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Abstract

Georgina R. Reece
A thesis submitted for the degree of Doctor of Philosophy at the University
of Manchester
April 2022

Modelling and Investigation of Multi-Phase Mixing for Vitrification Ap-
plications using Smoothed Particle Hydrodynamics (SPH)
A new smoothed particle hydrodynamics (SPH) scheme is presented to simulate multi-
component fluid mixing with thermally-driven buoyancy and temperature-dependent vis-
cosities. The scheme is developed for multi-phase flows in industrial tanks used in the
vitrification process in the nuclear industry for waste immobilisation before long-term stor-
age. These multi-component flows feature a mixing of high-temperature phases composed of
molten glass and highly radioactive waste, with fluid properties changing with temperature.
SPH is a meshless Lagrangian discretization scheme whose major advantage is the absence
of a mesh, making the method ideal for highly non-linear flows with mixing of multiple
components whose properties change with time. Emphasis has been given to modelling the
thermally-induced buoyancy flows from the external heating and viscous flow instabilities,
which are needed to predict accurately the mixing phenomena.

The numerical SPH scheme includes temperature-dependent viscosities, thermal conduc-
tion and convection using a Boussinesq approximation, and external heating. A new bound-
ary treatment has been developed to implement adiabatic boundary conditions by extending
the recently developed modified dynamic boundary condition (mDBC) to thermally-driven
driven flows. The SPH scheme has been implemented to run on a graphics processing unit
(GPU), showing speed-ups on the order of 50 compared to optimised code on a multi-core
multi-thread central processing unit (CPU).

The code is extensively validated for a range of test cases including two-phase Poiseuille
flow where each phase has a different viscosity, temperature dependent Poiseuille flow, two-
phase lid-driven cavity flow, and a differentially-heated cavity in 2-D and 3-D. For the two-
phase Poiseuille flow, an interfacial instability is observed for certain ranges of viscosity
and channel-width ratios. Both stable and unstable flow regimes are correctly predicted.
The instability growth rate predicted by the new SPH model agrees with linear analytical
theory, which has not been seen before. The evolution of consequent non-linear flow is
straightforwardly predicted, with the interface remaining clear.

A new mixing measure is proposed based on the combination of the finite time Lyapunov
exponent (FTLE) and the volume fraction (VF) that enables both the degree of mixing at
a point and how well-mixed the two phases are at that location to be quantified in a single
value. The VF-FTLE mixing measure is applied to the two-phase lid-driven cavity flow,
highlighting regions with high particle movement and where both phases are present. A
new global mixing measure is established from this local measure, quantifying the change in
overall mixing with time.

The new model is applied to a vitrification melter for single-phase and two-phase flows

with temperature-dependent viscosities. The VF-FTLE measure is applied to interpret the

mixing taking place due to buoyancy-driven circulation within the heated melter. A 3-D

flow instability is observed, likely related to a thin thermal boundary layer existing at high

Rayleigh and Prandtl numbers, suggesting distinct flow regimes in the melter which requires

further investigation.
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Chapter 1

Introduction

1.1 Background and Motivation

Nuclear energy will contribute to current and long-term energy requirements in the UK

and across the world for the foreseeable future. Alongside renewable energy sources

and carbon capture, the UK government is investing in nuclear energy to reduce carbon

emissions and to meet Net Zero targets by 2050, and potentially to contribute to energy

production into the more distant future [51]. Currently, 15 nuclear reactors generate

approximately 20% of UK electricity [91]. With eight confirmed new sites in 2012 [52]

as the third generation of nuclear power stations [51] (though only one has complete

approval at present), there are 13 reactors currently in construction and planning [91].

The UK previously operated a closed fuel cycle, where spent nuclear fuel is repro-

cessed. Uranium and plutonium is removed to be reused and the remaining High Level

Waste (HLW), containing highly active fission products, is immobilised by vitrifica-

tion for long-term storage. In 2018 the THORP reprocessing facility ceased operation

and spent fuel is now stored indefinitely without reprocessing [250], known as an open

fuel cycle. With the increase in nuclear capacity, the economic case for restarting

reprocessing is greater and so there continues to be research into this topic [3].

One of the priorities of the 2013 policy is for safe decommissioning and disposal

of nuclear facilities at the end of their operative life, as well as planning for waste

produced during operation of new and existing power stations [51]. The radioactive

nature of this waste requires specialised treatment and, for higher level waste with long

half lives, long-term storage. This is an ongoing and evolving challenge. Vitrification
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of waste from post-operational clean-out of nuclear facilities to dispose of residual

radioactive components is an active area of research. The current policy for long-term

storage is for deep geological disposal, but no site has yet been chosen [91]. Nuclear

waste is therefore all currently stored at existing sites [91].

This project is motivated by improving simulation capability of the vitrification

waste treatment process in collaboration with the National Nuclear Laboratory (NNL),

who provide scientific and technical support for the UK nuclear industry. The main

application is the vitrification process, where HLW is mixed with molten glass in a

melter before being poured into stainless steel containers for long-term storage. In

particular, this work is motivated by observations of cooled vitrified HLW. In some

cases, the vitrified HLW had visibly separated into two different phases, as seen in

Figure 1.1. Due to the highly radioactive nature of the HLW, it is not possible to

observe the vitrification process or take measurements inside the tank. Therefore,

alternative methods must be developed to investigate the mixing process and gain

understanding of the conditions under which separated phases remain in the vitrified

product.

Figure 1.1: Photographs of non-radioactive vitrification experiments performed by
NNL with homogeneous product (left) and separated product (right) [81].

Models of long-term waste durability, used to inform storage decisions, assume the

vitrified HLW is homogeneous. Therefore, any separation of phases could impact the

predictions made. Notwithstanding the large safety margins employed, it is important

that durability models of nuclear waste are as accurate as possible to understand

any potential weaknesses which may result in leaching of radioactive components.

With government policy to maintain the current level of nuclear energy at around one
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fifth of the country’s total after some reactors are retired in the next ten years and

possibly increase the proportion to work towards renewable energy targets [249], it

is important that this widely-used process for immobilising and storing HLW is well

understood. Any adjustments to current predictive models, which may be required

when vitrifying HLW from decommissioning, may also take into account these advances

in understanding of vitrification.

1.2 Computational Modelling

Figure 1.2: Diagram of the vitrification process used at Sellafield [90].

Due to the high temperatures involved in the vitrification process, as well as the

radioactivity of the waste, it is not possible to take measurements during the process

itself, or the vitrified product. A diagram of the complete vitrification process is shown

in Figure 1.2. NNL undertake experiments with non-radioactive analogues at their

Vitrification Test Rig (VTR), and are therefore able to take physical measurements

of the product, as seen in Figure 1.1 where the appearance of phase separation is

demonstrated. However, these experiments are costly and time-consuming to perform,

and many difficulties of observing vitrification in process remain.

To gain greater insight into the flows and mixing taking place during vitrification, a

computational approach is proposed. This has the advantages of being able to see the

flow and mixing at any time and any point within the fluid and, once developed, can



32 CHAPTER 1. INTRODUCTION

be run without any preparation in a short time. Therefore, this alternative approach

is less expensive and more flexible. Any computational method needs to be able to

simulate mixing by heating through buoyancy-driven flow, as well as deal with the

large deformations involved. The inclusion of multiple phases adds extra considera-

tions, including following a changing interface between the phases which may become

disconnected or interconnected. Traditional Computational Fluid Dynamics (CFD)

methods, such as finite volume (FV), struggle with unphysical diffusion at interfaces,

carrying inaccuracies into industry estimations. The modelling method and assump-

tions must be thoroughly investigated and chosen to ensure the inclusion of all key

physics, so that any results are trustworthy.

1.3 Measuring Mixing

During the vitrification process, the glass and HLW within are heated through the

walls of the melter. This causes buoyancy-driven flow, which generates circulation

and mixing. It has been observed that the product can sometimes separate into two

phases, so in these cases it is important to understand the mixing process of any

separated phases and how well-mixed they become.

Considering the potential for multiple phases within the flow, a key part of this

work will focus on understanding the relative movement and mixing of phases. A

number of methods are considered, giving information about the state of mixing at a

given instant in time or throughout the simulation. Both local and global measures

of mixing are investigated to determine a set of measures which can be used to fully

understand the mixing of phases taking place.

1.4 Objectives of this Project

The aim of this thesis is to produce a model of multi-phase mixing, driven by natural

convection, which can be applied to flow inside a melter during the vitrification of

HLW. Using this model, investigation of conditions under which separated phases mix

fully to produce a homogeneous mixture, or regions of separation remain, is under-

taken. To realise this model, a number of objectives are set:
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• Describe the physical process of vitrification and research previous computa-

tional models, motivating the requirement for further research in the modelling

of mixing during HLW vitrification.

• Research previous models of multi-phase mixing of viscous fluids to determine

the most appropriate numerical methodology and investigate relevant work.

• Describe the Smoothed Particle Hydrodynamics (SPH) method which will be

used for the numerical model.

• Develop the model to include the appropriate physics for the application, val-

idating all additions against analytical solutions or well-regarded experimental

and numerical data in the literature.

• Develop the addition of new physics in the SPH model, specifically governing

equations that account for thermally-driven buoyancy with multiple components

where fundamental quantities such as viscosity are temperature-dependent with

appropriate boundary conditions.

• Investigate appropriate measures of mixing and develop a measure which includes

all key mixing information.

• Apply the model and mixing measures to a case simulating mixing during vit-

rification, to determine when the product will be well-mixed and when phase

separation will occur.

This model can then be put into practice, where the components and mixing process

can be adapted to achieve a greater degree of mixing.

1.5 Thesis Outline

In Chapter 2 of this thesis, a literature review is presented. Firstly, the vitrifica-

tion process is described, including considerations for vitrified HLW, before reviewing

current models relating to vitrification and the vitrified product. Next, significant

dimensionless parameters for the key physical processes involved in vitrification are

examined with the parameter ranges expected. More detail on the observed separation
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of vitrified HLW is given and existing empirical models are summarised. The current

state of mixing models for two phases of similar density is assessed, including those

with buoyant convection which drives the flow during vitrification. Current models of

mixing are limited by their mesh-based formulation or development for high viscosity

ratio or high density ratio applications.

A summary of common mesh-based CFD methods is presented, before investigating

multi-phase models with these approaches and outlining meshless methods in general.

Section 2.5 introduces the chosen method of SPH, justifying its suitability for modelling

vitrification and reviewing current work concerning multi-phase flows and mixing.

Next, topics of viscosity, heating and boundary conditions, which are pertinent for this

work, are investigated, as well as the importance of hardware acceleration and available

software options. Finally, measures of mixing used in related work are examined.

Chapter 3 then presents the equations governing the flow concerned, before de-

scribing the SPH discretisation scheme and associated methodology. In particular,

the boundary conditions required for the cases in this work and the viscous operators

used, as well as numerical stabilisation techniques implemented. Subsequently, code

structure of the chosen open-source SPH DualSPHysics software is summarised, along

with key modifications for viscosity, temperature, and multiple phases. Lastly, defini-

tions are presented for mixing measures, including a new measure providing additional

insight into these particular flows.

This model is validated in Chapter 4 against validation cases with analytical solu-

tions or benchmark results in the literature. Firstly, Poiseuille flow is investigated with

one and two phases of different viscosity, to validate multiple phases with different vis-

cosities. Under certain conditions an instability forms at the interface between phases.

Both onset and growth rate of the instability agree with results from perturbation ana-

lysis in the literature. The development of the interfacial instability can be observed

in a level of detail not possible with volume-of-fluid (VOF). A temperature-dependent

viscosity is introduced, along with a temperature gradient across the channel, and

again compared with analytical solutions.

The next case of lid-driven cavity flow validates mechanically driven flow against

widely used results. A two-phase case is introduced and simulated alongside STAR-

CCM+ as a benchmark comparison. The existing and new mixing measures introduced



1.5. THESIS OUTLINE 35

in the methodology are assessed using this case and their various advantages and

disadvantages examined. The final section of Chapter 4 validates heat conduction and

buoyancy-driven flow by the introduction of the governing equation for temperature,

using benchmark numerical data for the lid-driven cavity.

The validated model is then applied to the case of vitrification in Chapter 5. A

simplified melter geometry is defined and interim cases are run with a single fluid

phase and based on the differentially heated cavity to demonstrate the buoyancy-driven

circulation. The fluid is then split into two phases of different constant density and

the mixing measures applied to interpret the results, before the viscosity-temperature

relationships are included.

Conclusions are then drawn in Chapter 6, summarising the work done and results

found. Outcomes are compared with the objectives defined in Section 1.4 and the key

findings highlighted, while points requiring further investigation are suggested.



Chapter 2

Literature Review

2.1 Introduction

In this chapter the vitrification of nuclear waste is described, with the physical pro-

cesses summarised and the need for modelling highlighted. The equations governing

the proposed model are then outlined, before critiquing current models of mixing for

related cases. Next, Computational Fluid Dynamics (CFD) techniques are briefly

reviewed, along with a more in-depth review of the chosen Smoothed Particle Hydro-

dynamics (SPH) method and work related to this application which uses SPH. Finally,

measures of mixing are assessed for this work.

2.2 Vitrification of Nuclear Waste

Vitrification is a widely used and well-established method for immobilising and safely

storing High Level Waste (HLW) (used for over 40 years in the UK [174]). Vitrification

is relatively low cost compared to other storage methods, despite the initial high cost

of equipment [174]. The process of vitrification bonds the atoms of nuclear waste

into the glass matrix, making the majority of elements inert [24], so that the waste

is incorporated both chemically and physically into the glass [174]. Current glasses

are able to incorporate up to 40wt% waste oxides [90]. The resultant waste form is

durable and stable and so can be stored safely [90], before being moved to geological

disposal where the radioactivity decreases over thousands of years. Here vitrification

prevents leakage of toxic species into the environment and shields against radioactivity

36
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emittance [102].

However, vitrified waste is spending longer in temporary storage than originally

expected and designed for, as no geological disposal sites have yet been confirmed

[102]. Thus, as more waste is produced, more is stored in temporary locations. In the

USA, spent fuel is not reprocessed and most historical waste has not yet been vitrified

[102]. Therefore, it remains in temporary storage in its original forms, creating some

different issues in terms of temporary storage requirements from the UK.

The vitrification process itself, shown in Figure 1.2, begins with a concentrated

liquid HLW slurry of spent nuclear fuel dissolved in nitric acid, along with fission

products and residual actinides [90], which is stored in Highly Active Liquor (HAL)

storage tanks. The slurry is produced by the reprocessing of spent nuclear fuel in order

to remove any remaining plutonium and uranium for other uses. Its exact composition

varies depending on the reactor type, use history and reprocessing [90]. In the UK,

all civil nuclear fuel is reprocessed at the Sellafield Waste Vitrification Plant (WVP),

where the first HLW was vitrified in 1990 [90], and involves a number of steps shown

in Figure 2.1.

The slurry first goes through a calcination process, where the majority of chemical

processes take place as the temperature is increased. The calciner is a long tube

which is heated to 600-840◦C electrically while it is rotated [90]. In the first two zones

water and any nitric acid evaporate, while in the second two zones the remaining solid

nitrates decompose as nitrous oxides and are released as gases [90, 194].

The remaining residue is made up of oxides and nitrate-free salt melts [194], making

up a dry powder. It is combined with borosilicate glass frit (typical components given

in Table 2.1) in a melter, such that the vitrified product contains 25wt% waste. The

alkali borosilicate glasses used have a glass transition temperature of θg ≈ 500◦C

[90]. The melter is constantly heated through its walls by induction to approximately

1050◦C. At the WVP, an “elliptical Nicrofer melter made of 6025 HT alloy” is used,

containing approximately 100 litres [90].

SiO2 B2O3 Na2O Li2O
63.42 22.50 11.35 2.74

Table 2.1: Percentage composition of Mixture Windscale - 1
2
Li base glass [90].

During the vitrification process, melting takes place in the cold cap – a floating
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Figure 2.1: Flow chart showing steps of vitrification process at Sellafield WVP.
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layer of glass frit and powdered calcination product on top of the molten glass [97],

as components are added over 8 hours [90]. A sketch of the cold cap is given in

Figure 2.2. Hrma et al. [97] found that the dynamics and heat transfer through the

foam layer below the cold cap are crucial to be able to predict the rate of melting. At

around 600◦C, the glass frit softens and begins to melt between 800 and 1200◦C [194].

Physically, the molten glass acts as a solvent to dissolve the HLW components within

its structure, thus immobilising them. As temperature increases through electrical

heating the viscosity of the glass melt reduces, allowing convection flows to form which

causes mixing within the melter. Mixing is amplified by 4 argon or air sparge tubes

[90] (horizontal pipes with holes delivering spray). Chemical reactions also take place

between the calcination product and glass, but it is not known to what extent this

contributes to mixing.

Figure 2.2: Representation of the cold cap in a melter (not to scale) with approximate
temperatures labelled [97].

Mixing is deemed complete once the temperature inside the melter is above 1000◦C,

around which point a solid plug melts at the bottom of the melter and 200kg is

poured into the Vitrification Product Container (VPC) [90]. Around 70kg remains in

the melter to be included in the next cycle [90], whilst gas and aerosol waste leave

separately [174]. Sometimes vitrified waste is also annealed by cooling slowly to avoid

cracks forming, though long-term storage requirements are met either way [174]. Each
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VPC contains 400 kg of vitrified product (2 pours), and is cooled for 24 hours before

a lid is welded on [90] as shown in Figure 1.2. The container is then decontaminated

and the outside swabbed to check for radioactivity before being moved to the vitrified

product store [90] to await long-term storage in a geological disposal facility.

As well as producing a highly durable waste product, the vitrification process also

reduces the volume of waste significantly [24]. Durability and the proportion of waste

per volume of glass must be balanced when deciding on the additives to include in the

melter [174], though waste loading can be increased by allowing some crystallisation

[95]. Although 25wt% waste has historically been used, up to 32wt% can be produced

at WVP [90]. Ojovan and Lee [174] found that toughened borosilicate glass takes

2.7×1011 years for permanent stress to decrease by 0.5%. Radiation from the contained

waste can change the internal structure of the glass, but since it is originally disordered

this has little effect [174]. Natural glasses have existed for approximately 300 million

years with changes only of O(0.1 mm) per million years [174].

The chemical durability of the product ensures it lasts for thousands of years, even

in a corrosive environment [174] and undergoing high levels of self-radiation. Vitrified

HLW is resistant to leaching when in contact with water (for example groundwater)

[174], giving a further layer of security once the container has itself corroded. Stainless

steel used for HLW containers itself takes thousands of years to breach, since high

radiation and temperature reduces after a few hundred years [174]. However, recent

research has found accelerated corrosion where water penetrates the very small space

between the glass and steel canister after a breach [86]. The affected vitrified waste is

only 10−6 m thick, but this corrosion mechanism is not typically taken into account

in durability models [86]. The leaching rate can also be decreased by adding more

aluminium oxide (Al2O3) to the mixture [174]. The normalised rate of leaching of

radioactive nuclides (g cm−2) can be estimated as a function of radioactivity, specific

activity, volume and surface area in contact with the water [174]. Therefore, for

a reliable calculation regarding product durability it is important to have a good

knowledge of the composition of the waste product. When there is inhomogeneity of

the product, porosity within the separated phases can increase leaching. Therefore,

distribution of the inhomogeneous phases is important to understand.

The effect of self-radiation is modelled experimentally on an inactive simulant glass
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using short lived emitters or external radiation, but both have drawbacks. Radiation

damages the internal structure of glass, causing change in physical and chemical prop-

erties. There are three stages of glass alteration: initial fast alteration; transitions to

residual rate; and potential alteration renewal [173]. The third stage may be initiated

by iron silicates produced when the stainless steel container breaches. Composition

also influences the rate of glass alteration [75]. It is important that the vitrified waste

remains stable until all radiation has decayed, so potential inhomogeneity adds further

uncertainty to the experimental limitations.

Borosilicate glasses are the most commonly used for HLW vitrification and those

will be considered in this project. Phosphate glasses can be better at dissolving some

waste products than borosilicate glasses but are not used so often [95]. The vitrific-

ation method must be 95% accurate without knowing the exact composition of the

waste mixture, which contains about 75% of all elements and is highly variable [106].

HLW glasses contain 15-20 components, seven of which make up more than 95% of

the chemical composition of the glass [105]. In addition, further components are in-

cluded to aid the vitrification process. Silica (SiO2) is added to the waste mixture to

vitrify; a threshold amount of silica is required in the waste to avoid needing additives

[95]. Boron oxide (B2O3) and alkali oxide additives are used to reduce the melting

temperature, but increase the volume for storage [95].

Since the waste is highly radioactive, it is important that all equipment can be op-

erated remotely. Therefore, simple and reliable methods and equipment are preferred

to reduce the amount of maintenance required [174]. Many processes are involved in

the melting, both physical and chemical [241], and happen concurrently therefore it is

complex to model [97]. Melting is not the focus of the thesis and will not be considered

further. This work will instead concentrate on flow within the melter once melting is

complete.

Properties of the glass during vitrification are influenced by the form of the com-

ponents inserted and by the type of melter [95]. For this project, we shall assume

that the melter is externally heated with no internal moving components, similar to

the diagram in Figure 2.3. Sun et al. [214] found that the kinematic viscosity of the

outflow was dependent on the temperature, but all other physical properties were inde-

pendent. The temperature is kept between 1150 and 1550 K, with a mixture viscosity
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Figure 2.3: Simplified diagram of the melter and mixing within.

of approximately 10-60 Pa s [144]. It is important to maintain a temperature within

this range as too high a temperature increases chemical reactions, causing refract-

ory oxides to separate and species which should remain in the glass to boil off [143].

These reactions also weaken the melter, reducing its lifespan. Reducing viscosity by

increasing temperature can also cause problems with blending the components [174].

Conversely, too low a temperature can also result in poor mixing if some components

are not melted [144], in addition to inhibiting drainage into the storage container if

the mixture is too viscous.

The vitrified product is not sampled, instead the process is controlled according to

the ‘HLWP Process Specification’ which samples only the HAL [90]. Product composi-

tion and properties are controlled by carefully controlling the base glass and additives,

as well as the calciner and melter conditions [90]. The specifications are determined

by inspection of the vitrified product from non-radioactive experiments performed at

the Vitrification Test Rig (VTR) [90]. The VTR is also used to optimise operational

envelopes to increase waste loading whilst retaining an acceptable quality, as well

as preparing for processing different waste such as produced by the post-operational

clean-out of HAL storage tanks which contains more molybdenum [90].
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This work will focus on modelling mixing within the melter. Since melting rates are

in the order of hours [90], the borosilicate glass will be assumed to be melted to allow

investigation of the flow at smaller timescales. The internal melter temperature will be

maintained at the upper end of the borosilicate glass melting range of 1150-1550 K [144]

to avoid any change of state. The glasses involved do not have a well-defined melting

point, but instead increase in viscosity continuously as they cool [144]. Viscosity ranges

of the molten mixture are given in the literature as 1-10Pa s [95, 174], 20-100Pa s [104]

and 10-60 Pa s [144] with a density of 0.5-1.2×103kg m−3 [179]. Velocities within the

convective flow are of the order of magnitude 10−3m s−1 [215]. These will be discussed

in greater detail in Chapter 5.

2.2.1 Current Models of Vitrification

There are numerous numerical models relating to the vitrification of HLW and of

molten glass more generally. These include empirical models of homogeneity and

computational models of the mixture itself, some of which are described in this section.

However, the computational models usually focus on the melting in the cold cap or

the stream of fluid leaving the melter, whereas it is the mixing and possible phase

separation inside the melter which are key to this project. Homogeneity of the glass

is affected by the melter at both macro and micro scales [241], so it will be important

to consider both when selecting methods and mixing measures for this work.

Viskanta [241] split the models of commercial glass melters into three categories:

empirical, physical/experimental, and computational based on physical and chemical

processes. Models of different parts of the melter can be split into coupled submod-

els [241]. The focus of this project is the mixing of molten glass within the melter.

Common assumptions taken to simplify models include: molten glass is incompress-

ible, homogeneous and Newtonian; neglect of variations in composition; Boussinesq

approximation for density variations; all other properties are (empirical) functions of

temperature; heat transfer is diffusive; neglect of rheology and chemical reactions in

the batch [241]. Some of these assumptions are not well-justified and are only taken

to simplify the problem [241]. It needs to be assessed carefully which assumptions are

appropriate for determining mixing within the melter, in order to determine mixing

and separation of phases.
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Since only temperature can be measured directly within the melter, known rela-

tionships are used by Jantzen [106] to model other properties and extrapolate them

outside the range of composition. Jantzen [106] presented an overview of the models

used to operate the Joule heated ceramic melter at the Savannah River Site Defense

Waste Processing Facility to effectively immobilise HLW. The properties within the

melter are therefore controlled by ensuring the composition of the glass stays within

a prescribed range [106].

It is important to be able to model viscosity inside the melter, since it has a large

effect on the rate of homogenisation [106]. Viscosity of a glass depends on its temper-

ature [174] and also its composition. Hrma et al. [96] found a linear approximation for

viscosity as a function of temperature and composition. For low viscosities (µ < 102

Pa s) it is common to assume the dynamic viscosity (µ) of molten glass can be modelled

by an Arrhenius function [96]:

lnµ = A+
B

θ
, (2.1)

where A is a constant, B is the activation energy and θ is temperature. B can be

approximated as a sum for a linear mixture with xi the mass fraction of component i,

giving the viscosity as [96]:

lnµ = A+
1

θ

N∑
i=1

Bixi. (2.2)

Therefore, only one variable independent of temperature is needed to describe the

relationship between composition and viscosity – the activation energy [96]. Regression

analysis was used to extrapolate data for the complete range of temperatures [96].

However, the Arrhenius model is too simplistic over the temperature ranges involved

in vitrification [144]. This model does not take into account component interactions

[96], which may also contribute to the viscosity. Jantzen [106] also found an empirical

model for viscosity depending on temperature and composition. Jin et al. [108] found

viscosity of the feed from an empirical model depending on concentration, in order to

better understand movement and melting taking place in the cold cap. Differences in

the contribution of undissolved gas and solid phases were found depending on the level

of radioactivity of the waste [108].

Miller [144] developed a computational algorithm which computes parameters for

viscosity-temperature relationships from experimental data. It is able to extrapolate
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parameters for individual components and extended temperature ranges. More details

of the viscosity models used are given in Section 3.5.1, including an Arrhenius function

and more complex extended empirical models. There are a number of viscosity models

to choose from depending on conditions and composition, and therefore the relative

significance of different physics [144].

Based on US government data from Hanford, Hrma [95] found a system of equations

to represent the relationships between properties and composition. The composition

itself can be split between waste and additive parts [95]. The aim therefore, is to find an

additive composition which gives good properties whilst maximising the waste loading

[95]. The relative product volume can also be calculated, and the specific volume of

the waste glass can be estimated from the components [95]. These relationships can

be used to determine the proportion of glass and additivies to be used in vitrification,

in order to balance effectiveness and volume for storage. Generally, Hrma [95] suggests

to aim for a product volume of approximately two times the calcined HLW volume, in

order to minimise waste volume whilst remaining satisfactorily durable.

Jantzen [104] developed a systems model to optimise performance parameters

against “processing considerations”, which has been used at the Savannah River Site

in the USA. The internal parameters (viscosity, electrical resistivity, liquidus tem-

perature) are difficult to measure during the vitrification process, therefore these are

estimated from measurable parameters using empirical equations derived from linear

regression of experimental data (given in Jantzen’s paper) [104]. The model itself is

based on hydration free energy and gives a measure of glass quality from the composi-

tion of the input slurry that has been through an evaporator [104]. Jantzen [104] found

that viscosity is the most important parameter for predicting quality of the vitrified

HLW, therefore it is important to include a reliable model for viscosity in this work.

Chang et al. [34] developed a model to simulate multi-phase flow inside a glass

melter with the aim of being able to predict the quality of the glass and the efficiency

of the furnace. The model has three coupled Eulerian components, each with a con-

servation of mass equation, which are solved one by one for each time iteration [34].

The heating and melting component is particularly relevant to this project, although

a Lagrangian scheme will be used in this work. More detail on the differences between

Eulerian and Lagrangian methods, as well as the advantages and disadvantages of each
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in relation to this project, is given in Section 2.4. However, commercial glass melters

are long and shallow, which is a very different shape to those used for vitrification

of HLW so this model cannot be directly compared. Learnings can be taken from

the assumptions which have been made of Newtonian laminar steady state flow and

temperature remaining constant at the melting point once it is reached [34]. Here

reaction and melting rates are empirical [34]. Again, viscosity was found to be highly

dependent on temperature and higher temperature gradients increased recirculation

(desirable for homogeneity) [34]. Models of reactions inside the cold cap, where the

batch melts, have also been proposed by Hrma et al. [97], Jin et al. [108], Pokorny

and Hrma [179] (with a view of adding it to a full melter model). The focus of this

project, however, is mixing once all components are melted.

Sun et al. [214] modelled the molten mixture as it discharges from the bottom of

a Joule-heated glass melter by introducing a new algorithm to an existing Lagrangian

method, in order to understand observed “unpredictable abnormalities”. Since a free

surface is involved in pouring, it is important that this model includes surface ten-

sion. However this work is concerned with the interface between two similar phases,

rather than a free surface, and the significance of surface tension will be considered in

Section 2.2.2. As explained later in Section 2.4, to treat the free surface, a mesh-free

method is chosen, but the Moving Particle Semi-implicit (MPS) method is preferred

to SPH since they claim that the compressible nature of SPH may reduce calculation

efficiency [214]. Sun et al. [214] found that numerical stability is governed by the high

viscosity, rather than the Courant-Friedrichs-Lewy (CFL) condition. Implicit tech-

niques also remove the influence of the diffusion number on the time step constraint

and were found to speed up their simulation by 104 times [214].

From the review of vitrification modelling, it is found that there is a gap in nu-

merically modelling the flow inside a vitrification melter. Related models exist for

commercial glass melters and for pouring vitrified HLW from a melter, but neither

address the flow within the melter which contributes to mixing.

2.2.2 Key Dimensionless Parameters

Dimensionless numbers which characterise the multi-phase flows modelled in this work

are considered here. These parameters which have been found to be important in the
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literature, as well as for the validation cases in Chapter 4. Typical values are given in

Table 2.2.

The Mach number is a key variable for fluid mechanics, in particular all weakly

compressible model formulations considered herein. The significance and how it is

chosen is discussed further in Section 3.2.5. The Mach number is defined to be:

Ma =
v

c
, (2.3)

where v = |v| is the characteristic velocity magnitude of the object and c the speed of

sound.

The Rayleigh number defines the onset of unforced convection through a ratio

of buoyancy and viscous forces [248]. Below this value, heat transfer is dominated

by conduction and above it by convection [259]. Clearly, this will be significant in

determining when mixing due to convective flow is occurring. It is calculated as

Ra =
gβ

νκ
∆θL3, (2.4)

where g is gravitational acceleration, β the coefficient of thermal expansion ν is the

kinematic viscosity, κ is the thermal diffusivity, ∆θ the temperature difference and L

a characteristic length.

The Prandtl number is defined to be

Pr =
ν

κ
, (2.5)

and typically lies between 3 and 300 for liquids [82]. This ratio gives a measure of

the relative significance of thermal and viscous dissipation in the flow. Therefore it is

important for the case in Section 4.4, as well as the vitrification model.

The Reynolds number is commonly used to characterise viscous flow. It gives the

ratio of inertial to viscous forces and so gives a measure of how laminar or turbulent

the flow is [171]. Typically, turbulence is found for Re > 5000 but there is no theorem

relating Reynolds number to turbulence [259]. It is calculated by [171]

Re =
vLρ

µ
=
vL

ν
, (2.6)

with density ρ and dynamic viscosity µ= ρν.

The relative importance of surface tension compared to the inertia of the fluid can

be determined by the Weber number,

We =
ρν2L

σ
, (2.7)
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where σ is surface tension. A large viscosity, as is the case for the application of this

work, will result in a higher Weber number where inertial forces dominate surface

tension. Therefore, surface tension will not be included in this model.

The Nusselt number gives the temperature gradient at a surface or boundary and

is defined as

Nu =
qθL

k
, (2.8)

where qθ is the convective heat transfer coefficient and k the thermal conductivity of

the fluid. It can be approximated locally as [244]:

Nulocal =
∂θ

∂n

∣∣∣∣
wall

, (2.9)

where n is normal to the wall or surface. Therefore, it is the ratio of convective to

conductive heat transfer [259] and represents non-dimensional heat transfer along a

wall [244], since thermal conductivity of a wall can be measured by rate of heat transfer

[178].

The high radioactivity of HLW generates significant heating [100], which requires

cooling for approximately 50 years after vitrification before long-term storage [170].

HLW contains radionuclides with both long and short half lives [100]. The typical

activity level of spent nuclear waste is 104-106 TBq m−3 [100], which reduces to around

104 TBq m−3 after cooling [14]. During vitrification, the activity level will be some-

where between these values, since the HLW is stored in tanks before being vitrified

[100]. Considerable heating will still be taking place, which could influence flow during

the vitrification process.

Source Ra Pr Re We Nu
Sun et al. [214]

higher θ - - 66.7 4.13× 109 -
lower θ - - 6.67 4.13× 1011 -

Ojovan and Lee [174]

high Na - - 1220 - -
water-water energetic reactor - - 1430 - -
glass composite material - - 1130 - -

Kaushik et al. [113] - - 12.0 - -
combined 1.60× 109 1790 1200 1.00× 106 1750

Table 2.2: Dimensionless values for molten borosilicate glass calculated from data from
different sources (all to 3 significant figures).

As evidenced by the gaps in Table 2.2, it is difficult to find sufficient data to
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calculate the dimensionless numbers for the case of vitrifying HLW. An attempt has

been made in the last row to consolidate data from different sources in order to obtain

results, which will be used to form some general conclusions about the behaviour of the

fluids. However, care must be taken in order to match parameters such as temperature

so that the resulting values are reliable. This project would benefit greatly from a

reliable set of parameter values which could be used to characterise the fluid dynamics

involved.

From Table 2.2, it can be seen that Reynolds number is likely to be low and

therefore viscous effects will be important to the fluid dynamics and must be included

in the model. The Rayleigh number is high and therefore heat transfer is dominated by

convection, which will also be key to the movement of the fluid. A Nusselt number well

above one again demonstrates that convective heat transfer dominates conductive heat

transfer. The high Prandtl number shows that the viscous diffusion rate is greater than

the thermal diffusion rate, and therefore thermal boundary layers will be thinner than

velocity boundary layers. As expected, the Weber number is very high and surface

tension is insignificant in comparison to inertial forces for vitrification cases.

The results of this section determine the physics that must be prioritised in order to

successfully simulate mixing during vitrification. These are: multiple phases, heating,

and viscosity modelling. Approaches for modelling these components are reviewed in

Sections 2.3 to 2.5.

2.2.3 Phase Separation of Vitrified Waste

Phase separation affects the physical and chemical properties of glasses, including

viscosity, density, strength and chemical durability [103]. These are all important

properties when considering storage of nuclear waste. The durability of vitrified waste

is also affected by the chemistry of the glass and its thermal history [105]. As a glass

is heated, its properties gradually change until the glass transition temperature, when

they change more abruptly and become the properties of a liquid state [174]. There

is no sharp transition in state like for a typical solid, as seen in the example phase

diagram in Figure 2.4. The glass transition temperature depends on cooling and is
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approximated by Kauzmann’s relation [174]:

θg ≈
2

3
θL, (2.10)

where θL is the liquidus temperature (assuming no crystallisation). Above the liquidus

temperature, the glass is a liquid completely. There are sharp phase boundaries rep-

resenting the immiscibility boundaries in HLW glasses [105], although changes in state

do not occur at a well defined point [144] due to the disordered internal structure.

