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This thesis introduces a framework of using agent-based models (ABM) with hetero-

geneous agents to produce an artificial financial market. The first ABM develops an

order drive market embedded with an endogenous imitation mechanism and a pop-

ulation of noisy agents. The model network structure is established that each noisy

agent can be imitated by others with a probability proportional to his wealth. We

investigate the influence of imitation behaviour on the statistical properties of model

outputs, such as log-return and bid-ask spread. The presence of stylised empirical

facts, like volatility clustering and zero auto-correlation in price return, are verified. A

variant model is presented by replacing the noisy agents with trending-following ones

who can use the Bayesian learning method to track the asset return. Agents place

limit orders based on the optimal strategies derived from a portfolio choice problem.

A simulated price crash can be caused by a positive feedback loop arising from learn-

ing behaviours. Meanwhile, a parameter sensitivity analysis is implemented for both

ABMs, which helps choose the initial condition and a further model calibration. We

also provide a framework for calibrating an ABM using a genetic algorithm, where we

aim to find a region close to an optimal value due to the complexity and stochasticity

of an ABM.
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Chapter 1

Introduction

Understanding and modelling the behaviour of prices in financial markets have been

attracting the attention of researchers for as long as financial markets have existed.

Many empirical studies have made great efforts to explore and explain the dynam-

ics of components in financial markets. Sharpe (1964) and Lintner (1965) introduced

the capital asset pricing model, which states the decision about what rate of return

of an asset is required theoretically to add to a well-diversified portfolio (see [1] and

[2]). While Merton (1973) used several stochastic processes, such as jump processes

and jump-diffusion processes, to model asset returns (see [3]). Later, Heath et al.

(1992) proposed a bond pricing framework using a stochastic term structure of in-

terest [4]. These papers attempt to deduce the price of major components, such as

equities, interest rates and commodities given a market by modelling their dynamics

with differential equations or stochastic differential equations. Meanwhile, the real-

world financial markets are complex systems, where prices are usually generated from

the actions and interactions of entities in the system, which has sparked a growing

literature attempting to model the financial markets from the agent perspective. Mo-

tivated by this, the primary goal of this thesis is to use an agent-based modelling

approach to understand and explain the dynamics of price in financial markets.

The remaining contents of this chapter are organised as follows: we first review the

literature of Agent-based models. Then, an apparent weakness of agent-based models

(ABMs) is discussed: they are often not calibrated to check the validation of model

outputs against observed data. We firstly reviewed existing conceptualised validation

approaches for ABMs, after which several well-known papers on ABMs evolving a

15



CHAPTER 1. INTRODUCTION 16

calibration procedure are outlined. Before describing the research objectives of this

thesis, we will present recent studies that use the Genetic algorithm (GA) to calibrate

ABMs, as we will apply a GA to calibrate our model. At the end of this chapter, we

will illustrate the whole structure of this thesis.

1.1 Background of Agent-Based Modelling

Agent-based modelling is a research methodology that starts from the agent perspec-

tive and relies on computational tools seeking to understand how the systems work.

Instead of merely describing the global phenomenon of the system, ABMs can gen-

erate the phenomenon from the actions and interactions of the multi-agent system.

This bottom-up nature of ABMs makes it particularly suitable for analysing complex

systems and emergent events in biology, traffic, economics and others.

Klügl and Bazzan (2012) pointed out that three essential elements are required

to be explicitly considered for creating an ABM (see [5]). First, the set of agents is

the most distinctive element. Agents can be broadly defined as representing physical,

biological and institutional entities or specifically referred to as investors, traders,

brokers and financial institutions in the financial market. The second element is the

specification of the interaction in groups of agents since these interactions take account

for producing the global outcome. Last comes the simulated environment containing

all other elements.

Financial markets are an excellent playground for agent-based modelling with the

following features: (1) Agents can have more straightforward objectives since the in-

formation collection and price issues are more likely to be sharper in financial settings;

(2) Financial data is easily achievable at many different time scales from annual to

minute by minute; (3) The experimental financial markets are continuously developed

under carefully controlled environments, which can be compared with agent-based

experiments; (4) ABMs are pretty suitable for starting from the bottom up with sim-

ple adaptive or learning agents. In particular, heterogeneous agents with adaptive or

learning strategies are widely used to build rational models. For more complicated

models, agents can be designed to learn from the interactions in a closed environment

and change their strategies over time in response to past performance.
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A simplified conception of a financial market includes a set of market participants,

a trading mechanism, and a set of securities, and an agent-based model has a simi-

lar structure, including a set of agents, topology and an environment. On 6th May

2010, the U.S. stock market experienced the largest one-day point decline in the index

history that the Dow Jones Industrial Average fell about 9% within a few minutes.

This so-called ’Flash Crash’ started from the sale of approximately $4.1 billion worth

of E-mini S&P 500 futures contract through automated execution algorithms, which

subsequently triggered a massive amount of transactions across the futures and eq-

uities markets, resulting in complete evaporation of liquidity in the market. Many

works of the literature on the event of 6th May 2010 and other less significant flash

crashes suggested that the markets should be divided into subcategories of traders

and the combination of trading styles responsible for these events. In [6], Paddrik

et al. (2012) investigated the characteristics of agents regarding their trading speed

and order placement in the limit order book and summarised six categories of trader

types: (1)fundamental buyers and sellers, (2) market makers, (3) opportunistic, (4)

high frequency and (5) small traders. Their model consisting of these trader classes is

fundamental to reproducing a market phenomenon and is validated against empirical

features of real data in price returns and volatility.

Many empirical studies have contributed to building standard representative agent

models. Kim and Markowitz proposed a multi-agent model which shed light on the

U.S. stock market crash in 1987 that the market price decreased by more than 20%.

The reason for this sudden drop is that institutional investors had widely used a

computer-based dynamic hedging strategy in the years before. Since it is hard to

analytically solve the model containing interactions of many investors following the

same strategy, Kim and Markowitz used Monte Carlo simulations of a complicated

model of price formation in an artificial financial market to investigate the destabilising

potential of dynamic hedging strategies.

After Kim and Markowitz, the literature moved on to another question: analysis of

asymmetric information in groups of agents, and Bayesian learning methods provide

a rigorous mathematical approach to deal with models with large classes of asymmet-

ric information. Fontnouvelle (2000) introduced a noisy rational expectations model,



CHAPTER 1. INTRODUCTION 18

where asset trading is affected by the costs of information acquisition and expecta-

tion formation (see [7]). Agents rely on an expectation strategy to decide how much

information to acquire due to the information costs. Consequently, simulated time

series of return volatility and trading volume shows a co-persistence, as we can find in

actual financial data. Different from Fontnouvelle’s work, Routledge (2001) provided

a financial learning model with a genetic algorithm that agents need to learn how

to make an inference about a signal observed from a market-clearing price and make

a judgement about whether a signal is worth acquiring or not (see [8]). The main

interest of these two authors is to investigate whether or not learning dynamics can

converge to a time-invariant equilibrium with rational expectations.

Apart from contributing to different variants of adaptive learning mechanisms in

ABMs, authors showed an interest in how much intelligence was needed for computa-

tional agents to generate the results they were seeing in real financial markets. Becker

(1962) first proved that agents who have a random choice behaviour subject to a bud-

get constraint could contribute to several essential characteristics of economics, for

instance, downward-trend demand functions and upward-trend supply functions (see

[9]). He also pointed out that researchers should not impute all observed irrationality

of agents to markets or, by contrast, impute all rationality of markets to their candi-

dates. Meanwhile, Smith (1962) stated that an approximate economic equilibrium can

be obtained as market outcomes without the need of Walrasian tatonnement, which

is an iterative auction process where agents calculate their demand for goods at all

choices of price then submit them to a centre auctioneer (see [10]). Also, Gode and

Sunder (1993) ran market experiments in which agents randomly issue bids and offers

within a pre-defined range (see [11]). A double auction market is provided, and agents

are restricted to their budget. The result shows no convergence of market price when

agents are not subject to budget constraints. By contrast, the market price exhibits a

calmer series close to equilibrium in an experimental market with human traders. This

paper points out a critical message for building artificial markets: researchers need to

distinguish whether the features come from agents’ learning and adaption or the mar-

ket structure itself. In [12], Bartolozzi (2010) introduced a novel multi-agent model

characterised by a realistic order book-keeping as a tool for the study of activity of a

double auction market at microscopic time scales. Their model relied on a few basic



CHAPTER 1. INTRODUCTION 19

assumptions related to agent’s strategic behaviour. Among the most important ones,

the order submission process makes use of a stochastic variable, the market sentiment

relating to both the public and private information. The result indicated that a large

part of the dynamics of the stock market at very short time scales can be explained

without the requiring any particular rational approach from agent prospective. More-

over, the results confirmed that large fluctuations in price are more likely to related

to a temporary lack of liquidity in the limit order book rather than to large volume

transactions.

Other artificial markets include that Hansen and Singleton (1983) presented a

representative consumer model to investigate the time-series behaviour of asset returns

and aggregate consumption (see [13]). Chen (2001) and Yeh (2002) constructed a

model that uses genetic programming to evolve a population of agents learning over

time (see [14] and [15]). Tests were implemented to examine the aggregate behaviour of

the time series generated by the model. They found that some series can not reject the

efficient market hypothesis or the rational expectations hypothesis, proving that ABMs

can empirically replicate some well-known economic behaviour. Moreover, Raberto et

al. (2001) proposed an ABM where the price formation is based on one single asset

tradings among heterogeneous agents using a realistic trading mechanism (see [16]).

The model is also a flexible computational, experimental facility to accommodate

various learning devices.

The adaptive belief dynamic is an alternative research topic in learning models.

Agents are assumed to switch between predictors based on their past performance with

adaptive belief dynamics. The best-known work in financial markets is definitely the

Santa Fe Artificial Stock Market, whose design philosophy origins from understanding

the influence of agent interaction and learning dynamics in groups under a financial

setting (see [17], [18] and [19]). The model consists of two classifiers of agents, which

are simple chartist and fundamentalist rules. Certain combinations of classifiers dom-

inate predictions of future returns. On the other hand, classifiers and predictions are

subjected to genetic operations, such as selection, cross over and mutation. In partic-

ular, the successful combinations of classifiers are more likely to be maintained, while

the bad ones should be ignored in favour of better ones. The primary funding of the
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early work at the Santa Fe Artificial Stock Markets was that the frequency of activa-

tion of the genetic operations significantly influences the dominance of either chartist

or fundamentalist classifiers. Moreover, the chartists are more likely to dominate the

market with more frequent activation of the genetic operations. Whereas Lebaron

et al. (1999) showed that the Santa Fe model could reproduce some empirical fact

merging in real-world markets, for instance, leptokurtosis of returns and correlation

between the order volume and volatility (see [18]).

Another branch of literature proposed to discuss the diversity of behavioural vari-

ants. Landes and Loistl (1992) may show the first attempt using the agent-based

approach with stochastic features in financial markets (see [20]). They explicitly con-

sidered a model built with the self-organising micro-structure of the stock exchange,

where the process of offers, trades and the adaptive expectation of agents are mod-

elled with the help of stochastic jump processes. The model is able to produce con-

tinuous quotations of asset prices at auction type stock exchanges and provides the

possibility to simulate the variability and richness of capital market scenarios explic-

itly. Youssefmir et al. (1998) presented a model consisting of heterogeneous agents

involved in an asset market (see [21]). They showed that the bubbles occur when spec-

ulative trends dominate over fundamental beliefs, which leads to asset prices growth

far away from their fundamental value. The market is increasingly susceptible to this

abnormal growth of any exogenous stock and finally precipitate a crush. Later work

includes Farmer and Joshi, who considered a model that the price formation is based

on market makers. Several popular trading strategies are used to study the price dy-

namics and how these strategies can amplify noise in the structure of prices, eventually

causing phenomena such as excess and clustered volatility (see [22]). Similarly, Car-

valho (2001) provided a simplified variant of Farmer’s model, where they approached

the uncertainty of agents’ behaviour by allocating each agent with an unconditional

probability of being activated at each time step (see [23]. The model illustrated that

Pareto tailed return exists even if value investors are the only type of strategies used

by the participants in the market. Aoki (2002) made another highly relevant con-

tribution by using a jump Markov process to model entries, exits and switching of

trading rule for market participation (see [24]). He showed that the fraction of the

two most significant subgroups of agents with two trading rules is approximately 95
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%, supporting many models of speculative dynamics consisting of two trader groups

with a theoretical rationale.

In the real markets, the participants are usually classified as either the chartists or

fundamentalists by their trading strategies, and many works of literature are interested

in modelling the interaction of these two types of traders. The first paper on this

subject can be found back in the 1950s, Baumol (1957) (see [25]) analytically discussed

the destabilising potential of chartist strategies in exchange markets. Due to the lack of

rationality of agents’ behaviours, the topic about the chartists and the fundamentalists

was dropped. However, some meaningful contributions to this strand of literature could

still be found in the 1970s and 1980s. Zeeman (1973) explained the unstable behaviour

of stock exchanges based on catastrophe theory (see [26] and [27]). While Beja and

Goldman found that an abundance of speculative activity significantly influences stock

prices’ dynamics. For instance, in [28], Day and Huang (1990) proposed an excess

demand and price adjustment model to answer a question: Can market participants’

behaviours be used to generate observable features in bull and bear markets?

Nevertheless, the chartists-fundamentalists interacting model is also applied in for-

eign exchange markets. Frankel and Froot (1986) combined a standard monetary

model with a chartist-fundamentalist interacting system to form expectations in open

macroeconomics (see [29] and [30]). Their model is attempted to give a possible expla-

nation of the dollar bubble that happened between 1980 and 1985. They found that

the motion of a self-reinforcing interplay between forecasts and actual development

can cause a price to deviate from the fundamental value. Some agents will switch

their strategies from the fundamentalist to the chartist after observing the initial devi-

ation between price and fundamental value. Furthermore, the prices have less pressure

to revert to their fundamental anchor values if more market participants favour the

chartist behaviour.

DeGrauwe et al. (1993) conducted a vital variant of Frankel and Froot’s work that

a monetary model is constructed with the interactions between the fundamentalists

and the chartists, where a similar dynamic as Frankel and Froot’s model can produce a

chaotic behaviour of exchange rates [31]. Their model is capable of producing two well-

known empirical facts observed in foreign exchange markets: (1) A unit root exists in

the behaviour of speculative prices; (2) The forward premium is biased for predicting
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the future change in the exchange rate. However, they also showed that it is difficult

to distinguish their chaotic dynamics from a pure random walk process. Another

literature in foreign exchange markets includes that LeBaron (1998) performed tests

on several foreign exchange series generated by different technique trading rules. The

results show that these series simulated regime shifts and persistent trends can not

capture some aspects of the actual series [32].

When it comes to the twenty-first century, the development of technology has

resulted in trading using sophisticated algorithms (programmed systems) to automate

all or some part of the trade process, known as algorithmic trading. Algorithmic

trading is growing rapidly across all types of financial instruments, accounting for over

73% of U.S. equity volumes in 2011 [33]. Indeed, high-frequency trading is a form

of algorithmic trading characterised by high turnover and high order-trade ratios. In

[34], Cartea et al. (2016) proposed a model where an algorithmic trader takes a view

on the distribution of prices at a future. The paper contributes to a growing literature

in many aspects and a new direction. To the authors’ knowledge, it is the first paper

that incorporates information and dynamic learning in an algorithmic trading problem

through a stochastic control method. Agents learn from a collection of assets (i.e. use

the current prices to update the prior) and trades in all or a subset of them with a

directional strategy. Moreover, they showed how trade is made by both a limit and a

market order.

Guilbaud and Pham (2013) have followed a simlar path where they studied optimal

market-making policies in the limit order book, whose objective is to maximise the

expected utility from revenue for the market maker [35]. The model can be seen as a

mixed regime-switching regular problem based on a quasi-variation system using dy-

namic programming methods. A calibration procedure is provided by estimating the

transition matrix and intensity parameters for both the bid-ask spread and the execu-

tion of limit orders modelled by Cox processes. The authors solved the problem with

an explicit system of simple equations containing only the inventory and spread vari-

ables and illustrated the influence and profit when considering the execution priority

between limit orders and market orders.

Cartea and Jaimungal (2013) developed a hidden Markov model to answer the

following two questions [36]: (1) How does the intra-day dynamics of the stock market
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change? (2) How can investors use intra-day information to develop trading strate-

gies at high frequencies? In particular, The model is capable of earning profit from

the bid-ask spread by submitting limit orders and is the evidence for high-frequency

traders making a profit from liquidity incentives or liquidity rebates. Later, Cartea

et al. (2018) developed a trading strategy with limit and market orders in a multi-

asset economy where the assets are correlated and structurally dependent [37]. The

structural dependence is established on a mid-price process following a multivariate

reflected Brownian motion dominated by the asset’s bid-ask spread on the closure of

a no-arbitrage region. An optimal control problem is proposed for investors who take

positions in these assets, while the optimal strategy depends on the distance of the

vector of mid-prices to no-arbitrage bounds. Their numerical results indicate that

market orders play an essential role in the strategy’s success for statistical arbitrages

and inventory management.

Furthermore, Leal et al. (2016) paid attention to the impact of high-frequency trad-

ing on asset price dynamics by building an agent-based model of a limit order book

market, where heterogeneous high-frequency traders interact with low-frequency ones

(see [38]). The model is able to replicate the main stylised facts of the financial market:

(1) zero auto-correlation detected in price returns and the auto-correlation functions

of both absolute and squared returns display a slow decaying pattern (See [39]), (2)

existence of fat tails in the distribution of price returns. Their model explained the

emergence of flash crashes with the following facts. High-frequency traders cause peri-

ods of high illiquidity represented by large bid-ask spreads and the synchronisation of

their orders on the sell side of the limit order book. Additionally, low-frequency traders

concentrate on the buy-side of the book. Moreover, they found that the cancellation

of high-frequency traders plays an essential role in shaping asset price volatility and

the frequency as well as the duration of flash crashes. However, they also stated that

high-frequency traders speed up the recovery of market price after a crash.

1.2 Validation and Calibration

We have reviewed many excellent works of the literature based on Agent-based Mod-

elling and noticed an apparent weakness: ABMs are not often calibrated to check the
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validation of model outputs. This weakness can be credited to two contrasting aspects

of ABMs that a variety of parameters included in the model might fit any feature

of real observations. On the other hand, it causes a significant difficulty to access

an analytical expression for model evaluation. Therefore some knowledge about the

empirical validation of ABMs is discussed in this section.

In [40], Windrum et al. (2007) presented an influential survey in empirical valida-

tion of ABMs. They stated that very different approaches exist in how agent-based

modellers conduct empirical validation. This methodological heterogeneity in ABMs

is usually caused by two main factors: (1) highly non-linear system, i.e. systems with

stochastic dynamics, non-trivial interaction in groups of agents and feedback from the

micro and macro level; and (2) different structural content of ABMs. Figure 1.1 shows

a novel taxonomy of ABMs capturing this diversity in four dimensions. In particu-

lar, the nature of the objects are the stylised facts or empirically observed facts that

the model intends to explain. Examples range from qualitative information used in

fundamental analysis like periodic reports to quantitative objects such as statistical

properties of stock log-return, like auto-correlation patterns. Another notable distinc-

tion exists between ABMs that seek to investigate a single phenomenon, such as the

return distribution of a single asset and those that jointly investigate multiple phe-

nomena, for instance, the return distribution of a single asset together with monetary

policies and agent’s trading strategy. Moreover, ABMs may concern the transient or

the long-run impact of the research object and can investigate from the micro-level

such as individual behaviours, to the macro-level, like herding effects in the system.

The goal of the analysis can differ between ABMs that tend to deal with in-sample

data with a prime purpose to replicate statistical properties of historical data and

those that aim to answer control-related problems, make predictions or address policy

implications with out-of-sample exercises. The modelling assumption is the most im-

portant dimension that creates a diversity of ABMs in parameters, decision rules and

interaction structures. Last, to access the properties of an ABM, a detailed sensitivity

analysis is needed to explore how the output depends on micro-macro parameters,

initial conditions, and across-run variability included by the stochastic element, such

as random individual behaviours.

These four critical dimensions firmly instruct the choice of the empirical validation
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• Qualitative - Quantitative Analysis


• Single - Multiple Variables


• Transients or Long-run Impacts


• Micro - Macro

Nature of Object Goal of Analysis

Modelling Assumptions Method of Sensitivity Analysis

• In- Sample (descriptive)


• Out-of-Sample

forecasting

prediction/control

policy implications

• Size of the Space of 

micro/macro parameter

micro/macro variables

decision rules


• Treatment of time/updating

discrete/discontinuous

paralle/asynchronous


• Type of Decision Rules

adaptive, myopic or optimising, 
best-reply

deterministic or stochastic


• Type of Interaction Structure 

local or global

deterministic or stochastic


• Dynamics of Decision Rules and 
Interaction Structures


given/changing

endogenously selected

• Sensitivity of Results

to micro/macro parameters

to initial conditions 

ergodicity

to across-run variability

Figure 1.1: Taxonomy of dimensions of heterogeneity in ABMs introduced by Win-
drum

procedure. The focus on the nature of the object determines the type of data required

for empirical validation, the statistical procedures and the ability to give testable

empirical implications. At the same time, sensitivity analysis is a prerequisite for

empirical validation, which has significant implications for the universality of the sim-

ulation output. Either the analysis is an in-sample experiment or intends to make an

out-of-sample prediction, it provides different data collection and analysis approaches.

In addition, out-of-sample analysis needs a calibration procedure for parameters and

initial conditions.

Besides presenting a novel taxonomy of dimensions of heterogeneity in ABMs,

Windrum et al. (2007) discussed three major approaches to agent-based empirical
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validation. First, the indirect calibration approach requires modellers to identify a set

of stylised facts that they are interested in reproducing and explaining with an ABM.

The empirical calibration procedure seeks to make the micro-level description of the

model as close as possible to the empirical and experimental evidence about micro-

level behaviours and interactions. If the model output turns out to be non-ergodic, the

restrictions of the space of parameters and the initial conditions are used according to

the empirical evidence on stylised facts.

Second, the Werker-Brenner (2004) approach is a three-step procedure for empir-

ical calibration (see [41]), which firstly uses existing empirical knowledge to calibrate

initial conditions and the range of model parameters. Then the empirical validation

of the outputs is conducted for each model specification derived from calibration. In

particular, each model specification will be accepted with a likelihood relative to the

percentage of theoretical realisations compatible with each empirical realisation. Last,

a further round of calibration is implemented using the surviving set of models or

expert testimony from historians.

Like the calibration approaches introduced above, the history-friendly approach

provides a solution to the problem of over-parameterisation, which also pays more

attention to the trade-off with isolating some causal mechanisms in the ABMs. This

approach calibrates a model using historical case studies of the industry to model

parameters, interactions among agents and agent’s decision rules.

Another literature review of existing calibration and validation techniques between

1990 and 2016 was done by Fagiolo et al. (2017) (see [42]) that they sketched a simple

theoretical framework that conceptualised existing validation approaches by answering

the following four questions

• how the parameters and initial conditions are chosen?

• how summary statistics are selected and connected to characterise model’s be-

haviour?

• how the fitness between simulated and real-observed data is measured?

• how the space of initial conditions and parameter values is investigated?

Meanwhile, they pointed out that the validation of agent-based modelling will never tell

whether a model accurately describes the complex, unknown and non-understandable
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real-world data generating process. However, it should eventually allow researchers to

understand whether a model is a bad description of it.

A significant difficulty in calibrating the ABMs is that the complex micro-level

interactions and the presence of nonlinearities (even in the simplest models) do not

allow a modeller to obtain a closed-form solution of the likelihood function and the

moments’ conditions. Therefore, the indirect inference introduced by Gourieroux et

al. (1993) is adapted that allows one to make inferences about the parameters of

a model through simulation methods (see [43]). Also, an approach called Method

of Simulated Moments is widely employed in most financial and economic ABMs,

especially when the moment function is entirely unknown. It aims to minimise some

statistics (moments) distances between data simulated by ABMs and data observed

in the real world. While most of the calibration works follow a frequentist approach,

the Bayesian approach for calibrating ABMs have been introduced in Grazzini et al.

(2017) (see [44]) that reduce the range of choices of moments, auxiliary models and

metrics evaluating the distance between the real and simulated time series. On the

other hand, the Bayesian approach could be more asymptotically efficient since it uses

the information over the while distribution of data, not only some specific moments.

The validation of ABMs consists of a lot of inter-related issues and concepts. In-

put validation can focus on the aspect of (1) tests of some behavioural assumptions

typically included in ABMs, (2) selection of the initial model conditions, and (3) ex-

ploration of the parameter space (see [42]). By contrast, output validation evaluates

to what extent the outcome of a simulated model fits the real-world observations,

and the baseline evaluation process naturally embedded in most of ABMs emphases

on replicating a set of stylised facts. Furthermore, some sophisticated statistical tech-

niques have been designed to meet the requirements of output validation. For instance,

Marks (2007) implemented three similarity measures, the Kullback-Leibler, the State

Similarity measure and the Generalised Hartley Metric, to analyse and validate an

ABM in a general framework (see [45] and [46]).

Although many empirical studies in ABMs can give descriptive output validation

or input validation, few of them address the field of predictive output validation. Be-

sides, most calibration techniques are based on the trial and error approach, which
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may mismatch the simulated and real-time series. An important exception is a cali-

bration procedure for validation presented by Recchioni et al. (2015), which is based

on a famous ABM in the financial area introduced by Brock and Hommes (1998)

(see [47] and [48]). They proposed a non-linear constrained optimisation problem

for the calibration process, which can be solved numerically using a gradient-based

method. This calibration procedure, combined with a simplified version of the Brock

and Hommes model, can reproduce the daily price series of four different indices in

stock markets: the S&P 500, the Euro Stoxx 50, the Nikkei 225 and the CSI 300. The

calibration of the model parameters can extract some information on the micro-market

behaviour, and values of the parameters show the differences and the similarities in

the behaviour of agents operating in these four markets. Therefore, this calibration

framework can answer questions about risk aversion, imitative behaviour, and agents’

strategies in the financial markets. Another significant contribution made by Alfarano

et al. (2006) is that they analytically solved a return probability distribution of an

ABM and calibrated the model parameters by the maximum likelihood method (see

[49]).

1.3 Genetic Algorithms

A problem in agent-based modelling is that ABMs consisting of a large set of param-

eters or stochastic dynamics are hard to get an explicit formula for simulated output.

The calibration of the parameters by proposing an optimisation problem is blocked

due to the derivatives of the considered parameter being inaccessible. Therefore, the

Genetic Algorithm (GA) inspired by the natural selection procedure attracts many

modellers interest. The main features of the algorithm are mutation, crossover and

selection operators, which are supposed to mimic those we have observed as part of

natural selection in the real world. Meanwhile, it has been widely used to produce

high-quality solutions to optimisation and search problems in various fields.

