1) the ‘standard Cox model’.

Survival prediction in the standard Cox model is based on the survival function,

S(t) = e−
∫ t

0 dt′h(t′), (6.2)

that describes the probability that an individual with hazard function h(·) experiences

the event after time t.

In reality, covariates are often measured repeatedly over time. This means that

multiple observations of time-dependent covariates {zµ(t)} are made for any particular

patient. A simple extension to the standard Cox model involves modelling the hazard

rate as dependent on the instantaneous value of the covariates [6–8], that is

h(t) = h0(t)e
∑p

µ=1 βµzµ(t). (6.3)

We refer to this as the ‘instantaneous Cox model’.

However, in practice, one does not have access to the full covariate trajectories

zµ(t). Instead observations are made at discrete follow-up times until some subject-

specific final observation time. Since we do not have access to covariate measurements

after this time, we cannot make predictions about future survival probabilities based

on Equation (6.3). Of particular difficulty is the inclusion of so-called ‘endogenous’

covariates [9].

Due to these difficulties, survival predictions are commonly evaluated by treating

the baseline covariate measurements as fixed values in a standard Cox model [2]. By
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not including the follow-up observations, this standard practice discards a potentially

considerable proportion of the available patient data.

Recently, there has been much interest in so-called ‘dynamic prediction’ [1, 10, 11].

These methods aim to make survival predictions based on the longitudinal history of

biomarker data, and update these predictions as more data becomes available. Such

analysis is clinically valuable as it allows patients and clinicians to review disease

progression over time and update the prognosis at each follow-up visit [12]. Currently,

there are two main approaches to dynamic prediction; joint modelling and landmarking.

Landmarking was an early approach to the problem [13], whereby a standard Cox

model is fitted to patients in the original data set who are still at risk at the time point

of interest, using their most recent covariate measurements.

More recently, joint modelling has become an established method [9, 14–16]. Here

one models the time-dependent covariate trajectory using a parameterised longitudinal

model, and this complete trajectory is then inserted into an instantaneous Cox-type

survival model. A joint likelihood of the longitudinal and survival sub-models is

constructed, and the model parameters are estimated via maximum likelihood or

Bayesian inference.

Both methods have limitations. In particular, joint models are demanding both

conceptually and computationally. Correctly modelling the longitudinal trajectories

can be difficult when patient measurements exhibit varied non-linear behaviour [12] and

misspecification of this trajectory has been found to lead to bias [17]. Furthermore, the

number of model parameters increases rapidly with the inclusion of multiple longitudinal

markers. This means that many software packages cannot handle more than one

longitudinal covariate [18–20], and those that can quickly become computationally

intensive [21, 22]. For these reasons, the landmarking model is often seen as the only

practical option [12]. However, the relative simplicity of the landmarking approach

comes with its own drawbacks. By using only the ‘at risk’ data set to make predictions

at a certain time (discarding patients who had an event before the landmark time),

landmarking makes use of only a subset of the available data. In standard landmarking

approaches, the history of the covariate values are not taken into account directly, and

a new model must be fitted every time one wishes to update the predictions.

In this work we present a new approach to dynamic prediction that conceptually and
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in terms of computational complexity lies somewhere in between the joint modelling and

landmarking methods. Rather than modelling the covariate trajectory at future times,

as in the joint modelling approach, we model the probability of survival conditioned

directly on the observed covariates measured from the baseline time up to a subject-

specific final observation time. Unlike the landmark approach, a single model is fitted to

all of the available data, using the full history of the covariate values. We do, however,

maintain well-established and desirable features of the Cox model, so that our model

contains the instantaneous Cox model as a special case, and reduces automatically to

the standard Cox model for covariates that are observed to be fixed over time. Within

these constraints, we define time-dependent parametric association kernels, βµ(t, t′, s),

that describe the impact of changes of covariate µ at time t′ on patient risk at some

later time t. The kernel can also depend on the final observation time s for the patient.

Building on ideas from weighted cumulative exposure models [23, 24], these kernels

allow us to assign smaller effects to covariates that were measured further in the past.

We refer to our method as the ‘retarded kernel’ approach.

The remainder of this article is set out as follows. In Section 6.2 we introduce

the motivating data sets. In Section 6.3 we then provide details of the dynamic

prediction models. We begin by describing the longitudinal and time-to-event data, and

briefly outline the standard methods: joint modelling (Section 6.3.2) and landmarking

(Section 6.3.3). In Section 6.3.4, we introduce the retarded kernel approach. We start

by defining the hazard rate conditioned on the observed data, and then develop two

natural parameterisations for the association kernels that meet our requirements. We

outline the maximum likelihood method for parameter estimation for these models,

and show how the retarded kernel approach can be used to make dynamic predictions.

Via application to the real data sets, in Section 6.4 we compare the performance of

the retarded kernel approach to the standard methods using an established measure of

predictive accuracy. Finally, we discuss and summarise our results in Section 6.5.

6.2 Motivating data sets

In our work we will assess the predictive capabilities of the different models for dynamic

prediction using three clinical data sets, that contain both longitudinal covariate
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measurements and time-to-event data. All three data sets are publicly available in the

JMbayes package [25], and were used in Rizopoulos (2012) [9] to illustrate the joint

modelling method.

6.2.1 Primary biliary cirrhosis

The first motivating data set is from a study conducted by the Mayo Clinic from 1974 to

1984 on patients with primary biliary cirrhosis (PBC), a progressive chronic liver disease

[26]. We will refer to this as the PBC data. The study involved N = 312 patients

who were randomly assigned either a placebo (154 patients) or the D-penicillamine

treatment (158 patients). Time-to-event data is available for the outcome of interest

(death) or the censoring event (either the time at which the patient receives a liver

transplant or the final follow-up time at which they were still alive). By the end of

follow-up, 140 patients had died, 29 had received a transplant and 143 were still alive.

Figure 6.1: The longitudinal profiles of the time-dependent covariates log serum bilirubin
(zi

1(t)), log serum albumin (zi
2(t)) and log prothrombin time (zi

3(t)) for the N = 312 patients
(i = 1, . . . , N) in the PBC data set described in Section 6.2.1. For clarity, the trajectories of
6 individuals are highlighted. Time, t, on the x-axis is measured in years.
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As well as baseline covariate measurements such as age at baseline and gender, multiple

longitudinal biomarker measurements were collected for each patient over an average

number of 6.2 visits from study entry to some subject-specific final observation time

(prior to their event time). While the original aim of the study was to investigate the

effect of the drug D-penicillamine, no effect was found and the data has since been used

to study the progression of the disease based on longitudinal biomarkers [27]. With

this in mind, we include age at baseline as our only fixed covariate, and focus on the

longitudinal covariates log serum bilirubin, log serum albumin and log prothrombin

time, which have previously been found to be indicators of patient survival [27]. Serum

bilirubin and serum albumin indicate concentrations of these substances in the blood,

measured in mg/dl and g/dl respectively. Prothrombin time measures the time (in

seconds) it takes for blood to clot in a sample. Time series of these three longitudinal

biomarkers are plotted in Figure 6.1.

6.2.2 AIDS

The second data set involves N = 467 HIV-infected patients who had failed to respond,

or were intolerant to, zidovudine (previously called ‘azidothymidine’) therapy (AZT)

[28]. The aim of the study was to compare two antiretroviral drugs, didanosine (ddI)

and zalcitabine (ddC). Patients were randomly assigned one of these drugs at baseline.

Patients’ CD4 cell counts were recorded at baseline and follow-up measurements were

planned at 2, 6, 12 and 18 months. CD4 cells are white blood cells that fight infections.

A decrease in the number of CD4 cells over time indicates a worsening of the immune

system and higher susceptibility to infection. Therefore, the number of CD4 cells in

a blood sample is an important marker of immune strength and hence a covariate of

interest in HIV-infected patients. In line with previous analysis of this data [9, 29],

we actually use the square root of the CD4 count as our longitudinal covariate. For

brevity we will refer to this simply as the CD4 count. By the end of the study 118

patients had died, and the time to event (death) or censoring was recorded for all

patients. Final observation times (si ∈ [0, 2, 6, 12, 18] months) were always less than

their corresponding event times, such that there is a time gap between when a subject

was last observed and when they experienced an event. Following Guo and Carlin

(2004) [29], we included, in addition to the longitudinal CD4 counts and the patients’
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Figure 6.2: The longitudinal profiles of CD4 count (zi
1(t)) in the N = 467 patients

(i = 1, . . . , N) in the AIDS data set in Section 6.2.2. For clarity, the trajectories of 6
individuals are highlighted. Time, t, is measured in months.

drug group, also three other binary fixed covariates in our analysis: gender, PrevOI

(previous opportunistic infection – AIDS diagnosis – at study entry), and Stratum

(whether the patient experienced AZT failure or AZT intolerance). We will refer to this

data as the AIDS data set. The longitudinal profiles of the CD4 count for all patients

are plotted in Figure 6.2.

6.2.3 Liver cirrhosis

The third data set is from a trial conducted between 1962 and 1974, involving N = 488

patients with liver cirrhosis, a general term including all forms of chronic diffuse liver

disease [30]. We call this the Liver data set. At baseline, 251 patients were randomly

assigned a placebo and 237 were assigned treatment with the drug prednisone. Follow-

up appointments were scheduled at 3, 6 and 12 months and then yearly thereafter,

though actual follow up times varied considerably. At these follow up appointments,

multiple longitudinal biomarkers were measured. However, only the prothrombin

index measurements are available from the JMbayes package. This is a measure of

liver function based on a blood test of coagulation factors produced by the liver. For

reproducibility, and following previous analyses of the Liver data set [9, 31], we include

the prothrombin index as our only time-dependent biomarker. The drug group is

included as a fixed baseline covariate. By the end of the study, 150 prednisone-treated,

and 142 placebo-treated patients had died. Their time-to-event data was recorded. Of

the 488 subjects, 120 were observed until their event time while all others were observed
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Figure 6.3: The longitudinal profiles of the prothrombin index (zi
1(t)) as measured in the

N = 488 patients (i = 1, . . . , N) in the Liver data set described in Section 6.2.3. For clarity,
the trajectories of 6 individuals are highlighted. Time, t, is measured in years.

until some subject-specific final observation time before their event time. Figure 6.3

shows the longitudinal prothrombin measurements for all patients.

6.3 Dynamic prediction models

6.3.1 Setup and notation

In this work, we consider longitudinal survival data of the form D = {Ti, δi, Z i; i =

1, . . . , N} where Ti = min(T ∗
i , Ci) is the observed event time of individual i with T ∗

i

denoting the true event time and Ci denoting the censoring time. The event indicator

δi = I(T ∗
i ≤ Ci) is equal to 1 when the true event time is observed and 0 when it

is censored. Throughout this article we use the indicator function I(A), defined as

I(A) = 1 if A holds, and I(A) = 0 otherwise. Z i = {zi
µ(tiℓ); µ = 1, . . . , p, ℓ =

1, . . . , ni, tiℓ ∈ [0, si]} denotes the set of time-dependent covariate observations of

individual i. Individual i has ni measurements of p longitudinal covariates from time

t = 0 up to some subject-specific final observation time si ≤ Ti. These measurements

are taken at discrete (subject-specific) observation times, tiℓ, ℓ = 1, . . . , ni, where ti1 = 0

and tini
= si. We write Z i

[0,si] = {zi
µ(t); µ = 1 . . . p, t ∈ [0, si]} for the ‘true’ (but

non-accessible) continuous trajectories of the p covariates over the interval t ∈ [0, si]

for individual i. We develop our theory based on the assumption that we have access

to these trajectories Z i
[0,si]. As we will see later, we estimate Z i

[0,si] from the discrete

observations Z i.
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We are interested in predicting survival probabilities for some new subject with

longitudinal measurements Z = {zµ(tℓ); µ = 1, . . . , p, ℓ = 1, . . . , n, tℓ ∈ [0, s]}. The

quantity we wish to estimate is the probability that this subject survives until some

future time u > s, conditional on their survival to s, and on their covariate observations

up to s. That is,

π(u|Z[0,s], s) = Pr(T ∗ ≥ u| T ∗ > s, Z[0,s], D). (6.4)

The quantity π(u|Z[0,s], s) is referred to as a ‘dynamic predictor’ due to the fact that it

can be updated as more measurements become available at later times [2, 11].

6.3.2 Joint Models

In joint modelling one specifies two model components: a longitudinal model for the

trajectory of the time-dependent covariates, and a survival model which relates to the

covariate trajectory via shared parameters. In the JMbayes package, joint models are

fitted using Bayesian inference by specifying a joint likelihood distribution for the two

model components and a set of prior distributions on the model parameters. Details of

this package and the joint modelling framework we follow are described in Rizopoulos

(2016) [25] and Rizopoulos (2012) [9]. In this section we briefly outline the model.

6.3.2.1 Longitudinal modelling component

Mixed-effects models are typically specified for the longitudinal covariate trajectories,

where it is assumed that the observed value zµ(t) of the covariate at time t deviates

from the true (unobserved) value mµ(t) by an amount εµ(t). The error terms εµ(t) of

all subjects are assumed to be statistically independent, and normally distributed with

variance σ2
µ:

zi
µ(t) = mi

µ(t) + εi
µ(t), mi

µ(t) = xi⊤
µ (t)ηµ + yi⊤

µ (t)bi
µ (6.5)

bi ∼ N (0,D), εi
µ(t) ∼ N (0, σ2

µ).

Between-subject variability is modelled via estimation of subject-specific random effects

bi
µ, whereas effects that are shared between all subjects are modelled by the fixed effects

ηµ. The vectors xi⊤
µ (t) and yi⊤

µ (t) denote the design vectors for these fixed and random

effects respectively. For multivariate models, one can allow for association between the
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different longitudinal markers via their corresponding random effects. In particular,

we assume that the complete vector of random effects bi = (bi⊤
1 , . . . , bi⊤

p )⊤ follows a

multivariate normal distribution with mean zero and variance-covariance matrix D

that describes the correlations between and variances of the random effects. For details

we refer to References [2, 9, 10, 21, 32].

6.3.2.2 Survival modelling component

The hazard at time t is assumed to depend on the value of the longitudinal covariate

at time t without measurement error, that is

hJM(t|M[0,t]) = h0(t) exp


p∑
µ=1

αµmµ(t)
 , (6.6)

where M[0,t] = {mµ(t′); µ = 1, . . . , p, t′ ∈ [0, t]} denotes the history of the ‘true’

(unobserved) longitudinal covariates up to time t. Note that in Equation (6.6) the

hazard rate depends only on the instantaneous values of the covariates, but this can be

generalised as briefly highlighted below. Unlike in the Cox model, the baseline hazard,

h0(t) cannot be expressed analytically in terms of the other model parameters during

the maximum likelihood procedure, but must instead be specified. Often this is done

using a flexible parametric model, for example using penalised spline functions [25].

Dependence of the hazard function on time-independent covariates {ζν ; ν = 1, . . . , q}

can be included through an additional term ∑q
ν=1 γνζν in the exponent in Equation (6.6),

where γν is the association parameter for fixed covariate ν. Alternative extensions allow

the hazard to depend on the slope of the covariate trajectory, or on its cumulative effect,

by replacing the term αµmµ(t) with α(1)
µ mµ(t) + α(2)

µ
d
dt

mµ(t) or with αµ

∫ t
0dt′ mµ(t′),

respectively [2, 9].

It has also been proposed to introduce a weight function to capture cumulative

effects, writing αµ

∫ t
0dt′ wµ(t− t′)mµ(t′), with kernels wµ(t− t′) defined such that earlier

covariate values have a smaller effect on the hazard than recent values [9, 33]. This idea

is connected to the concept of ‘weighted cumulative exposure’ (WCE) [23, 24]. WCE

models were developed in etiological research to describe the complex cumulative effect

of time-dependent ‘exposure’, e.g. to a drug, on health outcomes [34]. In a survival

context, these models rely on continuous knowledge of the exposure all the way up to

the event time, and have hence been used almost exclusively for measuring the effects
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of external exposures such as treatments or environmental factors [35]. Joint modelling

allows the principles of WCE to be used for any longitudinal covariate. Through

the prediction of future covariate trajectories, it is also possible for these ideas to be

integrated into dynamic predictions [33]. As we will explain later, we build on the

principles of WCE to develop our retarded kernel approach.