Figure 2.4: Typical phase diagram of semicrystalline and amorphous materials under-
going glass transition when heated [207].

Phase separation in glass occurs as it moves below the liquidus temperature and

begins to solidify [67]. Understanding how well mixed the flow is before cooling then

becomes essential and is addressed in the next Section 2.3. The separation is caused

by ionic interaction which changes the thermodynamics of the system [229]. This

critical temperature depends on the concentration of each component in the mixture

and the thermal history [67]. Additives such as boron oxide are used to lower the

liquidus temperature [95], therefore making phase separation less likely at the high

temperatures inside the melter. Below the liquidus temperature, the glass gradually

changes into a crystalline aggregate where the crystalline phase is thermodynamically

stable [159] at the glass transition temperature (Equation (2.10)). Depending on the

composition, crystallisation may only occur when the glass is rapidly cooled, or not at

all [159]. Applications such as HLW vitrification require careful consideration of the

conditions under which crystallisation occurs in order to avoid it due to the detrimental

effects on durability, as outlined in Section 2.2.
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Phase separation has been observed in HLW glasses but is not well understood

[105]. Borosilicate glasses, like those used in nuclear waste vitrification, separate into

phases of mainly borate and mainly silica [67]. Usually, the silica-rich phase is continu-

ous and the borate-rich phase is only continuous if enough borate is in the mixture

[67]. Otherwise, it consists of small droplets dispersed throughout the silica phase

[67]. Many immiscibility boundaries have been found (including those of borosilicate

glasses) [229]. Wakabayashi et al. [242] used conductivity to measure phase separation

and found that increasing the addition of molybdenum oxide to nuclear waste glasses

rose the immiscibility temperatures and increased the growth rate of phase separation.

Stable immiscibility was found above the liquidus temperature, whereas metastable

immiscibility was found below it [242].

Both separated phases in vitrified HLW are glassy (non-crystalline) and differ in

composition, density and surface tension from the melt as well as generally being

immiscible [105]. Two common types of phase separation are found under these cir-

cumstances: (i) spinodal decomposition has diffuse phase interfaces and is caused by

small fluctuations in composition; (ii) homogeneous nucleation has sharp phase inter-

faces and requires a free energy barrier to be overcome for a nucleus of the critical size

to form and begin the separation, it may lead to crystallisation [105]. Furthermore,

phases may separate on a macro- or microscopic level, depending on factors includ-

ing relative densities and viscosities [105]. Secondary phase separation of already

separated phases during cooling can cause silica droplets within the borate phase (mi-

crostructures) [67]. Both scales of separation reduce the durability of the product

[105].

Phase separation in HLW glasses can also occur when chemical reactions result in

the formation of crystallite spinel phases [206]. These spinels are flexible crystallites

which can incorporate different cations, including radionuclides, therefore can improve

immobilisation. However, this type of phase separation can negatively impact the

durability of the product. The use of glass-ceramic materials for HLW immobilisation,

where spinel separation is promoted to increase the waste capacity is an active area of

research [31, 194, 239]. This method is used in hot isostatic pressing [88], a derivative

of vitrification that is being investigated within the nuclear industry.

Ohtsuki et al. [172] investigated the effect of the addition of phosphorus and
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aluminium oxides to borosilicate glass. They found that all samples exhibited phase

separation through spinodal decomposition [172]. For a glass, a third component

can increase phase separation if its immiscibility with one of the original components

is greater than the combined immiscibility of the original two phases [116]. Extra

components can also decrease phase separation [116]. Phase separation in vitrified

nuclear waste is important to understand, especially when some parts of the waste are

immiscible in glass [174]. In HLW glasses, separation can be prevented by including

a minimum percentage weight of aluminium oxide in the composition (this was first

suggested by Tovena et al. in 1993 [231]); this is also true of natural basalt [106].

A model was introduced by Jantzen [105] at the Defence Waste Processing Facility

in the USA in 1994 to predict for which vitrification compositions (before entering

the melter) phase separation would occur. The durability of the product with respect

to water was then calculated, using a model based on first principles, in order to

determine whether it met the benchmark for geological disposal [105]. This model

assumed homogeneity because phase separation negatively affects durability in an

unpredictable way, since the compositions of the separate phases are not well known

[105].

Current methods of predicting separation of the vitrified product are empirical and

depend only on the composition of components, not taking into account the mixing

taking place during vitrification.

2.3 Mixing Models

Experiments in the literature which concern viscous mixing include those of Kusch and

Ottino [118], who look at two mechanically driven mixing techniques. They found that

time-periodic and spatially-periodic chaotic mixing showed fundamental differences

in how the mixing takes place. Comparisons between experiments and numerical

methods were undertaken by Unger et al. [233], regarding mixing of viscous fluids by

an impinging jet contactor. The experiments allowed them to find steady state flow

regimes in terms of Reynolds number.

Most relevant to the applications of this model, Swanson and Ottino [216] compared

experimental and computational chaotic mixing of viscous fluids with two-dimensional,
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low Reynolds number flow with the aim of predicting the movement of passive tracers

in chaotic experiments. They developed a new technique for tracking the boundaries

of the tracer which held when it became more dilute due to large stretching. The

movement of tracer was predicted using low-order unstable manifolds, combined with

eigendirections of low-order hyperbolic periodic points. This is related to the finite

time Lyapunov exponent used as a measure of mixing in Section 3.6.2, which can also

identify stable and unstable manifolds in the flow.

Empirical models can give valuable insight to a mixing process but may not capture

all the physics, particularly in cases where it is difficult to make internal observations

for calibration. Additionally, extrapolating these to regions of untested composition

risks missing key dependencies. Computational models can take a measurement at

any time and location, without a physical probe disrupting or modifying the flow.

Analytical models are the preferred option for simple flows since they can be quick and

highly accurate. However, techniques such as linearisation, which make it possible to

find a solution, are not applicable when the flow becomes unsteady or more complex,

as in Section 4.2.2.2. These more complex non-linear flows can be approximated

numerically, with many CFD models developed to solve such systems.

2.3.1 Mechanical Mixing

For flows with little or no density difference within or between phases, mechanical

intervention can be used to aid mixing. Mechanically-driven flows are considered

in Section 4.3, as well as using mixing measure to investigate the mixing achieved.

However, the focus of this review is motivated by the main application of mixing

during vitrification, and is therefore on non-mechanical mixing.

2.3.2 Buoyancy-Driven Mixing

Where there is a difference in density within the fluid or between phases, for example

due to composition or temperature, flow can be induced by buoyant convection. The

behaviour is characterised by the Rayleigh number in Equation (2.4). For natural

convection, the body force acting on the fluid is due to gravity acceleration.



54 CHAPTER 2. LITERATURE REVIEW

A common way of modelling buoyancy-driven flow is to use the Boussinesq ap-

proximation by neglecting changes in density, except in the body force term. It is also

typically assumed that the fluid is incompressible (or weakly compressible), viscous

dissipation is negligible and all other fluid properties are constant within the range

of temperatures applied [82]. The approximation of body force is derived from a first

order Taylor series of density as a function of temperature about a reference temper-

ature θ [82]. Then the body force acting on the fluid in the conservation of momentum

equation (see Chapter 3) is

f = −gβ(θ − θ). (2.11)

In this way, the momentum equation and energy equation are coupled. This form is

used in many mixing models [46, 62, 167, 255], but some also include a background

gravity [82, 121, 124]:

f = −g(1− β(θ − θ)). (2.12)

Some discussion on the Boussinesq approximation and its effectiveness when used with

SPH models appears in Section 2.5.4.

2.4 Computational Fluid Dynamics Techniques

A wide range of Computational Fluid Dynamics (CFD) techniques exist, varying in

both accuracy and computational efficiency. Different methods are more suited to

different problems, depending on the geometry and the physics involved. Since the

governing equations of fluid flow are non-linear, care must be taken in the discretisation

order to obtain an accurate solution [9]. In all cases, discretisation of the governing

equations gives a system of non-linear algebraic equations which are solved numerically

[65].

The most common and mature of these discretisation methods are grid-based, for

example the finite element (FE) method, finite difference method (FDM) and finite

volume (FV) method. Of these methods, FE can be either Lagrangian or Eulerian

and the others are typically Eulerian. A general mesh-based method is made up of

multiple steps including [238]: defining a domain; dividing the domain into a grid

of cells/volumes/elements; selecting the chemical and physical phenomena to model;
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defining fluid properties; specifying boundary conditions; solving; and post-processing.

However, all methods have limitations, even when combined [76].

Using a mesh makes it hard to keep the numerical compatibility condition equival-

ent to the physical compatibility condition when the problem is more complex [132],

such as the large deformations which occur in the mixing of multiple components.

It is also difficult and computationally expensive to produce a good mesh when the

geometry of the problem is complex [132]. Versteeg and Malalasekera [238] note that

in industry, defining and generating the grid can take more than half of the total

time of a CFD project. All grids must balance accuracy and computational efficiency

when choosing the coarseness [65], similarly to when choosing the particle spacing in

meshless methods, such as Smoothed Particle Hydrodynamics (SPH), discussed later.

An adaptive mesh, which is refined in areas where more detail is needed whilst still

remaining coarser elsewhere to avoid unnecessary extra computation, can improve the

accuracy of grid based methods [238].

All CFD methods can be split into two categories: explicit, where there is only

one unknown in each equation (the field variable at the next timestep); and implicit,

where multiple unknowns require simultaneous solutions of equations [8]. An explicit

method is less complicated but, since the timestep size, dt, is dependent on particle

spacing, dx, and a characteristic velocity such as the speed of sound, the timestep size

must fall below a stability criterion for the simulation to remain stable [8]. This small

dt increases runtime and may even be impracticable. Although parallel computing

can reduce this impact, this constraint does not apply to an implicit formulation so a

larger dt can be used whilst still maintaining stability of the solution.

2.4.1 Finite Differences

The FDM was the first method used for CFD (and for partial differential equations

(PDEs) more generally [65]) and is typically used when the geometry is Cartesian

(often this is not the case physically) [9], since a structured grid is always used. The

method uses an “algebraic difference quotient” to approximate a partial derivative at

grid points, as a function of nodal values of itself and neighbouring nodes [65], and

therefore discretise the PDEs [8]. This discretisation is usually based on a Taylor series

expansion, where the order of accuracy can be chosen [8]. Second-order accuracy is
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usually deemed sufficient [65]. These approximations create a system of difference

equations from the governing equations [8].

The drawbacks to FDM are the special care needed to enforce conservation, as well

as requiring a geometry which can be easily described by Cartesian coordinates [65].

Transformation to a complex grid can be more computationally expensive than the

problem itself [132]. As with all methods using fixed grids, it is difficult to find the

exact locations of physical phenomena such as moving interfaces [132].

2.4.2 Finite Elements

FE methods use a mesh but the elements of it can be almost any shape, allowing

it to accommodate different geometries [9]. It is frequently used in engineering [53],

especially for solid dynamics [9].

The unstructured grid means the FE method can deal with any geometry, but also

that the matrices of system of equations are not well structured [65]. The generation of

this mesh contributes a large part of the computational time [132]. Continuity across

boundaries of the grid elements are guaranteed [65] but special techniques are needed

for large deformations when the mesh becomes highly deformed [132].

2.4.3 Finite Volumes

FV methods are popular with engineers as the relationship between physical conserva-

tion principles and the numerical algorithm is clear to understand [238]. The numerical

equations are generated by discretising the integral form of the governing conserva-

tion equations before being solved iteratively [8]. There are numerous discretisation

schemes to choose from, depending on the application and order of accuracy required

[9]. The solution domain is divided into cells, each of which is treated as a small

volume element and the conservation equations are applied at each cell [9], with fluxes

across cell interfaces ensuring conservation.

The primary benefit of this method is local conservation [9]. It is also suitable for

complex geometries since any type of grid can be used [65]. Smaller cells can be used

to increase accuracy, along with computation time, but adaptive meshing can increase

the rate of convergence whilst minimising the numbers of cells added [9]. However,
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it is difficult to achieve higher than second order accuracy in three dimensions, due

to the three stages of approximation during the process (interpolation, differentiation

and integration) [65].

To track an interface, markers are used, but there can be difficulties when an

interface breaks, interconnects or disappears [254]. Alternatively, for the volume-of-

fluid (VOF) method, the interface may be captured by an algorithm which reconstructs

the interface [254]. This can result in the loss of its exact position [224], particularly

for a complex dynamic interface [254]. Since new volume fluxes for time integration

depend on the inferred interface, this error grows with time [224]. The accuracy is

related to grid cell size, so adaptive mesh refinement may be used to increase accuracy

whilst minimising computational cost.

2.4.4 Mesh-Based Multi-Phase and Mixing Methods

Mesh-based methods have been used extensively for predicting mixing. Lagrangian

mesh-based methods, such as FE, are able to maintain a sharp interface between

phases if grid nodes are placed along it [130]. However, the accuracy of the solution is

reduced when the mesh is subject to large deformations [130]. Increasing the resolution

to mitigate against this can lead to an impractically small timestep [130]. A sliding

mesh is sometimes used for stirring in the food industry, where parts of the mesh

move relative to each other along an interface, such as the stirrer [169]. Re-meshing

is another option to deal with large deformations but, since mesh generation is so

computationally expensive, this can make the simulations take much longer to run.

Additionally, each re-mesh introduces an error which contributes to diffusion of the

material properties [130].

For these reasons, Eulerian mesh-based methods, such as FDM, are more popular

in fluid dynamics [130]. These fixed grids do not suffer issues with deformation, but

are difficult to apply to a complex geometry. Furthermore, a very high resolution is

needed to resolve an interface with sufficient accuracy. For example, Tang and Wrobel

[223] used ANSYS Fluent [11] to model the mixing of two immiscible fluid phases by

using the VOF method with interface tracking. These interface tracking formulations

were found to deform the shape of the interface, requiring computationally expens-

ive reconstruction techniques while interfaces remain inexact [223]. Tartakovsky and
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Panchenko [226] state that this can be avoided by a number of methods but then re-

quires solving additional equations, adding extra computation. Pre-conditioning may

also be required to reduce the time taken to solve [117]. Nevertheless, diffusion still oc-

curs, as found in Section 4.2.2, and extra computation is required to track an interface

fully.

Kunz et al. [117] developed a model of two- and three-dimensional incompress-

ible two-phase flows by generating an implicit algorithm from the multi-phase Navier

Stokes equations. They found that they needed to use pre-conditioning of the time

derivatives to obtain eigenvalues that are well-conditioned and therefore take less time

to solve [117]. The resulting model was found to be accurate for high density ratios

[117]. Venkateswaran et al. [236] also found that their iterative method needed either

preconditioning or artificial compressibility to be both accurate and efficient, though

compressibility was preferred for their model.

In pharmaceutical mixing, which typically includes mechanical mixing such as stir-

ring, the Reynolds-Averaged Navier-Stokes (RANS) equations are often used to find

shear rates and determine mixing performance of turbulent flows [16]. Experiments

with tracers are undertaken to determine time the taken to mix [16]. Multiple phases

may be modelled by mesh-based techniques using VOF [16]. Montante et al. [158]

modelled mixing in stirred tanks, including Newtonian fluids. A single phase was used

with a tracer to determine mixing in experiments. Both sliding grid and multiple

reference frame in ANSYS Fluent [11] were used with RANS equations, and found to

accurately predict homogenisation curves and mixing times of experiments [158]. Mov-

ing frames of reference, rotating with the flow, are also used to reduce computation

time [16]. RANS is commonly used for modelling two-phase flows inside nuclear react-

ors, due to its simplicity and computational efficiency [22]. However, the position of an

interface must be computed as an average of other properties [22], losing information

of a deforming interface. To determine the homogeneity of the fluid, concentration of

the tracer was measured over time at probes taking measurements through the fluid

at different heights [158].

Examples of mesh-based models for viscous mixing include Chang et al.’s [34]

coupled Eulerian model of multi-phase flow inside a glass melter and Kunz et al.’s

[117] implicit algorithm for incompressible two-phase flows. Bestion [22] considered
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four CFD methods to simulate thermohydraulic two-phase flows inside nuclear react-

ors, involving dispersed mixing between fluid and gas phases, and finding limitations

to all of them. Large Scale Simulation (LSS) methods were found to work only for

specific flows where phases are separate, but fell down when the interface is complex

and RANS methods are also limited to simple flows [22]. Although a pseudo-Direct

Numerical Simulation (DNS) approach can identify small-scale flow features, the ad-

ditional central processing unit (CPU) cost due to interface tracking was so high that

it made the pseudo-DNS unusable at an appropriate resolution, a hybrid Large Eddy

Simulation (LES) method also required filtering of large interfaces [22]. For the low

Reynolds numbers expected in the case of vitrification from Section 2.2, it is not neces-

sary to consider a RANS or LES approach for this work. DNS has also been applied

to interfacial flows, in particular those involving air and water [197]. However, the

computational cost of DNS is high, due to the high resolution required to fully resolve

any turbulent fluid structures.

Hybrid methods, involving mapping between an Eulerian and a Lagrangian grid,

aim to combine the benefits of both approaches. However, the additional layer of com-

putation can introduce instability and reduce accuracy [129]. Smolianski [211] com-

bined FE simulation of the continuum with a level set representation of the interface

to model interfacial flows of two fluid phases, including a Rayleigh-Taylor instability.

Mesh-based methods are limited by the extra computational cost to track the in-

terface, as well as the extra layer of computation introducing additional error. Even

then, interface tracking may not be accurate enough and further computation needed

for reconstruction of the interface. Without these techniques, flows with complex in-

terfaces cannot be simulated successfully by mesh-based methods. Meshless methods,

discussed next, do not have these issues, their particle-based formulations naturally

following an interface. Complex domains can also be modelled without any difficulties

or additional time required for meshing.

2.4.5 Meshless Methods

Meshless methods are able to deal with some of the limitations of mesh-based methods

described in Section 2.4.4. In particular for this work, large deformations do not

require expensive re-meshing, and moving interfaces can be followed without additional
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computation or reconstruction, since particles belong to a particular phase. Most

meshfree methods are Lagrangian, with computation points moving with the flow, but

there are also Eulerian approaches with fixed particles [130]. Hybrid methods, such

as Particle In Cell (PIC) [89], also exist, where a background mesh is used along with

particles.

Dissipative Particle Dynamics (DPD) uses a stochastic approach to simulate fluid

flows. Both SPH and DPD are well-suited to modelling fluids with complex flow struc-

tures [256], and DPD has similar accuracy to SPH when used to model unsteady flows

[66]. However, SPH is more suitable for macroscale problems, whereas DPD is better

suited to mesoscale problems. Since DPD takes into account thermal fluctuations,

which SPH typically does not, it requires a smaller timestep size and significantly

greater computation time [66].

Molecular Dynamics (MD) [4] is a particle-based method on the molecular scale,

where individual molecules and their interactions are directly modelled. Whilst this is

advantageous for capturing physical phenomena on a small scale, simulations with size

on the order of metres or larger are computationally prohibitively expensive. Moreover,

the small-scale effects may have negligible impact on the overall flow.

The Moving Particle Semi-implicit (MPS) method is an incompressible particle

method, based on a Taylor series expansion, where movement depends on neighbouring

particles [115]. Koshizuka and Oka [115] found good agreement with experimental

data for free surface flows. Similar to SPH, pressure can be calculated by solving the

pressure Poisson equation, or through an equation of state [125]. It has been applied to

a number of thermal hydraulic cases in nuclear engineering, including melt behaviour

inside a reactor [125]. However, it is limited in its ability to model complex multi-

phase flows and in its original form is only zero-order accurate [125]. No additional

computation is required to track an interface, but special treatments are needed to deal

with discontinuities in density and viscosity across an interface between phases [125].

Density smoothing results in the same problem of a decrease in interface sharpness

as for VOF, while separate computation of phases is unable to deal with complex

instabilities [125]. A number of hybrid methods have been introduced to overcome

these disadvantages, including MPS-VOF [60], grid-particle [141] and MPS-level set

[166].
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Nayroles et al. [163] developed the Diffusive Element Method (DEM) by apply-

ing Moving Least Squares (MLS) approximations with a Galerkin method. Many

variations have since been introduced, including the Element Free Galerkin (EFG)

method [21], which is widely used for modelling solids [130].

The Lattice Boltzmann Method (LBM) is capable of modelling multi-phase flows

[85] and has been used for the mechanically-driven mixing of air and liquid phases

within bioreactors [247]. Its Euler-Lagrange formulation gives it more flexibility to

apply to complex geometries and flows with large deformations, whilst it can also be

highly parallelised, leading to increases in computational efficiency [16]. LBM is also

capable of modelling interfaces between phases [37]. The method simplifies kinetic

models on a particle scale in order to reproduce the correct physics at a larger scale

[37], and has also been extended to model phases with different viscosities and densit-

ies [83]. A forcing term is used to maintain immiscibility of phases [37]. However, this

is computationally expensive and can lead to unphysical surface tension [37]. Altern-

atively, the surface tension can be modified to automatically separate phases [204],

but momentum is no longer conserved [37]. To include thermodynamic properties, a

free-energy approach was introduced by Swift et al. [217]. Spinodal decomposition,

one of the phase separation mechanisms highlighted in Section 2.2, has been modelled

using LBM for two fluid phases [5], demonstrating the capability of LBM to model

multi-phase flows with complex changing interfaces.

As one of the oldest meshless methods, having been first developed in 1977 [74, 134],

SPH is a particularly good choice of method for multi-phase and non-linear flows [129].

The advantages and disadvantage of SPH, as well as a summary of related previous

work, are now discussed in the following Section 2.5.

2.5 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian discretisation scheme, ori-

ginally developed in 1977 by Gingold and Monaghan [74] as well as Lucy [134] for

astrophysical modelling, but now used in a number of areas including fluid dynamics

[76]. Since it is a particle method, no grid is needed [148].

SPH is based on the convolution integral of an interpolation function, enabling
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expressions for derivatives to be derived from the analytical differentiation of inter-

polation formulae [76]. The expressions for derivatives enable a system of ordinary

differential equations (ODEs) from the conservation equation which govern the model

[148] to be represented as particles. The fluid is discretised as a set of points, each

representing a point of the fluid with fixed mass, which are free to move and carry

material properties. These ODEs can be interpreted mechanically and thermodynam-

ically, using physical intuition, particularly when a Gaussian kernel is used [154].

A small timestep size and a large number of particles are often needed to achieve

high accuracy [76], therefore increasing computation time. Increases in computation

speed have been made by using parallel and graphics processing unit (GPU) computing

[76], discussed in Section 2.5.6.

2.5.1 Suitability for this Thesis

The particle-based formulation of SPH makes it particularly well-suited for modelling

fluids with a constantly changing interface between phases undergoing large deforma-

tions. It is also well-suited to modelling any breaks in continuity of phases [76], or an

interconnected interface [128]. It is able to predict motions even when high levels of

strain are involved [240].

SPH is a well established meshless method with a large quantity of literature rig-

orously investigating and improving its capabilities. The Lagrangian nature of the

methods also means that mass is conserved, giving a fair comparison between initial

and final states of mixing. In fact, the method is fully conservative [240], provided

some care is taken with the formulation of the governing equations.

SPH can more easily be extended to a three-dimensional complex physical model

than finite difference methods [148], since there are no extra considerations for gener-

ating a mesh. The particle nature of SPH also allows more straight forward coupling

with other mesh-free methods, such as MD [132], than for mesh-based methods.

Any hybrid meshless-mesh based methods still suffer from the disadvantages of gen-

erating and updating a mesh. SPH has an advantage of lower computational expense

over both DPD and MD, as both methods focus on smaller scale phenomena.The LBM

is capable of modelling interfaces between multiple phases but needs special treatments

to retain immiscibility, which are not required in SPH when the density ratio between
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phases is close to one. SPH has also previously been used to model viscous flows,

including some examples in the next section where more complex viscosity models are

used.

The first formulations of SPH for engineering applications involving liquids were

weakly compressible (WCSPH), where the pressure is computed from an equation of

state rather than a Poisson equation, and it is still commonly used [151]. A newer

development is incompressible SPH (ISPH) where the incompressibility constraint ∇·

v = 0 is enforced to calculate pressure [133]. This produces pressure fields closer

to well-established CFD methods, whereas weakly compressible SPH (WCSPH) can

generate unphysical pressure variations [122], although significant improvements have

been made over the past 10 years [12, 64, 147]. ISPH is also more computationally

efficient in serial since the timestep size restriction from the speed of sound does not

apply, although it does use more memory and computational cores so this may not be

the case for large numbers of particles computed in parallel [219]. WCSPH, however,

is more simple to code and gives results close to ISPH when smaller particle spacing

is used for higher Reynolds number flows, and surface profiles have been found to be

similar for both methods [122].

Szewc et al. [219] found in 2012 that the state-of-the-art ISPH produced errors

resulting from density accumulation, though new techniques such as particle shifting

[127] have been introduced to mitigate this. At this time, WCSPH produced a better

model for multi-phase flows, since it is straightforward to vary the equation of state

between phases [219].

2.5.2 Multi-Phase and Mixing in SPH

The SPH technique was first applied to two-phase flow by Monaghan in 1997 [152].

Although the interface between phases is not tracked explicitly, it is natural to trace

(even for complex movement) as it moves with the particles [132]. Sharp interfaces are

maintained between fluid phases, even without surface tension, although methods have

been proposed to include a surface tension force [1, 160, 225]. Phases influence each

other simply through interactions between particles of different phases. Colagrossi and

Landrini [40] developed the method for two-dimensional flows with sharp interfaces

separating immiscible fluids with low density ratios, but use artificial viscosity which
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is empirical. They also used variationally-consistent operators to treat instabilities at

the interface caused by the sharp density gradient, as well as an additional term in

the equation of state to maintain a sharp interface.

Hu and Adams [98] used a WCSPH method to develop a model for at least three

immiscible phases. The discontinuity in viscosity at the interface is treated by as-

suming a layer in the region of the interface with a different viscous term. However,

mass is not conserved because of the methods used for discontinuous density. Their

model is capable of modelling multiple surface tensions [98]. A high density ratio SPH

model with an incompressible phase was produced by Lind et al. [128], with the two

phases coupled through surface pressure and surface velocity. In this thesis the phases

will have comparable densities and compressibilities, therefore the model of Lind et

al. [128] will not be directly applicable.

A two-dimensional SPH solver was developed by Jimeno et al. [107] to simulate

mixing in oscillatory baffled reactors, where a second phase can develop due to crys-

tallisation. Validation performed with FV found that the SPH method was able to re-

produce the flow characteristics for a single phase case [107]. When density smoothing

was employed to mitigate against the density fluctuations that are present for WC-

SPH, the method was able to obtain a more consistent quasi-steady-state and greater

cycle-repeatability than FV [107]. The nature of SPH means no additional models are

required to quantify the mixing which is taking place, since individual SPH particles

can be tracked over time [107]. By contrast, FV requires Eulerian-Lagrangian coupling

to gain this information, which is more computationally expensive [107].

A water-soil model, including suspension, using SPH was presented by Ulrich et al.

[232] in 2013. SPH has been adapted for two-phase mixing between a Newtonian water

phase and non-Newtonian sediment phase by Fourtakas and Rogers [68]. Zubeldia et

al. [260] developed this work further by including a second yield criterion for erosion.

A non-Newtonian two-phase SPH model was applied to debris flow by Han et al. [87].

Work by Ghäıtanellis et al. [72] used SPH to model granular flows with a solid phase

and a liquid phase representing the yielded soil. Previously, Manenti et al. [137] used

weakly compressible SPH to model both liquid and granular phases as viscous fluids,

as did Kwon and Monaghan [119, 120] who had two sets of SPH particles representing

both liquid and dust phases as fluids. A non-Newtonian landslide interacting with
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water is considered by Xenakis et al. [252] by using incompressible multi-phase SPH

and smoothing density and viscosity over the interface. The flushing of sediment in

a reservoir, with both liquid and granular phases modelled as SPH fluids, has been

studied by Manenti et al. [138], while Nguyen et al. [168] applied SPH to sediment

scour and transport under a submerged bridge. ISPH was also used by Pu et al. [182]

to model sedimentation of a fine dust phase, along with a unified pressure equation for

interaction between phases. Bed load transport is modelled using SPH by Amicarelli

et al. [7] with a liquid phase and a solid granular phase mixing. The model successfully

simulated both the free surface and bed-load transport [7].

Mokos et al. [146] also considered two or more phases when modelling a free

surface and mixing effects. Here, WCSPH is used, along with a modified Fickian

shifting to reduce the formation of unphysical voids [146]. The model is extended to

three dimension with the aid of a GPU to speed up computation [146]. A high density

gradient at the interface has been found to lead to inaccuracies when compared to

well-documented results [220], or a discontinuous velocity which is not physical [226].

Tartakovsky and Panchenko [226] solve this by using either a continuum boundary

force or a pairwise forces at the interface, in addition to prescribing a surface tension.

Grenier et al. [80] treat discontinuities at an interface by determining particle volumes

through the continuity equation. However, the very small timestep required makes

it prohibitively computationally expensive to run [220]. For this work, there will be

discontinuities at the interface, although material ratios will not be so high, since

phases will represent regions of the same material with differing compositions.

A model which focusses on mixing of viscous phases is Monaghan and Kocharyan’s

[156] two-dimensional model, which allows interpenetration of phases by means of

a volume fraction (VF). Fragmentation of the interface (particularly for negligible

surface tension) was mitigated by Szewc et al. [221] by either introducing repulsive

forces close to the interface or by making density and viscosity smooth across the

interface, in order that phases remain immiscible. Robinson [188] modelled viscous

mixing using SPH by including a viscous term with the viscosities of both interacting

particles, and produced results comparable to published experiments for 2-dimensional

mixing at low Reynolds numbers. In order for phase separation to occur, Tartakovsky

et al. [227] replace the equation of state with a modified van der Waals equation
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similar to a MD approach. This generates attractive and repulsive forces for each fluid

component, keeping different phases separated.

SPH has been applied to a number of mixing processes in industry, for example pro-

duction of foods, pharmaceuticals or polymers. These processes tend to be mechanically-

driven, since SPH is better able to manage a moving boundary than a meshed method,

and target homogeneity of the end-product. Robinson and Cleary [189, 190] modelled

a two-dimensional twin cam mixer using single-phase SPH. Comparisons with exper-

iments were made by computing a finite-time Lyapunov exponent (FTLE) field to

determine whether the location of manifolds in the flow agreed with the distribution

of tracer dye [190]. FTLEs have also been employed in three-dimensions in order

to locate Lagrangian coherent structures in flows [196]. In Section 3.6.2, FTLEs are

defined and later applied to validation cases in Chapter 4 in order to observe and

quantify the mixing flows. The same twin cam mixer was simulated by Eitzlmayr et

al. [57] with a modified boundary method for curved walls.

Shamsoddini et al. [203] investigated three particle methods for modelling micro-

mixing in a cylindrical paddle mixer. A modified WCSPH formulation was able to

successfully dampen unphysical instabilities [203]. Homogenisation under high pres-

sure to produce an emulsion from a continuous phase and a droplet phase was sim-

ulated with SPH by Wieth et al. [246]. The droplet deformation and fluid velocity

displayed the same behaviour as experimental results, but the resolution was too low

for quantitative comparisons [246].

The modelling approaches described in this section each model elements of the

mixing occurring during the vitrification process. Ideas from these will be combined,

focussing on the physical processes found most significant in Section 2.2.2, to produce

the method in Chapter 3 with the aim of gaining insight into mixing during the

vitrification process.

2.5.3 Modelling Viscosity with SPH

To include a viscous term in the momentum equation, it is necessary to calculate a

second order derivative. However, the second order kernel derivative is very sensitive

to particle disorder [135]. Since this is also computationally expensive, a numerical

approximation is often used and based on a Taylor series expansion.
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An artificial approximation of the Newtonian viscous term was introduced by Mon-

aghan and Gingold [155] to help maintain stability in simulations. However, this term

does not have a physical derivation and is therefore suitable when only diffusive prop-

erties are important, rather than accurately modelling viscosity. Although an approx-

imate viscosity can be obtained from the empirical parameter, the resulting Reynolds

number is only as high as the physical Reynolds number for very high resolution [27].

Morris et al. [161] developed a viscous term which approximates the second deriv-

ative. This form does not exactly conserve angular momentum and does not lead to

total dissipation [27]. A viscous component due to compressibility may be neglected

for small Mach number [27], as with the assumption of weak compressibility, so no

bulk viscosity is included. Fatehi and Manzari [61] developed a second-order accur-

ate formulation for a second-order derivative. This can be applied to the Laplacian

viscosity or temperature terms.

Stokes’ hypothesis states that in a Newtonian fluid the bulk viscosity is zero. How-

ever, when Colagrossi et al. [42] followed an SPH consistent formulation they found

it contradicts Stokes’ hypothesis. The value of bulk viscosity obtained was close to

that for monatomic gases and common liquids such as water, but for many liquids

should be higher [42]. Therefore, it is important to take into account the fluid being

modelled, as well as compressibility, when considering whether to include bulk viscos-

ity or follow Stokes’ hypothesis. The weakly compressible SPH formulation will be

used in this work, so any compressibility will be small. Additionally, the Boussinesq

approximation employed for buoyancy-driven flow assumes that density only varies in

the body force term. Therefore, bulk viscosity is not expected to have a significant

effect.

A viscous term of the same form as introduced by Monaghan and Gingold [155]

can be derived physically without any empirical parameters [27]. This term conserves

angular as well as linear momentum, but includes an extra viscosity term and does

lead to total dissipation [27]. When bulk viscosity assumptions are made, the extra

term is found to represent a bulk viscosity which is a constant multiple of the dynamic

viscosity [27]. The extra term is connected with compressibility dissipation [27], and

is therefore important to include when modelling processes such as explosions where

compressibility is physically significant. Bonet Avalos et al. [27] developed a new
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viscous term which, when included with the Monaghan and Gingold term, adds a

bulk viscosity which is independent of the shear viscosity. In this way they are able

to model phenomena such as sound waves whilst conserving both linear and angular

momentum [27].

For this project, viscous terms derived from approximations of the second derivative

will be used. The significance of including the bulk viscosity term when modelling

variable viscosity is discussed in Section 3.3.6.2. Throughout the validation cases

in Chapter 4 the Morris [161], and Monaghan and Gingold [155] operators shall be

considered in terms of their ability to simulate flows with two viscous phases.

2.5.4 SPH with Heating

To include heating in the SPH model, a governing equation for temperature or energy

must be included. Additionally, heat transfer is included by prescribing a temperature

or temperature gradient at the boundary. A governing equation for temperature was

first introduced by Monaghan [149], before Cleary [38] developed a more sophisticated

form, which is commonly used today.

Cleary and Monaghan [39] developed one of the first models for thermal conduction

using SPH, improving on a previous method for thermal conduction in stars [28]. The

improvements allowed for variation in the conductivity, whilst maintaining continuity

of the heat flux [39]. The method was demonstrated to perform well for thermal con-

duction in solid domains [39]. Later, Schwaiger [200] developed a new approximation

for the Laplacian operator, present in the governing equation for temperature, in order

to better simulate thermal diffusion with SPH.

Buoyancy-driven flow is typically modelled in SPH through the Boussinesq approx-

imation [38, 218, 255], coupled with the temperature governing equation, including in

incompressible SPH [124] since the approximation states density only varies in the

Boussinesq term. Leroy et al. [124] found good agreement with mesh-based methods

for Poiseuille flow, but struggled to reproduce the local Nusselt number in regions

with high temperature gradients. This was attributed to the error in SPH gradient

approximations [124].

