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Abstract

IMAGE CLASSIFICATION INFORMED BY ONTOLOGY-BASED
BACKGROUND KNOWLEDGE
Mirantha Rangara Bernadeen Jayathilaka Senarath Mudalige Don
A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy, 2022

Techniques in computer vision have evolved over the years and seen breakthroughs
in the recent past with fully data-driven approaches such as deep neural networks.
Although these approaches have shown impressive capabilities when detecting objects
in images, they suffer from several shortcomings such as high data dependency and
lack of transparency. This is a problem when dealing with applications where data
is scarce or transparency is critical to build trust in the decision making process. For
example, vision applications in healthcare or self-driving technology, where the direct
impact on human life is high.

The aim of this thesis is to study the role of background knowledge when overcom-
ing these limitations in neural network-based vision models. I focus on ontologies to
be the source of background knowledge in the investigations because of their superior
capabilities in ensuring the consistency of information and their ability to infer new
information from existing information. The downstream task of choice during the ex-
perimentation is few-shot image classification which is used to evaluate the influence
of background knowledge when classifying visual objects with a few examples.

I propose a framework that integrates ontology-based background knowledge with
a vision model which has two major components: (1) Concept embeddings that are
learnt by capturing symbolic knowledge from an ontology in a continuous vector space.
This study investigates methods to represent different properties of an ontology with
embeddings. It further designs and applies techniques to measure their quality when
representing the knowledge. (2) A vision model that is guided by the learnt embed-
dings during the training and inference stages. Experiments are carried out to evaluate
the informed vision models with several few-shot image classification benchmarks,
where they achieve superior performance compared to existing approaches.

9



The improvement on few-shot learning capabilities of the vision models achieved
through the integration of background knowledge manifests a way to overcome the
challenge of high data dependency. Moreover, I argue that the use of learnt concept
embeddings enhances the transparency of the vision model behaviour as the distribu-
tion of the extracted image features is decided by the embedding space. To this end, I
further introduce a framework to measure the degree of error during predictions based
on the background knowledge used.

This study also discusses the design and construction of suitable ontologies based
on the image labels of datasets used for the vision tasks.

10



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute

of learning.

11



Copyright

1. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-

ing for administrative purposes.

i1. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

ii1. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/Doculnfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on

presentation of Theses

12



Acknowledgements

First and foremost, I would like to express my sincere gratitude to Dr. Tingting Mu
and Prof. Uli Sattler who granted me the wonderful opportunity to pursue this PhD
research. Their constant guidance and encouragement helped me immensely to stay
focused during this challenging journey over the last few years.

I would like to thank my mother Ranjani and my father Jayantha for always believ-
ing in me and being my strength every step of the way.

I was lucky to have my life partner, my wife Tharani, right by my side throughout
this journey who always encouraged me to strive for the best. Also, the recent addition

to our lives, little baby Keanu, whose arrival was the biggest motivation for me.

13



Chapter 1
Introduction

Computer vision has evolved over the years from capabilities of recognising edges
and shapes [MHS80] to identifying objects in real world images [VDDP18]. Major
breakthroughs emerged in the recent past from techniques using deep convolutional
neural networks (DCNNs) [KSH12a] that accelerated research on deep learning-based
methods [HZRS16a, IHM*16]. Deep learning builds computational models that learn
low-dimensional representations of data with multiple levels of abstraction [LBH15].
They can discover complex patterns by generating these representations through mul-
tiple layers of computation. DCNNs aim to discern the subtleties of visual objects
found in images by extracting relevant features using the different layers of a neural
network [QYLC18]. The most suitable parameter values for these layers are found by

optimising on an objective function [LTHS88] in an end-to-end fashion.

Currently, variations of DCNNSs are proven to be the state-of-the-art in understating
visual features from real world images using several benchmarks [DDS09b, VZ11,
XXY"15]. Therefore, these techniques are increasing being used in many critical
applications such as segmentation and classification of biological images [NDL™05,
SOPH16, EHSES"21] in healthcare, traffic sign classification [SMC12] and detection
of pedestrians [SKCL13] in self-driving cars and human bodies and pose detection
[TGJ*15, TS14] for security applications. Moreover, face recognition has seen ma-
jor success with DCNNs [TYRW14], facilitating both government and commercial
adoption of the technology. In addition to vision, DCNNs have also shown promise
in areas such as natural language understating [CWB™11] and speech recognition
[SKMT13]. The hardware needed to implement these algorithms is increasingly be-
coming cheaper and more efficient, enabling real-time computations in smartphones,

cameras and robots.

14



1.1. LIMITATIONS OF DEEP CONVOLUTIONAL NEURAL NETWORKS 15

With the heavy adoption, the robustness of the technology is vital, especially in
critical decision making applications in the real world such as healthcare and self-
driving cars. But DCNNs are found to have various challenges yet to be addressed
[Marl8].

1.1 Limitations of Deep Convolutional Neural Networks

Given large amounts of labelled data and computational resources, deep neural net-
works might be capable of finding a comprehensive mapping between a set of inputs
and outputs [Mar18]. But in practice, vision systems are often required to learn from
a finite amount of labelled data. Also, the data could contain imbalances where exam-
ples of some visual features are more that others. The brute force approach to learn
structures within the data becomes less effective in these cases, leading to several lim-
itations in DCNNSs.

The current DCNN-based vision systems depend on large amounts of labelled data
to perform a simple task of classification. For example, the approach that popularised
the use of DCNNSs in vision tasks by Krizhevsky et al. [KSH12b] trained on 1.2 million
high-resolution images from the ImageNet [DDS"09b] dataset. Current systems sur-
passing human performance in board games such as Go and chess, learn from billions
of augmented examples generated within their technique [SHM™16]. Further stud-
ies [SFH17] share concerns over the ability of convolutional networks to generalise
without large number of labelled examples.

Moreover, the generation of accurately annotated data is very expensive [Crol2].
Companies spend millions of dollars when hiring humans to annotate large amounts
of data to be used in training vision systems for applications such as self-driving cars
[BGC*21]. This high dependency on data has also given rise to unexpected outcomes
such as biases in the predictions of vision systems [SC18]. A recent study [BG18]
showed how a publicly used face recognition approach was specifically incorrect when
it comes to faces of black people. This behaviour was found to be caused by the hidden
biases in the data used to train the neural networks.

Humans demonstrate the ability to learn and identify a new concept with a few
examples [LUTG17]. If I tell you that a Dalmatian is a white dog with black spots on
the body, you would not need millions of pictures of a Dalmatian to identify it the next
time you see one. Lake et al. [LUTG17] further states that the ability to learn through

abstract relationships rather than explicit instances is even found in newborns.
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Thus, the high data dependency of DCNNSs is a significant challenge that is yet to
be fully overcome.

Another area of concern is the lack of transparency in deep learning-based ap-
proaches. Neural networks are often called as ‘black boxes’ due to this factor [BCR97].
With millions and sometimes even billions of parameters, it becomes hard to interpret
the mappings inside DCNNs [Mar18]. Although progress has been made in visualis-
ing intermediate representations in nodes and layers of a neural network [QYLCIS,
SWM17], the system’s complete decision-making process still remains opaque. This
offers challenges when adopting DCNNSs in critical decision making applications such
as in healthcare [ABV120], where the human users demand comprehensive explana-

tions to decisions.

When correlations are learnt by deep learning approaches between sets of inputs
and outputs, the features of these sets are seen as ‘flat’ or non-hierarchical [Marl18].
For example, it is not possible to inform the system that a ‘Poodle’ is also a ‘Dog’
and since ‘dogs have heads’, ‘Poodle’ should also have a head. This makes it chal-
lenging for DCNNSs to represent hierarchical relationships between visual objects. Ex-
plicit guidance with labelled data is required if abstract relationships between concepts
should be represented [LBL18]. On the other hand, the natural language domain ad-
dresses the task of capturing concepts from raw text using vector representations learnt
for words [MCCD13b] via co-occurrence information [LG14, KSKW15]. I find inspi-
ration from these findings in the approaches proposed in this thesis when improving

DCNNSs using language-based knowledge.
Recent findings on the effects of adversarial examples on DCNNs [YHZL19, SHS*18]

further emphasises the limitations of the learnt representations via deep learning ap-
proaches. A study by Goodfellow et al. [GSS14] showed how small perturbations of
the inputs could manipulate a trained DCNN to predict an incorrect class label with
high confidence. This behaviour reveals that the mappings learnt by the networks are
rather superficial and that they lack the generalised understanding of the concept of a

given visual object [Mar18].

It can be noted that DCNNs have mainly remained self-contained systems, mean-
ing the representations learnt are only between the provided inputs and the outputs
[Mar18]. But in order to tackle challenges of generalisation and abstract hierarchical

levels of understanding, the integration of broader knowledge should be investigated
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[J119a, dSAdOSS18]. Some approaches [LGF16a] argue how DCNNs can seemingly
obtain knowledge such as notion of physics by purely dealing with visual features. But
what if the known principles of physics could be encoded as background knowledge
into the same system? Similarly, can a DCNN learn that both a ‘Poodle’ and a ‘Ger-
man Shepherd’ are also dogs via background knowledge? Can it then learn from just

a few visual examples of each class? These questions motivate the goals of this thesis.