Routledge (2001) [8] employed GA in an ABM that agents decide whether a signal

of the market price is worth acquiring, make an inference about the signal and learn

how to use this signal. They provided some examples showing that GA does and does

not converge to the rational expectations equilibrium, and the behaviour is mainly
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affected by two factors: the rate of or mutation in the GA and the size of the risky-asset

supply noise in the economy. Rogers and Von Tessin (2004) presented an ABM of a

financial market, which is calibrated using a multi-objective GA (see [50]). Their model

evolves a population of Pareto-optimal parameters sets, in which a single candidate can

be selected as a final tuned parameter set without requiring any explicit prior weighting

of criteria. Another classic model is proposed by Farmer and Joshi (2002) [22] that

the calibration process is conducted by using a Nelder-Mead simplex algorithm and a

GA [51]. Both methods can fill the gap of parameters estimation in the ABMs field

and are more robust in noisy environments.

1.4 Research Objectives

The objective of this thesis is to model the stock market via the agent-based approach.

We will provide a framework with elements, such as the trading mechanism, commu-

nication network system, and ordered events for daily operation, which are essential

to creating an artificial stock market. The basic agent-based model is built on the

assumption that agents randomly place a bid or ask order in the market, who are

called the noisy trader with no trading objective. Meanwhile, an expectation feed-

back system is embedded in the model, cooperating with the endogenous imitation

mechanism. We will show that this basic model can reproduce a set of stylised em-

pirical facts emerging in real financial price series, for example, zero auto-correlation

of log return and volatility clustering. The calibration of the model is implemented

by proposing an optimisation problem seeking to minimise the linear combinations of

moment difference between observed and simulated log-returns, and we use a genetic

algorithm to find the region close to the optimal parameter rather than a single value

due to the stochasticity and complexity of the simulation outputs.

An extension of the basic agent-based framework is based on defining agents with

different trading behaviours, such as holding a fixed belief about the asset return or

following the trend of the asset return. Agents are aiming to maximise their utility

function through these trading behaviours. Therefore, we will make use of stochastic

control theory and the Bayesian learning method to find the optimal strategy of agents

under the utility maximisation with different trading behaviours.
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Under the agent-based framework, we are able to create a mixed market that has

noisy and trend-following agents and investigate such research questions as:

• Under what setting can we produce a stylised market with a deterministic trend?

• Under what settings the market will crash?

• Can we identify the pattern in the trending following case?

• Are there any early warning signs that market instability is approaching?

1.5 Thesis Structure

This thesis uses agent-based modelling approaches combined with heterogeneous agents

to produce an artificial financial market. The basic framework of modelling was pre-

sented initially by Tedeschi et al. (2009) [52], which consists of a characteristic trading

mechanism, an endogenous mechanism of imitation and noisy agents. We extend their

work by equipping agents with optimal portfolio strategies introduced by Bismuth et

al. (2019) [53] that agents are capable of learning from the historical price to adjust

their risky asset proportion of the portfolio.

In Chapter 2, we begin with mathematically formulating the behaviour of the

noisy agent, such as the future price expectation and the order placement. Following

Tedeschi et al. (2009) [52], an endogenous mechanism of imitation is introduced,

allowing us to create a herding effect in the system that each agent can be imitated

by others with a probability proportional to his wealth. We verify the presence of a

set of stylised empirical facts in the model, for example, a heavy tail distribution, zero

auto-correlation in log-return and volatility clustering. We also contribute to showing

a parameter sensitivity analysis, which helps choose the initial condition and a further

model calibration.

Chapter 3 extends the agent-based model by presenting a utility-maximisation

framework of Bismuth et al. (2019) [53] for trend-following agents who use the

Bayesian learning method to track the asset return. The portfolio choice problem is

proposed with two cases that agents have the constant relative risk aversion (CRRA)

or the absolute risk aversion (CARA) utility function. Using the ABM with agents

having optimal portfolio strategy, we contribute to illustrating how a market can be
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set up with a deterministic trend and what leads to a crash in the system. Meanwhile,

the parameter sensitivity analysis is presented to find the suitable initial condition and

constraint of parameters for a traceable and reproducible simulation to exist.

Chapter 4 mainly focus on calibrating the ABM against real-world data. We start

from using a gradient-based method and a jump detection approach to fit an ABM.

Although these two methods fail to give a reliable calibration, they provide us with

a hint to use a linear combination of the log-return moments to capture the main

features of data. Next, we show that the genetic algorithm (GA) is more robust in

calibrating stochastic outputs. For predictive purposes, we apply the GA calibration

result against the real Cryptocurrency data to predict the future empirical distribution

of log-returns and calculate risk metrics, such as Value at Risk (VaR) and Conditional

Value at Risk (CVaR).

We conclude in Chapter 5.1 and discuss some future potential work and research

to undertake in the future.

In the Appendices, proofs of Propositions introduced in Chapter 3 and a published

paper in the early stage of my PhD study are given. The paper uses simultaneous

Bayesian modelling to analyse data on the size of lymphedema occurring in the arms

of breast cancer patients after breast cancer surgery (as the longitudinal data) and

the time interval for disease progression (as the time-to-event occurrence). A model

based on a multivariate skew t distribution is proven to be more efficient than the

multivariate normal distribution by comparing different distributional assumptions

for residuals and random effects.



Chapter 2

An Agent-Based Model for Stock

Market

In this chapter, we follow Tedeschi et al. (2009) [52] that introduce an Agent-based

model (ABM) with heterogeneous agents in stock market. The ABM is built on the

assumption that agents randomly place a bid or ask order in the market, who are

called the noisy trader with no trading objective. The component of an ABM includes

elements, such as the trading mechanism, communication network system, and ordered

events for daily operation, which are essential to creating an artificial stock market.

For the communication network system, an endogenous mechanism of imitation via a

preferential attachment rule [54] is applied, such that the model is able to demonstrate

how an expectation feedback system can amplify fluctuations in the market price of

the asset. Although it is a toy model that is built upon some endogenous rules whose

purpose is not to reproduce agent behaviours in the financial markets exactly, it allows

us to verify the presence of a set of stylised empirical facts in the model, for example,

a heavy tail distribution, zero auto-correlation in log-return and volatility clustering.

In the following parts, we begin by introducing the notation of the model. Then,

we mathematically formulate the noisy agent’s behaviour, such as the future price

expectation and the order placement. Following Tedeschi et al. (2009), a pn endoge-

nous mechanism of imitation is presented, allowing us to create a herding effect in the

system that each agent can be imitated by others with a probability proportional to

his wealth. Next, we display some simulation results to verify the presence of stylised

empirical facts. Finally, we also contribute to showing a parameter sensitivity analysis,

32
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which helps choose the initial condition and a further model calibration.

2.1 Notations for the Model

For the sake of simplicity, the model is built on a discrete-time with T periods with

a total number of Nagent noisy agents. We denote tk as the period, which starts from

t1 and ends with tT (T < ∞). Within each period, there are L intra-day periods

denoting as tkl , then tk1 and tkL represents the first and the last intra-day period tk

respectively. Moreover, we define t0 as the initial period of the model at which agents’

portfolios and their networks are established.

All agents are assumed to have a random demand and supply function, and their

holding cash and stocks bound the size of their orders. Credit transactions are not

permitted in the system, which means that agent limit orders are limited by their

available money and available shares in the portfolio. Assume that agent i has an

account book, which consists of the following 6 items:

• Cash. Ci
t represents the total money agent i is holding at time t, which will

increase/decrease by the amount of cash in a completed buy/sell transaction.

• Limit Cash. It represents the amount of cash occupied by limit bid orders sub-

mitted by agent i. The limit cash will decrease when limit orders are executed

or cancelled.

• Available Cash. M i
t represents the amount of cash that agent i can use to buy

shares. The available cash will increase when shares are sold. Otherwise, the

limit bid orders are cancelled. On the contrary, the available cash will decrease

when shares are bought or the limit bid orders are submitted.

• Share. Sit represents the number of shares held by the agent i at time t, which will

increase/decrease by the number of shares in a completed buy/sell transaction.

• Limit Share. It represents the number of shares occupied by limit ask orders,

which will decrease when limit orders are executed or cancelled.

• Available Share. N i
t represents the number of shares the agent i can sell, which

will increase when bid orders are completed or limit ask orders are cancelled.
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While both market and limit ask orders will decrease the available share.

Initially, all agents are provided with an amount of cash C0 and S0 shares. Given

that Pt is denoted as the asset price at time t, then the initial wealth is defined as

W0 = C0 + S0P0. Meanwhile, we also define the mean price of the system as

Pmean =

∑Nagent

i=1 Ci
t∑Nagent

i=1 Sit
, (2.1)

which indicates the equilibrium price in the model. If no extra cash is injected into

the system, this equilibrium price will stay fixed for all t.

The market limit order book collects all orders submitted by agents. Since the

order is submitted within the intra-day period, then the corresponding bid and ask

order price is defined by btkl and atkl respectively. While the volume of the order is

represented by vtkl .

2.2 Noisy Agent Description

Noisy agents are assumed to have random expectations on future price returns and

a random demand function. We choose noisy agents rather than agents with sophis-

ticated strategies since it allows one to focus on the impact of imitation on price

dynamics. Moreover, the presence of noisy agents and their influences on the price

movement has been well studied.

2.2.1 Agent’s Future Expectation of the Price

At the beginning of each period tk , noisy agent i will randomly assign his expectation

about the price one period forward and the price they expected price at time tk+1 is

given by

P̂ i
tk,tk+1

= Ptke
∆tr̂itk,tk+1 , (2.2)

where r̂itk,tk+1
is the agent’s expectation on the spot return. We also set ∆t = 1 as the

smallest time step. We can calculate the spot return according to the equation

r̂itk,tk+1
= σitkεtk , (2.3)
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where σitk is a positive, agent specific constant and εtk ∼ N(0, 1) is a normal distributed

random variable, independently sampled at tk. The agents will use this price to decide

on their next order to submit to the market.

2.2.2 Place Orders

Since all agents have calculated their expected price, an agent is randomly selected to

submit his bid or ask offer to the limit order book at each intra-day period. Given that

the expected price P̂tk,tk+1
reflects the agent’s beliefs on the price movement within

the next period, then we can use this information to create a likely bid or ask order

for the agent. For instance, if the agent believes the price will increase, we assume the

agent will take a long position of the asset. By contrast, if the expected price of the

agent is lower than the current price, the agent will short his position.

Let Ptk represent the opening price at period tk. Clearly, if P̂ i
tk,tk+1

≥ Ptk , the

maximum bid price for the agent i is P̂ i
tk,tk+1

, because he will not want to buy at a

higher price than expected. Conversely, if P̂ i
tk,tk+1

< Ptk , the agent i will bet on ask

side with an ask price larger than P̂ i
tk,tk+1

, as he will not want to sell at a price lower

than expected. Then the order price of agent i is uniformly drawn around the current

price Ptk and the corresponding formulas are

bitkl
∼ U(P b

min, P̂
i
tk,tk+1

)

aitkl
∼ U(P̂ i

tk, tk+1
, P a

max)

P b
min = Ptk(1− γ1

tk
)

P a
max = Ptk(1 + γ2

tk
),

(2.4)

where γ1,2
tk

are random variables uniformly distributed in the interval (0, 1).

Order volume vitkl
of agent i is determined by his order price, available money M i

tkl

and shares N i
tkl

in the account. The volume is randomly sampled from a uniform

distribution according to the following expressions

vitkl
∼


U

(
0,

M i
tkl

bitkl

)
, for bid order

U
(

0, N i
tkl

)
, for ask order.

(2.5)
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2.3 The Communication Network

At the beginning of each period tk, agents are assumed to join the communication

network, in which agents can imitate their neighbours’ expectations and share their

own with others. Then agents’ decisions are influenced by their interactions, which is

illustrated in Figure 2.1 that the pink nodes represent agents, and the edges are the

one-way directional arrow between them.
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Figure 2.1: The pink nodes represent agents, and edges are the one-way connective ar-
rows between them. Each agent can have several incoming links but only one outgoing
link.

Each agent can only choose one neighbour, to whom he would send a request for

advice, but he can share his opinion with unlimited imitators. The agent who has

the most number of requests at each period is call the guru. Therefore, the original

forecasting of agent i (Equation (2.3)) is updated as a reviewed expectation on spot

return,

ritk,tk+1
= wr̂itk,tk+1

+ (1− w)r̂jtk,tk+1
, (2.6)

where w ∈ [0, 1]. The revised expectation ritk,tk+1
consists of a linear combination of

agent i and j’s original expectations on spot return. Moreover, when w = 0, agent i

completely trusts on agent j, if w = 1, agent i’s decision is independent of the other

agents.

Under a small w condition, agents can be easily affected by others’ decisions. We

assume that agent i who has several imitators would forecast a larger price volatility.
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Let litk be denoted as the number of incoming links of agent i at period tk, then his

specific volatility equation can be written as

σitk = A(σi0 +
litk

Nagent
(1− w)). (2.7)

The parameter σi0 is uniformly distributed in the interval (0, σ0). The effect of this

volatility formation is to favour a market order over a limit order for agents who have

several incoming links. It can be explained that a larger σitk leads to a more aggressive

order price choice. The wider distribution of order price on the limit book makes

orders more likely to be executed. Consequently, the guru is more likely to submit a

market order as well as his followers. Moreover, market orders in the same direction

will cause a large fluctuation in price, supporting the original expectation of the guru.

2.3.1 The Mechanism of Imitation

The mechanism of imitation is implemented by a preferential attachment rule (see [54]),

in which each agent can imitate others’ behaviour with a probability proportional to

his wealth. This mechanism allows us to investigate how imitation affects the asset

price and the distribution of agents wealth.

At the initial time, all agents are provided with an amount of cash C0 and S0

shares. Then the initial wealth is defined as W0 = C0 + S0P0. The initial network

among agents is established for the first few periods whilst keeping the guru fixed.

Agents have a fair chance to choose between linking with this fixed guru or randomly

linking with others except the guru or himself. Under these settings, we should expect

to observe that some agents will become richer than others after several periods. As

a measure of agents’ success, we define their fitness at period tk relative to their peers

as their wealth divided by the wealth Wmax
tk

of the richest agent imax

f itk =
W i
tk

W imax
tk

. (2.8)

Agent i starts with one outgoing link to a random agent j and possibly has some

incoming links from other agents. Links are rewound at the beginning of each period

in the following way: each agent would cut his outgoing link in the last period with

agent j and build a new link with a randomly chosen agent h with a probability

p =
1

1 + e−βtk (fhtk
−fjtk )

, (2.9)
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or he will keep the existing link with probability 1− p.

It is noteworthy that agent i will choose fairly between agent h and agent j if they

have the same wealth. Otherwise, agent i has a probability higher than 0.5 to follow

the richer one between agent h and j.

The parameter βtk in Equation (2.9) represents the intensity choice of agent, which

measures how much agents in the communication network trust on the information

corresponding to others’ performances. Moreover, βtk amplifies the effect that the

agent is more likely to imitate the rich agent according to Equation (2.9). Specifically,

when βtk is zero, agents act independently of each other. However, by increasing βtk ,

agents will be more likely to start following the guru. In the model, βtk links to the

life span of the guru. The initial value of β0 is one, and it will increase by one if the

guru can survive for one more period. The value of βtk is reset to be one when a new

guru occurs.

Under the condition that the guru is the most affluent agent in the model, we

expect a herding effect, resulting in large fluctuations in price. Since the majority of

agents trust in the guru and imitate his expectation, it causes orders in the limit order

book to stack on the same side.

2.4 The Market Matching Mechanism

The matching mechanism of the limit order book follows the Euronext and the London

Stock Exchange rules. Agent choices for placing a limit or market order depend on

the latest asset price. Let Pt be the market price at t. The update of the new market

price Pt and how agents choose their order types are described by the following rules,

1. Pt is given by the price at which a transaction occurs. If no new transaction price

occurs, a proxy price for the price is used by taking the average of the lowest

quoted ask price aqt and the highest quoted bid price bqt : Pt =
aqt+b

q
t

2
. If no bids

and asks are listed in the book, the proxy for the price is given by the previous

traded or quoted price.

2. If bit ≥ aqt , agent i places a market order for purchasing vit shares at the current

best quoted ask price aqt . If there is no sufficient supply at the price aqt , agent
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i only buys the amount available on the market at the price aqt , then moves on

to check the second best ask price, repeating the process until he has already

bought vit shares or bit < aqt , by placing a limit order to buy the rest shares at

price bit. Otherwise, agent i buys vit shares at the price aqt . If bit < aqt , agent i

submits a limit order to buy vit shares at price bit.

3. If ait ≤ bqt , agent i places a market order for selling vit shares at the current best

quoted bid price bqt . If the demand available on the book is sufficient, agent i can

sell all vit shares at the price bqt . Otherwise, the agent fills the available demand

at the price bqt , then, move on to the second best bid price, iterating the process

until selling all v
(i)
t shares or a

(i)
t > bqt , by placing a limit order to sell the rest

shares at price bqt . If a
(i)
t > bqt , agent i submits a limit order to sell v

(i)
t shares at

price a
(i)
t .

2.5 Timeline of the Events

In previous sections, we have mathematically formalised the behaviours of agents and

described some essential mechanisms, which can make up an artificial order drive

market. However, the event sequence is also vital to make an identical model for

repeatable simulation results.

The following list displays the sequence of events in order within a period, which

is iterated throughout the simulation.

1. The communication network is built in two steps.

• For the first few periods, one agent is randomly picked as the guru during

that time, and the others have a fixed probability of linking with the guru

or rewind with others.

• The preferential attachment rule is used that each agent imitates others

with a probability related to others’ wealth.

2. Each agent forms the original expectations on stock return using(Equation (2.3).

The revised expectation from (Equation(2.6) replaces the original one for gen-

erating the expected price Equation (2.2), if the communication network is acti-

vated in the model.
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3. Every agent checks his existing limited order and withdraw it if it lasts over one

period. Then one agent is randomly selected to place an order (see Section 2.2.2)

and market price is updated (see Section 2.4). This step will be repeated several

times according to model settings.

2.6 Simulation

In the beginning, we present a pseudocode of an ABM simulation to illustrate how we

can obtain outputs based on the math formulas introduced in previous sections.

Algorithm 1 The pseudocode of an ABM simulation

Require: Nagent, T, L ∈ N+, A ∈ [0, 1], w ∈ (0, 1)
t← 1
l← 0
P0 ← p0

set up the initial portfolio account for each agent
while t ≤ T do

while l ≤ L do
if l = 0 then

establish communication network using Equation (2.8) and (2.9)
generate agent-specfic volatilities using Equation (2.7)
calculate agents’ original expectation on spot return using Equation (2.3)
calculate agents’ reviewed expectation on spot return using Equation (2.6)
l← l + 1

else if 1 ≤ l ≤ L then
randomly select an agent
generate this agent’s expectation on future price using Equation (2.2)
place this agent’s limit order using Equation (2.4) and (2.5)
update the new market price Ptl following the rules in Section 2.4
l← l + 1

end if
end while
t← t+ 1

end while
output a set of simulated price {P11 , P12 , . . . , PTL}

In specfic, the population of noisy agents Nagent is set as 100. Each agent is given

S0 = 100 shares of stock and C0 = 10000 cash at the beginning. The initial stock price

is P0 = 100. In Equation (2.7), the constant A is set as 0.2 and σ0 is equal to 1.

The results presented here are the average outcome of 10 simulations with T = 2 000

periods. There are L = 300 intra-day periods within each period, which allows each
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agent to have three fair chances to submit the order.

Firstly, we will display some descriptive figures and tables of the simulation results.

Then, we will focus on the statistical properties of the distribution of stock returns

and the auto-correlation of market volatility. We will verify whether the stylised

empirical facts (see [55]), such as a heavy tail distribution, absence of linear correlation,

and volatility clustering, exist in our model and investigate how the communication

network affects these facts.

Figure 2.2 shows the sample paths from simulations with w ∈ {0, 0.4, 0.8, 1}, where

w is defined as the degree of how much agents believe on others’ opinions, according to

Equation (2.6). If w = 0, it means agents completely follow others’ behaviour, while

w = 1 means agents make decisions independently. We can directly observe that the

model can produce a stationary price series without the imitation mechanism (w = 1).

As the effect of imitation amplifies, the fluctuations of price enlarge, which can even

cause the price to be tripled under the condition w = 0.

Table 2.1 displays some summary statistics of simulation results, which shows a

positive correlation exists between the price volatility and the magnitude of imitation

effect. Moreover, the more significant fluctuations increase the difference between the

historical maximum and minimum asset price. It is noteworthy that the model can

produce mean reversion price series under all simulations.

w = 0 w = 0.4 w = 0.8 w = 1
mean 106.62 99.85 101.38 100.25
std 20.67 5.89 3.08 2.83
max 291.74 131.60 116.96 109.25
min 70.17 80.86 93.48 92.72

max - min 221.57 50.74 23.48 16.53

Table 2.1: Summary table of the stock price under different conditions.

The closed transaction environment determines the mean reversion character, where

the amount of money and the number of shares circulating in the market is fixed. The

noisy agents mainly use the standard normal distribution to form their expectations.

After that, agent orders are generated using uniform distributions regarding price and

volume. We expect the price to reserve the mean price with an arbitrary positive

initial starting point.

In Figure 2.3, price paths are presented with different starting points under different
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Figure 2.2: Average price time series under different conditions that how much agents
believe on others’ opinion (Equation 2.6). w = 0 means agents completely follow
others’ behaviour, while w = 1 means agents make decisions independently.

w conditions. When P0 > Pmean, the volume of the bid order is expected to be smaller

than the volume of the ask order. Since the money circulating in the system is fixed,

a higher asset price leads to a lower demand capacity. Then the excess ask orders will

draw the price to an equilibrium P0 = Pmean, where the expected volume of bid order

is equal to the volume of ask order. Conversely, when P0 < Pmean, asset price will be

quickly pushed up due to the excess volume of the bid order in the market.

2.6.1 Returns and Volatility

Figure 2.4 illustrates some stock return series under different w conditions. When

w = 0.8 and w = 1, the return series display like a random walk. However, a larger

variation of stock returns occurs when agents mainly rely on imitating others’ opinions,

for instance, see the upper panel of Figure 2.4. Noting that the guru is fixed at the
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Figure 2.3: Stock paths with different starting points under different w conditions. A
price equilibrium can be approached, which equals the ratio of the total amount of
money to share in the market.

beginning of the simulation, and each agent has a one-half probability of linking with

the guru. After the network among agents is established, some agents will become

richer than others. According to Equation (2.8) and (2.9), rich agents are more likely

to keep the links with their followers and then become the guru.

When a large proportion of agents follow the guru under a small w condition, the

guru’s expectation represents the aggregated opinion of his imitators. Whichever side

the guru picks on, he and his imitators will absorb the majority of limit orders on the

other side, which consequently make the price move according to the guru’s will. This

’herding effect’ is reflected as the humps in Figure 2.4 under the condition w = 0.

Figure 2.5 shows the percentage of guru’s in-coming link. Due to the fixed guru

setting, the percentage of guru’s in-coming link fluctuates around 0.5 for the first 20

periods, which causes large excursions in stock returns under minor w conditions.

After that, the preferential attachment rule is engaged, so agents have options for
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Figure 2.4: Stock return series under conditions with w ∈ {0, 0.4, 0.8, 1}
.

keeping the existing link or randomly rewinding with others. The agent who is more

affluent in wealth has a higher probability of winning this incoming link. The agents’

wealth will redistribute through the periods, and some agents, especially the guru, will

gradually become more prosperous and more attractive than others. Therefore, the

percentage of the guru’s in-coming link keeps flat until it has an upward trend under

the preferential attachment rule. Besides, the imitation mechanism will accelerate

the wealth redistribution process, which causes the upward trend for guru’s in-coming

link to come earlier under minor w conditions. Although under the condition w = 1,

agents make their decisions independently, the communication system still exists, and

the guru will gradually have more followers.

In [55], Cont pointed out that the insufficiency of the normal distribution for mod-

elling the asset price returns and their heavy tail character. We want to verify whether

our model satisfies these empirical facts.
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Figure 2.5: The percentage of guru’s in-coming link.

w = 0 w = 0.4 w = 0.8 w = 1
µ/σ -0.0006 0.0071 0.0041 0.0002

Skewness -1.00 -0.50 0.12 0.02
Kurtosis 13.42 8.94 1.71 0.10

Table 2.2: Descriptive statistics for stock returns under different w conditions.

Combining Figure 2.6 and Table 2.2, the model under four scenarios exhibits a

leptokurtic, asymmetric and fat-tailed distribution for the stock return. Moreover,

skewness and kurtosis of the return are amplified by increasing the imitation effect.

Here, the skewness and kurtosis of return distribution are defined as

Skew(X) = E

[(
X − µ
σ

)3
]

(2.10)

Kurt(X) = E

[(
X − µ
σ

)4
]
− 3 (2.11)

where X is the return series.

The skewness quantifies the asymmetry of the probability distribution, and the
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standard normal distribution has a zero skewness. The kurtosis is defined as Kurt = 0

for normal distribution, and a positive value indicates a fat tail, which means a slow

asymptotic decay of the probability density function.

The typical values for kurtosis in real worlds are: Kurt ≈ 74 (US/ DM ex-

change rate futures), Kurt ≈ 60 (US/ Swiss Franc exchange rate futures), Kurt ≈ 16

(S&P500 index futures) (see [56], [57], [58], [59]).
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Figure 2.6: The histograms of stock returns and the corresponding density plots of
normal distribution.

In [55], a well-known fact is that price movement in liquid market has no significant

correlation, and it is often cited as a support for the ’efficient market hypothesis (see

[60]). An intuitive explanation for the absence of auto-correlation is that if price

changes exhibit significant correlation, this correlation may be used by a statistical

arbitrage strategy to earn a positive expected profit. Consequently, it will reduce

correlations except for short time scales, representing the market’s time to react to

new information.
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Figure 2.7 shows the auto-correlation of stock returns under different w conditions,

which rapidly decay to zero in a few lags. Although zero auto-correlation in return can

provide ’random walk’ models of price with some empirical support, which assumes

the increment of price is independent, the absence of auto-correlation does not imply

the independent increment in price. While the independent increment implies any

no-linear function of returns will produce non-correlation series.
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Figure 2.7: Auto-correlations of stock returns under different w conditions.

Figure 2.8 displays the absolute auto-correlation of absolute stock returns, which

exhibits significant positive auto-correlation for the first few lags under w = 0 and

w = 0.4 conditions. This quantitative signature supports the existence of a well-

known phenomenon called ’volatility clustering’, which is interpreted as large price

variations are more likely to be followed by large price variations.