6.3.2.3 Dynamic prediction

Finally, in the joint modelling framework we use, the quantity π(u|Z[0,s], s) is estimated

using a Bayesian approach, with posterior parameter distribution p(θJM|D) and where

θJM is the vector of all the model parameters in the joint model. This leads to the

estimator

π̂JM(u|Z[0,s], s) =
∫

Pr(T ∗ ≥ u| T ∗ > s, Z[0,s],θJM)p(θJM|D) dθJM. (6.7)

The parameter average in Equation (6.7) can generally not be evaluated analytically,

and is computed via Monte Carlo methods. Again, we refer to References [2, 9, 10] for

details.

6.3.2.4 Limitations

Joint models have undergone much development over recent years, with various exten-

sions making the approach flexible in a range of different scenarios. However, the joint

modelling approach requires the ability to correctly specify both the longitudinal and

survival model. This can involve modelling assumptions which are not always easy

to verify. Indeed, simulations have demonstrated that the joint modelling approach

is biased under misspecification of the longitudinal model [17]. In addition, as more

longitudinal outcomes are included, the dimensionality of the random effects increases,

and fitting the joint model becomes computationally intensive. Depending on the

longitudinal model specified, it can be difficult to include more than three or four longi-

tudinal covariates [12, 21]. This is amplified when cumulative or weighted cumulative

effects are used in the survival model (as numerical integration of the longitudinal

model is required). As a result, there are cases where joint models are not a viable

option and, instead, one must rely on approaches such as landmarking [12].
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6.3.3 Landmarking

6.3.3.1 Description of the landmarking procedure

The landmarking approach to dynamic prediction is based on the standard Cox model

[1, 11, 13]. Upon denoting with R(υ) = {i : Ti > υ} the set of individuals in the

original data set who are still at risk at time υ, the landmarking model assumes that

for a subject in the risk set R(υ) the distribution of survival times, conditioned on the

covariate measurements {zi
µ(υ)} at that time, follows a standard Cox model [12]. In

general one does not have covariate measurements for all individuals at time υ. Instead,

one uses for each individual the last observation {z̃µ(υ), µ = 1, . . . , p} of the covariates

before time υ, and treats these as fixed covariates in a standard Cox model with υ as

the baseline time. That is, for the so-called ‘landmark time’ υ one defines the hazard

rate at times t > υ as

hLM(t|Z, υ) = h0(t|υ) exp


p∑
µ=1

αµ(υ)z̃µ(υ)
 . (6.8)

The baseline hazard function h0(t|υ) is unspecified, and is estimated as in standard Cox

models, via partial likelihood arguments, or via functional maximisation of the data

log-likelihood. Subsequently the association parameters are estimated. This procedure

is carried out for each choice of the landmark time υ, and leads to the Breslow estimator

[36] ĥ0(t|υ) and the association parameters α̂µ(υ). The main difference compared to

standard Cox models is the dependence of association parameters and the base hazard

rate on the landmark time υ.

To estimate the quantity π(u|Z[0,s], s), the landmark time υ in Equation (6.8) is set

equal to s. Once this model is fitted, survival prediction to time u > s is performed

using the standard Cox survival probability,

π̂LM(u|Z[0,s], s) = exp
− e

∑p

µ=1 α̂µ(s)z̃µ(s)
∫ u

s
ĥ0(t′|s)dt′

. (6.9)

6.3.3.2 Limitations

Landmarking is computationally and conceptually much simpler than the joint mod-

elling approach. For data sets with multiple longitudinal covariates, disparate non-linear

covariate trajectories or categorical time-dependent covariates, landmarking is often

the preferred approach [12]. However, it also has limitations. For example, the model
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focuses only on the most recent value observed before time υ, and does not account for

the earlier history of covariates. Furthermore, data from individuals who experience

the event before time υ is not used for the parameter estimation at landmark time υ.

Therefore, the landmark approach uses only a subset of the available data. In addition,

a new Cox model has to be specified and fitted for each landmark time. Therefore, in

order to update predictions after each time where subject j is observed, one must refit

the model using a new risk set. The longer subject j is observed, the fewer individuals

remain in the risk set and less data is available to do this.

6.3.4 Retarded kernel approach

We now introduce our retarded kernel approach to dynamic prediction. It aims to

overcome some of the limitations of the standard joint modelling and landmarking

methods. Unlike landmarking, the retarded kernel approach aims to incorporate the

entire data set, including the full history of covariate values while, at the same time

remaining conceptually and computationally simpler than joint models.

6.3.4.1 General setup

The starting point for the retarded kernel approach is an expression for the hazard rate

that resembles that of weighted cumulative exposure models [23, 24],

hRK(t|Z[0,s]) = h0(t) exp

∫ min(s,t)

0

p∑
µ=1

βµ(t, t′, s)zµ(t′)dt′

 . (6.10)

In this expression the {zµ(t′)} are time-dependent covariates, which we assume to

be known from time 0 up to time s. To keep the notation compact we have left out

time-independent covariates, as these can always be included trivially. This model

differs from the joint model approach to WCE in how we deal with covariates that are

only observed up to some final observation time s before the event time. When t ≤ s

(i.e. when t is a point in time prior to the last observation of covariates) the hazard rate

in Equation (6.10) only depends on covariates up to time t. For times t ≥ s covariates

up to time s enter into the hazard rate.

The kernel βµ(t, t′, s) describes (potentially) retarded effects of covariates. More

precisely, βµ(t, t′, s) quantifies the effect of the value of covariate µ at time t′ on the

hazard rate at a later time t, for a patient whose covariates are known up to time s.
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The form of Equation (6.10) ensures causality, since only covariate values at times

t′ ≤ t contribute to the hazard at time t. We set β(t, t′, s) = 0 for t′ > t. In principle,

the precise form of βµ(t, t′, s) could be chosen from a wide range of functions. We

reduce this freedom via the following requirements which must hold for all µ:

(i) Exponential decay of covariate impact. We assume that the impact of each

covariate µ at time t′ on the hazard rate at a later time t > t′ decays exponentially

with the time difference t − t′. How fast the effect of the covariate decays is

governed by a covariate-specific impact time scale τµ ≥ 0.

(ii) Equivalence with standard Cox model for stationary covariates. Our second

requirement is that expression (6.10) reduces to the standard Cox model in

Equation (6.1) in the case of a constant covariate, i.e. when zµ(t) ≡ zµ for all t.

This is achieved when there is a constant aµ, which is independent of t and s,

such that ∫ min(s,t)

0
βµ(t, t′, s)dt′ = aµ. (6.11)

(iii) Equivalence with instantaneous Cox model for short impact time scales. Finally,

for 0 < t ≤ s we require that expression (6.10) reduces to the instantaneous Cox

model in Equation (6.3) in the limit τµ ↓ 0, i.e. when the covariate impact on

risk decays immediately. This is achieved, without violating (ii), if we have

lim
τµ↓0

βµ(t, t′, s) = aµδ(t − t′). (6.12)

From (i) it follows that our kernel βµ(t, t′, s) must have the following form:

βµ(t, t′, s) = Aµ(t, s)τ−1
µ e−(t−t′)/τµ + Bµ(t, s), (6.13)

where the quantities Aµ(t, s) and Bµ(t, s) can depend on τµ in general. Requirements

(ii) and (iii) then translate into, respectively,

s, t ≥ 0 : Aµ(t, s)e−t/τµ

(
emin(s,t)/τµ − 1

)
+ min(s, t)Bµ(t, s) = aµ (6.14)

0 < t ≤ s : lim
τµ↓0

Aµ(t, s) = aµ, lim
τµ↓0

Bµ(t, s) = 0. (6.15)

6.3.4.2 Two models within this family

Finally, from the remaining family of models, i.e. those that satisfy Equations (6.14)

and (6.15), we choose the two simplest members. These are defined by demanding that
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either Bµ(t, s) = 0 for any τµ (model A), or that Aµ(t, s) = aµ for any τµ (model B).

Working out the details for these choices via Equations (6.14, 6.15) then leads to the

following formulae:

Model A: βA
µ (t, t′, s) = aµ

τµ

et′/τµ

emin(s,t)/τµ − 1 , (6.16)

Model B: βB
µ (t, t′, s) = aµ

τµ

e−(t−t′)/τµ + aµ

min(s, t)

{
1−e−t/τµ

(
emin(s,t)/τµ −1

)}
. (6.17)

Both models are built around the time-translation invariant factor exp [−(t − t′)/τµ]

and satisfy conditions (i), (ii), and (iii). So both reproduce the standard Cox model for

time-independent covariates, as well as the instantaneous Cox model for longitudinal

covariates with vanishing impact time scales, but they achieve this in distinct ways.

We could have ensured a time-translation invariant kernel βµ(t, t′, s) by choosing in

Equation (6.13) expressions for Aµ(t, s) and Bµ(t, s) that are independent of t. However,

our models would then not reduce to the standard Cox model when covariates are

constant. For t > s we find that βA
µ (t, t′, s) is independent of t. This describes an

anomalous response: the system ‘remembers’ early changes in covariates without decay.

This could describe e.g. irreversible damage to the organism. In contrast, βB
µ (t, t′, s)

retains a decaying dependence on t when t > s, with limt→∞ βB
µ (t, t′, s) = aµ/s. This

could describe, for example, fluctuations in hormone levels that impact the hazard

mostly in the short term, but also with persistent long-term effects.

Equations (6.16, 6.17) only hold for s > 0. In the data sets we study below there are

some individuals whose longitudinal covariates are observed only once at the baseline

time (i.e. their final observation time is s = 0). Given that Equations (6.16) and (6.17)

cannot be used for such individuals, we must specify their association parameters βµ(t)

in some other way. Two possible options are a constant association, βµ(t) = aµ, or

a decaying association, βµ(t) = aµe−t/τµ . Throughout the main paper we choose the

former in the retarded kernel models. Results for the decaying association are presented

in Appendix Section 6.10.

We note that we condition on knowledge of the covariates observed over a specific

time interval [0, s] in the model setup. As a consequence, the parameters in the

retarded kernel models cannot necessarily be interpreted directly in terms of biophysical

mechanisms. For example, τµ encapsulates both the possible decay in the physical

effect of covariate µ, and the decay that occurs from conditioning on knowledge of the
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covariate in the past. Parameter interpretations for the model therefore only make

sense in a prediction context.

6.3.4.3 Maximum likelihood inference

As in the standard Cox model, we use maximum likelihood inference to determine

the most plausible values of the model parameters based on the observed data. For

simplicity, in this section we will mostly omit the superscript RK from the hazard

function. We write θ for the full set of parameters, i.e. the model parameters {τµ, aµ}

described in Section 6.3.4.2 and the base hazard rate h0(t), and assume initially that

for each sample i the covariates are known over the full time interval [0, si]. The

optimal parameters are those for which the data likelihood P(D|θ) is maximised. For

non-censored data this likelihood is given by

P(D|θ) =
N∏

i=1
p(Ti|θ, Z i

[0,si]), (6.18)

where p(t|θ, Z i
[0,si]) is the probability density for individual i experiencing an event

at time t given their covariate measurements. This probability density is expressed

in terms of the parameterised hazard rate h(t|θ, Z i
[0,si]) and the survival probability

S(t|θ, Z i
[0,si]) = exp[−

∫ t
0 dt′h(t′|θ, Z i

[0,si])] via

p(t|θ, Z i
[0,si]) = h(t|θ, Z i

[0,si])S(t|θ, Z i
[0,si]). (6.19)

For right-censored data there are two contributions to the likelihood. Individuals for

whom an event is observed at time Ti = T ∗
i contribute a density p(Ti|θ, Z i

[0,si]). Those

that are censored at time Ti = Ci contribute the survival probability S(Ti|θ, Z i
[0,si]).

Using the primary event indicator δi = I(T ∗
i ≤ Ci) ∈ {0, 1}, the likelihood for censored

data is then

P(D|θ) =
N∏

i=1
h(Ti|θ, Z i

[0,si])
δiS(Ti|θ, Z i

[0,si]). (6.20)

Upon defining ΩML(θ) = − ln P(D|θ), we can write the maximum likelihood parameter

estimators as θ̂ML = argminθΩML(θ).

A full derivation of the maximum likelihood equations for models of the form in

Equation (6.10) is provided in Appendix Section 6.6.1. Here we present only the results.
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The maximum likelihood estimator of the base hazard rate is the direct analogue of

the Breslow estimator [36]:

ĥ0(t) =
∑N

i=1 δiδ(t − Ti)∑N
i=1 I(t ∈ [0, Ti])e

∑
µ

∫ min(si,t)
0 βµ(t,t′,si)zi

µ(t′)dt′
, (6.21)

recalling from Section 6.3.1 that I(A) = 1 if A holds, and I(A) = 0 otherwise. The

remaining parameters {aµ, τµ} in Equations (6.16) and (6.17) are found by minimisation

of

ΩML[{aµ, τµ}] =
N∑

i=1
δi ln

 N∑
j=1

I(Ti ∈ [0, Tj])e
∑

µ

∫ min(sj ,Ti)
0 βµ(Ti,t

′,sj)zj
µ(t′)dt′


−

N∑
i=1

δi

∑
µ

∫ si

0
βµ(Ti, t′, si)zi

µ(t′)dt′, (6.22)

where we have disregarded terms that are independent of {aµ, τµ}. As in all Cox-

type models, the final minimisation of Equation (6.22) with respect to the remaining

parameters (here, the associations and time-scales) must be performed numerically, for

example using Powell’s method [37].

6.3.4.4 Dynamic Prediction

Using the maximum likelihood estimates θ̂ML for the model parameters, we can use

the retarded kernel models to estimate the quantity π(u|Z[0,s], s) in Equation (6.4),

representing the probability that a subject has not experienced an event by time u > s,

conditional on their survival to s and on their covariate values Z[0,s] up to that time.

That is,

π̂RK(u|Z[0,s], s) = exp
−

∫ u

s
ĥRK(t′|Z[0,s])dt′

, (6.23)

with ĥRK(t|Z[0,s]) as defined by Equation (6.10), with kernels of the form in Equations

(6.16, 6.17) and with the ML estimators for the parameters in those kernels. Using the

ML estimator in Equation (6.21) of the base hazard rate we can perform the integration

in Equation (6.23) to find

π̂RK(u|Z[0,s], s)=exp
−

N∑
j=1

δj I(Tj ∈ [s, u])e
∑p

µ=1

∫ s

0 β̂µ(Tj ,t′,s)zµ(t′)dt′

∑N
k=1 I(Tj ∈ [0, Tk])e

∑
µ

∫ min(sk,Tj )
0 β̂µ(Tj ,t′,sk)zk

µ(t′)dt′

,

(6.24)
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where β̂µ(t, t′, s) indicates the association kernel obtained from the ML estimators of

the parameters {aµ, τµ}. In the numerator we have used the fact that the prefactor

I(Tj ∈ [s, u]) ensures that min(s, Tj)=s.

6.3.4.5 Covariate interpolation

So far, we have defined the retarded kernel models conditional on covariate trajectories

Z[0,s] over the entire interval [0, s]. In reality, we do not have full knowledge of these

trajectories. Instead for each subject i we have a finite number of discrete measure-

ments that coincide with follow up appointments, Z i = {zi
µ(tiℓ); µ = 1, . . . , p, ℓ =

1, . . . , ni, tiℓ ∈ [0, si]}. In order to perform the integrals in Equations (6.22) and (6.24)

we must interpolate between these discrete observed values.