1.2 The Role of Background Knowledge

Lake et al. [LUTG17] claim that infants develop an understating of notions such as in-
tuitive physics, intuitive psychology, causation and compositionality from an early age.
This helps them to learn about new interactions with their surroundings much faster.
Another study [MVRV99] shows how 7-month-old infants can represent, extract and
generalise abstract algebraic rules that help them in the task of language acquisition.
Intuitively, it is noticeable how we connect and build relationships with the knowl-
edge we already have when understanding new concepts or visuals. During learning,
background knowledge plays a significant role in enhancing the learning process.

In addition to the above, recently there has been considerable progress in com-
puter science research around knowledge-based vision systems [Ji19a, dSAdOSSI18,
PHBB16, WXC04, ACIV17] that further discusses the potential benefit for background
knowledge. In [Ji19a], an interesting categorisation of knowledge that can be used as
background knowledge is proposed, namely, permanent theoretical knowledge, cir-
cumstantial knowledge, subjective experimental knowledge and data knowledge. Al-
though how these categories are formed is debatable, the importance of looking into
different forms of knowledge that can be used as background knowledge is identified.
The form of knowledge can be based on the considered vision application, as pointed
out in [dSAdOSS 18], where the authors curate a number of vision tasks along with the
forms of knowledge used to inform the learning process. For example, the attempts of
using of knowledge in the form of graphs and probabilistic ontologies during an image
classification task motivate this study.

Investigations into the use of first-Order Logic (FOL) is prominently seen in several
studies [HML" 16, RSR15, DRG17] as well. It is presented how logic can facilitate
the use of consistent knowledge with the use of reasoning [CFHP17, RGH18]. As
shown in [HML™16, DRG17], adaptation of logical knowledge as constraints during

the learning process has generated promising results in areas such as sentiment analysis
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and named entity recognition. Moreover, there has been a surge in research under
the topic of hybrid learning and reasoning systems [vBABvH'21, VRMG™19] that
explore the unification of statistical (data-driven) and symbolic (knowledge-driven)
methods, further reinforcing the ideas on integrating external knowledge into neural
network-based approaches and its importance. All these findings motivate the goals of
this thesis when investigating deeper on the role of background knowledge in vision

systems.

1.3 Forms of Background Knowledge

In this study, I choose ontologies to be the source of background knowledge in the
investigated approaches. But looking at the existing work, many different forms of
knowledge can be identified as potential candidates to use when informing learning-
based algorithms. It is important to compare ontologies with the others and distinguish
the benefits.

1.3.1 Similar Datasets

I see the approaches of transfer learning [TS10] as instances of using similar data
as background knowledge. For example, to improve a DCNN’s ability in classifying
hand written letters, first the network can be trained to classify a similar dataset of
hand-written digits [PY09]. The network parameters learnt during the first task can
then be transferred to the second task with a quick fine-tuning of the last layers. Here,
the training with the first dataset becomes a form of background knowledge when the
same DCNN is then used for a similar task. But the drawback is, none of the limitations
discussed in Section 1.1 are addressed in these approaches. The DCNNS still require
large amounts of data and any structure present in the input or output spaces is not

understood.

1.3.2 Additional Labels

Another set of approaches propose to extend the labels of existing datasets with addi-
tional terms and features [Ji19b]. For example, annotate an image of a bird in an image
classification task not only with the label ‘Bird’ but also with others such as ‘feathers’,
‘has beak’, ‘has wing’, ‘has leg’ etc [Ji19b]. The idea is to let the DCNN figure out

an improved mapping to represent the similarities and dissimilarities between classes
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using this extra information in the label space. But the limitations around lack of trans-
parency are still seen in these approaches due the disregarding distinction between hi-
erarchical features with others. For example, whole object references such as ‘Bird’ is

treated the same way as part references such as ‘has beak’ or ‘has wing’.

1.3.3 Text

Language modelling has seen great progress recently [SM13], predominantly due to
techniques that capture representations of words in high-dimensional vector spaces
[MCCD13b], commonly referred to as word embeddings. These capture the co-occurrence
information of words in a body of text and seemingly maps words appearing in similar
contexts closer together as points in the vector space. These methods have shown the
capability of learning from large corpora of text in an unsupervised manner leading to
many useful applications [LY18].

The use of word embeddings to inform learning-based approaches has also been
investigated in several studies with some promising findings. Frome et al. [FCS™13]
obtained word embeddings relevant to the words of image labels and used them as the
objectives when mapping the features of respective images extracted via a vision model
during training. Then, inference was carried out according to the similarity between
the predicted embeddings and the ground truth word embeddings. The approach was
shown to produce superior performance in the zero-shot image classification task .
It was found to be capable of not only image classification but also in tasks such as
zero-shot image retrieval. Norouzi et al. [NMB™13] further simplifies the approach
in [FCS™13], showing that knowledge from the word embeddings can be used only in
the inference stage to attain the desired image classification performances.

Overall, the impact of background knowledge in the form of word embeddings
is clearly positive, but the limitations are twofold. (1) Unclear distinction between
‘terms’ and ‘concepts’. Sometimes the meaning of a word can be ambiguous and
used to refer to different concepts in different contexts. For example, take the noun
sorrel, which stands for a type of plant but can also be used to call a horse with a
light reddish-brown coat. Even though the concepts of a plant and a horse are totally
different, word embeddings end up representing both of these with one vector. This
is an unclear representation of meaning and the challenge comes when unstructured
text is a collection of terms rather than a definition of concepts. (2) Word embeddings
lack the capability of representing specialisations and partonomies of knowledge in

a meaningful way. For example, the word embeddings resulting from information
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saying Poodle is-a Dog and Dog hasPart Tail are both embedded by points representing
words such as Poodle, Dog and Tail lying in close proximity to each other. The close
positioning of points does not capture the information that Poodle is a subclass of Dog
or that 7ail is a part of a Dog which can also be part of a Poodle. This is not helpful

when trying to overcome the challenges discussed in Section 1.1.

1.3.4 Knowledge Graphs

A number of definitions can be found of knowledge graphs depending on their struc-
ture, methods of construction and applications [EW16, HBC*21]. The term ‘knowl-
edge graph’ was mainly popularised by the introduction of Google’s Knowledge Graph
[Sin12] in 2012, and the idea as been widely adopted both commercially [MCSFL15]
and academically [ABK*07]. Any graph-based knowledge representation does not
qualify to become a knowledge graph [EW16]. Hogan et al. [HBC"21] define a
knowledge graphs as “a graph of data intended to accumulate and convey knowledge
of the real world, whose nodes represent entities of interest and whose edges represent
potentially different relations between these entities”. Sometimes a knowledge graph
is even seen as an ontology representing only object-level information [MSG16a].
Several studies investigate the use of knowledge graphs in providing external knowl-
edge to DCNNs [JXLL18a, LHZ"18]. They can be used either when defining the
structure of a model and its hyperparameters [MSG16b] or when guiding the loss func-
tion during the training stage [VRMG™'19]. Knowledge graph embeddings [Ham20],
which are often used when informing learning-based models, are again point embed-
dings which come with limitations similar to word embeddings as discussed above in
Section 1.3.3. Furthermore, knowledge graphs are often scaled and curated via au-
tomated techniques [KZG™16], that can cause inconsistencies in knowledge such as
contradicting information or duplication. But they lack inbuilt mechanisms to check

these so that they can be avoided in applications.

1.3.5 Ontologies

Ontologies capture generalised and structured knowledge [MPSP*(09a] that can make
use of reasoning tools [SMHO08] to test knowledge consistency. Reasoning also pro-
vides the ability to infer new knowledge from existing knowledge in an ontology
[APS14]. Compared to text and knowledge graphs that tend to be loosely defined

(Section 1.3.4), ontologies are sets of axioms with well-defined semantics that give
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meaning to concepts and the relationships between them. I argue that these factors
make an ontology a richer source of background knowledge compared to others.

The existing approaches when using of ontologies to inform DCNN-based vision
models are so far scattered. Some studies show the possibility of using logical rules
from ontologies as constraints during the learning process [SG16]. Here, the objective
of the leaning model is to satisfy a set of axioms. During a semantic image interpre-
tation task [DSG17], the predictions are the objects detected in an input image along
with possible relations between them according to the logical constraints. Several oth-
ers present approaches to represent ontology-based knowledge as embeddings via an
intermediate step to generate graphs [CHJR"21] which can then be used in a down-
stream task. I find that the design space when generating graphs from an ontology is
very large, since an ontology can give rise to many types of graphs that form various
class hierarchies (e.g., asserted and inferred). Also, some studies combine ontology
embeddings with text embedding [GCC*21], proposing further improvements. But I
argue that these approaches bring the limitations of word embeddings (Section 1.3.3)

back to the learning models.

I identify the superior performance of approaches that integrate background knowl-
edge in the form of embeddings into DCNN-based vision models [FCS™13, NMB*13].
In term of generating ontology-based embeddings, I identify that approaches such as
[KLWYH19] that can embed concepts directly using the ontology axioms as input are
promising. But there exists a gap in the understating about the combination of these

approaches. This realisation motivates this study.

1.4 Few-shot Image Classification

To assess the impact of integrating ontology-based background knowledge to a DCNN-
based vision model, I chose few-shot image classification [TWK ™20, DCRS19a] as the
downstream task in this study.