Recalling Figure 2.2 and 2.4, large price variations are caused by the fixed guru

setting under small w conditions. Besides, the imitation effect amplifies asymmetry

and fat-tail characters of stock returns. We conclude that the communication network
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Figure 2.8: Auto-correlations of absolute stock returns under different w conditions.

is vital for our model to reproduce the stylised fact emerging in financial series.

2.7 Parameter Sensitivity Analysis

Due to the complexity of many ABMs, understanding the model dynamics is not a

simple task. The sensitivity analysis can provide clues about how the parameters

changes affect the model outcomes, which can help gain insight into how patterns and

emergent properties are generated in ABMs. This section will perform a sensitivity

analysis on our model, providing important implications for the universality of the

simulation results. This analysis is prior to the calibration and validation process as

a descriptive or in-sample exercise identifying the vital parameter for determining the

statistical properties of the model.

At the very beginning, we investigate how the parameter w, A in Equation (2.7)

and the number of agent Nagent affect the bid-ask spread of the stock price. We are
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interested in a set of statistics S = {m1,m2,m3,m4}, which are the first four moments

of simulated bid-ask spread {dt, t = 1, . . . , T}. For each run (h = 1, 2, . . . , H), the

simulation will produce a value for mi, i = 1, 2, 3, 4. Due to the stochastic nature of

the simulation, the value of mi will be different for each independent run. Therefore, a

sample set {m1
i ,m

2
i , . . . ,m

H
i } for mi containing H observations is expected by imple-

menting H independent runs with the same parameter input. Then the distribution of

mi, i = 1, 2, 3, 4 can be roughly described by computing, for instance the mean E(mi)

and the variance V (mi).

The parameter sensitivity analysis is based on the one-factor-at-a-time (OFAT)

method, which essentially varies one parameter at a time and keeps all other param-

eters fixed. The use of OFAT can reveal the form of the relationship between the

target parameter and the output. Especially, it can indicate whether the output is

linear or nonlinear against the parameter. On the other hand, it can identify whether

the tipping points exist, where the simulated output responds dramatically to a tiny

parameter change.

For each run of the simulation, there are T = 200 periods and each period consists

of L = 300 intra-day periods. The initial stock price is set as P0 = 100. Each agent

is assumed to have the same portfolio, which includes C0 = 10 000 cash and S0 = 100

share. The parameter σ0 is set as 1, which is used to generate the agent-specific

volatility in Equation (2.7). Moreover, we run H = 50 independent simulations to

obtain the distribution of a set of statistics S of the bid-ask spread.

2.7.1 Bid-ask Spread against Parameter w

We firstly look at how the parameter w affects the bid-ask spread of the simulated

stock price. The value of w is evenly chosen starting from 0 to 1 with a step size

∆ = 0.1. The number of agent Nagent is set as 100 and the parameter A in Equation

2.7 equals to 0.2. The other parameters remain the same as stated in Section 2.7.

Figure 2.9 shows how the set of statistics S = {m1,m2,m3,m4} of the bid-ask

spread changes against parameter w. Each box and whisker plot contains H = 50 ob-

servations generated independently with the same parameter input, where the whisker

is extended no more than 1.5 ∗ IQR (the interquartile range = 75th percentile - 25th

percentile) from the edges of the box, ending at the farthest data point within that
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interval and outliers are plotted as separate dots.

The top-left panel illustrates that the sample value of the first moment of bid-ask

spread {m1
1,m

2
1, . . . ,m

H
1 } gradually decreases as the value of w increases, reaching the

minimum around w = 0.6, then slightly climbing up. It is worth noting that there

is no monotonic relationship between w and the mean of the bid-ask spread, and a

hybrid structure of the agent expectation based on neighbour’s and his own opinion

makes the market more efficient with a low spread. Moreover, the variation of the

bid-ask spread mean narrows as the value of w increases and the outliers vanish when

w ≥ 0.8. Similarly, the top-right panel displays the sample value of bid-ask spread

standard deviation {m1
2,m

2
2, . . . ,m

H
2 }, which also decreases as the value of w increases.

Meanwhile, the deviation of the outliers gets tight in the same way and disappears at

w = 1. On the bottom side, the sample value of bid-ask spread skewness and kurtosis

do not have an apparent decrease until w ≥ 0.5 and the outliers keep existing for both

of them.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
w

2

4

6

8

10

12

m
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
w

0

5

10

15

20

25

30

m
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
w

2

4

6

8

10

12

m
3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
w

0

25

50

75

100

125

150

m
4

Figure 2.9: The box plots of the first four moments of bid-ask spread over the param-
eter w.

The box plot presented in Figure 2.9 implies that the imitation behaviour in the
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market has a significant influence on the bid-ask spread. When agents heavily rely

on others’ opinions to generate their expectations, a one-side market is more likely to

appear accompanied by a high bid-ask spread. By contrast, when a hybrid structure

of the agent expectation dominates the model, the market becomes more stable and

has higher liquidity with a low bid-ask spread.

Figure 2.10 illustrates how the change of parameter w affects the average perfor-

mance and the variability of the first four moments of the bid-ask spread. The top-left

panel shows a nonlinear relationship between the parameter w and the mean of the

first moment of the bid-ask spread. As the value of w increases, the value of E(m1)

steadily drops until reaching a minimum value around w = 0.6, then slowing climbing

up. While the standard deviation of the first moment of bid-ask spread SD(m1) ex-

hibits a dramatic decline when w ≤ 0.3, which indicates that the tipping points exist

for parameter w within the range. Then the value of SD(m1) presents a slow decay as

w ≥ 0.3, resulting from the fact that less probability of herding behaviour emerges in

a simulation to produce irrational price dynamics. Likewise, the mean of the standard

deviation of the bid-ask spread E(m2) at the top-right panel has a similar pattern

to E(m1) showing a relative faster decline as the value of w increases, entering the

valley around w = 0.7 and bounce back when w = 1. On the bottom side, there are

obvious tipping points for both the mean of the skewness E(m3) and kurtosis E(m4)

of the bid-ask spread in the range from w = 0.4 to w = 0.8. While their corresponding

standard deviation SD(m3) and SD(m4) are more sensitive to the value of parameter

w in the range from w = 0.6 to w = 0.8. This coordinates with the fact observed on

the bottom side in Figure 2.9 that the deviation of the outliers rapidly decreases as

w ≥ 0.6.

The sensitivity analysis of parameter w based on the OFAT method indicates that a

hybrid structure of agent expectation can create more market liquidity with a low bid-

ask spread. A nonlinear relationship exists between the parameter w and the bid-ask

spread. The variability of the simulation output is significantly affected by the value

of w. Especially when w is close to 0, the herding effect is more likely to appear in the

simulation due to the agent’s expectation mainly accounts for his imitation behaviour.

Therefore more outliers exist in the set of statistics S = {m1,m2,m3,m4} of the bid-

ask spread. Moreover, A more accurate sensitivity analysis can be implemented with a
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smaller step size of parameter w, and a large number of independent runs can mitigate

the stochastic effects.
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Figure 2.10: The sensitivity test of bid-ask spread statistics S = {m1,m2,m3,m4}
against the value of parameter w. The sample sets {mh

i }Hh=1, i = 1, 2, 3, 4 containing
H = 50 independently generated observations are used to compute the corresponding
mean E(mi) and standard deviation SD(mi).

2.7.2 Bid-ask Spread against Parameter A

After looking at how the parameter w affects the bid-ask spread in ABM simulations,

we move on to implement a sensitivity analysis on parameter A, which directly scales

the agent’s specific volatility in Equation (2.7). The value of A is equally spaced in

the range from 0.1 to 1 with a step size ∆ = 0.1. Due to the OFAT method, the value

of w is set as 0.5, and the number of agents Nagent equals 100. The other parameters

remain the same as stated in Section 2.7.

Figure 2.11 shows how the set of statistics S = {m1,m2,m3,m4} of the bid-ask

spread changes against parameter A. The top-left panel shows that there is a positive

linear relationship between the median of each sample set {m1
1,m

2
1, . . . ,m

H
1 } and the
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parameter A, and the corresponding variation and outliers increase as the parameter

A increases. A similar pattern can be observed for the sample set of m2 with a low

slope. By contrast, the sample set of m3 and m4 does not exhibit an obvious linear

relationship. Moreover, the deviation of the outliers shrinks as A increases.
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Figure 2.11: The box plots of the first four moments of bid-ask spread over the pa-
rameter A.

The box plot shown in Figure 2.11 indicates that high volatility of the agent’s

specific expectation on asset return will cause a high bid-ask spread in the ABM

simulation. We can assert a linear relationship between the first two moments, m1

and m2, of the bid-ask spread and the parameter A. However, a quantified analysis is

still required to support our findings.

Figure 2.12 displays how the change of parameter A affects the average performance

and the variability of the first four moments of the bid-ask spread. The mean of the

first two moments of the bid-ask spread, E(m1) and E(m2), show a linear relationship

with the parameter A when A ≤ 0.6. Then the slope of the corresponding curves

become fluctuated. The tipping points exist for both the mean and standard deviation
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of the third and fourth moments, E(m3) E(m4), SD(m3) and SD(m4), of the bid-

ask spread when A ≤ 0.2. Later, they all show an oscillating movement due to the

stochastic nature of the agent-based simulation. The standard deviation of the first

two moments of the bid-ask spread, SD(m1) and SD(m2), can only show a positive

relationship with the parameter A when A ≤ 0.4.
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Figure 2.12: The sensitivity test of bid-ask spread statistics S = {m1,m2,m3,m4}
against the value of parameter A. The sample sets {mh

i }Hh=1, i = 1, 2, 3, 4 containing
H = 50 independently generated observations are used to compute the corresponding
mean E(mi) and standard deviation SD(mi).

The sensitivity analysis of how the bid-ask spread responds to the change of pa-

rameter A and it suggests a better control of the value of parameter A within the

range of (0, 0.4], where a linear property can be obtained for the mean and standard

deviation of the first two moments of the bid-ask spread. Furthermore, to gain insight

into the properties of the standard deviation of the corresponding moments, a smaller

step size of parameter A is required to get a more accurate analysis.
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2.7.3 Bid-ask Spread against the Number of Agents

At last, we investigate the effect of the number of agents Nagent on the bid-ask spread

in ABM simulations. We uniformly choose the value of Nagent in the range from 100

to 1 000 with a step size ∆ = 100. Besides, the value of parameters w and A is set as

0.5 and 0.2, respectively. The other parameters remain the same as stated in Section

2.7.
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Figure 2.13: The box plots of the first four moments of bid-ask spread over the number
of agents Nagent.

Figure 2.13 shows how the set of statistics S = {m1,m2,m3,m4} of the bid-ask

spread changes against the number of agents Nagent, which do not have an appar-

ent influence on both the first and the second moment, m1 and m2, of the bid-ask

spread. By contrast, although many outliers exist for the distribution of m3 and m4,

the corresponding median and variance decay slowly as the number of agents Nagent

increases.

Furthermore, Figure 2.14 exhibits how the change of the number of agents Nagent

influences the average performance and the variability of the first four moments of

the bid-ask spread. Expect that there is a sudden drop for E(m1), E(m2), SD(m1)
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and SD(m2) when the number of agents Nagent increases from 100 to 200, the bid-

ask spread is not affected as more agents are included in the model. While a similar

pattern can be observed for E(m3), E(m4), SD(m3) and SD(m4) when the number

of agents Nagent ≤ 400.
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Figure 2.14: The sensitivity test of bid-ask spread statistics S = {m1,m2,m3,m4}
against the number of agents Nagent. The sample sets {mh

i }Hh=1, i = 1, 2, 3, 4 containing
H = 50 independently generated observations are used to compute the corresponding
mean E(mi) and standard deviation SD(mi).

The sensitivity analysis of how the bid-ask spread responds to the number of agents

Nagent implies that the bid-ask spread can be narrowed if we introduce new agents to

the market consisting of a small size of participants. However, when there are sufficient

candidates in the market, the set of statistics S = {m1,m2,m3,m4} of the bid-ask

spread will not be influenced by the number of agents Nagent anymore.

2.8 Summary

In this chapter, we followed Tedeschi’s [52] (2009) framework to construct an agent-

based model with noisy agents in the stock market. By involving an endogenous
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mechanism of imitation, the herding effect can be generated that wealthy agents are

more likely to be imitated by others, causing a larger fluctuation in price. Due to the

model being a closed system, the price movement will be restricted to oscillate around

a constant Pmean, which is the ratio of the total money supply to total share supply

in the system. Meanwhile, the simulated log-return is verified to exhibit a leptokurtic,

asymmetric and fat-tailed distribution. Other stylised empirical facts emerging in

real financial prices series, such as zero auto-correlation of log returns and volatility

clustering, exist in the model outputs.

In this thesis, we contributed to implementing a parameter sensitivity analysis

based on the one-factor-at-a-time method, which is prior to the calibration process

in Chapter 4 as a descriptive or in-sample exercise identifying the vital parameter for

determining the statistical properties of the model. Based on the analysis, we found

that a low bid-ask spread of simulated price can be obtained with a hybrid structure

of agent expectation, where more market liquidity can be created. The herding effect

is more likely to be observed when the agent’s expectation mainly accounts for his

imitation behaviour. Within a suitable range, the scale parameter A of the agent’s

specific volatility shows a linear relationship against the first and second moment of

the bid-ask spread. Moreover, additional participants will not significantly influence

the bid-ask spread when the market has sufficient agents.



Chapter 3

Stock Market with Trend Following

Agents

In Chapter 2, we have introduced a basic agent-based model, which can reproduce

a set of stylised empirical facts only with some necessary mechanisms, including the

simplest noise agent assumption. In this section, we want to equip agents with an

intelligent strategy and investigate market performance under the condition of these

more intelligent agents.

3.1 Portfolio Choice

Markowitz [61] (1952) firstly proposed the portfolio choice problem that an agent

wants to create a portfolio with a maximum probability of expected return under

a fixed level of variance. Although the original model is built in a mean-variance

framework, it can also be written within the Von Neumann-Morgenstern expected

utility framework. The generalised Markowitz problem is extended to multi-period

versions by Samuelson [62] (1969) with a discrete approach and Merton (1969) with

a continuous approach (see [63] and [64]). Then the portfolio choice problem can be

treated as an optimal investment or consumption problem.

Many classic Merton problems consider the input parameters as known constants

or stochastic processes with known distributions, which ignores the uncertainty for

the price return to follow a given distribution. Therefore it is a valuable extension

by involving the learning technique in the optimal allocation model. In [65], Karatzas

58
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and Zhao (2001) made an outstanding contribution by using martingale methods under

filtration to solve the optimal allocation problem for almost any utility function with

an assumption that stock return follows a Gaussian distribution with unknown mean.

In this chapter, we first review the work of Bismuth et al. [53] (2019), in which

a continuous portfolio choice problem is considered under the assumption that the

expected return of risky assets is unknown. They used conjugate priors and updated

the corresponding parameters with a simple Markovian approach. A closed-form so-

lution of the Hamilton-Jacobi-Bellman(HJB) equation can be obtained in a stochastic

optimal control problem with constant relative risk aversion (CRRA) and constant

absolute risk aversion (CARA) utility function. Then, an agent-based model with

trend-following agents is established with some necessary notations. Next, we present

the order placement mechanism in the CARA and CRRA cases. An illustration of

how the Bayesian learning technique follows the asset return is also provided. The

simulation results are displayed under the case that agents have a CRRA utility func-

tion with γ = 1, and we contribute to illustrating how a market can be set up with a

deterministic trend and what leads to a crash in the system. Finally, the parameter

sensitivity analysis is presented to find the suitable initial condition and constraint of

parameters for a traceable and reproducible simulation to exist.

3.2 Stock Price Dynamics

We follow the model introduced by Bismuth et al. [53] (2019), considering a portfolio

allocating problem faced by an agent in a simplified financial market only consisting of

one risk-free asset and one risky asset. Let
(
Ω,F , (FWt )t∈R+ ,P

)
be a filtered probability

space with FWt generated by the Wiener process Wt.

The risky free interest rate is donated by r and the risky asset P has classical

log-normal dynamics

dPt = µPtdt+ σPtdWt, (3.1)

where the drift µ is unknown and σ > 0.
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3.3 Bayesian Learning

At the time t = 0, agents’ belief about the value of µ is assumed as a Gaussian prior

distribution

µ ∼ N(β0, v
2
0), (3.2)

where β0 ∈ R and v2
0 > 0.

A classical result of filtering methods shows that the conditional distribution of µ

given FPt is Gaussian and (FPt )t∈R+ is denoted as a filtration generated by (Pt)t∈R+ .

Specifically, we have that

Proposition 1. Let t ∈ R+, given FPt , µ has a conditional distribution with mean βt

and variance v2
t , where

βt =
σ2

σ2 + v2
0t
β0 +

v2
0

σ2 + v2
0t

(µt + σWt), (3.3)

and

v2
t =

σ2v2
0

σ2 + v2
0t
. (3.4)

The proof of Proposition 1 is well presented in Appendix A, and we notice that

µt + σWt = log
(
Pt
P0

+ 1
2
σ2t
)

, which is observable at time t.

In Proposition 1, the process (vt)t is a deterministic process and the process (βt)t

is a stochastic process having the following dynamics

dβt = g(t)(µ− βt)dt+ σg(t)dWt

= σg(t)dŴt,
(3.5)

where the function g is defined by

g : t ∈ R+ 7→
v2

0

σ2 + v2
0t
, (3.6)

and the process
(
Ŵt

)
t

is defined by

Ŵt = Wt +

∫ t

0

µ− βs
σ

ds, (3.7)

which is a Wiener process adapted to
(
FPt
)
t∈R+

(see proof in Appendix A).
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3.4 Optimal Portfolio Choice in CARA Case

The strategy of the agent is implemented by a process (Mt)t representing the amount

invested in the risky asset, so Mt = StPt. Therefore the value of agent’s portfolio is

modelled by a process (Vt)t with V0 > 0 and the dynamic

dVt = ((µ− r)Mt + rVt)dt+ σMtdWt

= ((βt − r)Mt + rVt)dt+ σMtdŴt.
(3.8)

We define the set of admissible strategies as A = A0 where

At = {(Ms)s∈[t,T ],M is measurable,FP -adapted under the linear growth condition}

(3.9)

A measurable and FP -adapted process (Vt)t is said to satisfy a linear growth with

respect to Ŵ , if for all t ∈ [0, T ]

|Vt| ≤ CT

(
1 + sup

s∈[0,t]

|Ŵs|

)
, (3.10)

where CT is deterministic and depends only on T .

For t ∈ R+, given M ∈ At and s ≥ t, we define that

βt,βs = β +

∫ s

t

σg(t
′
)dŴ t

′
(3.11)

V t,V,β,M
s = V +

∫ s

t

((βt,β
t′
− r)Mt′ + rV t,V,β,M

t′
)dt

′
+

∫ s

t

σMt′dŴ t
′
. (3.12)

The optimal portfolio choice problem in CARA case origins from an agent who

wants to maximise their utility function

sup
M∈At

EQ[− exp(−γV 0,V0,β0,M
T )], (3.13)

and the value function u associated with this problem is defined by

u(t, V, β) = sup
M∈At

EQ[− exp(−γV t,V,β,M
T )]. (3.14)

Then the HJB for this problem is written as

−∂tu−
1

2
σ2g(t)2∂2

ββu− sup
M∈At

{((β − r)Mt + rV )∂V u+

1

2
σ2M2∂2

V V u+ σ2Mg(t)∂2
βV u} = 0,

(3.15)

with the terminal condition

u(T, V, β) = − exp(−γV ). (3.16)
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3.4.1 Solve the HJB Equation in CARA Case

To solve the HJB equation (3.15) with terminal condition (3.16), the following ansatz

is used

u(t, V, β) = − exp
[
−γ
(
er(T−t)V + ϕ(t, β)

)]
. (3.17)

Proposition 2. Suppose there exists ϕ ∈ C1,2 ([0, T ]×R) satisfying

−∂tϕ(t, β)− 1

2
σ2g2(t)∂2

ββϕ(t, β)− (β − r)2

2γσ2
+ g(t)(β − r)∂βϕ(t, β) = 0, (3.18)

with the terminal condition

ϕ(T, β) = 0. (3.19)

Then the u defined in Equation (3.17) is solution of the HJB equation (3.18) with

terminal condition (3.19), and the supremum of Equation (3.15) can be obtained at

M∗ = e−r(T−t)
(
β − r
γσ2

− g(t)∂βϕ(t, β)

)
. (3.20)

The Proposition 2 has converted the three-variable nonlinear PDE problem into a

two-variable linear one. The next step boils down the (3.18) with terminal condition

(3.19) to a system of first-order linear ODEs.

Proposition 3. Suppose that (a, b) ∈ (C1([0, T ]))2 satisfies the following system of

ODEs: a
′
(t) + 1

2
σ2g2(t)b(t) = 0

b
′
(t) + 1

γσ2 − 2g(t)b(t) = 0,

(3.21)

with terminal conditions a(T ) = 0

b(T ) = 0.

(3.22)

Then the ϕ defined by

ϕ(t, β) = a(t) +
1

2
b(t)(β − r)2, (3.23)

satisfies (3.18) with terminal condition (3.19).

The system of ODEs (3.21) with terminal conditions (3.22) can be solved easily in

the following proposition.
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Proposition 4. The function a(t) and b(t) defined bya(t) = 1
2γ

(
log
(
g(t)
g(T )

)
− (T − t)g(T )

)
b(t) = 1

γσ2 (T − t)g(T )
g(t)

,

(3.24)

satisfies the system (3.21) with terminal conditions (3.22).

Combining the notations stated in Propositions 2, 3 and 4, the function u defined

by

u(t, V, β)

=− exp
[
−γ
(
er(T−t)V + ϕ(t, β)

)]
=− exp

[
−γ
(
er(T−t)V + a(t) +

1

2
b(t)(β − r)2

)]
=− exp

[
− γ

(
er(T−t)V +

1

2γ

(
log

(
g(t)

g(T )

)
− (T − t)g(T )

)
+

1

2γσ2
(T − t)g(T )

g(t)
(β − r)2

)]
,

(3.25)

satisfies the HJB equation (3.15) with terminal condition (3.16), and the supremum

of u(t, V, β) is obtained at

M∗ = e−r(T−t)
g(T )

g(t)

β − r
γσ2

. (3.26)

The argument of the maximum in (3.15) is obtained by plugging the expression of ϕ

in (3.20).

In particular, agents equipped with the optimal portfolio choice strategy with a

CARA utility function should invest the amount of M∗ cash in risky asset at time t.

The proofs of Proposition 2 and 3 can be found in Appendix A. While the proof of

Proposition 4 is straightforward by differentiating (3.24) and verifying the terminal

conditions.

3.5 Optimal Portfolio Choice in CRRA Case

In the CRRA case, the agent’s strategy is modelled by the process (θt)t, which describes

the proportion of the portfolio value invested in the risky asset. Then the dynamic of
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the agent’s portfolio value is

dVt = ((µ− r)θtVt + rVt)dt+ σθtVtdWt

= ((β − r)θtVt + rVt)dt+ σθtVtdŴt.
(3.27)

Let γ denote the relative risk aversion parameter of agents. The set of admissible

strategies depends on the value of γ.

For all t ∈ [0, T ], if γ < 1, the set of strategies is introduced as

Aγt =

{
(θs)s∈[t,T ], θ is measurable and FP -adapted, P

(∫ T

t

θ2
sds <∞ = 1

)}
.

If γ ≥ 1, the set of strategies is denoted as

Aγt =
{

(θs)s∈[t,T ],measurable, FP -adapted, and satisfying

the linear growth condition with respect to Ŵ
}
.

Therefore the set of admissible strategies is Aγ = Aγ0 . For t ∈ R+, given θ ∈ Aγt
and s ≥ t, we define

βt,βs = β +

∫ s

t

σg(t
′
)dŴt′ (3.28)

V t,V,β,θ
s = V +

∫ s

t

((βt,β
t′
− r)θt′ + r)V t,V,β,θ

t′
dt
′
+

∫ s

t

σθt′V
t,V,β,θ

t′
dŴt′ . (3.29)

The optimal strategy for the agent in CRRA case is to maximise the utility function

sup
θ∈Aγ

EQ[Uγ(V 0,V0,β0,θ
T )] (3.30)

where the CRRA utility function is defined by

Uγ(V ) =


V 1−γ

1−γ if γ 6= 1

log(V ) if γ = 1.

(3.31)

The value function u associate with this problem is defined by

u(t, V, β) = sup
θ∈Aγt

EQ[Uγ(V t,V,β,θ
T )] (3.32)

Then HJB for this problem is then written as

−∂tu(t, V, β)− 1

2
σ2g2(t)∂2

ββu(t, V, β)− sup
θ
{((β − r)θ + r)V ∂V u(t, V, β)

+
1

2
σ2θ2V 2∂2

V V u(t, V, β) + σ2g(t)θV ∂2
V βu(t, V, β)} = 0

(3.33)

with the terminal condition

u(T, V, β) = Uγ(V ) (3.34)
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3.5.1 Solve the HJB Equation in CRRA Case

For γ 6= 1, the following ansatz is used to solve HJB equation (3.33) with terminal

condition (3.34)

u(t, V, β) =

(
er(T−t)V

)1−γ

1− γ
exp[ϕ(t, β)]. (3.35)

Proposition 5. For γ 6= 1, assume there exists t
′ ∈ [0, T ) and ϕ ∈ C1,2([t

′
, T ] × R)

satisfying

− 1

1− γ
∂tϕ(t, β)− 1

2(1− γ)
σ2g2(t)∂2

ββϕ(t, β)− 1

2γ(1− γ)
σ2g2(t)(∂βϕ(t, β))2

−1

γ

(β − r)2

2σ2
− 1

γ
g(t)(β − r)∂βϕ(t, β) = 0,

(3.36)

with terminal condition

ϕ(T, β) = 0. (3.37)

Then function u defined in (3.35) is the solution of HJB equation (3.33) with terminal

condition (3.34) on [t
′
, T ] × R∗+ × R. Furthermore, the supremum in (3.33) can be

obtained at

θ∗ =
β − r
γσ2

+
1

γ
g(t)∂βϕ(t, β). (3.38)

Similar to the solving procedure in the CARA case, the Proposition 5 has converted

the three-variable HJB PDE into a two-variable PDE. In the following proposition, we

will boil down the new PDE to a system of ODEs. It is worthy to note that both the

two-variable PDE and the system of ODEs are nonlinear.

Proposition 6. For γ 6= 1, suppose there exists t
′ ∈ [0, T ] and (a, b) ∈

(
C1([t

′
, T ])

)2

satisfying the following system of ODEsa
′
(t) + 1

2
σ2g2(t)b(t) = 0

b
′
(t) + 1

γ
σ2g2(t)b2(t) + 1−γ

γ
1
σ2 + 21−γ

γ
g(t)b(t) = 0,

(3.39)

with terminal conditions a(T ) = 0

b(T ) = 0.