Figure 6.4: An illustration of the interpolation method for covariates. For each subject i,
there are a discrete number of covariate observations. The observation times tiℓ are labelled
on the horizontal axis. The covariate measurement at each observation time is indicated by
a cross. The solid line shows the interpolated covariate trajectory based on these discrete
observations. The value of a covariate at time t ̸= tiℓ is taken to be equal to the observed
value of the covariate at the observation time closest to t. This yields a step function that
changes value half way between each pair of consecutive observations.

We choose a simple ‘nearest neighbour’ approach, that is we set zi
µ(t) = zi

µ(tiℓ) where

tiℓ is the observation time closest to t. The approximate covariate trajectory is then a

step function that changes value half way between each pair of consecutive observation

times. Figure 6.4 illustrates this idea. Using this method, the integrals in Equations

(6.22) and (6.24) can be evaluated analytically (see Appendix Section 6.6.3). This

reduces the computational effort required to perform the minimisation and the dynamic

prediction. Other, smoother interpolation procedures such as Gaussian convolutions

[38, 39] are also possible and may improve estimations (at some computational cost).

While interpolation makes assumptions about the values of the covariate within the
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observation interval [0, si], we do not make assumptions about the covariates after the

final observation time si.

6.4 Application to clinical data

6.4.1 Methods

6.4.1.1 Training and test data

For each of the data sets we assess the predictive accuracy of the different dynamic

prediction models by splitting the data in half into a training data set and a test

data set. Each model is fitted to the training data and the resulting model is used to

make survival predictions about individuals in the test data set. Predictive accuracy is

assessed by comparing these predictions to the true event times in the test data (see

Section 6.4.1.2). The procedure was repeated for 20 random splits of the data and the

corresponding prediction error was averaged over these repetitions.

6.4.1.2 Measuring predictive accuracy

Following Rizopoulos et al (2017) [2], we quantify the predictive accuracy of the different

models using the expected error of predicting future events. Dynamic prediction is

concerned with predicting the survival of individuals to a given time u, based on their

survival to some earlier time t < u, and covariate measurements for the individual up

to this time. The expected prediction error for a given ‘prediction time’ u and ‘base

time’ t is then defined as [40]

PE(u|t) = E
[
L{Ni(u) − π(u|Z i

[0,t], t)}
]

(6.25)

where Ni(u) = I(T ∗
i > u) is the true event status of subject i at time u, and π(u|Z i

[0,t], t)

is the model’s predicted survival probability for subject i based on information about

this subject (covariate measurements and survival status) up to the base time t. The

notation E stands for an average over the distribution of covariates and event times.

L(.) denotes a loss function which defines how we measure the difference between

survival status and predicted survival probability. Commonly choices are L(x) = |x|

and the squared loss L(x) = x2 [2, 31, 40]. We choose the latter. The definition of
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prediction error is such that PE(u|t) = 0 if the survival status of all individuals is

predicted with full accuracy (i.e. π(u|Z i
[0,t], t) = 1 for all subjects who are alive at time

u and π(u|Z i
[0,t], t) = 0 for subjects who are dead by time u). If the reverse is true

(π(u|Z i
[0,t], t) = 1 for subjects who are dead at time u and π(u|Z i

[0,t], t) = 0 for subjects

who are alive) then PE(u|t) = 1. We obtain PE(u|t) = 0.25 if every individual has

predicted survival probability π(u|Z i
[0,t], t) = 0.5.

Again following Rizopoulos et al (2017) [2], in this paper we use the overall prediction

error PE(u|t) proposed by Henderson et al (2002) [31], that in addition takes into

account censoring,

P̂E(u|t) = 1
n(t)

∑
i;Ti≥t

I(Ti ≥ u)L{1 − π̂(u|Z i
[0,t], t)} + δiI(Ti < u)L{0 − π̂(u|Z i

[0,t], t)}

+ (1 − δi)I(Ti < u)
[
π̂(u|Z i

[0,t], Ti)L{1 − π̂(u|Z i
[0,t], t)}

+ {1 − π̂(u|Z i
[0,t], Ti)}L{0 − π̂(u|Z i

[0,t], t)}
]
. (6.26)

The sum extends over the n(t) subjects in the test data set who are still at risk at time

t. The first term of Equation (6.26) corresponds to individuals in the test data who are

still alive after time u. These have survival status Ni(u) = 1, and therefore contribute

a loss function based on the difference between their estimated survival probability and

1, i.e. L{1 − π̂(u|Z i
[0,t], t)}. The second term refers to individuals who have experienced

an event by time u (i.e. Ti = T ∗
i < u). Their survival status is 0 and therefore they

contribute a loss function L{0 − π̂(u|Z i
[0,t], t)}. The final term represents individuals

who were censored before time u (i.e. Ti = Ci < u) so we do not know their survival

status at time u. Here the estimated probability of survival based on information up

to time t is compared with the probability of survival given that we know subject i

survived up until their censoring time Ti ≥ t.

To compare the predictive accuracy of joint modelling, landmarking and the retarded

kernel approach we insert into Equation (6.26) the respective estimators π̂JM(u|Z i
[0,t], t),

π̂LM(u|Z i
[0,t], t) and π̂RK(u|Z i

[0,t], t). This requires that we calculate the probability of

a subject’s survival to time u, based on survival and covariate observations until a

general base time t < u that need not be the individual’s final observation time si.

For the joint model and landmarking estimators we replace the final observation time

with t in Equations (6.7) and (6.9). For the retarded kernel estimator π̂RK(u|Z i
[0,t], t) in

Equation (6.24) we replace I(Tj ∈ [si, u]) with I(Tj ∈ [t, u]) since we know subject i is
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alive until t. However, we only have covariate observations up to the latest observation

time tiℓ that is ≤ t. In line with our chosen interpolation procedure we only integrate

the covariate trajectory up to this time. Specifically, for any general base time t we

have

π̂RK(u|Z i
[0,t], t)=exp

−
N∑

j=1

δj I(Tj ∈ [t, u])e
∑

µ

∫ max{tiℓ:tiℓ≤t}
0 β̂µ(Tj ,t′,max{tiℓ:tiℓ≤t})zi

µ(t′)dt′

∑N
k=1 I(Tj ∈ [0, Tk])e

∑
µ

∫ min(sk,Tj )
0 β̂µ(Tj ,t′,sk)zk

µ(t′)dt′

 ,

(6.27)

where index i labels the individual (in the test data) for whom we are making predictions,

while the sums over j and k refer to individuals in the training data set used for inference.

The integral limit max{tiℓ : tiℓ ≤ t} labels the last observation time of individual i

before (or at) the base time t.

The term π̂(u|Z i
[0,t], Ti) in Equation (6.26) represents the probability of survival to

u given subject i survived to their censoring time Ti = Ci. To calculate this using the

retarded kernel model we replace I(Tj ∈ [t, u]) with I(Tj ∈ [Ti, u]) in Equation (6.27).

For joint modelling π̂JM(u|Z i
[0,t], Ti) is obtained by replacing Z[0,s] with Z i

[0,t] and by

replacing the condition T ∗ > s with T ∗
i > Ti in Equation (6.7). Since this term

is only calculated for censored individuals (Ti = Ci), the condition T ∗
i > Ti means

‘the true event time of individual i is greater than their censoring time’. Finally,

for landmarking we use π̂LM(u|Z i
[0,t], Ti) = π̂LM(u|Z i

[0,t], t)/π̂LM(Ti|Z i
[0,t], t) which is

equivalent to replacing s with t in Equation (6.9) except in the integral limits where

we replace
∫ u

s with
∫ u

Ti
.

To perform the prediction error calculation for the retarded kernel models we use

our own C++ code following Equations (6.26) and (6.27). For the joint model and

landmarking model we use a version of the function prederrJM in the JMbayes package

subject to minor modifications (see Appendix Section 6.9 for details).

6.4.1.3 Fixed base time

First we compare the predictive accuracy of the three methods by specifying a fixed

base time t and varying the prediction time u. Based on Figures 6.1 and 6.3, for the

PBC and Liver data sets we choose a fixed base time of t = 3 years. This value is

chosen so that a large number of individuals are still alive after this time (and we can

hence make predictions about them), but also so that these individuals have had their
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covariates measured multiple times before this time. We then vary the prediction time

u from the base time t = 3 years in steps of 0.2 years up to 8 years for the PBC data,

and up to 10 years for the Liver data. For the AIDS data set we choose t = 6 months

as the base time, so that most individuals have been observed three times. We then

vary the prediction time u from this base time up to 18 months in steps of 0.2 months.

6.4.1.4 Fixed prediction window

In our second test, we vary the base time t, while keeping the prediction window

w = u − t fixed (i.e. the time difference between prediction and base time). Since we

are varying the base time t, we must then fit a new landmark model for each choice

of t (where the landmark time υ = t). On the other hand, for the retarded kernel

approach and the joint model we need only fit the model once, and can make the error

assessments at each iteration using this single fitted model.

Based on previous analysis of the PBC and Liver data [9, 31] we choose three

prediction windows: w1 = 1 year, w2 = 2 years, and w3 = 3 years. Given the event

time distributions, we do not make predictions for either data set beyond u = 10 years.

Therefore, for w1 we vary the base time from 0 − 9 years, for w2 we vary it from 0 − 8

years and for w3 this is 0 − 7 years. In all cases we increase the base time in increments

of 0.2 years.

Based on the event time distribution of the AIDS data, we choose prediction

windows w1 = 6 months, w2 = 9 months and w3 = 12 months. Here covariates are

observed at 0, 2, 6, 12, and 18 months only. As a result, predictions will only be updated

at these time steps, and we can only make a small number of distinct measurements

of predictive accuracy. Due to the event times in the AIDS data set, we do not make

predictions past 18 months. Therefore, for window w1 we use base times t = 0, 2, 6, 12

months and for windows w2 and w3 we use t = 0, 2, 6 months only.

6.4.2 PBC data set

We fit each model to the PBC training data set using p = 3 time-dependent covariates

and a single fixed covariate: zi
1(t) denotes log serum bilirubin, zi

2(t) denotes log serum

albumin, zi
3(t) is log prothrombin time, and the fixed covariate ζ i

1 is the subject’s age

at baseline.
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The PBC data set contains event-time information for two events, death and liver

transplant. The most appropriate way of analysing this data is to use a competing

risks model. However, for simplicity we here treat the transplant event as a censoring

event. Another simple way to analyse this data is to treat the two events as a single

composite event. We provide the results of the latter analysis in Appendix Section 6.8.

The two analyses are found to give similar results.

6.4.2.1 Models

For the joint model we first fit a simple multivariate linear mixed model to each of the

three time-dependent covariates,

zi
µ(t) = mi

µ(t) + εi
µ(t) = ηµ,0 + bi

µ,0 + (ηµ,1 + bi
µ,1)t + εi

µ(t), (6.28)

where the random effects bi are assumed to follow a joint multivariate normal distribu-

tion with mean zero and variance-covariance matrix D.

Figure 6.1 suggests that the covariate trajectories in the PBC data may be non-linear

for some individuals. Hence, for extra flexibility we also fit a second joint model that

includes natural cubic splines in both the fixed and random effects parts of the model.

Following Rizopoulos (2016) [25], the log serum bilirubin (µ = 1) is modelled using

natural cubic splines with 2 degrees of freedom,

zi
1(t) = mi

1(t) + εi
1(t)

= η1,0 + bi
1,0 + (η1,1 + bi

1,1)Bn
1 (t, λ) + (η1,2 + bi

1,2)Bn
2 (t, λ) + εi

1(t) (6.29)

where {Bn
k (t, λ); k = 1, 2} denotes the B-spline basis matrix for a natural cubic spline

of time [9, 41]. We write analogous equations for both the log albumin and the log

prothrombin covariates. Again, the random effects of all three longitudinal covariates

are assumed to follow a joint multivariate normal distribution.

For both the linear and spline longitudinal models, the hazard function of the

survival sub-model in the joint modelling framework is

hJM(t|Mi
[0,t]) = h0(t) exp

{
γ1ζ

i
1 + α1m

i
1(t) + α2m

i
2(t) + α3m

i
3(t)

}
, (6.30)

where we recall from Section 6.3.2 that Mi
[0,t] = {mi

µ(t′); µ = 1, . . . , p, t′ ∈ [0, t]}

denotes the history of the ‘true’ (unobserved) longitudinal covariates up to time t for
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subject i. For the landmark model the hazard is instead specified for a given landmark

time, υ,

hLM(t|Z i, υ) = h0(t|υ) exp
{
γ1ζ

i
1 + α1(υ)z̃i

1(υ) + α2(υ)z̃i
2(υ) + α3(υ)z̃i

3(υ)
}

, (6.31)

where z̃i
µ(υ) is again the last observed value of covariate µ for patient i before time υ.

For the retarded kernel approach, we specify the hazard function as

hRK(t|Z i
[0,si]) = h0(t) exp

γ1ζ
i
1 +

∫ min(si,t)

0

(
β1(t, t′, si)zi

1(t′) + β2(t, t′, si)zi
2(t′)

+β3(t, t′, si)zi
3(t′)

)
dt′

. (6.32)

The parameterisations of the time-dependent association parameters βµ(t, t′, s) are

given in Equations (6.16) and (6.17) for models A and B, respectively.

6.4.2.2 Results

Figure 6.5 shows plots of the overall prediction error P̂E(u|t) against the prediction

time u for a fixed base time of t = 3 years averaged over the 20 random splits of the

data. Results for the linear joint model, spline joint model, landmarking model and

models A and B of the retarded kernel approach are plotted on the same graph. All

five models have similarly accurate predictions up to u = 5 years. For later prediction

times, the standard approaches have a lower average prediction error than the retarded

kernel models. The largest disparity in prediction error is observed at u = 8 years

between the spline joint model (P̂E(u|t) = 0.126) and the retarded kernel models which

both have P̂E(u|t) = 0.146.

Plots of the average prediction error P̂E(u|t) against the base time t are shown

in Figure 6.6, for fixed prediction windows w1 = 1 year, w2 = 2 years, and w3 = 3

years. Again results for the five different models are plotted in the same graphs. For

the shortest prediction window w1, all models are similarly accurate for base times

up to t = 7.5 years, after which the landmarking model performs slightly worse than

the others. For the larger prediction windows, models A and B of the retarded kernel

approach show slightly larger prediction errors than the other models over the range

t = 0 − 5 years. At larger base times the joint models and retarded kernel models again

exhibit similar prediction errors while landmarking has the largest error. The largest
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Figure 6.5: Overall prediction error P̂E(u|t) as a function of prediction time u (in years) for
the PBC data with fixed base time t = 3 years. Prediction error is calculated for u values from
3 to 8 years, with 0.2 year increments. A squared loss function was used in Equation (6.26).
The prediction error plotted at each time u is an average over values of P̂E(u|t) calculated
for 20 random splits of the data into training and test data sets. The results from models A
and B of the retarded kernel approach are plotted alongside the landmarking model and two
joint models (one that uses a linear longitudinal model for the time-dependent covariates,
and another that uses cubic splines).

difference in performance occurs at t = 9 years for the prediction window w1, between

the spline joint model (P̂E(u|t) = 0.062) and the landmarking model (P̂E(u|t) = 0.107).