Few-shot learning in an image classification context focuses on learning the visual
features of a class with a very few image examples. The existing approaches in the
area can be divided into several categories [CLK " 19a]. First is initialisation-based
methods, more generally known as meta-learning. Meta-learning aims to find a good

initialisation for a vision model, so it can quickly adapt to a new set of image classes
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with few examples [FAL17, NAS18, RRS'18a, Jay19]. These approaches are trained
on tasks with two sets of image classes, where the support set consists classes with
enough examples, followed by a query set with classes with limited examples [FAL17].
Having trained on the support set, the model should find a fitting initialisation so the
query set can be learned with the few examples. Similarly, approaches such as [RL16a]
try to learn an optimiser that enables few-shot learning. Another study [MY 17] brings
in external memory into the mechanism when updating the weights of the vision model.
Although these approaches achieve considerable performance when learning with few
examples, investigations show that they face challenges when there are domain shifts
between the background and novel classes [CLK ™ 19a]. But their success in the area
and contributed to establishing the benchmarks [VTBE15, WBW ™ 11b] for the task.

Another set of few-shot learning approaches can be named as hallucination-based
methods [WGHH18] that involves generative models to learn how to augment the data
available. The goal is to learn a generator based on the background classes, so it can
hallucinate new examples of the novel classes with data augmentation. One type of
these approaches learns to transfer appearance variations of the background classes
[HG17] or uses a generative adversarial network (GAN) [CWD™ 18] model that per-
forms style transfer [ASE17]. Another type directly integrates the generator model to
a meta-learning algorithm when performing classification [WGHH18].

The other major category that many few-shot learning approaches fall under is
distance metric learning-based methods. These approaches exploit the extracted im-
age feature vector similarities when classifying new input classes [KZS15]. They
differ according to the distance metrics and latent image representations used. Ap-
proaches such as [VBL"16b] use cosine similarity as the distance metric, while other
such as [SSZ17] look at Euclidean distance between classes mean representations.
Further studies investigate areas such as relational modules comparing feature maps
[SYZ™"18a], ridge regression methods [BHTV18a] and the use of graph neural net-
works [GB17] in distance-based few-shot learning. Some approaches look at pre-
dicting the classifier weights for novel classes either using attention-based modules
[GK18a, HQDN19] or directly using class features [QBL18]. Also, studies such as
[HGP20b] show how preprocessing class features can improve the performance of dis-
tance metric learning-based methods. These methods are found to be simpler compared
to meta-learning approaches while producing competitive performance [CLK*19a]. I
further identify the flexibility these methods offer in extending standard vision archi-

tectures to perform few-shot image classification [HZRS16b].
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It is important to clarify why the task of few-shot image classification is appropriate
for evaluating a vision system informed by ontology-based background knowledge as
proposed in this study. As pointed out in Section 1.2, the role of background knowledge
is to help overcome the challenges that DCNN-based vision models face such as high

data dependency, lack of transparency and generalisation, as discussed in Section 1.1.

Learning with few example images is the primary goal of few-shot image classi-
fication and I find that this provides the opportunity to compare the impact of back-
ground knowledge integration with other fully data-driven approaches in overcoming

the challenge of high data dependency.

Another comparable vision task that could potentially be used for the evaluation
of the impact of background knowledge is zero-shot image classification [WYG18a,
SGMNI13]. Here, the goal is to predict on totally unseen classes where zero examples
were provided to train on. I argue that in the case of zero-shot, there can be an ele-
ment of randomness in the correct predictions made. Hence I do not consider these

approaches in this thesis.

In the approaches of few-shot image classification employed in this study, the un-
derlying architecture is based on deep neural networks [HZRS16c¢]. Deep learning in
general, as discussed in Section 1.1, does not perform well with limited learning ex-
amples. This raises the question on why it is still considered over other approaches in
machine learning to be the base architecture. I argue that the strengths of deep learning
techniques are still above other approaches as shown from their successes in tasks with
enough learning examples. Hence, if the same strengths were to be utilised effectively

in limited data settings, the impact would be higher.

In terms of improving transparency and generalisation, I identify the opportunity to
extend the current evaluation frameworks of image classification! to further understand
the errors and the behaviour of a vision model during the inference stage based on the

background knowledge used in the task.

Hence, this study was designed to investigate the impact of ontology-based back-

ground knowledge in a vision system performing few-shot image classification.

' An extensive list of exiting evaluation settings in few-shot image classification can be found in
Appendix A.1
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1.5 Contributions of this Thesis

The following are the contributions of this study in the area of informed machine learn-

ing with ontology-based background knowledge.

1.5.1 Construction of Ontologies for Image Datasets

One of the challenges I faced during the investigation of ontology-based background
knowledge informed image classification is the lack of suitable existing ontologies
that can be used with the benchmark image datasets. Hence, this study investigates the
construction of four OWL ontologies for the purpose of investigating informed few-
shot image classification tasks. Chapter 4 explains the details of this process, where
external knowledge resources and dataset annotations were used to obtain information

required for the ontology construction.

1.5.2 Learning and Comparing Ontology-based Embeddings

The proposed approaches of this study integrates background knowledge as concept
embeddings with a DCNN-based vision model. Here, it is important to investigate
how different embedding types can faithfully capture information from ontologies.

In Chapter 4.4, I present three main approaches to learn ontology-based concept
embeddings that capture different types of knowledge. Furthermore, a framework for
capturing the quality of the learnt concept embeddings is proposed. The constructed
ontologies from Chapter 4 are used in the experiments and the resulting embeddings
are evaluated on their quality. I further describe the design decisions taken to produce
ontology-based concept embeddings that are suitable for the downstream task of image

classification.

1.5.3 Improved Error Analysis for Image Classification using Back-

ground Knowledge

This study shows how the proposed informed vision models provide the opportunity
to analyse the degree of errors during few-shot image classification according to the
ontology-based background knowledge used in a given task. In Chapter 5.6, I propose

a framework to capture the semantic meaningfulness of errors of a vision model using
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ontology-based similarity measures. The chapter further discusses how a suitable sim-
ilarity measure should be chosen and the insights gained by understating the behaviour

of errors in an informed vision model.

1.5.4 Informing Few-shot Image Classification with Embeddings

An overall framework named ViOCE for integrating ontology-based background knowl-
edge to a DCNN-based vision model is presented. Chapter 5 shows how the types of
concept embeddings investigated in this study can be used with ViOCE during the
training and inference stages of a vision model. The experimental results evaluate
the performance of the informed models in the task of few-shot image classification
and compares them to other fully learning-based and knowledge informed approaches.
Furthermore, the errors of the models during prediction are analysed for their semantic

meaningfulness using the method in Chapter 5.6.

1.6 Published work

Below is a list of papers published in peer-reviewed conferences and workshops that

contain some of the work presented in this thesis.

e [JMS21b] Jayathilaka, M., Mu, T. and Sattler, U. Towards Knowledge-aware
Few-shot Learning with Ontology-based n-ball Concept Embeddings. Accepted
at the 20th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA 2021). - Related to part of the work presented in Chapters 4.4 and
5.

* [JMS21a] Jayathilaka, M., Mu, T. and Sattler, U. Ontology-based n-ball Con-
cept Embeddings Informing Few-shot Image Classification. In proceedings of
the Combination of Symbolic and Sub-symbolic Methods and their Applica-
tions workshop (CSSA @ ECML PDKK 2021). - Related to part of the work
presented in Chapters 4.4 and 5.

* [JMS20] Jayathilaka, M., Mu, T. and Sattler, U. Visual-semantic embedding
model informed by structured knowledge. In proceedings of the 9th European
Starting Al Researchers” Symposium 2020 co-located with 24th European Con-
ference on Artificial Intelligence (ECAI 2020). - Related to preliminary work
done on Chapter 5.
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* [Jay19] Jayathilaka, M., 2019. Enhancing generalization of first-order meta-
learning. In proceedings of the 2nd Learning from Limited Labeled Data (LLD)
Workshop at the International Conference on Learning Representations (ICLR

2019). - Related to preliminary work done on Chapter 3.



Chapter 2
Preliminaries

In this chapter, the terminology and the existing work used in this study are described.

2.1 Terminology: Ontologies

I summarise the terms regarding ontologies necessary for this work according to [APS16].

An ontology is composed of a finite set of axioms that constrain the interpretations
of a set of classes. It is a knowledge representation approach that aims to define a set
of shared terms of interest in some domain in an expressive manner.

Description Logics (DLs) are a family of formalisms in knowledge representation
that has precisely defined semantics. A DL knowledge base can be called an ontology.
Many DLs are identified as fragments of first order logic (FOL). A key differenece
between DLs and FOL is the variable-free syntax.

The Web Ontology Language (OWL) is the World Wide Web Consortium (W3C)
standard ontology language for the web that uses Description Logics. In this study, all
ontologies are in OWL 2, the latest version of OWL.

A class in OWL stands for a set of instances. In DL, a class is called a concept.1

The term atomic classes denote all the asserted classes in an ontology, e.g., Person,
Dog. These are also referred to as named classes in this study.

A taxonomy provides information about generalisation and specialisation relations
(sometimes called is-a relations) between classes.

The term class hierarchy is used to denote the taxonomy of named classes of an

ontology.

IT sometimes use the terms class and concept interchangeably in this study.

27



28 CHAPTER 2. PRELIMINARIES

A class expression describes a class using other atomic classes and properties with
helper constructors such as conjunctions ', disjunctions LI and existential restrictions
=h

An individual can be an instance of a class, e.g., Bob which is an instance of
Person.