(3.40)

Then the function ϕ defined by

ϕ(t, β) = a(t) +
1

2
b(t)(β − r)2, (3.41)
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satisfies (3.36) with terminal condition (3.37).

Note that the second ODE in (3.39) is a Riccati equation, which has a particular

solution − 1
σ2g

, and a classic solution of b is to assume it has a form

b(t) = − 1

σ2g(t)
+ d(t). (3.42)

Then Equation (3.42) is the solution of ODE in (3.39) with terminal condition b(T ) = 0

if and only if d solves the following equation

d
′
(t) +

1

γ
σ2g2(t)d2(t)− 2g(t)d(t) = 0 (3.43)

with terminal condition d(T ) = 1
σ2g

.

By using a simple transform e = 1
d
, Equation (3.43) can be reduced to a first-order

linear ODE

e
′
(t) + 2g(t)e(t) =

1

γ
σ2g2(t), (3.44)

with terminal condition e(T ) = σ2g(T ), and it has a unique solution

e(t) =
1

γ
σ2g(t) +

(
1− 1

γ

)
σ2 g

2(t)

g(T )
. (3.45)

Proposition 7. For γ 6= 1, we define that

t̃ = (1− γ)T − γσ
2

v2
0

, (3.46)

and

I =

[0, T ] if t̃ < 0 (i.e., γ > 1, or γ < 1 and σ2

v20
> 1−γ

γ
T ),

(t̃, T ] otherwise.

(3.47)

Then the function a and b defined on Ia(t) = γ
2

log
(

γg(t)
(γ−1)g(t)+g(T )

)
+ 1

2
log
(
g(T )
g(t)

)
b(t) = 1−γ

σ2
1
g(t)

g(t)−g(T )
(γ−1)g(t)+g(T )

.

(3.48)

satisfies the system of ODEs (3.39) with terminal condition(3.40).

Combining the Proposition 5, 6 and 7, for γ 6= 1, the function u defined on I ×
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R∗+ ×R

u(t, V, β) =

(
er(T−t)V

)1−γ

1− γ
exp[ϕ(t, β)]

=

(
er(T−t)V

)1−γ

1− γ
exp[a(t) +

1

2
b(t)(β − r)2]

=
(er(T−t)V )1−γ

1− γ
exp[

γ

2
log(

γ

(γ − 1) + g(T )
g(t)

) +
1

2
log(

g(T )

g(t)
)

+
1

2

(1− γ)

σ2

1

g(t)

g(t)− g(T )

(γ − 1)g(t) + g(T )
(β − r)2],

(3.49)

satisfies the HJB equation (3.33) on I × R∗+ × R with terminal condition (3.34) and

the supremum in (3.33) can be obtained at

θ∗ =
β − r
γσ2

γg(T )

(γ − 1)g(t) + g(T )
. (3.50)

Proposition 8. For γ = 1, the function u defined by

u(t, V, β) = log(er(T−t)V ), (3.51)

satisfies the equation (3.33) with terminal condition (3.34) and the supremum in (3.33)

is obtained at

θ∗ =
β − r
σ2

. (3.52)

For the case γ = 1, the solution of the HJB equation (3.33) has no dependence on

β. In particular, agents equipped with the optimal portfolio choice strategy with a

CRRA utility function should invest a proportion of θ∗ cash in risky asset at time t.

The proofs of Proposition 5, 6 be found in Appendix A. While the proof of Proposition

7 is straightforward by differentiating (3.48) and verifying the terminal condition.

3.6 Notations for the Model

Although the optimal strategy introduced above is built on a continuous-time, our

model will use a discrete-time with T periods for simplicity. A population of N learning

learning agents are added into the market and randomly picked up to make their

operations at each intra-day period.

Let tk be denoted as the period, which starts from t1 and end with tT (T <∞) and

the initial period is denoted as t0. Within each period, there are L intra-day periods
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denoting as tkl , then tk1 and tkL represents the first and the last intra-day period tk

respectively.

Assume that agent i has an account book, which consists of the following 6 items:

• Cash. Ci
t represents the total money agent i holding at time t, which will in-

crease/decrease by the amount of cash in a completed buy/sell transaction.

• Limit Cash. It represents the amount of cash occupied by limit bid orders sub-

mitted by agent i. The limit cash will decrease when limit orders are executed

or cancelled.

• Available Cash. Ait represents the amount of cash that agent i can use to buy

shares. The available cash will increase when shares are sold, or the limit bid

orders are cancelled. On the contrary, the available cash will decrease when

shares are bought, or the limit bid orders are submitted.

• Share. Sit represents the number of shares held by agent i at time t, which will

increase/decrease by the amount of share in a completed buy/sell transaction.

• Limit Share. It represents the share occupied by limit ask orders, which will

decrease when limit orders are executed or cancelled.

• Available Share. N i
t represents the number of shares that agent i can sell, which

will increase when bid orders are completed, or limit ask orders are cancelled.

While both market and limit ask orders will decrease the available share.

At the initial time, all agents are provided with an amount of cash C0 and S0

shares. Given that Pt is denoted as the asset price at time t, the value of agent i’s

portfolio is denoted as V i
t with the initial value V i

0 = Ci
0 + Si0P0.

We assume that all agents have a common understanding of the dynamic of stock

price, which is written as

dPt = µPtdt+ σPtdWt, (3.53)

where (Wt)t is Wiener process.

Let βt be denoted as the agent’s belief about the value of µ at time t. Agents will

use the Bayesian learning technique to update their latest knowledge of βt by observing

the current stock price Pt.
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In the CARA case, the amount of agent’s investment in risky asset is denoted as

Mt = StPt at time t. While his optimal investment is denoted as M∗
t . Similarly, in the

CRRA case, the proportion of agent’s investment in a risky asset at time t is denoted

as θt with corresponding optimal proportion written as θ∗t .

The limit order book collects all orders submitted by agents. Since the order is

submitted at each intra-day period, then the corresponding bid and ask order price is

defined by btkl and atkl respectively. While the volume of the order is represented by

htkl .

3.7 Place Orders

We have introduced the optimal strategies for solving portfolio choice problems using

CARA and CRRA utility functions. This part will combine these strategies with

our Agent-based model by modifying the expectation formation mechanism and order

submission for each agent. We assume that agents can only buy or sell the share with

their holding cash and inventories.

3.7.1 CARA Case

The order placement for agents with the CARA utility function is straightforward.

At the beginning of the simulation, agent i generates his origin belief β0 about the

value of drift µ with a Gaussian distribution β0 ∼ N
(
µβ0 , σ

2
β0

)
. The agent i’s optimal

strategy with the CARA utility function is to hold a amount of money M∗ (Equation

(3.26)) invested in the risky asset. As no credit transaction is allowed in the system,

each agent’s optimal investment in the risky asset is bounded in M∗
t ∈ [0,Mt + Ct].

Let Ptk represent the opening price at period tk. During the period, if Mtkl
< M∗

tk
,

where M∗
tk

is the amount of money the agent want to invest in risky asset at the end

of the period tk, the agent will submit limit bid orders to increase their investment

in the risky asset at the following intra-day periods. The limit bid order price btkl is

assumed to have a formula

btkl ∼ U(Ptk , Ptke
(βtk−

1
2
σ2)∆t+σξ

√
∆t), (3.54)

where ξ ∼ N(0, 1) is a standard normal variable and the time step ∆t = 1. In order
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to get the optimal position of risky asset investment M∗
tk

, the limit bid order volume

htkl can be calculated by

htkl =
M∗

tk
−Mtkl

btkl
. (3.55)

Conversely, if Mtkl
> M∗

tk
, agents will place limit ask orders to short their position

in risky asset investment, and the corresponding order price atkl is denoted as

atkl ∼ U(Ptk , Ptke
(βtk−

1
2
σ2)∆t+σξ

√
∆t), (3.56)

where ξ ∼ N(0, 1) is a standard normal variable and the time step ∆t = 1. While the

limit order volume htkl is presented as

htkl =
Mtk −M∗

tkl

atkl
. (3.57)

3.7.2 CRRA Case

In initial, agent i generates his first belief β0 about the value of µ with a Gaussian

distribution β0 ∼ N
(
µβ0 , σ

2
β0

)
. Therefore, his optimal strategy using the CRRA utility

function is to hold the θ∗0 percentage of risky assets in the first period of the portfo-

lio. Since no credit purchase and sell is allowed in the system, the agent’s optimal

investment in the risky asset is restricted to θ∗t ∈ [0, 1].

Let Ptk represent the opening price at period tk. During the period, if θtkl < θ∗tk ,

where θ∗tk is the position the agent wishes to be at the end of the period, the agent

will place limit bid orders in order to increase their proportion of investment in a risky

asset at the following intra-day periods. Then we assume that the limit bid order price

btkl is generated by

btkl ∼ U(Ptk , Ptke
βtk−

1
2
σ2+σξ), (3.58)

where ξ ∼ N(0, 1) is a standard normal variable.

In order to reach the optimal proportion position θ∗tk , an agent is assumed to place

a limit bid order to buy htkl shares at price btkl . Once the order is execute completely,

the value of risky asset in agent’s portfolio is
(
Stkl + htkl

)
btkl . At the same time, the

value of portfolio is consisted of two parts: (1) the value of cash Vtkl

(
1− θtkl

)
, and (2)

the value of risky asset Stkl btkl . Then the limit bid order volume htkl can be obtained
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by solving the following equation(
Stkl + htkl

)
btkl

Vtkl

(
1− θtkl

)
+ Stkl btkl

= θ∗tk , (3.59)

and with a simple transformation, we can have

htkl =
(
θ∗tk − 1

)
Stkl +

Vtklθ
∗
tk

(
1− θtkl

)
btkl

. (3.60)

Similarly, if θtkl > θ∗tk , agents will place limit ask orders in order to decrease their

proportion of investment in risky asset, and the corresponding order price atkl and

volume htkl are written as

atkl ∼ U(Ptk , Ptke
βtk−

1
2
σ2+σξ)

htkl =
(
1− θ∗tk

)
Stkl −

Vtklθ
∗
tk

(
1− θtkl

)
atkl

,

(3.61)

where where ξ ∼ N(0, 1) is a standard normal variable. This formation of order price

and volume indicates that the agents will only invest in a risky asset if they hold

positive views of asset returns.

3.8 Illustration for Bayesian Learning

Now we introduce the framework for the Bayesian learning procedure. We assume

that all agents believe a Geometric Brownian Motion dynamic of the stock price

d logPt = µPtdt+ σPtdWt, (3.62)

where (Wt)t is Wiener process.

Then the dynamic of βt (3.5) can be transformed into

dβt = g(t)(µ− βt)dt+ σg(t)dWt

= g(t)(µdt+ σdWt)− g(t)βtdt

= g(t)d logP − g(t)βtdt

(3.63)

where g is defined by

g : t ∈ R+ 7→
v2

0

σ2 + v2
0t
. (3.64)
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In order to embed the Bayesian learning in the model, the Equation (3.63) is

discretized and approximated with the following steps

βt = βt−1 +

∫ t

t−1

dβs

= βt−1 +

∫ t

t−1

(g(s)d logP − g(s)βsds)

≈ βt−1 + g(t− 1) log
Pt
Pt−1

− g(t− 1)βt−1dt.

(3.65)

In particular, agents can have learning beliefs of βt by observing the historical stock

price using Equation (3.65). To better illustrate the learning process of βt, we present

a simple example in Figure 3.1. The upper panel shows a stock path {Pt}t generated

numerically by formula

Pt = Pt−1 + µPt−1dt+ σPt−1

√
dtξ, (3.66)

where ξ ∼ N(0, 1) is a standard normal variable. Given an initial price P0 = 100,

there are 1 000 price points calculated with a time step size dt = 0.01 and terminal

time T = 10. The parameter µ and σ are set as 0 and 0.05 respectively.

0 2 4 6 8 10
T

85

90

95

100

105

0 2 4 6 8 10
T

0.05

0.00
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0.10

Figure 3.1: A simple example of stock path generated by Geometric Brownian Motion
and the corresponding Bayesian updation of βt.
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The bottom panel shows the Bayesian learning process of βt with an initial value

β0 = 0.05 and v0 = 0.05. At the time t, the new βt is calculated in Equation (3.65)

by observing the price path in the upper panel. The grey area represents the range

within one standard deviation of βt, while the green straight line stands for the true

value of µ. Initially, β0 deviates from the actual value of µ. However, as more price

information is obtained, the learning algorithm gets βt closer to value of µ. Meanwhile,

the standard deviation of βt narrows over the learning process, which indicates we are

more confident that the value of βt reveals the actual value of µ.

3.9 Timeline of the Events

In previous sections, we have mathematically formalised the Bayesian learning tech-

nique and the optimal strategy of agents. However, the event sequence is also vital to

make an identical model for repeatable simulation results.

The model starts with N learning number of learning agents, whose initial beliefs β0

about the value of µ are drawn from a normal distribution N ∼ (µβ, σ
2
β). Each agent

has a portfolio consisting of C0 cash and S0 shares at the beginning.

The following list describes the sequence of events that happen at the level of period

and corresponding intra-day period

1. At the beginning of the each period, agents observe the historical stock price and

update their belief βt about the value of µ using Equation (3.65). Then their

optimal strategies are determined in the following ways

• If agents have a CARA utility function, they calculate their optimal risky

asset investment M∗
t using Equation (3.26).

• If agents have a CRRA utility function, they calculate their optimal pro-

portion of risky asset θ∗t using Equation (3.50) and (3.52).

2. For each intra-day period within a period, agents check their existing limit orders

and withdraw them if the orders exist beyond one period. Then one agent is

selected randomly to place a limit order introduced in Section 3.7.
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3.10 Simulation

In the beginning, we present a pseudocode of an ABM simulation with trend-following

agents in CRRA case to illustrate how we can obtain outputs based on the math

formulas introduced in previous sections.

Algorithm 2 The pseudocode of an ABM simulation in CRRA case

Require: N learning, T, L ∈ N+

t← 1
l← 0
γ ← 1
P0 ← p0

βi0 ← N
(
µβ0 , σ

2
β0

)
, for i = 1, 2, . . . , N learning

set up the initial portfolio account for each agent
while t ≤ T do

while l ≤ L do
if l = 0 then

if Agents have learning believes then
Update agents’ believes using Equation (3.65)

end if
l← l + 1

else if 1 ≤ l ≤ L then
randomly select an agent
calculate his current and optimal risky asset proportion θ and θ∗ (3.52)
if θ < θ∗ then

place a limit bid order using Equation (3.58) and (3.60)
else if θ > θ∗ then

place a limit ask order using Equation (3.61)
end if
update the new market price Ptl following the rules in Section 2.4
l← l + 1

end if
end while
t← t+ 1

end while
output a set of simulated price {P11 , P12 , . . . , PTL}

In specfic, the population of learning agents N learning is set as 100. Each agent

is given S0 = 100 shares and C0 = 10 000 cash at the beginning. Each simulation

consists of 2 000 periods, within which has 300 intra-day periods. The initial stock

price is P0 = 100 and the risk-free rate is assumed as rf = 0.

In the following section, we present various results of simulations to demonstrate

the model’s inherent properties. In the first two subsections, we hold βt fixed as a



CHAPTER 3. STOCK MARKET WITH TREND FOLLOWING AGENTS 75

constant, illustrating the scenario where these agents do not learn at all.

3.10.1 Fixed Belief about Value of Drift in CRRA Case: Agents

Have the Same Proportion of Initial Investment in

Risky Asset

We start from the simplest model, in which each agent has a fixed individual belief

about the value of µ throughout the simulation. All agents are assumed to have a

CRRA utility function with their risk aversion parameter γ = 1. This simplification

aims to investigate how the agent belief distribution and their optimal strategy affect

the dynamic of an asset price.

At the beginning of the simulation, agents start with a randomly held belief β0

about the value of price drift µ sampled from a normal distributionN ∼ (0.005, 0.0012),

and their beliefs will remain the same over the simulation. Meanwhile, all agents are

assumed to have the same knowledge of the price volatility σ = 0.1. Here we define

an expected optimal risky asset proportion for each agent

θ̃∗ = E [θ∗t ] =
E [βt]

σ2
, (3.67)

which is an expectation of agent optimal strategy in Equation (3.52). Since all agents

hold fixed beliefs, they will equalise their investment in both risky and risk-free asset

over the simulation given θ̃∗ = 0.5.

It is noteworthy that the normal distribution for generating the agent beliefs should

have a positive mean since agents are only willing to invest in the risky asset if they

believe there will be a positive return or they will choose to hold risk-free money.

Meanwhile, the diversity of the belief about the asset return among agents is essential

for the model initialisation. If all agents have the same belief, there will be no difference

between the bid and ask prices, and no transaction will be executed. Therefore the

standard deviation of the agent belief distribution should be large enough to create

price discrimination.

Figure 3.2 presents two simulation results consisting of two stock paths and their

corresponding histograms of agents optimal strategy θ∗. Given that the initial propor-

tion of risky investment for each agent θ0 is set as 0.5, the path in the upper panel of
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Figure 3.2: Upper panel: A price sample path and the corresponding histogram of
agents optimal strategy θ∗ with θ̃∗ = 0.505. Bottom Panel: A price path sample and
the corresponding histogram of agents optimal strategy θ∗ with θ̃∗ = 0.487.

Figure 3.2 shows a surge in stock price at the first periods, where the expected optimal

strategy among agents θ̃∗ equals to 0.505. It indicates that agents are more likely to

place the bid orders during the first few periods. Conversely, the path in the bottom

panel of Figure 3.2 displays a rapid drop of price at the first few periods, where θ̃∗

equals to 0.487. It implies that the excess ask orders are placed by agents since the

expected optimal strategy among agents is lower than their initial investment in a

risky asset.

Four additional sample paths are displayed in Figure 3.3, in which we can observe

that when θ̃∗ > θ0, the orange and blue sample paths move upward and the magnitude

is positively correlated to the distance between θ̃∗ and θ0. Similarly, when θ̃∗ < θ0, the

red and green sample paths drops quickly at the first period. All four sample paths

present a stable movement in the rest periods.

Figure 3.4 shows the corresponding bid-ask spread of four sample paths. During

the first few periods, the bid-ask spreads fluctuated in the range (0, 2.5] and their price

series show deterministic upward or downward trends during these periods. After that,
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Figure 3.3: Four sample paths simulated under the condition that agents have fix be-
liefs about the value asset drift µ, where the belief is sampled from N ∼ (0.005, 0.0012).

the bid-ask spreads move stably in the range (0, 4] and the price series show a mean

reversion pattern simultaneously.

Given that agents have fixed beliefs sampled from a normal distribution N ∼

(0.005, 0.0012), we can observe the deterministic and stationary pattern of the sample

path. At the same time, the bid-ask spread under the deterministic pattern is smaller

and narrower than the stationary one. Moreover, the expected optimal strategy θ∗

among agents determines the direction of price movement at the first few periods.

When θ̃∗ > θ0, it causes an upward trend of sample-path. Conversely, a downward

trend of sample-path is determined by the condition that θ̃∗ < θ0.

When we choose different standard deviations for generating agents fixed beliefs

and keep the other parameters unchanged, a long term deterministic trend occurs in

the simulation results.

In Figure 3.5, the upper panel displays four sample paths simulated under the

condition that agents have fixed beliefs about the value of asset drift µ. Each sample

path has a unique standard deviation σβ0 for generating agents beliefs with a normal

distribution N ∼
(
0.005, σ2

β0

)
. While the bottom panel shows the first 200 periods of
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Figure 3.4: The corresponding bid-ask spreads of four sample paths in Figure (3.3).

the four sample paths in upper panel. As σβ0 increasing, it causes a larger variation

in stock price. The red sample path which has θ̃∗ = 0.543 and σβ0 = 0.004 increases

by 160 at the first 10 periods due to θ̃∗ > θ0 = 0.5. However, the stationary pattern

of sample path in the case that σβ0 = 0.001 is replaced by a deterministic downward

trend in the red sample path after the first 10 periods. For the other three sample

paths, it is hard to verify whether there is a stationary or deterministic pattern after

the first few periods.

Figure 3.6 presents the corresponding bid-ask spreads of four sample paths in Figure

3.5. When σβ0 increases, the bid-ask spread of sample path shows a larger variation.

If we set the bid-ask spread with σβ0 = 0.001 as the baseline, the case with σβ0 = 0.002

shows no significant difference comparing with the baseline, but has a slight higher

maximum value. For the case has σβ0 = 0.003, although the range of bid-ask spread

triples, it will periodically decrease to the similar range of the baseline. The case with

σβ0 = 0.004 has a similar pattern with the case σβ0 = 0.003, which has a more extreme

maximum value up to 20 and the a decreasing range.

Figure 3.7 displays the first 200 periods of bid-ask spread in Figure 3.6, in which

we can observe that for cases σβ0 = 0.002 and σβ0 = 0.001, the bid-ask spreads fall in
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Figure 3.5: Upper panel: Four sample paths simulated under the condition that agents
have fixed beliefs about the value of asset drift µ. Each sample-path has a unique
standard deviation σβ0 for generating agents beliefs with a normal distribution N ∼(
0.005, σ2

β0

)
. Bottom panel: The first 200 periods of four sample paths showed in the

upper panel.

range [0, 2.5] accompanying with a deterministic trend in price at the first 10 periods.

While in cases σβ0 = 0.003 and σβ0 = 0.003, larges fluctuations in price are more likely

to come with the corresponding bid-ask spreads surpassing the range [0, 4].

By shedding lights on the bid-ask spread of sample paths with different values of

σβ0 , we can roughly deduce that the stationary pattern of the stock price results from

the bid-ask spread varying stably in the range [0, 4]. The variation of the bid-ask

spread in a narrower or broader range than [0, 4] leads to a deterministic trend in

price, which usually happens at the first ten periods of simulation and the case with

σβ0 = 0.004.
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Figure 3.6: The corresponding bid-ask spreads of four sample paths in Figure 3.5.

3.10.2 Fixed Belief about the Value of Drift in CRRA: Agents

Have the Different Initial Proportion of Investment in

Risky Asset

In the previous section, we assume that each agent’s initial proportion of risky asset

investment equals 0.5. A deterministic trend of the stock price at the first period is

caused by the difference between expected optimal strategy among agents θ̃∗ and their

initial proportions of risky asset investment θ0.

Here we change the initial setting of agents’ portfolios,

• A number of 30 learning agents are allocated with S0 = 50 shares and C0 = 15 000

cash.

• A number of 30 learning agents are allocated with S0 = 150 shares and S0 = 5 000

cash.

• A number of 40 learning agents are allocated S0 = 100 shares and 10 000 cash.

The population of learning agents remains the same N learning = 100. Given the

initial stock price P0 = 100, the total amount of cash and share in the system stays
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Figure 3.7: The first 200 periods of bid-ask spreads corresponds to four sample paths
in Figure 3.5.

the same with the last section, but the initial proportion of risky asset investment of

agents is divided into three levels: 25%, 50% and 75%. Under the new setting, each

agent has the same initial wealth at the beginning of the simulation, and the other

parameters will remain unchanged.

Figure 3.8 illustrates four sample paths simulated under the condition that agents

have fixed beliefs about the value of asset drift µ and three proportion levels of initial

risky asset investment, where the belief is sampled from N ∼ (0.005, 0.0012). This

result has no significant difference from the simulation because each agent has the same

initial risky asset investment proportion. The sample paths display a deterministic

trend at the first few periods, followed by a mean reversion pattern.

In Figure 3.9, the corresponding bid-ask spreads mostly fall in the range [0, 2.5] at

the first 10 periods, after that the bid-ask spreads vary in the range [0, 5]. Although

agents have different proportions of initial risky asset investments, it does not change

the pattern of sample-path under the condition that agents beliefs are a sample from

N ∼ (0.001, 0.0012). It indicates that the distribution of agents beliefs and agents

optimal strategy are two essential factors determining the price pattern.
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Figure 3.8: Four sample paths are simulated under the condition that agents have
fixed beliefs about the value of asset drift µ and three proportion levels of initial risky
asset investment, where the belief is sampled from N ∼ (0.005, 0.0012).

Meanwhile, in Figure 3.10, the upper panel shows four sample paths simulated

under the condition that agents have fixed beliefs about the value of asset drift µ

and three proportion levels of initial risky asset investment. Each sample-path has a

unique standard deviation σβ0 for generating agents beliefs with a normal distribution

N ∼
(
0.005, σ2

β0

)
. While the bottom panel in Figure 3.10 displays the first 200 periods

of four sample paths in the upper panel.

The cases that σβ0 = 0.001 and σβ0 = 0.002 share the same pattern with a de-

terministic trend at the first 10 periods and a mean reversion pattern coming after.

However, the cases that σβ0 = 0.003 and σβ0 = 0.004 both display a deterministic

trend throughout the whole simulation.

The corresponding bid-ask spreads displayed in Figure 3.11 and Figure 3.12 pro-

vide us with more details that an unstable range of bid-ask spread is more likely to

contribute to a deterministic trend in asset price. More precisely, the case σβ0 = 0.001,

the bid-ask spreads fall in a stable range [0, 4], which shows a mean reversion pattern

in price path after the first few periods. While, the cases σβ0 = 0.003 and σβ0 = 0.004
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Figure 3.9: The corresponding bid-ask spreads of four sample paths in Figure 3.8.

have unstable ranges of bid-ask spread, which result in a deterministic pattern in asset

price.

3.10.3 Leaning Belief about the Value of Drift in CRRA Case:

Agents Have the Same Proportion of Initial Invest-

ment in Risky Asset

In this part, we assume that all agents have a CRRA utility function with their risk

aversion parameter γ = 1. At the beginning of the simulation, agents generate their

first beliefs β0 about the value of price drift µ, sampled from a normal distribution

N ∼ (0.005, 0.0012). They will update their beliefs using Bayesian learning (See

Section 3.8) at the beginning of each period. Meanwhile, each agent has the same

standard deviation v0 of a Gaussian prior distribution. We will investigate the pattern

of stock price by choosing different values of v0. All other parameters will remain

unchanged.

In Figure 3.13, these four sample paths are presented under the condition that

agents have learning beliefs about the value of µ and v0 = 0.003. Four sample paths
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Figure 3.10: Upper panel: Four sample paths simulated under the condition that
agents have fixed beliefs about the value of asset drift µ and three proportion levels
of initial risky asset investment. Each sample-path has a unique standard deviation
σβ0 for generating agents beliefs with a normal distribution N ∼

(
0.005, σ2

β0

)
. Bottom

panel: The first 200 periods of four sample paths showed in the upper panel.

all have a downward trend with a decreasing gradient. The expected optimal strategy

among agents for each sample path at the terminal period is displayed at the right-up

corner.

Given that agents’ first beliefs about the value µ are sampled fromN ∼ (0.005, 0.0012),

agents expect the stock to have a return around 0.005 for the next period. For the

orange and green sample paths, agents are more likely to place the bid orders instead

of the ask orders at the beginning of the simulation, which causes the price goes to up.