Ng et al. [167] used the Adami et al. [2] ghost boundary method with a Dirichlet

condition for temperature to model heat transfer through a wall. This was preferred
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to a MLS method with mirroring, which does not retain its higher order of accuracy

once particles are disordered and is more computationally expensive [167]. Sikarudi

and Nikseresht [209] also found MLS to be more sensitive to disordered particles than

SPH when modelling heat conduction. They introduce a new boundary method to

implement an adiabatic boundary condition, which ensures no heat flux through a

boundary [209]. The intuitive method of excluding boundary particles from interpol-

ated values is unable to completely stop heat transfer due to the incomplete kernel

[209].

SPH has been used to model heat transfer over longer periods of time when mod-

elling the growth of semiconductor crystals [192]. In order to increase the time step

size, and therefore reduce computation time, an explicit time integration scheme was

employed [192]. It was shown that SPH was able to compete with FV, both in terms

of results and simulation time [192].

2.5.5 SPH Boundary Conditions

Since the vitrification process takes place within a bounded domain, accurate boundary

conditions will be key to capturing the details of the flow, and therefore the mixing

occurring. Although one of the key benefits of SPH is its versatility with complex

geometries, the simplest boundary conditions are of a low order of accuracy and are

known to produce poor velocity gradients near the boundaries. Therefore, care will

need to be taken when choosing the boundary conditions for this work in order to

capture the complex mixing taking place inside a vitrification melter.

Boundaries are simple to implement, but complicated to perfect in SPH. In fact,

boundary conditions were named as one of the current grand challenges for SPH in

the recent paper by Vacondio et al. [234]. The choice of boundary method influences

convergence of first and second order differential operators in the limit as the kernel

smoothing length tends to zero [135]. This is important for viscous and dissipative or

diffusive terms, which will influence the flows modelled in this work, independent of

the chosen viscosity model [135].

Solid boundaries were first modelled simply by including an extra layer of particles

which do not move, known as dummy particles, at the edge of the fluid domain [114].

However, this results in an incomplete kernel support for any fluid particle near the
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boundary. This can allow penetration of boundaries by fluid particles, as well as inac-

curate interpolation of fluid properties near the boundary. Early solutions employed a

potential-based boundary force along the inward normal to prevent penetration [151].

The truncated kernel can be completed by using layers of boundary particles [184], or

numerically using a boundary integral method [136, 222]. With fixed dummy particles,

viscous forces diverge near the boundary as the smoothing length tends to zero, and a

slip velocity error is present at steady state [135]. Schwaiger [200] corrected the SPH

discretisation of an incomplete kernel with a Taylor series. The method was found to

work well for gradients of functions, but needed further refinement for second order

derivatives [200].

Adami et al. [2] introduced a boundary condition using dummy particles whose

quantities do not evolve through the timestepping method, but depend on both sur-

rounding fluid particles and a boundary condition. The technique is designed to

prevent any fluid particles from penetrating the wall by increasing density as fluid

particles near the wall. A no-slip boundary condition is implemented by extrapolat-

ing the fluid velocity field onto the dummy particles in the boundary. Although this

method is only first order accurate, it retains this level of accuracy when particles

are disordered [167], as in common in WCSPH. However, Szewc et al. [220] found

that dummy boundary particles were not sufficient for multi-phase flows and instead

employed ghost particles. Dummy boundary particles are initially used in this work,

due to their simple implementation, but are found to be inadequate for modelling flow

within a cavity, an integral part of the end application of this project, in Section 4.3.

Basa et al. [20] evolved density and pressure of boundary particles with the gov-

erning equations, but calculated boundary particle velocity by reflecting fluid particles

into the boundary to avoid penetration. Boundary particles are given opposite normal

velocity to their origin fluid particle, while tangential velocity is extrapolated along a

normal to the wall. The computation of boundary normals is more challenging and

expensive to implement with complex geometries.

Ghost particles were introduced by Colagrossi and Landrini [40] for modelling

interfacial flows. An antisymmetric mirroring of velocity into the boundary is used.

Although viscous forces are independent of smoothing length at the boundary, they

are “incorrectly calculated” [135]. This boundary method also introduces a local error
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in velocity [135]. Symmetric mirroring of velocity can be used to enforce a free-

slip boundary condition. However, they are not appropriate for modelling a no-slip

boundary condition as a slip velocity error causes velocity to diverge near the boundary

[135].

The more recent Local Uniform Stencil (LUST) method of Fourtakas et al. [69]

uses a stencil of particles around each fluid particle. These are included in SPH

interpolations when they lie inside the boundary, so that fluid particles always have

a full kernel support [69]. This approach needs no modification to extend to complex

geometries and can be easily parallelised to run on a GPU [69]. However, this method

is complex to implement initially, and can otherwise be computationally expensive.

The recently introduced modified dynamic boundary condition (mDBC) method

[59] extrapolates density onto boundary particles using the corrected kernel approxim-

ation of Liu and Liu [131]. No-slip boundary conditions are enforced by mirroring the

negative of a Shepard filter sum of the fluid velocity [55]. This method can be extended

for a free-slip boundary condition [59]. The mDBC method is chosen to use in this

project for its simple and efficient implementation. Additionally, it is straightforward

to apply to other variables. In Section 3.3.4.4, this method is extended to model an

adiabatic boundary condition for temperature.

For thermal boundary conditions, Dirichlet or Neumann boundary conditions may

be used, as summarised in Section 3.3.4. For a Dirichlet condition, any boundary

particles can simply be given the prescribed boundary value. A straightforward way of

enforcing a homogeneous Neumann condition (adiabatic for temperature) is to exclude

boundary particles from the SPH sum [39]. However, this truncates the kernel near

the boundary and can lead to problems similar to those outlined above for dummy

particles. Alternatively, the values in the fluid may be reflected across the boundary

[200]. On the other hand, using the negative of the fluid value in the boundary gives

the homogeneous Dirichlet condition [200], where the value is zero at the boundary

(for example, no-slip velocity). This method can increase the accuracy of Laplacian

term approximations near the boundary [45].

For a heterogeneous Neumann boundary condition the flux across the boundary

must be prescribed, which is more complicated still to implement in SPH. For example,

the unified semi-analytical wall boundary approach [63, 142] uses an extrapolation
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onto boundary particles, so that the segment between these points has mean value

of the flux, to produce a first-order Neumann boundary condition. Recently, Joubert

et al. [109] applied a gradient correction at the boundary surface in order to enforce

Neumann boundary conditions for pressure and velocity. Alternatively, Bai et al.

[17] developed a new SPH-FDM method which converts a Neumann condition to a

Dirichlet condition, in order for it to be applied to the SPH part of the method.

2.5.6 Acceleration and Software Options

For a high-resolution SPH simulation in three-dimensions, a large number of particles

are required. This takes up a large amount of memory, and the resulting interactions

require considerable computation time to complete. In particular, when there are high

viscosities and thermal conductivity coefficients involved, as is the case for this pro-

ject application, the timestep size (defined in Section 3.3.5.1) can become very small.

Hardware acceleration, in terms of parallelisation, as well as efficiently written code,

can reduce the runtime of simulations. There are several options to accelerate CFD

codes and SPH: (i) multi-core shared memory (using openMP), (ii) multi-node dis-

tributed memory (using the message passing interface (MPI)), (iii) accelerator devices

such as graphics processing units (GPUs), or (iv) a combination of these. Thanks to

the compact support of SPH with limited numbers of neighbours around each particle,

the SPH method is well-suited to acceleration via parallelisation using one of these

aforementioned approaches. In particular, a graphics processing unit (GPU) can be

exploited to run many small calculations concurrently, such as the SPH summations.

For astrophysical applications, the SPH options include GADGET [212], SWIFT

[199], and PHANTOM [181]. Additionally, there are a number of commercial software

with SPH capabilities, including: IMPETUS Afea solver [99], LS-DYNA [10], Altair

nanoFluidX [6], Neutrino [32], SimPARTIX [71], and Nextflow [165].

The open-source SPH software options which make use of GPU acceleration are

AQUAgpusph [33], GPUSPH [23] and DualSPHysics [55]. AQUAgpusph uses OpenCL

parallelisation, suited to AMD GPUs, whereas GPUSPH and DualSPHysics are writ-

ten with Compute Unified Device Architecture (CUDA) for use with Nvidia GPUs,

which are available for this project. Of the three solvers, DualSPHysics was found

to run the fastest [33]. All options feature a number of choices of boundary method,
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while GPUSPH and DualSPHysics include options for density diffusion and shifting,

as well as different viscosity models. The multi-phase formulation in GPUSPH is

tailored to simulate granular flows found in lava flows. In DualSPHysics [55], however,

there are multi-phase options for liquid-gas formulations, as well as Newtonian and

non-Newtonian fluid phases.

Currently, none of the release versions of these open-source codes run on multiple

GPUs, but it is an ongoing area of research in order to further increase computational

capacity.

The open-source SPH solver DualSPHysics [44] is chosen to be adapted for this

model for its current capabilities, the capacity for modification, as well as the know-

ledge and expertise present within the research group. The DualSPHysics code is rig-

orously validated and widely used in both academia and industry, providing a highly

optimised code that runs on different hardware including CPUs or GPUs [44]. An

overview of the structure of the DualSPHysics code is given in Section 3.4. Currently

the solver does not include a governing equation for temperature or any heating ef-

fects. A multi-phase option with non-Newtonian phases has recently been released

[55]. Details of the modifications and additions made are given in the later sections of

Chapter 3.

2.6 Measures of Mixing

Mixing measures are essential to assess the degree of mixing achieved by applications

such as vitrification. Experimentally, tracers are typically used to demonstrate mixing.

Examples include dyes, radioactive isotopes, and small beads. In practical situations,

chemical engineers often use residence time or standard deviation [176].

The Shannon entropy is a measure of disorder, dependent on the probability of

finding a specified phase in a certain area. Camesasca et al. [29] applied it to the

mixing of two fluid phases in order to quantify the mixing of polymers over time.

In atmospheric science, Riemer and West [187] developed a mixing state index for

distribution of a chemical species in an aerosol. The measure is defined to be the ratio

of the average diversity of species and the bulk diversity [187], so gives a global value

of mixing for the whole fluid domain.
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The variance of a concentration, which quantifies how close the mixture is to ho-

mogeneous, is regularly used as a measure of mixing in pharmaceutical and food pro-

cessing industries, as well as civil engineering [228]. For a concentration field Φ(r, t),

the variance is calculate as [228]

VarΦ = ||Φ||2 − 〈Φ〉2 , (2.13)

where || · || denotes a norm and 〈·〉 denotes the mean. An L2 norm is often used,

but other norms, such as the mix-norm [140] and negative Sobolev norms, may be

applied [228]. The decay of the variance, as the norm of the concentration becomes

closer to the mean, can be investigated through statistical analysis of FTLE, as well as

analysing the advection-diffusion equation describing the flow. Again, no information

is given about where separate phases remain or how mixing is taking place.

Mixing measures typically used in oscillatory baffled reactor research were adap-

ted by Jimeno et al. [107] to apply to SPH simulations. Firstly, a velocity ratio is

calculated as the sum of axial velocities divided by the sum of radial velocities of all

SPH particles [107]. Additionally, a stretch rate is obtained by assigning each SPH

particle an infinitesimal line and corresponding initial orientation [107]. A stretch rate

can then be computed for each particle, depending on orientation angle and velocity,

and a global stretch rate found by taking a volume average and plotting against time

[107]. However, neither of these measures account for the presence of multiple phases.

A new measure is introduced by Jimeno et al. [107] which quantifies the phase of

neighbouring particles for two immiscible fluids simulated using SPH. For a particle i,

the neighbouring mixing index is

NMi(t) =
N∑
j=1

2
mj

ρj
|Ji − Jj| W̃ij, (2.14)

where Ji is the phase number (0 or 1) of particle i and the kernel has a Shepard

filter applied to correct for particles near boundaries [107]. A global value (NM) is

calculated by averaging over all fluid particles and can be plotted with time [107]. The

domain is fully mixed when NM = 1 [107]. This measure is limited to use with two

phases and particle-based methods, therefore it cannot be used to directly compare

SPH with mesh-based methods.

A plot of volume fraction (VF) gives the locations of phases, and can be used to see

where regions of single phases remain. Without any knowledge of the flow though, it
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may be unclear why these separated regions remain and if they will persist no matter

how long the fluid is mixed.

Lyapunov exponents can be used to locate manifolds in the flow [19], which show re-

gions where mixing is promoted or inhibited (manifolds act as separatrices of the flow).

From these, the quality of mixing can be inferred. The largest Lyapunov exponent is

also used to characterise chaotic flow characteristics and mixing performance [84]. It

is formally defined in the limit as time tends to infinity, which must be approximated

when applied to numerical data.

Robinson [188] used finite-time Lyapunov exponent (FTLE) to identify manifolds

in SPH mixing simulations, as well as developing a measure to quantify local mixing.

Recently, FTLE were used by Dauch et al. [47] to find Lagrangian coherent structures

in an SPH model of a fuel spray nozzle. By using the backward-in-time FTLE to find

unstable manifolds, they were able to identify flow structures. However, FTLE does

not show the locations of different phases.

A number of mixing measures, both local and global, which will be used to compare

cases both numerically and visually are presented in Section 3.6. Additionally, a

new mixing measure, which gives further insight into the mixing of two phases by

combining phase location and manifolds of the flow, is introduced. These measures

are demonstrated and assessed for the validation cases in Chapter 4, before being

applied to the final application in Chapter 5.

2.7 Concluding Remarks

Vitrification is a complex procedure, especially of High Level Waste (HLW) which con-

tains a great number of components and involves both chemical and physical reactions.

Care will need to be taken when deciding which processes are important and which

we can assume negligible for the particular application we are modelling. Accurately

determining the values of the relevant dimensionless numbers in Section 2.2.2 will be

key to these assumptions. From Section 2.2 it is clear that the mixing process is driven

by convection due to heating. Other processes, such as chemical reactions, will be neg-

lected for this work. Multiple phases will be characterised by their viscosity, so the

methods in Section 2.5.3 will be key to capturing their interactions. Heating, and the
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subsequent effect of temperature on viscosity and density, is also fundamental to the

model. It is anticipated from Section 2.2.2 that surface tension will not be need to be

included in the model to capture the physics, though this will be reviewed throughout

the validation cases in Chapter 4. By its nature, HLW has high levels of radioactivity.

As discussed in Section 2.2.2, the main impact on the waste is heating. Therefore, this

may need to be taken into account when designing the application case in Chapter 5.

CFD models described in Section 2.2.1 cover a number of aspects of vitrification

of HLW but do not focus on the influence of mixing on the product homogeneity. Al-

though flow within a commercial glass melter has been modelled using CFD a number

of times, the different shape of the melter and composition of the glass mean that

these techniques cannot be directly applied.

SPH is an appropriate choice for modelling the mixing of multiple phases, since

it is ideal for multi-component flows that change properties and flow behaviour with

time. The particle-based nature of this method also allows for natural tracking of

an interface which is subject to large deformations. Of the mesh-free methods, SPH

is well-established and has been demonstrated to be accurate in capturing fluid dy-

namics. Currently, a number of multi-phase models exist for a variety of applications,

with relevant ones highlighted in Section 2.5.2. The basic SPH model, as well as the

additional features included for this work, is described in more detail in Chapter 3.

The advantages of SPH outlined in Section 2.5.1 highlight the reasons why National

Nuclear Laboratory (NNL) is interested in using the method to model mixing during

vitrification of Highly Active Liquor (HAL). It is imperative that the chosen method is

computational rather than experimental since, due to the highly toxic and radioactive

nature of the waste, no measurements can be taken of the inside of the tank during the

process. However, a model is needed to help to understand what is causing the vitrified

waste to be visibly separated. This needs to be prevented since current predictive

models for storage assume the waste is homogeneous and it is impossible to predict

how the inhomogeneity affects the waste properties without knowing the compositions

of the separated phases.

The open-source solver DualSPHysics will provide a basis for the code, ensuring

time is not wasted reproducing work that has already been done but spent adding new
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multi-phase models. The current DualSPHysics code uses WCSPH, which is appro-

priate for modelling buoyancy-driven flow. Although it has been found to produce less

accurate pressure fields than ISPH, it still creates a good representation of the global

behaviour of an interface or free surface, which is key to this project.

A different multi-phase formulation than the one currently available in DualSPHys-

ics is required to simulate this application. It must be applicable to phases with similar

densities, and include boundary phases in order to specify different boundary condi-

tions. Motion is driven by convective forces, through variations in viscosity and density

due to changes in temperature. Current SPH formulations in DualSPHysics do not

include thermodynamics in their standard governing equations, so this needs to be

added in order to capture the relationship between temperature, viscosity and fluid

dynamics.

The next chapter presents the SPH methodology which will be used to model

mixing during the vitrification of HLW, as well as the post-processing measures to

determine the level of mixing achieved within the melter.



Chapter 3

Numerical Methodology

3.1 Introduction

This chapter presents the Smoothed Particle Hydrodynamics (SPH) model used through-

out the simulations presented in later chapters of this thesis. The SPH formulation

is derived, and additional equations and methods are described. Furthermore, the

method for modelling multiple phases is outlined, as well as the relationships for

variable viscosity. Finally, measures of mixing are defined and advantages of each

discussed.

3.2 Governing Equations

Viscous fluid flow is governed by the Navier-Stokes equations, derived from three

fundamental principles of conservation: continuity equation from conservation of mass;

conservation of momentum equation from Newton’s second law; conservation of energy

equation from the first law of thermodynamics. They can be written in Lagrangian

form as [8]:

Continuity equation:
Dρ

Dt
+ ρ∇ · v = 0; (3.1)

Momentum equation: ρ
Dv

Dt
= −∇p+∇ · τ + ρf ; (3.2)

Energy equation: ρ
DU

Dt
= ρq̇ +∇ · (k∇θ)−∇ · (vp) +∇ · (vτ) + ρf · v. (3.3)

where D
Dt

is the material derivative, ρ density, v velocity, p pressure, τ is the shear stress

tensor, f the body force acting on the fluid, U the internal energy, θ the temperature,

78
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k the thermal conductivity and q̇ the rate of heat transfer.

3.2.1 Conservation of Mass

The fluid is assumed to be weakly compressible (where compressibility variations

are limited to within 1%), and so an equation of state is used to calculate pressure

from density and complete the set of governing equations. This is described in Sec-

tion 3.2.5. Since there is no assumption of incompressibility, the continuity equation

(Equation (3.1)) cannot be simplified further.

Dρ

Dt
= −ρ∇ · v. (3.4)

3.2.2 Conservation of Momentum

For a Newtonian fluid, the shear stress is assumed to depend linearly on the velocity

gradients. Since the fluid is being modelled as weakly compressible, it is further

assumed that any compression is insignificant and Stokes hypothesis that there is no

viscous dissipation due to compression is adopted (discussion of when this may not be

valid is in Section 3.3.6). Shear stress is related to viscosity via

τ = µ(∇v +∇vT ), (3.5)

where µ is dynamic viscosity. Since kinematic viscosity ν = µ
ρ
, the momentum equation

is used in the form
Dv

Dt
= −1

ρ
∇p+ ν∇2v + f . (3.6)

For cases where there are no viscous or body forces acting on the fluid

Dv

Dt
= −1

ρ
∇p. (3.7)

In a number of the cases considered in this work, the only body force acting on the

fluid will be acceleration due to gravity.

3.2.3 Boussinesq Approximation

For any fluid, a change in temperature leads to a change in density. Therefore, when

modelling a non-isothermal case, such as in Section 4.4 or the application in Chapter 5,

it is important to take this into consideration.
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The Boussinesq approximation states that, assuming variations in other properties

with temperature are small, changes in fluid density may be neglected in the governing

equations, except in the body force term of Equation (3.35). The density difference

then drives buoyant convection, whilst avoiding extra computation which has negligible

effect on the result when these assumptions hold. For natural convection, as in this

work, the body force is due to gravity only.

The Boussinesq approximation has been determined to be accurate for limited

temperature ranges [79]. The low thermal expansion coefficient of borosilicate glass

means that, although large temperature differences are involved in vitrification, the

resulting density differences within the melt remain small. Therefore the effect of

heating on density outside the Boussinesq term will remain small. Although viscosity

is a function of temperature, viscous contributions to heating are assumed negligible in

this model. Gray and Giorgini [79] also determined a characteristic length of less than

O(103) m (for water) is required for viscous dissipation to be insignificant compared

to thermal diffusion. The length scales of High Level Waste (HLW) vitrification fall

well below these limits.

In the body force term, density varies according to

f = ρ(−β(θ − θ))g. (3.8)

where β is the thermal expansion coefficient and θ is temperature. Therefore, the

momentum equation when using the Boussinesq approximation is

Dv

Dt
= −1

ρ
∇p+ ν∇2v − ρβ(θ − θ)g, (3.9)

with the other governing equations unchanged.

3.2.4 Conservation of Energy

Beginning with Equation (3.3), the assumption of weak compressibility means that

the pressure term and viscous heating terms are very small relative to heat flux and

can be neglected. Therefore,

ρ
DU

Dt
= −∇ · q. (3.10)

Since heat flux is related to temperature θ through

q = −k∇θ, (3.11)
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with k the coefficient of thermal conductivity, Equation (3.10) can be rewritten as a

heat diffusion equation:

DU

Dt
=
−1

ρ
∇ · (−k∇θ) =

k

ρ
∇2θ. (3.12)

Temperature is directly proportional to internal energy according to U = Cpθ, for

specific heat Cp at constant pressure. Therefore, the energy equation used for this

model is

Dθ

Dt
=

k

Cpρ
∇2θ. (3.13)

3.2.5 Equation of State

As mentioned in the literature review, assuming that an incompressible fluid can be

approximated by a weakly compressible fluid avoids solving a pressure Poisson equa-

tion (PPE), which is computationally expensive. With weakly compressible SPH, the

system of governing equations is closed by an equation of state for pressure. Com-

pressibility, which is on the order of the Mach number squared, is kept below 1% by

constructing an artificial equation of state, such that the Mach number is approxim-

ately 0.1 [148]:

Ma =
|v|
c
≈ 0.1, (3.14)

for speed of sound c.

For this model, the equation of state commonly known as Tait’s equation is used

[76]:

p = B

[(
ρ

ρ

)γ
− 1

]
. (3.15)

Here B is a constant, γ ∈ [1, 7] (chosen to be 7 unless otherwise specified) is a constant

known as the polytropic index of the fluid and ρ reference density (chosen to be initial

density) [150].

Tait’s equation is a rearrangement of the equation of state derived by Murnaghan

[162] for solids at high pressure:

V − V
V

= 1− (1 +Kp)−
1
CK , (3.16)

where V is the reference volume, K the corresponding bulk modulus and C a constant.
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The overbar · denotes a reference value. Rearranging to find pressure,

p =
1

K

((
V

V

)CK
− 1

)
. (3.17)

Since mass is constant by definition for weakly compressible SPH and so V
V

= ρ
ρ
, this

is in the same form as Equation (3.15) when B = 1
K
, γ = CK.

The timestep required for SPH calculations is impractically small if a realistic

speed of sound is used. To meet the weakly compressible condition Equation (3.14),

an artificial speed of sound is set to be

c = Cs max{|v|} (3.18)

for a constant coefficient Cs, usually chosen to be around 10. The speed of sound can

be calculated from

c2(ρ) =
∂p

∂ρ
=
Bγ

ρ

(
ρ

ρ

)γ−1

, (3.19)

and therefore, B is found to be

B =
c2ρ

γ
, (3.20)

where c is the speed of sound for ρ [157].

3.3 SPH Formulation

In the SPH method, particles (which may be irregularly spaced) are used to represent

a medium. Each particle, which is a computational node, has physical properties and

interacts with nearby particles, thus changing its properties [76]. To facilitate this, a

particle has a domain of influence with radius proportional to the smoothing length

of the kernel used.

3.3.1 Derivation

Following Monaghan, the integral interpolant is denoted by 〈·〉 and for a general func-

tion Φ(r) at position r is [148]:

〈Φ(ri)〉 =

∫
Ω

Φ(r)W (r− r′, h)dr′ (3.21)

over the whole space Ω. W is an interpolating kernel with radius αh, where α is

a coefficient and h is a characteristic length known as the smoothing length, which

satisfies five conditions [76]:
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1.
∫
Ω

W (r− r′, h)dr′ = 1 – partition of unity;

2. lim
h→0

W (r − r′, h) = δ(r − r′) – the kernel is equal to the delta function in the

infinitesimal limit;

3. W (r− r′, h) ∈ Ck – the kernel is k times differentiable with a continuous deriv-

ative;

4. W (r− r′, h) > 0 over the domain Ω and W (r− r′, h) = 0 outside Ω – the kernel

has a compact support and is positive within it;

5. W ( |r−r
′|

h
, h) decreases monotonically with distance |r−r

′|
h

.

Lind and Stansby [126] have shown that by relaxing conditions 4 and 5 higher-

order convergence can be obtained, but this is not considered in this thesis. SPH uses

a numerical approximation of the integral interpolant [148]. For an arbitrary particle

i, sum over all particles j in the domain,

〈Φ(ri)〉 =
∑
j

mj

ρj
ΦjW (ri − rj, h). (3.22)

where subscripts i and j denote SPH particle numbers, mj is the mass of particle j

and ρj its density. The mass of a particle is fixed but its density can vary, therefore

the volume also changes through the relationship V j = mj/ρj [76]. The kernel ensures

that particles j have more influence on particle i the closer they are to it. For a scalar

function Φ, this has derivative [148]

〈∇Φ(ri)〉 = −
∑
j

mj

ρj
Φj∇jW (ri − rj, h), (3.23)

where ∇j represents differentiation with respect to particle j, and for a vector function

Φ,

〈∇ ·Φ(ri)〉 = −
∑
j

mj

ρj
Φj · ∇jW (ri − rj, h). (3.24)

For irregularly spaced particles, Equations (3.23) and (3.24) do not guarantee zeroth-

order consistency, hence, when constructing differentials of interpolants, higher accur-

acy is achieved by using ∇(ρΦ) − Φ∇ρ in place of ρ∇Φ [148], similarly ρ∇ · Φ =

∇ · (ρΦ−Φ · ∇ρ).

The condensed notation rij = ri − rj is introduced and the distance rij = |rij|

defined. Additionally, the notation is simplified in a standard way such that Wij =



84 CHAPTER 3. NUMERICAL METHODOLOGY

W (ri − rj, h) and vij = vi − vj. Since W ij is a symmetric function, the partial

derivatives of the kernel
∂Wij

∂rj
= −∂Wij

∂ri
. In more compact notation,

∇jWij = −∇iWij. (3.25)

This substitution is commonly used when deriving SPH equations.

For a general function Φ, the following expressions with the gradient operator are

also useful:

〈∇Φ〉i =
∑
j

(Φj − Φi)∇iWij
mj

ρj
; (3.26)

ρi 〈∇ ·Φ〉i =
∑
j

mj(Φj −Φi) · ∇iWij. (3.27)

An error of O(h2) or smaller is introduced by truncating the Taylor series (smooth-

ing error) [148], as well as a discretisation error ofO
(
dx
h

)
[183], where dx is the distance

between particles at t = 0, from numerical approximation of the integral as a sum.

In terms of SPH accuracy, Quinlan et al. [183] discovered that the truncation error

of the SPH method is composed of two parts, each of which dominates under dif-

ferent circumstances. The smoothing error, introduced by the kernel chosen for the

integral interpolation, is the limiting error as dx
h
→ 0. Whereas when h → 0, the

discretisation error caused by approximating the integral as a sum over neighbouring

particles dominates. These errors lead to numerical instabilities in the process. Thus,

the size of both h and dx
h

must be considered carefully when investigating instabilities

using SPH. Particle disorder also contributes to error and techniques such as shift-

ing (Section 3.3.5) are used to restore a more uniform distribution of particles [128].

Particle disorder can also lead to poor accuracy of the second derivative, especially

when different material parameters are involved [39].

3.3.2 SPH Governing Equations

The governing equations in Section 3.2 are rewritten in SPH form using the derivations

in Section 3.3.1. Henceforth the angular brackets will be dropped for ease of reading.
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3.3.2.1 Conservation of Mass

Beginning with the definition of conservation of mass for a particle i

Dmi

Dt
= 0, (3.28)

which means the mass of each particle is constant. Using Equation (3.22) with Φ = ρ

produces the simple SPH estimate for density

ρi =
∑
j

mj

ρj
ρjWij =

∑
j

mjWij. (3.29)

However, this equation is not used for simulations with an interface, such as a free

surface, since it can cause drops in density at the edge of a fluid due to the kernel

support not being full, thus altering the pressure and resulting in oscillations of the

edge [148].

An improvement is to use the rate of change of density, as in Equation (3.4),

Dρ

Dt
= −ρ∇ · v (3.30)

along with Equations (3.23) and (3.25) to work out

Dρi
Dt

= −ρi∇i · vi

= −
∑
j

mj

ρj
ρjvij · ∇jWij

=
∑
j

mjvij · ∇iWij.

Therefore, the conservation of mass can also be written in SPH form as

Dρi
Dt

= ρi
∑
j

mj

ρj
vij · ∇iWij. (3.31)

This equation avoids the drops in density at boundaries and also can be calculated

in the same loop as other parameters, making it more computationally efficient [148].

This form is also Galilean invariant [38]. However, it does require an initial density to

be set [148].

3.3.2.2 Conservation of Momentum

Beginning from Equation (3.7) (viscous forces will be considered in Section 3.3.6 and

body forces at the end of this section), and applying Equation (3.26) gives

Dvi
Dt

= −
∑
j

mj

ρj
(pj − pi)∇iWij. (3.32)
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This form avoids tensile instabilities [26] which lead to particle clumping, but is not

conservative. Therefore, a symmetric formulation is preferred by using Equation (3.23)

to find

Dvi
Dt

=
1

ρi

∑
j

mj
pj
ρj
∇iWij. (3.33)

The identity [130]

∑
j

mj
pi
ρiρj
∇iWij =

pi
ρi

(∑
j

mj

ρj
∇iWij

)
= 0 (3.34)

follows from the kernel definition and is added to give the momentum equation used:

Dvi
Dt

= −
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇iWij. (3.35)

However, this form of the pressure gradient has been found to be unstable, partic-

ularly for multiphase flows with small density ratios
(
ρ1
ρ2
≤ 0.1

)
[40]. A variationally

consistent pressure gradient formulation can help to retain stability for interfacial flows

with small density ratios. That is, the pressure gradient is derived from variational

principles and leads to conservation of linear and angular momentum. Bonet and Lok

[26] determined the conservation of momentum equation

Dvi
Dt

= −
∑
j

mj

(
pj + pi
ρjρi

)
∇iWij (3.36)

to be variationally consistent with Equation (3.31), whereas Equation (3.35) is vari-

ationally consistent with Equation (3.29).

When a body force is present, for example gravity, then the momentum equation

has an additional term:

Dvi
Dt

= −
∑
j

mj
pj + pi
ρjρi

∇iWij + fi. (3.37)

With the Boussinesq approximation of Section 3.2.3, the body force term is included,

driven by the temperature gradient

Dvi
Dt

= −
∑
j

mj
pj + pi
ρjρi

∇iWij − ρβ(θ − θ)g. (3.38)

According to the approximation, the other governing equations remain unchanged.
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3.3.2.3 Conservation of Energy

Starting from the temperature diffusion Equation (3.13), Monaghan [149] determined

that this can be written in SPH form for a particle i with neighbouring particles j as

Cp,i
Dθi
Dt

=
∑
j

mj

ρiρj
{(ki + kj)(θi − θj)}∇iWij, (3.39)

where the form of the term inside curly brackets is chosen to approximate the Lapla-

cian.

To ensure that heat flux remains continuous for discontinuous k, the sum of thermal

conductivity coefficients is replaced by twice the harmonic mean. Then the temperat-

ure evolution equation in SPH form, as implemented in this model, is:

Dθi
Dt

=
1

Cp,i

∑
j

mj

ρiρj

4kikj
ki + kj

(θi − θj)
∇iWij

rij
. (3.40)

3.3.3 Kernels

As discussed in Section 3.3.1, the kernel is chosen so that in the limit as the smoothing

length h tends to zero it approximates the Dirac delta function. For larger h, the

delta function is smoothed over the surrounding area, such that closer neighbouring

particles have greater influence. The kernel function must also be differentiable so that

the interpolants of gradients of functions can be computed [148].

An obvious candidate is the Gaussian function, shown here for two dimensions:

W (r, h) =
1

πh2
e−(

rij
h )

2

. (3.41)

However, since the Gaussian has infinite support, it is computationally expensive and

not often employed in practice. Instead, commonly used kernels approximate the

Gaussian but with compact support, as shown in Figure 3.1. Examples include the

quadratic, cubic spline and Wendland kernels.

Cutting off the kernel at a finite radius excludes contributions from particles further

away, introducing a truncation error. Since the kernel value reduces with distance, the

error can be reduced by increasing smoothing length h. However, this also increases

computational cost. Accuracy increases with the order of the kernel and, in general,

computation time also increases [148]. Although the quadratic kernel is lower order
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than the others, the first derivative of the quadratic kernel has no point of inflexion,

therefore the force between particles increases as the distance between particles de-

creases and it does not exhibit tensile instability [76]. A gradient kernel correction is

sometimes employed to ensure correct evaluation of the gradient of the velocity field

[26].

Figure 3.1: Kernel around particle i of radius 2h, with interacting particles within the
compact support coloured a darker shade.

The Wendland kernel [245] is chosen for this work due to its high accuracy [50].

It is a fifth-order polynomial function with compact support. In two-dimensions, the

kernel with radius 2h is

W (rij, h) =


7

4πh2

(
1− rij

2h

)4
(

2rij
h

+ 1
)

rij ∈ [0, 2h],

0 otherwise.

(3.42)

with derivative

∂W (rij, h)

∂rij
=

−
35

4πh2
q
rij
2h

(
1− rij

2h

)3
if rij ∈ [0, 2h],

0 otherwise.

(3.43)

This kernel is shown for smoothing length h = 1 in Figure 3.2.

In three dimensions, the Wendland kernel is given by

W (rij, h) =


21

16πh3

(
1− rij

2h

)4
(

2rij
h

+ 1
)

rij ∈ [0, 2h],

0 otherwise.

(3.44)

3.3.4 Boundary Conditions

The derivation of the SPH equations of Section 3.3.2 does not naturally include bound-

ary conditions. If a fluid particle is located near a boundary, its kernel support can
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Figure 3.2: Wendland kernel with smoothing length h = 1, showing the weighting on
particle contributions at different distances from particle i at r = 0.

extend beyond the fluid domain into the boundary where there are no particles and

hence the kernel support is incomplete. There are two commonly used types of bound-

ary conditions with partial differential equations, such as the governing equations here.

Dirichlet boundary conditions specify a value for a variable at the boundary, for ex-

ample a stationary boundary with no slip has v = 0. For a Neumann boundary

condition, the normal derivative of a variable at the boundary is given. An example

is an adiabatic boundary for temperature, where there is no heat flux through the

boundary, which is equivalent to ∂θ
∂n

= 0 at the boundary.

If a single layer of particles are placed at the boundary then fluid particles near the

boundary will still have an incomplete kernel support, leading to a truncation error

in any SPH summation at these particles. As discussed in Section 2.5.5, there are

a number of ways of resolving this problem, including numerical corrections. Here,

in order to maintain a full kernel support for all fluid particles, multiple layers of

boundary particles are placed (using the same intial particle spacing dx as the fluid),

with the number depending on the size of the kernel radius. There are a number

of approaches to prescribe variable values to the boundary particles, also discussed

in Section 2.5.5. One of the current Grand Challenges for SPH, chosen by the SPH

rEsearch and engineeRing International Community (SPHERIC), is the development

of accurate and robust boundary conditions which maintain the advantages of SPH

[234]. The options in DualSPHysics are the dynamic boundary condition (DBC) and

the recently introduced modified dynamic boundary condition (mDBC), which are

described below.
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3.3.4.1 Dynamic Boundary Condition (DBC)

Dummy particles have position and velocity prescribed and fluid particles are allowed

to interact with them, as with other fluid particles [43]. For a stationary boundary, as

time is increased by dt:

r(t+ dt) = r(t); v(t+ dt) = v(t) = 0. (3.45)

All other variables are calculated by solving the governing equations, as for the fluid

particles. This is not entirely physically accurate and is associated with issues such as

particles penetrating through and sticking to the wall, if the density of the boundary

particles becomes lower than that of the fluid. This can be overcome by resetting

boundary particle density at each timestep.