A property in OWL is a relationship between two individuals, e.g., has7Tail, has-
Color.

Axioms form the basic elements of an ontology that describe the relationships be-
tween different classes, individuals and roles.

A set containing all the axioms that describe relationships between classes is called
a TBox.

Entailment denotes whether an axiom « is entailed by the ontology O, denoted by
OEa.

Subsumption a property that states whether a class C is subsumed by a class D
according to the ontology, denoted by C T D. Sometimes the terms subsumer and
subsumee are used to denote C and D respectively, along with the term superclass for
D subclass for C.

Disjointness of a class C with a class D is denoted by CM D C . This means that,
if none of the individuals in C overlap with that of D, the C 1D should be nothing.

A reasoner is a program which, given a set of asserted axioms as input, can decide
entailment queries such as subsumption and disjointness.

A sibling class stands for another class £ and shares a common subsumer D with
C.

A class is satisfiable or consistent with an ontology if there is a model where it

has instances.

2.1.1 Inferred Class Hierarchy (/CH )

Assuming all the named classes 5C are satisfiable with ontology O, ICH contains all
possible subsumption relations according to the definition of O as shown in Eq. (2.1).
The ICH will give what is also known as the transitive closure of the class hierarchy
of O that infers the shortcut relations, for example Poodle T Animal if Poodle C Dog
and Dog C Animal. The opposite of transitive closure is transitive reduct, where these

shortcuts are not inferred.

ICH (0)={PCQ|P#Q,P,Q € Oc,0}=PLC Q}. Q.1
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2.2 Concept Similarity Measures for Ontologies

I identify two main ontology-based similarity measures in this study that can quantify
the similarity between two classes using the class hierarchy and the class expressions
of an ontology [APS14].

2.2.1 Path-based Similarity

First is path-based similarity, where the number of steps between two classes is counted
along the transitive reduct of the class hierarchy, i.e., without transitive closure short-
cuts. This is the most basic method to quantify the closeness among classes in an
ontology. Taking the example hierarchy shown in Figure 2.1, it can be seen that the
number of steps between the classes Poodle and German_Shepherd is 2, i.e., Poodle
to Dog and Dog to German_Shepherd. Hence, path-based similarity determines that
the similarity between Poodle and German_Shepherd is 2.

But in a similar manner, it can be seen that the number of steps between Canine
and Fish is again 2. This implies a drawback of this method since intuitively, Poodle
and German_Shepherd are more similar than Canine and Fish. It means that classes
that appear closely further down the class hierarchy are more similar than those at the

top levels. Path-based similarity does not capture this feature.

2.2.2 Feature-based Similarity

Feature-based similarity addresses the drawback mentioned in path-based similarity
by considering ontology-based features of a class to compute the similarity between
two classes. I make use of two feature-based similarity measures in this study, named
atomic similarity and subconcept similarity, that make use of subsumers (more general

classes) of a class and its class expression, respectively.

2.2.2.1 Atomic Similarity

Atomic similarity uses the feature of atomic subsumers of a class from the class hier-
archy when measuring the similarity between two classes. The set of all subsumers for
each class are found.

Let C and D be classes of ontology O. Then the atomic similarity between C and

D is computed as follows:
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. Sub(C, 0) N Sub(D, O)|
Sim(C,D, 0) = 22
im(C.D,0) = | Gub(C. 0 USub(D, 0)| (22)

where,
Sub(C,0) = {D € O¢ |0 }= CC D}. (2.3)

In the above equations, |M| means the cardinality of M. According to Equation
2.2, the atomic similarity between C and D is the ration between the number of com-
mon subsumers of C and D and the number of all subsumers of C and D. Here, the
subsumers are retrieved from the named classes in the ontology as shown in Equation

2.3, where (N)C represents the named classes in ontology O.

The resulting similarities according to this measure imply that sibling classes be-
come more similar as they go deeper into the class hierarchy. Taking the example
shown in Figure 2.1, Sim(Poodle, German_Shepherd) = %, and Sim(Canine, Fish) =
%. Now it can be seen that atomic similarity captures the knowledge that Poodle and

German_Shepherd are more similar to each other than Canine and Fish.

Anna
Hummingbird

Acadian
Flycatcher

white grey
belly_color, belly_color,
Poodle Sﬁiﬂiﬁ‘d black black
eye_color, eye_color,
black black
leg_color, leg_color,
striped striped
wing_pattern wing_pattern

Figure 2.1: An example class hierarchy with named classes and class expressions
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2.2.2.2 Subconcept Similarity

Subconcept similarity follows the same technique as atomic similarity, but this time
using both atomic subsumers and class expressions as features of the classes. Hence,
the definition of Sub(C, O) in Equation 2.2 is modified as follows:

Sub(C,0) = {D class expression in O |0 |= C C D}. (2.4)

Substituting Equation 2.4 in Equation 2.2, the similarity between C and D is com-
puted by the ratio of common subsuming class expression elements of C and D to all

class expression elements of C and D.

In Figure 2.1, the example class expressions of Acadian_Flycatcher and Anna_Hummingbird
define the visual features of each bird species. Considering these, the subconcept sim-

ilarity between the two classes is %.

2.3 Embeddings

2.3.1 Word Embeddings

Word embeddings are generated high-dimensional feature vectors that meaningfully
characterise words found in a body of text. Most widely used word embeddings capture
the distributional semantics of a word using its co-occurrence information with other
words, meaning that the embedding generation process is governed by the context that

the word appears in.

State-of-the-art word embedding models generally fall under that category of pre-
dictive models where they perform predictions given a word and its context [MCCD13a].
Here, two of the popular techniques are namely, Continuous Bag-of-Words (CBOW)
and Continuous Skip-Gram models. CBOW model learns by predicting the current
word using its context, while Skip-gram model learns by predicting the surrounded
words using the current word. Figure 2.2 illustrates these two techniques where w(r)

denotes the current word.

In this study, the mentions of word embeddings refer to embeddings that have been

generated via a Continuous Skip-Gram model.
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Figure 2.2: Word2Vec learning approaches Continuous Bag-of-Words (CBOW) and
Continuous Skip-Gram; taken from [MCCD13a]

2.3.2 Graph-based WordNet Embeddings

Saedi et al. [SBRS18] proposes a technique to compute embeddings for each synset
of WordNet [Mil95] using its graph structure. A graph G is converted to an adjacency
matrix M such that, if two nodes in G, w; and w; (synsets of WordNet in this case)
are directly related by an edge, the entry M;; is set to 1 (otherwise 0). Also to account
for nodes that are not directly connected to each other, M is further enriched by taking
distantly connected nodes and aggregated as shown in Equation 2.5, where n is the
length of the path between the two nodes, o (< 1) is a decay factor that determines
the effect of path length on M. A longer path between two nodes (larger n) results
in a lesser effect on M. Mg is normalised using L2-norm and reduced to a set of
embeddings with a lower dimensionality using Principal Component Analysis (PCA).
Subsequently, each row of Mg corresponding to a synset name of WordNet becomes
the embeddings representing that synset.

(o)

Mg=Y (aM)" = (I—oM)" (2.5)
n=0

2.3.2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is used as the dimensionality reduction tech-

nique in the above method (Section 2.3.2). The objective of dimensionality reduction
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is to generate a set of embeddings {z;}}_, of dimension & from a set of samples {x;}_,
of dimension d, where k < d. PCA performs this by mapping feature vectors into
smaller number of uncorrelated directions. It extracts a d x k orthogonal projection

matrix P so that the variance of the projected vectors is maximised [MGTA12]:

1 & 2

max Z

peRdxk pTp—p  n—1=

(2.6)

1
PTxi—ZZPij
j=1 2

2.3.3 n-balls and EL. Embeddings

The notion of ball refers to the volume of space bounded by a sphere and is also called
a solid sphere. An n-ball usually refers to a ball in an n-dimensional Euclidean space.
The EL embeddings study [KLWYH19] suggests to encode classes as n-balls to ensure
that these n-balls respect a set of axioms. Below I explain how it works for encoding
subsumption and disjointness as they are the most relevant to our work. Each class P
is embedded as an n-ball with its centre denoted by cp € R" and the radius by rp € R.
The basic idea is to move one ball inside the other for subsumption and to push two
balls to be separated for disjointness. The following loss is minimised to encode an
axiom P C Q:

Ipco(ep,co,rp,ro)
:maX(O,|]cP—cQ||2—|—rp—rQ—y) (2.7)
+|lleplla— 1] +]lleoll2—1

)

where || - ||2 denotes the /, norm and y € R is a user-set hyperparameter. It enforces the
inequality ||cp — cg||2 < ro —rp+7, and regulates the ball centres to be close to a unit
sphere. Through controlling the sign of v, the user can adjust whether to push the P
ball completely inside the Q ball. In a similar fashion, the loss for encoding an axiom,
P1QC 1 isgiven as:

lpnoc 1 (ep,cg,rp,T0)
:maX(O,—HCP—cQH2+rp+rQ+y) (28)
+|lleplla— 1]+ |lleoll2 — 1]

It enforces the inequality ||cp — cg||2 > ro +rp+7. According to the setting of 7, the

user can decide how far the two balls are separated.
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2.4 Terminology: Machine Learning

Some commonly used terms during the experiments in this study are presented below.

A class in an image classification task is a discrete category that a set of images
belong to.