Consequently, the proportion of risky asset investment increases for agents who place

bid orders, implying that these agents expect a higher stock return. However, under

the setting that all agents have limited and shares and no credit transaction is allowed

in the model, agents will run out of liquidity even they want to place bid orders in the

market. Then the increment of a stock price is more minor agents’ expectations, and

agents will downgrade their beliefs about the value of µ. The majority of agents who

hold opposing opinions on stock return will accelerate the fall of stock price, making
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Figure 3.11: The corresponding bid-ask spreads of four sample paths in Figure 3.10.

agents lower their expectations. A negative feedback loop is created in this way for

the blue sample-path; due to more agents operating to decrease their investment in a

risky asset, the market enters into a negative feedback loop. Therefore, the expected

optimal strategy among agents for four sample paths is far from their initial positions

with values around 0.11.

Figure 3.14 shows the bid-ask spreads of four sample paths in Figure 3.13, which

decay quickly over time. Although agents have different initial beliefs, the Bayesian

learning skill will reduce their belief differences. It is the reason that we observe a

decreasing bid-ask spread. Meanwhile, it satisfies the pattern we state in Section

3.10.1 that an unstable range of bid-ask spread usually accompanies a deterministic

trend in stock price.

In Figure 3.15, we change the standard deviation v0 of agents Gaussian prior dis-

tribution to 0.004, which indicates agents are less confident about their first beliefs β0

and will amplify the adjustment of beliefs through Bayesian updating. Four sample

paths show a dramatic price drop and followed by a horizontal movement. The ex-

pected optimal strategy among agents are all negative and near 0. The negative θ∗

means that agents are willing to borrow the risky asset and then sell it for cash to
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Figure 3.12: The first 200 periods of bid-ask spreads corresponds to four sample paths
in Figure 3.10.

earn the risk-free interest. However, credit transaction is not allowed in the model,

and only the ask orders appear in the limit order book, which explains that the stock

price is flat after 250 periods.

Figure 3.16 illustrates that bid-ask spreads under v0 = 0.004 condition decay more

faster than v0 = 0.003 and it turns to 0 after no bid orders occur in the market.

3.11 Parameter Sensitivity Analysis

In the previous section, we have illustrated some model outputs under several scenarios.

However, the parameter sensitivity analysis is still vital to explain how the parame-

ter changes influence model outcomes, such as price, log-return, bid-ask spread, and

optimal strategy. This section will implement a parameter sensitivity analysis based

on the one-factor-at-a-time (OFAT) method, which changes one parameter at a time

and remains the other parameters constant. It can allow us to decide how the initial

condition of parameters should be chosen and how the summary statistics should be

selected and linked to characterise the model’s behaviours. Besides, it can identify
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Figure 3.13: Four sample paths are simulated under the condition that agents have
learning beliefs about the value of µ and v0 = 0.003. The expected optimal strategy
among agents for each sample path at the terminal period is displayed at the right-up
corner.

two basic facts: (1) whether a linear relationship exists between the parameter and

the output; (2) whether the tipping points exist that the output reacts vastly to a tiny

parameter change.

The parameters we chosen to investigate are µβ, σβ and v0 introduced in Section

(3.9) and Equation (3.6). For µβ and σβ, they determine the distribution of agents’

beliefs β0 when the model simulation is initialised. A wrong choice of (µβ, σβ) may

lead to two main problems: (1) Agents beliefs stack in a small range causing the

maximum distance of limit order price smaller to than the minimum tick size of stock

price; (2) Agents beliefs are widely spread that the best bid and best ask order will

never crossover with each other to make a transaction. The parameter v0 stands for

the standard deviation of µ’s prior distribution when t = 0, which affects the learning

rate of βt.

We are interested in a set of statistics S = {mp,mr,md,mθ∗ ,mθ}, which is the

mean of the following model outputs: (1) simulated stock price {pt, t = 1, . . . , T}, (2)

simulated log-return {rt, t = 1, . . . , T}, (3) simulated bid-ask spread {dt, t = 1, . . . , T},

(4) terminal optimal proportion of agents {θ∗i , i = 1, . . . , N learning}, and (5) terminal

real proportion of agents {θi, i = 1, . . . , N learning}. For each run (h = 1, 2, . . . , H),
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Figure 3.14: The corresponding bid-ask spread of sample paths shown in Figure 3.13.

the simulation will produce a sample of set Sh = {mh
p ,m

h
r ,m

h
d ,m

h
θ∗ ,m

h
θ}. Due to the

stochastic nature of simulation, the element in Sh with be different for each indepen-

dent run. Therefore, we implementH independent simulations to get {S1, S2, . . . , SH},

and denote the average performance of desired statistics S as

S̃ =

{∑H
1 m

h
p

H
,

∑H
1 m

h
r

H
,

∑H
1 m

h
d

H
,

∑H
1 m

h
θ∗

H
,

∑H
1 m

h
θ

H

}
= {m̃p, m̃r, m̃d, m̃θ∗ , m̃θ} .

(3.68)

Then, we will investigate how the S̃ changes against µβ, σβ and v0 respectively.

In the following parts, we run H = 50 independent simulations for the sensitivity

analysis. For each run of the simulation, there are T = 200 periods and each period

consists of L = 300 intra-day periods. A population of N learning = 100 learning agent

are involved in the model. The initial stock price is set as P0 = 100. Each agent is

assume to have the same portfolio, which includes C0 = 10 000 cash and S0 = 100

share. All agents have a CRRA utility function with γ = 1 and implement optimal

portfolio strategy introduced in Section 3.5.

3.11.1 Model Outputs against Parameter µβ

We firstly look at how the parameter µβ influences the statistic S̃ in (3.68). The value

of µβ is selected evenly starting from 0.0035 to 0.0065 with a step size ∆ = 0.0005.
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Figure 3.15: Four sample paths are simulated under the condition that agents have
learning beliefs about the value of µ and v0 = 0.004. The expected optimal strategy
among agents for each sample path at the terminal period is displayed at the right-up
corner.

While the value of σβ is set as 0.005 and the parameter v0 equals to 0.001. The other

parameters remain the same as stated in Section (3.11).

Figure 3.17 roughly shows the distribution of each element in the set of statistics

{mp,mr,md,mθ∗} against parameter µβ via the box plot. Each box and whisker plot

contains H = 50 observations generated independently with the same parameter input,

where the whisker is extended no more than 1.5× IQR (the interquartile range = 75th

percentile - 25th percentile) from the edges of the box, ending at the farthest data

point within that interval and outliers are plotted as separate dots.

The top-left panel displays the mean of the stock price {m1
p,m

2
p, . . . ,m

H
p } increases

globally as the value of µβ increases. However the spread of the stock price is wider

at two edge points (µβ = 0.0035 and µβ = 0.0065) with more outliers. Similarly,

for the mean of the bid-ask spread {m1
d,m

2
d, . . . ,m

H
d } and the optimal proportion

{m1
θ∗ ,m

2
θ∗ , . . . ,m

H
θ∗}, this positive relationship against the parameter µβ can also be

observed. While the mean of optimal proportion has a consistent pattern at two edge

points. By contrast, the distribution of the mean of log-return {m1
r,m

2
r, . . . ,m

H
p } shows

a stable pattern against the value of µβ, but a wider distribution and more outliers

exist at the two edge points.
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Figure 3.16: The corresponding bid-ask spread of sample paths shown in Figure 3.15.

The box plot presented in Figure (3.17) implies that given all other parameters

fixed, the mean of model outputs {mp,mr,md,mθ∗} can have a relatively traceable

behaviour by choosing a suitable µβ within the range [0.0035, 0.0065]. For the condition

µβ < 0.0035, agents are more likely only to place ask orders since their initial risky

asset proportions θ0 = 0.5 are greater than their optimal proportion θ∗, which will

cause a large fluctuation in stock price and the corresponding log-return or even no

counter-parties exist in the market. Likewise, for the condition µβ > 0.0065, agents are

eager to submit bid orders to increase their risky asset proportion because of θ∗ > θ0.

Meanwhile, a wider distribution of bid-ask spread occurs due to a high stock price,

and for some cases, their bid-ask spread equal to 0 means no opposite order exists in

the market.

Figure 3.18 illustrates how the change of parameter µβ affects the average perfor-

mance of desired statistic S = {mp,mr,md,mθ∗ ,mθ}. The mean of average stock price

m̃p increases over the parameter µβ and it shows a linear relationship when µβ ≥ 0.004.

For the mean of average log-return m̃r , it is no significantly affected by the parame-

ter µβ, whose value bounces around 0. The bottom-left panel shows a positive linear

relationship between the mean of average bid-ask spread m̃d with the parameter µβ

when µβ < 0.055. Then the slope of the curve becomes fluctuated. The mean of av-

erage optimal risky proportion of agents at the terminal time m̃θ∗ exactly has a linear
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Figure 3.17: The box plots of statistics {mp,mr,md,mθ∗} against the parameter µβ.

relationship with the parameter µβ and it overlaps with the mean of average real risky

proportion of agents at the terminal time m̃θ when 0.004 ≤ µβ ≤ 0.006.

The sensitivity analysis of the model outputs against parameter µβ suggests that

given all other parameter setting as default, and we can choose the initial value of

parameter µβ from the range [0.004, 0.006] to create a well-performed market, where

all agents can achieve their optimal proportion strategy with efficient transactions at

the end of the simulation. It avoids two problems in the simulation: (1)agents beliefs

will locate in a small range causing the maximum distance of limit order price to be

smaller than the minimum tick size of stock price when µβ is very tiny; (2) agents beliefs

will be widely distributed that the best bid and best ask order will never crossover

with each other to make a transaction, when µβ is relatively large. Meanwhile, we can

extract features that the mean of average stock price and bid-ask spread has a positive

linear relationship with µβ in the range [0.004, 0.006], which can be helpful when we

calibrate our model against the real data.
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Figure 3.18: The sensitivity test of statistics {m̃p, m̃r, m̃d, m̃θ∗ , m̃θ} against the pa-
rameter µβ.

3.11.2 Model Outputs against Parameter σβ

Here we look at how the parameter σβ influences the statistic S̃ in (3.68). The value

of σβ is chosen equally starting from 0.0013 to 0.0027 with a step size ∆ = 0.0004.

While the value of µβ is set as 0.005 and the parameter v0 equals to 0.001. The other

parameters remain the same as stated in Section (3.11).

Figure 3.19 presents the box-plot of each element in a set of desired statistics

{mp,mr,md,mθ∗} against parameter σβ. It can be directly viewed that the median

value of {m1
p,m

2
p, . . . ,m

H
p }, {m1

r,m
2
r, . . . ,m

H
r } and {m1

θ∗ ,m
2
θ∗ , . . . ,m

H
θ∗} has no signifi-

cant change against the parameter σβ, while the variation of them gradually increase as

the value of σβ increases. By contrast, the median value of {m1
d,m

2
d, . . . ,m

H
d } slightly

decreases against σβ and reaches the minimum at σβ = 0.002. Then the median value

of {m1
d,m

2
d, . . . ,m

H
d } slowly moves up with a wider spread.

Figure 3.20 displays how the change of parameter σβ influences the average perfor-

mance of desired statistics S = {mp,mr,md,mθ∗ ,mθ}. There is no linear relationship
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Figure 3.19: The box plots of statistics {m̃p, m̃r, m̃d, m̃θ∗} against the parameter σβ.

between the set of statistics {m̃p, m̃r, m̃θ∗ , m̃θ} and the parameter σβ. However, a simi-

lar shape of curve is observed in the plot of the mean of average stock price m̃p against

σβ (top-left panel)and the mean of average terminal optimal risky asset proportion

among agents m̃θ∗ against σβ (bottom-right panel). It indicates the statistic m̃θ∗ de-

termines the movement of the mean of average stock price m̃p. On the other hand,

the mean of average bid-ask spread m̃d exhibits a U-shape of curve against parameter

σβ, whose the minimum is obtained at σβ = 0.002.

The sensitivity analysis of parameter σβ suggests that it can affect the variation of

independent model outputs, such as mp, mr and θ∗. However there is no significant

effect on the median of independent model outputs. It is worthy to note that the

movement of m̃p is control by the optimal portfolio strategy θ̃∗. Moreover, there

exists a possible quadratic relationship between the mean of the bid-ask spread and

parameter σβ.
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Figure 3.20: The sensitivity test of statistics {m̃p, m̃r, m̃d, m̃θ∗ , m̃θ} against the pa-
rameter σβ.

3.11.3 Model Outputs against Parameter v0

At last, we investigate how the parameter v0 influences the statistic S̃ in (3.68). In

fact, the parameter v0 determines the learning rate of agents’ beliefs βt. The value of v0

is selected evenly starting from 0.001 to 0.003 with a step size ∆ = 0.0003. While the

value of µβ is set as 0.005 and the parameter σβ equals to 0.001. The other parameters

remain the same as stated in Section (3.11).

Figure 3.21 presents the box-plot of each element in a set of desired statistics

{mp,mr,md,mθ∗} against parameter v0. It can be directly viewed that the mean

of the stock price {m1
p,m

2
p, . . . ,m

H
p }, bid-ask spread {m1

d,m
2
d, . . . ,m

H
d } and optimal

proportion at terminal time {m1
θ∗ ,m

2
θ∗ , . . . ,m

H
p } globally decreases as the value of v0

increases. Moreover, the deviation of the mean of bid-ask spread {m1
d,m

2
d, . . . ,m

H
d }

gradually describes against parameter v0. There is no significant pattern change of

the mean of log-return {m1
r,m

2
r, . . . ,m

H
r } against v0.

Figure 3.22 shows how the change of parameter v0 affects the average performance

of statistics S = {mp,mr,md,mθ∗ ,mθ}. In the top-left panel, the m̃p show a negative
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Figure 3.21: The box plots of statistics {m̃p, m̃r, m̃d, m̃θ∗} against the parameter v0.

relationship against parameter v0 and the decreasing accelerates when v0 ≤ 0.0027.

By contrast, the m̃d exhibits a negative relationship against parameter v0 with a

slow decay. In the bottom-right panel, the m̃θ∗ overlaps with m̃θ showing a negative

relationship with parameter v0 with a accelerating decreasing. There is no obvious

influence of average performance of mean log-return m̃r against parameter v0.

The sensitivity analysis of parameter v0 indicates that agents are more likely to

obtain their optimal portfolio strategy goal with a higher value of v0. There is a

positive feedback loop concerning parameter v0 that a higher value of v0 makes agents

learn faster about the price drift µt. An observed low drift of price µt leads to a

decreasing belief βt and a lower optimal proportion of risky asset θ∗t . When θt > θ∗t ,

agents will move in the same way to sell the risky asset, which in return causes a lower

observed drift of price µt. It explains why there is an accelerating decreasing in the

plot of m̃p against v0 and m̃θ∗ against v0.
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Figure 3.22: The sensitivity test of statistics {m̃p, m̃r, m̃d, m̃θ∗ , m̃θ} against the pa-
rameter v0.

3.12 Summary

This chapter introduced the trending-following agent who uses the Bayesian learning

method to track the risky asset return. The idea is derived originally from a portfolio

choice problem proposed by Bismuth et al. [53] (2019). Therefore, a new ABM was

investigated by replacing the noisy agents with the trending-following agents. Finally,

we performed a parameter analysis test to identify the vital parameter for determining

the statistical properties of the model outputs.

The portfolio choice problem was discussed in two cases by assuming agents have

constant relative risk aversion (CRRA) and constant absolute risk aversion (CARA)

utility function, respectively. The closed-form solution of the HJB equation can be

obtained and applied by agents to either hold the optimal amount of cash M∗ investing

in a risky asset with a CARA utility function, or maintain an optimal proportion θ∗

of investment in a risky asset with a CRRA utility function.

In simulation results, agents are assumed to have a CRRA utility function with

γ = 1, which makes their optimal strategy θ∗ proportional to their learning beliefs. We
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first tested the case that agents hold fixed beliefs through the simulation and found

that the price movement is similar to the ABM with noisy agents that oscillate around

a constant dominating by the average optimal risky asset proportion of agents θ̃∗. In

the case that agents have learning beliefs, a positive feedback loop was observed that

the optimal strategy guides agents to reduce their investment in a risky asset when

θ∗ < θ. Then a substantial amount of ask orders pull down the price leading to a lower

optimal proportion θ∗.

Finally, the parameter sensitivity analysis provides a way to choose a suitable ini-

tial range of parameters for the model simulation. Any wrong choice of the initial

parameter will cause abnormal simulation results, such as a flat price movement due

to no completed transaction and a positive feedback loop in price. The flat price move-

ment can be explained by the reasons that: (1) agents beliefs locate in a small range

causing the maximum distance of limit order price to be smaller than the minimum

tick size of stock price when µβ is very tiny; (2) agents beliefs are widely distributed

that the best bid and best ask order will never crossover with each other to make

a transaction, when µβ is relatively large. While the positive feedback loop is more

likely to be viewed with a higher value of v0, where agents learn faster about the asset

return.



Chapter 4

Calibration and Testing: Genetic

Algorithms and Value at Risk

In this chapter, we are going to demonstrate a framework for using a genetic algorithm

(GA) to calibrate an Agent-based model (ABM), such as the one in Chapter 2. We

aim to find the optimal parameters of an ABM given the historical time series of stock

market returns as our input observations. Subsequently, we wish to use simulations

from the ABM to predict the distribution of log-returns of observations into the future.

First, to demonstrate that our methods work in a controlled environment, we use the

simulated data from our model to generate the historical time series and then try

to calibrate against it. Next, we use real-world data sets to assess the model in a

more realistic setting. In order to test the model, we show a range of results, along

with the results of some naive probability distribution fitting approaches to give our

comparisons more context. As part of this process, we will also aim to investigate

the statistical properties of the observations and simulated data sets to find a suitable

metric, which can be used to determine the best calibration and simulation process.

In order to capture the main features of data, we propose that the objective function

of a GA should be a linear combination of the log-return moments. We show how this

objective function reacts to different input parameters, controlling the volatility of

simulated data sets through several parameters. We notice that the complexity and

stochasticity of our model do not allow us to find a global optimum. Instead, a high-

performance objective function can find a region close to an optimal value, where slight

disturbances in the set of input parameters generate only an insignificant difference in

98
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the value of the objective function and the statistical properties of output simulations.

In general, during the calibration process of an ABM, we found it hard to identify

why we chose one specification of model parameters rather than another. However,

we believe that it can still be useful for predictive purposes, experimentation or better

understanding of the underlying dynamics of the real data. Therefore, we can apply

the GA calibration result to predict the future empirical distribution of log-returns

given a price series input and calculate risk metrics, such as Value at Risk (VaR)

and Conditional Value at Risk (CVaR) at different confidence levels, with the idea

that this method could be used for risk management. Moreover, we use the real

Cryptocurrency data as a training set and empirically observed future distribution

as a baseline. We can compare our ABM via a GA calibration approach to other

simple statistical distribution models and identify which model can provide the best

performance in matching future empirical distribution.

We have contributed to the diverse field of agent-based modelling by identifying

an objective with linear combinations of moments provides best fit to the data. We

have shown how the GA is robust when it comes to calibration of stochastic outputs.

Unfortunately, even with reliable calibrations, we find that ABMs are not significantly

better at predicting the risk of investing in assets.

In this chapter, we first review the background of the Genetic Algorithm and intro-

duce a framework to calibrate the ABM introduced in Chapter 2. Then, a calibration

experiment is conducted with known inputs. The calibration result is used to predict

the future empirical distribution, and two risk metrics, VaR and CVaR, is calculated.

Finally, we calibrate an ABM model with Cryptocurrency data as inputs and compare

the results with traditional probability distribution fitting approaches.

4.1 An Introduction to Genetic Algorithms

Before moving onto describing how the Genetic Algorithm (GA) works with our model,

we provide a brief overview of the method. This is important because certain features

(such as the fact no derivatives are required to be calculated as part of the process) are

important for a model such as our that generates stochastic outputs. The algorithm

itself is inspired by the procedure of natural selection, and it has been widely used
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to produce high-quality solutions to optimisation and search problem in a variety of

fields. The main functions inside the algorithm are mutation, crossover and selection,

which are supposed to mimic those we have observed as part of natural selection in

the real world.

Unlike the traditional search or optimisation algorithms, GAs are probabilistic

search procedures designed to deal with models with a large set of parameters and no

closed form solution for distribution. In [50], Rogers and Von Tessin (2004) proposed

an ABM of a financial market and calibrated it using a multi-objective GA. The model

evolves a population of Pareto-optimal parameters sets, in which a single candidate can

be selected as a final tuned parameter set without requiring any prior explicit weighting

of criteria. In [51], a classic model presented by Farmer and Joshi (2002) (see [22]) is

calibrated using a Nelder-Mead simplex algorithm and a GA. Both methods can be

candidates to fill the gap of parameters estimation in ABMs field and more robust in

noisy environment.

To implement a genetic algorithm, we must begin with a population of chromo-

somes, which can be encoded to represent all possible combinations of parameters

within a finite space. We can then evaluate these structures, and allocate reproduc-

tive opportunities to each one so that there is a higher chance of chromosomes that

give a better solution to the objective function passing their characteristics to the next

generation than chromosomes that give poorer solutions. In the setting of an agent

based model, where individuals in the model could have many parameters (such as

initial number of stocks, cash etc), we believe the genetic algorithm seems appropriate.

From this view point, the natural selection process could be seen to be selecting the

most appropriate set of agents that can reproduce the input data. We also note that

the genetic algorithm is derivative-free, which means it does not rely on derivative

information in the classical sense to find optimal solutions. Sometimes the derivative

information of the objective function might be unavailable, unreliable or impractical.

In specific, the objective function can be non-smooth, time-consuming to evaluate, or

in our model having randomised outputs (See Equation in (4.5)). In fact, we tried

to follow a calibration procedure, which implements Stochastic Gradient methods in

a popular ABM developed by Brock and Hommes (1998) (BH model, see [47] and

[48]). Some of our own experiments on this method can be found earlier on in this
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chapter, but the results were not very satisfactory. On the one hand, the BH model

is analytically tractable involving few parameters and no noise in prices formulation

makes the calibration procedure deterministic. On the other hand, our model adds

randomness in the operations, such as expectation generation, order placement and be-

haviour imitation, which gives no closed-form solution for price and the corresponding

derivatives.

A typical genetic algorithm consists of the following major steps,

1. initialise a population of solutions

2. select the first generations from the population

3. evaluate the current generation using the objective function and fitness function

4. implement the genetic operators, such as selection, crossover and mutation to

produce the next generation

5. repeat the steps (3) - (4) until reaching the maximum number of generations or

a predefined fitness level is satisfied.

An important part of applying the genetic algorithm is to encode the range of avail-

able inputs to the model as a set of variables that represent the genes or chromosomes

in natural selection. The most common way to encode the inputs is to convert them

to a binary string (or vector), so that each gene or chromosome is either ‘on’ or ‘off’,

and the algorithm has been shown to perform best when this binary encoding is used.

For our model, in which the inputs are real numbers or integers over an interval, we

can easily cover this space by setting up discrete set of binary numbers corresponding

to positions within the interval. For example, an input parameter α chosen from the

interval [a, b], can be encoded using n genes or chromosomes as

αi = a+ i
b− a
2n − 1

where the number i is encoded as a binary string s of length n in the algorithm. For

example, with a = 0, b = 1 and n = 6, the following set of genes would give

s = 0 1 0 1 1 1 → i = 23 → α23 = 0.3651.

This gives a fixed set of possible inputs at equidistant intervals across the input space.
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Figure 4.1 shows how the new generation are produced by implementing the basic

GA operators, such as selection, crossover and mutation. For illustration, we start

with a current population consisting four strings labelled with different colours. In a

selection phase, string 2 is duplicated and substitutes string 3. Selection (or repro-

duction) is a process that makes more copies of better strings in a new population.

Meanwhile, it causes the fact that individuals which encode successful structures have

a higher probability to reproduce themselves.

Sequentially, string 1 and string 2 participate in a crossover operation that some

portion of these two strings are exchanged with each other to create two new indi-

viduals for the successive generations. The objective of a crossover operator is to

recombine two strings to get a better one, which together with a mutation operator

offset a limitation of the selection phase that no new strings are created.

Here is a simple example shows that two 8 bits binary strings swap their last 5

digital numbers to generate two new strings after a crossover operation.

string 1 011|01100 string 1 011|11001

string 2 110|11001 string 2 110|01100

Before crossover After crossover

Finally, a mutation operator disturbs genetic information of string 4, which happens

at the bit level that each bit may become mutated. The mutation operator aims to

add new information in a random way and ultimately help to get rid of a trap at

local optima. Moreover, it introduces diversity in the population to avoid a trend of

becoming homogeneous after frequent use of selection and crossover operators. An

intuitive example explains the importance of mutation operator as we consider the

population having four 8 bit strings,

01101011 00111101 00010110 01111100.

It is worthy to note that all strings have a 0 in the first bit position. If the true optimum

solution starting with a 1 in that position, then neither selection nor crossover operator

enable us to turn 0 into 1. The inclusion of mutation solves the concern by allocating

probability of turning 0 to 1.
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Figure 4.1: The new population are generated by experiencing the basic GA opera-
tions, such as selection, crossover and mutation

There are several existing Python libraries for implement a GA in our model. We

choose one called PyGaD developed Gad and Fawzy (2021) (see [66]), which is designed

specifically for the single-objective optimisation and is user-friendly for customising the

fitness function, population, gene value range, gene data type, selection, crossover and

mutation.

4.2 Calibrating Parameters: Known Inputs and Out-

puts

In this section, we firstly present a pseudocode of an GA calibration, which can give

us a better understanding of following simulation results.

We move on to show how using ABMs can predict the future distribution of stock

returns given some observations that can be used as a training data set. Then, two

main problems initially stand out: How can we find the best parameters of an ABM to

fit the observations? And, in order to fit parameters, which objective function should

we decide on? It seems appropriate then that we should apply the calibration process

on a known input, so we choose to try and calibrate against three artificial stock paths

that are generated using the ABM with known parameters. Then we pretend that

those parameters are unknown, passing the raw data to the GA so that it can find
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Algorithm 3 The pseudocode of an GA calibration

Require: robs, M (see Equation (4.4)), N generation ∈ Z+, N iter ∈ Z+, tol > 0
select the first generations from the population M0 = {Θ0

i }N
generation

i=1 ⊂M
N iter ← 0
n← 0
∆← 1
while n < N oter and ∆ < tol do

set the generations Mn as input parameters in the ABM in Chapter 2
follow the Algorithm 1 producing corresponding simulation outputs rsim(Θn

i )
evaluate generations using the objective function (4.5) and fitness function (4.6)
∆← min

Θni ∈Mn
f
(
robs, rsim(Θn

i )
)

(see Equation (4.5))

n← n+ 1
produce new genration Mn using genetic operators

end while
produce the calibrated generations Mn

the best parameters fitting the training data. Obviously, we need to give some way

to decide how close our simulated outputs are to matching the real data, so we must

explore what a suitable objective function should look like, in particular what function

will be most sensitive to the statistical features of the initial data.