The DBC is quick to implement and computationally efficient to run. For many

validation cases in Chapter 4 it gives sufficiently accurate results. Where this is not

the case, it is specified that a more sophisticated boundary condition is required.

3.3.4.2 Modified Dynamic Boundary Condition (mDBC)

Recently, English at al. [58] developed a modification to the DualSPHysics DBC based

on the work of Marrone et al. [139], which reduces penetration of boundaries as well

as allowing for partial slip conditions. It is found to reduce fluctuations on boundary

density, as well as giving more physical results. It can also reduce the gap that often

develops between fluids and a boundary when using DBC.

Layers of boundary particles are used, as with DBC, but the physical boundary is

midway between fluid and boundary particles. Boundary particles are mirrored into

the fluid as ghost particles along the boundary normal into the fluid. Density and

its gradient are found at a boundary particle i for its corresponding ghost particle ig

using SPH interpolation over surrounding fluid particles, along with the first order

consistent correction of Liu and Liu [131]. When there are too few particles within the

kernel of the ghost particle, the correction is not possible and a Shepard filter, as in

Equation (3.75), is used instead. Density at a boundary particle i is then calculated



3.3. SPH FORMULATION 91

through

ρig = ρi + (ri − rig) ·


∂xρi

∂yρi

∂zρi

 . (3.46)

Boundary particles are given zero velocity, unless a moving boundary is specified, as

for the DBC method.

When using mDBC, the origin of the Cartesian grid which is used to place particles

at initiation must be adjusted so that particles do not fall on the line of the bound-

ary. The mDBC boundary interface should be mid-way between boundary and fluid

particles. Since mDBC relies on boundary normals, it takes extra consideration to

apply to more complex geometries. The most relevant for this work are corners, where

boundary particles are reflected onto ghost particle along a line through the vertex.

For a number of validation cases in Chapter 4, mDBC are tested and, where signi-

ficant improvements are found, are used.

3.3.4.3 Viscosity Boundary Conditions

For the SPH formulation used in this work, each particle must have its own viscosity,

rather than there being a global viscosity for the whole domain. Therefore, boundary

particles must also have a viscosity for when fluid particles near the boundaries interact

with them through the viscous operator Equation (3.70).

With the newly introduced viscosity phases, boundaries assigned as a phase can

have any of the same viscosity options as a fluid phase. Namely, they can be set at a

constant viscosity, or can follow a chosen viscosity model as a function of temperature

with specified parameters. In this way, a Dirichlet boundary condition for viscosity

can be set, or the fluid viscosity can be extrapolated into the boundary. Otherwise,

if no phase viscosity options are chosen, the boundary will have the constant default

viscosity for the case.

There is potential to extend the mDBC method to mirror viscosity into the bound-

ary, as temperature is in the following Section 3.3.4.4.
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3.3.4.4 Temperature Boundary Conditions

Boundary phases can follow the temperature equation 3.40, as with fluid phases. Al-

ternatively, a simple Dirichlet condition may be set by choosing

θ = θ (3.47)

constant (as default).

It is more complex to prescribe a Neumann boundary condition (see Section 2.5.5),

i.e. the normal temperature gradient, in particular when there is heating present. An

adiabatic boundary (no heat transfer) can be approximated by setting the thermal

conductivity to

k = 0 (3.48)

for the boundary phase, so that particles in this phase do not contribute to the tem-

perature evolution equation (eq. (3.40)). This is equivalent to the naturally adiabatic

condition of no boundary particles for solids described by Cleary [38], giving a zeroth

order approximation, so is expected to have similar limitations. However, the exist-

ing boundary particles are able to contribute to SPH sums for other variables, so no

additional truncation error is introduced here.

The capability of an isothermal condition (internal energy U constant) can be

checked by computing the heat flux over boundary particles along the inward normal

n [38]:

qi =
1

ρi

∑
j

2mjkjθijrij · ni
rij · ∇iWij

r2
ij + η2

. (3.49)

Clearly, this is affected by the same errors as other SPH interpolations, but will be

equal to zero for the adiabatic condition k = 0. Cleary [38] states that heat flux is

always conserved with the SPH temperature equation.

For a homogeneous Neumann condition (such as an adiabatic boundary for tem-

perature) the symmetric boundary condition can be used. A more accurate approach

than Equation (3.48) can be derived by extending the first-order consistent mDBC

method, as described in Section 3.3.4.2 for density. The gradient term is not included,

as no extrapolation is required here. Following the mDBC method for computing nor-

mals and ghost particles, the temperature at a boundary particle i is the temperature

interpolated at its corresponding ghost particle ig. As with density, the correction of
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Liu and Liu [131] is applied to θig , then

θi = θig . (3.50)

This is the same as Equation (3.46) without the gradient term. In this way, temper-

ature is reflected across the line of the adiabatic boundary.

3.3.5 Timestepping Methods

Values at time t+dt are calculated from those at time t using the governing equations

in Section 3.3.2. Since the calculations depend on particle interactions, the values

at time t must not be discarded until all particles have been progressed by dt. The

conservation equations are autonomous, but the variables such as v and ρ depend

on time. A variety of timestepping schemes have been used for SPH. Here we shall

consider the two different schemes included in DualSPHysics – the Verlet method and

the symplectic predictor-corrector method.

Verlet [237] introduced the following second order time integration scheme for mo-

lecular dynamics:

vi(t+ dt) = v(t− dt) + 2dt
dvi(t)

dt
; (3.51)

ri(t+ dt) = ri(t) + dtvi(t) +
dt2

2

dvi(t)

dt
; (3.52)

ρi(t+ dt) = ρi(t− dt) + 2dt
ρi(t)

dt
. (3.53)

Although there is only one step per iteration, an additional step must be performed

approximately every 40 iterations to reduce divergence due to decoupling of velocity

and density.

vi(t+ dt) = v(t) + dt
dvi(t)

dt
; (3.54)

ri(t+ dt) = ri(t) + dtvi(t) +
dt2

2

dvi(t)

dt
; (3.55)

ρi(t+ dt) = ρi(t) + dt
ρi(t)

dt
. (3.56)

This additional step is first order only in velocity and density, and the number of

iterations at which it is required can vary between cases. Thus, an empirical parameter

which needs tuning is introduced.
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The symplectic predictor-corrector method for position, defined generally by Leimkuhler

and Matthews [123] and applied to density by Parshikov et al. [175], is also of second

order. Following the formulation in the paper of Gomez-Gesteira et al. [78] on the

SPHysics code, the governing equations in Section 3.3.2 can all be written in the form:

Dy

Dt
= x(t). (3.57)

The first step is to predict the values at half the timestep length, then this is corrected

using the newly predicted values. Finally, the corrected result is used along with the

value at t to find the new value at time t+ dt [78]:

Predict: y

(
t+

dt

2

)
= y(t) +

dt

2
x(t); (3.58)

Correct: y

(
t+

dt

2

)
= y(t) +

dt

2
x

(
t+

dt

2

)
; (3.59)

Recalculate: y(t+ dt) = 2y

(
t+

dt

2

)
− y(t). (3.60)

This scheme involves a half step but does not require any additional adjustment steps.

It is important to use at least a second order timestepping method to retain the

second order accuracy of the SPH formulation. Higher order time integration methods,

such as the fourth order Runge-Kutta scheme, are significantly more computationally

expensive. Therefore, any potential increase in timestep size is negated by the longer

time taken to complete each step. The half-step included in the predictor-corrector

method, however, results in the scheme being stable for larger timesteps [237], with a

smaller computational cost overall.

After each step for either scheme, pressure p must be calculated from ρ using the

equation of state (Equation (3.15)) so that it is at the same stage as the other variables.

Viscosity is updated similarly, since it is a function of only temperature (Section 3.5.1),

if not constant.

3.3.5.1 Timestep Size

A sufficiently small timestep is required for an accurate solution, but also increases

computation time. A variable timestep is employed which reduces runtime to 40% and

helps to keep the simulation stable [78]. Based on a Courant-Friedrichs-Lewy (CFL)

condition, it depends on the physical properties of the simulation at that instant in

time, multiplied by a chosen constant Courant number C0 (usually O(10−1)).
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DualSPHysics already includes two constraints on the timestep size. The first

depends on the acceleration or body force:

dt1 =

√
h

|a|max

, (3.61)

where amax is the maximum acceleration of all particles. Maintaining weak compress-

ibility, as in Equation (3.14), gives a second timestep constraint from the speed of

sound:

dt2 =
h

max{c, 10|v|max}+ hν
, (3.62)

where ν is the default viscosity for the case.

The third timestep constraint was introduced into DualSPHysics by Fourtakas and

Rogers [68] to account for viscous dissipation in SPH:

dt3 =
h2

νmaxλ
, (3.63)

where λ is a relaxation parameter set for each case. For this work, with each SPH

particle having its own viscosity, νmax is taken to be the maximum viscosity of all

particles as interaction forces are computed in each timestep.

Finally, a fourth timestep constraint must account for thermal dissipation when

temperature evolution (Equation (3.40)) is included in the model. Cleary [38] intro-

duced the Courant condition due to heat transfer for SPH:

dtθ =
0.1ρCV h

2

k
, (3.64)

where the coefficient 0.1 corresponds to a Courant-type number. This work uses

specific heat at constant pressure, rather than constant volume. Although Cp > CV ,

the difference is small relative to their magnitudes so will not have a significant effect

on the timestep size. A thermal time constraint parameter

Θi =
ki

ρi(Cp)i
(3.65)

is defined. Since k, Cp can vary between phases and density varies with time and

between particles, Θmax = maxi Θi is computed at each timestep as with νmax and the

final timestep constraint is

dt4 = 0.1
h2

Θmax

. (3.66)
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The resultant timestep for each time integration iteration is

dt = C0 min{dt1, dt2, dt3, dt4}, (3.67)

where C0 is the chosen Courant number. A lower limit to dt is typically set as

dtmin = 0.05
h

c
, (3.68)

or may be chosen explicitly, in order to avoid the timestep becoming prohibitively

small.

3.3.6 Viscosity

The momentum conservation equation derived in Section 3.3.2.2 neglects the viscous

terms. This may be justified for certain flows with high Reynolds number but, since

molten glass is a viscous fluid, it is important that viscosity is included in the SPH

formulation for this model. For low Reynolds number, small variations in pressure

(relative to the hydrostatic pressure gradient) cause movement within the fluid and

viscous forces dominate the flow [161]. A commonly used method for astrophysics

and free-surface flows is an artificial viscosity [154], where its diffusive properties aid

stability. Although an equivalent viscosity can be approximated, it has no physical

derivation. Another popular approach is the Morris viscosity operator which approx-

imates the Laplacian term in the Navier Stokes momentum equation. For cases where

viscosity is not constant in time, it may be necessary to consider other approaches.

To account for variations in viscosity between phases, and within phases with

varying temperature, each SPH particle i has its own viscosity νi. This is achieved

by introducing a new array (Visc) into DualSPHysics, rather than assigning a single

viscosity to the case. Viscosities are allocated by phase when setting up the case

and can remain constant or follow an equation dependent on another variable such as

position or temperature, as in Section 3.5.1.

3.3.6.1 Morris Viscosity Operator

The Morris viscosity operator was introduced in 1997 by Morris et al. [161] for low

Re flow, in particular non-Newtonian mixing. It approximates the Laplacian viscos-

ity term in the Navier Stokes conservation of momentum Equation (3.7), with the
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assumption that viscosity is constant as in Figure 3.3. The term is used in the form

introduced by Lo and Shao [133]:

ν∇2vi =
∑
j

mj
4ν

ρi + ρj

(
rij · ∇iWij

r2
ij + η2

)
vij, (3.69)

where η is a small constant included to avoid singularities as rij → 0. This form of

the viscous term conserves linear but not angular momentum [101].

To include phases of different viscosities in the model, the viscous formulation is

changed by replacing ν with the arithmetic mean of both viscosities involved in the

interaction, such that

ν∇2vi =
∑
j

mj
2(νi + νj)

ρi + ρj

(
rij · ∇iWij

r2
ij + η2

)
vij. (3.70)

Other means could be chosen, but this simple option is found to perform well in

the two-phase Poiseuille flow case in Section 4.2.2.2, where viscosity difference at

the interface is key to initiation of the instability. Equation (3.70) can deal with

particles of different viscosities interacting, as in Figure 3.4, and reduces to the original

Equation (3.69) when interacting particles have the same viscosity.

Figure 3.3: Interaction between particles
of constant viscosity.

Figure 3.4: Interaction between particles
of different viscosities.

3.3.6.2 Alternative Operators for Viscosity

The viscous term in Equation (3.7) is equivalent to the stress tensor term in Equa-

tion (3.2) for compressible Newtonian fluids, assuming that viscosity is constant and

independent of other variables. However, for this work viscosity will not always be

constant for the whole domain and may also change with temperature. If the Stokes

hypothesis is dropped and the bulk viscosity term reinstated then

∇ · τ = ν∇2v +

(
ν +

λ

ρ

)
∇(∇ · v). (3.71)



98 CHAPTER 3. NUMERICAL METHODOLOGY

It should be determined whether the second term is significant in this case, or if

Equation (3.70) will suffice.

A viscous term including bulk viscosity (2
3
µ + λ) was introduced by Avalos et al.

[15] for compressible flows (when the Mach number is not small, as in Equation (3.14)).

Bulk viscosity is also important to include when there are phenomena dependent on

compressibility, even if the fluid is approximately incompressible [193]. The new term,

including a bulk viscosity is [15]

∇ · τ =
∑
j

mj

ρiρj

[
4ν

(
rij · ∇iWij

r2
ij + η2

)
vij − λSPH

(
ρ̇i
ρi

+
ρ̇j
ρj

)
∇iWij

rij

]
(3.72)

where, assuming a Newtonian fluid, λSPH = λ− µ.

As discussed in Section 2.5.3 of the literature review, Bonet Avalos et al. [27]

determined that the viscous term of Monaghan and Gingold [155] can be derived from

the assumptions of bulk viscosity. The Monaghan and Gingold operator is [155]

ν∇2vi =
∑
j

mj
4ν

ρi + ρj

(
rij · vij
r2
ij + η2

)
∇iWij, (3.73)

where λ = µ is fixed. Further, Bonet Avalos et al. [27] developed a viscous term with

λ independent of µ, which will not be used in this work.

For this work, the constant viscosity is replaced with the average viscosity of the

two interacting particles, as in Equation (3.70), so that

ν∇2vi =
∑
j

mj
2(νi + νj)

ρi + ρj

(
rij · vij
r2
ij + η2

)
∇iWij. (3.74)

The advantages of using the Monaghan and Gingold operator are considered for the

differentially heated cavity case in Section 4.4.2.

3.3.7 Density Treatment

The Lagrangian nature of SPH means that particles move and, with the weakly

compressible formulation, densities may vary. Through the equation of state (Equa-

tion (3.15)), pressure changes with density. Choosing γ = 7 means that pressure is

sensitive to particle distribution and significant fluctuations can occur, even for simple

flows such as still water. A number of techniques have been proposed to mitigate this

problem through filtering or introducing density diffusion.
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3.3.7.1 Shepard Filter

The Shepard filter is a zeroth order filter over density. Every 20 to 50 timesteps the

density is adjusted using [76]

ρnew
i =

∑
j

ρjWijVj∑
j

WijVj
. (3.75)

3.3.7.2 Density Diffusion

Molteni and Colagrossi [147] introduced a diffusive term to the density evolution Equa-

tion (3.31) which smooths the density, and therefore pressure, fields. The additional

term is

δhc
∑
j

2
mj

ρj
(ρj − ρi)

rij
r2
ij

· ∇iWij, (3.76)

where the constant parameter is typically chosen to be δ = 0.1.

Antuono et al. [12] also introduced a correction to Equation (3.76) to account

for truncated kernels near boundaries. However, it requires a large additional compu-

tational cost and is designed for free-surface flows, which are not considered in this

work. A density diffusion term was also used by Ferrari et al. [64] instead of adding

an artificial viscosity term to the momentum equation.

Fourtakas et al. [70] improved this term for pressure near wall boundaries by

introducing the hydrostatic density difference

ρHij = ρ0

((
γ(ρ0g(rz)ij + 1)

c2ρ0

) 1
γ

− 1

)
. (3.77)

The adjusted density diffusion term is

δhc
∑
j

2
mj

ρj
(ρij − ρHij )

rij
r2
ij

· ∇iWij. (3.78)

The density diffusion term of Molteni and Colagrossi [147] is used for the lid-driven

cavity case in Section 4.3, as well as single and two-phase Poiseuille flow in Section 4.2,

which were simulated in DualSPHysics v4.4. The temperature-dependent Poiseuille

flow in Section 4.2.3 and differentially heated cavity case in Section 4.4, as well as the

vitrification cases in Chapter 5, are run with the Fourtakas et al. [70] density diffusion

term included in DualSPHysics v5.0. Values of δ are specified for each case, or where

changed for a simulation.
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3.3.8 Particle Shifting

As mentioned in Section 3.3.7, the weakly compressible nature of this method can lead

to irregular particle distributions. Particle clumping can also occur, due to the kernels

used (Section 3.3.3) having small gradient as particles approach each other closely,

which introduces error to the SPH interpolations and can lead to numerical instability.

Nestor et al. [164] introduced particle shifting in the Finite Volume Particle Method

(FVPM) to maintain a more uniform particle distribution throughout the simulation.

This was closely followed by Xu et al. [253] for incompressible SPH (ISPH), and then

Shadloo et al. [202] for weakly compressible SPH (WCSPH). Lind et al. [127] then

extended this idea to free surfaces, introducing the Fickian-based approach.

The method used by Lind et al. [127] is based on Fick’s law of diffusion. Particles

are moved a small distance, depending on the particle concentration gradient and

shifting coefficient D,

δri = −Ddt
∑
j

mj

ρj
∇iWij. (3.79)

Skillen et al. [210] modified the shifting term to account for variations in particle

velocity,

δri = −Dh|vi|dt
∑
j

mj

ρj
∇iWij. (3.80)

This form of shifting is used for this model, with D chosen for each case.

The approach of Skillen et al. [210] in Equation (3.80) is used for shifting in the

majority of this work to maintain a more regular particle distribution and mitigate

against related numerical errors. The method of Lind et al. [127] was employed for the

lid-driven cavity case in Section 4.3.2.1, where particles were found to penetrate the

boundary. Removing the velocity factor from the shifting term reduced the number

of particles entering the boundary where velocity magnitudes are typically smaller.

Particle loss is not a problem with the released version of mDBC and Equation (3.79)

is not used for any other cases.

For multi-phase flows, Xenakis et al. [251] used a combination of Equation (3.79)

for low D and Equation (3.80) for higher D and found both methods to be stable.

However, care should be taken to ensure shifting is not causing unphysical mixing

between phases, in particular when there is a large difference in density. For example,

in the violent free-surface flows investigated by Mokos et al. [146].
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For two-phase cases of the lid-driven cavity and Poiseuille flow, Equation (3.80)

does not introduce additional mixing at the interface. Hence, the modifications of

Mokos et al. [146] for air and water phases are not required for this work, where phase

densities are identical or very close.

3.3.9 Neighbouring Particle Searches

Neighbour lists, where records are kept of neighbouring particles, improve efficiency

of the SPH method. SPH summations need only consider particles within the kernel

support of the particle concerned, and can neglect those who do not contribute due to

their kernel being equal to zero. A neighbour list keeps a record of particles which are

close to each other in space, enabling the method to disregard others. It also reorders

all variables relating to the particles so that those close to each other (and therefore

interacting with each other) are also close in the memory, which improves access to

the CPU memory [77]. The link list method described in this section was found to

speed up the lid driven cavity case in a previous self-written code by approximately 10

times. Therefore, this is highly effective tool for improving the efficiency of the SPH

method. First, the domain must be split into cells. These are chosen to be squares of

side length 2h, the radius of the kernel support. The particles are then assigned the

number of the cell they lie in and a gridding algorithm is used to sort them so that

particles in nearby cells are stored next to each other. In DualSPHysics, the linked

list method of Domı́nguez et al. [54] is used, where pointers are used to link from the

cell to the first particle in it and then between all particles in the cell in a chain. This

is then used to reorder all particle variables so they are sorted by the cell number the

particle lies in.

3.3.9.1 Calculate number of cells

Firstly, all particles are looped over to find the maximum and minimum position in each

dimension, and therefore the extents of the domain. A margin of 2h is added around

the outside of the geometry, unless otherwise specified in the case file. Any particles

which exceed these limits are excluded. The number of cells in each dimension is

found by dividing by cell width and rounding up. The total number of cells is then the

product of these two numbers and memory can be allocated to store cell information.
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3.3.9.2 Split domain into cells

Figure 3.5: Example lid driven cavity domain (as in Section 4.3) split into cells for
neighbour list method, with the bottom left corner of each cell marked by a black
cross.

The domain is next split into the calculated number of cells, which are number

according to a sorting method. For example, SortX sorts first in the x direction

then the y direction and finally the z direction, so the cells are ordered along rows

moving upward. An example of a domain split into cells of side-length 2h is shown in

Figure 3.5, where each cell is defined by the location of the black cross in its bottom

left corner and the particles in adjacent cells are coloured differently. Calculating the

number of cells and splitting the domain need only be performed only once at the start

of the simulation.

3.3.9.3 Place particles in cells and set up pointers

Looping over all particles, the cell each particle lies within is determined by its position

and the corresponding cell number stored. Excluded particles lying outside the domain

are given a value not corresponding to any cell numbers in use. Each cell and particle

has a pointer which must be reset at the start of each timestep to avoid errors. To

keep track of the linked list of pointers, the index of the current last particle in the

chain for each cell is temporarily stored.
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Figure 3.6: Figure to show set up of pointers and sorting of vectors during link list
process.

In the same loop as the cell number is found for a particle, the last particle index is

checked against for this cell. If it is not equal to a particle number then this is the first

particle in the cell and the cell’s pointer is set to point to this particle. Otherwise, the

last particle in the cell is j and the pointer of particle j is set to point to the current

particle. In this way, a chain of 0 or more pointers is set up to link the particles in

each cell. The chain of pointers for a small example set of particles can be seen on the

left hand side of Figure 3.6. The final particle in a cell retains its initial null value, as

does an empty cell.

3.3.9.4 Reorder particles

The linked list of pointers for each cell can now be used to reorder the particles so

that data for nearby particles are also stored close in the memory. One cell at a time,

in order of cell number, all variables for particles (including particle id) are put into

temporary vectors by following the chain of pointers. When a null pointer is reached,

the next cell is considered. Once complete, the particle variables are updated. The

resulting sorted vector for the example particles can be seen in the middle column of

the right-hand table in Figure 3.6.
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The functions to give particles cell numbers and then sort them must be performed

every timestep, as particles move throughout the domain and their neighbours change.

3.3.9.5 Flag particles in neighbouring cells

Before all functions involving multiplication by the kernel, which therefore only have

contributions from particles within the kernel support, particles in neighbouring cells

are flagged. The numbers of neighbouring cells can be determined, depending on the

sorting algorithm used. Particles in these cells are flagged to be considered in kernel

sums, whilst all other particles can be skipped as they will not contribute.

3.4 DualSPHysics Code Structure and Modifica-

tions

DualSPHysics [55] is an open-source SPH code, which provides a robust and well-

validated solver for research and industrial applications. Originally developed to sim-

ulate free-surface flows for coastal engineering applications, it has since been extended

to model a number of other physical processes. These include fluid-structure interac-

tions and multi-phase flows, all of which can be run in two or three dimensions. The

code undergoes continual development and has regular releases with new features and

updates.

DualSPHysics is written to run on either a multi-core central processing unit (CPU)

or graphics processing unit (GPU), and is optimised for both [55]. The initialisation

and output are written only in C++, whereas the SPH formulation within the loop

is implemented in both C++ and Compute Unified Device Architecture (CUDA) to

run on either CPU or GPU respectively, as chosen. The CPU components of the code

use Open Multi-Processing (OpenMP) to reduce computation time by parallelising

on multi-core and multiple CPUs. Since the C++ code is more accessible, it allows

quicker testing of additions and modifications to the code, before moving to CUDA to

take advantage of the reduction in runtime provided by the GPU.

A WCSPH formulation, as presented in this chapter, is employed by DualSPHys-

ics. Mass is conserved using Equation (3.31), and momentum via Equation (3.36).
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Viscous term options include an artificial viscosity or the Shao and Lo [205] oper-

ator in Equation (3.69), but in both cases a constant global viscosity is used. Cur-

rently, DualSPHysics is isothermal with no governing equation for temperature. SPH

particles positions are updated depending on their velocity and the system of equa-

tions is closed with the equation of state in Equation (3.15) for pressure. The Verlet

and predictor-corrector timestepping methods presented in Section 3.3.5 are available,

with the predictor-corrector method used for this work, and the Wendland kernel in

Equation (3.42) is chosen from the kernel options.

Recent developments include the density diffusion term in Equation (3.78) [70]

and the mDBC [59] described in Section 3.3.4.2, both of which will be used in this

work. Two multi-phase options are included, namely an air-water model [145] and a

Newtonian-non Newtonian model [68]. The code structure of the latter is modified for

the types of phases concerned in this work.

DualSPHysics uses object-oriented programming, where data is stored as a struc-

ture of arrays (SoA), to structure the code and ensure efficient performance. An array

is defined for each variable (Pos – three-dimensional position, Velrhop – velocity and

density), with an entry for every particle. Pressure is not stored, but computed at each

timestep from density through the equation of state, Equation (3.15). Additionally,

the array idp stores particle numbers, which is key to the neighbour list procedure

described later in this section. Additionally, some flags exist to determine whether

or not certain functions are run. For example, when using mDBC UseNormals is set

to true so that normals are computed for all boundary particles, to be used when

extrapolating variables into the boundary.

The configuration is read in by GenCase, which produces output files that drive

DualSPHysics, from an xml file where parameters, geometry and case options are

specified. The geometry of fluids and boundaries is created by drawing mk blocks of

different shapes. Each mk block is numbered to give it, and any particles that lie within

it, an identifier. All is read into the main code, before particles are placed within the

geometry and given the corresponding initial values.

The neighbour list is formed using a linked list method, which Dominguez et al.

[54] found to be most efficient for SPH. The domain is divided into cells of size 2h,

whose number and location are stored. Before each timestep, a loop over all particles
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is performed to determine in which cell each particle is located. Then pointers are

updated, such that each cell points to the first particle inside that cell and each particle

points to the next particle in the cell, until the final particle in the cell is left with a

null pointer. In this way, a chain of pointers is set up for each cell. When reaching

the end of the chain, the algorithm can move onto the next cell. Then particles and

all corresponding variables are sorted according to the linked list, so that data for

neighbouring particles is stored close in the memory. The neighbour list procedure

does take time to set up, but this is significantly outweighed by the resulting savings

in computation time for interactions [55].

Particle interactions are then computed though solving the governing equations

in Section 3.3.2. With the neighbour list previously set up, only contributions from

particles in neighbouring cells are computed. This saves computation time and makes

no difference to the results, providing the chosen kernel is compact with radius 2h.

Next, the timestep size is computed with Equation (3.67) and particle values are

updated at the next timestep, using the timestepping procedure in Section 3.3.5 and

the results of the interactions. The code then loops back to update the neighbour list.

Data is output to vtk files at specified time intervals until the maximum time is

reached. Post-processing is performed using MeasureTool. The locations and variables

required are specified, with values calculated through a SPH interpolation of the output

data.

3.4.1 Addition of Viscosity and Temperature Variables

Currently, DualSPHysics admits a single viscosity for a simulation. Arrays Visc for

viscosity and Temp for temperature are added so that each SPH particle may have its

own viscosity and temperature. Options for computing these values are described in

Sections 3.5.1 and 3.5.2 respectively. Although viscosity is not computed through a

governing equation, both are included as global arrays, so they can be accessed and

updated at any point during the simulation, as well as output to files.
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3.4.2 Multiple Phases

A ViscPhases option flag has been introduced to set multiple phases with different

viscosity and temperature properties, based on the code changes made by Fourtakas

and Rogers [68] for the non-Newtonian multi-phase branch. If the option is not chosen,

then the case will run with constant viscosity and temperature, as in the isothermal

case with viscosity operator Equation (3.69).

When setting up a case, phase parameters and options are assigned within the

special section of the xml case file, examples of which are in Appendix A. Any mk

block created when setting up the geometry may be designated as a phase, and each

phase is given a phaseid number to uniquely identify it. The parameters in Table 3.1

can be set, or left to the default value, and are stored in an array ordered by phaseid.

For viscosity models and corresponding parameters see Section 3.5.1, and options for

temperature are outlined in Section 3.5.2.

To allow boundary conditions to be set, any boundary mk block can have any

of the same properties allocated. A count of fluid phases is kept so that boundary

phases can be given a unique phaseid without any repetition. Initial viscosity and

temperature are given to each SPH particle according to which phase they lie in during

the initialisation of the case, as outlined in Section 3.4. For the lid-driven cavity case in

Section 4.3, the moving lid boundary can be modelled either with moving particles and

a periodic boundary condition, or by keeping boundary particles in the lid stationary

whilst giving them a velocity.

If the ViscPhases option is selected then the code forks to use particle interaction

functions including the modified viscous term in Equation (3.70) and temperature

evolution Equation (3.40). For each SPH particle, the phase number is found through

its mk and corresponding phase properties are looked up from the phase arrays and

used in the interaction equations.

3.5 Closure Submodels

A number of closure submodels are introduced to compute values for the newly in-

troduced viscosity and temperature variables. To include variable viscosity in the
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parameter definition units default
phaseid phase number - -

mk mkfluid (if fluid) - -
mkbound + no. fluid phases (if bound) - -

rho0 initial density kg m−3 ρ0

visc0 initial kinematic viscosity m2 s−1 ν0

viscop1 choice of viscosity model - constant
viscop2 choice of viscosity model - constant
cst1 viscosity model parameter - 0
cst2 viscosity model parameter - 0
cst3 viscosity model parameter - 0
cst4 viscosity model parameter - 0
temp0 initial temperature θ0 K 0
Tref reference temperature K θ0

tempop choice of temperature model - constant
cp specific heat capacity Cp J K−1 0
k thermal conductivity k W m−1 K−1 0

beta thermal expansion coefficient β K−1 0
Tu upper wall temperature K 0
Tl lower wall temperature K 0

Table 3.1: Phase parameter options with ViscPhases option.

model, there are a number of equations to choose from. Viscosity depends only on

temperature, so is computed after the timestepping process is applied to the governing

equations. Alternatively, a constant viscosity can be specified for each phase. Temper-

ature can be determined by the newly added Equation (3.40), or through an empirical

equation.

3.5.1 Viscosity Models

Previous work for National Nuclear Laboratory (NNL) by Miller [144] developed an

algorithm for the melt viscosities of glasses involved in vitrification of nuclear waste.

Experimental input data is passed through a Levenberg-Marquardt curve-fitting al-

gorithm to compute parameters for the selected viscosity equation. There are 10

equations for viscosity as a function of time to choose from (with capital letters the

parameters to be computed):

• Cornelissen

lnµ = A+
B

θx
; (3.81)
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• Arrhenius

lnµ = A+
B

Rθ
, (3.82)

with gas constant R := 8.31446JK−1mol−1;

• Jenckel3

lnµ = A+
B

θ
+
C

θ
e
B
θ ; (3.83)

• Jenckel4

lnµ = A+
B

θ
+
C

θ
e
D
θ ; (3.84)

• OjovanLee4

lnµ = A ln(θ) +
dHm

Rθ
+ ln

(
1 + e

−
(
dSb
R

)
e

(
dHh
Rθ

))
, (3.85)

with dx verified from experiments;

• Vogel Fulcher Tamman

lnµ = µ0 +
Bθ

θ − θ
; (3.86)

• Avramov Milchev

lnµ = A+ ln(µθg − A)

(
θg
θ

)C
, (3.87)

with θg glass transition temperature, µθg = 1012Pa s;

• Myega2

lnµ = u+
K

θ
+ e

C
θ (3.88)

(u independent of composition);

• Myega3

lnµ = µ∞ +
K

θ
+ e

C
θ ; (3.89)

• Smedskjaer

lnµ = u+
B

θ
(ln(µθg)− u)e

B
θ

(
C

ln(µθg
)−u−1

)
. (3.90)

According to Miller [144], the preferred models are Jenckel4, Avramov Milchev and

Myega3. These models have a maximum of four constant parameters which may be

specified for each phase in the xml case file, along with the choice of model as seen in

Table 3.2, all of which have been added to the DualSPHysics code. Note that dynamic
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viscosity in these equations must be converted to kinematic viscosity to be used in the

governing equations in Section 3.3.2.

Viscosity is computed from temperature during the particle update, after all vari-

ables have been progressed by the timestepping iteration, as with pressure through

the equation of state (Equation (3.15)). Simple viscosity models for the cases in Sec-

tion 4.2.3 are also included, in the forms used by Wall and Wilson [243]:

• exponential

ν =
1

ρ
e−K1θ; (3.91)

• linear

ν =
1

ρ
(1−K2θ). (3.92)

viscop1 viscop2 model cst1 cst2 cst3 cst4
0 - constant [default] - - - -
- 0 constant [default] - - - -
1 1 exponential K1 - - -
1 2 linear K2 - - -
2 1 Cornelisson A B x -
2 2 Arrhenius A B - -
2 3 Jenckel3 A B C -
2 4 Jenckel4 A B C D
2 5 OjovanLee4 A dHm dSb dHh
2 6 VogelFulcherTamman η0 B θ -
2 7 AvramovMilchev A µθg θg C
2 8 Myega2 u K C -
2 9 Myega3 µ∞ K C -
2 10 Smedskjaer u B ηθg C

Table 3.2: Viscosity model options and parameters available in phase setup.

Miller’s [144] algorithm is also capable of extrapolating the results into a greater

range of temperatures than the experimental data, although this is usually unnecessary

for vitrification test rig data. Additionally, parameters are fit for chemical composition

and parameters for glasses can be decomposed into into sums of component amount and

activity coefficient Ai according to Schott’s activity principle, so that for a parameter

A

A =
n∑
i=1

Aiyi, (3.93)

where yi is the weight or mole fraction of component i.
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The density of each phase also depends on composition. This can be calculated

if the fraction of all components is known as a sum weighted by component frac-

tion. Densities will not be so different as to cause the issues seen in air-water models

(Section 2.5.2).

3.5.2 Temperature Options

Options for temperature can be assigned to any phase and are: constant, temperature

evolution through Equation (3.40), linear temperature field, or adiabatic. If no option

is specified, the phase is given constant temperature θ0. When using the temperature

governing equation, particle interactions are computed at the same time as the other

governing equations, and particle temperatures updated similarly.

The linear field is used along with Tu and Tl from Table 3.1 (temperatures at

upper and lower boundaries respectively) in Section 4.2.3 to form a linear temperature

gradient across the channel. If a linear field is chosen, temperature is computed during

the particle update section from the updated particle positions.

The adiabatic option is included to apply to boundary phases, in order to satisfy

an adiabatic boundary condition. If any of the phases is chosen to be adiabatic then

the flag UseNormals is set to true, so that boundary normals are computed and stored

as for mDBC. Since normal calculation takes place only once at the beginning of the

simulation, additional computation time is negligible. However, further modifications

could make it possible to calculate normals only for the adiabatic boundary. Boundary

particle temperatures are then calculated as described in Section 3.3.4.4.