The encoding (also representative of the name or meaning) given to a class is
known as a label. Sometimes this is referred to as the ground truth label.

The set of all classes present in the image dataset is called label classes. This is a
subset of the classes in the ontology related to a given task in this study.

An embedding is a set of numbers representing an object in a continuous vector
space. An embedding representing a class is called a concept embedding in this study.

A concept embedding representing a label class is called a label embedding.

During few-shot image classification, base learning is referred to the initial train-
ing of the model using classes with many example images. Fine tuning is the process
that follows base learning, where the prediction layer of the model is further trained
using new classes with limited image examples.

Background classes are the classes of images used for base learning step and few-
shot classes are the classes of images used for the fine-tuning step.

The classes chosen for a given few-shot task are called candidate classes. These

are a subset of few-shot classes.



Chapter 3
Related work and this Project

The contributions of this thesis fall broadly under the area of hybrid learning sys-
tems, where the integration between statistical (also known as data-driven or sub-
symbolic) and symbolic (also known as knowledge-driven or semantic) methods is
investigated [vBdBvH 21, DRMD*19, APP*20]. This area has seen rapid growth
recently [LGG'20, KFR06, DM15], mainly due to the limitations discovered in pop-
ular purely data-driven approaches (Section 1.1). Many variations of hybrid learning
systems exist that differ according their components such as, input and output types,
methods of processing data or symbols and methods of combining information from
data and symbols. The applications of these approaches are not limited to vision tasks
and I identify their relatedness to the approaches proposed in this study with regard to
their hybrid nature.

Inspired by the design pattern formulation from [vBdBvH*21], I categorise and
visualise the general flow of each category of approaches in the proceeding sections. In
the flow charts, a generalised nomenclature for blocks is followed, where the rectangles
represent an instance of data that can be sub-symbolic (e.g., images, text) or symbolic
(e.g., labels, axioms, relations), the ovals represent a process such as infer, train or
embed that follow either statistical or logic-based methods and the hexagons represent
a model which can be either sub-symbolic (e.g., neural network) or symbolic (e.g.,

ontology).

3.1 Learning Symbols from Data

One set of approaches found under hybrid learning systems tries to learn ontologies
using data in the form of text [AWK ™18, Bre08, ESB*18, WLB12]. Intermediate

35
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representations are generated from text via a statistical model and a set of relations
forming an ontology is learnt based on them [CMSV09, dBV19]. Similar approaches
such as [PMPS18] follow the same flow with a difference in the output, where the aim
1s to generate a set of class or instance labels. Also approaches such as [BJS17, KC10]
start from a set of instance-level relations and learn a class hierarchy based on them. In
the area of vision, studies such as [Asal9] investigate on the generation of first-order
logic representations from images taken as input. The latter is the most similar to this
study in terms of input, but overall these approaches differs in terms of expecting the

ontology to become the output of the system. Figure 3.1 shows the generalised flow of

model:symbolic
data:sub-symbolic —b( infer:statistical >—> data:symbolic

h J

model:symbolic infer:logical >—> data:symbolic

Figure 3.1: Generalised flow of a system that learns symbols from data.

the above approaches.

3.2 Using Knowledge to Explain

Another significant set of approaches under hybrid learning systems investigates the
generation of explanations for the predictions of statistical models using the knowledge
from semantic models [RDGZ 20, XFM 19, RSG16]. These primarily address the
"black-box’ issue of the purely data-driven statistical models [Mar18, WB18]. Here,
first a machine learning model is trained to predict a label for a given data sample (e.g.,
an image) in a standard setting [KSH12a]. Then a proceeding semantic model (e.g.,
knowledge graph) tries to generate a reasoning for the input and output pair (e.g., image
and predicted label) according to a chosen knowledge representation. Approaches

such as [TdM15] again use knowledge graphs to generate these explanations, whereas
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some approaches such as [SXD"17] use a description logic reasoner to generate logic-
based reasoning outputs. It is noted that both of these approaches lack the connection
to the inner workings of the statistical model when generating the explanations. To
this end, approaches such as [CGG"20] use an additional statistical model to model
the behaviour of the first and generate explanations in the form of first-order logic
formulas.

Figure 3.2 shows the generalised flow of the above approaches. It can be seen that
the inference process of the explanation generation section can use only the symbol
output or additionally the first model (shown with the dotted line). Although the task
of explanation generation is interesting from this set of approaches, they do not explore

the opportunity of improving the main statistical model using the knowledge available.

[ training and inference |

data:sub-symbolic —b-( train:statistical

data:sub-symbolic data:symbolic

|explanation generation |

Yy

{ model:symbolic { infer:logical >—> data:symbolic

Figure 3.2: Generalised flow of a system that uses a semantic model to generate expla-
nations for the predictions of a statistical model.

3.3 Learning Intermediate Representations

More techniques of hybrid learning can be found where an intermediate symbolic ab-
straction is learnt and then using it perform another inference procedure. Studies such
as [MDK ™" 18] use this flow in the task of performing arithmetic operations on hand
written digit images. First the digits are recognised from the images which become the

intermediate symbolic representations and then they are added to as the output. The
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popular reinforcement learning approach by Deepmind [GAS16] also uses a symbolic
representation of the game world during navigation. In further studies, these are found
to be usable in downstream reasoning tasks as well [SSST17].

This intermediate representation can also be in continuous space. Most of the hy-
brid systems applied in the task of link prediction in knowledge graphs [NMTGIS,
Paul7], first learn a representation of a graph in a high-dimensional space (also called
an embedding) [WMWG17, Ham20]. Next, this embedding is used to infer more
knowledge which is ultimately converted back into the symbolic space of the knowl-

edge graph. Figure 3.3 shows a generalisation of the flow of these approaches.

data:symbolic —h( embed:statistical >—>dala:sub-symbolic

( infer:statistical >—r data:symbolic

Figure 3.3: Generalised flow of a system that learns intermediate representations.

3.4 Using Logical Rules as Constraints

Another set of techniques provides insights into the use of logical knowledge mainly
defined using First Order Logic during the training of neural networks [SDG17, BH19].
Studies such as [TS94] present approaches that use logical rules when deciding the
parameters of neural networks but they lack the capability of expanding to deeper
networks. With more recent approaches such as [SG16], techniques are presented to
guide the learning process of a model to obey the background knowledge provided.
Here, logical knowledge act as constraints during training of the statistical model and
allows the semantic information to be embedded into the models. The investigation
in [SDG17] extends this same approach to perform the task of semantic image inter-
pretation. Other techniques also use Graph Neural Networks [BGLL20] to embed
knowledge from graphs when training neural networks. Figure 3.4 shows the gener-
alised layout of these approaches. I find that these methods can have a higher compu-
tational overhead than the approaches proposed in this study, especially when applied

for vision tasks.
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symbol:rules

i

data:sub-symbolic —b( train:statistical

model:sub-symbolic

data:sub-symbolic '.=< infer:statistical >—> data:symbolic

Figure 3.4: Generalised flow of a system that uses logical rules as constraints.

3.5 Capturing Reasoning Capabilities

A key feature of symbolic approaches has been the ability to reason about the given
knowledge to infer new knowledge [Pan06]. Statistical methods lack this ability [HL.20]
and several studies have specifically looked into capturing the reasoning capabilities of
symbolic methods in statistical methods. Approaches such as [HL17] show the ability
of a neural network to learn about entailments such as membership of an individual
instance to a class and existence of relations. Another study [ESB™ 18] shows how the
RDF knowledge graph reasoning can be learnt via embedded triples. Generally with
these approaches, the results of a reasoning task become the data for the statistical

model as shown in Figure 3.5.

3.6 Informed Machine Learning

I identify the approaches under this section as the most similar to the proposed ap-
proaches in this study. Under informed machine learning, the training stage of a sta-
tistical model is guided by the knowledge obtained from a related symbolic model
[VRMG™19]. Sometimes this used knowledge is also called a symbolic prior to the
whole system [BGL14].

One of the main common properties of these approaches is the formulation of a
semantic loss function for the statistical model that is influenced by the background
knowledge [XZF118, DLAG'20]. In approaches such as [DLM20, MDG"20], the
goal of the loss function is to satisfy the constraints provided by knowledge. In

[DRR16], logical rules are used during the gradient decent learning phase. Approaches
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Figure 3.5: Generalised flow for a statistical model to learn reasoning from a symbolic
method.

data:sub-symbolic —b( train:statistical

such as [SDSGR18] investigate similar techniques in hyperbolic spaces. The previ-
ously discussed [SG16] can also relate to this category of systems, where the minimi-
sation of the neural network loss is driven by the satisfiability with the background
knowledge in FOL form. Similar techniques can be seen in reinforcement learning as
well [Gei06, IYIM20], where the agent’s behaviour is governed by constraints in the
symbolic space. Several more studies have further shown the effectiveness of using
prior knowledge as constraints when guiding the learning system [SLM21, MGDG19].
The use of knowledge graphs and ontologies as the source of this background knowl-
edge is also seen [KHTT16, BMT17]. Another variation can be seen in approaches
such as [ABRS20, ZPW 19, FZD*19, FSCO18], where the symbolic knowledge be-
comes the output and is fed back to the learning model in an iterative process. Overall,
all these approaches inspire the thinking behind the investigations in this study. Fig-
ure 3.6 shows a generalised structure of the approaches in informed machine learning.
The difference between this and the flow in Figures 3.5 is the use of the symbolic

information during the training process rather than as input data.
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Figure 3.6: Generalised flow of a hybrid system performing informed machine learn-
ing.