In the following part, we will calibrate the parameters of the ABM introduced

in Chapter 2. The contents including agent’s future expectation generation, orders

placement, the communication network and the mechanism of imitation will be directly

applied. Let us have a quick recalling of these contents in Chapter 2. The noisy agent

i randomly assign generates his expectation about price return with the following

equation,

r̂it = σitεt, (4.1)

where εt ∼ N(0, 1) is a standard normal variable. A positive agent-specific volatility

σit has the following formula,

σit = A

(
σi0 + (1− w)

lini
Nagent

)
, (4.2)

where lini is the number of incoming link of the agent. We slight modify the initial

money C0 give to each noisy agent as

C0 = a0 · S0 + 1000 · b, (4.3)

where S0 is the initial number of shares given to each agent and the coefficient a0 is a

constant.
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Then, let M be a feasible parameter space defined as follows,

M = {Θ = (A,w, b) ∈ R3, A > 0, w ∈ [0, 1], b ∈ [0, 100]} (4.4)

where A scales the volatility of agent’s expected returns, w quantifies the imitation

effect among agents and b determines the money supply in the system.

In general, the GA is a search process referring to the survival-of-the-fittest prin-

ciple of nature, which makes it suitable for solving maximisation problem. Let {robst }

and {rsimt } represent the log-returns of observed and simulated stock paths and their

i-th moments are denoted by mobs
i and msim

i respectively. Then the objective func-

tion minimising the linear combinations of moment difference between observed and

simulated log-returns is considered,

min
Θ∈M

f
(
robs, rsim(Θ)

)
= min

Θ∈M

4∑
i=1

ai
(
mobs
i (robs)−msim

i (rsim(Θ))
)2

(4.5)

where ai, i = 1, . . . , 4 are weights of each moment. The fitness function is obtained

with a easy transformation,

F(robs, rsim) =
1

min
Θ∈M

f(robs, rsim)
(4.6)

which converts a minimisation problem to an equivalent maximisation problem. In a

GA, individuals in the population are allocated with reproductive traits using fitness,

which means that individuals with higher fitness value are more likely to be selected as

candidates for further operations. If we are to use this objective function, we still need

to decide what the weights should be attached to each moment. To decide on this,

we next look through some plots of the how the different moments are affected by the

input parameters, so that we may choose to assign larger weights to those relatively

unaffected, and lower weights to those showing high sensitivity, so that the objective

matches as many features found in the moments as possible.

Figure 4.2 displays first four moments of log-returns generated by agent-based

model when using different combination of input parameters w and A. We can quickly

spot that the mean and skewness of log-returns do not exhibit any distinct features

over the parameter space, and in fact the values of these two moments tend to fluctuate

around 0. While the standard deviation shows a gradual change along the diagonal

direction and the kurtosis has a significant difference in the bottom left area with
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higher values. Therefore, we should allocate a high weight of standard deviation

and relatively small weights of other moments to keep the feature exhibiting by the

parameters w and A.
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Figure 4.2: The first four moments of log-returns generated by the agent-based model
against both parameters w and A.

In practice, we set the weights of each moment as a1 = 1, a2 = 100, a3 = 0.01, a4 =

0.01. The observations we choose are three artificial stock paths generated by agent-

based models with parameters (w = 0.5, A = 0.1), (w = 0.8, A = 0.15) and (w =

0.2, A = 0.02) respectively. The resulting value of objective function against param-

eters w and A given these three observations is shown in Figure 4.3. The results

are presented as a heat map, so we can see that the values in the top left are very

high, but vary less towards the bottom right. Comparing this with Figure 4.2, we

see that the choice of weights result in the second moment (variance) dominating pro-

ceedings. The difference between the graphs is barely noticeable to the naked eye,

suggesting that the properties of these inputs are broadly similar. The location of the

possible parameters are marked on each graph as a cross. At those initial parameter

inputs, we calculate the value of the objective function as f(w = 0.5, A = 0.1) = 2.41,
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f(w = 0.8, A = 0.15) = 0.33, and f(w = 0.2, A = 0.02) = 1.52. All these values are

relatively close to 0 comparing with the region in the top left in Figure 4.2, which

indicates a good calibrating performance. Besides, the lowest value is obtained with

parameters (w = 0.8, A = 0.15), whose kurtosis is negligible around that area.
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Figure 4.3: The value of the objective function against parameters w and A. The
parameters used to generated three artificial observations are marked as cross and
their corresponding value of the objective function are calculated as f(w = 0.5, A =
0.1) = 2.41, f(w = 0.8, A = 0.15) = 0.33, and f(w = 0.2, A = 0.02) = 1.52.

Due to the nature of an agent-based model, we unable to guarantee the continuity

of the objective function with respect to parameters w and A. However, as mentioned

before, we hope to still use it to find a rough area, in which the simulated stock path is

statistically closer to the observations than it would be in other areas. We are happy

that this choice of objective function and associated weights will provide good enough

results for our model.



CHAPTER 4. CALIBRATING WITH GENETIC ALGORITHMS 108

4.3 Risk Management

Risk management is a procedure for shaping a loss distribution. In this section,

we introduce two popular functions value-at-risk (VaR) and conditional value-at-risk

(CVaR), which are widely used for measuring financial risk.

Let X be a loss variable of the portfolio with cumulative distribution function

FX(z) = P{X ≤ z}. The VaR of X with confidence level α ∈ [0, 1] is

VaRα(X) = min{z|FX(z) ≥ α}. (4.7)

Essentially, VaRα(X) is a lower α-percentile of the random variable X. It is commonly

used in finance regulations, such as Basel I and Basel II, in which VaR deviations are

measured as the width of the daily loss distribution of a portfolio.

CVaR is an alternative percentile measure of risk (see [67]). For continuously dis-

tributed random variables, CVaRα(X) equals the conditional expectation of X subject

to X ≥ VaRα(X). The CVaR of X with confidence level α ∈ [0, 1] is defined as

CVaRα(X) =

∫ ∞
−∞

zdFα
X(z), (4.8)

where

Fα
X(z) =

0, when z < V aRα(X),

FX(z)−α
1−α , when z ≥ V aRα(X).

(4.9)

4.3.1 VaR and CVaR for the Normal Distribution

Let us assume that X ∼ N(µ, σ2) is a normal random variable and Z ∼ N(0, 1) is a

standard normal random variable. Then the VaR of X with confidence level α ∈ [0, 1]

over the next one period is,

VaRα(X) = {z|P (X > z) = α}. (4.10)

Since

P (X < z) = P (µ+ σZ ≤ z)

= P (Z ≤ z − µ
σ

)

= Φ(
z − µ
σ

) = 1− α,
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we can deduce that,

VaRα(X) = Φ−1(1− α)σ + µ, (4.11)

where Φ−1(·) is the inverse x standard normal distribution.

The CVaR of X over the next one period can be expressed in the term of VaR,

CVaRα(X) =
1

1− α

∫ 1

α

VaRu(X)du. (4.12)

Combining with Equation (4.11), we can rewrite CVaRα(X) as,

CVaRα(X) =
1

1− α

∫ 1

α

(Φ−1(1− u)σ + µ)du

=
1

1− α

∫ 1

α

Φ−1(1− u)σdu+ µ.

Let y = Φ−1(u) and du = φ(y)dy, we can have

CVaRα(X) =
1

1− α

∫ ∞
Φ−1(α)

−yσφ(y)dy + µ

= µ− σφ(Φ−1(α))

1− α

where φ(·) is the standard normal density function.

4.3.2 VaR and CVaR for the Student t-Distribution

Let us assume that X = µ+σT and T is a standardised t-distribution random variable

with v degrees of freedom. Then the VaR of X with confidence level α ∈ [0, 1] over

the next one period is,

VaRv,α(X) = {z|P (X > z) = α}

=
√
v−1(v − 2)t−1

v (1− α)σ − µ,

where µ and σ are the location and scale parameter of the loss variable X and t−1
v (·)

is quantile function of the t distribution .

The CVaR of X with confidence level α over the next one period can be calculated

as,

CVaRv,α(X) = µ− σv + (t−1(α))2

v − 1

τ(t−1(α))

α
, (4.13)
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where τ(x) is the standard density function of the t-distribution with v degrees of

freedom.

4.3.3 VaR and CVaR for the GA Calibration Log-Return

Let {Θi}Ni=1 be defined as the set of parameters from the last iteration of a GA cali-

bration. Then, each of those parameters are used as the input parameters of a ABM

model to further produce 10 independent sample paths in each case, making 10 × N

in total. We take the last log-return of all these 10 ×N sample paths and sort them

in an ascending order, which are denoted as {ri}10×N
i=1 .

Let us assume that X is a lose variable drawn from the GA calibration log-return

{ri}10×N
i=1 . Then the VaR of X with confidence level α ∈ [0, 1] over the next one period

can be simply approximated as,

VaRGA,α(X) = {z|P (X > z) = α}

≈ ri=b10×N×(1−α)c,

where b·c is a floor function.

The CVaR of X with confidence level α over the next one period can be calculated

as,

CVaRGA,α(X) =
1

1− α

∫ 1−α

0

VaRGA,u(X)du

=
1

1− α

∫ 1−α

0

Q(u)du

≈ 1

1− α

b10×N×(1−α)c∑
i=1

ri
10×N

≈
∑b10×N×(1−α)c

i=1 ri
b10×N × (1− α)c

.

4.4 Results

In the results section, we will try to demonstrate the relative performance of the

calibration method by first evaluating how it performs on a simulated set of input
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data, before moving on to see how it can perform when tested on real data.

4.4.1 Calibrating against Simulated Data

To show how the GA can find the optimal parameters of agent-based model given

observations, we use three artificial stock paths rather than real world data, for which

we know the actual value of parameters w and A. Each stock path is generated from

a single simulation of the ABM, and has 200 periods (data points). For each period, it

consists of 300 intra-day periods. The initial stock price is set as 100 and 100 agents

are involved in the market with a portfolio containing 100 shares and 10000 cash.

Finally the only other parameters in the model are A and ω which change with the

simulations.

Figure 4.4 demonstrates how the parameter populations change over generations

using the GA. On the left-hand side, we plot the objective function over the possible

state space, with blue points indicating the random initial parameter space’s location

and the green triangles indicating the location of the final population. We see in all

three cases from top to bottom, the initial populations (blue points) are widely spread

in the feasible space, whilst the last populations (green triangles) gather around the

actual value of parameters (black cross). Also on those figures, we present the best or

optimal solution with a red star. As it turns out, we find that the optimal solution

is not the closest one to the actual values in each of the three scenarios. Next, on

the right-hand side, we plot fitness values as stated in (4.6) for each generation. We

see that in all cases, the value of fitness increases over the first 5 or 6 generations.

For the top and middle graphs, we see that increase continue up to the 10th iteration

and the algorithm can gradually generate a high-quality solution pool to optimise the

objective function. For the bottom graph, we see that the fitness value will oscillate

past the 5th iteration. This is caused by the fact we have stochastic outputs from the

model, meaning that even a correct parameter choice can give a lower fitness value.

This can be seen because the optimal value (red star) is often not found close to the

real value. We consider the fact that the parameter space is reduced to a small region

around the real value providing a good result, and that this is in stark contrast to our

attempts to fit the model with gradient-based methods, which failed to converge at

all.
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Figure 4.4: Left panels: The evolution of parameter over generations using the GA.
The artificial observations are generated by agent-based models with parameters (w =
0.5, A = 0.1), (w = 0.8, A = 0.15) and (w = 0.2, A = 0.02) respectively. The blue
points are the initial parent parameters and the green triangles represent the last
generation parameters. Red star and black cross stand for the actual value and optimal
value of parameters respectively. Right Panels: The corresponding sum of fitness
values in each generation.

Following on from the initial results earlier on in this chapter, where the objective

function was tested on simulated input data, we move on to develop some metrics by

which we can adequately evaluate the calibration process. Two risk metrics VaR and

CVaR are calculated via four different methods. For the first two methods, we assume

the log return of observations following two popular distributions: normal distribution

and t distribution. We can easily get the maximum likelihood estimators of these

two distributions given observations as input data. Then the corresponding VaR and

CVaR can be directly obtained by formulas introduced in Section 4.3.1 and Section

4.3.2. The third method relies on the fact that observations are artificially simulated
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by ABMs, whose parameters we have already known, and we can repeatedly run the

model at a certain period as many times as we want to obtain an empirical future

distribution of log-returns. For the fourth method, we implement a GA to calibrate

the observations and use its population in the last generation as input parameters of

ABMs to generate an empirical future distribution of log returns. The equations for

calculating VaR and CVaR are introduced in Section 4.3.3.

In the experiments, we assume a portfolio investing 10 000 into a stock, whose

path is artificially simulated by the ABM we introduced in Chapter 2. For the ABM

simulation path, we only vary the value of w and keep the other parameters the same

as stated at the beginning of this section.

In Figure 4.5, we calculate the one-day VaR of the portfolio at different confidence

levels under six different scenarios. Considering the observations produced by the

ABM simulation, we can assume that the VaRs evaluated by the ABM method reflect

the actual empirical future distribution. We can determine whether the other methods

can provide a convincing risk assessment by comparing them with the ABM method.

In the case w = 0, none of the methods can match the ABM results well and we

see that the t-distribution and the normal distribution method both overestimate the

VaRs. In comparison, the GA method is heavily affected by the extremums at the

confidence level less than 0.03, where the risk assessment is nearly triple of the ABM

value. In the case w = 0.1, the GA method results become stable and underestimate

VaRs compared with the ABM method. When we look at the case w = 0.3, the t-

distribution and GA method show a good performance in fitting the value of VaR, but

the normal-distribution keeps overestimating the values. In the cases that w = 0.5,

w = 0.8 and w = 1, the GA method can not properly predict the future return

distribution of the observations, whose values deviate far from the ABM values. By

contrast, the t-distribution and normal distribution methods can better evaluate the

value of VaR as w increases. Especially in the case w = 1, their evaluations show no

significant difference to the VaRs of the ABM method.

In the view of overall situations, parameter w determines the kurtosis of the sim-

ulated sample path, whose value varies from 10.017 to 0.366 indicating more extreme

values existing in log-return distribution. (see Table 4.1). Therefore, there is no suit-

able method to properly evaluate VaRs when the value of w is too small. Besides, the
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Figure 4.5: One-day VaR calculation given 10000 initial investment: The results are
calculated by assuming the log return of stock price following standard distributions,
such as the normal and t distribution or the empirical distributions generated via the
ABM and GA approach.

t-distribution method should the optimal way to calculate VaRs. the t-distribution

method usually gives an optimal assessment. Furthermore, the performance of GA

method is relatively poor, which is heavily affected outliers in predicting future return

distributions. Therefore we might conclude that the GA method can not sufficiently

capture the feature of observations, whose parameters only partially calibrate the ob-

servation in volatility.

In contrast, CVaR is a coherent risk measure and is continuous with respect to the

confidence level. Figure 4.6 displays the one-day CVaR of the portfolio at different

confidence levels under six different scenarios. For comparison, we treat the results

via ABM method as the baseline and use it to testify whether the other methods can
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provide a convincing risk assessment.

In the cases w = 0 and w = 0.1, we notice again that none of the methods can match

the ABM results well, with the t-distribution and normal distribution overestimating

CVaRs, and the GA method gives an unstable evaluation. When we look at the case

w = 0.3, both t-distribution and GA method can fit the CVaRs well, while the normal

distribution method keeps overestimating the risk level. Similar to the situation we

see in the VaR calculation, the GA method can not properly match the future return

distribution of the observations under the cases that w = 0.5, w = 0.8 and w = 1, and

it keeps exaggeratedly evaluating CVaRs. Moreover, the t-distribution method shows

a good fitting in the cases that the w = 0.5 and w = 0.8, which is more accurate than

the normal distribution method.

In general, the estimation accuracy of CVaR is heavily influenced by tail mod-

elling. The CVaR value may be misleading if not enough information about the tail is

provided. The GA method exhibits the poorest performance in matching the CVaRs,

whose simulation returns are prone to the distribution’s fatter tails. Apart from the

cases that w = 0 and w = 0.1, the t-distribution method is always the best choice for

evaluating CVaRs since it has higher kurtosis than the normal distribution method

given the same observations.

Finally, we summarise the results across a range of metrics. We perform the two-

sample tests (or homogeneity test), such as Kolmogorov-Smirnov test (KS), Anderson-

Darling test (AD) and Cramér-von Mises test (CM) (see [68], [69] and [70]), to judge

whether the return distribution between simulations and observations are the same or

not.

We produce a set of observations consisting of six log return series using a ABM, in

which parameter w varies in a range [0, 1] and the others keep the same as stated at the

beginning of this section. For each observed series, we replicate it via three methods.

We use the probability distribution fitting approach that the log return of observations

is assumed to follow the normal distribution and t distribution, respectively. The

maximum likelihood estimators are set as probability parameter inputs to generate

random log returns with these two distributions. At the same time, the GA method

inputs its optimal solution into the ABM to produce a simulated log return series. In

total, there are 18 groups of sample paths performed with two sample tests.
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Figure 4.6: One-day CVaR calculation given 10 000 initial investment: The results are
calculated by assuming the log return of stock price follows distributions, such as the
normal and t distribution or the empirical distribution generated via a combination of
ABM and GA approach.

In Table 4.1, the information, like moments of observations, test statistics and

the corresponding p-values, are presented. In the case w = 0, the log return of

observations has a right-skewed and leptokurtosis distribution, skewness (sk) = 1.738

and kurtosis (kr) = 10.017. At the 10% confidence, there is a significant difference

between the log return of observations and normal distribution simulations in AD

(p = 0.07) and CM (p = 0.07) test. However, for the groups, observation vs t-

distribution simulation and observation vs GA simulation, no significant difference

exists in KS, AD and CM test at the 10% confidence. In the case w = 0.1, the log

return of observations has a left-skewed and leptokurtosis distribution, sk = 1.738 and

kr = 10.017. Only the AD test (p = 0.09) indicates there is a significant difference
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between the log return of observations and normal distribution simulations at the 10%

confidence. When we look at the case w = 0.3, the log return of observations has a

right-skewed and leptokurtosis distribution, sk = 1.293 and kr = 5.264. All the tests,

KS (p = 0.04), AD (p = 0.04) and CM (p = 0.05), imply that there is a significant

difference between the log return of observations and normal distribution simulations

at the 10% confidence. For the rest of cases, all the three tests can not indicate there

is a significant difference between target groups at the 10% confidence.

In summary, the normal distribution fitting method is not able to reproduce the

observations well in the situation that the log return of observations has a leptokurtosis

distribution. However, the reproduction of log return conducted via the t-distribution

fitting method and the GA method has no significant difference from the correspond-

ing observations in KS, AD, CM two sample test at the 10% confidence. For the

performance of three tests, although the AD and CM test are alternatives of the KS

test, the KS test gives a different statistical inference from the AD and CM test in the

case w = 0 and w = 0.1, since KS test is more sensitive to deviations near the centre

of the distribution than at the tails.

4.4.2 Simulating against Real Data

Here we move on to fitting our model against some real data. Our ABM aims to

capture the herding effect we observe in markets and we know it can also reproduce

a set of stylised facts emerging in real financial price series. Given the unregulated

nature and large number of small investors, the major cryptocurrency markets seem

an obvious place to look for a good fit for this model. Authors have attempted to

study cryptocurrencies from different perspectives for the last decades since they ex-

hibit beyond-regular performance. In [71], Corbet et al. (2019) stated that the most

of studies on cryptocurrencies mainly concentrating on the fields, such as market effi-

ciency(see [72], [73] and [74]) and asset pricing bubbles (see [75] and [76]). However,

only a few papers shed light on the behaviour of cryptocurrencies. In [77], Corbet et al.

investigated the relationship between a set of digital assets and government financial

regulation and control tools, such as US Federal Fund interest rate and Quantitative

Easing announcements.

Meanwhile, Kristoufek (2013) studied the interaction between Bitcoin and search
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queries on Google Trends and Wikipedia (see [78]). Additionally, Bouri et al. (2019)

presented evidence for a co-explosive behaviour in seven major cryptocurrencies (see

[79]). All these fascinating findings could be evidence of the presence of herding or

other potential phenomena in major cryptocurrency markets.

Furthermore, Ballis and Drakos (2020) found that investors are more likely to act

irrationally and imitator other’s ideas in the cryptocurrency market (see [80],). They

studied six cryptocurrencies which are: (i) Bitcoin, (ii) Dash, (iii) Ethereum, (iv)

Litecoin, (v) Monero and (vi) Ripple. The corresponding results indicate that herding

is indeed occurring in these cryptocurrencies and this herding behaviour could be a

partial explanation of the co-explosivity phenomena reported in [79].

Since herding behaviour is more likely to be observed in major cryptocurrencies, we

choose daily close price of Bitcoin during the period from March 2021 to September

2021 as our observations. During these six month periods, we further divide them

into three phases: (1) declining trend (2) increasing trend (3) flat trend, with each

phase containing 50 observations. We aim to test the performance of GA calibration

in common market trends and compare the accuracy of risk assessment using different

evaluation methods.

In Figure 4.7, we present the trajectory of the closing price of Bitcoin and the

corresponding quantile-quantile (Q-Q) plot of its log returns in all three phases. In

the top panel, the price of Bitcoin has an obvious downward trend, whose average daily

log return is −1.03%. In the middle panel, the closing price climbs up with an average

daily log return equalling 0.85%. For the bottom panel, the closing price has a mean

reversion pattern, and its average log return equals −0.13%. The Q-Q plot against

the standard normal distribution indicates that the distribution of the log return in

three phrases has a similar shape of density curve and a light tail, whose median varies

around 0. We aim to figure out how the GA performs in calibrating real data with

different drifts. Furthermore, we introduce a new parameter b (see Equation (4.4)),

which determines the initial money C0 given to each agent in the ABM from chapter

2 rather than a constant. The initial money C0 is designed to be

C0 = a0 · S0 + 1000 · b (4.14)

where S0 is the initial number of shares given to each agent. The coefficient a0 is a

constant, and we set it as a0 = 30000 in the following calibration procedure.
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Figure 4.7: Left panels: The closing price of Bitcoin selected from three different peri-
ods that the average log return of the price is −1.03%, 0.85% and −0.13%, respectively.
Right panels: The corresponding Q-Q plot of log return against the standard normal
distribution.

Then a GA is implemented to find the optimal parameters of the ABM in a fea-

sible parameter space M (see Chapter 2 and Equation (4.4)), which can best fit the

observations by maximising the fitness function in Equation (4.6). For the ABM, we

set the number of period as 50, within which there are 300 intra-day periods. The

initial stock price is the same as the first data point of the observation, and we assume

100 agents are involved in the ABM market with a portfolio containing S0 = 100

shares and 3 000 000 + 1 000 · b cash. Meanwhile, the coefficients in the objective func-

tion (4.5), which intents to minimise the linear combinations of moment, is set as

a1 = 1, a2 = 100, a3 = 0.01, a4 = 0.01.

Figure 4.8 demonstrates how the parameter populations change over generations

using the GA to calibrate Bitcoin price. From top to bottom, we sequentially display

the result of calibrating Bitcoin price in decline, increasing and flat phases and their

optimal or best solution are (A = 0.368, w = 0.986, b = 9), (A = 0.309, w = 0.972, b =

21) and (A = 0.283, w = 0.995, b = 97), respectively. In the left panels, the blue
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points indicate the random initial parameter A, and w over the possible state space,

while the green triangles represent the last location of the final population. The red

star is the optimal or best value of (A,w) found by the GA. As we can see that the

initial populations (blue points) are widely spread in the feasible space, while the scope

of (A,w) narrows down to a smaller area in the last generation (green triangles) and

gathers around the optimal solution (red star). In the right panels, the initial money C0

given to each agent is presented against generations. In the declining phase, the initial

closing price of Bitcoin is over 40 000 and the best solution of parameter b indicates

the initial money given to each agent should be 3 009 000. According to the order

formation mechanism designed in the ABM, the initial expectation of simulated bid

volume is around 38 (see Equation (2.5)), while the expectation of initial ask volume

is 50. The stronger power of selling will force the simulation price to move down, by

which the ABM can capture a declining trend we observed in real data. Similarly,

the initial closing price of Bitcoin is around 22 000 in the increasing phrase, and the

corresponding best solution of parameter b implies the initial expectation of simulated

bid volume is 69 higher than the expectation of initial ask volume 50. The stronger

power of buying guarantee a increasing trend in the simulated path. Finally, in the

flat phase, the initial closing price of Bitcoin is around 41,000. In order to capture the

mean reversion feature of the real data, we expect to obtain a big value of parameter

b from the calibration process, such that we can reach an equilibrium between the

buying and selling power. However, the parameter b is an integer variable constrained

in a pre-defined range [0, 100]. Then the best solution of parameter b is given as 97.

Here we move on to evaluate two risk metrics, VaR and CVaR via four different

methods, which are norm, t, GA and historical method. We aim to justify whether

the GA calibration combined with an ABM can provide a satisfactory risk prediction

in the real world.

The norm, t and GA method have been well introduced in the Section 4.4.1, while

the historical method sorts the log return of observations in an ascending order within

recent N periods. Let us assume that X is a loss variable drawn from the sorted

historical log return {ri}Ni=1. Then the VaR of X with confidence level α ∈ [0, 1] over
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Figure 4.8: The GA calibration result: Left panels: The evolution of parameter (A,w)
changes over generations that the blue points stand for the initial populations and the
green triangles represent the final populations. The optimal or best solution of the
GA calibration is marked as a red star. Right panels: The initial cash C0 given to
each agent changes over generations when we use an ABM to calibrate the real data.

the next one period can be simply approximated as,

VaRhist,α(X) = {z|P (X > z) = α}

≈ ri=b10×N×(1−α)c,

where b·c is a floor function.

The CVaR of X with confidence level α over the next one period can be calculated

as,

CVaRhist,α(X) =
1

1− α

∫ 1−α

0

VaRhist,u(X)du

≈
∑b10×N×(1−α)c

i=1 ri
b10×N × (1− α)c

.
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In Figure 4.9, we calculate the one-day VaR and CVaR of the portfolio investing 10 000

into Bitcoin at different confidence levels in three phases. For comparison, we set the

value from the historical method as a baseline (labelled as Bitcoin in the figure), and

the performance of the other methods can be roughly judged by how well the curve

can match the baseline.
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Figure 4.9: One-day VaR (left panels) and CVaR (right panels) evaluation given 10 000
initial investment: From top to bottom, the results are displayed sequentially in declin-
ing, increasing, flat phases by assuming the log return of price follows distributions,
such as the normal and t distribution or the empirical distribution generated via a
combination of ABM and GA approach. For comparison, we set the value from the
historical method as a baseline (labelled as Bitcoin).