3.6 Mixing Measures

In order to compare the degree of mixing between cases and methods both qualitatively

and quantitatively, a number of mixing measures are introduced. They can give a

numerical assessment of mixing in the whole domain or a value at a particular location,

which can be used to give an overall value for the degree of mixing. Each of the

measures has different characteristics, as discussed below, which may be advantageous

for different cases.

Post-processing code is written in C++ to apply to the SPH output data from
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DualSPHysics. This includes the kernel functions in Section 3.3.3, which are used in

the calculation of volume fraction (VF). A neighbour list, using the link-list approach

[54], is also employed to increase computational efficiency, as well as parallelisation

using OpenMP. In a previous self-written SPH code this neighbour list was found to

reduce computation time by around 10 times. Results are outputted for each local

mixing measure below, as well as the global mixing measures at each input time, to

be plotted to show the degree of mixing.

3.6.1 Volume Fraction

For comparison with volume-of-fluid (VOF) methods, it is natural to use a volume

fraction (VF). This can be taken directly from the STAR-CCM+ simulation, but must

be computed for the SPH model from output data. In the two-phase cases considered

here, the fraction of one fluid gives the full picture since the fraction of the other fluid

in any volume is one minus this.

An SPH interpolation (Equation (3.22)) is used to calculate the VF for SPH sim-

ulation data in post-processing. The volume fraction of phase A at point i is defined

to be:

FA
i =

∑
j∈J̃

V 2
j Wij∑

j∈J
V 2
j Wij

, (3.94)

where the superscript A denotes phase A, J is the set of all particles j in a neighbour-

hood (kernel radius) of point i and J̃ ⊂ J is the subset of these particles which are

also of phase A. For comparison with STAR-CCM+ data, the points i are chosen to

be at the centre of each mesh cell, where there is not necessarily an SPH particle at

any given time.

A global comparison to quantify the difference in VF of the two modelling methods

is given by the L2 norm of volume fraction, calculated over all cells in the STAR-CCM+

mesh by

L2(FA) =

√√√√∑i(F
A

i − FA
i )2∑

i(F
A

i )2
, (3.95)

where F
A

i is the volume fraction of phase A in STAR-CCM+ and FA
i the volume

fraction of phase A in DualSPHysics, calculated with Equation (3.94).
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An understanding of global mixing cannot be gained from averaging volume frac-

tions throughout the domain. Instead, the difference in local volume fraction of a

phase A (FA
i ) to the global volume fraction of phase A (FA) is calculated using

FA
global =

1

N

N∑
i=1

|FA − FA
i |, (3.96)

summed over N measurement points. This number gives a value of how close, on

average, the local concentration of a phase is to its global concentration.

3.6.2 Finite Time Lyapuov Exponent

For numerical simulations, it is impractical to use the Lyapunov exponent described in

Section 2.6 in which time tends to infinity. The finite-time Lyapunov exponent (FTLE)

at a time T is calculated using eigenvalues of the right Cauchy-Green deformation

tensor at that instant. However, for a meshless Lagrangian method (such as SPH),

this can be approximated as a ratio of distances between particle pairs over time [30].

Grid-based methods must use tracer particles to calculate FTLE in this way. Dauch

et al. [48] developed a more computationally efficient method of calculating FTLEs

on a GPU, consequently determining the FTLE field of three-dimensional SPH data

without a prohibitively high computational cost.

This is implemented in the post-processing of SPH data. The maximum distance

at the initial location of particle i is defined to be the maximum ratio of distances

between particle i and particles j which begin within its neighbourhood at t = 0.

Following the approach of Tóth and Szabó [230],

dmax(ri(t = 0), T ) = max
j

{
rij(t = T )

rij(t = 0)

}
. (3.97)

Thus, the computationally expensive construction of the deformation tensor is avoided.

The FTLE Λ at time T is then calculated by

Λi(T ) =
ln(dmax(ri(t = 0), T ))

T
. (3.98)

Each FTLE value is a measure of the exponential divergence of two closely spaced

points. The ridges of maxima can be used to locate stable manifolds, in the sense

of dynamical systems, across which pairs of particles move apart more rapidly than

elsewhere. Similarly, unstable manifolds can be found by computing the FTLE for



114 CHAPTER 3. NUMERICAL METHODOLOGY

negative time. In this way, the magnitude of FTLE gives a rate of separation of

trajectories [213], and so can show the flow structure at a point in time [201]. Where

FTLE are constant with time, such as a periodic flow, these manifolds separate regions

between which little mixing occurs. Particularly useful for this work, high relative

movement between SPH particles identifies where mixing is promoted.

3.6.3 Robinson’s Local Mixing Measure

While the FTLE field gives a measure of the divergence of particles at a point, Robinson

[188] defines a local measure to quantify the mixing between different phases at position

ri:

M i =
sli · sg −Mmin

1−Mmin

. (3.99)

N is the number of phases, nAi is the number of particles of phase A locally and nA

globally, with

sli =
1√

N∑
j=1

(
nji
nj

)2

(
nAi
nA
,
nBi
nB

, ...,
nNi
nN

)
, (3.100)

sg =
1√
N

(1, 1, ..., 1), (3.101)

Mmin =
1√
N
. (3.102)

Robinson [188] designed this measure to compare the local ratio of phases to that of

the whole domain, and it is able to admit any countable number of phases.

For the purposes of this work, the number of particles in a neighbourhood nAi is

replaced by local volume fraction FA
i (nA for FA respectively), so that the measure at

a point i is

M i =
sli · sg −Mmin

1−Mmin

(3.103)

=

√
N + 1

N − 1

 1√
N∑
j=1

(
F ji
F j

)2

N∑
k=1

F k
i

F k
− 1

 , (3.104)

where FA
i is the local volume fraction of phase A at point ri and FA is the global

volume fraction of phase A.
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For cases with two phases, assume N = 2. Then Equations (3.100) to (3.102) can

be rewritten as

sli =
1√(

FAi
FA

)2

+
(
FBi
FB

)2

(
FA
i

FA
,
FB
i

FB

)
, (3.105)

sg =

(
1√
2
,

1√
2

)
, (3.106)

Mmin =
1√
2
. (3.107)

Then the Robinson measure in this case is

M i =

1√
2

 FAi
FA

+
FBi
FB√(

FA
i
FA

)2

+

(
FB
i
FB

)2
− 1


1− 1√

2

= (
√

2 + 1)

 FAi
FA

+
FBi
FB√(

FAi
FA

)2

+
(
FBi
FB

)2
− 1

 . (3.108)

The further assumption of FA
i + FB

i = FA + FB = 1 (but in general FA 6= FB)

allows Equation (3.108) to be rewritten in terms of only phase A, such that

M i = (
√

2 + 1)

 FAi
FA

+
1−FAi
1−FA√(

FAi
FA

)2

+
(

1−FAi
1−FA

)2
− 1

 . (3.109)

This approach is able to quantify mixing at a local level for any number of phases.

Through the modification above to use volume fraction, it can be computed for both

SPH and VOF methods for comparisons of results. It clearly shows regions where

phases are mixed, and those where separated phases remain. However, no information

about the mixing flow or particle movement can be inferred from the value.

3.6.4 Mixing entropy

Uniformity of phase distribution over the whole system can also be quantified by the

global entropy measure of Kang et al. [110]. This sums information entropy over all

cells, such that

S = −
N∑
i=1

ni log(ni), (3.110)



116 CHAPTER 3. NUMERICAL METHODOLOGY

where ni is particle number density. For comparisons between methods in this work,

ni is substituted for the volume fraction F i of the chosen phase at the cell centre points

defined in Section 3.6.1. The entropy sum is then normalised to be

S∗ :=
S − S

Smax − S
, (3.111)

where Smax = log(N) is the maximum possible entropy and S is the entropy at the

inlet (entropy at t = 0 here). This definition can be used to find a global mixing

entropy value, S∗, for each phase.

The mixing entropy is calculated for the lid-driven cavity and vitrification cases. It

shows whether the rate of mixing is increasing or where it tends to constant. However,

it is computed for each phase separately, so does not give a complete picture of multi-

phase mixing.

3.6.5 New Measure of the Degree of Mixing Between Phases

A new measure is introduced as a combination of VF and FTLE with the aim of

producing a measure which demonstrates both the degree of mixing at a point and

how well-mixed the two phases are at that location. The measure was recently included

in a publication [186], where it is demonstrated for two-phase flow in lid-driven cavity

and Poiseuille flow cases. It is defined in Equation (3.114) for two phases, as used in

this work, and will need modification for measuring a greater number of phases.

Firstly, both components are normalised at each point i, such that the value is 1

if most mixed and 0 if least. This is done according to

Λi =
Λi

max
j

Λj

, (3.112)

F
A

i =


FAi
FA

if FA
i ≤ FA

1−FAi
1−FA if FA

i > FA

, (3.113)

where the maximum FTLE is taken over all points in the domain at the time T . Then

the new mixing measure is defined to be:

M = Λ · F ∈ [0, 1]. (3.114)

M = 1 if the local volume fraction is equal to the global volume fraction and the

finite-time Lyapunov exponent is the maximum for T . The mixing measure M = 0 if
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there is only one phase locally or if the distance to neighbouring particles is unchanged.

M is calculated at each point where an SPH particle is located at t = 0, so that the

FTLE makes sense.

By combining the VF and FTLE, this new measure is able to give information

about the presence of local phases as well as relative movement of fluid volumes, thus

giving a more informative picture of the mixing process. A global value of mixing

is obtained by taking an average of M over all N fluid particles in the domain, for

example

MG =
1

N

N∑
j=1

M j (3.115)

which also ranges from 0 to 1.

3.6.6 Mixing measures for periodic flows

For cases with periodic boundaries, such as in Section 4.2.2, computing mixing meas-

ures is more complex. For example, to the calculate volume fraction at a point near a

periodic boundary SPH particles near the corresponding boundary must be included

in the Equation (3.94) sum since they may also be neighbours. In addition, for the

FTLE, the distance calculation in Equation (3.97) must take into account how many

times both SPH particles in question have passed through the periodic boundary.

3.6.7 Mixing measures in three-dimensions

For the three-dimensional cases in Chapter 5, the mixing measures are computed on

a y = 0 plane through the domain. The Freedraw option of the DualSPHysics pre-

processing tool GenCase used means that particles do not necessarily lie on a Cartesian

grid at initialisation, therefore particles initially lying within half a particle spacing of

the plane (ry ∈ (−0.5dx, 0.5dx)) are selected. This ensures the plane is fully populated

whilst remaining only one particle thick.

Since the FTLE are defined at the point a particles begins its trajectory, these

particle locations at t = 0 are chosen to be the locations for all local mixing measures.

For VF, only particles within a kernel radius (2h) of the y = 0 plane are retained, as no

others can contribute to the SPH summation. Since this corresponds to the size of the

neighbour list cells, a two-dimensional link-list is still employed. For computing FTLE
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at any time, the particles chosen at t = 0 must be kept to compare their updated

distances. These are sorted into the same order as the original neighbour list before

calculations are performed.

3.7 Concluding Remarks

The governing equations for this model have been presented at the start of this chapter,

with assumptions of the physics to be included and neglected. Next, the SPH numerical

methodology is introduced, before being applied to generate the governing equations

in SPH form. Other key aspects of the SPH formulation are described, including the

interpolation kernel and timestepping methods used. Different boundary conditions

are reviewed in terms of each of their advantages to this work. The dynamic bound-

ary condition (DBC) is quicker and less computationally expensive, but the modified

dynamic boundary condition (mDBC) produces more accurate densities in the bound-

ary. Boundary conditions for viscosity and temperature are also considered, and a

new method for enforcing an adiabatic boundary defined. Viscosity operators are dis-

cussed, taking into account particles with different viscosities and viscosities which

may vary. Methods used to reduce numerical error through density treatments and

particle shifting were presented, and the approaches used in this work identified.

Next, the computational method was presented, first by giving an overview of

the current functionalities of DualSPHysics, before introducing the changes for this

model. Variables for temperature and viscosity of each particle are added, along with

the governing equation for temperature and the modified viscous operator previously

discussed. The method for including multiple phases was explained, plus the addition

of boundary phases to allow boundary conditions to also be prescribed for temperature

and viscosity. The options for computing temperature in a phase have been outlined,

and the viscosity models introduced. These correspond to the models used in the

algorithm produced for vitrification glasses [144], so that realistic parameters can be

computed using the Melt Viscosity Alogirthm (MVA) and used in this model.

Finally, a number of mixing measures have been introduced and discussed in the

context of the model and application. A novel local measure has been proposed, which

combines the volume fraction (VF) and finite-time Lyapunov exponent (FTLE), giving
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further insight into the mixing taking place. This new measure is extended to a global

measure, which may be plotted against time to find the rate of change of mixing. It

can also be used to determine whether a steady state has been reached, and therefore

whether the mixture will ever become homogeneous.

The method introduced in this chapter is validated with a number of cases to test

each of the different features in Chapter 4, before being applied to the motivational

model of vitrification in Chapter 5.



Chapter 4

Validation and Results

4.1 Introduction

This chapter presents different cases which are chosen to validate each aspect of the

model. In each section the case is described, before results are compared with data from

literature and key findings are described. The aim of each test case is to ensure that

each element of the Smoothed Particle Hydrodynamics (SPH) model can reproduce

the expected behaviour of the application presented in Chapter 5. The first test cases

present the validation of two phases of constant viscosity and temperature-dependent

viscosity. This is followed by single and two-phase flow within a cavity, and validation

of the mixing measures introduced in Section 3.6. Finally, the chapter presents the

validation of the temperature evolution equation, buoyancy-driven flow through the

Boussinesq approximation, and three-dimensional simulations.

4.2 Poiseuille Flow in Two Dimensions

The purpose of this test is to investigate and validate the convergence of the SPH

simulation compared with an analytical solution for flow. This is shown to be the

case for both one and two phases of constant viscosity, along with viscosity dependent

on a linear temperature gradient across the channel. Furthermore, SPH is able to

accurately model the onset of interfacial instabilities, as well as provide insight into

the growth rate and development of these instabilities where other methods cannot.

The numerical domain is described as follows. Fluid fills the space between two

120
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fixed walls. Each end is open and subject to periodic boundary conditions. Flow is

driven by a constant body force representing a pressure gradient acting on the fluid.

Figure 4.1: Diagram of Poiseuille flow with arrow showing direction of motion.

All cases in this section are run with dynamic boundary condition (DBC) since no

significant difference was found with modified dynamic boundary condition (mDBC),

and the key physics in Section 4.2.2 take place away from the boundaries in the channel.

4.2.1 Single-Phase Poiseuille Flow

When there is a single fluid phase in the channel, at steady state the governing equation

of motion is
∂2v

∂r2
z

=
1

µ

(
dp

drx
− ρfx

)
, (4.1)

where rx is position along the channel and rz position across it. Let d be the half-

channel width and note that µ = ρν, then integrate to find velocity along the channel,

vx. When flow is driven by a body force, fx, along the channel

vx =
−fx
2ν

(r2
z − d2), (4.2)

and when driven by pressure gradient

vx =
1

2ρν

dp

drx
(r2
z − d2). (4.3)
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parameter value
ρ 1000 kg m−3

ν 1× 10−6 m2 s−1

fx 0.0001 kg m s−2

d 0.0005 m

Table 4.1: Parameters for single phase Poiseuille flow.

For comparison, the parameters in Table 4.1 are chosen to match DualSPHysics

example case 15 [56]. This results in a Reynolds number of approximately 30. SPH

results overpredict channel velocity slightly when compared to the analytical solution.

However, the modifications described in Section 3.4.2 and addition of timestep con-

straint for viscosity in Equation (3.63) reduce the error, defined for a general variable

φ by

L2(φ) =

√∑
(φanalytical − φSPH)2∑

φ2
analytical

. (4.4)

The modifications described in Chapter 3 have been made, except those relating to

temperature. As can be seen in Table 4.2, the error quantified by the L2 norm is

comparable for the modified code developed for this work to the rigorously validated

release version of DualSPHysics. In fact, it is slightly closer to the analytical solution,

and the error is further reduced when using mDBC.

configuration L2(vx)
DualSPHysics v5.0 release with DBC 0.0250
modified DualSPHysics v5.0 with DBC 0.0200
modified DualSPHysics v5.0 with mDBC 0.0185

Table 4.2: L2 error norm of velocity along channel, compared with analytical solution
for different code configurations.

4.2.2 Two-Phase Poiseuille Flow with Constant Viscosity

The classic Poiseuille flow case of flow along a channel with fixed walls is altered so

that the fluid is composed of two phases. This case validates this SPH model for

simulating flows of two phases with different viscosities but similar densities. Later,

in Section 4.2.2.2, it is shown that the model is also able to capture a complex and

changing interface.

The channel is initially split into two phases of widths d1 and d2, as in Figure 4.2.
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Figure 4.2: Two-phase Poiseuille flow set-up, showing kinematic viscosities ν1 and ν2

and width of each fluid phase. Motion is from left to right.

The fluid phases each have constant viscosities ν1 and ν2 respectively, and equal con-

stant density ρ. Motion is driven by a constant body force or equivalent pressure

gradient along the channel,

f = (fx, fz) = (0.8, 0)m s−2 =
p0 − pL
L

, (4.5)

where p0 = p(x = 0), pL = p(x = L) and L is the length of the channel.

For the two-phase cases, an approximate Reynolds number is calculated as in Equa-

tion (2.6) with the characteristic length the channel width, characteristic velocity the

maximum velocity along the channel and characteristic viscosity the mean viscosity

of the two phases. This allows comparisons of flow behaviour and time-scales to be

made between single and multi-phase cases.

When ν1 = ν2, the cross-sectional velocity profile is symmetric, as expected for the

single phase case, as in Figure 4.3. However, if ν1 6= ν2 then the velocity profile can

look like Figure 4.4 where symmetry no longer holds and the maximum velocity does

not lie at the interface. These figures are produced with d1 = d2 = 1 m, ν1 = 0.1

m2 s−1, ν2 = 0.025 m2 s−1 and ρ = 1000 kg m3. Therefore, the Reynolds number is 64.

An analytical solution exists for the velocity along the channel in each fluid phase
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Figure 4.3: Sketch of velocity profile along
channel when viscosities of each phase are
equal.

Figure 4.4: Sketch of velocity profile along
channel when phases have different viscos-
ities.

when d1 = d2 = d and is given by Bird et al. [25] for a channel of length L:

(vx)1 =
fxd

2

2ρν1

[(
2ν1

ν1 + ν2

)
+

(
ν2 − ν1

ν1 + ν2

)(rz
d

)
−
(rz
d

)2
]

;

(vx)2 =
fxd

2

2ρν2

[(
2ν2

ν1 + ν2

)
+

(
ν2 − ν1

ν1 + ν2

)(rz
d

)
−
(rz
d

)2
]
.

(4.6)

To determine when steady state has been reached, a measure of total kinetic energy

is calculated over the whole fluid domain as the sum of kinetic energy of each particle.

Since SPH particle mass remains constant, each particle in the two-dimensional sim-

ulation has the same mass m = ρ(dx)2, where ρ is the initial density and dx is the

particle spacing. Therefore, total kinetic energy is computed from particle velocity

along the channel by

Ek =
∑
j

mj

2
v2
x,j =

ρ(dx)2

2

∑
j

v2
x,j. (4.7)

The change in kinetic energy is tracked, with steady state reached once(
dEk
dt

max{Ek}
)
< ε. (4.8)

where ε is a small constant threshold.

The velocity profile produced by the SPH model, once it has reached a steady state,

after approximately 20 s, for the initial case described above is shown in Figure 4.5.

This simulation gives close results to the analytical solution, capturing the qualitative

behaviour of the velocity well – the shapes of the velocity profile in each phase and

the discontinuity at the interface. The difference between the analytical value and

maximum velocity or velocity at the interface are both less than 3%. The differences

are explained by the discrete approximation of the numerical scheme and error from the

interpolation kernel, as well as the assumption by Bird et al. [25] of incompressibility.
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Figure 4.5: Velocity along the channel for a cross section of the flow at steady state
with ν1 = 0.1m2s−1, ν2 = 0.025m2s−1, d1 = d2 = 1m and interface located at position
z = 0m.

For the following cases, d1 6= d2 and, therefore, Equation (4.6) no longer holds. An

analytical solution for three-phase steady Poiseuille flow with differently size phase

widths has been derived by Rowlatt and Lind [195], also for incompressible flow.

Velocity is assumed to be along the channel only (vz = 0) and a constant pressure

gradient along the channel ∂p
∂x

= P = fx. Converting their solution to two phases, the

analytical solution for velocity in each phase is:

(ṽx(rz))1 =
P

2ρν1

r2
z +

C1

ρν1

rz + C1
2 ;

(ṽx(rz))2 =
P

2ρν2

r2
z +

C1

ρν2

rz + C2
2 .

(4.9)

The constants are calculated as

C1 = −
P
(
d22
ν2

+
d21+2d1d2

ν1

)
2
(
d1
ν1

+ d2
ν2

) ;

C1
2 = −d1 + d2

ρν1

(
P (d1 + d2)

2
+ C1

)
;

C2
2 = 0.
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Figure 4.6: Comparisons of velocity profiles with varying particle spacing for ν1 =
0.10, ν2 = 0.200, d1 = 0.3333, d2 = 1.6667. Box shows zoom of peak velocity.

Figure 4.7: Steady state measures with varying particle spacing for ν1 = 0.10, ν2 =
0.200, d1 = 0.3333, d2 = 1.6667, with time of steady state marked.

4.2.2.1 Convergence of Velocity Profile

Multiple resolutions are run for an example case in Figure 4.6, with the maximum

particle spacing the minimum required for a physically correct flow. This case has a

Reynolds number of 33, close to that of the single phase case in Section 4.2.1. The
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Figure 4.8: L2-norm of velocity for with varying particle spacing for ν1 = 0.10, ν2 =
0.200, d1 = 0.3333, d2 = 1.6667.

position of the interface is marked and a change in velocity profile can be seen at

this point. A steady state threshold of ε = 0.1 is chosen with Equation (4.8) and

these points are marked in Figure 4.7. Convergence is quantified using the analytical

solution in Equation (4.9) by an L2 norm over all N SPH particles in the fluid, using

Equation (4.4) divided by N with vx in the place of φ. The resulting norms are plotted

against particle spacing on logarithmic axes in Figure 4.8. A line through these points

gives the rate of convergence to be of first order, O(h). This is the order of convergence

expected to be achieved when using DBC. This figure also confirms the results from

Figure 4.6 that the simulations are converging.

4.2.2.2 Interfacial Instability

After a small time, the case in Figure 4.5 becomes unstable at the interface between

phases, causing the velocity profile to develop fluctuations. Numerous papers in the

literature consider the interface instability which appears in two-phase Poiseuille flow

[13, 35, 92, 93, 177, 235, 257, 258]. Here, the SPH model is used to provide insight

into the formation of the instability in the particular case of two phases of different

viscosity but constant density.

The first person to characterise this instability was Yih in 1967 [258], who derived



128 CHAPTER 4. VALIDATION AND RESULTS

an Orr-Sommerfeld equation which governs stability. This leads to an eigenvalue

problem with respect to the wavespeed c, such that

c


> 0 unstable;

= 0 neutrally stable;

< 0 stable.

Assuming constant density and equal widths of phases, Yih [258] derived an equation

in terms of viscosity ratio (m̃ = ν2
ν1

) which governs when the flow becomes unstable.

Instability occurs when the velocity gradient at the interface is discontinuous and

can be caused by changing only the viscosity in each phase [258]. This is an example

of a Rayleigh instability, caused by an inflection point in the velocity profile [185]. The

pressure gradient across the channel remains linear, but is non-zero at the interface.

If the velocity profile across the whole channel is stable, then the flow remains stable

[36]. Most of the analytical investigations (including Pinarbasi and Liakopoulos [177],

Valluri et al. [235], Hooper [92, 93], Anturkar et al. [13], Charru and Fabre [36]) use

perturbation theory to find a relationship between wavenumber and formation of an

interfacial instability.

Experiments have also been performed to investigate the instability. Charles and

Lilleleht [35] used oil and water in a rectangular channel to identify that interfacial

waves occurred at the turbulent transition in the less viscous (water) phase. These

waves increased when the flow rate of water and ratio of water to oil were both higher.

Kao and Park [112] used a similar set up to find a critical Reynolds number, below

which instability growth at the interface is fully damped.

A relationship between viscosity ratio and phase width ratio for instability devel-

opment from long-wavelength disturbances was found by Yiantsios and Higgins [257]

using perturbation analysis. Gravity is included but is insignificant for the case of

constant density. Conditions were found for interfacial wave growth in terms of the

relationship between phase width ratio ñ = d2
d1

and viscosity ratio m̃ = ν2
ν1

. The

corresponding neutral stability diagram with curves of m̃ = 1, m̃ =
√
ñ can be see

in Figure 4.9. The case in Figure 4.5 (ñ = 1, m̃ = 0.25), which became unstable,

lies clearly in an unstable region, therefore the observed instability agrees with the

theoretical results.
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Figure 4.9: Neutral stability curves for two-phase Poiseuille flow, with stable regions
shaded.

To investigate further the ability of the SPH model to capture stable and unstable

behaviour in each of the four regions in Figure 4.9, four extra test points are chosen.

The parameters used are given in Table 4.3 and the points are marked on the stability

diagram in Figure 4.10, along with point 0 from Figure 4.5.

Figure 4.10: Test points for instability formation.

The resulting development of instabilities (or not) can be seen in Figure 4.11.

These agree with the perturbation analysis in the literature. Points i and iv remain

stable for the full 60 s run. For point ii, the instability is observed as a deformation

of the interface beginning to grow. The instability of point iii is much clearer and

the deforming shape of the interface can be clearly seen as the instability continues to
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test point ñ m̃ ν1 ν2 d1 d2 Re
i 0.4 0.8 0.1 0.08 1.2 0.8 100
ii 0.5 1.5 0.1 0.15 4/3 2/3 56
iii 2.0 0.5 0.1 0.05 2/3 4/3 160
iv 2.0 1.2 0.05 0.06 2/3 4/3 255

Table 4.3: Table of parameters for instability test points.

grow. An investigation revealed that the use of the particle shifting technique does not

prevent the onset of instability and only influences the shape of the growing instability

at later time, when perturbation theory is no longer valid.

Figure 4.11: Two-phase Poiseuille flow for instability test points i-iv, particles coloured
by fluid phase.

Points very close to the stability boundaries in Figure 4.9 appear to remain stable

and may require a very high resolution for instability to appear. The onset of interfacial

instabilities is clearly sensitive to particle resolution. For case iii in Table 4.3 and

Figure 4.11, the interface does not deform at all for dx = dx
d1+d2

> 0.01 and, although

some deformation is seen for dx > 0.005, there is no growth of instability. Therefore,

the results suggest that a threshold dx of 0.005 is required to capture the instability.

As dx is decreased, the interface becomes sharper, as expected from the convergence

study in Section 4.2.2.1.
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Using Equation (4.9), the velocity profiles of the four test points chosen in Table 4.3

are plotted, along with the corresponding simulation results, in Figure 4.12. All four

points show close agreement with the analytical velocity, with points iii and iv being

slightly higher and points i and ii slightly lower.

Figure 4.12: Comparisons of velocity profiles for the 4 test points with analytical
solution.

4.2.2.3 Instability Growth Rate

There are no results in the literature which show the shape of the interface as the

instability grows, since most studies focus on the initiation and initial growth of the

instability using analytical techniques. However, comparisons can be made of the

growth rate of the instability for small times after instability onset when the linear

theory is valid.

The growth rate of the instability is estimated by following the position across the

channel of particles which are initially located at the interface. A case investigated by

Valluri et al. [235] with m̃ = 30, ñ = 3
7

and Re = 6.45, which has theoretical growth

rate 0.34 is reproduced using the SPH model described in Chapter 3 and is shown in

Figure 4.13. The average fluid velocity of 5 m s−1 is obtained with a constant body

force of fx = 16.07 m s−2. A maximum vertical position rz is taken over M points,
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Figure 4.13: Deforming interface for growth rate case at 0.5 s with particles coloured
by phase.

equally spaced along the line of the initial interface, at all output times and plotted

in Figure 4.14. The onset of instability is defined to be at the first time the maximum

vertical position of the chosen particles max rz exceeds dx above the interface. To focus

on linear growth only, a period of 0.2 s after instability onset is plotted in Figure 4.15

and an exponential line fitted.

Figure 4.14: Maximum vertical displacement of interface points with time to measure
growth rate of instability.
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The instability growth rate results for different numbers of M points are given in

Table 4.4. The points are regularly spaced throughout the domain in order to capture

all amplitudes. It is found that 2 points are required per wavelength (≈ 1 m here) in

order to accurately capture the growth rate. This gives a growth rate of 0.35 for 2 or

4 particles, demonstrating the ability of this SPH method to model the early stages

of instability growth. The growth rate for M = 8 is still within 10% of the theoretical

value. To the author’s knowledge, this is the first time these results have been achieved

with SPH. Unlike perturbation theory, the shape of the deforming interface can also

be seen. Both are clear advantages over the STAR-CCM+ simulations presented next

for comparison.

Number of points along initial interface M growth rate
1 0.2834
2 0.3512
4 0.3514
8 0.3715

Theoretical [235] 0.3400

Table 4.4: Growth rate of interfacial instability for different numbers of sample points.

Figure 4.15: Growth rate of Poiseuille flow instability.

4.2.2.4 Comparison with Mesh-Based Method

Without a reference solution for the growth and development of the instability, the

commercial code STAR-CCM+ [208] is used to compare the flow behaviour. Results
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Figure 4.16: Velocity profiles for different methods, point i.

are in agreement for velocity along the channel, as shown in Figure 4.16. For compar-

ison, the grid size is set to be equal to particle spacing, dx. However, it is unable to

produce the deforming shape of the interface in Figure 4.17 as SPH does for the same

case in Figure 4.11 case iii, and therefore no comparisons of the interface shape can

be made. For any instability that does develop at the interface using STAR-CCM+,

growth is in the form of mixing of the two phases and as the instability grows it be-

comes more difficult to capture the position of the interface. This is due to the diffusive

nature of the volume-of-fluid (VOF) method used for multi-phase models. Hence, it is

also not possible to capture the growth rate and evolution of the interfacial instability

accurately.

Figure 4.17: Deforming interface for point iii with STAR-CCM+.

Since VOF is a mesh-based method, the exact position and shape of the interface
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must be approximated using reconstruction techniques which can be computationally

expensive [223] and the accuracy depends on the resolution of the mesh. This is

particularly difficult for a complex dynamic interface [254] and may require the VOF

method to be coupled with another method [224]. Since exact information for the

interface is lost and the new volume fluxes for time integration depend on the inferred

interface, this error grows with time [224].

4.2.3 Temperature-Dependent Poiseuille Flow

Figure 4.18: Temperature-dependent Poiseuille flow, showing temperature gradient
across channel and direction of flow.

A number of studies have considered the stability of Poiseuille flow with temperature-

dependent viscosity and heat transfer [180, 198]. Further cases are run for a single

phase Poiseuille flow case with phase viscosity dependent on temperature to attempt

to replicate the analytical velocity profile. This case validates the addition of tem-

perature as a variable, as well the inclusion of a variable viscosity which depends on

temperature. The temperature difference between upper and lower boundaries influ-

ences the stability of the flow [180], and flow is stabilised when viscosity is increased

non-uniformly [243]. All cases considered here are stable.

The channel is discretised into 100 fluid particles across with periodic boundar-

ies at each end. The bottom boundary in Figure 4.18 has temperature θl, viscosity
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ν = N and the upper boundary has temperature θu. The boundaries have fixed tem-

peratures with no-slip velocity boundary condition. Following Wall and Wilson [243],

temperature is non-dimensionalised by

θ∗ = 2

(
θ − θl
θu − θl

)
(4.10)

and is linearly dependent on the position across channel through

θ∗(rz) =
(

1 +
rz
d

)
, (4.11)

where d is half the channel width. This is implemented by setting the temperature op-

tion of the fluid phase to be a linear temperature gradient, as described in Section 3.5.2.

A characteristic average velocity for the flow is given by [243]

v =
PL2

2N
(4.12)

with −P (< 0) a constant pressure gradient along the channel. The flow can be char-

acterised by a Reynolds number through [243]

Re =
vL

N
=
PL3

2N2
. (4.13)

Firstly, an exponential relationship for viscosity is used where [243]

ν(θ∗) = Ne−K1θ∗ (4.14)

for some constant K1. Since viscosity is dependent on the non-dimensionalised tem-

perature Equation (4.10), the temperature difference between channel boundaries has

no effect on the viscosity across the channel. According to Wall and Wilson [243], this

has an analytical solution for velocity along the channel of

ṽx(rz) = − 2

K1

v
[
1 + cothK1 + (rzd− cothK1)eK1(1+rzd)

]
. (4.15)

To avoid turbulent effects, Re < 10 is maintained by choosing P = 0.1, d = 0.5, N =

0.1. This results in Re = 0.625, v = 0.12. The effect on the error of increasing the

Reynolds number above 10 can be seen in Table 4.5.

SPH slightly over-predicts velocity in Figure 4.19, but the maximum is at the

same position across the channel as the analytical velocity. Boundaries are modelled

using DBC, which gave good results for the two-phase case in Section 4.2.2. Tem-

perature is extended linearly into boundary particles through the given temperature
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Figure 4.19: Velocity along channel of Poiseuille flow with temperature-dependent
viscosity according to Equation (4.14) and K1 = 0.4.

Viscosity equation constant N Re L2(vx)
Exponential K1 = 0.2 0.1 6.25 0.0279
Exponential K1 = 0.4 0.1 6.25 0.0279
Exponential K1 = 1.0 0.1 6.25 0.0266
Exponential K1 = −0.4 0.1 6.25 0.0277
Exponential K1 = 0.4 0.01 62.5 0.2562
Exponential K1 = 0.4 1.0 0.625 0.0268
Linear K2 = 0.4 0.1 6.25 0.0285
DualSPHysics example (isothermal) - 0.000001 0.05 0.0250

Table 4.5: L2 norm of error in velocity along channel compared to analytical solution.
All results shown with DBC, dx = 0.02 m.

boundary conditions at the line of the boundary by assigning the boundary phases

the same temperature option as the fluid phase, and viscosity computed according to

Equation (4.14). This ensures that boundary particles have viscosity close to that of

neighbouring fluid particles. The choice of boundary viscosity treatment influences

the velocity profile. For example, when all boundary particles are given the maximum

viscosity for the whole domain, the maximum of the velocity profile is shifted across

the channel.

Computing the error using an L2 norm over all fluid particles, as in Equation (4.4),

gives a result comparable to those for an isothermal single phase case. For example,

the L2 norm for the DualSPHysics example Poiseuille flow case is listed in Table 4.5
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along with those for the temperature-dependent cases defined in this section. The

effect of varying constant K1 on the error is negligible. The error of approximately

3% is within the expected range for Lagrangian SPH with DBC, and is approximately

consistent across the channel.

dp particles L2(vx)
0.005 200 0.0234
0.01 100 0.0255
0.02 50 0.0291
0.04 25 0.0366
0.1 10 0.0582

Table 4.6: L2 norm of error in velocity along channel compared to analytical solution
for varying resolution with K1 = 0.4, P = 0.8, d = 0.5m,N = 0.1.

Figure 4.20: Convergence of velocity along channel of Poiseuille flow with increasing
resolution for temperature-dependent viscosity according to Equation (4.14) and K1 =
0.4, with first order line plotted.

A convergence study is undertaken with K1 = 0.4, P = 0.8, d = 0.5m,N = 0.1.