3.6.1 Further Categorisation of Informed Machine Learning

Since informed machine learning techniques are closely related to this thesis, I further
look into the different nuances of these systems. Rueden et al. [VRMG™ 19] proposes
an effective framework when categorising these approaches according to three crite-
ria; (1) the type of background knowledge used, (2) the transformation done on that
knowledge and (3) the stage at which the knowledge is integrated with the statistical
model. Figure 3.7 shows this framework with possible choices for each criteria. The
existing work under informed machine learning can be categorised according to the
choices they make.

According to [VRMG™19], the knowledge types are decided qualitatively, looking
at whether they are formalised or not formalised knowledge [FPSS96]. Background
knowledge used in a given system can also be a combination of these multiple types.
In this study, I focus on formalised knowledge in terms of an ontology. When consid-
ering the criterion relating to the transformation of knowledge, [VRMG™19] presents
choices ranging from rules to human interaction. In the case of this study, I identify

the choice of constraints as the closest idea relating to the approaches proposed in this
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Figure 3.7: The choices for each criteria when categorising informed machine learning
approaches. The knowledge types range from formalised to not formalised represen-
tations. A given approach can be found to take a path along these choices. I identify
the highlighted path as the most similar to the approaches proposed in this study; taken
from [VRMG™19]

study, although it is not fully representative of the concept embedding learning process.

Regarding the third criterion of knowledge integration, this study focuses on mod-
ifying the loss functions during the training process to incorporate the background
knowledge. This is similar to approaches such as [XZF' 18, MCX18] where minimis-
ing the guided loss function integrates the knowledge from the symbolic source to
the neural networks. Also approaches such as [HML'16, DGS17, DRG17, DGS16,
ELBS™15] follow the same integration point but with knowledge as logical rules. In
terms of informing the loss functions with embedded symbolic knowledge, the ap-
proaches of this study is more related to work such as [WYG18b, FCS™ 13, GCC'21],
although they differ when it comes to the sources of knowledge and the downstream
vision task used for evaluation. Apart from this, the existing work presents the pos-
sibilities of knowledge integration in the training data as additional features or labels
[KWRK17, RSST18, PZL"18, WWX17, LGF16b], in the hypothesis space that de-
termines the structure of the models and hyperparameters [RD06, KBB*12, JZSS16,
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N*04, BPL*" 16, JXLL18b] and also in the final hypothesis phase where the outputs of
the algorithm is assessed according to the background knowledge [CFN16].

I identify the integration of background knowledge at the loss function during the
training of informed machine learning approaches as a strong point. This allows the
prediction space to be defined by the representations obtained via the background
knowledge, enhancing the interpretability of the predictions.

But the learning of representations from background knowledge can come with
a loss of information. This is a challenge when using an informed machine learning
approach and this thesis attempts to address it with the concept embeddings techniques

proposed.

3.7 Research Questions for this Project

Looking at the related work, I identify several gaps in the understanding about the
application of informed machine learning approaches when performing vision tasks.
Based on these, I formulate the research questions to be answered in this project as

follows.

3.7.1 Can an ontology be a suitable source of background knowl-
edge for an informed machine learning approach performing

few-shot image classification?

Multiple studies [NMB™'13, FCS™13] show how text-based knowledge can be used
when informing a deep learning model. Approaches such as [WYGI18b] show the
effectiveness of the use of symbolic information from knowledge graphs during a vi-
sion task. But ontologies can provide richer and more consistent knowledge along
with additionally inferred information compared to text or knowledge graphs. Also,
large ontologies already can be found with expert knowledge about specific domains
[WNS*11, Leo08] that can be used as sources of background knowledge. Hence, I
argue that investigating how to make use of ontologies in informed machine learning
approaches are important. Further the research question focuses on the vision task of

few-shot image classification with this regard.
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3.7.2 Is learning ontology-based concept embeddings and using
them to guide the loss function during the training of a deep
convolutional neural network a good strategy when integrat-

ing background knowledge?

Another point is addressing the method of ontology-based knowledge integration dur-
ing the training phase of a neural network. Approaches such as [SDG17] use ontology-
based knowledge in the form of constraints that should be satisfied by the learning
process. Approaches such as [FCS*13] show that guiding a neural network training
process with external embeddings is effective, although there is a lack of understanding
as to how a similar method would work with embeddings generated from an ontology.
Hence, addressing the technique in which ontology-based knowledge can be integrated
is important. Is embedding the knowledge in a continuous vector space a reasonable
approach? Given embeddings, how to effectively use them when guiding the training

of a DCNN? I identify these question as important to address.

3.7.3 What type of concept embeddings from ontologies are well

suited for the aforementioned task?

Next, looking at the generation of ontology-based embeddings, it is important to un-
derstand what methods can be used to learn a faithful representation of an ontology
in a vector space. A faithful representation would closely relate similar concepts with
each other in the space. The relatedness is governed by the distance or the similarity
between concepts.

I see a drawback in approaches such as [CHJR 21, HMCJR19a], where an inter-
mediate step converts a portion of the ontology into a graph structure. The design space
when converting ontology-based information into graphs can be very large, meaning
an ontology can give rise to many types of graphs. When embedding these graphs,
there can be a loss of information. Whereas approaches such as [KLWYHI19] can
learn embeddings directly using knowledge in the form of axioms. Since axioms can
be classified using a reasoner, it can be ensured that equivalent ontologies produce sim-
ilar sets of embeddings. Furthermore, more geometrical features in the vector space
are exploited when representing the properties in the ontology. Also, the resulting
embeddings are not highly dependent on the ontology syntax in these approaches.

There exist a gap in the understanding of the impact of these different embedding
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learning techniques when using them as a part of an informed machine learning sys-
tem. How faithfully each embedding type represent an ontology? What geometrical
features of the embeddings help the downstream task? This study aims to address these

questions.

3.7.4 What type of ontology information will contribute towards
good concept embeddings when helping a few-shot image clas-

sification task?

An ontology can capture several types of relationships among a set of concepts such as
their hierarchical structure with subclass relations and additional features about each
concept with class expressions containing object properties [MPSPT09b] (e.g., Dog
SubclassOf Animal and Dog hasPart some Tail). During the embedding of this knowl-
edge, concept embeddings can capture either all or a selection of these relationships.
So, it is important to understand what choices are helpful given a few-shot image clas-
sification task. For example, when classifying bird images, would information such
as the colour or shape of a bird be more useful than the hierarchical structure of the

different breeds? I identify that addressing this point for a visual task is important.

3.7.5 How to evaluate the errors during image classification with
respect to the background knowledge used in an informed

machine learning approach?

I identify an extension to the existing evaluation methods for image classification per-
formance, in the present of background knowledge. Currently, an error during any
image classification task is captured if the the predicted class for an image does not
exactly match its ground truth label [KSH12a, HQDN19]. But in an informed ma-
chine learning approach, I argue that the degree of an error can be evaluated based
on the background knowledge used in the task. For example, classifying an image of
the class Poodle as a Dog is a smaller error than classifying it as a Fish. This idea is
addressed in this study during the evaluation of few-shot image classification results of

informed machine learning approaches.
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Ontology-based Concept Embeddings

4.1 Ontology Construction with Image Datasets

To investigate the research questions of this study, suitable OWL ontologies were re-
quired that contained background knowledge about the class labels of relevant im-
age datasets. These were not available from existing studies, hence in this chapter I
describe how new ontologies were constructed using knowledge sources and dataset
annotations.

Throughout the study, I make use of four different image datasets to experiment
with few-shot image classification, namely, minilmageNet [VBL'16a], tieredIma-
geNet [RTR™ 18], Stanford Dogs dataset [KJYFF11] and Caltech-UCSD Birds-200-
2011 [WBWT11a] (see Sections 4.2.1 and 4.3.1). The class labels of the first three
are based on WordNet [Mil95] which was used to obtain information about the class
hierarchy when constructing their ontologies. The latter dataset was chosen to inves-
tigate multi-relational knowledge in ontologies, where I use the attribute annotations
provided with the dataset to construct the ontology. I explain these two techniques

separately in the following sections.

4.2 From WordNet to Ontology

4.2.1 Datasets

« minilmageNet [VBL " 16a] consists of 60,000 images, each labelled with one
of 100 classes from ImageNet [DDST09b]. Each class contains 600 example

46
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images. The classes cover a variety of objects from animals such as minia-

ture_poodle to music instruments such as oboe.

o tieredImageNet [RTR 18] is larger than minilmageNet, containing 608 classes
from ImageNet. Its classes are chosen according to on 34 human-curated higher-
level categories. They are subdivided accordingly to ensure more distinction
among the training and testing stages. For example, classes related to the higher-

level category musical_instruments are not split between training and testing sets.

» Stanford Dogs [KJIYFF11] is a fine-grained classification dataset composed of
120 dog species from ImageNet. A total number of 20,580 images span among
the classes. This dataset offers a more challenging task as similar-looking classes

can be harder to classify especially when learning with few examples.

4.2.2 Ontology Construction

The above datasets are subsets of ImageNet [DDS*09a], hence their class labelling is
based on synsets of WordNet [Mil95].