The results of the above tests suggest that, for the PBC data, the retarded kernel

approach performs as well as existing methods for prediction windows < 2 years but

less well for larger windows. However, as the base time increases, the retarded kernel

models behave similarly to the joint models while the landmarking model exhibits the

highest prediction error. Care should be taken when interpreting these results, as we

have not used a competing risks model in our analysis. This data set does, however,

serve as an illustration that with only a modest drop in accuracy the retarded kernel

model can serve as a simpler alternative to joint modelling when considering multiple

longitudinal covariates. Unlike the landmarking approach, the retarded kernel model

takes into account the full history of covariate observations which, along with the fact

that landmarking discards more data as the base time increases, may explain why the

landmarking model performs worst for later base times.
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Figure 6.6: Overall prediction error P̂E(u|t) versus base time t (in years) for the PBC data,
with prediction windows w1 = 1 year, w2 = 2 years and w3 = 3 years. The prediction times
are u = t + w. The prediction error is calculated for t ranging from 0 to 9,8 or 7 years for
w1, w2 and w3 respectively, with 0.2 year increments. A squared loss function was used in
Equation (6.26). The prediction error plotted at each time t is an average over values of
P̂E(u|t) calculated for 20 random splits of the data into training and test data sets. Results
from models A and B of the retarded kernel approach are plotted alongside the landmarking
model and two joint models; one that uses a linear longitudinal model for the time-dependent
covariates, and another that uses cubic splines.
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6.4.3 AIDS data set

In the AIDS data set we focus on a single longitudinal covariate, the CD4 count zi
1(t).

We also include four fixed binary covariates: drug group (ζ i
1 = 1 for ddI and ζ i

1 = 0

for ddC), gender (ζ i
2 = 1 for male and ζ i

2 = 0 for female), PrevOI (ζ i
3 = 1 for AIDS

diagnosis at study entry and ζ i
3 = 0 for no AIDS diagnosis) and Stratum (ζ i

4 = 1 for

AZT failure and ζ i
4 = 0 for AZT intolerance). See Section 6.2.2 for a description of

these variables.

6.4.3.1 Models

The joint modelling framework allows us to model the dependence of CD4 count on the

patients drug group. Following Rizopoulos (2012) [9] we fit the linear mixed model,

zi
1(t) = mi

1(t) + εi
1(t)

= η1,0 + bi
1,0 + (η1,1 + bi

1,1)t + η1,2ζ
i
1t + εi

1(t), (6.33)

where the term η1,2ζ
i
1t denotes the effect of the interaction of treatment (drug group)

with time. As usual, the random effects bi are assumed to follow a normal distribution.

To complete the joint model, the hazard function is then chosen as

hJM(t|Mi
[0,t]) = h0(t) exp

{
γ1ζ

i
1 + γ2ζ

i
2 + γ3ζ

i
3 + γ4ζ

i
4 + α1m

i
1(t)

}
. (6.34)

For the landmark model with landmark time υ one has

hLM(t|Z i, υ) = h0(t|υ) exp
{
γ1ζ

i
1 + γ2ζ

i
2 + γ3ζ

i
3 + γ4ζ

i
4 + α1(υ)z̃i

1(υ)
}

, (6.35)

and for the retarded kernel approach we specify the survival model as follows

hRK(t|Z i
[0,si]) = h0(t) exp

γ1ζ
i
1 + γ2ζ

i
2 + γ3ζ

i
3 + γ4ζ

i
4 +

∫ min(si,t)

0
β1(t, t′, si)zi

1(t′)dt′

.

(6.36)

As before, the parameterisations of βµ(t, t′, s) in models A and B are given in Equations

(6.16) and (6.17) respectively.

6.4.3.2 Results

The plots of P̂E(u|t) against prediction time u with base time t = 6 months are shown

in Figure 6.7 for the four models. As before, the data for P̂E(u|t) is an average over
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Figure 6.7: Overall prediction error P̂E(u|t) plotted versus prediction time u (in months)
for the AIDS data with fixed base time t = 6 months. This error is calculated for u ranging
from 6 to 18 months, at 0.2 month intervals. In Equation (6.26) a squared loss function
was used. The prediction error plotted at each time u is an average over values of P̂E(u|t)
calculated for 20 random splits of the data into training and test data sets. The results from
retarded kernel models A and B are plotted alongside the results from the landmarking model
and a joint model. The results from model A cannot be seen because they overlap with the
results from model B.

20 random splits of the data into training and test sets. All models show comparable

accuracy up to u = 11 months. After this time, the joint model shows slightly worse

prediction than the other three (whose accuracies remain almost equal). The largest

difference in predictive error occurs at u = 16.2 months, between models A and B of

the retarded kernel approach on the one hand and the joint model on the other. At

this value of u, both versions of the retarded kernel model lead to P̂E(u|t) = 0.179

while the joint model has P̂E(u|t) = 0.192.

Figure 6.8 shows plots of P̂E(u|t) against base time for the AIDS data set with

three prediction windows, w1 = 6 months, w2 = 9 months and w3 = 12 months. For the

shortest prediction window w1, all four models have similar prediction error at t = 0

and 2 months. The joint model has the largest error at t = 6 months (where models

A and B are lowest), but has the same error as the retarded kernel models at t = 12

months (where landmarking has the highest error). For windows w2 and w3 the joint

model demonstrates the worst prediction at all base times. The other three models

exhibit similar errors at t = 0 for both these windows as well as at t = 2 for window

w2. In all other scenarios, models A and B of the retarded kernel approach have the

lowest prediction error. The largest difference in prediction error is for w2 at t = 6
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Figure 6.8: Overall prediction error P̂E(u|t) versus base time t (in months) for the AIDS
data with three fixed prediction windows: w1 = 6 months, w2 = 9 months and w3 = 12
months. The prediction times are u = t + w. Observations are made at times 0, 2, 6, 12, 18
months for all individuals in this data set. Prediction errors are hence only updated at these
time points. For prediction window w1, prediction error is measured for t = 0, 2, 6 and 12
months. For windows w2 and w3, the error is measured at t = 0, 2 and 6 months only. In
Equation (6.26) we used a squared loss function. The prediction error plotted at each time t
is an average over values of P̂E(u|t) calculated for 20 random splits of the data into training
and test data sets. The results from retarded kernel models A and B are plotted alongside
the landmarking model and a joint model. The results from model A cannot be seen clearly
because they overlap with the results from model B.
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months where the joint model has P̂E(u|t) = 0.184, landmarking has P̂E(u|t) = 0.174

and the retarded kernel models both have P̂E(u|t) = 0.172.

The above results suggest that, for the AIDS data set, the joint model has the

worst predictive accuracy overall, while the two retarded kernel models perform best.

6.4.4 Liver data set

For the liver data set we model prothrombin index as our one longitudinal covariate

zi
1(t), and drug group as our single fixed covariate ζ i

1. The fixed covariate is defined

such that ζ i
1 = 1 for individuals in the treatment (prednisone) group, and ζ i

1 = 0 for

those in the placebo group.

6.4.4.1 Models

Following Rizopoulos (2012) [9], we define a flexible longitudinal model for the subject-

specific prothrombin trajectories, using natural cubic splines with different average

profiles for each drug group. Rizopoulos (2012) [9] also suggests to include a separate

indicator variable of the baseline measurement, to capture sudden changes in the

prothrombin index in the early part of follow up. The longitudinal model then takes

the form

zi
1(t) = mi

1(t) + εi
1(t)

= η1,0 + bi
1,0 + (η1,1 + bi

1,1)Bn
1 (t, λ) + (η1,2 + bi

1,2)Bn
2 (t, λ)

+(η1,3 + bi
1,3)Bn

3 (t, λ) + η1,4ζ
i
1B

n
1 (t, λ) + η1,5ζ

i
1B

n
2 (t, λ) + η1,6ζ

i
1B

n
3 (t, λ)

+η1,7ζ
i
1 + η1,8I(t = ti,1) + η1,9ζ

i
1I(t = ti,1) + εi

1(t) (6.37)

where I(t = ti,1) is the indicator variable for the baseline time and, as before,

{Bn
k (t, λ); k = 1, 2, 3} is the B-spline basis matrix for a natural cubic spline of time.

This time, two internal knots are placed at 33% and 66.7% percentiles of the follow up

times. The random effects are assumed to have a diagonal covariance matrix.

The hazard functions for the joint model and the landmark model (with landmark

time υ) are then

hJM(t|Mi
[0,t]) = h0(t) exp

{
γ1ζ

i
1 + α1m

i
1(t)

}
, (6.38)

hLM(t|Z i, υ) = h0(t|υ) exp
{
γ1ζ

i
1 + α1(υ)z̃i

1(υ)
}

. (6.39)
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Figure 6.9: Overall prediction error P̂E(u|t) plotted versus prediction time u (in years) for
the Liver data with fixed base time t = 3 years. This error is calculated for u ranging from 3
to 10 years, with 0.2 year increments. In Equation (6.26) we used a squared loss function.
The prediction error plotted at each time u is an average over values of P̂E(u|t) calculated
for 20 random splits of the data into training and test data sets. The results from retarded
kernel models A and B are plotted alongside the results from the landmarking model and a
joint model.

For the retarded kernel models we have

hRK(t|Z i
[0,si]) = h0(t) exp

γ1ζ
i
1 +

∫ min(si,t)

0
β1(t, t′, si)zi

1(t′)dt′

. (6.40)

6.4.4.2 Results

Figure 6.9 shows prediction error P̂E(u|t) as a function of u for a fixed base time

t = 3 years for all four models. Again, each value of P̂E(u|t) is an average over the

20 random splits of the data into training and test data sets. The four models show

similar prediction error up to u = 7 years. After this point, retarded kernel model

B has slightly lower prediction error than the other models. For example, at t = 9.2

years, the joint model has P̂E(u|t) = 0.236, the landmark model has P̂E(u|t) = 0.229,

model A has P̂E(u|t) = 0.223 and model B has P̂E(u|t) = 0.208.

Plots of average P̂E(u|t) against base time t are shown in Figure 6.10 for fixed

prediction windows w1 = 1 year, w2 = 2 years and w3 = 3 years. For all three windows

the four models exhibit very similar accuracy levels, with no model showing consistently

superior predictions.

For the liver data set the above results suggest that the retarded kernel models

have a predictive accuracy that is comparable to those of standard methods.
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Figure 6.10: Overall prediction error P̂E(u|t) plotted against base time t (in years) for the
Liver data with three fixed prediction windows, w1 = 1 year, w2 = 2 years and w3 = 3 years.
The prediction times are u = t + w. The error is calculated for t ranging from 0 to 9,8 or 7
years, for w1, w2 and w3 respectively, with 0.2 year intervals. In Equation (6.26) a squared
loss function was used. The prediction error plotted at each time t is an average over values
of P̂E(u|t) calculated for 20 random splits of the data into training and test data sets. The
results from retarded kernel models A and B are plotted alongside the landmarking model
and a joint model.

309



Chapter 6. Retarded kernels for longitudinal survival analysis and dynamic prediction

6.5 Summary and Discussion

In this work we propose a retarded kernel approach to dynamic prediction in survival

analysis. In terms of complexity, our method comes somewhere between the two

standard approaches, joint modelling and landmarking. It is more parsimonious than

joint modelling, as it does not model the longitudinal covariate trajectory, and it makes

no assumptions about the base hazard rate. This makes the method more practical

for data with multiple time-dependent covariates. The retarded kernel approach

conditions only on the observed covariates and, unlike joint modelling, makes no

assumptions about covariate values in the future. This makes it more suitable for

covariates that cannot easily be predicted, such as categorical ones. Compared to

landmarking, the retarded kernel approach makes use of more of the available data. In

landmarking, a new model is fitted at each landmark time, discarding individuals in

the data set who have experienced the event before this landmark time. Additionally,

standard landmarking only uses covariate measurements that are most recent before

the landmark time. In contrast, the retarded kernel approach fits a single model that

incorporates information from all individuals in the data set, using the full history of

their covariate measurements. We note however, that in extensions of the landmarking

approach one could, in principle, fit a landmarking model using multiple covariate

measurements, for example, by replacing the most recent measurement with the mean

value of measurements up to that time.

The retarded kernel approach relies on parameterisation of the association kernels

βµ(t, t′, s). In this work we focused on two specific parameterisations, motivated by

practical considerations. We required that our models reduce to the standard Cox

model for static covariates, and that they contain the instantaneous Cox model as a

special case, so that they are natural extensions of familiar models. However, alternative

parameterisations or extensions (if demanded by the data at hand) can be incorporated

without much effort. For example, one could include a ‘hard’ time delay between

covariate variations and their effect on hazard, or use parameterisations that favour

time-translation invariance over consistency with standard Cox models. Furthermore,

one need not be restricted to the exponential model proposed here but could instead

make use of a more flexible parametric model for the decay.
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In tests on medical data, we found that the retarded kernel approach performs

similarly to the two standard approaches in terms of predictive accuracy. Depending

on the data set, base time and prediction window, each method (joint modelling,

landmarking, or retarded kernels) had at some point the highest or the lowest prediction

error; none appeared to be consistently superior or inferior across the scenarios we tested.

These initial comparisons indicate that the retarded kernel method is a reasonable

approach to dynamic prediction, worthy of further research and development.

An important factor to consider when assessing model performance is overfitting.

This issue occurs as the ratio of the number of model parameters to the number of

data points used to fit the model increases. The model then reflects the fitted data

set too closely which leads to poor performance in terms of parameter estimation and

prediction. In this work, we compared models of varying complexity, for example

joint models involve highly parameterised longitudinal trajectories while the retarded

kernel approach uses multiple parameters in the survival model. Observed differences

in predictive accuracy between the various models could therefore be due to overfitting

in some models. It is possible that for very large data sets (i.e. where the number of

data points is much larger than the number of parameters in any of the models) that

all methods perform equally well. In future work it would be interesting to test this,

for example using simulations with very large values of N .

Future development of the retarded kernel approach could also involve attempts

to correct for overfitting within the model. For example, regularisation methods are

commonly used for this purpose in survival analysis with high-dimensional covariates

[42, 43]. Here, one adds a penalty term to the maximum likelihood equation to suppress

the number or magnitude of the model parameters. Since our method is an extension

of the standard Cox model and is based on maximum likelihood estimation, a similar

approach may also be possible for the retarded kernel model. Furthermore, one of us

[44, 45] has previously employed methods from statistical mechanics in order to correct

for overfitting in the standard Cox model. Extending these methods for the retarded

kernel approach would be another interesting avenue for future research.

The TRIPOD (Transparent Reporting of a multivariable prediction model for

Individual Prognosis or Diagnosis) reporting guidelines [46] highlight the importance

of transparency in the development of prediction models. In order for others to
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independently validate a model, the equations used for prediction should be relatively

easy to explicitly write down. The equation for predictive probability in the retarded

kernel model (6.24) involves integration of the covariates and their associations over

time. The result of this integration depends on the parameterisation of the association

kernels and on the interpolation procedure used for the covariates. For step function

interpolation and the kernels of models A and B, this integration can be performed

analytically (the derivation and final result can be found in Appendix 6.6.3). Therefore,

while the resulting final equations for the retarded kernel model are fairly involved,

they can be obtained explicitly. As before, this places the retarded kernel approach

between the joint model and landmarking methods. Predicted survival probabilities

in the joint model involve a numerical procedure and therefore cannot be explicitly

written down. On the other hand, the predictive probabilities for a single landmark

time in the landmarking model are simple and transparent. However, if prediction is

to be made at various landmark times then multiple equations must be specified which

increases complexity and reduces the transparency of this approach.

There is scope to further develop the retarded kernel approach. For example, we used

a naïve interpolation procedure (step functions) but could try smoother interpolation

methods such as Gaussian convolutions [38, 39]. We could also take a Bayesian inference

approach, using non-informative prior distributions or incorporating existing knowledge

into informative ones. While joint modelling takes into account measurement errors, we

have not attempted to do this for the retarded kernel model. Cox models were indeed

found to be biased in the presence of such errors [17, 47, 48]. Hence, future work could

involve building measurement error effects into the retarded kernel approach. One

could also build on methods from WCE models [34] and use a wider class of association

kernels, for example those estimated via spline functions.

In this work we compared against standard landmarking models, though extensions

to these models exist [2, 11, 49]. Similarly, we only considered joint models with

instantaneous dependence on the ‘true’ covariate trajectory mi
µ(t) in the hazard function.

This study serves as a ‘proof of concept’ and as a starting point for future investigations;

we leave systematic comparison of alternative model variants to future work. Such

comparative research should also make use of more sophisticated evaluation techniques.