The results are shown in Table 4.6 and plotted in Figure 4.20, where the convergence

rate is less than first order. There is clear convergence of just under first order for

coarser resolution, which is tending towards a limiting error. The velocity profiles are

plotted in Figure 4.21, where a limit can clearly be seen as the velocity approaches

the analytical solution with increasing resolution. In Figure 4.22, the error norm is

plotted across the channel for the same resolutions. For all particle spacings the error
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Figure 4.21: Velocity along channel of Poiseuille flow with increasing resolution for
temperature-dependent viscosity according to Equation (4.14) and K1 = 0.4.

Figure 4.22: L2(vx) error across channel for different resolutions.

is greatest near the boundary, but these errors clearly reduce as the particle spacing

is decreased.

A viscosity linearly dependent on temperature is investigated using

ν(θ∗) = N(1−K2θ
∗), (4.16)
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Figure 4.23: Velocity along channel of Poiseuille flow with temperature-dependent
viscosity according to Equation (4.16) and K2 = 0.2.

for a chosen constant K2 <
1
2
, with analytical velocity [243]

ṽx(rz) = − 2

K2

v

−2 log
[

1−2K2

1−K2(1+rzd)

]
log (1− 2K2)

+ 1− rzd

 . (4.17)

In Figure 4.23, the velocity is again close to the analytical solution for the full width

of the channel, only marginally under-predicting the maximum velocity. The result in

Table 4.5 shows this linear viscosity has a similar error to the exponential viscosity.

4.3 Lid-Driven Cavity

This case is chosen to identify and understand the different effects of the viscosity

operators and density filters, as well as assess the capabilities of boundary methods.

A square cavity of width L = 1 m, surrounded by boundary walls, is filled with a fluid

which is driven by moving the top wall at velocity vx = vlid = 1 m s−1. It is assumed

that there is no gravity acting on the model [240]. A diagram of the case can be seen

in Figure 4.24. The flow behaviour is characterised by the Reynolds number

Re =
vlidL

ν
=
vlidLρ

µ
, (4.18)

where ρ is density, ν is kinematic viscosity and µ dynamic viscosity. Therefore, changes

in viscosity influence the flow within the cavity. The chosen viscosity operator is key to
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Figure 4.24: Diagram of lid-driven cavity case (adapted from [191]).

determining the flow behaviour since, through the conservation of momentum equation

(3.35), the diffusion of momentum depends on the modelling of the viscous term [240].

4.3.1 Steady State

For comparison and validation of flow behaviour, it is important to know when the sys-

tem has reached a steady state. The change in velocity components between timesteps

can be used – this should tend to zero as a steady state is reached. However, this ap-

proach is sensitive to small fluctuations and could be improved by averaging over a

period of time. If data exists in the literature for comparison then the change in error,

for example computed by Equation (4.32), can be used similarly.

Energy measures are also a popular way to determine a steady state. Colagrossi

et al. [41] use an energy-decomposition analysis in their work on viscous free-surface

flows. Total energy is split into a mechanical force component and an internal viscous

component, and a steady state is defined to be reached when the total change in these

quantities is zero.

For this case, the total energy of the system shall be monitored and a steady state

defined to be reached when the change of energy in time drops below some small

constant threshold ε. Since there is no gravity or other external forces acting on the
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fluid, the total energy in the fluid can be calculated using Equation (4.7). Then the

flow is determined to be at steady state by approximating the rate of change of kinetic

energy, such that

Ėk

Êk(t = 0)
≈ En+1

k − En
k

Êk(tn+1 − tn)
< ε, (4.19)

where Êk is the total energy in the fluid when the lid first reaches maximum velocity

vlid. Êk is used for comparison between different simulations in this case since it

varies less than maximum particle Ek once the flow is approaching steady state. The

threshold ε must be chosen carefully for each case so that it is small enough to identify

a reasonably steady state but not too small to be impaired by fluctuations present due

to the discrete nature of the method.

4.3.2 Single Phase

The case when the fluid within the cavity is of a single phase has been comprehensively

studied in the literature using various numerical techniques and used as a test case.

Notably, Ghia et al. [73] provide a large set of data in their paper, which is recommen-

ded by SPHERIC [191] as a benchmark to assess code performance. Both Ghia and

Violeau [73, 240] take vlid to be constant, but in this work the lid is accelerated from

stationary to vlid in the first second of simulation before remaining constant to avoid

initially applying instantaneous high velocity to the flow. Comparisons with this data

for Re = 100 with L = 1 m, once the flow has reached a steady state, can be seen

in Figure 4.25. Boundary walls are thick enough so that the SPH kernel of any fluid

particle is full, including at moving boundary corners.

The SPH model follows the general shape of the velocity profile, but is inaccurate

at the lower boundary. Increasing the resolution is seen in Figure 4.26 to produce

converging results, and make the curve smoother, but the incorrect behaviour near

the bottom boundary remains. Therefore, this underestimation of velocity near the

boundary is likely as a result of the simple dynamic boundary conditions used in the

model. In Section 4.3.2.1, the effect of using the more sophisticated mDBC method is

investigated. STAR-CCM+, however, is able to replicate the velocity in Figure 4.25

near the bottom boundary much more closely.

Streamlines of the same Re = 100 case are plotted in Figure 4.27, by interpolating
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Figure 4.25: Horizontal component of velocity along a vertical line through the centre
of the cavity. Re = 100, dx = 0.02 m.

Figure 4.26: Centre line velocity at steady state (t = 10s) for various particle spacing
dx.

the SPH output data onto a grid and using the MATLAB streamlines function. Despite

the difference in velocity near the boundary in Figure 4.25, the main features of this

flow are captured by the SPH model. The main large clockwise vortex has formed at

the top of the cavity, slightly to the right. The formation of the smaller anticlockwise

vortices is captured at the bottom corners. Therefore, the model is capable of capturing

the general flow behaviour near the boundaries. An increase in particle number, as

well as the advanced boundary condition, could also improve the resolution of these

smaller vortices.



144 CHAPTER 4. VALIDATION AND RESULTS

Figure 4.27: Streamlines of lid-driven cavity flow at steady state for Re = 100. SPH
model on left, Ghia et al. [73] on right.

The case is determined to have reached a steady state according to Equation (4.19),

which has been added to the main DualSPHysics code with the option to be output

at each timestep. Figure 4.28 shows how both Ek and Ėk change with time for a given

case, as well as highlighting the point of steady state. An approximately steady state

(determined by setting ε = 0.1) is reached for this case at 9.66 s, before decaying

gradually over time. This decay is found to decrease as particle spacing is reduced.

When shifting is included the change in energy is smoother, but with no significant

quantitative differences.

When run with lower Reynolds number (Re ≤ 10), particles are excluded due to

particle clumping causing regions of high density or lost through the boundary at

the top right-hand corner. These problems are mitigated when the lid is accelerated,

rather than starting instantaneously at maximum velocity, vlid, but not eliminated. In

the following subsection, the capability of the more sophisticated mDBC method to

resolve this is explored.

4.3.2.1 Improved Boundary Conditions

Results in the previous section show that simulations of flow in a lid-driven cavity

with DBC produce incorrect velocity profiles. Therefore, to identify whether this is

solely due to the default boundary condition in DualSPHysics, the cases using mDBC
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Figure 4.28: Energy (left) and change in energy (right) over time to determine steady
state of lid-driven cavity case. The point at which steady state is reached is marked
with a black circle. Re = 100, dx = 0.02.

with moving and fixed lid are also compared with the results of Ghia et al. [73] at

Re = 100. For the fixed lid case, boundary particles in the lid are given a velocity, but

their position is not updated. This allows the normals required for mDBC calculations

to be pointing through the vertex of each top corner. With a moving lid, all normals

must point straight down since they are not updated throughout the simulation.

A clear improvement is seen in Figure 4.29, with the velocity being closer to the

results of Ghia et al. [73]. In particular, the velocity gradient toward the bottom

boundary is now approximately correct. The approach with fixed lid particles was

found to have greater difference from the benchmark solution at the bottom of the

cavity, so a moving lid is used for this case going forward. The corresponding energy

plots to find steady state can be seen in Figure 4.30. The streamlines in Figure 4.31

demonstrate improved agreement with the literature in Figure 4.27.

When working with an in-development form of mDBC which extrapolated both

density and velocity into the boundary, particles were lost through the upper right

corner of the cavity when full shifting (taking into account boundary particles) was

applied. Therefore, the issue is related to shifting within a kernel radius of the bound-

ary and occurs when particles are forced more closely together here than is typical. A

tensile correction, as introduced by Monaghan [153] and used for particle shifting by

Lind et al. [127] was found to decrease the number of particles lost but not prevent
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Figure 4.29: Horizontal velocity component along line through centre of cavity, com-
paring DBC and mDBC approaches, with resolution dx = 0.01 m, with benchmark
solution of Ghia et al. [73].

Figure 4.30: Energy (left) and change in energy (right) over time to determine steady
state of lid-driven cavity case with mDBC. The point at which steady state is reached
is marked with a black circle. Re = 100, dx = 0.02.

it completely. A fix was performed by reversing the component of velocity normal to

the boundary of any fluid particles found beyond the line of the boundary. The unit

normal for a particle i is computed as

n̂i =
ri − rC
||ri − rC ||

, (4.20)
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Figure 4.31: Streamlines produced by SPH with mDBC for Re = 100.

where rC is the position of the corner. The velocity along the normal is then

vni = (vi · n̂i)n̂i (4.21)

and the updated velocity is

ṽi = vi − 2vni (4.22)

Particle loss does not occur when using the release version of mDBC (DualSPHysics

5.0), which extrapolates only density into the boundary whilst using a different method

to compute boundary velocity, as described in Section 3.3.4.2. This approach is used

for the results shown in this section.

It can be seen in Figure 4.32 that increasing the resolution generates a velocity

curve closer to the data of Ghia et al. [73]. To determine the convergence rate for this

case, the norm

L2(vx) =
1

max{ṽx}N

√√√√ N∑
i=1

((vx)i − ˜(vx)i)
2, (4.23)

where ṽx is the result given by Ghia et al. [73], is taken over all data points. The

error norm of the velocity in Figure 4.33 shows convergence with increasing resolution.

These results confirm the ability of this SPH formulation to reproduce lid-driven cavity

flow, which shall be further used for mixing of two phases in the cavity.
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Figure 4.32: Velocity profiles along centre-line for multiple resolutions with mDBC for
Re = 100.

Figure 4.33: L2 norm of centre-line velocity relative to Ghia et al. [73] results for
increasing resolution, demonstrating the convergence rate of the method for the lid-
driven cavity case.

4.3.3 Two Phases of Constant Viscosity

The cavity is split horizontally in half into two fluid phases of different constant viscos-

ities with all other parameters the same, as shown in Figure 4.34. A simple multi-phase
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Figure 4.34: Lid-driven cavity with two fluid phases of different viscosity but constant
density (adapted from [191]).

model such as this, with only viscosity differing, demonstrates the capacity of SPH to

deal with large deformations and a highly deformed interface, before more complex

physics is added in Section 4.4 and Chapter 5.

Flow is driven by the lid, as for the single phase case. Here the upper phase

has viscosity ν1 = 0.01 m2 s−1 (Re = 100), and the bottom phase ν2 = 0.02 m2 s−1

(Re = 50). The average Reynolds number used in Section 4.2.2 is Re = 67. The

cavity again has dimension L = 1 m with lid velocity vlid = 1 m2 s−1. Since significant

improvements were demonstrated by using mDBC in the previous Section 4.3.2.1,

boundary conditions are enforced using the mDBC method for two-phase lid-driven

cavity flows. The less viscous fluid moves with greater velocity, whilst the other is more

resistant to movement. Once the lid movement is stopped, there is small movement

of fluid particles but no separation of phases. This is because there is no difference in

density between phases, only viscosity.

For this two phase lid-driven cavity case, since there is no literature for comparison,

STAR-CCM+ [208] is used as a benchmark of the current modelling standard for

comparison. For multi-phase cases, it uses the VOF method where each mesh cell

has fluid properties weighted by the proportion of each phase within it. This results
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Figure 4.35: Volume fraction from STAR-CCM+, SPH and difference between the two
at times 5 s (first row), 20 s (second row), 60 s (third row) for the two-phase lid-driven
cavity.

in break up and diffusion of phases, in particular for higher Re, as the position of

the interface becomes more difficult to determine. A related case was modelled using

FEM by Camesasca et al. [29], involving two fluid phases in a square cavity driven by

two moving walls. However, the objective of the work was to demonstrate a mixing

measure, rather than accurately simulate the flow.

4.3.4 Mixing Measures

A natural comparison with a VOF method is to plot the volume fraction, calculated

using Section 3.6.1. The results for the volume fraction are shown in Figure 4.35,
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coloured by the volume fraction of phase 1, F 1. Since there are two phases in this

case, the volume fraction of phase 2 is F 2 = 1 − F 1 at any point. The third column

shows the absolute difference in volume fraction between the two methods, where 0

means they are identical at that point. The two approaches produce many qualitative

similarities, such as the clear line of phase 1 towards the bottom of the mixing and

the shape of unmixed phase 2 after 60 s. Due to the volume fraction approach that

does not produce a sharp interface between phases, it is not possible to get complete

convergence of the STAR-CCM+ results at the interface, even with a high resolution.

The break-up and diffusion of the interface can be seen here around (x, z) = (0.9, 0.8)

m at 5 s.

Figure 4.36: L2 norm of volume fraction difference between SPH and STAR-CCM+
methods with time.

The volume fraction (VF) of the SPH method is compared to STAR-CCM+ quant-

itatively using the error norm Equation (4.23) in Figure 4.36. The difference initially

increases as movement begins, then decreases more gradually after 30 s. This shows the

methods tending towards convergence as time increase to 60 s. Therefore, the method

developed for this work does not diverge from the benchmark solution as steady state

is reached.

SPH is not derived to model individual molecules. Instead, each interpolation point

(referred to as an SPH particle) represents a small volume in the continuum. Hence,

in the context of the main application, the volume fraction alone cannot determine

whether the High Level Waste (HLW) has been fully incorporated into the borosilicate

glass, which is key to the vitrification process described in Section 2.2. This is more
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Figure 4.37: FTLE, Robinson’s measure and new combined mixing measure at times
5 s (first row), 20 s (second row), 60 s (third row) for the two-phase lid-driven cavity.

likely to be successful if there is significant deformation within and between phases.

One way of determining this is by using the finite-time Lyapunov exponent (FTLE),

which quantifies the relative movement of SPH particles which start in a neighbour-

hood of each other.

Figure 4.37 shows the SPH mixing measure results at three different times for the

FTLE, Robinson’s local mixing measure and the new mixing measure developed in

this work. The left-hand column in Figure 4.37 shows the FTLE where the scale is

different for each time in order to make the features visible. The Lagrangian approx-

imation for the forward-in-time FTLE in Equation (3.98) is used in post-processing. A

greater value of FTLE indicates that SPH particles starting near this point have moved
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furthest away from each other at the presented time. This is useful for understanding

the movement of particles but does not show the mixing between phases relevant for

this work. However, it can be seen that little relative movement has occurred at the

centre of the main vortex, as well as the smaller corner vertices, suggesting that little

mixing between phases has taken place in these regions.

Robinson’s mixing measure [188] (Equation (3.108)) in the centre of Figure 4.37

was designed to quantify mixing locally at a point in the domain. The areas of mixing,

as well as the regions of unmixed phases, are clear to see. The insight from the FTLE

figures of regions of low movement are confirmed to be poorly mixed here. The lid-

driven cavity clearly does not produce a homogeneous mixture, at least with phase

viscosities as here. This demonstrates that the lid-driven cavity is a poor mixing case,

but shows the value of a mixing measure in determining the quality of mixing. For a

greater degree of mixing to be obtained, a mechanical stirrer could be added to the

middle of the tank to increase circulation through the unmixed regions.

The right hand column of Figure 4.37 shows the new combined VF-FTLE meas-

ure, defined in Equation (3.114), which illustrates both the mixing of phases and the

movement of SPH particles. Here the volume fraction component must be calculated

at SPH particle locations at t = 0 so that these values are at the same points as

the FTLE values. This new measure is similar in distribution to Robinson’s mixing

measure, but appears to be smoother. The definition has a clear effect towards the

bottom right of the cavity at 60 s, where VF is higher but FTLE is small. Therefore,

both phases are present but there is little divergence between particles which begin

within each-other’s neighbourhood and the resulting mixing measure is low.

While the volume fraction gives information about the distribution of phases at a

given time and the FTLE shows how much particles starting near a point have diverged

from each other, both the Robinson and VF-FTLE measures display the amount of

movement between particles of different phases. In particular, the new VF-FTLE

measure can exhibit regions where either both phases are present but particles have

remained close to those they were near at t = 0, or particles have moved considerably

relative to each other but there has been no mixing between phases. For example,

around (x, z) = (0.9, 0.2) m at 20 s.

The mixing entropy (Equation (3.111)) is plotted for both methods in Figure 4.38.
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Figure 4.38: Mixing entropy of phase A over time for both methods with different
resolutions.

For all resolutions, mixing entropy S∗ increases with time, for STAR-CCM+ it in-

creases initially at a different rate than for SPH, but both methods begin to converge

after 40 s. For dx = 0.02 m especially, S∗ appears to be converging towards a constant

value as the maximum degree of mixing for the case is reached.

Figure 4.39: Global mixing measure for two-phase lid-driven cavity with time.
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An investigation into how the mixing measures change with time was undertaken

using the global mixing measure in Equation (3.115), since it gives the most inform-

ation in terms of overall mixing. In this way, a global assessment of the mixing is

obtained. Figure 4.39 shows the evolution of the global mixing measure. At the point

the global mixing measure stops changing a steady state has been reached, demon-

strating another use for the new measure. The measure is seen to plateau around 120

s, when the maximum amount of mixing has been achieved. This does not, however,

mean that the phases are completely mixed. Due to the contribution of the FTLE,

the maximum value will only be 1 if all particles have moved the same distance from

their original neighbours. In reality, this is almost impossible to happen. For example,

the lower MG at 290 s is due to a lower maximum M at this time.

Figure 4.40: Global volume fraction for two-phase lid-driven cavity with time.

A global measure based on the volume fraction is also defined in Equation (3.96)

to quantify the degree of mixing at a given time and is shown in Figure 4.40. This

measure decreases with time as mixing increases and becomes close to the volume

fraction of the whole domain. As time approaches 120 s the measure tends towards

a constant value, agreeing with the global mixing measure in Figure 4.39 that the

maximum level of mixing is achieved around this time. As seen in Figure 4.37, regions
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of unmixed phases remain for this case and so at steady state the average difference

from global volume fraction is significantly more than zero. These global comparisons,

along with the single phase results in Section 4.3.2.1, demonstrate that this SPH model

is a good candidate for flow within a cavity generating mixing of viscous fluids.

4.4 Differentially Heated Cavity

The differentially heated cavity case is run to test the addition of the Boussinesq term

in the momentum equation, as in Section 3.2.3, as well as a governing equation for

temperature, as in Section 3.3.2.3. This demonstrates that natural convection and

circulation driven by buoyancy can be modelled successfully.

4.4.1 Heat Conduction Validation

Figure 4.41: Diagram of cavity for heat conduction case.

Firstly, the ability of the added governing equation for temperature (Equation (3.40))

to produce a temperature gradient is demonstrated. The square cavity of width L = 1

m in Figure 4.41 is filled by a fluid with constant viscosity. The fluid is discretised with

particle spacing dx = 0.02 m, giving 50 particles across the cavity. The Boussinesq

approximation is not included and gravity is set to zero as g = (0, 0) kg m s−2, so the
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fluid remains approximately stationary. The speed of sound is then manually set to

c = 10 m s−1. The right boundary has constant temperature θH = 100 K and the

other 3 boundaries are at θC = 0 K constant. Initially, the fluid has a uniform temper-

ature of θC with thermal parameters Cp = 100 J kg−1 K−1, k = 2 W m−1 K−1, and has

physical parameters of water ρ = 1000 kg m−3, ν = 10−6 m2 s−1. Its temperature is

then governed by Equation (3.40). Boundary particles are given the same parameter

values, but have constant temperature. Density is extrapolated into the boundary

using the mDBC method. The resulting temperature field is shown in Figure 4.42 and

Figure 4.43.

Figure 4.42: Surface of heat conduction case temperature.

An analytical solution is found from the two-dimensional diffusion equation for

temperature, Equation (3.12),

∂θ

∂t
=

k

Cpρ
∇2θ =

k

Cpρ

(
∂2θ

∂x2
+
∂2θ

∂z2

)
(4.24)

on the domain x ∈ [0, L], z ∈ [0, L], with inhomogeneous boundary conditions

θ(0, z, t) = 0;

θ(L, z, t) = θH = 100;

θ(x, 0, t) = θ(x, L, t) = θC = 0.
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Figure 4.43: Contours of heat conduction case temperature.

Looking for steady state solution for this Dirichlet problem by separation of variables,

the global solution is

θ(x, z) =
∞∑
n=1

2θH
nπ sinh(nπ)

(1− (−1)n) sin
(nπ
L
z
)

sinh
(nπ
L
x
)
. (4.25)

Since for even n, (1− (−1)n) = 0; and for odd n, (1− (−1)n) = 2 the solution can

be rewritten as

θ(x, z) =
4θH
π

∞∑
n=1

1

(2n− 1) sinh((2n− 1)π)
sin

(
(2n− 1)π

L
z

)
sinh

(
(2n− 1)π

L
x

)
.

(4.26)

This is particularly useful numerically where the solution must be approximated as

a finite sum. When computing the solution numerically, and since sinh(x) is not

bounded, a finite sum must be used where N approximates infinity. N = 100 was

found to be adequate in MATLAB.

It can be seen in Figure 4.44 that the results of this SPH model compare well with

the analytical solution found. The error is quantified as

L2(θ) =

√∑
(θanalytical − θSPH)2∑

θ2
analytical

= 0.102, (4.27)

and is approximately constant throughout the fluid domain.



4.4. DIFFERENTIALLY HEATED CAVITY 159

Figure 4.44: Comparison of SPH results with analytical solution (Equation (4.26)) in
cavity for heat conduction validation. Temperature is represented by size of circle.

4.4.2 Differentially Heated Cavity

Figure 4.45: Diagram of differentially heated cavity flow.

For buoyancy-driven flow within the cavity, the governing equation for energy
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(Equation (3.40)) is employed, along with the Boussinesq approximation in the con-

servation of momentum (Equation (3.38)). The key non-dimensional parameters for

this case are the Prandtl number

Pr =
νρCp
k

, (4.28)

which gives a ratio of viscous to thermal diffusion, and the Rayleigh number

Ra =
gβL3(θH − θC)Cp

νk
, (4.29)

which characterises natural convection in the flow. A higher Rayleigh number indicates

that buoyancy forces are more important to the flow than viscous forces.

The geometry is again a two-dimensional square cavity, but with boundary condi-

tions as in Figure 4.45. The literature [49, 111, 244] has the fluid filling the cavity as

air at room temperature, with Pr = 0.71, and Ra ranging from 103 to 108 (all within

the region of laminar flow [244]). In this work, the fluid is taken to be air at θ = 20 ◦C

and Ra = 105 chosen for comparison with data in the literature. The values used

can be seen in Table 4.7. Following Barakos et al. [18], the temperature difference

is fixed whilst the cavity width is varied to set Ra. To ensure that the temperature

difference between boundaries is large enough to have a significant effect on the flow,

and any velocities are orders of magnitude larger than the size of errors, it is chosen

to be θH − θC = 20 K with θH = 303 K. This means that the cavity width must

be L = 0.0386 m to maintain chosen characteristic values. This case has a Reynolds

number of approximately 1.5× 105.

Fluid is initially stationary and starts with uniform temperature θ(t = 0) = 293

K, which is also set as the reference temperature (θ) in the Boussinesq term. Unlike

the previous case in Section 4.4.1, a realistic gravitational acceleration is included in

the Boussinesq term (Equation (3.8)).

Boundary conditions for density and velocity are imposed using mDBC, as de-

scribed in Section 3.3.4.2. The boundaries are given the same parameters as the fluid

in Table 4.7, but are stationary and not governed by Equation (3.40) so do not need a

value for thermal expansion coefficient, β. Instead, left and right boundaries are held

at constant temperatures θH and θC respectively by assigning corresponding bound-

ary particles these temperatures. Top and bottom boundaries are adiabatic, that is
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parameter value
ν 1.506× 10−5 m2 s−1

ρ 1.204 kg m−3

Cp 1.006× 103 J kg−1 K−1

k 0.02587 W m−1 K−1

β 3.43× 10−3 K−1

g −9.81 m s−2

Table 4.7: Parameter values for differentially heated cavity flow.

∂θ
∂z

= 0, and are given the same initial temperature as the fluid. This is first achieved

by setting k = 0 W m−1 K−1, although the higher order approach is used later in this

section. All four boundaries have no-slip conditions through v = (0, 0). Following the

timestep constraint of Wan et al. [244],

dt ≤ min

{
4Pr

(|vx|+ |vz|)2
,
P r(dx)2

2

}
= 1.42× 10−6, (4.30)

the initial timestep size is chosen to be dt = 1.5× 10−6 s.

h 2dx
c 12|v|max

CFL number 0.1
Viscous term Monaghan and Gingold [155] operator with arithmetic mean

Particle shifting type Full
Shifting coefficient -2

Density diffusion type None

Table 4.8: Simulation parameters for successful differentially heated cavity case.

A kernel smoothing length of h = 2dx was found to be required for flow to remain in

motion at steady state, demonstrating that the number of neighbouring particles is key

to running this case successfully. For smaller h, numerical dissipation dominates and

results in the temperature profile diffusing. This results in a reduction of the particle

velocities such that fluid stops moving, and all heat transfer is by conduction rather

than convection. Simulation parameters used for the successful differentially heated

cavity cases are summarised in Table 4.8. Contributions to numerical dissipation

come from the timestep, shifting (all particle types with coefficient -2) and the viscous

term (no density diffusion is applied). The timestep constraints for viscosity and

temperature (Equations (3.63) and (3.66)) are both included and the simulation is run

with a Courant-Friedrichs-Lewy (CFL) number of 0.1 and speed of sound c = 12|v|max.

The viscous term is approximated with the Monaghan and Gingold operator, using
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the arithmetic mean in Equation (3.74).

Figure 4.46: Isotherms at t∗ = 0.5 for differen-
tially heated cavity at Ra = 105 with new mDBC
adiabatic boundary condition.

Figure 4.47: Isotherms at Ra = 105

from Wan et al. [244].

The adiabatic boundary condition can be approximated by setting k = 0 W m−1 K−1

of the corresponding boundary particles so they do not contribute to the temperature

equation of neighbouring fluid particles. However, this approach introduces additional

truncation error, since the kernels of fluid particles near the boundary are incomplete

when computing a change in temperature. This error means the approach has a low

order of accuracy and contributes to the decaying solution. The mDBC presented

earlier in Section 3.3.4.4 is modified for the ∂θ
∂z

boundary, using the same approach as

employed for density, to give Equation (3.50). Heat transfer is blocked through the

boundary by reflecting values for temperature onto the boundary particles. This is

seen to be effective in Figure 4.46, which compares well to the isotherms found by

Wan et al. [244] in Figure 4.47. Isotherms are normal to the adiabatic boundaries as

they approach, since there is no change in temperature through them. mDBC is also

used here for density and velocity, since it provided a significant improvement to the

lid-driven cavity case in Section 4.3.2.1.

Results are compared with those of Wan et al. [244], who use a high order discrete

singular convolution scheme, for Ra = 105 at the highest resolution (161 × 161 mesh

points). The SPH model is first run with a particle spacing of dx = 0.0005 m, which

means there are approximately 77× 77 fluid particles. Non-dimensionalised variables,
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denoted by ∗, are used for comparison and computed through [244]

r∗ =
r

L
;

v∗ =
vLρCP
k

;

θ∗ =
θ − θC
θH − θC

;

t∗ =
tk

L2ρCp
.

For L = 0.0386 m, the horizontal line through the centre of the cavity lies at rz =

L
2

= 0.0193 m. Values for temperature and vertical velocity are computed at equally

spaced points along this line using the SPH interpolation in Equation (3.22) of output

data. Measurements are taken at time t∗ = 0.5, which corresponds to t = 34.88 s,

when Wan et al. [244] found the flow has reached a steady state.

Figure 4.48: Temperature (θ∗) and vertical velocity (v∗z) along horizontal mid-line for
dx = 0.00025 m at t∗ = 0.5.

Results for temperature and vertical velocity component can be seen in Figure 4.48

respectively, interpolated from output data and plotted with the benchmark data of

Wan et al. [244]. Due to the different boundary approaches for temperature and

velocity, when plotting results boundary particles are included in the SPH summation

for temperature, but only fluid particles are included (with a kernel correction) when

computing velocity. The condition for no-slip boundaries is achieved in the current

version of mDBC by setting v = 0 m s−1 for boundary particles. The same approach

is used for no-slip DBC and is known to produce poor velocity gradients near walls.
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This results in non-zero velocity at the wall when boundary particles are included in

the summation, and may contribute to the decrease in flow velocity found for smaller

smoothing lengths.

Figure 4.49: Temperature (θ∗) and vertical velocity (v∗z) along horizontal mid-line for
dx = 0.00025 m at t∗ = 0.5 with ‘k = 0’ adiabatic boundary condition.

Figure 4.50: Gradient of temperature along horizontal mid-line for dx = 0.00025 m at
t∗ = 0.5, with both mDBC and ‘k = 0’ adiabatic boundary conditions.

The more simple ‘k = 0’ adiabatic boundary method reproduces both temperature

and density well in Figure 4.49, demonstrating that the shortcomings of the ‘k = 0’

approach do not affect flow in the centre of the cavity. However, these figures do not
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Figure 4.51: Isotherms at t∗ = 0.5 for differentially heated cavity with ‘k = 0’ adiabatic
boundary condition.

Figure 4.52: Temperature (θ∗) and horizontal velocity (v∗x) along vertical mid-line for
dx = 0.00025 m at t∗ = 0.5.

validate the flow in proximity to the adiabatic boundaries. The temperature gradient

across the centre of the cavity in Figure 4.50 is close for both methods, and the iso-

therms in Figure 4.51 are also close to the benchmark solution of Figure 4.47. However,

immediately next to the adiabatic boundaries at the top and bottom, the isotherms

are not as close to perpendicular to the line of the boundary as for the mDBC method

in Figure 4.46. In addition, isotherms are straighter than the benchmark solution near

the top and bottom boundaries but less straight in the vicinity of the centre of the



166 CHAPTER 4. VALIDATION AND RESULTS

cavity. The temperature and velocity along a vertical centre line are plotted in Fig-

ure 4.52 in order to compare adiabatic boundary methods. This figure demonstrates

that the differences between the simple ‘k = 0’ approach and the higher order mDBC

method are minimal for temperature gradient in the bulk of the fluid. Overall, there is

little difference in results from the choice of adiabatic boundary method for this case,

despite the mDBC method achieving a greater order of accuracy.

Figure 4.53: Convergence of θ∗ and v∗z with increasing resolution, for h = 2.5dx.

A convergence study is undertaken with fixed h = 2.5dx for varying resolution

by changing particle spacing dx. Error is computed through the norms over N data

points

L2(θ∗) =

√∑N
i=1(θ∗SPH − θ∗lit)2∑N

i=1(θ∗lit)
2

(4.31)

L2(v∗z) =

√∑N
i=1((v∗z)SPH − (v∗z)lit)2∑N

i=1(v∗z)
2
lit

(4.32)

where subscript ’lit’ denotes the value in the literature. A larger smoothing length

is chosen than previously to allow the simulation to run successfully at the coarsest

resolution. However, the flow becomes stationary before reaching a steady state for this
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largest particle spacing. Figure 4.53 shows that the velocity is converging at between

first and second order before the rate of convergence begins to decrease. Since the ratio

h
dx

remains constant for all resolutions, a plateau is found as resolution is increased as

the limiting smoothing error is reached [183].

Although the size of the error in temperature is smaller than for velocity, due to

the no-slip boundary method, the limit of convergence is reached at a larger particle

spacing and the error increases with the finest resolution. The limit is reached sooner

since the computation of temperature involves the approximation of a second order

gradient, which introduces an extra error. Wan et al. [244] also found that temperature

converged faster with time than velocity, in agreement with these results. A coarsest

resolution of dx = 0.0005 m was found for circulation to develop successfully and be

sustained, without dissipation dominating the flow.

4.4.2.1 Three-Dimensional Validation

Figure 4.54: Temperature (θ∗, left) and vertical velocity component (v∗z , right) plots
along a horizontal line through the centre of the cavity for the quasi-2D case, compared
with the results of Wan et al. [244]. CFL number 0.1, h = 2.0dx, 10 particles in
periodic dimension.

dimensions runtime [s]
2 32330
3 443700

Table 4.9: Runtime for two or 3 dimensions (to 4 significant figures) with CFL number
0.1, smoothing length h = 2.0dx, particle spacing 0.00025 m for 60 s.
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A quasi-2D case is run by extending the domain into the third dimension with

periodic boundaries, so that any slice of the x−z plane is equivalent to the previous two

dimensional cases. A finer resolution of dx = 0.00025 m is used, since the simulation

is more sensitive to numerical dissipation with the extra dimension included and does

not run successfully for dx = 0.0005 m. The case is run as previously, but with 10

particles in the y−dimension. This is the minimum required for no kernel to overlap

itself through the periodic boundary. The results in Figure 4.54 show the comparison

of temperature and velocity with the benchmark literature data.

Figure 4.55: Temperature (θ∗, left) and vertical velocity component (v∗z , right) plots
along a horizontal line through the centre of the cavity for the quasi-2D case, compared
with the results of Wan et al. [244]. CFL number 0.2, h = 1.5dx, 20 particles in
periodic dimension.

At least two kernel supports are included across the lateral width of the domain in

order to mitigate against periodic effects. Increasing the depth in the third dimension

to 20 SPH particles significantly increases runtime by more than 13 times, as can be

seen for an example case in Table 4.9. In order to mitigate this, the smoothing length is

set to h = 1.5dx to maintain approximately the same number of neighbours as the 2D

case, and the CFL number is increased from 0.1 to 0.2. The results in Figure 4.55 are

poorer because of these compromises, but this demonstrates the capability of running

the case with a smaller smoothing length as a result of the extra dimension increasing

particle numbers within the kernel. It is possible that the difference is also due to

3D effects, which accumulate with time. Although results are close for this smaller

smoothing length, the exponential part of the temperature curve is not captured.

Thus, it is clear that a large smoothing length, h, is required in three-dimensions, as
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Figure 4.56: Temperature (θ∗, left) and vertical velocity component (v∗z , right) plots
along a horizontal line through the centre of the cavity for the quasi-2D case, compared
with the results of Wan et al. [244]. CFL number 0.1, h = 2.0dx, 20 particles in
periodic dimension.

well as two, in order to get accurate results. The smoothing length h = 2.0dx, as was

successful for two dimensions, is chosen, but the domain is extended to 20 particles in

the periodic dimension. This larger smoothing length gives significantly better results,

in Figure 4.56, than the previous h. Increasing the number of neighbours in this way

is shown to improve results and get very close to the benchmark solution of Wan et al.

[244]. To reduce runtime without impacting accuracy, it may be possible to increase

the CFL number, since the simulation is stable.

This case demonstrates the capability of DualSPHysics with the modifications

made for this project to run three-dimensional cases, and take advantage of the com-

putational capacity of the graphics processing unit (GPU) code and hardware for these

simulations. The advantages of running on a GPU are described in more detail in the

next section.

4.5 GPU Profiling and Speed-up

An investigation of the speed-up provided by the GPU capability of the model is

investigated, before undertaking a basic profiling of the new and modified Compute

Unified Device Architecture (CUDA) kernels to compare with existing kernels.