I chose the hypernym tree of WordNet to be the source of knowledge about the label
class hierarchy in this study. Given a label, the corresponding synset name (e.g., minia-
ture_poodle.n.01) together with all more general classes until entity.n.0I (top entity in
WordNet) were extracted. When constructing the ontology, the hierarchy according
to the hypernym tree formed the subsumption relationships among the classes (e.g.,
miniature_poodle.n.01 SubClassOf dog.n.01). All sibling classes that lie in the same
hierarchical level were defined to be disjoint (e.g., miniature_poodle.n.01 disjointWith
german_shepherd.n.0l).

Figure 4.1 shows a snapshot of the class hierarchy of the ontology constructed
for the minilmageNet dataset. It can be observed how a class label such as minia-
ture_poodle.n.01 is placed in the hierarchy of concepts captured from WordNet. The
final statistics of the ontologies of minilmageNet, tieredlmageNet and Stanford Dogs
are shown in Table 4.1. The number of inferred axioms entailed by each ontology is
including all transitive relations entailed by the SubClassOf axioms.

Also, I construct two versions of the Stanford Dogs ontology where the ‘reduced’
ontology removes 12 of the classes at the top of the original ontology to avoid redun-
dancy and leaves “Dog” as the top class.

All ontologies were saved in the OWL Functional Syntax format and classified via
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the HermiT OWL reasoner [SMHOS8] before using in the experiments. These ontolo-
gies can be found at https://github.com/miranthajayatilake/ViOCE-Ontologies.

Table 4.1: The statistics of the constructed ontologies for minilmageNet, tieredIma-
geNet and Stanford Dogs Dataset.

Number of axioms

Ontology Class count SubClassOf | DisjointClasses Number of inferred axioms
minilmageNet 317 316 51 521
tieredlmageNet 1096 1095 235 11770
Stanford Dogs 148 147 29 2219
Stanford Dogs (reduced) 136 135 29 521

4.3 From Annotations to Ontology

4.3.1 Dataset

Caltech-UCSD Birds-200-2011 (CUB-200-2011) is an image dataset that includes
11,788 images of 200 bird species. Each image is further annotated with 15 part lo-
cations (Figure 4.2(a)), 312 binary attributes and a bounding box localising the bird
in the image. The attributes are distributed among 28 groups (Figure 4.2(b)) and are
visual in nature pertaining to properties such as colour, shape, pattern, length, or size
of a particular body part (e.g., hasWingColor Black). A certainty score between 0 and
100 was also provided along with an attribute annotation that represents the confidence
of the human that performed the annotation about the presence of each attribute, 100

being the most certain.

4.3.2 Ontology Construction

For the purpose of constructing an ontology of the classes in CUB-200-2011, I make
use of the attribute annotations and their certainty scores. Each bird species was de-
fined as a named class in the ontology and all attributes with a certainty score greater
than 50 was chosen for each image in a class. All attribute components such as colour,
pattern, shape, length, size, and body parts were also defined as concepts to be used
in class axioms. As design choices, ‘leftl.eg’ and ‘rightLeg’ were combined to a con-
cept ‘Leg’, and similarly ‘leftWing” and ‘rightWing’ was also combined to a concept
‘Wing’. I found that the left and right distinction of these part to be trivial due to their
visual similarity and lesser importance during image classification. Also, some inter-

mediate concepts were added to group colour and shape properties such as ‘Blue-ish’,
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Asserted H

v owl:Thing
b entity.n.01
3 abstraction.n.06
v physical_entity.n.01
» matter.n.03
v object.n.01
> geological_formation.n.01
v whole.n.02
3 artifact.n.01
v living_thing.n.01
b organism.n.01
v animal.n.01
v chordate.n.01
v vertebrate.n.01
> aquatic_vertebrate.n.01
3 bird.n.01
v mammal.n.01
v placental.n.01
> aquatic_mammal.n.01
v carnivore.n.01
v canine.n.D2
v dog.n.01
dalmatian.n.02
> hunting_dog.n.01
newfoundland.n.01
v poodle.n.01
miniature_poodle.n.01
> working_dog.n.01
3 fox.n.01
> wild_dog.n.01
3 wolf.n.01
3 feline.n.01
> musteline_mammal.n.01
> viverrine.n.01
3 edentate.n.01
> reptile.n.01

3 invertebrate.n.01
> fungus.n.01l
> natural_object.n.01

Figure 4.1: A snapshot of the class hierarchy of minilmageNet ontology constructed
using OWL

‘Brown-ish’, ‘BillShape’ and ‘BodyShape’ etc. Body parts were also grouped under
more general concepts such as ‘Head’ and ‘Body’. These were added to make the
knowledge about the different properties more explicit. All sibling classes were made
disjoint. I name the resulting ontology as ‘Birds Ontology’ in this study.

Two variations of the Birds Ontology were created to be used in the methods
presented in Section 4.8 as detailed below. These ontologies can be accessed via

https://github.com/miranthajayatilake/CUB-200-2011-0OWL-Ontology.
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Beak HasBillShape, Back HasBackColor, Breast HasBreastPattern,
HasBillColor, HasBackPattern HasBreastColor
HasBillLength
Belly HasBellyPattern, Fore-  HasForehead Bird (all HasSize, HasShape
HasBellyColor head  Color parts)
(Right Wing
not visible) Throat HasThroatColor Nape  HasNapeColor Head HasHeadPattern
= - Crown HasCrownColor Eye HasEyeColor Leg HasLegColor
6 .r Tail HasUpperTailColor, Wing  HasWingPattern, Body HasUnderpartsColor,
- HasUnderTailColor, Has WingColor, HasUpperPartsColor,

HasTailPattern, HasWingShape HasPrimaryColor
HasTailShape

(a) Collected Parts (b) Attribute Part Associations

Figure 4.2: CUB-200-2011 annotated parts and attributes for each image; taken from
[WBWT11a] (a) 15 part locations. (b) 28 attribute-groupings.

1. Birds Ontology with implicit body parts (BO-IBP)

In this ontology, I define the class axioms of the 200 bird spices with object
properties that implicitly contain information on body parts as shown in 4.1, i.e.,
this ontology does not use class names for body parts such as Wing but property
names such as hasWingColor. This is directly using the attribute naming format
from the annotations in CUB-200-2011.

American_Crow SubClassO f Bird and “4.1)
(hasWingColor some Black) and
(hasWingPattern some Solid)

2. Birds Ontology with explicit body parts (BO-EBP)

The class axioms of the 200 bird concepts in this ontology explicitly contain the
body part concepts together with the new object property hasPart as shown in
axiom 4.2. New object properties were defined such as ‘hasColor’, ‘hasPattern’,
‘hasShape’ ‘hasLength’ and ‘hasSize’ to assert the respective features. I produce
this variation of the Birds Ontology to match the requirements of the embedding
methods in Section 4.8.3 and 4.8.2.

American_Crow SubClassO fBird and “4.2)
(hasPart some (Wing and hasColor some Black)) and

(hasPart some(Wing and hasPattern some Solid))
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Details about the above ontology variations are shown in Table 4.2. The reason for
the reduction of the number of object properties in BO-EBP, compared to BO-IBP, is

due to the modification explained in (2) above.

Table 4.2: Variations of the Birds Ontology

Ontology | Number of labelled classes | Number of object properties
BO-IBP 285 26
BO-EBP 303 6

4.4 Ontology-based Concept Embeddings

In this Section, I investigate the encoding of ontology-based symbolic knowledge into
continuous vector spaces by learning concept embeddings. Two methods are proposed
to achieve this task, one capturing the similarity between concepts in an ontology to
define a point in space for a given concept and the other directly embedding axioms as
n-balls in space. Experiments were carried out using the three ontologies constructed
with classes of the three image datasets that are used as benchmarks in few-shot image
classification. I discuss the quality of the resulting embeddings in terms of their ability

to represent the knowledge from the input ontologies.

4.5 Why Ontology Embeddings?

In Section 1.3.5, I argue that an ontology is a richer and a reliable source of knowledge
when compared to others such as text or knowledge graphs. The properties of an
ontology such as knowledge inference and assurance of consistency qualify them to be
an ideal candidate to be used in the integration of background knowledge with vision
models.

In terms of what knowledge can be represented by an ontology, I identify two main
types that can be beneficial for the downstream image classification tasks. First is
hierarchical knowledge about the classes in a given task. For example, it needs to be
investigates whether informing a model with knowledge such as classes ‘Poodle’ and
‘German shepherd’ belong to a more general class ‘Dog’ would help the downstream
task. The other type of knowledge that can be important is relations of a class. For

example, I investigate whether it would be helpful to inform a vision model about the
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‘colour’ or ‘shape’ of a ‘Bird’ during a classification among breeds of birds. Ontologies
can capture both of these knowledge type efficiently via axioms.

Considering the exiting work on the integration of ontologies with broader machine
learning approaches (not limiting to vision tasks) [VRMG™19], three methods can be
identified considering the form in which ontology-based knowledge is used. First is the
extraction of graphs from ontologies and using them either to extend the input space
or inform the loss function [GCC'21, RSR15]. Secondly, several approaches can
be found to use ontologies as rules providing constraints during the learning process
[SG16]. Third is the embedding of knowledge from ontologies as vectors that are then
used as additional input [CHJR*21] or guidance to the loss function [FCS™13]. Ma-
chine learning approaches primarily deal with operations in continuous vector spaces
and motivated by the success of methods such as metric learning [KZS15], I choose the
third option of embedding ontology-based knowledge and guiding the behaviour of the
prediction space of a DCNN using these embeddings. Also, I find that this approach in-
creases the chances of understanding the behaviour of a machine learning model when
embedding images which can potentially contribute towards better explainability of
predictions in future work [JMS21a].