From top to bottom, the evaluation of VaR is presented sequentially in decline,

raise and flat phases in the left panels. In the declining phase, all three methods

(normal distribution, t-distribution and GA method) underestimate the risk level of

the observations, which has a significant negative drift. By contrast, the risk level is

overestimated by the three methods in the increasing phase. While in the flat phase,

the three methods can only partially cover the baseline curve. None of them can

provide a satisfactory performance due to risk evaluation using VaR is unsuitable for

skewed distributions, and the log return distribution of three phases are asymmetric,
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whose skewness are -0.05, -0.55 and 0.57, respectively.

However, in the right panels, the baseline curve of CVaR can be well fitted by the

GA method in the decline phase (top figure) and the t-distribution method in the flat

phase (bottom figure), and the GA method can provide a close output to the baseline

curve in the raising phase (middle figure).

In general, the GA calibration combined with an ABM and t-distribution fitting

method can provide a satisfactory risk prediction for Bitcoin data using the CVaR

metric, which is a coherent risk measure and continuous to the confidence level. By

contrast, the VaR metric is not a suitable choice, since it may lead to undesirable

results for skewed distributions.

Finally, we display the results across a range of statistical metrics that we per-

form the two-sample tests, such as Kolmogorov-Smirnov test (KS), Anderson-Darling

test (AD) and Cramér-von Mises test (CM), to judge whether the return distribution

between simulations and Bitcoin price is the same or not. We use the probability

distribution fitting approach that the log return of observations is assumed to follow

the normal distribution and t distribution, respectively. The maximum likelihood es-

timators are set as probability parameter inputs to generate random log returns with

these two distributions. At the same time, the GA method inputs its optimal solution

into the ABM to produce a simulated log return series. In total, there are 9 groups of

log returns performed with two sample tests.

In Table 4.2, the information, for instance moments of Bitcoin price, test statistics

and the p-values are provided. From the view of three tests (KS, AD and CM), there

is no significant different between the Bitcoin price and the simulated price via three

methods in all three phases even at 15% confidence level. Different from the situation

in calibrating against simulated data in Section 4.4.1, the log return distribution of

Bitcoin price has a relatively smaller kurtosis and skewness comparing with simulated

observations, under which the two sample tests have less power to distinguish the

difference between log return distributions.
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4.5 Summary

In this chapter, we applied the GA to calibrate against simulated and Bitcoin data,

respectively. The aim is to find a suitable region of parameters, which can be input to

the ABM (introduced in Chapter 2) to replicate the simulated observations or Bitcoin

price. In order to find the optimal parameters of an ABM to fit the observations, we

proposed an objective function, which minimises the linear combinations of moment

difference between observed and simulated log returns. The fitness function of the

GA can be easily obtained by taking the reciprocal of the objective function, which

is used to evaluate the goodness of the GA population. Although it is hard to find

a global optimum due to the complexity and stochasticity of our ABM, the GA can

provide a region close to optimal value, within which the population have a high quality

performance in respect of the objective function.

Furthermore, two popular risk metrics, VaR and CVaR are applied to testify

whether we can combine the ABM and GA to predict the future distribution of stock

log return given some observations. For comparison, we also produce two more sim-

ulated results using normal and t distribution fitting method to calculate their corre-

sponding VaR and CVaR.

For calibrating against simulated data, we found that there is no suitable method

to properly evaluate VaRs in the case that observations are generated by a ABM with

small values of parameter w. Since the parameter w determines the kurtosis of the

simulated observations and a small value indicates a fat tail in log return distribution.

The GA method combined with the ABM performs poorly, because it can not suffi-

ciently capture the feature of observations, whose parameters only partially calibrate

the observation in volatility. By contrast, t-distribution method has the best perfor-

mance in evaluating CVaR, while the GA method perform badly due to a poor tail

modelling. Moreover, three two-sample tests (KS, AD and CM test) are performed

to judge whether the return distribution between simulations and observations are

the same or not. There is no significant difference between observed log returns and

simulated log returns via t-distribution and GA method even at 10% confidence level.

For calibrating against Bitcoin price, we introduced a parameter b which controls

initial money given to each agent in the ABM. Although we can not properly evaluate
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the VaRs for the Bitcoin price because it is unstable for skewed distributions, the GA

and t-distribution method can well fit the CVaR curve if we set the CVaRs calculated

by historical Bitcoin as a baseline. It is noteworthy that there is no significant dif-

ferent between the log-return of Bitcoin price and the simulated price in all cases we

summarised in Table 4.2 by performing KS, AD and CM test.
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Chapter 5

General Conclusions

This thesis has introduced a framework of using agent-based models with heteroge-

neous agents to produce an artificial financial market. We explored the herding effect

of an endogenous imitation mechanism and verified a set of stylised empirical facts. We

also introduced trend-following agents using the Bayesian learning method to track the

asset return. Moreover, a procedure of model calibration have been provided. Here,

we summarise the main findings and discuss avenues for future research.

5.1 Conclusion

Chapter 2 started by experimenting with a model proposed by Tedeschi et al. (2009)

[52], in which an order-driven market can be built on some essential elements, such

as the trading mechanism, the behaviour of typical agents and a communication net-

work system among agents. By involving an endogenous mechanism of imitation, the

herding effect can be generated that wealthy agents are more likely to be imitated by

others, causing a larger fluctuation in price. Due to the model being a closed system,

the price movement will be restricted to oscillate around a constant Pmean, which is

the ratio of the total money supply to total share supply in the system. The model

verified a set of empirical facts that stock returns exhibit a leptokurtic, asymmetric

and fat-tailed distribution and lack auto-correlation.

We have contributed to implementing the parameter sensitivity analysis based on

the one-factor-at-a-time method, which is prior to the calibration process in Chapter

4 as a descriptive or in-sample exercise identifying the vital parameter for determining
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the statistical properties of the model. Based on the analysis, we found that a low

bid-ask spread of simulated price can be obtained with a hybrid structure of agent

expectation, where more market liquidity can be created. The herding effect is more

likely to be observed when the agent’s expectation mainly accounts for imitation be-

haviour. Within a suitable range, the scale parameter A of the agent’s specific volatility

shows a linear relationship against the first and second moment of the bid-ask spread.

Moreover, additional participants will not significantly influence the bid-ask spread

when the market has sufficient agents.

In Chapter 3, we first reviewed a portfolio choice problem proposed by Bismuth

et al. [53] (2019). The ABM was extended by introducing trend-following agents who

aim to maximise their utility function by solving a portfolio choice problem. The

Agents are assumed to use the Bayesian learning method to track the risky asset

return and place the limit orders to achieve optimal strategy goals. The simulation

results were presented under the case that agents have a CRRA utility function with

γ = 1, which makes their optimal strategy θ∗ proportional to their learning beliefs.

We found that for the fixed belief case, the price movement is similar to the ABM with

noisy agents that oscillate around a constant dominating by the average optimal risky

asset proportion of agents θ̃∗. While agents are equipped with learning techniques, a

positive feedback loop was observed that the optimal strategy guides agents to reduce

their investment in a risky asset when θ∗ < θ. Then a substantial amount of ask orders

pull down the price leading to a lower optimal proportion θ∗. An extended parameter

sensitivity analysis showed how to choose a suitable initial range of parameters for

the model simulation. Any wrong choice of the initial parameter will cause abnormal

simulation results, such as a flat price movement due to no completed transaction and

a positive feedback loop in price. The flat price movement can be explained by the

reasons that: (1) agents beliefs locate in a small range causing the maximum distance

of limit order price to be smaller than the minimum tick size of stock price when µβ

is very tiny; (2) agents beliefs are widely distributed that the best bid and best ask

order will never crossover with each other to make a transaction, when µβ is relatively

large. While the positive feedback loop is more likely to be viewed with a higher value

of v0, where agents learn faster about the asset return.

Chapter 4 was motivated by the fact that the complexity and stochasticity of an
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ABM model do not allow us to find a global optimum. Therefore, we have contributed

to using a genetic algorithm to calibrate an ABM, which finds a region close to an

optimal value instead of a single value. Moreover, We first attempted to use the

calibration results to produce a future empirical distribution of log-return, which is

practical to calculate risk metrics for a risk management purpose. We found that the

calibrating with a GA method does not outperform the traditional probability fitting

approaches in the risk prediction. However, an ABM calibrating against the Bitcoin

price with a GA method performed well in producing an empirical return distribution.

5.2 Future Work

There is huge scope for extending the methods in this thesis given the number of

parameters and assumptions required to build up a functioning limit order market.

Our first thought relates to the parameter sensitivity analysis implemented in Chapter

2 and 3, where our one-factor-at-a-time analysis only roughly evaluates the partial

derivative, and more accurate analysis requires a smaller step size in parameter values.

Instead, we could change it to Sobol’s method proposed by Salteli et. al. [81], which is

model-free, and the sensitivity indices are defined as the ratio of the partial variance

to the total variance. The accuracy of the estimated sensitivity indices can therefore

be obtained by using a bootstrap method.

Next, on reviewing Chapter 3, we were unable to adequately test the model where

agents have the CARA utility function or the CRRA utility function with γ 6= 1.

More investigations can be implemented to identify the statistical properties of model

outputs with these settings. Furthermore, input validation can be a further extension

since a slight deviation of initial parameter inputs may lead to chaotic dynamics of

simulated outputs. Apart from parameter calibration, an exploration of the parameter

space can be helpful to evaluate the influences of different parameters on the dynam-

ics of model outputs. The works related to investigating the robustness of model

simulations under different parameter settings can be found in [82] and [83].

Another point raised in Chapter 4 is the ability of ABM techniques to contribute to

risk analysis. If we can find an optimal method to evaluate the VaR and CVaR, we can

work on an optimisation problem that minimise the VaR and CVaR of the portfolio
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return under the constraint that the expected return exceeds some pre-specified level.

Finally, we only calibrated an ABM from Chapter 2 in Chapter 4, one obvious

extension would be to calibrate an ABM with the trend-following agents of Chapter 3.

If the technique can be shown to be reliable, then by calibrating against cryptocurrency

data with a GA method and trend following agents, we could ask questions such as:

• What are the likely risk aversion parameters of agents in the market?

• What proportion of agent are implementing trend following strategies in the

market?

• Are there any objective differences between cryptocurrency markets and more

established equity markets?

• How likely is it a feedback loop will occur and the price will crash?

The field of ABM models is an exciting area with many avenues left unexplored.
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[73] David Vidal-Tomás and Ana Ibañez. Semi-strong efficiency of bitcoin. Finance

Research Letters, 27:259–265, 2018.

[74] Wang Chun Wei. Liquidity and market efficiency in cryptocurrencies. Economics

Letters, 168:21–24, 2018.

[75] Eng-Tuck Cheah and John Fry. Speculative bubbles in bitcoin markets? an

empirical investigation into the fundamental value of bitcoin. Economics letters,

130:32–36, 2015.



BIBLIOGRAPHY 139

[76] Shaen Corbet, Brian Lucey, and Larisa Yarovaya. Datestamping the bitcoin and

ethereum bubbles. Finance Research Letters, 26:81–88, 2018.

[77] Shaen Corbet, Andrew Meegan, Charles Larkin, Brian Lucey, and Larisa

Yarovaya. Exploring the dynamic relationships between cryptocurrencies and

other financial assets. Economics Letters, 165:28–34, 2018.

[78] Ladislav Kristoufek. Bitcoin meets google trends and wikipedia: Quantifying the

relationship between phenomena of the internet era. Scientific reports, 3(1):1–7,

2013.

[79] Elie Bouri, Syed Jawad Hussain Shahzad, and David Roubaud. Co-explosivity in

the cryptocurrency market. Finance Research Letters, 29:178–183, 2019.

[80] Antonis Ballis and Konstantinos Drakos. Testing for herding in the cryptocur-

rency market. Finance Research Letters, 33:101210, 2020.

[81] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cari-

boni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity

analysis: the primer. John Wiley & Sons, 2008.
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Appendix A

Proofs of propositions in Chapter 3

In this section, we will provide the proofs of Proposition 1 - 8 introduced in Section

3.3 - 3.5.1.

Proposition 1. Let t ∈ R+, given FPt , µ has a conditional distribution with mean βt

and variance v2
t , where

βt =
σ2

σ2 + v2
0t
β0 +

v2
0

σ2 + v2
0t

(µt + σWt),

and

v2
t =

σ2v2
0

σ2 + v2
0t
.

Proof. For 0 < t1 < . . . < tn, (µ, µt1 + σWt1 , . . . , µtn + σWtn) is a Gaussian vector

with variance matrix

 v2
0 L

L
′

Θ


where

L = (v2
0t1, . . . , v

2
0tn)

and

Θij = v2
0titj + σ2inf(ti, tj).

The distribution of µ given (St1 , . . . , Stn) is the distribution of µ given (µt1+σWt1 , . . . , µtn+

σWtn). It is Gaussian N(βt1,...,tn , vt1,...,tn
2
) with

βt1,...,tn = β0 + LΘ−1


(µ− β0)t1 + σWt1

...

(µ− β0)tn + σWtn

 ,
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and

vt1,...,tn
2

= v2
0 − LΘL

′

But

LΘ−1 =

(
0, . . . , 0,

v2
0

σ2 + v2
0tn

)
.

Therefore,

βt1,...,tn = β0 +
v2

0

σ2 + v2
0tn

((µ− β0)tn + σWtn) =
σ2

σ2 + v2
0tn

β0 +
v2

0

σ2 + v2
0tn

(µtn + σWtn)

and

vt1,...,tn
2

= v2
0 −

v4
0tn

σ2 + v2
0tn

=
σ2v2

0

σ2 + v2
0tn

.

By a monotone class argument, we have therefore that, for t ≥ 0, the distribution of

µ given FSt is Gaussian with mean

σ2

σ2 + v2
0t
β0 +

v2
0

σ2 + v2
0t

(µt+ σWt) =: βt

and variance
σ2v2

0

σ2 + v2
0t

=: v2
t .

Proposition 2.
(
Ŵt

)
t∈R+

is a Wiener process adapted to (FSt )t∈R+.

Proof. For proving this result, we use the Levy’s characterisation of a Brownian mo-

tion. Let t ∈ R+. By definition, we have

Ŵt =
1

σ

(
log

(
St
S0

)
+

1

2
σ2t

)
−
∫ t

0

βs
σ
ds,

hence the FSt -measurability of Ŵt. Let s, t ∈ R+, with s < t

E
[
Ŵt − Ŵs|FSs

]
= E

[
Wt −WS|FSs

]
+ E

[∫ t

s

µ− βt′
σ

dt
′|FSs

]
.

For the first term, the increment Wt −Ws is independent of FWs and independent of

µ. Therefore, it is independent of FSs and we have

E

[∫ t

s

µ− βt′
σ

dt
′ |FSs

]
=

∫ t

s

E

[
µ− βt′
σ
|FSs

]
dt
′

=

∫ t

s

E

[
E

[
µ− βt′
σ
|FS

t′

]
|FSs

]
dt
′

= 0,
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by definition of βt′ .

We obtain that
(
Ŵt

)
t

is an FS-martingale. Since Ŵ has continuous paths and

d
〈
Ŵt

〉
= dt, we conclude that Ŵ is an FS-Brownian motion.

Proposition 3. Suppose there exists ϕ ∈ C1,2 ([0, T ]×R) satisfying

−∂tϕ(t, β)− 1

2
σ2g2(t)∂2

ββϕ(t, β)− (β − r)2

2γσ2
+ g(t)(β − r)∂βϕ(t, β) = 0, (A.1)

with the terminal condition

ϕ(T, β) = 0. (A.2)

Then the u defined by

u(t, V, β) = − exp
[
−γ
(
er(T−t)V + ϕ(t, β)

)]
. (A.3)

is solution of the HJB equation (A.1) with terminal condition (A.2), and the supremum

of the HJB equation

−∂tu−
1

2
σ2g(t)2∂2

ββu− sup
M∈At

{((β − r)Mt + rV )∂V u+

1

2
σ2M2∂2

V V u+ σ2Mg(t)∂2
βV u} = 0,

(A.4)

can be obtained at

M∗ = e−r(T−t)
(
β − r
γσ2

− g(t)∂βϕ(t, β)

)
. (A.5)

Proof. Let us consider φ solution (A.1) of with terminal condition (A.2). For u defined

by (A.3), we have

− ∂tu−
1

2
σ2g2∂2

ββu− sup
M
{((β − r)Mt + rV )∂V u+

1

2
σ2M2∂2

V V u+ σ2Mg∂2
βV u}

=− γu
(
− ∂tϕ+ rer(T−t)V +

1

2
σ2g2

(
γ (∂βϕ)2 − ∂2

ββϕ
)
− sup

M

{
((β − r)M + rV )er(T−t)

− γ

2
σ2
(
er(T−t)M

)2 − γσ2g
(
er(T−t)M

)
∂βϕ

})
=− γu

(
− ∂tϕ+

1

2
σ2g2

(
γ (∂βϕ)2 − ∂2

ββϕ
)
− sup

M

{
(β − r)er(T−t)M

− γ

2
σ2
(
er(T−t)M

)2 − γσ2g
(
er(T−t)M

)
∂βϕ

})
.

Now,

sup
M

{
(β − r)er(T−t)M − γ

2
σ2
(
er(T−t)M

)2 − γσ2g
(
er(T−t)M

)
∂βϕ

}
=sup

M

{
(β − r)M̃ − γ

2
σ2M̃ − γσ2gM̃∂βϕ

}
.
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The supremum is reached at

M̃∗ = M∗er(T−t) =
(β − r)− γσ2g∂βϕ

γσ2

=
(β − r)
γσ2

− g∂βϕ,

and

sup
M

{
(β − r)er(T−t)M − γ

2
σ2
(
er(T−t)M

)2 − γσ2g
(
er(T−t)M

)
∂βϕ

}
=

((β − r)− γσ2g∂βϕ)
2

2γσ2
.

By using this expression, we obtain

− ∂tu−
1

2
σ2g2∂2

ββu− sup
M
{((β − r)Mt + rV )∂V u+

1

2
σ2M2∂2

V V u+ σ2Mg∂2
βV u}

=− γu
(
− ∂tϕ+

1

2
σ2g2

(
γ (∂βϕ)2 − ∂2

ββϕ
)
− ((β − r)− γσ2g∂βϕ)

2

2γσ2

)
=− γu

(
− ∂tϕ−

1

2
σ2g2∂2

ββϕ−
(β − r)2

2γσ2
+ (β − r)g∂βϕ

)
=0,

by definition of ϕ.

As far as the terminal condition if concerned, it is straightforward to verify that u

satisfies the terminal condition

u(t, V, β) = − exp(−γV ). (A.6)

Proposition 4. Suppose that (a, b) ∈ (C1([0, T ]))2 satisfies the following system of

ODEs: a
′
(t) + 1

2
σ2g2(t)b(t) = 0

b
′
(t) + 1

γσ2 − 2g(t)b(t) = 0,

(A.7)

with terminal conditions a(T ) = 0

b(T ) = 0.

(A.8)

Then the ϕ defined by

ϕ(t, β) = a(t) +
1

2
b(t)(β − r)2, (A.9)

satisfies (A.1) with terminal condition (A.2).
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Proof. Let us consider a couple (a, b) ∈ (C1([0, T ]))2 solution of (A.7) with terminal

condition (A.8). If ϕ is defined by (A.9), then

− ∂tϕ(t, β)− 1

2
σ2g2(t)∂2

ββϕ(t, β)− (β − r)2

2γσ2
+ (β − r)g(t)∂βϕ(t, β)

=− a′(t)− 1

2
b
′
(t)(β − r)2 − 1

2
σ2g2(t)b(t)− (β − r)2

2γσ2
+ g(t)b(t)(β − r)2

=0,

by definition of a and b.

As far as the terminal condition is concerned, it is straightforward to verify that ϕ

satisfies the terminal condition (A.2).

Proposition 5. For γ 6= 1, assume there exists t
′ ∈ [0, T ) and ϕ ∈ C1,2([t

′
, T ] × R)

satisfying

− 1

1− γ
∂tϕ(t, β)− 1

2(1− γ)
σ2g2(t)∂2

ββϕ(t, β)− 1

2γ(1− γ)
σ2g2(t)(∂βϕ(t, β))2

−1

γ

(β − r)2

2σ2
− 1

γ
g(t)(β − r)∂βϕ(t, β) = 0,

(A.10)

with terminal condition

ϕ(T, β) = 0. (A.11)

Then function u defined by

u(t, V, β) =

(
er(T−t)V

)1−γ

1− γ
exp [ϕ(t, β)] (A.12)

is the solution of HJB equation

−∂tu(t, V, β)− 1

2
σ2g2(t)∂2

ββu(t, V, β)− sup
θ

{
((β − r)θ + r)V ∂V u(t, V, β)

+
1

2
σ2θ2V 2∂2

V V u(t, V, β) + σ2g(t)θV ∂2
V βu(t, V, β)

}
= 0

(A.13)

with the terminal condition

u(T, V, β) = Uγ(V ) (A.14)

on [t
′
, T ]×R∗+ ×R. Furthermore, the supremum in (A.13) can be obtained at

θ∗ =
β − r
γσ2

+
1

γ
g(t)∂βϕ(t, β). (A.15)
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Proof. Let us consider ϕ solution of (A.10) with terminal condition (A.11). For u

defined by (A.12), we have

− ∂tu−
1

2
σ2g2∂2

ββu− sup
θ

{
((β − r)θ + r)V ∂V u+

1

2
σ2θ2V 2∂2

V V u+ σ2gθV ∂2
V βu

}
=− u(∂tϕ− (1− γ)r)− 1

2
σ2g2u

(
∂2
ββϕ+ (∂βϕ)

)
− sup

θ

{
((β − r)θ + r) (1− γ)u

− 1

2
γ(1− γ)σ2θ2u+ θσ2g(1− γ)u∂βϕ

}
=u(1− γ)

(
− 1

1− γ
∂tϕ−

1

2(1− γ)
σg2

(
∂2
ββϕ+ (∂βϕ)2)

− sup
θ

{(
(β − r)θ − 1

2
γσ2θ2 + θσ2g∂βϕ

)})
.

The supremum is reached at

θ∗ =
β − r
γσ2

+
1

γ
g∂βϕ.

By using this expression, we obtain

− ∂tu−
1

2
σ2g2∂2

ββu− sup
θ

{
((β − r)θ + r)V ∂V u+

1

2
σ2θ2V 2∂2

V V u+ σ2gθV ∂2
V βu

}
=u(1− γ)

(
− 1

1− γ
∂tϕ−

1

2(1− γ)
σ2g2

(
∂2
ββϕ+ (∂βϕ)2)− 1

2γσ2

(
(β − r) + σ2g∂βϕ

)2
)

=u(1− γ)

(
− 1

1− γ
∂tϕ−

1

2(1− γ)
σ2g2

(
∂2
ββϕ+ (∂βϕ)2)

− 1

γ

(
1

2σ2
(β − r)2 + (β − r)g∂βϕ+

1

2
σ2g2(∂βϕ)2

))

=u(1− γ)

(
− 1

1− γ
∂tϕ−

1

2(1− γ)
σ2g2∂2

ββϕ−
1

2γ(1− γ)
σ2g2(∂βϕ)2

− 1

γ

(β − r)2

2σ2
− 1

γ
(β − r)g∂βϕ

)
=0,

by definition of ϕ. Finally, it is evident that u satisfies the terminal condition (A.14).

Proposition 6. For γ 6= 1, suppose there exists t
′ ∈ [0, T ] and (a, b) ∈

(
C1([t

′
, T ])

)2

satisfying the following system of ODEsa
′
(t) + 1

2
σ2g2(t)b(t) = 0

b
′
(t) + 1

γ
σ2g2(t)b2(t) + 1−γ

γ
1
σ2 + 21−γ

γ
g(t)b(t) = 0,

(A.16)
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with terminal conditions a(T ) = 0

b(T ) = 0.

(A.17)

Then the function ϕ defined by

ϕ(t, β) = a(t) +
1

2
b(t)(β − r)2, (A.18)

satisfies (A.10) with terminal condition (A.11).

Proof. Let us consider a couple (a, b) ∈
(
C1([t

′
, T ])

)2
solution of (6) with terminal

condition (A.17). If ϕ is defined by (A.18), then

− 1

1− γ
∂tϕ(t, β)− 1

2(1− γ)
σ2g2(t)∂2

ββϕ(t, β)

− 1

2γ(1− γ)
σ2g2(t)(∂βϕ(t, β))2 − 1

γ

(β − r)2

2σ2
− 1

γ
g(t)(β − r)∂βϕ(t, β)

=− 1

1− γ
a
′
(t)− 1

2(1− γ)
b
′
(t)(β − r)2 − 1

2(1− γ)
σ2g2(t)b(t)

− 1

2γ(1− γ)
σ2g2(t)b2(t)(β − r)2 − 1

γ

(β − r)2

2σ2
− 1

γ
g(t)b(t)(β − r)2

=0,

by definition of a and b.