Table 4.10 shows that for the three-dimensional differentially heated cavity cases

in Section 4.4.2.1, using the GPU decreases runtime by over 45 times on the specified



170 CHAPTER 4. VALIDATION AND RESULTS

CPU GPU
hardware Intel Core i7-9750H (2.60 GHz) NVidia GeForce RTX 2080

CPU memory 217.49 MB 83.02 MB
GPU memory - 208.46 MB

runtime per physical sec. 349277 s 7655 s

Table 4.10: Comparison of CPU and GPU computation for three-dimensional differ-
entially heated cavity case with dx = 0.00025 m (537920 particles).

hardware. The CPU used has 6 cores with 12 threads, which are taken advantage

of by parallelisation using OpenMP. Meanwhile, CUDA is used to run the code on

GPUs, as discussed in Section 3.4. Exactly the same method is implemented for the

GPU code as for the CPU code, with all additions and modifications presented in

Chapter 3 included in both. There was no difference found in L2 norm between results

from CPU and GPU sides of the code for the temperature-dependent Poiseuille flow

in Section 4.2.3 or the heat conduction validation in Section 4.4.1.

kernel total time
(%)

call count average
time (µs)

occupancy
(%)

registers
per thread

fluid particle interac-
tions

16.32 9151 9185.170 0.00 75

boundary particle in-
teractions

0.58 9151 327.026 0.00 56

compute viscosity 0.02 9151 10.926 0.00 24
compute temperature 0.01 9151 6.724 0.00 16
adiabatic mDBC cal-
culation

17.32 9151 9746.548 0.00 78

fluid particle interac-
tions (original)

21.61 9875 7384.972 0.00 66

mDBC calculation 14.18 4576 15957.892 0.00 100

Table 4.11: GPU profiling metrics for newly implemented CUDA kernels, with existing
kernels under the line for comparison.

For the same case, GPU profiling of the new CUDA kernels is undertaken and

results shown in Table 4.11. Pre-existing kernels are included for comparison at the

bottom of the table. The modified viscous term (Equation (3.70)) and temperature

evolution (Equation (3.40)) are computed within the fluid particle interactions kernel.

In Table 4.11 it is seen that these additions increase both time and memory require-

ments for this kernel. However, the percentage of total time is lower. The functions to

compute viscosity, through any chosen method from Section 3.5.1, and temperature,

where it is not dependent on the temperature evolution equation, make only very small
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increases to the total time taken. Since the adiabatic mDBC method does not require

a gradient to be calculated to compute boundary values, as in Equation (3.50), unlike

for density in the original mDBC method in Equation (3.46) the time taken for the

adiabatic kernel is shorter than for the mDBC kernel.

Although this work does not focus on code optimisation, the newly implemented

CUDA kernels have comparable profiling metrics with existing kernels in DualSPHys-

ics.

4.6 Concluding Remarks

Each of the sections in this chapter exhibits a case which demonstrates an aspect of

the physics key to the vitrification model in Chapter 5. In this way, the results shown

validate the model which has been developed for this project and prove that the model

produces good results for two-phase and temperature dependent viscous flows.

As demonstrated in Section 4.2, the model compares well to the analytical solutions

for Poiseuille flow velocity profiles of both one and two phases. The two-phase flows

test the addition of multiple phases with different viscosities. It is also able to develop

the instabilities that occur at the interface between phases, in line with perturbation

theory. Additionally, the growth rate of the interfacial instabilities compares closely

with results in the literature. This highlights one of the key advantages of SPH over

the VOF method, in following a deforming interface. The introduction of temperature

and viscosity variables, as well as the temperature-dependent viscosity functions in

Section 3.5.1, are validated through the temperature-dependent Poiseuille flow case.

The model is shown to reproduce well velocity along the channel for these cases.

The lid-driven cavity case in Section 4.3 is an example of mechanically driven flow.

Although the streamlines appeared reasonable with the basic boundary condition, a

more sophisticated approach was demonstrated to have greater success in replicating

the velocities of the benchmark data. Going forward, the mDBC method is used for

other cases of flow within a cavity. Mixing measures described in Section 3.6 are

applied to the two-phase case and their relative merits discussed. In particular, the

new combined mixing measure is shown to give additional insight into the deformation

within and between phases. Comparisons with the benchmark method confirm that
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the correct mixing behaviour is captured.

The addition of both the temperature equation (Equation (3.40)) and Boussinesq

approximation (Equation (2.11)) are established to be effective for simulating buoyancy-

driven flow through the differentially heated cavity case in Section 4.4. The Dirichlet

boundary condition for temperature, discussed in Section 3.3.4.4, is found to be ad-

equate for heating. However, the new higher order adiabatic boundary condition,

based on the mDBC method, is established to be superior to the more simple method

of excluding boundary contributions.

The results in this chapter demonstrate the capability of SPH in modelling tem-

perature dependent viscous mixing applications. In the next chapter, the complete

model is utilised in order to simulate complex mixing during vitrification of nuclear

waste. The measures of mixing defined in Section 3.6 and investigated in Section 4.3.4

will be used to compare with data and quantify the degree of mixing achieved.



Chapter 5

Application Model: Mixing During

Vitrification

5.1 Introduction

This chapter presents the main aim of this project to model mixing during vitrification

within the melter. Initial temperature conditions ensure all glass phases are melted,

and the internal temperature remains above borosilicate glass transition temperature

of 1150 K. Modelling assumptions include the Boussinesq approximation and that

there are two separate glass phases at the beginning of the simulation, containing

different amounts of High Level Waste (HLW) by wt%. Dynamic viscosity is expected

from Section 2.2 to remain within 1-100 Pa s, but shall be determined by the Melt

Viscosity Alogirthm (MVA) designed by Miller [144], which uses the viscosity models

described in Section 3.5.1. Density can also be computed from the compositions used

as inputs for this algorithm. Although there are no direct comparisons for the cases

in this chapter to use as validation, the velocity magnitude of 10−3 m s−1 given by

Sundaram et al. [215] will provide a check for reasonable flow behaviour.

A simplified vitrification case, capturing the key physics, is defined. The melter is

approximated as a cylindrical tank, completely filled with fluid. Firstly, the effects of

heating the curved wall on buoyancy-driven flow are investigated with a single fluid

phase with constant density. These cases represent the buoyancy-driven circulation

of a homogeneous vitrification mixture. Mixing of phases is investigated by splitting

173
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the fluid into two phases of equal size, similar to the lid-driven cavity simulations in

Section 4.3.3.

In Section 5.3, the viscosity models introduced in Section 3.5.1 are used to imple-

ment temperature-dependent viscosity. A single phase with a typical composition and

waste fraction is first simulated to study the flow of a homogeneous mixture. For the

final cases in Section 5.3.2, these phases are chosen as one phase containing waste and

a second phase representing only molten glass. This approximates the phases present

when separation occurs during mixing. The composition and phase parameters are

taken from the MVA [144] and corresponding data.

The following cases combine all additional physics to the Smoothed Particle Hydro-

dynamics (SPH) model, each of which was validated in the previous chapter. Following

previous validation, the SPH model simulates separated phases within a melter during

vitrification in order to explore the mixing flow. Mixing measures, introduced in Sec-

tion 3.6, are applied in post-processing to give valuable insight into the state of mixing

and mixing process at a given time. With this knowledge, recommendations of the

conditions required for optimal mixing, as well as those resulting in a heterogeneous

product, can be given.

5.2 Constant Viscosity

At first, the new case is simulated with phases of constant viscosity, similar to the

lid-driven cavity and differentially heated cavity cases in Chapter 4. This gives insight

into the flow taking place within the cylindrical tank, subject to heating, through

buoyancy-driven flow.

5.2.1 Single Phase of Constant Viscosity

Initially, a single phase is considered within the melter. As can be seen in Figure 5.1,

the top and bottom boundaries are adiabatic. This is enforced by the new modi-

fied dynamic boundary condition (mDBC) adiabatic boundary condition, defined in

Section 3.3.4.4, and mDBC are used for other boundary variables. The curved bound-

ary is held at constant temperature θH , heating the fluid inside the container. The

fluid has a uniform initial temperature of θC . In order to apply separate boundary
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Figure 5.1: Thee-dimensional vitrification case with a single fluid phase.

conditions, the boundary phase modifications introduced in Section 3.4.2 are applied.

When using mDBC, this requires the normal invert option to be set to true in order

to ensure all normals are pointing into the cylindrical cavity. The Freedraw option

in GenCase is also used for all geometry components to position particles along the

curved geometry of the cylinder. Fluid particles are arranged on concentric circles in

cylindrical coordinates, rather than a Cartesian grid, for a uniform distribution inside

the tank.

Beginning with the parameters used in Section 4.4.2, where the fluid is air with a

constant viscosity of ν = 1.506× 10−5 m2 s−1, and also setting H = 2R = 0.0386 m, a

similar Rayleigh number (Ra = 105) is expected. The temperatures are also chosen to

be the same, with θC = 283 K and θH = 303 K. All boundaries have the same thermal

properties as the fluid and the initial particle spacing is chosen to be dx = 0.001 m.

Density diffusion is included to reduce accumulation of numerical error from pres-

sure fluctuations, and particle shifting has typical coefficient -2 to maintain a uniform

particle distribution. The variables at 45 s in planes x = 0 and y = 0 are displayed

in Figures 5.2 to 5.4, where it can be seen that heating is clearly taking place via

conduction from the curved wall and convection of the fluid. However, density is not

radially symmetric as expected, with velocity behaving similarly. No relevant literat-

ure could be found to determine whether this is an appearance of circulation cells due
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Figure 5.2: Density in x = 0 and y = 0 planes at 45 s for single phase melter with
differentially heated cavity parameters.

Figure 5.3: Temperature in x = 0 and y = 0 planes at 45 s for single phase melter
with differentially heated cavity parameters.

to a physical instability. Later, around 60 s, particles are lost when set density limits

are exceeded.

Increasing the constant viscosity from ν = 1.506× 10−5 m2 s−1 to ν = 10−4 m2 s−1

to avoid the density pattern found previously results in a symmetric density as well as

velocities clearly following convective flow, as seen in Figures 5.5 to 5.7. This results in

heating throughout the cavity and evidence of recirculation, with all particles having

an increased temperature at 45 s. The Reynolds number is 0.4, which is six orders of
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Figure 5.4: Velocity in x = 0 and y = 0 planes at 45 s for single phase melter with
differentially heated cavity parameters.

Figure 5.5: Density in x = 0 and y = 0 planes at 45 s for single phase melter with
differentially heated cavity parameters but increased viscosity.

magnitude smaller than that of the differentially heated cavity case in Section 4.4.2 due

to greater viscosity and significantly lower velocity. The contribution to acceleration

from temperature difference is smaller for this case and decreases with time. This

results in a longer time taken for recirculation. Re would be increased by increasing

the dimensions of the melter to a realistic size, as long as velocities do not reduce

significantly.

Particles are steadily lost for this case after around 15 s as they escape through
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Figure 5.6: Temperature in x = 0 and y = 0 planes at 45 s for single phase melter
with differentially heated cavity parameters but increased viscosity.

Figure 5.7: Velocity in x = 0 and y = 0 planes at 45 s for single phase melter with
differentially heated cavity parameters but increased viscosity.

the boundaries in the upper half of the cavity. The number of fluid particles penet-

rating the boundary is reduced when using the dynamic boundary condition (DBC),

suggesting a correction needs to be made to the mDBC method to take account of the

difference in volume when extrapolating density into a concave boundary. A single

phase within the heated cylindrical melter exhibits radially symmetric circulation due

to buoyancy-driven flow.
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5.2.2 Two Phases of Constant Viscosity

Figure 5.8: Two-dimensional vitrification case with a two fluid phases.

To approximate separated phases, the fluid within the cavity is split horizontally

into two phases of equal height. Assuming radial symmetry of flow and variables

within the tank, a two-dimensional plane at y = 0 is simulated, as shown in Figure 5.8.

Starting from the previous case in Section 5.2.1 with dimensions H = 2R = 0.0386 m,

each phase has a constant viscosity. The top phase is chosen to have ν1 = 2 × 10−4

m2 s−1 and the bottom ν2 = 10−4 m2 s−1. Following the method for obtaining a

Reynolds number for two phases in Section 4.2.2, Re = 3 for this case. Running two-

dimensional simulations allows a general understanding of a large number of cases to

be obtained by taking advantage of the shorter runtime whilst capturing the principle

flow behaviour. This is shown in Figure 5.8, where boundary conditions remain as

before. These initial conditions demonstrate mixing due to natural convection when

separated phases are present.

The results at 300 s in Figure 5.9 show the circulatory flow, as for the single phase

case, in particular the circulation caused by heating at both side walls and symmetry of

density and temperature. Particles are still lost, but fewer than the three-dimensional

case at 7% over 300 s.
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Figure 5.9: Density, temperature, viscosity and velocity at 300 s for two-dimensional
two-phase melter with differentially heated cavity dimensions.

The effect of this circulation on mixing between phases is demonstrated in Fig-

ure 5.10 with the mixing measures introduced in Section 3.6. The volume fraction

(VF) clearly shows that the convection is causing circulation and mixing of phases,

although there are still regions of separate phases at 300 s. The finite-time Lyapunov

exponent (FTLE) is fairly constant for all times, consisting of the two circulating cells.

Robinson’s measure shows clearly the interface between phases, whereas the new mix-

ing measure has more variation at the interface depending on where it lies on areas of

high circulation.

The three-dimensional case with two constant phases is shown in Figure 5.11, with

ν1 = 2 × 10−4 m2 s−1, ν2 = 10−4 m2 s−1. Other fluid properties are the same as for

the previous single phase case in Section 5.2.1. Both temperature and density are
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Figure 5.10: Mixing measures at 300 s for two-dimensional two-phase melter with
differentially heated cavity dimensions.

Figure 5.11: Thee-dimensional vitrification case with a two fluid phases.
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radially symmetric in Figures 5.12 and 5.13, but temperature has almost reached θH

everywhere by 60 s. Since viscosity is constant in each phase, Figure 5.14 shows clear

movement of and mixing between phases caused by convective flow. This is confirmed

by the velocity field in Figure 5.15. The flow behaviour closely resembles the two-

dimensional case, justifying the use of two-dimensional simulations in preliminary

investigations.

Figure 5.12: Density in x = 0 and y = 0 planes at 60 s for two-phase melter with
differentially heated cavity dimensions.

Figure 5.13: Temperature in x = 0 and y = 0 planes at 60 s for two-phase melter with
differentially heated cavity dimensions.
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Figure 5.14: Viscosity in x = 0 and y = 0 planes at 60 s for two-phase melter with
differentially heated cavity dimensions.

Figure 5.15: Velocity in x = 0 and y = 0 planes at 60 s for two-phase melter with
differentially heated cavity dimensions.

The FTLE in Figure 5.16 shows convective flow and circulation, whilst mixing

between phases is seen in the other measures. The interface between phases is high-

lighted, and large areas of each isolated phase shown. Both mixing entropy (both

phases) and the global mixing measure in Figure 5.17 show mixing increasing with

time. By 120 s the rate of increase is slowing, but a steady state has not yet been

reached.

The previous cases demonstrate the ability to model buoyancy-driven flow within
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Figure 5.16: Mixing measures at 120 s for three-dimensional two-phase melter with
differentially heated cavity dimensions.

Figure 5.17: Global mixing measures plotted against time for three-dimensional two-
phase melter with differentially heated cavity dimensions.

a cylindrical tank, and establish that the recently developed mDBC boundary method

is not yet reliable for use inside a cylinder. Instead, DBC are used for the following

melter cases.



5.2. CONSTANT VISCOSITY 185

5.2.3 Modelling a Vitrification Melter

geometry H R
i 0.0386 0.0193
ii 1 0.18
iii 0.504 0.252

Table 5.1: Dimensions in metres used for vitrification cases.

The exact geometry of the vitrification melter is not known, but from the 100 l

capacity two potential pairs of dimensions are chosen in Table 5.1 as geometries ii

and iii. Geometry i is used in the previous sections of this chapter and based on

the dimensions for the differentially heated cavity case in Section 4.4. Following the

success of these cases, geometry iii is also chosen so that H = 2R.

parameter value
ρ 3000 kg m−3

ν 6.7× 10−4 m2 s−1

Cp 900 J kg−1 K−1

k 1.14 W m−1 K−1

β 3.3×10−6 K−1

g −9.81 m s−2

Table 5.2: Typical material and thermal parameters for borosilicate glass used in
vitrification simulations.

Geometry ii is run with smoothing length h = 2.0dx, which was required for

accurate results in Section 4.4. The density and viscosity of the fluid are also changed

to be within a reasonable range for borosilicate glass, as in Table 5.2 where thermal

parameters are also stated. For the initial cases viscosity is constant. As previously,

density diffusion is included, but temperatures are increased to θC = 1073 K and

θH = 1323 K with reference temperature θ = θH .

For this case there is no significant heating, and density and velocity are not sym-

metric, as seen in Figure 5.18. Therefore, the expected circulation due to buoyancy-

driven flow does not take place. Around 13 s, large fluctuations in density occur within

the fluid and many particles are excluded due to exceeding density limits. This is most

likely due to accumulation of a numerical error, which was less significant for the cases

with geometry i. Increasing the density diffusion coefficient to attempt to dissipate

the density variation does not resolve the issue. Increasing the resolution, modifying

the shifting coefficient and smoothing length also have no effect.
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Figure 5.18: Density and temperature in x = 0 and y = 0 planes at 10 s for single
phase melter with geometry ii.

Melter geometry iii is proposed where H = 2R, as for geometry i used for the initial

vitrification cases. The tank volume is maintained at 100 l, therefore 2πR3 = 0.1 m3

and R = 0.252 m, H = 0.504 m. The single fluid phase has constant viscosity

ν = 1.6 × 10−3 m2 s−1, density ρ = 3000 kg m−3 and is run with particle spacing

dx = 0.01 m and smoothing length h = 2.0dx. At 5 s in Figure 5.19, heating is

beginning to take place. However, this case also suffers from an instability around 6

s, which causes rapid mixing of particles and then exclusion due to exceeding density

limits. Significant variation in density can be seen at 5 s in Figure 5.20. Along

with the previous results with geometry ii, this suggests that the problem stems from
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Figure 5.19: Temperature in x = 0 and y = 0 planes at 5 s for single phase melter
with geometry iii.

Figure 5.20: Density in x = 0 and y = 0 planes at 5 s for single phase melter with
geometry iii.

more complex physics involved in the vitrification melter which the model is unable

to capture.

An investigation of the influence of key dimensionless numbers, listed in Table 5.3,

is undertaken to establish if there is any link to the instability found. Since the above

cases for geometries ii and iii have little to no movement before the onset of instability,

a characteristic velocity is determined through dimensional analysis. A commonly used
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geometry Re Ra Pr
i 8.8× 101 1.8× 104 4.7× 100

ii 1.9× 102 2.9× 107 1.6× 103

iii 2.8× 101 1.5× 106 3.8× 103

Table 5.3: Values of dimensionless numbers for vitrification geometries with initial
parameters.

form is

v =
√

2gLβ(∆θ). (5.1)

Characteristic velocity is computed in this way for all geometries for consistency.

Figure 5.21: Density in x = 0 and y = 0 planes at 10 s for single phase melter with
geometry i and constant ν = 3× 10−4 m2 s−1.

Geometry i is run with similar Reynolds number to geometry iii, by increasing the

viscosity by three times to obtain Re = 29. Heating takes place and the density is

symmetrical as expected in Figures 5.21 and 5.22. Buoyancy-driven circulation also

takes place, and there is no sign of the instability seen for the larger geometries, despite

the lower Re. On the other hand, increasing the Reynolds number of geometry iii by

reducing the viscosity by three times for Re = 91, similar to i in Table 5.3, finds the

instability occurring again. This shows that the Reynolds number is not critical in the

appearance of this instability.

Instead, the initial density of case iii is reduced to ρ = 30 kg m−3 so that the

Rayleigh number is of the same order of magnitude as case i. Here, the instability

does not appear and density remains within the prescribed limits. Heating takes
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Figure 5.22: Temperature in x = 0 and y = 0 planes at 10 s for single phase melter
with geometry i and constant ν = 3× 10−4 m2 s−1.

Figure 5.23: Temperature in x = 0 and y = 0 planes at 300 s for single phase melter
with geometry iii and ρ = 30 kg m−3.

place in Figure 5.23 and circulation can be seen in Figure 5.24, remaining after 300

s. Circulation is shown by the FTLE plotted in Figure 5.25, especially where hotter

fluid is rising next to the curved boundary, and the velocities are comparable to those

expected from the literature review of order 10−3 m s−1. These results demonstrate

that the instability found is connected to the Reynolds number of the flow. It appears

when Ra is much higher, and therefore heat transfer is dominated by convection.

Keeping the kinematic viscosity fixed, the Reynolds number remains unchanged.
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Figure 5.24: Velocity in x = 0 and y = 0 planes at 300 s for single phase melter with
geometry iii and ρ = 30 kg m−3.

Figure 5.25: FTLE in y = 0 plane at 300 s for single phase melter with geometry iii
and ρ = 30 kg m−3.

The Prandtl number, also listed in Table 5.3, is three orders of magnitude greater

for the melter cases than for case i. A large Pr results in a thin thermal boundary

layer, as seen previously in cases ii and iii, which is much thinner than the velocity

boundary layer. Meanwhile, the cases with geometry i have a Prandtl number of

order 10, where the thermal and velocity boundary layers are closer in proportion.

This suggests that the model is not currently able to capture the physics in a thin

thermal boundary layer.

On the other hand, increasing the density of case i by two orders of magnitude to
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Figure 5.26: Velocity in x = 0 and y = 0 planes at 20 s for single phase melter with
geometry i and ρ = 120.4 kg m−3.

Figure 5.27: Temperature in x = 0 and y = 0 planes at 20 s for single phase melter
with geometry i and ρ = 120.4 kg m−3.

ρ = 120.4 kg m−3 also results in circulatory flow, as seen in Figure 5.26. For this case

Ra is of the same order of magnitude as i in Table 5.3, but Pr remains three orders

of magnitude smaller. The plot of temperature in Figure 5.27 shows that convection

is also taking place, and no instability appears within the first 30 s. This suggests

that a high Rayleigh number is not sufficient for the instability to appear, and a high

Prandtl number is also required.
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To run this model with a higher density, closer to that of borosilicate glass, treat-

ment of a thin thermal boundary layer at high Rayleigh number and corresponding

appropriate boundary conditions must be introduced.

5.3 Variable Viscosity

The viscosity models in Section 3.5.1 are now included for viscosities dependent on

temperature. Parameters for appropriate phase compositions are found using the melt

viscosity algorithm [144].

5.3.1 Single Phase with Temperature-Dependent Viscosity

phase A B C
25wt% HLW 13.93 -4988 -420700

Table 5.4: Parameter values for single phase vitrification case with temperature-
dependent viscosity, using the Jenckel3 model (Equation (3.83)).

The cylindrical cavity with geometry iii in Figure 5.1 is filled with a single fluid with

temperature-dependent viscosity to approximate homogeneous flow within the melter.

The Jenckel3 viscosity equation in Equation (3.83) is used with the Vitrification Test

Rig (VTR) data for a 25wt% borosilicate glass mixture. The MVA gives parameters

in Table 5.4 for input to the fluid phase. The reference viscosity, ν, is calculated from

the experimental values given for high temperatures to be 6.7× 10−4 m2 s−1.

Geometry iii is used with material parameters as in Table 5.2, but density ρ = 30

kg m−3 as was found to be successful in the previous section. Although this density is

considerably lower than found in reality, insight can still be gained into the circulation

and mixing whilst avoiding the instability found at higher Rayleigh numbers. Fig-

ure 5.28 shows that as the temperature of the fluid changes near the boundaries, the

viscosity is also reducing in Figure 5.29 according to the Jenckel3 relationship. How-

ever, the viscosity model results in viscosities two to three orders of magnitude greater

than the reference viscosity ν = 6.7 × 10−4 m2 s−1, since the viscosity computed by

Equation (3.83) is proportional to ρ−1. Therefore, little movement and no circulation

is seen within the 300 s simulated.
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Figure 5.28: Temperature in x = 0 and y = 0 planes at 120 s for single phase melter
with geometry iii, ρ = 30 kg m−3 and temperature-dependent viscosity.

Figure 5.29: Viscosity in x = 0 and y = 0 planes at 120 s for single phase melter with
geometry iii, ρ = 30 kg m−3 and temperature-dependent viscosity.

geometry Re Ra Pr
iii 5.7× 10−3 3.1× 100 1.9× 105

vitrification 1.2× 103 1.6× 109 1.79× 103

Table 5.5: Values of dimensionless numbers for vitrification geometry iii with reduced
density.

Furthermore, the increased viscosity results in a much lower Reynolds number,

as in Table 5.5, which is no longer comparable to the original case with geometry
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iii. The Prandtl number for this case is also much greater, so again the thermal

boundary layer is very thin. Although there are some small variations in density, the

previously observed instability does not appear within the 300 s simulated. Therefore,

confirming that both high Rayleigh number and high Prandtl number are necessary

for the instability to appear.

Compared to the values found for a real melter in Section 2.2.2 of the literature

review, and rewritten in Table 5.3, the Reynolds number is six orders of magnitude

smaller. Therefore, the proposed case may not capture all the physics of the flow

taking place during vitrification. For realistic vitrification flows, the Rayleigh number

is significantly higher, as expected with the higher density, but the Prandtl number is

lower, so it is unclear whether the instability would appear with these values.

5.3.2 Two Phases with Temperature-Dependent Viscosity

phase phase number A B C
38wt% HLW 1 13.03 -5715 -536800
glass frit 2 15.83 -3443 -174200

Table 5.6: Parameter values for two phase vitrification case with temperature-
dependent viscosity, using the Jenckel3 model (Equation (3.83)).

Next, it is assumed that the mixture inside the melter has separated into one phase

of purely borosilicate glass and another glass phase containing all the HLW being

vitrified. Therefore, the base glass frit and the Magnox blend with 38wt% HLW from

the VTR are chosen as inputs to the MVA, with the Jenckel3 model in Equation (3.83).

The resulting parameters for each phase are shown in Table 5.6. Again, a constant

initial density of ρ = 30 kg m−3 is used. The reference viscosity of ν = 6.7 × 10−4

m2 s−1 is used for both phases, so they differ only in the parameters used.

Heating and corresponding change in viscosity adjacent to the curved boundary

is seen in Figures 5.30 and 5.31. The difference in viscosity between high and low

temperatures is greater in phase 2 (the glass frit), showing the effect of different vis-

cosity parameters in each phase. As in the single phase case in Section 5.3.1, the

Reynolds number is low and there is little movement and no circulation within the

first few minutes of simulation. There are again very small variations in density, but

no appearance of the instability. The global mixing measure in Figure 5.32 confirms
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Figure 5.30: Temperature in x = 0 and y = 0 planes at 60 s for two-phase melter with
geometry iii, ρ = 30 kg m−3 and temperature-dependent viscosity.

Figure 5.31: Viscosity in x = 0 and y = 0 planes at 60 s for two-phase melter with
geometry iii, ρ = 30 kg m−3 and temperature-dependent viscosity.

that overall mixing in the y = 0 plane is increasing, but remains at a low value by 300

s.

5.4 Concluding Remarks

The initial cases with geometry i demonstrated buoyancy-driven circulation within

a cylindrical tank heated at the curved wall. When two phases are present, the flow
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Figure 5.32: Global mixing measure (VF-FTLE) with time for two-phase melter with
geometry iii, ρ = 30 kg m−3 and temperature-dependent viscosity.

causes gradual mixing between the phases. Local mixing measures show the movement

of phases, while the distinctions of the new VF-FTLE are accentuated where the

regions of high circulation lie. The global mixing measures give insight into the overall

degree of mixing achieved at an instant, as well as the progress towards homogeneity

over time.

Further cases with dimensions estimating those of a vitrification melter are also run

but, although some initially show heating, an instability occurs. This is determined to

be related to thin thermal boundary layers present in these cases and can be avoided by

decreasing the Rayleigh number by two orders of magnitude. To simulate these cases

with realistic Rayleigh number, further modifications must be made to the model so

that it can resolve the physics present in a thin thermal boundary layer at high Prandtl

numbers. Further understanding of the cause would be gained by performing related

experiments of two-phase mixing in a heated cylindrical cavity, which could then be

simulated using this model for comparison.

In the first case there is also loss of particles through layers of boundary particles.

It is likely caused by the cylindrical geometry and requires extra consideration of the

mDBC extrapolation process for such cases. For later cases, the DBC is used instead,

but this method is known to produce inaccurate densities and velocity gradients near

boundaries.

When including variable viscosity through the temperature-dependent viscosity
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equations, the kinematic viscosity depends also on density. Therefore, reducing the

Rayleigh number to avoid instability by decreasing density also decreases the Reynolds

number of the case significantly. Consequently, the temperature-dependent viscosity

cases do not show formation of circulatory flow in the time frames currently simulated.



Chapter 6

Conclusions and Recommendations

6.1 General Conclusions

This thesis aimed to produce a model of mixing of separated phases during the vitri-

fication of High Level Waste (HLW) in order to determine under what criteria these

phases are fully mixed or remain separated in the vitrified product.

To do this, a literature review was first conducted in Chapter 2 to understand the

vitrification process and why separation occurs, as well as current models for vitrific-

ation and the state of the vitrified product. A gap was identified in the modelling of

mixing within the melter, with most models focussing on melting within the cold cap

or pouring from the melter. Due to the dangerous nature of the materials concerned,

many models regarding separation of the vitrified product are empirical and do not

simulate the physical processes. Key dimensionless numbers are identified and calcu-

lations performed using available parameter values. As a result, it is determined that

surface tension is negligible, whilst convection is key for both heat transfer and fluid

dynamics. Methods for measuring the state of mixing quantitatively at a given time

are also investigated.

To determine the best modelling approach, existing work using Computational

Fluid Dynamics (CFD) for mixing and multi-phase flows was reviewed, leading to the

choice of Smoothed Particle Hydrodynamics (SPH) as the method for this work. Its

mesh-free formulation makes it ideally suited to the mixing and flows taking place

during vitrification. In particular, large deformations within the fluid can be modelled

without any requirement for re-meshing. SPH can also follow the interface between

198
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phases naturally, even as it deforms or becomes inter-connected. Previous work in the

literature using SPH has modelled multi-component flows, especially focussing on air

and water phases.

The existing open-source software DualSPHysics [55], which has been rigorously

validated, is chosen as a basis for the computational model. A number of modifications

and additions are made to tailor it to the requirements of the vitrification model, as

described in Chapter 3. This is the first time that these functionalities have been

introduced together, so that new physics of buoyancy-driven flow of multiple phases

driven by heated boundaries can be investigated. All changes are made to both the

central processing unit (CPU) and graphics processing unit (GPU) code, so the model

can be run on either to take advantage of available hardware.

Firstly, arrays are added for viscosity and temperature variables, and can also be

included in output files. In the current release, viscosity is a constant parameter and

all cases are isothermal. The viscous term in the governing momentum equation is

modified so that the value of the average viscosity of the two interacting SPH particles

is used in place of the constant case viscosity. Alternative viscous operators are also

considered in Section 3.3.6, taking into account the potential variations in viscosity

for the intended model.

A governing equation for temperature is added, allowing a change in temperature to

occur where there is a difference in temperature between neighbouring SPH particles.

Heating is included by applying a constant temperature to a boundary. To model

buoyancy-driven flows, the Boussinesq approximation is adopted and included in the

momentum equation calculations. Therefore, the density is not directly dependent on

the temperature.

Multiple phases are included by extending the recently released non-Newtonian

multi-phase code [68], with viscosity options added so that each phase can have a

constant viscosity or follow a temperature-dependent equation with its own set of

parameters. Modifications allow these phase options to also be applied to boundary

phases. An adiabatic option is developed, based on the modified dynamic boundary

condition (mDBC) method, and is included to be applied to boundary phases. All new

options can be specified to use in the input xml case file, with examples in Appendix A.

The mixing measures to be investigated and used in this work are outlined in
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Section 3.6. A new measure is also defined as a combination of existing measures,

which is later demonstrated to provide further insight into the mixing process where

existing measures cannot. By combing both volume fraction (VF) and finite-time

Lyapunov exponent (FTLE), regions of separated phases can be identified as well as

structures of the flow which are causing or inhibiting mixing. The new measure is one

of the novel contributions of this thesis.

Each addition to the model is rigorously validated in Chapter 4 with a range of

test cases. Where possible, an analytical solution is used. In the cases of the lid-driven

cavity (Section 4.3) and differentially heated cavity (Section 4.4), results are compared

with well-regarded numerical results from the literature. Where this is missing for the

two-phase lid-driven cavity in Section 4.3.3, a benchmark solution is obtained using

commercial software. This validation ensures that the model is working as designed

and can give reasonable results for vitrification, in order to better understand the

mixing process.

Finally, in Chapter 5 a model vitrification case is proposed. Initial cases with

constant viscosity show promising circulation driven by buoyancy. However, when

parameters closer to those expected for vitrification are used the simulation suffers

an instability. This is determined to be related to both the Rayleigh and Prandtl

numbers. By reducing the density, single and two-phase cases with constant and

temperature-dependent viscosities are run and both the flow and mixing behaviour

observed.

The numerical models should be useful to CFD modellers and industrial engineers

in fields where vitrification and similar mixing processes take place.

6.2 Detailed Conclusions and Key Results

The objectives listed in Section 1.4 are each met, as described above. Conclusions

on the aim of modelling mixing of separated phases during vitrification are given in

Section 6.2.4. Here, key results found during each part of this work are highlighted.



6.2. DETAILED CONCLUSIONS AND KEY RESULTS 201

6.2.1 Mixing Multiple Viscous Phases and Flow Instability

The capability of modelling two phases of the same density but different viscosity

is demonstrated by the two-phase Poiseuille flow in in Section 4.2.2, where velocity

along the channel closely matches the analytical solution. This SPH model is also

able to correctly predict the onset of long-wavelength instabilities which appear at

the interface under certain combinations of parameters. Moreover, the growth rate

is accurately replicated and the interface can be seen deforming as the instability

progresses. It is not possible to obtain these results using a mesh-based volume-of-

fluid (VOF) method, where the interface must be reconstructed. The accuracy of the

instability growth rate when compared to an analytical solution implies that the Shao

and Lo [205] viscous operator is sufficient for these cases.

6.2.2 Buoyancy-Driven Flow

The effectiveness of the chosen form of the governing equation for temperature is shown

by the successful formation of the temperature gradient within a cavity heated at one

side in Section 4.4.1. Furthermore, the adoption of the Boussinesq approximation for

buoyancy-driven flow produces good results for the differentially heated cavity case

in Section 4.4.2. A larger smoothing length was required to increase the accuracy of

results, but these remain close to the benchmark results when extended to a pseudo-

3D case with periodic boundary. A new method to enforce an adiabatic boundary

condition, based on the new mDBC option in DualSPHysics, improved temperature

gradients in proximity of the respective boundary.

6.2.3 New Mixing Measure

Each of the mixing measures in Section 3.6 was applied to the case of a two-phase

lid-driven cavity in Section 4.3.3. The commonly found single-phase case was also run

in Section 4.3.2 as an example of mechanically-driven mixing. Both the VF and FTLE

were found to give useful insights into the degree of mixing, whilst neither showed the

full picture. Using the VF shows where phases are at an instant of time, whereas the

FTLE highlights flow structures where the most movement between SPH particles is

taking place.
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A new mixing measure was defined which combines both VF and FTLE to gain

the advantages of both in one measure. The new measure is found to give close results

to the local mixing measure of Robinson [188] is some cases, whilst in others clear

differences are seen where the FTLE, and correspondingly relative particle movement,

is low. Therefore, the novelty of this measure is to give information about both the

state mixing in terms of phase location and relative movement over time in one value.