In our work we used a simple data-splitting technique in order to reduce computational
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effort (especially in the joint modelling framework). This serves as a preliminary

illustration of model performance but methods such as cross-validation or bootstrapping

would be more appropriate in practice [50, 51]. Furthermore, it would also be instructive

to look at other measures of model performance. In particular, we used a measure of

prediction error that averages over the data set and, as a result, may mask potentially

useful information. For example, a model may predict high risk accurately but perform

less well for low risk individuals. In practice, this may not be a problem if the aim of

the prognosis is to identify high risk patients (e.g. for further assessment or treatment).

To investigate these effects one can use calibration plots which show the agreement

between observed and predicted risks over the whole spectrum of predicted risks [50,

52]. Calibration plots for a range of different prediction and base times would then

provide a detailed analysis of model performance and give insight into the relative

performance of the different approaches in various scenarios.

Future work could also benefit from recent developments in simulation methods for

dynamic predictions with time-varying covariates [12]. Generating data according to

the retarded kernel model with dependence on the period over which covariates are

observed is non-trivial, but could possibly be achieved by extending the permutational

algorithm developed by Sylvestre and Abrahamowicz (2008) [53]. Such simulations

could provide valuable tests for internal consistency.

In summary, we have developed a ‘retarded kernel’ approach to dynamic prediction

that overcomes some limitations of existing methods. By conditioning the hazard rate

on observed covariates over a given time frame, it offers a simpler alternative to joint

models without disregarding portions of longitudinal covariate data, as is the case with

landmarking methods. Using three different clinical data sets we have demonstrated

that retarded kernels can have a predictive accuracy comparable to that of established

methods. We therefore believe that the retarded kernel method is a promising addition

to the toolbox of dynamic prediction methods.
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6.6 Appendix A: Mathematical details

6.6.1 Maximum Likelihood Inference

As in standard Cox survival analysis, we use maximum likelihood inference to determine

the most plausible values of the model parameters for our models, based on the observed

data. We write θ for the full set of parameters, this includes the base hazard rate

h0(t). That is, θ = {h0(t), aµ, τµ; µ = 1, . . . , p} for both models A and B. The optimal

parameters are those for which the data likelihood P(D|θ) is maximised. We use the

primary event indicator δi = I(T ∗
i ≤ Ci) ∈ {0, 1}, where the indicator function I(A)

is defined as I(A) = 1 if A holds, and I(A) = 0 otherwise. The data likelihood for

censored data is then

P(D|θ) =
N∏

i=1
h(Ti|θ, Z i

[0,si])
δiS(Ti|θ, Z i

[0,si]), S(Ti|θ, Z i
[0,si]) = e−

∫ Ti
0 h(t|θ,Zi

[0,si])dt
,

(6.41)

where, in this section, we refer only to the retarded kernel model and therefore omit

the superscript ‘RK’ from the hazard for clarity. Maximising P(D|θ) is equivalent to

minimising the negative log likelihood, i.e. θ̂ML = argminθ ΩML(θ), with

ΩML(θ) = − ln
N∏

i=1
h(Ti|θ, Z i

[0,si])
δiS(Ti|θ, Z i

[0,si])

= −
N∑

i=1
δi ln h(Ti|θ, Z i

[0,si]) +
N∑

i=1

∫ Ti

0
h(t|θ, Z i

[0,si])dt. (6.42)

The hazard rate for the retarded kernel approach is

h(t|θ, Z i
[0,si]) = h0(t) exp


p∑

µ=1

∫ min(si,t)

0
βµ(t, t′, si)zi

µ(t′)dt′

. (6.43)

Substituting this into ΩML(θ) yields

ΩML(θ) = −
N∑

i=1
δi ln h0(Ti) −

N∑
i=1

δi

∫ si

0

∑
µ

βµ(Ti, t′, si)zi
µ(t′)dt′

+
N∑

i=1

∫ Ti

0
h0(t′)e

∫ min(si,t′)
0 dt′′

∑
µ

βµ(t′,t′′,si)zi
µ(t′′)dt′ , (6.44)

where we have used the fact that si ≤ Ti. For simplicity we have specified the hazard

in Equation (6.44) without fixed (or baseline) covariates. To include these explicitly (if

desired), one can simply add the term ∑
ν γνζ i

ν to the exponent of the hazard function.
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Extremisation of Equation (6.44) functionally over h0(t) gives the maximum likeli-

hood estimator of the base hazard rate, given βµ(t, t′, s),

ĥ0(t) =
∑N

i=1 δiδ(t − Ti)∑N
i=1 I(t∈ [0, Ti])e

∫ min(si,t)
0

∑
µ

βµ(t,t′,si)zi
µ(t′)dt′

, (6.45)

as quoted in Equation (6.21) in the main paper. Equation (6.45) is the analogue of the

standard Breslow estimator [36]. Inserting this expression back into Equation (6.44)

leaves the following function to be extremised over the remaining model parameters

{aµ, τµ} in the kernels βµ(t, t′, s) (where we denote all terms that do not contain {aµ, τµ}

simply as ‘constant’):

ΩML[{aµ, τµ}] = −
N∑

i=1
δi ln

 ∑N
k=1 δkδ(Ti − Tk)∑N

j=1 I(Ti ∈ [0, Tj])e
∑

µ

∫ min(sj ,Ti)
0 βµ(Ti,t′,sj)zj

µ(t′)dt′


−

N∑
i=1

δi

∑
µ

∫ si

0
βµ(Ti, t′, si)zi

µ(t′)dt′

+
N∑

i=1


∫ Ti

0

 ∑N
k=1 δkδ(t′− Tk)∑N

j=1 I(t′ ∈ [0, Tj])e
∑

µ

∫ min(sj ,t′)
0 βµ(t′,t′′,sj)zj

µ(t′′)dt′′


×e
∑

µ

∫ min(si,t′)
0 βµ(t′,t′′,si)zi

µ(t′′)dt′′
dt′


=

N∑
i=1

δi

 ln
 N∑

j=1
I(Ti ∈ [0, Tj])e

∑
µ

∫ min(sj ,Ti)
0 βµ(Ti,t

′,sj)zj
µ(t′)dt′


−
∑

µ

∫ si

0
βµ(Ti, t′, si)zi

µ(t′)dt′


+

N∑
k=1

δk

 ∑N
i=1 I(Tk ∈ [0, Ti])e

∑
µ

∫ min(si,Tk)
0 βµ(Tk,t′′,si)zi

µ(t′′)dt′′

∑N
j=1 I(Tk ∈ [0, Tj])e

∑
µ

∫ min(sj ,Tk)
0 βµ(Tk,t′′,sj)zj

µ(t′′)dt′′

+ constant

=
N∑

i=1
δi

 ln
 N∑

j=1
I(Ti ∈ [0, Tj])e

∑
µ

∫ min(sj ,Ti)
0 βµ(Ti,t

′,sj)zj
µ(t′)dt′


−
∑

µ

∫ si

0
βµ(Ti, t′, si)zi

µ(t′)dt′

+ constant. (6.46)

This is the formula quoted in Equation (6.22) in the main paper. Minimisation of

Equation (6.46) with respect to the remaining model parameters {aµ, τµ; µ = 1 . . . p}

must be performed numerically. Finally, if we define the N2 integrals

Iij[{aµ, τµ}] =
∫ min(sj ,Ti)

0

p∑
µ=1

βµ(Ti, t′, sj)zj
µ(t′)dt′, (6.47)
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then we can re-write expression (6.46) as

ΩML[{aµ, τµ}] =
N∑

i=1
δi ln

 N∑
j=1

I(Ti ∈ [0, Tj]) eIij [{aµ,τµ}]−Iii[{aµ,τµ}]

+ constant. (6.48)

6.6.2 Survival probability

We recall from Equation (6.23) in the main paper that the estimated probability that

subject i has not experienced an event by time u > si conditional on their survival to

si and on their covariate values Z i up to that time is given by

π̂RK(u|Z i
[0,si], si) = exp

{
−
∫ u

si

ĥ(t′|Z i
[0,si])dt′

}
. (6.49)

Substituting into this equation the base hazard estimator in Equation (6.45), in

combination with Equation (6.43), yields

π̂RK(u|Z i
[0,si], si) = exp

−
∫ u

si

∑N
j=1 δjδ(t′ − Tj)e

∫ min(si,t′)
0 dt′′

∑
µ

β̂µ(t′,t′′,si)zi
µ(t′′)

∑N
k=1 I(t′ ∈ [0, Tk])e

∫ min(sk,t′)
0 dt′′

∑
µ

β̂µ(t′,t′′,sk)zk
µ(t′′)

dt′


= exp

−
N∑

j=1

δj I(Tj ∈ [si, u])e
∫ min(si,Tj )

0 dt′′
∑

µ
β̂µ(Tj ,t′′,si)zi

µ(t′′)

∑N
k=1 I(Tj ∈ [0, Tk])e

∫ min(sk,Tj )
0 dt′′

∑
µ

β̂µ(Tj ,t′′,sk)zk
µ(t′′)


= exp

−
N∑

j=1

δj I(Tj ∈ [si, u])e
∫ si

0 dt′′
∑

µ
β̂µ(Tj ,t′′,si)zi

µ(t′′)

∑N
k=1 I(Tj ∈ [0, Tk])e

∫ min(sk,Tj )
0 dt′′

∑
µ

β̂µ(Tj ,t′′,sk)zk
µ(t′′)

,

(6.50)

where in the last line we replaced min(si, Tj) = si, which holds by virtue of the factor

I(Tj ∈ [si, u]). We have also used the notation β̂µ(t, t′, s) to indicate the association

kernel obtained from the ML estimators of the parameters {aµ, τµ}. Using the integral

defined in Equation (6.47) we can re-write Equation (6.50) as

π̂RK(u|Z i
[0,si], si) = exp

−
N∑

j=1
δj I(Tj ∈ [si, u]) eIji[{âµτ̂µ}]∑N

k=1 I(Tj ∈ [0, Tk])eIjk[{âµτ̂µ}]

 , (6.51)

where we recall that i labels the individual for whom we are making predictions, while

the sums over j and k refer to individuals in the data set used for inference.

6.6.3 Step function interpolation

In the main paper we use staircase functions as a straightforward method to interpolate

between discrete measurements of the covariates. We take a ‘nearest neighbour’
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approach, that is we set zi
µ(t) = zi

µ(tiℓ) where tiℓ is the observation time closest to t.

The approximated continuous time covariate trajectory then changes value half way

between each pair of consecutive observation times. That is,

zi
µ(t) =

ni∑
ℓ=1

I(t∈ [Uiℓ, Uiℓ+1])zi
µ(tiℓ) (6.52)

where Uiℓ denote the ‘switch’ times with Ui1 = 0 (the first observation time), Uini+1 = si

(the final observation time), and all other Uiℓ occur half way between consecutive

observation times, i.e. Uiℓ = 1
2(tiℓ−1 + tiℓ) ℓ = 2, . . . , ni. Using Equation (6.52) along

with the parameterisations of the association kernels, we can evaluate the integral in

Equation (6.47) analytically. We do this in the following sections for retarded kernel

models A and B.

6.6.3.1 Model A

We recall from Equation (6.16) in the main paper that the association kernel for model

A is defined as

βµ(t, t′, s) = aµ

τµ

exp (t′/τµ)
exp (min(s, t)/τµ) − 1 . (6.53)

Therefore, using the step function defined by θ(z > 0) = 1 and θ(z < 0) = 0, we have

I(A)
ij [{aµ, τµ}] =

p∑
µ=1

nj∑
ℓ=1

aµzj
µ(tjℓ)

emin(sj ,Ti)/τµ −1

∫ min(sj ,Ti)

0

1
τµ

et′/τµI(t′ ∈ [Ujℓ, Ujℓ+1])dt′

=
p∑

µ=1

ni∑
ℓ=1

aµzj
µ(tjℓ)

emin(sj ,Ti)/τµ −1θ(min(sj, Ti, Ujℓ+1) − Ujℓ)
[
et′/τµ

]min(sj ,Ti,Ujℓ+1)

Ujℓ

=
p∑

µ=1

nj∑
ℓ=1

aµzj
µ(tjℓ) θ(min(sj, Ti, Ujℓ+1)−Ujℓ)

emin(sj ,Ti,Ujℓ+1)/τµ −eUjℓ/τµ

emin(sj ,Ti)/τµ −1

=
p∑

µ=1

nj∑
ℓ=1

aµzj
µ(tjℓ) θ(Ti−Ujℓ)

emin(Ti,Ujℓ+1)/τµ −eUjℓ/τµ

emin(sj ,Ti)/τµ −1 (6.54)

where in the last line we used the fact that Ujℓ < Ujℓ+1 ≤ sj.

6.6.3.2 Model B

We recall from Equation (6.17) in the main paper that the association kernel for model

B is defined as

βµ(t, t′, s) = aµ

τµ

e−(t−t′)/τµ + aµ

min(s, t)
[
1 − e[min(s,t)−t]/τµ + e−t/τµ

]
. (6.55)
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Substituting this into Equation (6.47) gives

I(B)
ij [{aµ, τµ}] =

p∑
µ=1

nj∑
ℓ=1

aµzj
µ(tℓ)e−Ti/τµ

∫ min(sj ,Ti)

0
I(t′ ∈ [Ujℓ, Ujℓ+1])

1
τµ

et′/τµdt′

+
p∑

µ=1

nj∑
ℓ=1

aµzj
µ(tℓ)

∫ min(sj ,Ti)

0
I(t′ ∈ [Ujℓ, Ujℓ+1])dt′

 e−Ti/τµ

min(sj, Ti)

+θ(Ti−sj)
1 − e(sj−Ti)/τµ

sj


=

p∑
µ=1

nj∑
ℓ=1

aµzj
µ(tℓ)θ(min(sj, Ti, Uj,ℓ+1) − Ujℓ)

e−Ti/τµ

(
emin(sj ,Ti,Ujℓ+1)/τµ −eUjℓ/τµ

)

+
(

min(sj, Ti, Ujℓ+1)−Ujℓ

) e−Ti/τµ

min(sj, Ti)
+ θ(Ti−sj)

1 − e(sj−Ti)/τµ

sj


=

p∑
µ=1

nj∑
ℓ=1

aµzj
µ(tℓ)θ(Ti − Ujℓ)

e−Ti/τµ

(
emin(Ti,Ujℓ+1)/τµ −eUjℓ/τµ

)

+
(

min(Ti, Ujℓ+1)−Ujℓ

) e−Ti/τµ

min(sj, Ti)
+ θ(Ti−sj)

1 − e(sj−Ti)/τµ

sj

,(6.56)

where in the last line, we have again used the property Ujℓ < Ujℓ+1 ≤ sj.

6.7 Appendix B: R code for joint models

All joint models were fitted using the R package JMbayes [25]. All the data analysed in

the main paper are available in this package:

1. PBC data

(a) pbc2 contains the PBC data set with time varying measurements of covariates

(b) pbc2.id contains the PBC data set with only baseline covariate measure-

ments per individual

2. AIDS data

(a) aids contains the AIDS data set with time varying measurements of covari-

ates

(b) aids.id contains the AIDS data set with only baseline covariate measure-

ments per individual

3. Liver data
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(a) prothro contains the Liver data set with time varying measurements of

covariates

(b) prothros contains the Liver data set with only baseline covariate measure-

ments per individual.

The models fitted below are specified for the full data sets listed above. For the results

presented in the main paper, the data sets were split randomly 20 times into training

and test data sets and the models were actually fitted to the training data at each

iteration.

6.7.1 PBC data

For the results in the main paper we treat the transplant event as a censoring event.

To describe this we define a variable status2 using

pbc2.id$status2 <- as.numeric(pbc2.id$status == "dead")

pbc2$status2 <- as.numeric(pbc2$status == "dead")

where status2 = 1 if the individual’s event is death and = 0 otherwise.