As far as the terminal condition is concerned, it is straightforward to check that ϕ

satisfies the terminal condition (A.11).
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Simultaneous Bayesian modeling of longitudinal and
survival data in breast cancer patients
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ABSTRACT
Using simultaneous Bayesian modeling, an attempt is made to ana-
lyze data on the size of lymphedema occurring in the arms of breast
cancer patients after breast cancer surgery (as the longitudinal data)
and the time interval for disease progression (as the time-to-event
occurrence). A model based on a multivariate skew t distribution is
shown to provide the best fit. This outcome was confirmed by simu-
lation studies too.
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1. Introduction

The simultaneous modeling of longitudinal and survival data plays a crucial role in the
analysis of medical, social, and economic data. For example, in a clinical study aiming
at analyzing the data on breast cancer, a biomarker such as the size of a lymph node in
the arm of the patient is conceived of as the survival predictor. The putative biomarker
is collected for each individual over time until the occurrence of certain events such as
patients’ refusal, death, or disease recurrence. In most of previously-conducted studies
on simultaneous modeling, symmetric distributions, especially the normal distribution,
are deployed to model longitudinal responses; however, if the data are not symmetric,
this can lead to invalid inferences. In recent years, simultaneous modeling of longitu-
dinal data and time-to-event occurrence has received unprecedented attention. At first,
a two-step approach was proposed by Tsiatis et al. (1995). Ye et al. (2008a, 2008b) put
forward a two-step regression model to estimate the relationship between longitudinal
data and time-to-event occurrence data. Albert and Shih (2010) demonstrated that the
bias of the two-step model might be inherent and accordingly, showed how the bias can
be decreased using another model. Wulfsohn and Tsiatis (1997) proved that although
two-step models have the advantage of computational simplicity, they are plagued with
some fundamental problems. Faucett and Thomas (1996) showed that two-step models
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Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsta.
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use survival data in the modeling of longitudinal processes and, accordingly, might lead
to biased results and decrease efficiency of the estimators. Furthermore, the estimated
longitudinal measures in the first step are used as constants in the next stage. Hence,
this method is characterized by not transferring the uncertainty of the first stage to the
second stage. Another method developed to obtain estimates and to make statistical
inferences is based on the simultaneous likelihood function for longitudinal and survival
data. Deploying this method leads to more exact estimates. Moreover, in this method,
the relationship between longitudinal data and time-to-event occurrence is accentuated
better. In this method, the parameters of the model are estimated simultaneously and
accordingly, in the modeling, uncertainty is taken into account. Simultaneous modeling
for the longitudinal and survival data was improved after 1990. Henderson et al. (2000)
and Hashemi et al. (2003) conducted a simultaneous modeling using the hidden variable
method. Ibrahim et al. (2004), Tsiatis and Davidian (2004), and Wu and Cook (2012),
using their own proposed model, attempted to generalize this model. This modeling
encompasses innovations in the structure of both longitudinal and survival models.
These discussions, especially for longitudinal and survival submodels, involving
Bayesian methods, were investigated by Chi and Ibrahim (2007), Bakar et al. (2009),
Rizopoulos et al. (2008a, 2008b), Rizopoulos and Ghosh (2011), Rizopoulos (2010,
2013), Baghfalaki et al. (2014) and Baghfalaki and Ganjali (2015). Non-parametric issues
to avoid the assumption that random effects are normal were formalized using the EM
algorithm method in Song et al. (2002), and Tsiatis and Dividian (2001). Baghfalaki
et al. (2014) and Baghfalaki and Ganjali (2015), using heavy-tailed distributions and
avoiding commonly-held assumptions such as normality, fitted longitudinal and survival
data with common random effects. Issues concerning robust modeling, using the t dis-
tribution, were scrutinized in Brown and Ibrahim (2003), Li et al. (2009), and Huang,
Chen, and Dagne (2011). Lange et al. (1989) demonstrated that the inaccuracy of the
assumption of normality for random effects exerts an adverse effect on the variance of
estimates. Given this problem, fitting random effects model in the presence of skewed
distributions has attracted researchers’ attention. The skew normal family of distribu-
tions constitutes an important class of asymmetric distributions. Azzalini (1985) intro-
duced the first version of this family of distributions. Generalizations of this
distribution to the multivariate case were provided in Azzalini and Dalla-Valle (1996),
Azzalini and Capitanio (1999), Branco and Dey (2001), and Sahu et al. (2003). The
applicability of the multivariate normal distribution in mixed-effects models was studied
by Arellano-Valle et al. (2007), and Lin and Lee (2008). Furthermore, applicability of
this model in the presence of missing data was examined by Lin et al. (2009),
Baghfalaki et al. (2014) and Baghfalaki and Ganjali (2015). Choudhary et al. (2014)
introduced a general skew-t mixed model that allows different degrees of freedom for
random effects. Lu et al. (2017) introduced partially linear mixed effects joint models
for skewed and missing longitudinal competing risks outcomes.
In this paper, we analyze longitudinal and survival data with a family of skewed-ellip-

tical multivariate distributions using Bayesian approach. The family is more efficient
than the multivariate normal distribution.
The contents of this paper are organized as follows. In Section 2, we

introduce skewed-elliptical multivariate distributions. Section 3 introduces
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longitudinal and survival models and their notations. Section 4 introduces Bayesian con-
struction for simultaneous modeling of longitudinal and survival data. Section 5 performs a
simulation study for checking the proposed model. Section 6 fits the proposed model to a
data from breast cancer patients. Discussion and conclusions are given in Section 7.

2. The family of skewed-elliptical multivariate distributions

The elliptical distribution family refers to a set of distributions whose density is an
ellipsoidal equation. Suppose l 2 Rk is the location parameter and R is a positive-defin-
ite matrix with the dimension k and X is also a k dimensional random vector with the
following probability density function:

f xjl;R; g kð Þ
� �

¼ jRj�1
2g kð Þ x� lð Þ0R�1 x � lð Þ

n o
; x 2 Rk (1)

where gðkÞ is the probability density generator function of the random variable of X
defined as

g kð Þ �ð Þ ¼
C k

2

� �
p

k
2

g �; kð Þ
ð1
0
u

k
2�1g u; kð Þdu

� ��1

In the case gðx; kÞ ¼ exp ð�x=2Þ;

g kð Þ xð Þ ¼
C k

2

� �
p

k
2

exp � x
2

� � ð1
0
u

k
2�1 exp � u

2

� �
du

� ��1

¼
C k

2

� �
p

k
2

exp � x
2

� �
2
k
2C

k
2

� �� ��1

¼ 1

2pð Þk2
exp � x

2

� �

so (1) reduces to

f x jl;R; g kð Þ
� �

¼ jRj�1
2

2pð Þk2
exp � 1

2
x � lð Þ0R�1 x � lð Þ

� �

Other terms in gðkÞ generate the density in f based on the structure of the com-
bined function.
The skew-elliptical distribution generalizes the elliptical distributions to a family with

double flexibility through a skewness parameter. Assume that � and Z are k dimensional
random vectors and l is a m dimensional vector and R is a positive-definite matrix k� k.
In the following, we consider a random vector X from the elliptical distribution family

X ¼ �
Z

� �
� EL h;X; g 2kð Þ

� �

where h ¼ l

0

� �
; X ¼ R 0

0 I

� �
; 0 is the zero matrix and I is an identity matrix. Set

Y ¼ DZþ �; where D ¼ diagðd1; d2; :::; dkÞ: YjZ> 0 extends the class of elliptical
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distributions to the skew-elliptical class. If all the elements of the diagonal matrix di are
positive, the distribution YjZ> 0 is right-skewed. However, if di are negative, the distri-
bution is left-skewed. Drawing on the definition of conditional density and Bayesian
rule, it can be demonstrated that

f yjZ > 0ð Þ ¼ 2kf yjl;RþD2; g kð Þ
� �

p Z > 0 j yð Þ (2)

where Z� ELð0; I; gðkÞÞ and pðZ > 0Þ ¼ 2�k: One writes Y� SEðl;R;D; gðkÞÞ: The skew
normal distribution is the particular case of (2) for gðu;mÞ ¼ exp ð�u=2Þ: The skew-t

distribution is the particular case of (2) for gðu; 2m; �Þ ¼ ð1þ u=�Þ�m��=2: For more
details, refer to Branco and Dey (2001), and Sahu et al. (2003).
Figure 1 shows density plots of the bivariate skew normal distribution.

Figure 1. Densities of the bivariate skew normal distribution for q ¼ 0:8; d1 ¼ 0:7 and d2 ¼ 0:9 (top
left); q ¼ �0:8; d1 ¼ �0:7 and d2 ¼ �0:9 (top right); q ¼ 0:4; d1 ¼ 0:7 and d2 ¼ 0:9 (bottom left);
q ¼ �0:4; d1 ¼ �0:7 and d2 ¼ �0:9 (bottom right).
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3. Model and notation

The initial modeling of the response variables is that besides the error components in
the longitudinal sub-model, the random effects in both the longitudinal and survival
sub-models have probability distributions. We first assume that Yi ¼ ðYi1;Yi2; :::;YiniÞ is
a vector of length ni to evaluate the response variable of the ith individual. The longitu-
dinal model based on the linear model with mixed effects is

Yi ¼ X0
1ib1 þ Z0

1ib1i þ �i

for i ¼ 1; 2; :::; n: The Cox proportional hazards model with survival time of ti and cen-
sor marker dit for the ith individual is

h ti jX2i;Z2i; b2ið Þ ¼ h0 tið Þ exp X0
2ib2 þ Z0

2ib2i
� 	

Replacing non-normal proportional distributions with the deviate nature of the distri-
bution of random effects paves the way for improving the results of estimating models.
Accordingly, in the simultaneous modeling based on deploying skew-elliptical distribu-
tions for the random-effects model, in the longitudinal and survival submodels, we
assume that

Yijb1; b1i; r2� �Nni X
0
1ib1 þ Z0

1ib1i; r
2
�Ini


 �
;

b1ijW1;Db1 ; g
nið Þ
hb1

� SEq1 0;W1;Db1 ; g
nið Þ
hb1

� � (3)

and

b2ijW2;Db2 ; g
nið Þ
hb2

� SEq2 0;W2;Db2 ; g
nið Þ
hb2

� �

where SEqðl;R; ghÞ denotes the q-variable skew elliptical distribution with location par-
ameter of l; scale matrix of R; skew matrix D and probability density generator func-
tion gh:
Taking the distributional assumptions introduced in (3), the likelihood function of

observations for the simultaneous model is

L hjy; b1; b2; tð Þ ¼ f y; b1jb1; r2� ;Db1 ;W1; ghb1

� �
f t; b2; ditjb2;Db1 ;W2; ghb2

 �

¼
Ym
i¼1

2ni f yijX0
1ib1 þ Z0

1ib1i; r
2
�Ini


 �
2q1 f b1ijlb1 ;W1;Db1 ; ghb1


 �

�
ð1
0
f �1ijl�1i ;R�1i ; ghb1

 �

d�1i
Yn
i¼1

hdit tijX0
2i;Z

0
2i; b2i


 �n o

� exp �H0 tið Þ exp X0
2ib2 þ Z0

2ib2i
� � 	

2q2 f b2ijlb2 ;W2;Db2 ; ghb2

 �

�
ð1
0
f �2ijl�2i ;R�2i ; ghb2

 �

d�2i

where h ¼ ðb1; b2; r2� ;W1;W2;Db1 ;Db2 ; �b1 ; �b2Þ are the unknown parameters.
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4. The Bayesian structure

For Bayesian modeling, suitable prior distributions need to be selected for all of the
parameters in the model. For the fixed effects model, a multivariate normal distribution
is selected. Accordingly, the parameters b1 and b2 which are p1 and p2 variates are con-
sidered to follow the Nplðb�l; SblÞ for l¼ 1, 2. For the scale matrix of random effects Wl;

the inverse Wishart prior distribution IWðsbl ; SblÞ is used for l¼ 1, 2. The prior distribu-
tion of the error-scale parameter r2� is taken as the inverse gamma distribution with
parameters a� and s�: The skewness parameter db is taken to follow the truncated multi-
variate normal distribution Nplðldl ;RdlÞIðdb > 0Þ for l¼ 1, 2. Furthermore, the uniform
or truncated exponential distributions are used as the prior distribution for the degree
of freedom parameter of the skew-t distribution.
To obtain parameter estimates, the simultaneous posterior density should be calcu-

lated, which is achieved by multiplying the simultaneous likelihood function and simul-
taneous prior distribution of parameters. By calculating the simultaneous posterior
density and obtaining the full conditional posterior densities for individual parameters,
we can conclude that these distributions do not have closed form. Accordingly, the dir-
ect calculation of the posterior mean of these distributions proves to be difficult and
impossible. Hence, Markov Chain Monte Carlo (MCMC) methods are used. According
to the observed and prior distributions considered, the following posterior distribution
can be obtained

p b1; b2; b1i; b2i; db1 ; db2 ; �1; �2;W1;W2jy; t

 � /

�Yn
i¼1

/ yijX0
1ib1 þ Z0

1ib1i; r
2
�Ini


 �

� /q1 b1ijlb1i þDb1i ; S
�2
b1iW1

� �
exp � 1

2
b1 � b01ð Þ0S�1

b1
b1 � b01ð Þ

� �

� exp � 1
2

db1i � ld1

 �0R�1

d1 db1i � ld1

 �� �

I db1i > 0ð Þ
�
exp � �b1i

kb1i

� �
I �b1i > 2ð Þ

�
Yn
i¼1

hdit tijX2i;Z2i; b2ið Þ exp �H0 tið Þ exp X0
2ib2 þ Z0

2ib2i

 �� 	

� /q2 b2ijlb2i þDb2iwb2i ; S
�2
b2iW2

� �
exp � 1

2
b2 � b02ð Þ0S�1

b2
b2 � b02ð Þ

� �

� exp � 1
2

db2i � ld2

 �0R�1

d2 db2i � ld2

 �� �

I db2i > 0ð Þ exp � �b2i
kb2i

� �
I �b2i > 2ð Þ:

The use of the MCMC methods is contingent upon obtaining full conditional poster-
ior distributions for the parameters of the model. If we denote by Hð�hÞ a vector param-
eters with h omitted then

b1jb1i; db1i ; �b1i ;r2� ; S2b1i ; y�Np1 l�1
b1
ab1 ; l

�1
b1

� �

where

ab1 ¼ S�1
b1
b01 þ

Xn
i¼1

r2�X
0
1i yi � Z0

1ib1i

 �
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and

l�1
b1

¼
Xn
i¼1

1
r2�

X0
1iI

�1
ni X1i þ S�1

b1

Furthermore,

b1ijH �b1ið Þ; y; t�Nq X�1
b1i ab1i ;X

�1
b1i

� �

where

X�1
b1i ¼ S2b1iW1 þ r�2

� Z0
1iI

�1
ni Z1i

and

ab1i ¼ r�2
� Z0

1iI
�1
ni yi � X0

1ib1

 �þW�1

1 Db1i�b1i � lb1i

 �

Furthermore,

�b1i jH ��b1ið Þ �Nq1 X�1
�b1i

a�b1i ;X
�1
�b1i

� �
I �b1i > 0ð Þ

where

X�1
�b1i

¼ S2b1i Db1iW1Db1ið Þ þ Iq1

Furthermore,

W1jH �W1ð Þ; y; t� IWq1 nþ ab1i ;XW1ð Þ
where

XW1 ¼ S�1
b1i þ

Xn
i¼1

S2b1i b1i �Db1i�b1i þ lb1i

 �

b1i �Db1i�b1i þ lb1i

 �0

The conditional posterior distribution for W2 can be obtained similarly. The conditional
distributions for other parameters are not in closed-form or well-known.

5. Simulation

This section performs simulation for scrutinizing the performance of the proposed
model in the presence and absence of skewness. A sample with the size of n with 10000
repetitions was generated and the mixed effect model was considered as

yij ¼ b11 þ b12tj þ b13xi þ b1i þ b2itj þ �ij

where i ¼ 1; 2; :::; n; j¼ 1, 2, 3 and t ¼ ð3; 6; 9Þ: Moreover, �ij’s were generated from the
N(0, 1) distribution. The xi’s were generated from the Bernoulli ð0:3Þ distribution. The
following Weibull proportional hazards model was considered:

h tið Þ ¼ ktk
�1

i exp b21 þ b22xi þ r1b1i þ r2b2if g
Moreover, for the random effects, one of N(0, 1), t distribution, or skew-t distri-

bution was considered. The simulation results are provided in Figures 2 and 3. N –
N denotes the model where residuals are N(0, 1) and random effects are also
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N(0, 1). N – T denotes the model where residuals are N(0, 1) and random effects are
t distributed with degree of freedom �. N – ST denotes the model where residuals
are N(0, 1) and random effects are skew-t distributed with skewness parameters
ðx1;x2Þ and degree of freedom parameter �. d11, d12, d21 and d22 denote elements of
the covariance matrix.
Figures 2 and 3 plot the relative biases and relative mean squared errors of the esti-

mators of the parameters for the N – N, N – T and N – ST models. Note that the
parameters for the N – N model are b11, b12, b13, b21, b22, d11, d12, d22, k, r1 and r2.
The parameters for the N – T model are b11, b12, b13, b21, b22, d11, d12, d22, k, r1, r2 and
�. The parameters for the N – ST model are b11, b12, b13, b21, b22, d11, d12, d22, k, r1, r2,
�, x1 and x2. In the simulations, the parameter values were set as b11 ¼ 4; b21 ¼ b22 ¼
1; b12 ¼ b13 ¼ 1; r1 ¼ r2 ¼ �1; k¼ 2, x1 ¼ -5, x2 ¼ 4; �¼ 5, d11 ¼ 3; d12 ¼ 0 and
d22 ¼ 4: The x and y axes in Figure 3 are in logarithmic scale.
The N – N, N – T and N – ST models were fitted to each of the 10000 samples of

size n. This yields 10000 estimates of the parameters in the N – N, N – T and N –
ST models. For example, for the N – N model, we obtained the estimates

b̂11;n;i; b̂12;n;i; b̂13;n;i; b̂21;n;i; b̂22;n;i; d̂11;n;i; d̂12;n;i; d̂22;n;i; k̂n;i; r̂1;n;i and r̂2;n;i for i ¼
1; 2; :::; 10000 and each n. These estimates were used to compute the relative biases
and relative mean squared errors of the estimators for each n and for the three mod-
els. For example, for the N – N model, we computed the relative biases and relative
mean squared errors as

Figure 2. Relative biases versus n of the parameter estimates under the N – N (blue), N – T (red) and
N – ST (black) models. The parameters are in the following order: b11 (first row, left), b12 (first row,
right), b13 (second row, left), b21 (second row, right), b22 (third row, left), d11 (third row, right), d12
(fourth row, left), d22 (fourth row, right), k (fifth row, left), r1 (fifth row, right), r2 (sixth row, left), �
(sixth row, right), x1 (seventh row, left) and x2 (seventh row, right).
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1
10000

X10000
i¼1

b̂11;n;i � b11

� �
=b11;

1
10000

X10000
i¼1

b̂12;n;i � b12

� �
=b12;

1
10000

X10000
i¼1

b̂13;n;i � b13

� �
=b13;

1
10000

X10000
i¼1

b̂21;n;i � b21

� �
=b21;

1
10000

X10000
i¼1

b̂22;n;i � b22

� �
=b22;

1
10000

X10000
i¼1

d̂11;n;i � d11
� �

=d11;

1
10000

X10000
i¼1

d̂12;n;i � d12
� �

=d12;
1

10000

X10000
i¼1

d̂22;n;i � d22
� �

=d22;

1
10000

X10000
i¼1

k̂n;i � k
� �

=k;
1

10000

X10000
i¼1

r̂1;n;i � r1ð Þ=r1;

1
10000

X10000
i¼1

r̂2;n;i � r2ð Þ=r2

and

Figure 3. Relative mean squared errors versus n of the parameter estimates under the N – N (blue),
N – T (red) and N – ST (black) models. The parameters are in the following order: b11 (first row, left),
b12 (first row, right), b13 (second row, left), b21 (second row, right), b22 (third row, left), d11 (third
row, right), d12 (fourth row, left), d22 (fourth row, right), k (fifth row, left), r1 (fifth row, right), r2 (sixth
row, left), � (sixth row, right), x1 (seventh row, left) and x2 (seventh row, right).
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1
10000

X10000
i¼1

b̂11;n;i � b11

� �2
=b211;

1
10000

X10000
i¼1

b̂12;n;i � b12

� �2
=b212;

1
10000

X10000
i¼1

b̂13;n;i � b13

� �2
=b213;

1
10000

X10000
i¼1

b̂21;n;i � b21

� �2
=b221;

1
10000

X10000
i¼1

b̂22;n;i � b22

� �2
=b222;

1
10000

X10000
i¼1

d̂11;n;i � d11
� �2

=d211;

1
10000

X10000
i¼1

d̂12;n;i � d12
� �2

=d212;
1

10000

X10000
i¼1

d̂22;n;i � d22
� �2

=d222;

1
10000

X10000
i¼1

k̂n;i � k
� �2

=k2;
1

10000

X10000
i¼1

r̂1;n;i � r1ð Þ2=r21;

1
10000

X10000
i¼1

r̂2;n;i � r2ð Þ2=r22

respectively, for each n.
The relative biases and the relative mean squared errors generally decrease with n.

The relative biases appear generally positive. They appear largest for the N – N model,
followed by the N – T model and then the N – ST model. The relative mean squared
errors appear largest for the N – N model, followed by the N – T model and then the
N – ST model. Hence, the N – ST is the best model and the N – N model is the worst
model. For the N – ST model, the relative biases appear reasonably small for all n �
400 and the relative mean squared errors appear reasonably small for all n � 500:
In our simulations, we have chosen specific values for t; b11, b12, b13, b21, b22, d11,

d12, d22, k, r1, r2, �, x1 and x2. But the results of simulation were similar for a wide
range of values of these parameters. In particular, the relative biases and the relative
mean squared errors generally decreased with n; they always appeared largest for the N
– N model; they always appeared smallest for the N – ST model; the relative biases for
the N – ST model always appeared reasonably small for all n � 400; the relative mean
squared errors for the N – ST model always appeared reasonably small for all n � 500:

6. Application

This section analyses data from a longitudinal study conducted on 236 breast-cancer
patients. After the surgery, the participants of the study went to a hospital in Tehran.
The size of the lymphedema occurring in their arms were recorded at different time
intervals after cancer surgery.
First, we tested the data for normality. We used the following tests: Kolmogorov-

Smirnov, Shapiro-Wilk’s, Jarque-Bera, Anderson-Darling, Cramer-von Mises, Pearson
chi-square and Shapiro-Francia tests. All of them returned a p value less than 0.001, giv-
ing strong evidence that the data are not normally distributed.
Next, we performed tests for symmetry (or zero skewness) of the data. We used the

following tests: Cabilio-Masaro test (Cabilio and Masaro 1996), Mira test (Mira 1999)
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and the MGG test (Miao et al. 2006). All of them returned a p value less than 0.0001,
giving strong evidence that the data are skewed.
The following model for the size of the lymphedema is considered:

yij ¼ b11 þ b12tj þ b13ti metai þ b14 maritali þ b15 agei þ b16 gradi þ b1i þ b2itj þ �ij

where the meta variable denotes the Metastasis in the patient, marital denotes the mari-
tal state of the patient (single, married, widow, divorced), age refers to the age of the
patient, grad denotes tumor’s degree of deterioration (low, average, high), and tij
denotes the time of patient visiting the hospital. For the time-to-event occurrence, a
Weibull distribution is considered: Tij bi �Weibullðgti ; kÞ with

gti ¼ b21 þ b22 metai þ b23 maritali þ b24 agei þ b25 gradi þ r1b1i þ r2b2i

where bi ¼ ðb1i; b2iÞ denotes the shared random effect between the two models and
assumed to have a skew-t distribution. To run the Bayesian model by considering the
distributions introduced in Sections 3 and 4, two parallel Markov Chain Monte Carlo
(MCMC) were conducted with different primary values and 100000 repetitions for each
run. The first 30000 repetitions were eliminated and posterior inference was based on
the remaining 70000 samples. In all of the models bk �Npkð0; 10000IpkÞ; where Ip�k is a
pk dimensional identity matrix, rk �Nð0; 100Þ; p1 ¼ 6; p2 ¼ 5 and k¼ 1, 2. The prior
distribution for the skew-t distribution degree of freedom parameter is ��Uð1; 9Þ:
Moreover, the prior distribution for the skewness parameters is Nð2; 1ÞIðd>0Þ: Table 1
compares the Bayesian models, AIC and BIC indexes are given.

Table 1. The criteria for selecting models for the analysis of the breast-cancer data.

Criterion value
Model

N-N N-T T-T ST-ST

AIC 10453 8914 7216 6512
BIC 10601 9003 7314 6672

Table 2. The Bayesian estimates of parameters (standard deviation) and 95 percent confidence inter-
vals for the analysis of the breast-cancer data.
Parameter Estimate Standard deviation 95% CI

Interceptðb11Þ 10.290 0.725 (8.933,11.791)
Timeðb12Þ –0.306 0.048 (–0.444,-0.244)
Time � meta ðb13Þ 0.001 0.071 (–0.118,0.163)
Marital ðb14Þ 0.036 0.666 (–1.267,1.269)
Age ðb15Þ –0.326 0.046 (–4.240,-0.242)
Grade ðb16Þ 0.186 0.265 (–0.318,0.713)
Intercept ðb21Þ –0.234 0.388 (–0.982,0.542)
Meta ðb22Þ –5.207 0.636 (–6.221,-3.738)
Marital ðb23Þ 0.453 0.292 (–0.147,0.983)
Age ðb24Þ 0.028 0.657 (–1.279,1.281)
Grad ðb25Þ 2.321 0.371 (1.594,3.075)
r1 –0.313 0.047 (–0.411,-0.225)
r2 –3.538 0.481 (–4.507,-2.644)
�1 4.487 0.461 (7.296,8.987)
�2 3.987 0.652 (2.915,5.441)
x1 0.452 0.281 (–1.145,0.985)
x2 0.861 0.321 (0.161,1.618)
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According to both AIC and BIC, the ST-ST model is the most appropriate one. Table
2 gives parameter estimates (standard deviation in brackets) and 95 percent confidence
intervals for the ST-ST model.
The estimates in Table 2 can be interpreted as follows: a unit change in marital status

increases the size of lymphedema by 0.036 and increases the time to event by 0.453; a
unit increase in age decreases the size of lymphedema by 0.326 and increases the time
to event by 0.028; a unit change in tumor’s degree of deterioration increases the size of
lymphedema by 0.186 and increases the time to event by 2.321; and so on. The esti-
mates of the following parameters do not appear significantly different from zero: b13,
b16, b21, b23, b24 and x1. The estimates of the following parameters appear significantly
negative: b12, b15, b22, r1 and r2. The estimates of the following parameters appear sig-
nificantly positive: b11, b25, �1, �2 and x2.
The prior distributions were selected as U(1, 9) and Nð2; 1ÞIðd>0Þ for convenience.

But other choices gave similar results in that the ST – ST model always showed the best
performance.

7. Conclusions

In the previous sections, simultaneous modeling of the longitudinal and survival data
for the breast-cancer data was investigated under the assumptions of skewed and sym-
metric distributions. For the longitudinal data modeling, a linear-mixed model was
used. For the survival data modeling, the Weibull proportional hazards model was used.
To estimate the parameters, because of the form of the likelihood function, the max-
imum likelihood method could not be used directly. Furthermore, to increase the exact-
ness of the estimates, the Bayesian method was used. By comparing different
distributional assumptions for residuals and random effects, a model with the skew-t
(ST) distribution assumption was proved to be the most efficient. This conclusion was
also obtained in the simulation part.
Some future are work to apply other multivariate skew models to the data discussed

in Section 6. Possible choices may include mixtures of multivariate skew-t distributions
due to Lee and McLachlan (2014); the multivariate skew-normal generalized hyperbolic
distribution due to Vilca et al. (2014); the multivariate Birnbaum-Saunders distribution
due to Jamalizadeh and Kundu (2015); the multivariate skew-normal-Cauchy distribu-
tion due to Kahrari et al. (2016); the multivariate geometric skew-normal distribution
due to Kundu (2017); scale and shape mixtures of multivariate skew-normal distribu-
tions due to Arellano-Valle et al. (2018); the skew mixed effects model due to Eftekhari
Mahabadi and Rahimi Jafari (2018); the multivariate skew slash distribution due to Tian
et al. (2018).
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