A global mixing measure is also derived from the new VF-FTLE mixing measure which

can be plotted against time, allowing observation of the change in degree of mixing. In

this way, it can be seen whether mixing is continuing to increase or reaching a steady

state where the phases are never fully mixed.

6.2.4 Vitrification Model

Vitrification is modelled in Chapter 5 by defining a simplified case which includes the

key physical processes. This is an exploratory application reliant on the previously

validated SPH model. It is found that the model can successfully simulate buoyancy-

driven circulation within a cylindrical tank with heated walls. This is demonstrated by

the plots of temperature, velocity vectors and FTLE. Furthermore, with two phases of

constant viscosity the mixing measures show the change in distribution of each phase

and the global measure shows the degree of mixing increasing with time.

Increasing the tank to the proposed melter geometry with a realistic density was

found to be unstable when the thermal boundary layer is thin. However, cases with

a reduced density, and therefore lower Rayleigh and Prandtl numbers, showed the

model runs successfully when the thermal boundary layer is closer in thickness to the

velocity boundary layer. Additional developments are needed to simulate cases with

very thin thermal boundary layers, as well as further investigation into the cause of

the instability.

Introducing temperature-dependent viscosity with parameters from the melt vis-

cosity algorithm has a significant effect on the viscosity of the fluid phases where

heating has taken place. However, the lower density required for stability results in

large kinematic viscosities and small Reynolds numbers. Therefore, circulation is not

seen for these cases.
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6.2.5 Limitations of the Model and Validation Tests

The instability investigated in detail, which appears in two-phase Poiseuille flow, is

considered only in two dimensions. Therefore, the model is not directly validated for

an instability occurring in a three-dimensional flow. Understanding of the vitrification

case in Chapter 5 and the origin of the instabilities found is limited by the lack of

literature on this particular case. No numerical or experimental work could be found

on a filled cylindrical tank heated through the curved surface. The case has not

currently been run for the lengths of time vitrification takes place in practice.

The SPH formulation limits accuracy in some places. The order of convergence of

conventional SPH methods is low and, although it is increased by modifications such

as the mDBC, further improvements exist which could be implemented. The low order

of convergence means a high resolution is needed to reach a high accuracy solution.

The resulting large number of particles increases computation time, particularly for

three-dimensional simulations.

The physics included in the model is limited by the time taken to both add to

the code and validate sufficiently rigorously during this project. The key physical

processes were chosen as priorities, but others may still have some effect of the results.

For example, internal heating due to radiation contributes to the overall heating within

the melter. Since the model is no longer isothermal, an equation of state including

temperature may improve results for the cases where heating is significant.

The idealised vitrification case in Chapter 5 assumes the mixture is already sep-

arated into two phases. The phases chosen currently are the best approximations

found in the Melt Viscosity Alogirthm (MVA) data, so may not truly represent the

composition of the separated phases.

6.3 Recommendations for Future Research

There are a number of different directions further work on this model could take. Some

suggestions are listed below.
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6.3.1 Three-Dimensional Investigation of the Poiseuille Flow

Instability

To validate a three-dimensional instability, the two-phase Poiseuille flow case could be

extended to a pseudo-three-dimensional case, as the differentially heated cavity was in

Section 4.4.2.1. More thoroughly, a review into whether a three-dimensional case has

been previously investigated, either numerically or analytically, should be undertaken.

If suitable results are found then they can be used to validate the model, otherwise a

related case of two-phase flow could be used for validation.

6.3.2 Improvements to the SPH Formulation

To increase the accuracy of the solution at a reasonable resolution, a high-order for-

mulation should be included. Many high-order methods use an incompressible SPH

(ISPH) formulation. The method of Lind and Stansby [126] is developed in ISPH, but

is also demonstrated for an Arbitrary-Lagrangian–Eulerian (ALE) approach which

may be integrated with the current physics included in this model.

Modifications need to be made in order to accurately model the thin thermal

boundary layer present in the vitrification melter cases. Recent work by Hosain et al.

[94] using SPH to model heat transfer in industrial processes acknowledges that the

thermal boundary layer is not fully resolved by current SPH models. Advanced treat-

ments need to be developed, for example variable resolution in the thermal boundary

layer or more accurate temperature boundary conditions [94].

6.3.3 Experimental Investigation of Two-Phase Vitrification

in a Thermally Heated Domain

Since the proposed melter case in Chapter 5 is an estimation of the geometry and

composition involved in vitrification, and there are no measurements during the pro-

cess itself, it would be valuable to undertake a series of corresponding experiments.

The physical model can then be used to validate two-phase convective flow driven by

heating through the curved wall of a cylindrical tank, and any physical phenomena or

instabilities present can be better understood.
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Measurements of the location of each phase at a series of times could be used for

comparisons with the VF results from the model. Additionally, use of a tracer dye

would reveal the locations of manifolds of the flow which could be compared with

the FTLE. A standard deviation of phase concentration could be plotted against the

global measures of the computational data and the rate of change of mixing compared.

6.3.4 Further Development of Vitrification Model

Greater understanding of the source of the instability from experiments would allow

longer periods of time to be simulated, closer to the hours taken for vitrification to

complete. This knowledge would also determine whether density differences contribute

to the instability and loss of SPH particles, or whether different phase densities can

then be included, given the difference is small, without changes to the SPH formulation.

Viscometry measurements for the expected separated phase compositions, which

are known to be silica-rich and borate-rich respectively, would provide new input data

for the melt viscosity algorithm [144]. This would produce more accurate viscosity

model parameters for the two phases.

6.3.5 Additions for a More Realistic Vitrification Case

Once the simplified vitrification case is validated experimentally, the model could be

extended in different ways. For example, an air phase could be included at the top of

the tank either as an actual phase or absence of SPH particles. This would require

extra consideration into the densities involved, as the density ratio between glass and

air phases is high, even if the density ratio between separated glass phases is small.

A dependency of density on temperature could be included, as well as taking into

account temperature changes in the equation of state. Although the current equation

of state performs well in the validation cases, tailoring it to the material concerned

may improve results for the vitrification case.

Alternatively, the model could be developed to include chemical phenomena which

are known to be present. The high levels of radioactivity contribute to heating, mean-

ing the waste-containing phase itself could be included as a heat source. A mechanism

for phase separation under certain conditions could also be investigated, with the fluid
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beginning as a single phase. Thus, a homogeneous vitrified product could also be

achieved when no phase separation takes place.

The model could also be extended to include additional physical processes involved

in vitrification. Glass frit enters the melter as a solid and melts within the cold cap.

The effect on the convective flow of the gradual addition of molten glass may influence

mixing of any separated phases. Separation of phases and further mixing can also

occur during pouring into Vitrification Product Container (VPC)s and subsequent

cooling. Pouring of vitrified waste has been investigated previously using numerical

models, but the longer timescales involved in cooling would make it difficult to include

in the same model.

6.3.6 Extending the New Mixing Measure

Currently, the new mixing measure defined in Section 3.6.5 can be applied to only two

phases. Since its benefit of quantifying both phase position and particle movement in

a single value would be beneficial in many applications, it would be advantageous to

extend the measure to three or more phases. The FTLE component is independent of

phase, but the VF component must be modified. This should take into account how

the local volume fraction of all phases present compares to its corresponding global

fraction.

6.3.7 Further Code Development

In order for internal heating to be included, a heat source term must be added to the

governing equation for temperature. The development of a heterogeneous Neumann

boundary condition for temperature would also allow heating to be applied through

a flux. Similar to the adiabatic boundary method developed in this work, viscosity

could also be extrapolated into the boundary using a method based on mDBC.

The code modifications and developments currently made for this model require

further validation before being included in a future release of DualSPHysics. Many

of the additions are applicable to a wide variety of cases which may be of interest

to users of the software. In particular, inclusion of the mixing measures to the post-

processing tools would provide insight into many cases both with multi-phase and,
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with the FTLE, single phase flow.

For three-dimensional simulations, the numbers of particles can be very large for

a resolution that captures the significant physical processes. In the pseudo-three-

dimensional differentially heated cavity case the smoothing length required for an

accurate solution was greater than in two dimensions, increasing computation time as

the number of particles included in each summation is greater. Extending the SPH

formulation to a multi-GPU implementation would decrease computation time and

allow higher resolution simulations to be run.
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Appendix A

Example xml Case Files

A.1 Two-Phase Poiseuille Flow with Constant Vis-

cosities

<case>

<c a s ed e f>

<con s tan t sde f>

<g rav i ty x=” 0 .1 ” y=”0” z=”0” comment=” Grav i t a t i ona l a c c e l e r a t i o n ” units comment

=”m/ s ˆ2” />

<rhop0 value=”1000” comment=” Reference dens i ty o f the f l u i d ” units comment=”kg/

mˆ3” />

<hswl va lue=”0” auto=” true ” comment=”Maximum s t i l l water l e v e l to c a l c u l a t e

speedofsound us ing coefsound ” units comment=” metres (m) ” />

<gamma value=”7” comment=” Po ly t rop i c constant f o r water used in the s t a t e

equat ion ” />

<speedsystem value=”0” auto=” true ” comment=”Maximum system speed ( by d e f a u l t

the dam−break propagat ion i s used ) ” />

<coe fsound value=”1” comment=” C o e f f i c i e n t to mult ip ly speedsystem ” />

<speedsound value=”10” auto=” f a l s e ” comment=”Speed o f sound to use in the

s imu la t i on ( by d e f a u l t speedofsound=coefsound ∗ speedsystem ) ” />

<coe fh value=” 1 .0 ” comment=” C o e f f i c i e n t to c a l c u l a t e the smoothing l ength (h=

coe fh ∗ s q r t (3∗dpˆ2) in 3D) ” />

<cf lnumber value=” 0 .1 ” comment=” C o e f f i c i e n t to mult ip ly dt” />

</ cons tan t sde f>

<mkconfig boundcount=”240” f l u i d c o u n t=”9”/>

<geometry>

<d e f i n i t i o n dp=” 0 .01 ”>

<pointmin x=”−0.1” y=”0” z=”−0.6” />

<pointmax x=” 2 .1 ” y=”0” z=” 0 .6 ” />

</ d e f i n i t i o n>

<commands>

235
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<m a i n l i s t>

<setshapemode>dp | bound</ setshapemode>

<setdrawmode mode=” f u l l ” />

<s e tmkf lu id mk=”0” /> < !−−−−Phase0−−−−>
<drawbox>

<b o x f i l l>s o l i d</ b o x f i l l>

<point x=”0” y=”−2” z=”−0.5” />

<s i z e x=”2” y=”2” z=” 0 .5 ” />

</drawbox>

<s e tmkf lu id mk=”1” /> < !−−−−Phase1−−−−>
<drawbox>

<b o x f i l l>s o l i d</ b o x f i l l>

<point x=”0” y=”−2” z=” 0 .0 ” />

<s i z e x=”2” y=”2” z=” 0 .5 ” />

</drawbox>

<setmkbound mk=”1” />

<drawbox>

<b o x f i l l>s o l i d</ b o x f i l l>

<point x=”0” y=”−2” z=”−0.54” />

<s i z e x=”2” y=”2” z=” 0 .04 ” />

</drawbox>

<drawbox>

<b o x f i l l>s o l i d</ b o x f i l l>

<point x=”0” y=”−2” z=” 0 .5 ” />

<s i z e x=”2” y=”2” z=” 0 .04 ” />

</drawbox>

<shapeout f i l e=”Box” />

</ m a i n l i s t>

</commands>

</geometry>

</ ca s e de f>

<execut ion>

<s p e c i a l>

<vphases>

<phase phasetype=”0” mkfluid=”0”>

<rhop value=”1000” comment=” Density ”/>

<v i s c o value=” 0 .1 ” comment=” Kinematic v i s c o s i t y (m2/ s ) ” />

<op1 value=”0” comment=” constant v i s c o s i t y ”/>

</ phase>

<phase phasetype=”0” mkfluid=”1”>

<rhop value=”1000” comment=” Density ” />

<v i s c o value=” 0 .05 ” comment=” Kinematic v i s c o s i t y ” />

<op1 value=”0” comment=” constant v i s c o s i t y ”/>

</ phase>

<phase phasetype=”1” mkbound=”1”>

<rhop value=”1000” comment=” Density ” />

<v i s c o value=” 0 .1 ” comment=” Kinematic v i s c o s i t y ” />

<op1 value=”0” comment=” constant v i s c o s i t y ”/>
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</ phase>

</ vphases>

</ s p e c i a l>

<parameters>

<parameter key=”SavePosDouble” value=”0” comment=” Saves p a r t i c l e p o s i t i o n us ing

double p r e c i s i o n ( d e f a u l t =0)” />

<parameter key=”Boundary” value=”1” comment=”Boundary method 1:DBC, 2:mDBC” />

<parameter key=” StepAlgorithm ” value=”2” comment=” Step Algorithm 1 :Ve r l e t , 2

:Symplec t i c ( d e f a u l t =1)” />

<parameter key=” Ver l e tS teps ” value=”40” comment=” Ver l e t o n l y : Number o f s t ep s

to apply Euler t imestepp ing ( d e f a u l t =40)” />

<parameter key=” Kernel ” va lue=”2” comment=” I n t e r a c t i o n Kernel 1 :Cubic Spl ine , 2

:Wendland ( d e f a u l t =2)” />

%Choice o f r eo l ogy treatment , v e l o c i t y g rad i en t c a l c u l a t i o n and v i s c o s i t y

treatment

<parameter key=”RheologyTreatment” value=”1” comment=” Reology formulat ion 1

: S i n g l e−phase c l a s s i c , 2 : S i n g l e and multi−phase ” />

<parameter key=” VelocityGradientType ” value=”1” comment=” Ve loc i ty g rad i en t

fo rmulat ion 1:FDA , 2:SPH” />

<parameter key=” ViscoTreatment ” value=”2” comment=” V i s c o s i t y fo rmulat ion 1

: A r t i f i c i a l , 2 :Laminar+SPS , 3 : C o n s t i t u t i v e eq . ” />

<parameter key=” ViscPhases ” value=”2”/>

%Wall boundary v i s c o s i t y or /and a r t i f i c i a l v i s c o s i t y i f ViscoTreatment i s 1

: A r t i f i c i a l

<parameter key=” Visco ” value=” 0 .1 ” comment=” V i s c o s i t y value ” /> % Note alpha

can depend on the r e s o l u t i o n when us ing a r t i f i c i a l v i s c o s i t y

<parameter key=”ViscoBoundFactor” value=”1” comment=” Mult ip ly v i s c o s i t y value

with boundary ( d e f a u l t =1)” />

<parameter key=”DensityDT” value=”3” comment=” Density D i f f u s i o n Term 0:None , 1

:Molten i , 2 :Fourtakas , 3 :Fourtakas ( f u l l ) ( d e f a u l t =0)” />

<parameter key=”DensityDTvalue” value=” 0 .1 ” comment=”DDT value ( d e f a u l t =0.1) ” /

>

<parameter key=” S h i f t i n g ” value=”3” comment=” S h i f t i n g mode 0 :None , 1 : I g n o r e

bound , 2 : I g n o r e f ixed , 3 : F u l l ( d e f a u l t =0)” />

<parameter key=” Sh i f tCoe f ” va lue=”−10” comment=” C o e f f i c i e n t f o r s h i f t i n g

computation ( d e f a u l t =−2)” />

<parameter key=”ShiftTFS” value=” 1 .5 ” comment=” Threshold to de t e c t f r e e s u r f a c e

. Typ i ca l l y 1 .5 f o r 2D and 2 .75 f o r 3D ( d e f a u l t =0)” />

<parameter key=” RigidAlgorithm ” value=”1” comment=” Rigid Algorithm 0 : c o l l i s i o n −
f r e e , 1:SPH , 2:DEM, 3 :Chrono ( d e f a u l t =1)” />

<parameter key=”FtPause” value=” 0 .0 ” comment=”Time to f r e e z e the f l o a t i n g s at

s imu la t i on s t a r t (warmup) ( d e f a u l t =0)” units comment=” seconds ” />

<parameter key=”CoefDtMin” value=” 0 .05 ” comment=” C o e f f i c i e n t to c a l c u l a t e

minimum time step dtmin=coefdtmin ∗h/ speedsound ( d e f a u l t =0.05) ” />

<parameter key=” RelaxationDt ” value=” 1 .0 ” comment=” Relaxat ion parameter f o r the

v i s cou s time step r e s t r i c i t i o n ( d e f a u l t =0.2) ” />

<parameter key=” DtIni ” va lue=”0” comment=” I n i t i a l time step . Use 0 to d e f u l t

use ( d e f a u l t=h/ speedsound ) ” units comment=” seconds ” />
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<parameter key=”DtMin” value=”0” comment=”Minimum time step . Use 0 to d e f u l t

use ( d e f a u l t=coefdtmin ∗h/ speedsound ) ” units comment=” seconds ” />

<parameter key=”DtFixed” value=”0” comment=” Fixed Dt value . Use 0 to d i s a b l e (

d e f a u l t=d i s ab l ed ) ” units comment=” seconds ” />

<parameter key=” DtFixedFi le ” value=”NONE” comment=”Dt va lue s are loaded from

f i l e . Use NONE to d i s a b l e ( d e f a u l t=d i s ab l ed ) ” units comment=” m i l l i s e c o n d s (ms) ” /

>

<parameter key=” D t A l l P a r t i c l e s ” va lue=”0” comment=” Ve loc i ty o f p a r t i c l e s used

to c a l c u l a t e DT. 1 :A l l , 0 :Only f l u i d / f l o a t i n g ( d e f a u l t =0)” />

<parameter key=”TimeMax” value=” 20 .0 ” comment=”Time o f s imu la t i on ”

units comment=” seconds ” />

<parameter key=”TimeOut” value=” 0 .05 ” comment=”Time out data ” units comment=”

seconds ” />

<parameter key=”PartsOutMax” value=”1” comment=”%/100 o f f l u i d p a r t i c l e s

a l lowed to be excluded from domain ( d e f a u l t =1)” units comment=” decimal ” />

<parameter key=”RhopOutMin” value=”500” comment=”Minimum rhop v a l i d ( d e f a u l t

=700)” units comment=”kg/mˆ3” />

<parameter key=”RhopOutMax” value=”3000” comment=”Maximum rhop v a l i d ( d e f a u l t

=1300)” units comment=”kg/mˆ3” />

<parameter key=” XPeriodicIncZ ” value=”0” comment=” I n c r e a s e o f Z with p e r i o d i c

BC” />

</ parameters>

</ execut ion>

</ case>

A.2 Two-Phase Vitrification Melter with Temperature-

Dependent Viscosities

<case>

<c a s ed e f>

<cons tan t sde f>

<g rav i ty x=” 0 .0 ” y=”0” z=”−9.81” comment=” Grav i t a t i ona l a c c e l e r a t i o n ”

units comment=”m/ s ˆ2” />

<rhop0 value=”30” comment=” Reference dens i ty o f the f l u i d ” units comment=”kg/m

ˆ3” />

<hswl va lue=”0” auto=” true ” comment=”Maximum s t i l l water l e v e l to c a l c u l a t e

speedofsound us ing coefsound ” units comment=” metres (m) ” />

<gamma value=”7” comment=” Po ly t rop i c constant f o r water used in the s t a t e

equat ion ” />

<speedsystem value=”0” auto=” true ” comment=”Maximum system speed ( by d e f a u l t

the dam−break propagat ion i s used ) ” />

<coe fsound value=”12” comment=” C o e f f i c i e n t to mult ip ly speedsystem ” />

<speedsound value=”10” auto=” true ” comment=”Speed o f sound to use in the

s imu la t i on ( by d e f a u l t speedofsound=coefsound ∗ speedsystem ) ” />

<hdp value=” 2 .0 ” comment=” C o e f f i c i e n t to c a l c u l a t e the smoothing l ength ( hdp=h/

dp) ” />
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<cf lnumber value=” 0 .1 ” comment=” C o e f f i c i e n t to mult ip ly dt” />

</ cons tan t sde f>

<mkconfig boundcount=”240” f l u i d c o u n t=”9”/>

<geometry>

<d e f i n i t i o n dp=” 0 .01 ”>

<pointmin x=”−0.355” y=”−0.355” z=”−0.105” />

<pointmax x=” 0 .35 ” y=” 0 .35 ” z=” 1 .0 ” />

</ d e f i n i t i o n>

<commands>

<m a i n l i s t>

< !−− r e a l boundary i n t e r f a c e at a d i s t ance o f dp/2 ( ac tua l geometry ) −−>
<setshapemode>ac tua l | bound</ setshapemode>

<setmkbound mk=”0”/>

<setdrawmode mode=” f a c e ”/>

<setfrdrawmode auto=” true ”/>

<s e tno rma l inve r t i n v e r t=” true ”/>

<drawcyl inder rad iu s=” 0.252 ” mask=”0”>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0 .0 ”/>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.504 ”/>

</ drawcyl inder>

<matr i x r e s e t />

< !−− Save geometry f i l e and remove p a r t i c l e s −−>
<shapeout f i l e=”hdp” />

<setmkvoid />

<redraw />

< !−− p a r t i c l e gene ra t i on −−>
<setmkbound mk=”1” /> < !−−curved bound−−>
<setdrawmode mode=” f a c e ”/>

<drawcyl inder rad iu s=” 0.257 ” mask=”1 | 2”>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.005 ”/>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.499 ”/>

< l a y e r s vdp=” 0 ,1 ,2 ,3 , 4 ”/>

</ drawcyl inder>

<setdrawmode mode=” f u l l ”/>

<setmkbound mk=”2”/> < !−−bottom−−>
<drawcyl inder rad iu s=” 0.307 ” mask=”0”>

<point x=” 0 .0 ” y=” 0 .0 ” z=”−0.055”/>

<point x=” 0 .0 ” y=” 0 .0 ” z=”−0.005”/>

</ drawcyl inder>

<setmkbound mk=”3”/> < !−−top−−>
<drawcyl inder rad iu s=” 0.307 ” mask=”0”>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.509 ”/>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.559 ”/>

</ drawcyl inder>

<setdrawmode mode=” f u l l ”/>
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<s e tmkf lu id mk=”0” /> < !−−bottom f l u i d−−>
<drawcyl inder rad iu s=” 0.247 ” mask=”0”>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.005 ”/>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.252 ”/>

</ drawcyl inder>

<s e tmkf lu id mk=”1” /> < !−−top f l u i d−−>
<drawcyl inder rad iu s=” 0.247 ” mask=”0”>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.252 ”/>

<point x=” 0 .0 ” y=” 0 .0 ” z=” 0.499 ”/>

</ drawcyl inder>

<setfrdrawmode auto=” f a l s e ”/>

<newvar tempH=”1050+273” tempC=”800+273” /> < !−−d e f i n e temperatures−−>
</ m a i n l i s t>

</commands>

</geometry>

<normals>

<d i s tanceh value=” 2 .0 ” comment=”Smooth fac to r , i t uses H∗ d i s tanceh ( d e f a u l t =2)”

/>

<g e o m e t r y f i l e f i l e=” [ CaseName ] hdp Actual . vtk ” comment=”Name o f f i l e with

boundary geometry” />

<svshapes va lue=”1” comment=” ( d e f a u l t =0)”/>

</ normals>

</ ca s e d e f>

<execut ion>

<s p e c i a l>

<vphases> %Def ines phase parameters

<phase phasetype=”0” mkfluid=”0”> < !−−f l u i d 0 bottom g l a s s−−>
<rhop value=”30” comment=” Density o f the phase ”/>

<v i s c o value=” 0.00067 ” comment=” Kinematic v i s c o s i t y ( or c o n s i s t e n c y index )

va lue f o r phase (m2/ s ) ”/>

<temp0 value=”#tempC” comment=” i n i t i a l temperature ”/>

<cp value=”900” comment=” s p e c i f i c heat ”/>

<k value=” 1 .14 ” comment=” thermal conduc t i v i ty ”/>

<Tref va lue=”#tempH” comment=” r e f e r e n c e temperature ”/>

<beta value=” 0.0000033 ” comment=” c o e f f i c i e n t o f thermal expansion ”/>

<op1 value=”2” comment=” v i s c o s i t y opt ion 1 : 0−constant ; 1−Wall\&Wilson

equat ions ; 2−melt v i s c o s i t y a lgor i thm ”/>

<op2 value=”3”/> < !−− Jencke l3 −−>
<c s t1 value=” 15 .83 ”/>

<c s t2 value=”−3443”/>

<c s t3 value=”−174200”/>

<tempop value=”1” comment=” temperature o p t i o n : 0−constant ; 1−temperature

governing equat ion ; 2−temperature f i e l d ”/>

</ phase>

<phase phasetype=”0” mkfluid=”1”> < !−−f l u i d 1 top inc . waste−−>
<rhop value=”30” comment=” Density o f the phase ”/>

<v i s c o value=” 0.00067 ” comment=” Kinematic v i s c o s i t y ( or c o n s i s t e n c y index )

va lue f o r phase (m2/ s ) ”/>
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<temp0 value=”#tempC” comment=” i n i t i a l temperature ”/>

<cp value=”900” comment=” s p e c i f i c heat ”/>

<k value=” 1 .14 ” comment=” thermal conduc t i v i ty ”/>

<Tref va lue=”#tempH” comment=” r e f e r e n c e temperature ”/>

<beta value=” 0.0000033 ” comment=” c o e f f i c i e n t o f thermal expansion ”/>

<op1 value=”2” comment=” v i s c o s i t y opt ion 1 : 0−constant ; 1−Wall\&Wilson

equat ions ; 2−melt v i s c o s i t y a lgor i thm ”/>

<op2 value=”3”/> < !−− Jencke l3 −−>
<c s t1 value=” 13 .03 ”/>

<c s t2 value=”−5715”/>

<c s t3 value=”−536800”/>

<tempop value=”1” comment=” temperature o p t i o n : 0−constant ; 1−temperature

governing equat ion ; 2−temperature f i e l d ”/>

</ phase>

<phase phasetype=”1” mkbound=”0”> < !−−ac tua l boundary s u r f a c e f o r mDBC−−>
<rhop value=”30” comment=” Density o f the phase ”/>

<v i s c o value=” 0.00067 ” comment=” Kinematic v i s c o s i t y ( or c o n s i s t e n c y index )

va lue f o r phase (m2/ s ) ”/>

<temp0 value=”#tempH” comment=” i n i t i a l temperature ”/>

<cp value=”900” comment=” s p e c i f i c heat ”/>

<k value=” 1 .14 ” comment=” thermal conduc t i v i ty ”/>

<op1 value=”0” comment=” v i s c o s i t y opt ion 1 : 0−constant ; 1−Wall\&Wilson

equat ions ; 2−melt v i s c o s i t y a lgor i thm ”/>

<tempop value=”0” comment=” temperature o p t i o n : 0−constant ; 1−temperature

governing equat ion ; 2−temperature f i e l d ; 3−a d i a b a t i c (mDBC) ”/>

</ phase>

<phase phasetype=”1” mkbound=”1”> < !−−curved boundary−−>
<rhop value=”30” comment=” Density o f the phase ”/>

<v i s c o value=” 0.00067 ” comment=” Kinematic v i s c o s i t y ( or c o n s i s t e n c y index )

va lue f o r phase (m2/ s ) ”/>

<temp0 value=”#tempH” comment=” i n i t i a l temperature ”/>

<cp value=”900” comment=” s p e c i f i c heat ”/>

<k value=” 1 .14 ” comment=” thermal conduc t i v i ty ”/>

<op1 value=”0” comment=” v i s c o s i t y opt ion 1 : 0−constant ; 1−Wall\&Wilson

equat ions ; 2−melt v i s c o s i t y a lgor i thm ”/>

<tempop value=”0” comment=” temperature o p t i o n : 0−constant ; 1−temperature

governing equat ion ; 2−temperature f i e l d ; 3−a d i a b a t i c (mDBC) ”/>

</ phase>

<phase phasetype=”1” mkbound=”2”> < !−−bottom−−>
<rhop value=”30” comment=” Density o f the phase ”/>

<v i s c o value=” 0.00067 ” comment=” Kinematic v i s c o s i t y ( or c o n s i s t e n c y index )

va lue f o r phase (m2/ s ) ”/>

<temp0 value=”#tempC” comment=” i n i t i a l temperature ”/>

<cp value=”900” comment=” s p e c i f i c heat ”/>

<k value=” 1 .14 ” comment=” thermal conduc t i v i ty ”/>

<op1 value=”0” comment=” v i s c o s i t y opt ion 1 : 0−constant ; 1−Wall\&Wilson

equat ions ; 2−melt v i s c o s i t y a lgor i thm ”/>

<tempop value=”3” comment=” temperature o p t i o n : 0−constant ; 1−temperature

governing equat ion ; 2−temperature f i e l d ; 3−a d i a b a t i c (mDBC) ”/>
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</ phase>

<phase phasetype=”1” mkbound=”3”> < !−−top−−>
<rhop value=”30” comment=” Density o f the phase ”/>

<v i s c o value=” 0.00067 ” comment=” Kinematic v i s c o s i t y ( or c o n s i s t e n c y index )

va lue f o r phase (m2/ s ) ”/>

<temp0 value=”#tempC” comment=” i n i t i a l temperature ”/>

<cp value=”900” comment=” s p e c i f i c heat ”/>

<k value=” 1 .14 ” comment=” thermal conduc t i v i ty ”/>

<op1 value=”0” comment=” v i s c o s i t y opt ion 1 : 0−constant ; 1−Wall\&Wilson

equat ions ; 2−melt v i s c o s i t y a lgor i thm ”/>

<tempop value=”3” comment=” temperature o p t i o n : 0−constant ; 1−temperature

governing equat ion ; 2−temperature f i e l d ; 3−a d i a b a t i c (mDBC) ”/>

</ phase>

</ vphases>

</ s p e c i a l>

<parameters>

<parameter key=”SavePosDouble” value=”0” comment=” Saves p a r t i c l e p o s i t i o n us ing

double p r e c i s i o n ( d e f a u l t =0)” />

<parameter key=”Boundary” value=”2” comment=”Boundary method 1:DBC, 2:mDBC” />

<parameter key=” StepAlgorithm ” value=”2” comment=” Step Algorithm 1 :Ve r l e t , 2

:Symplec t i c ( d e f a u l t =1)” />

<parameter key=” Ver l e tS teps ” value=”40” comment=” Ver l e t o n l y : Number o f s t ep s

to apply Euler t imestepp ing ( d e f a u l t =40)” />

<parameter key=” Kernel ” va lue=”2” comment=” I n t e r a c t i o n Kernel 1 :Cubic Spl ine , 2

:Wendland ( d e f a u l t =2)” />

%Choice o f r eo l ogy treatment , v e l o c i t y g rad i en t c a l c u l a t i o n and v i s c o s i t y

treatment

<parameter key=”RheologyTreatment” value=”1” comment=” Reology formulat ion 1

: S i n g l e−phase c l a s s i c , 2 : S i n g l e and multi−phase ” />

<parameter key=” VelocityGradientType ” value=”1” comment=” Ve loc i ty g rad i en t

fo rmulat ion 1:FDA , 2:SPH” />

<parameter key=” ViscoTreatment ” value=”2” comment=” V i s c o s i t y fo rmulat ion 1

: A r t i f i c i a l , 2 :Laminar+SPS , 3 : C o n s t i t u t i v e eq . ” />

%ViscPhases opt ions

<parameter key=” ViscPhases ” value=”2”/>

%Wall boundary v i s c o s i t y or /and a r t i f i c i a l v i s c o s i t y i f ViscoTreatment i s 1

: A r t i f i c i a l

<parameter key=” Visco ” value=” 0.00067 ” comment=” V i s c o s i t y value ” /> % Note

alpha can depend on the r e s o l u t i o n when us ing a r t i f i c i a l v i s c o s i t y

<parameter key=”ViscoBoundFactor” value=”1” comment=” Mult ip ly v i s c o s i t y value

with boundary ( d e f a u l t =1)” />

<parameter key=”DensityDT” value=”3” comment=” Density D i f f u s i o n Term 0:None , 1

:Molten i , 2 :Fourtakas , 3 :Fourtakas ( f u l l ) ( d e f a u l t =0)” />

<parameter key=”DensityDTvalue” value=” 1 .0 ” comment=”DDT value ( d e f a u l t =0.1) ” /

>

<parameter key=” S h i f t i n g ” value=”3” comment=” S h i f t i n g mode 0 :None , 1 : I g n o r e

bound , 2 : I g n o r e f ixed , 3 : F u l l ( d e f a u l t =0)” />
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<parameter key=” Sh i f tCoe f ” va lue=”−2” comment=” C o e f f i c i e n t f o r s h i f t i n g

computation ( d e f a u l t =−2)” />

<parameter key=”ShiftTFS” value=” 1 .5 ” comment=” Threshold to de t e c t f r e e s u r f a c e

. Typ i ca l l y 1 .5 f o r 2D and 2 .75 f o r 3D ( d e f a u l t =0)” />

<parameter key=” RigidAlgorithm ” value=”1” comment=” Rigid Algorithm 0 : c o l l i s i o n −
f r e e , 1:SPH , 2:DEM, 3 :Chrono ( d e f a u l t =1)” />

<parameter key=”FtPause” value=” 0 .0 ” comment=”Time to f r e e z e the f l o a t i n g s at

s imu la t i on s t a r t (warmup) ( d e f a u l t =0)” units comment=” seconds ” />

<parameter key=”CoefDtMin” value=” 0 .05 ” comment=” C o e f f i c i e n t to c a l c u l a t e

minimum time step dtmin=coefdtmin ∗h/ speedsound ( d e f a u l t =0.05) ” />

<parameter key=” RelaxationDt ” value=” 1 .0 ” comment=” Relaxat ion parameter f o r the

v i s cou s time step r e s t r i c i t i o n ( d e f a u l t =0.2) ” />

<parameter key=” DtIni ” va lue=” 0.0000015 ” comment=” I n i t i a l time step . Use 0 to

d e f u l t use ( d e f a u l t=h/ speedsound ) ” units comment=” seconds ” />

<parameter key=”DtMin” value=” 0.00000015 ” comment=”Minimum time step . Use 0 to

d e f u l t use ( d e f a u l t=coefdtmin ∗h/ speedsound ) ” units comment=” seconds ” />

<parameter key=”DtFixed” value=”0” comment=” Fixed Dt value . Use 0 to d i s a b l e (

d e f a u l t=d i s ab l ed ) ” units comment=” seconds ” />

<parameter key=” DtFixedFi le ” value=”NONE” comment=”Dt va lue s are loaded from

f i l e . Use NONE to d i s a b l e ( d e f a u l t=d i s ab l ed ) ” units comment=” m i l l i s e c o n d s (ms) ” /

>

<parameter key=” D t A l l P a r t i c l e s ” va lue=”0” comment=” Ve loc i ty o f p a r t i c l e s used

to c a l c u l a t e DT. 1 :A l l , 0 :Only f l u i d / f l o a t i n g ( d e f a u l t =0)” />

<parameter key=”TimeMax” value=”300” comment=”Time o f s imu la t i on ” units comment

=” seconds ” />

<parameter key=”TimeOut” value=” 0 .25 ” comment=”Time out data ” units comment=”

seconds ” />

<parameter key=”PartsOutMax” value=”1” comment=”%/100 o f f l u i d p a r t i c l e s

a l lowed to be excluded from domain ( d e f a u l t =1)” units comment=” decimal ” />

<parameter key=”RhopOutMin” value=”10” comment=”Minimum rhop v a l i d ( d e f a u l t

=700)” units comment=”kg/mˆ3” />

<parameter key=”RhopOutMax” value=”50” comment=”Maximum rhop v a l i d ( d e f a u l t

=1300)” units comment=”kg/mˆ3” />

</ parameters>

</ execut ion>

</ case>
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