For the composite event (results shown in Section 6.8) we replace status2 with

status3,

pbc2.id$status3 <- as.numeric(pbc2.id$status != "alive")

pbc2$status3 <- as.numeric(pbc2$status != "alive")

defined as 1 if the individual experiences an event (death or a liver transplant) and 0

otherwise (still alive by end of study).

6.7.1.1 Linear longitudinal model

Extract of R code used to fit the PBC data set using the simple linear model described

in Section 6.4.2.1 in the main paper. Based on code in Rizopoulos (2012) [9] and

Rizopoulos (2018) [54]:

long.pbc.linear<-mvglmer(list(log(serBilir)~year+(year|id),

log(albumin)~year+(year|id),

log(prothrombin)~year+(year|id)),
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data=pbc2, families=list(gaussian, gaussian, gaussian))

surv.pbc<-coxph(Surv(years, status2)~age, data=pbc2.id, model=TRUE)

JM.pbc.linear<-mvJointModelBayes(long.pbc.linear, surv.pbc,

timeVar = "year")

6.7.1.2 Spline model

Extract of R code to fit the PBC data set using the natural cubic spline model described

in Section 6.4.2.1 of the main paper. Based on code in Rizopoulos (2016) [25] and

Rizopoulos (2018) [54]:

long.pbc.spline<-mvglmer(list(log(serBilir)~ns(year,2,B=c(0,14.4))

+(ns(year,2,B=c(0,14.4))|id),

log(albumin)~ns(year,2,B=c(0,14.4))

+(ns(year,2,B=c(0,14.4))|id),

log(prothrombin)~ns(year,2,B=c(0,14.4))

+(ns(year,2,B=c(0,14.4))|id)),

data=pbc2, families=list(gaussian, gaussian, gaussian))

surv.pbc<-coxph(Surv(years, status2)~age, data=pbc2.id, model=TRUE)

JM.pbc.spline<-mvJointModelBayes(long.pbc.spline, surv.spline,

timeVar = "year")

6.7.2 AIDS data

Extract of R code to fit the AIDS data set using the model described in Section 6.4.3.1

of the main paper. Based on code in Section 4.2 of Rizopoulos (2012) [9]:

long.aids<-lme(CD4~obstime+obstime:drug, random=~obstime|patient,

data=aids)

surv.aids<-coxph(Surv(Time, death)~drug+prevOI+AZT+gender,

data=aids.id, x=TRUE)

JM.aids<-jointModelBayes(long.aids, surv.aids, timeVar="obstime")

320



6.8. Appendix C: PBC data with composite event

6.7.3 Liver data

Extract of R code to fit the Liver data set using the model described in Section 6.4.4.1

of the main paper. Replicated from code in Section 5.1.2 of Rizopoulos (2012) [9]:

prothro$t0<-as.numeric(prothro$time==0)

long.proth<-lme(pro~treat*(ns(time, 3) + t0),

random=list(id=pdDiag(form=~ns(time,3))), data = prothro)

surv.proth<-coxph(Surv(Time, death)~treat, data=prothros, x=TRUE)

JM.proth<-jointModelBayes(long.proth, surv.proth, timeVar="time")

6.8 Appendix C: PBC data with composite event

In the main paper we present the results for the PBC data set for models that treat

death as the event of interest and transplant events as censoring events. Here we

show the results for models that treat the two events (death or transplant) as a single

composite event. Figure 6.11 shows the result for a fixed base time t = 3 years and

varying prediction time u. Figure 6.12 shows the results for three fixed prediction

windows and varying base time t. With comparison to Figures 6.5 and 6.6 in the

main paper, we see that the relative accuracy between the models in the two analyses

are similar (though overall prediction error for all models is slightly higher for the

composite event analysis).

6.9 Appendix D: Edits made to prederrJM

The definition of prediction error P̂E(u|t) is given in Equation (6.26) of the main paper.

This is identical to the equation for prediction error quoted on pg. 34 in Rizopoulos

(2016) [25]. For retarded kernel models A and B prediction error is calculated using a

C++ code that exactly follows this equation.

The JMbayes package provides the function prederrJM to calculate prediction error

for joint models (as described in Rizopoulos (2016) [25]). The function can also be used

for standard Cox models and, therefore, landmarking models. However, the source

code for prederrJM varies very slightly from Equation (6.26). Specifically,
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Figure 6.11: Fixed base time results for the PBC data with models fitted treating the two
events (death and transplant) as a single composite event. The plot shows overall prediction
error P̂E(u|t) as a function of prediction time u (in years) with fixed base time t = 3 years.
Prediction error is calculated for u values from 3 to 8 years, with 0.2 year increments. A
squared loss function was used in Equation (6.26) in the main paper. The prediction error
plotted at each time u is an average over values of P̂E(u|t) calculated for 20 random splits of
the data into training and test data sets. The results from models A and B of the retarded
kernel approach are plotted alongside the landmarking model and two joint models (one that
uses a linear longitudinal model for the time-dependent covariates, and another that uses
cubic splines). Other than the definition of the composite event, the models fitted are the
same as those described in the main paper.
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Figure 6.12: Fixed prediction window results for the PBC data with models fitted treating
the two events (death and transplant) as a single composite event. Plots show overall
prediction error P̂E(u|t) versus base time t (in years), with prediction windows w1 = 1 year,
w2 = 2 years and w3 = 3 years. The prediction times are u = t + w. The prediction error is
calculated for t ranging from 0 to 9,8 or 7 years for w1, w2 and w3 respectively, with 0.2 year
increments. A squared loss function was used in Equation (6.26) in the main paper. The
prediction error plotted at each time t is an average over values of P̂E(u|t) calculated for 20
random splits of the data into training and test data sets. Results from models A and B
of the retarded kernel approach are plotted alongside the landmarking model and two joint
models; one that uses a linear longitudinal model for the time-dependent covariates, and
another that uses cubic splines. Other than the definition of the composite event, the models
fitted are the same as those described in the main paper.
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1. prederrJM uses ∑i;Ti>t instead of the ∑i;Ti≥t in Equation (6.26),

2. for the first term (indiviudals who are still alive), prederrJM specifies the condition

I(Ti > u) instead of I(Ti ≥ u),

3. and for the second term (individuals who have experienced the event), prederrJM

specifies δiI(Ti ≤ u) instead of δiI(Ti < u).

These inconsistencies only have an effect when u or t are exactly equal to one (or

more) of the event times Ti in the test data. In the PBC and Liver data sets, event

times Ti are quoted to a large number of decimal places meaning we never encounter

u = Ti or t = Ti (since we vary t and u in steps of 0.2). However, for the AIDS data

set, event times are stored to a lower number of decimal places and we do encounter

u = Ti or t = Ti for some values of t and u. For the joint model and landmarking

results presented in the main paper we use an edited version of prederrJM where

inequalities exactly match Equation (6.26) (and hence the equation for prediction

error in Rizopoulos (2016) [25]). This code can be found at the GitHub repository

https://github.com/AnnieDavies/Supplement_Davies_Coolen_Galla_2021. For

the PBC and Liver data sets the results in the main paper are the same as those using

the prederrJM code without these changed inequalities. Figures 6.13 and 6.14 show

the results for the AIDS data without these changes. Comparing these to Figures 6.7

and 6.8 in the main paper, it is clear the effect of these changes is very minor.

The handling of exceptions in prederrJM is such that the function generates an

output NA if no-one experiences a (non-censoring) event in the window [t, u]. Because

we are splitting the data sets randomly into training and test sets at different iterations,

we occasionally encounter this scenario for certain windows. For the PBC data this

occurred for the fixed base time (t = 3 years) analysis at prediction time u = 3.2

years for iterations 8, 15 and 16, and for the window w1 = 1 year analysis at base

time t = 7.2 for iteration 20, t = 7.4 for iterations 9 and 20, and t = 7.6, 7.8 for

iteration 16. For the AIDS data (with code edited to match Equation (6.26)) this

occurred only in the fixed base time (t = 6 months) analysis at u = 6.2 months

for iterations 17 and 18 and at u = 6.4, 6.6 months for iteration 18. For the Liver

data this only occurred for window w1 = 1 year at t = 8.6, 8.8 for iteration 16

and t = 9 for iteration 5. If there are no non-censoring events in a given window
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Figure 6.13: Fixed base time results for the AIDS data set using the prederrJM code (for
the joint model and landmarking model) without changes made to the inequalities. Overall
prediction error P̂E(u|t) plotted versus prediction time u (in months) for the AIDS data with
fixed base time t = 6 months. This error is calculated for u ranging from 6 to 18 months, at
0.2 month intervals. In Equation (6.26) in the main paper a squared loss function was used.
The prediction error plotted at each time u is an average over values of P̂E(u|t) calculated
for 20 random splits of the data into training and test data sets. The results from retarded
kernel models A and B are plotted alongside the results from the landmarking model and a
joint model. The results from model A (orange line) cannot be seen because they overlap
with the results from model B (red line).

[t, u], the second term in Equation (6.26) is equal to zero. Therefore, we edited

the prederrJM source code to handle this scenario (see the Github repository https:

//github.com/AnnieDavies/Supplement_Davies_Coolen_Galla_2021). The results

in the main paper are for this edited code. Compared to the original prederrJM code,

these edits have a negligible effect on results.

For the version of prederrJM for Cox models, we also obtain an output of NA if

there is no-one censored in the interval [t, u]. In the joint model version of prederrJM

this is handled by including the argument na.rm=TRUE when we perform the sum∑
i;Ti≥t. We therefore added this argument to the function for Cox models.

All changes made to the prederrJM source code were very minor and had an almost

negligible effect on all results. Changes were made to the code only to ensure that all

models were evaluated with exactly the same prediction error equation consistent with

the equation quoted in literature [2, 25, 31].
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Figure 6.14: Fixed prediction window results for the AIDS data set using the prederrJM
code (for the joint model and landmarking model) without changes made to the inequalities.
Overall prediction error P̂E(u|t) versus base time t (in months) for the AIDS data with
three fixed prediction windows: w1 = 6 months, w2 = 9 months and w3 = 12 months. The
prediction times are u = t + w. Observations are made at times 0, 2, 6, 12, 18 months for all
individuals in this data set. Prediction errors are hence only updated at these time points.
For prediction window w1, prediction error is measured for t = 0, 2, 6 and 12 months. For
windows w2 and w3, the error is measured at t = 0, 2 and 6 months only. In Equation (6.26)
in the main paper we used a squared loss function. The prediction error plotted at each time
t is an average over values of P̂E(u|t) calculated for 20 random splits of the data into training
and test data sets. The results from retarded kernel models A and B are plotted alongside
the landmarking model and a joint model. The results from model A (orange line) cannot be
seen clearly because they overlap with the results from model B (red line).
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6.10 Appendix E: Results with decaying association

parameter at s=0

The association kernels βµ(t, t′, s) for models A and B as specified in Equations (6.16)

and (6.17) of the main paper do not hold for s = 0. In the data sets we analyse, some

individuals are observed only once meaning their final observation time is s = 0. For

the results presented in the main paper we treat the association parameter of these

individuals as fixed, βµ(t) = aµ. Another option is to define a decaying parameter,

βµ(t) = aµe−t/τµ . The results for this latter choice are shown in Figures 6.15 and 6.16 for

the PBC data (treating transplants as a censoring event), in Figures 6.17 and 6.18 for

the AIDS data, and in Figures 6.19 and 6.20 for the Liver data. For the PBC and Liver

data, the results with βµ(t) = aµe−t/τµ and βµ(t) = aµ are similar when the base time

t ≳ 1 year. When we restrict the individuals in the test data to having observations

over a smaller time frame, the prediction error for these models is much larger. This

effect is increased for the larger prediction windows. This can be understood because

for smaller t many individuals in the test data will have been observed only once and

the parameter βµ(t) = aµe−t/τµ means the effect of this observation is decayed at later

times. Similarly in the AIDS data set, the results are similar to the results in the main

paper except when the individuals are restricted to only one observation (at t = 0).

Perhaps another reasonable choice of association parameter for s = 0 is a hybrid of the

fixed and decaying association, e.g. βµ(t) = aµ(1 + e−t/τµ).

Data Availability Statement

C++ and R codes used to perform the data analysis in this manuscript are available

at the GitHub repository https://github.com/AnnieDavies/Supplement_Davies_

Coolen_Galla_2021. The data sets analysed are available publicly via the JMbayes R

package [25].
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Figure 6.15: Fixed base time results for the PBC data with a decaying association in models
A and B, βµ(t) = aµe−t/τµ , for individuals who have their final observation time s = 0. The
plot shows overall prediction error P̂E(u|t) as a function of prediction time u (in years) with
fixed base time t = 3 years. Prediction error is calculated for u values from 3 to 8 years, with
0.2 year increments. A squared loss function was used in Equation (6.26) in the main paper.
The prediction error plotted at each time u is an average over values of P̂E(u|t) calculated
for 20 random splits of the data into training and test data sets. The results from models A
and B of the retarded kernel approach are plotted alongside the landmarking model and two
joint models (one that uses a linear longitudinal model for the time-dependent covariates,
and another that uses cubic splines). Other than the definition of the association for s = 0 in
models A and B, the models fitted are the same as those described in the main paper (i.e. we
treat transplant events as a censoring event).
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Figure 6.16: Fixed prediction window results for the PBC data with a decaying association
in models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final observation time
s = 0. Plots show overall prediction error P̂E(u|t) versus base time t (in years), with
prediction windows w1 = 1 year, w2 = 2 years and w3 = 3 years. The prediction times are
u = t + w. The prediction error is calculated for t ranging from 0 to 9,8 or 7 years for w1, w2
and w3 respectively, with 0.2 year increments. A squared loss function was used in Equation
(6.26) in the main paper. The prediction error plotted at each time t is an average over values
of P̂E(u|t) calculated for 20 random splits of the data into training and test data sets. Results
from models A and B of the retarded kernel approach are plotted alongside the landmarking
model and two joint models; one that uses a linear longitudinal model for the time-dependent
covariates, and another that uses cubic splines. Other than the definition of the association
for s = 0 in models A and B, the models fitted are the same as those described in the main
paper (i.e. we treat transplant events as a censoring event).
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Figure 6.17: Fixed base time results for the AIDS data with a decaying association in
models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final observation time
s = 0. Overall prediction error P̂E(u|t) plotted versus prediction time u (in months) with
fixed base time t = 6 months. This error is calculated for u ranging from 6 to 18 months, at
0.2 month intervals. In Equation (6.26) in the main paper a squared loss function was used.
The prediction error plotted at each time u is an average over values of P̂E(u|t) calculated
for 20 random splits of the data into training and test data sets. The results from retarded
kernel models A and B are plotted alongside the results from the landmarking model and a
joint model. Other than the definition of the association for s = 0 in models A and B, the
models fitted are the same as those described in the main paper. The results from model A
(orange line) cannot be seen because they overlap with the results from model B (red line).
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Figure 6.18: Fixed prediction window results for the AIDS data with a decaying association
in models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final observation time
s = 0. Overall prediction error P̂E(u|t) versus base time t (in months) with three fixed
prediction windows: w1 = 6 months, w2 = 9 months and w3 = 12 months. The prediction
times are u = t + w. Observations are made at times 0, 2, 6, 12, 18 months for all individuals
in this data set. Prediction errors are hence only updated at these time points. For prediction
window w1, prediction error is measured for t = 0, 2, 6 and 12 months. For windows w2 and
w3, the error is measured at t = 0, 2 and 6 months only. In Equation (6.26) in the main paper
we used a squared loss function. The prediction error plotted at each time t is an average
over values of P̂E(u|t) calculated for 20 random splits of the data into training and test data
sets. The results from retarded kernel models A and B are plotted alongside the landmarking
model and a joint model. Other than the definition of the association for s = 0 in models
A and B, the models fitted are the same as those described in the main paper. The results
from model A (orange line) cannot be seen clearly because they overlap with the results from
model B (red line).
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Figure 6.19: Fixed base time results for the Liver data with a decaying association in
models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final observation time
s = 0. Overall prediction error P̂E(u|t) plotted versus prediction time u (in years) with fixed
base time t = 3 years. This error is calculated for u ranging from 3 to 10 years, with 0.2
year increments. In Equation (6.26) in the main paper we used a squared loss function. The
prediction error plotted at each time u is an average over values of P̂E(u|t) calculated for 20
random splits of the data into training and test data sets. The results from retarded kernel
models A and B are plotted alongside the results from the landmarking model and a joint
model. Other than the definition of the association for s = 0 in models A and B, the models
fitted are the same as those described in the main paper.
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Figure 6.20: Fixed prediction window results for the Liver data with a decaying association
in models A and B, βµ(t) = aµe−t/τµ , for individuals who have their final observation time
s = 0. Overall prediction error P̂E(u|t) plotted against base time t (in years) for the Liver
data with three fixed prediction windows, w1 = 1 year, w2 = 2 years and w3 = 3 years. The
prediction times are u = t + w. The error is calculated for t ranging from 0 to 9,8 or 7 years,
for w1, w2 and w3 respectively, with 0.2 year intervals. In Equation (6.26) in the main paper
a squared loss function was used. The prediction error plotted at each time t is an average
over values of P̂E(u|t) calculated for 20 random splits of the data into training and test data
sets. The results from retarded kernel models A and B are plotted alongside the landmarking
model and a joint model. Other than the definition of the association for s = 0 in models A
and B, the models fitted are the same as those described in the main paper.
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Chapter 7

Conclusions

7.1 Summary of results

We begin by briefly reviewing the findings from Chapters 3, 4 and 6. Following this,

we present potential avenues for future research and discuss the wider contributions of

the work in this thesis.

Chapter 3: Degree irregularity and rank probability bias in network meta-

analysis.

In this chapter, we performed a simulation study to investigate how network topology

affects the precision and accuracy of outcomes from a Bayesian NMA. The results from

the study can be categorised two-fold into (i) comparisons between treatments within

a particular network, and (ii) comparisons between networks with different topologies.

In the first instance, we found that disparity in the number of trials involving

different treatments is associated with variation in the precision of treatment effect

estimates and that this, in turn, is correlated with a systematic bias in the estimated

rank probabilities. In simulations of networks with four treatments, the probability

that a treatment ranked best was overestimated for the treatment involved in the

fewest trials and underestimated for the treatment involved in the most trials. The

same pattern was observed for the probability of being ranked worst. The probabilities

of being second and third best were subject to a systematic bias in the opposite

direction. These trends in rank probability bias were associated with an increase in

standard deviation of effect estimates for treatments included in fewer studies. Based
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on this observation, we then offered an explanation for how variation in the precision

of treatment effect estimates could generate a bias in rank probabilities.

In order to make comparisons between networks, we defined a measure of ‘degree

irregularity’ that quantifies asymmetry in the way trials are distributed between the

treatments. We set the degree of a treatment node to be the number of trials involving

that treatment. The irregularity of the network was then the variance in this degree

between the nodes. In simulations of networks with different irregularities, we found

that more regular networks had more precise treatment effect estimates and smaller

bias on rank probabilities. Using this result, we showed that by considering the effect

of a new trial on the irregularity of the network, we can propose potential candidates

for future trials that will best compliment an existing network of evidence.

Chapter 4: Network meta-analysis and random walks.

Motivated by the well-established analogy between electrical networks and random

walks [1] on the one hand, and that of electrical networks and NMA on the other [2],

in Chapter 4 we presented a new analogy between network meta-analysis and random

walks. The transition matrix describing the random walk was constructed by taking

the transition probabilities to be inversely proportional to the variance associated with

each edge. Therefore, a walker is more likely to travel across edges corresponding

to more precise measurements, and well-connected treatments are visited more often.

By analysing the average movement of the random walker, we were able to obtain

information about the propagation of evidence through the network. In particular,

for a walk that starts at node a and ends at node b, we found that the expected net

number of times the walker crosses each edge can be used to construct the evidence

flow network for the comparison ab.

We then defined a second transition matrix, this time for a random walker moving

on the evidence flow network. For the evidence flow network of comparison ab, the

walker starts its journey at node a and stops once it reaches b. This network is directed

and acyclic, meaning walkers are restricted to move in a specified direction along each

edge, that is, in the direction of evidence flow. The walker can then only take a finite

number of routes from a to b, moving along paths of direct and indirect evidence. We

interpreted the proportion of walkers flowing through each of these paths as the flow of
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evidence through that path. An analytical expression for this quantity was obtained

from the product of transition probabilities along the edges that make up that path.

This, in turn, led to an analytical expression for the proportion contribution of each

direct treatment comparison to each network treatment effect estimate.

In applications to synthetic and real-world data sets, we demonstrated that the

random-walk method for constructing proportion contributions offers a number of

advantages over the algorithm currently used for this purpose [3]. In some scenarios,

the existing algorithm only selects a subset of paths on the evidence flow network

meaning paths that potentially contribute a risk of bias are missed. Furthermore, the

paths identified by the algorithm in [3] depend on the order in which they are selected.

This makes the results of the algorithm ambiguous. The method developed in this

chapter overcomes these limitations. In particular, the random-walk approach identifies

all paths of evidence and assigns them a value of flow that reflects the properties of

the evidence flow network. The resulting proportion contributions are unambiguous

and, in addition, the method is able to handle networks with multi-arm trials.

Chapter 6: Retarded kernels for longitudinal survival analysis and dynamic

prediction.

In Chapter 6 we developed an approach to the dynamic prediction of patient survival

probabilities based on time-varying covariates. We modelled the probability of survival

by conditioning hazard rates on the observed covariates measured from baseline up

to some subject-specific final observation time. The hazard rates were specified via

a time-dependent association kernel that describes the impact of covariate changes

at earlier times on the patient’s hazard rate at later times. By requiring that our

model maintained the well-established features of the Cox model, we derived two kernel

parameterisations. In particular, these kernels fulfilled the criteria that our model (i)

reduces to the standard Cox model for covariates that are observed to be fixed over

time, and (ii) contains the instantaneous Cox model as a special case. We assumed

that the impact of a covariate measured in the past decays exponentially over time. In

doing so, our models assign more weight to more recent measurements.

In constructing our model, we aimed to overcome some of the limitations of

standard dynamic prediction methods. For example, joint modelling is based on
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high-dimensional parameterisations of the longitudinal and survival sub-models which

makes it conceptually and computationally demanding. For instance, when the time

series of covariate measurements from different patients exhibit varied and complicated

characteristics (e.g they are non-linear as a function of time), correctly modelling the

longitudinal covariate trajectories is challenging and can be prone to misspecification.

This then increases the risk of introducing bias. Furthermore, the number of model

parameters rapidly increases with the inclusion of covariates meaning fitting the

models quickly becomes computationally intensive. The landmarking approach, on

the other hand, is much simpler but this comes with its own drawbacks. In particular,

landmarking does not make efficient use of the available data. Predictions made at

a certain ‘landmark time’ use only the at risk data set, meaning data from patients

who have experienced an event before this time is discarded. In addition, standard

landmarking approaches use only the most recent covariate measurements rather than

the full history of the longitudinal trajectories. The retarded kernel approach developed

in this chapter therefore sits somewhere in between the two standard approaches in

terms of complexity. The model accounts for the full history of longitudinal covariates,

but is more parsimonious than joint modelling.

To assess the performance of our models, we applied the retarded kernel approach to

three clinical data sets. Using an established measure of prediction error, we compared

our results with those obtained from the two standard approaches. In the different

scenarios we tested, no one model was found to be consistently superior or inferior.

Therefore, the retarded kernel approach exhibited similar predictive accuracy as the

more established approaches.

7.2 Avenues for future work

7.2.1 Network meta-analysis

Chapters 3 and 4 relate to the broader idea that studying the properties of the NMA

network leads to a better understanding of the mechanics of the network meta-analysis

process. The work in these chapters prompts further questions on this theme.

Network characteristics. In Chapter 3 we made use of a topological index

(degree irregularity, h2) that describes the network structure in terms of the number
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of trials involving each treatment. We controlled for factors such as the number of

treatments, the number of participants in each trial arm, and the relative effectiveness

of the treatments. In doing so, we were able to isolate the characteristic we were

interested in and understand the mechanism by which it affects the analysis. The

reality of networks of treatments and trials is, of course, much more complicated than

the scenarios we simulated. It would therefore be interesting to investigate the impact

of other network characteristics. In particular, our finding that increasing the regularity

of a network improves the precision and accuracy of outcomes does not tell the whole

story.

For example, for a network of four treatments one could construct a loop structure

(Figure 3.2 (b) in Chapter 3) where the two horizontal edges represent a strong

connection (multiple trials) but the vertical connections are weak (they correspond to

a single trial). If we require that parallel edges represent the same number of trials (e.g.

the two horizontal edges represent 10 trials and the two vertical connections represent

one trial) then, because of the symmetry of the network structure, each treatment

would be involved in an equal number of trials. In this scenario, as long as we continued

to add the same number of trials to the parallel connections, the irregularity of the

network would remain zero (see Figure 7.1). However, intuitively one would imagine

that it would be more beneficial to add trials to the weaker vertical connections than

to the already strong horizontal ones. This example illustrates that irregularity is likely

not the only topological feature that affects NMA outcomes. In future research, one

could investigate characteristics such as network connectivity and potentially construct

a more general topological index that accounts for a number of different features.

Another network feature that we have so-far neglected in our investigations is the

number of participants. For example, there may be interest in investigating the optimal

distribution of participants between the trials. In other words, is it more beneficial

(for the accuracy and precision of NMA outcomes) to have many small trials, or fewer

trials with a larger number of participants? The number of participants in a trial

is related to the sampling variability associated with that trial. Therefore, we could

rephrase the question more generally: to obtain accurate and precise estimates of the

mean and variance of a distribution (for example), is it preferable to have many noisy

measurements or a small number of precise measurements? The question could also
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Figure 7.1: An example of a regular network (h2 = 0) constructed from a loop structure with
equal parallel edges. Edges are labelled with the number of trials they represent. Networks
(a) and (b) show two possible ways of distributing an additional 18 trials. Both versions
maintain the regularity of the network (h2 = 0) but network (a) also has equality in edge
thickness (for the existing edges). It is hypothesised that option (a) would produce more
accurate and precise outcomes than option (b) even though both networks have the same
irregularity. This example was not explored in Chapter 3 and illustrates that the irregularity
metric introduced in this chapter does not tell the whole story about network topology.

be phrased subject to constraints, for example, given a maximum number of total

participants, what is the best way to distribute them between trials? Consideration of

the cost of conducting multiple trials could then also be taken into account.

The work in Chapter 3 identified a mechanism by which a systematic bias enters into

the network. One then asks whether this bias can be adjusted for in the methodology.

Due to the complicated nature of real meta-analytic networks, this is likely to be a

difficult task but, nonetheless, could lead to a valuable result.

NMA and random walks. Random walks are used in a wide range of applications

to study systems that can be described by networks. The random walk analogy presented

in Chapter 4 therefore provides the catalyst for NMA to exploit the plethora of existing

research on this topic. For example, outside of NMA literature, random walks have

been used for ranking nodes in a network [4, 5]. By defining transition probabilities

that reflect certain properties of the treatments and trials, one could make use of

these methods to rank treatment options. Indeed, such a method has previously been

developed [6]. In this application the transition probabilities were specified in terms of
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the probability that one treatment is better than another. Extensions to this approach

could include applying additional constraints to the walker so that the treatment

ranking reflects a range of desirable properties.

In Chapter 4, we defined transition probabilities in terms of the variance associated

with different comparisons. We could have instead used other parameterisations such

as the treatment effect estimates themselves. Other features of the random walk are

also worthy of investigation. For example, the expected number of steps taken to get

from one node to another, or variation in the paths traversed by the walkers. One

could also remove the requirement that the random walker makes a transition at every

step. There may then be interest in the time the walker spends at each node.

Finally, as discussed in more detail in Section 2.7 of Chapter 2, other techniques

from statistical mechanics have the potential to be useful in network meta-analysis.

For example, it might be possible to frame certain questions in NMA as constrained

optimisation or constraint satisfaction problems and to make use of related method-

ologies such as message passing and the cavity method. In future work, it would be

interesting to explore these applications.

7.2.2 Dynamic prediction

Chapter 6 can be viewed as a ‘proof of concept’ for the retarded kernel approach

to dynamic prediction. There is, therefore, more work to be done in evaluating

and extending the method. For example, future research could involve performing

simulation studies to check the internal consistency of the model. This would require

the development of appropriate data generation techniques. The fact that our model

conditions on the time period of observation means that generating data that is

consistent with this model is not straightforward. In particular, any appropriate

generation method must account for the mutual dependencies between event times,

final observation times and time-varying covariates. For example, specifying the final

observation time of a patient necessarily requires that they survive to at least that

time. In future work it would also be useful to create an R package to implement the

retarded kernel method for a given data set. This would make it accessible for others

to use, evaluate and further develop the approach.
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‘First hitting time’ (FHT) or ‘first passage time’ (FPT) models describe the time

to an event in terms of the time taken for a stochastic process to reach some threshold

value. The models have a range of applications in fields such as physics, biology,

engineering and economics [7–9]. In statistical physics, the most notable is perhaps

the description of Brownian motion, the random movement of a particle in a liquid

or gas [8]. As one may predict, FHT models have been used in survival analysis [7,

10]. Here, the underlying stochastic process represents the health of the individual.

This process can be parameterised in terms of the covariates leading to a so-called

‘threshold regression’ model. In Chapter 6 we focussed on extending Cox’s proportional

hazards (PH) model so that our approach was a natural addition for analysts in the

field. In fact, a (parametric) PH model can be obtained as a special case of threshold

regression models [11]. The FHT approach therefore offers an appealing connection

between statistical physics and survival analysis.

Future work could investigate how FHT models compare to the retarded kernel

approach, and how these ideas could be incorporated. For example, it would be

interesting to see if one could justify the form of association kernels from mechanistic

models of the disease at a lower level using first hitting time ideas. FHT models also

provide a natural way of simulating time-to-event data. There may then be interest in

investigating how different dynamic prediction models perform on this data.

7.3 Central themes, comments and concluding re-

marks

In this thesis we have explored applications of statistical physics in medical statistics.

We have demonstrated that ideas from statistical mechanics, and a physicist’s approach

to understanding physical systems have relevance to medical statistics problems. In

doing this we have contributed to ongoing discussions in the field with the aim of

furthering the understanding and development of medical statistics methodology.
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7.3.1 Interdisciplinary application of statistical mechanics to

medical statistics

In Chapter 2 we provided an introduction to network meta-analysis that aimed to

serve as a starting point for researchers with a background in physics to enter the field.

While the work in this chapter does not contain any original results, we believe that

it represents the first concerted effort to bring together the two disciplines. To the

best of our knowledge, the interdisciplinary connections and analogies between physics

and NMA have not previously been compiled into a single discussion. We also present

new ideas for how statistical mechanics may contribute to NMA in the future. We

hope that by writing such an article, we will encourage and facilitate other physicists

to enter this field.

Chapters 3, 4 and 6 all serve as examples of how medical statistics can benefit from

a statistical physics perspective. While the interdisciplinary application in Chapter 4

is evident, the influence of statistical mechanics in Chapters 3 and 6 is more subtle,

and is explained below.

In this thesis, we took an exploratory approach to research and looked at a range of

different problems in medical statistics. The selection of topics was naturally influenced

by our background in statistical physics. In particular, we were drawn to problems

that had connections to familiar concepts such as network structures and stochastic

processes. Based on our experience in analysing physical systems, we asked questions

that were most pertinent to our own understanding of the topics and tried to tackle

problems using techniques from our statistical mechanics toolkit.

In this way, the choice to investigate the effect of network topology in Chapter 3, and

to explore models of time evolutionary stochastic processes in Chapter 6 was influenced

by our interest in, and familiarity with, similar topics encountered in statistical physics.

Furthermore, in carrying out these projects we benefited from skills acquired from a

background in statistical mechanics. Examples include familiarity with simulation and

optimisation techniques, understanding of Bayesian models and Markov chain Monte

Carlo methods, and experience in modelling probability.

The applicability of statistical mechanics to medical statistics is, however, best

demonstrated in Chapter 4. Random walks are a central topic in statistical mechanics,
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most notably used for modelling the diffusion of particles in liquids and gases [12].

In Chapter 4 we were able to demonstrate an analogy between random walks and

network meta-analysis. In doing so we contributed to a better understanding of the

flow of evidence and developed a more reliable method of constructing the proportion

contribution matrix.

7.3.2 Contributions to medical statistics methodology

The motivation for research into medical statistics is a pragmatic one. In order for

clinicians to provide the best quality of care for their patients they require the highest

quality information. Methods of analysis must, therefore, provide the best possible

representation of the data, be practical to implement and produce meaningful results

that inform medical decision making.

In our interactions and collaborations with statisticians, we have learned to think

about the impact of our research in relation to clinical practice. This has motivated us

to investigate practical applications of our work and has ultimately resulted in projects

that we believe have contributed to the understanding and development of methods in

medical statistics.

Our simulation study in Chapter 3 demonstrates how biases in ranking metrics might

originate from the structure of the network of treatment and trials. This contributes to

a better understanding of the limitations of NMA methodology and provides guidance

on the use of ranking statistics in practice. Furthermore, in Chapter 4, by studying the

properties of a random walk on the network, we gain insight into how evidence flows

in NMA. These projects serve as examples of how our work has helped to improve

understanding of medical statistics methods.

Other work in this thesis has contributed methodology that builds and improves

upon existing methods. For example, in Chapter 6 we developed an approach to

dynamic prediction by extending the standard Cox model. This methodology offers

advantages over the two standard methods without compromising predictive accuracy.

As discussed in Chapter 4, the random-walk approach to constructing evidence streams

is more reliable than existing algorithms. The methods we have developed based on

this approach are now implemented in the widely used software netmeta [13]. As a

result, other software tools such as CINeMA [14] and ROB-MEN [15] can now be made
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more reliable. This will be useful in clinical practice for the evaluation of confidence

and risk-of-bias in the treatment effect estimates from an NMA.

7.3.3 General outlook

In recent years, there has been a rapidly growing interest in using statistical mechanics as

a framework to study phenomena outside the realm of traditional physics [16–18]. These

applications have led to fruitful developments in a diverse range of interdisciplinary

fields including biology, economics, and sociology. I believe that there is still a way

to go before the same can be said of medical statistics. My hope is that the work

in this thesis has highlighted the potential for medical statistics to benefit from an

interdisciplinary application of statistical physics, and that it has contributed some

initial steps towards achieving this aim.
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Chapter 8

Supplementary material for ‘Degree

irregularity and rank probability

bias in network meta-analysis’

Preface

This chapter contains supplementary simulations and figures for the paper ‘Degree

irregularity and rank probability bias in network meta-analysis’ published by Research

Synthesis Methods1 and presented in Chapter 3.

These sections correspond to Sections S3-S11 in the published online Supplementary

Material. We have separated this from the main body of the thesis because it contains

a large number of figures that would otherwise interrupt the flow of the text.

1A. L. Davies and T. Galla, “Degree irregularity and rank probability bias in network meta-analysis”,
Res. Synth. Meth. 12, 316-332 (2021). 10.1002/jrsm.1454
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Chapter 8. Supplementary material for ‘Degree irregularity and rank probability bias
in network meta-analysis’

8.1 Within network plots: The effect of the number

of studies per treatment for equally effective

treatments

Figure 8.1: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a star network with

K = (1, 2, 12, 0, 0, 0).

350



8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.2: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a star network with

K = (1, 2, 14, 0, 0, 0).
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in network meta-analysis’

Figure 8.3: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a star network with

K = (1, 4, 18, 0, 0, 0).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.4: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a loop network with

K = (1, 0, 15, 3, 0, 5).
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Figure 8.5: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a loop network with

K = (1, 0, 2, 10, 0, 20).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.6: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a loop network with

K = (1, 0, 3, 2, 0, 11).
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Figure 8.7: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (1, 1, 1, 5, 7, 12).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.8: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (1, 2, 3, 12, 8, 15).
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Figure 8.9: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (1, 2, 3, 5, 10, 15).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.10: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a tadpole network

with K = (1, 3, 0, 5, 0, 15).
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Figure 8.11: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a tadpole network

with K = (2, 10, 0, 5, 0, 1).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.12: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a tadpole network

with K = (2, 18, 0, 8, 0, 1).
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Figure 8.13: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a tadpole network

with K = (18, 5, 0, 3, 0, 1).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.14: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a ladder network with

K = (1, 0, 0, 5, 0, 15).
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Figure 8.15: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a ladder network with

K = (14, 0, 0, 7, 0, 1).
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8.1. Within network plots: The effect of the number of studies per treatment for
equally effective treatments

Figure 8.16: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a ladder network with

K = (1, 0, 0, 19, 0, 1).
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in network meta-analysis’

8.2 Within network plots: Bias on SUCRA

Figure 8.17: Some examples of the effect of the number of studies per treatment on SUCRAa

for different network geometries. For these examples d = (0, 0, 0) and the networks are made

up of exclusively 2-arm trials.

Figure 8.18: Some examples of the effect of the number of studies per treatment on SUCRAa

for different network geometries. For these examples d = (0.5, 1.0, 1.4) and the networks are

made up of exclusively 2-arm trials.
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8.2. Within network plots: Bias on SUCRA

Figure 8.19: Some examples of the effect of the number of studies per treatment on

SUCRAa for different network geometries. For these examples d = (0, 0, 0) and the networks

contain multi-arm trials. We use nm to indicate the number of m-arm trials. Figure

(a): K = (2, 4, 6, 10, 20, 30) (n2, n3, n4) = (66, 0, 1), Figure (b): K = (3, 6, 9, 15, 30, 45)

(n2, n3, n4) = (90, 4, 1), Figure (c): K = (3, 4, 5, 6, 7, 8) (n2, n3, n4) = (21, 4, 0), Figure (d):

K = (2, 2, 2, 3, 3, 48) (n2, n3, n4) = (48, 0, 2).
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8.3 Within network plots: Rank probability for

non-equally effective treatments

Figure 8.20: Bias of rank probability against the number of studies per treatment for a star

network with K = (1, 5, 15, 0, 0, 0) and non-equally effective treatments, d = (0.5, 1.0, 1.4).

8.4 Between network plots: Treatment effect bias

and irregularity

Figure 8.21: The effect of irregularity on the total bias of treatment effects.
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8.5. Between network plots: The effect of the total number of studies

8.5 Between network plots: The effect of the total

number of studies

Figure 8.22: The effect of the total number of studies in the network on total rank probability

bias. Total bias is plotted as a proportion of the maximum total rank probability bias.

Figure 8.23: The effect of the total number of studies in the network on the network’s total

standard deviation on treatment effect estimates.
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Figure 8.24: The effect of the total number of studies in the network on a network’s total

bias on SUCRA values. Total bias is plotted as a proportion of the maximum total SUCRA

bias.
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8.6. Multi-arm studies: Within network plots

8.6 Multi-arm studies: Within network plots

Figure 8.25: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (1, 2, 3, 5, 10, 15). The number of two, three and four arm studies included is

(n2, n3, n4) = (30, 0, 1). The irregularity of the network is h2/k̄2 = 0.203704.

371



Chapter 8. Supplementary material for ‘Degree irregularity and rank probability bias
in network meta-analysis’

Figure 8.26: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (2, 4, 6, 10, 20, 30). The number of two, three and four arm studies included is

(n2, n3, n4) = (72, 0, 0). The irregularity of the network is h2/k̄2 = 0.203704.

372



8.6. Multi-arm studies: Within network plots

Figure 8.27: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (2, 4, 6, 10, 20, 30). The number of two, three and four arm studies included is

(n2, n3, n4) = (66, 0, 1). The irregularity of the network is h2/k̄2 = 0.203704.
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Figure 8.28: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (2, 4, 6, 10, 20, 30). The number of two, three and four arm studies included is

(n2, n3, n4) = (60, 4, 0). The irregularity of the network is h2/k̄2 = 0.203704.
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8.6. Multi-arm studies: Within network plots

Figure 8.29: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (2, 4, 6, 10, 20, 30). The number of two, three and four arm studies included is

(n2, n3, n4) = (60, 0, 2). The irregularity of the network is h2/k̄2 = 0.203704.
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Figure 8.30: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (3, 6, 9, 15, 30, 45). The number of two, three and four arm studies included is

(n2, n3, n4) = (108, 0, 0). The irregularity of the network is h2/k̄2 = 0.203704.
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8.6. Multi-arm studies: Within network plots

Figure 8.31: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (3, 6, 9, 15, 30, 45). The number of two, three and four arm studies included is

(n2, n3, n4) = (102, 0, 1). The irregularity of the network is h2/k̄2 = 0.203704.
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Figure 8.32: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (3, 6, 9, 15, 30, 45). The number of two, three and four arm studies included is

(n2, n3, n4) = (96, 4, 0). The irregularity of the network is h2/k̄2 = 0.203704.
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8.6. Multi-arm studies: Within network plots

Figure 8.33: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (3, 6, 9, 15, 30, 45). The number of two, three and four arm studies included is

(n2, n3, n4) = (96, 0, 2). The irregularity of the network is h2/k̄2 = 0.203704.
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Figure 8.34: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (3, 6, 9, 15, 30, 45). The number of two, three and four arm studies included is

(n2, n3, n4) = (90, 4, 1). The irregularity of the network is h2/k̄2 = 0.203704.
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Figure 8.35: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop network

with K = (3, 6, 9, 15, 30, 45). The number of two, three and four arm studies included is

(n2, n3, n4) = (90, 0, 3). The irregularity of the network is h2/k̄2 = 0.203704.
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Figure 8.36: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (3, 4, 5, 6, 7, 8). The number of two, three and four arm studies included is

(n2, n3, n4) = (33, 0, 0). The irregularity of the network is h2/k̄2 = 0.032140.
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8.6. Multi-arm studies: Within network plots

Figure 8.37: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (3, 4, 5, 6, 7, 8). The number of two, three and four arm studies included is

(n2, n3, n4) = (27, 0, 1). The irregularity of the network is h2/k̄2 = 0.032140.
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Figure 8.38: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (3, 4, 5, 6, 7, 8). The number of two, three and four arm studies included is

(n2, n3, n4) = (21, 4, 0). The irregularity of the network is h2/k̄2 = 0.032140.
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Figure 8.39: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (3, 4, 5, 6, 7, 8). The number of two, three and four arm studies included is

(n2, n3, n4) = (21, 0, 2). The irregularity of the network is h2/k̄2 = 0.032140.
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Figure 8.40: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (3, 4, 5, 6, 7, 8). The number of two, three and four arm studies included is

(n2, n3, n4) = (15, 4, 1). The irregularity of the network is h2/k̄2 = 0.032140.
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Figure 8.41: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (3, 4, 5, 6, 7, 8). The number of two, three and four arm studies included is

(n2, n3, n4) = (15, 0, 3). The irregularity of the network is h2/k̄2 = 0.032140.
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Figure 8.42: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (2, 3, 2, 8, 5, 40). The number of two, three and four arm studies included

is (n2, n3, n4) = (48, 4, 0). The irregularity of the network is h2/k̄2 = 0.412222.

388



8.6. Multi-arm studies: Within network plots

Figure 8.43: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (2, 3, 2, 8, 5, 40). The number of two, three and four arm studies included

is (n2, n3, n4) = (48, 0, 2). The irregularity of the network is h2/k̄2 = 0.412222.
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Figure 8.44: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (2, 2, 2, 3, 3, 48). The number of two, three and four arm studies included

is (n2, n3, n4) = (48, 4, 0). The irregularity of the network is h2/k̄2 = 0.588333.
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Figure 8.45: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (2, 2, 2, 3, 3, 48). The number of two, three and four arm studies included

is (n2, n3, n4) = (48, 0, 2). The irregularity of the network is h2/k̄2 = 0.588333.
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Figure 8.46: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (2, 2, 2, 2, 2, 60). The number of two, three and four arm studies included

is (n2, n3, n4) = (58, 4, 0). The irregularity of the network is h2/k̄2 = 0.686531.
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Figure 8.47: The number of studies per treatment versus bias of rank probabilities, and

treatment-specific bias and standard deviation of treatment effects for a complete loop

network with K = (2, 2, 2, 2, 2, 60). The number of two, three and four arm studies included

is (n2, n3, n4) = (58, 0, 2). The irregularity of the network is h2/k̄2 = 0.686531.
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8.7 Comparing data-generating models

Figure 8.48: Comparing plots of network irregularity versus total rank probability bias for

different data-generating models.

Figure 8.49: Comparing plots of network irregularity versus total SUCRA bias for different

data-generating models.
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8.8. Bias of between-trial variance

Figure 8.50: Comparing plots of network irregularity versus total standard deviation for

different data-generating models. Standard deviation is lowest for the ‘Euclidean’ method as

this DGM is the most restrictive in the variation of binomial probabilities sampled. Uniform

has the greatest standard deviation because it is the least restrictive.

8.8 Bias of between-trial variance

Figure 8.51: The effect of network irregularity on the accuracy of τ estimation. This is for

networks with d = (0, 0, 0) and made up of exclusively 2-arm trials.
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Figure 8.52: Network diagrams showing the networks simulated with N = 10 treatments.
The original network has 12 (T1 − T2) studies, and 1 study comparing the other connected
treatments to T1 or T2. Networks (a), (b) and (c) have 8 studies added to them. In (a) all 8
are added to the (T1 − T2) comparison, and in (b) and (c) each new connecting line represents
one study. The results of these simulations can be found in Table 8.1.

8.9 Testing robustness

8.9.1 More than four treatments

To test if our results generalised to networks with more than four treatments we

simulated four networks of ten treatments, each with different irregularity. The first

network was the ‘original’ and is shown on the left in Figure 8.52. This network contains

20 trials in total; 12 trials comparing treatments T1 and T2, one trial connecting each of

T3, T4, T5 and T6 to T1 and one trial connecting each of T7, T8, T9 and T10 to T2. The

other three networks (networks (a) to (c) in Figure 8.52) are made from the original

network and eight extra studies. Network (a) has the highest irregularity and network

(c) has the lowest irregularity. Table 8.1 summarises the results from these simulations

and shows that high degree irregularity is associated with high rank probability bias

and high SDtot. Therefore we find that our results hold for networks with more than

four treatments.
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8.9. Testing robustness

Table 8.1: Degree irregularity and quality of NMA outcome for the networks in Figure 8.52.

Network M h2/k̄2 SDtot |∆P |tot
Original: 20 2.25 16.76 2.94
(a): 28 2.70 16.72 3.06
(b): 28 1.65 6.82 2.76
(c): 28 0.86 5.64 1.79

8.9.2 Unequal participants per arm

In our second robustness test, simulations were done for six networks where the number

of participants per arm, rather than being assigned a fixed value, was randomly

generated from a uniform distribution between 20 and 100. Figures 8.53 and 8.54 show

that the results of these simulations are consistent with our previous findings.

Figure 8.53: The effect of degree irregularity on a network’s (a) total rank probability

bias, (b) total standard deviation of treatment effect estimates, and (c) total SUCRA bias

for networks with an unequal number of participants per arm. These networks have equally

effective treatments and contain only 2-arm trials.
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Figure 8.54: The effect of the number of studies per treatment on the bias on rank

probabilities, ∆Pa(r), for r = 1, 2, 3, 4. These plots are for a star network with K =

(1, 5, 15, 0, 0, 0) and for networks with an unequal number of participants per arm.
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