When it comes to embedding ontology-based knowledge, I further distinguish the
methods that directly capture axioms [KLWYH19] from methods that involve an in-
termediate step of extracting knowledge graphs from ontologies [CHJR21]. I argue
that the latter suffers from higher loss of information since an ontology can give rise
to number of different graphs, e.g., transitive reduct and transitive closure. Hence, a
single graph will not be able to represent all knowledge in an ontology. Therefore, in
this study I focus on computing an embedding for each concept in a given ontology di-
rectly using its axioms. A good ontology embedding should represent all concepts 5C

of an ontology O in a meaningful manner that reflect the relationships between them.

4.6 Concept Similarity-based (CSim) Embeddings

Existing methods of embedding text and knowledge graphs [MCCD13b, HYL17] show
that a good embedding should project similar meaning words or highly related entities
to points in a vector space that are in close proximity to each other. For example, in
a good word embedding, the euclidean distance between two points representing the
words Dog and Poodle will be less than that of Dog and Car. Word embeddings cap-

ture these similarities via the co-occurrences of words in text [MCCD13b], while graph
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representation leaning methods capture similarities between entities via the number of
edges between them [Ham?20]. This motivated me to investigate on a similar technique
for embedding an ontology, where similarities between concepts can be captured via
their subsumption axioms.

Concept similarity-based (CSim) embeddings aim to map all named concepts 50
of an ontology O as points in a vector space that would best represent the similarities
among (N)C according to the structure of the class hierarchy of O. Given O as in-
put, a square matrix M of dimensionality |5C|2 is generated where each element M ;
in i/ row and j"* column represents the similarity score between concepts P; and P;
(i,j=[1,|0c|]). I choose the atomic similarity between concepts introduced in Section
2.2.2.1 to compute these scores.

Next, dimensionality reduction is applied on M using principal component analysis
(PCA) (Section 2.3.2.1) to get the desired dimensionality for the embeddings. I keep
this step as optional to use when |5C| is too large. From the resulting matrix, a row M;

is chosen as the embedding for concept P;.

4.7 n-ball Embeddings

I find that the CSim embeddings in Section 4.6 offer some ambiguity when represent-
ing the exact structure of the class hierarchy of an ontology. For example, relationships
such as Poodle T Dog and Dog T Animal are both encoded by the proximity of the
vectors representing Poodle, Dog and Animal in the embedding space. But this ar-
rangement does not make it clear that Animal is a more general class than Dog and
Poodle is a more specific class than Dog. This drawback of point embeddings moti-
vated me to look into richer geometric representations in the embeddings space.

An n-ball can represent a concept in the embedding space using both its centre and
radius features (Section 2.3.3). This enables the representation of ontology information
such as subsumptions and disjointnesses using the positioning of the n-balls in space,
e.g., P C Q will be represented by the n-ball of Q enclosing that of P and PI1Q C |
represented by the n-balls of P and Q being seperated from each other.

I build upon the EL embedding technique [KLWYH19] to learn a set of n-balls for
all concepts 5c in the ontology O, which are referred to as concept embeddings. 1 use
subsumption and disjointness axioms from the class hierarchy of the ontology O. I use
the inferred class hierarchy (/CH ) (Section 2.1.1) that includes all inferred subclass
relations (e.g., if Poodle SubclassOf Dog and Dog SubclassOf Animal are asserted,
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ICH includes Poodle SubclassOf Animal). 1 introduce a regularisation term in (4.4) to
prevent radius shrinkage. Following Eqs. (2.7) and (2.8), the radius of the learned n-
ball for a leaf concept, which corresponds to a label class, can end up being very small,
in order to fit into the balls of its subsumer concepts. Since in the image embedding
learning, I will try to map each image to a point inside the n-ball corresponding to its
ground truth class, an overly small radius can affect the learning accuracy. Also, to
improve the embedding quality, I introduce extra hyperparameters y, ¢ > 0 in (4.3) to
explore potentially more expressive design spaces, which is supported by an additional
parameter tuning process. This was done to control the embedding quality as the class

hierarchy of the input ontology becomes larger. Finally, I minimise the following loss

function:
le ({ereo} pocg- ot pocs ) (4.3)
= Z max (0, |lep — ¢gll2 +rp—ro —7)

PCQEICH (0)

+ )Y max(0,—[lep—colatrp+ro+7)
PrQC1e0

+ Y max(0,y+/Nj,— L(P) —rp) (4.4)
Pef)c

+ Y N(P)|llepll2—09|. (4.5)
Pe5c

Here, Nj, denotes the total level number contained in the inferred class hierarchy,
and L(P) denotes the level of the concept P in this hierarchy, e.g., the top-most concept
has level 1. N(P) denotes the number of times the concept P appears in the extracted
axioms. Eq. (4.4) restricts the radius of the concept P ’s n-ball to be no less than
W\/Im . The top-level concepts are allowed to have larger n-balls than the bot-

tom ones.

4.7.1 Embedding Quality and Hyperparameter Tuning of n-ball
Embeddings

The n-ball concept embeddings are learnt by minimising Eq. (4.3), e.g., by a gradient
descent algorithm. There are three hyperparameters v, ¢ and y to be set. I perform
hyperparameter tuning by examining how much knowledge entailed by the ontology

is captured by the learnt embeddings.
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Three parameter tuning scores are proposed by examining whether |lcp — cpl| <
ro — rp holds for a ground truth subsumption P C Q € ICH (O). All the ground truth
subsumptions are considered as positive instances. If the inequality holds, it is con-
sidered as a positive prediction. The classical Fj score, which is the harmonic mean
of the precision and recall, is used to assess the prediction accuracy of these subsump-
tions. I calculate two versions of F] score, one is referred to as Fl(a") based on all the
subsumptions in /CH (O). The other only considers the subsumptions involving the
leaf concepts, which correspond to all the classes in Cg and CF, as well as their direct
parent classes. This score is referred to as Fl(leaf).

(dis)

The third parameter tuning score R examines the disjointness between the leaf

concepts. Enumerating all pairs of leaf concepts', RUis) computes the recall of dis-
jointness axioms in the embedding space using the condition ||cp —cg|| > rp+rg. A

higher RU) indicates less overlapping between the n-balls of leaf concepts.

I compute these scores as a mandatory step at the end of each embedding learning

process. Using grid search, the combination of 7y, ¢ and v is found that results in the
all) + F(leaf)
1

BI. 1 include BI;, in this tuning procedure because the objective is to obtain the most

highest value for (Fl( + RUdis) 4 BI;;), where BI;, is training accuracy on
favourable set of embeddings for the downstream vision task. The complete concept

embedding learning process is elaborated in Algorithm 1.

4.8 Multi-relational n-ball Embeddings

I investigate how to embed knowledge about more properties in addition to subsump-
tion and disjointness between concepts and how they would affect the few-shot image
classification performance. For example, will there be an improvement by informing
a vision model about body colour and shape of a bird when classifying among dif-
ferent bird species? To answer this question, I propose three methods of embedding
additional object properties (e.g., hasColor, hasShape) with n-ball embeddings. These
methods differ from each other in the way that existential restrictions are handled dur-

ing the embedding learning process.

Below methods discuss three different approaches proposed to learn n-ball concept

embeddings using an ontology with multi-relational data.

n the ontology, [ have P Q C | for all leaf node P and Q
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Algorithm 1: n-ball embeddings learnt for all concepts Oof O
Require: Input O
Best overall score S? = 0
List of choices for ¢,y and yin Eq. 4.3
Best combination of ¢,y and Y (B y.y)
for all possible combinations of ¢,y and y do
forall PC Q € ICH (O)and PNQ C L€ ICH (O) do

le ({CP}P€57 {FP}P€5> (Eq. 4.3)
end for
Compute Fl(

all) leaf)

and R(9s)
leal) | RUdis) 4 gy,

JF}
Compute S = Fl(an) + Fl(
if S > S? then

SB=§
Boyy=0,¥,7
end if

end for

return By .y, SB

4.8.1 Flattened Ontology Embedding Method (FO-EM)

According to the previous results in Section 4.10, I discover that the proposed n-ball
embedding learning method in Section 4.7 is capable of accurately representing the
concepts of an ontology bound by the relations of subsumption and disjointness. In-
spired by this, the Flattened Ontology Embedding Method (FO-EM) tries to fit the
challenge of embedding additional object properties with the same proven method.
This is done by ‘flattening’ the input ontology by defining each attribute of a class as a
new named class, reducing all relations to subsumptions.

For example, taking a class axiom such as,

Anna_Hummingbird SubClassO f Bird (4.6)
and (hasBillColor some Black)
and (hasBillShape some Needle),

if the term (hasBillColor some Black) is collectively represented by a new class Cy

and (hasBillShape some Black) by C;, then it can be written as,

Anna_Hummingbird SubClassO f Bird and Cy and C;. 4.7)
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Axiom 4.7 implies that,

Anna_Hummingbird SubClassO f Bird (4.8)
Anna_Hummingbird SubClassO f Cy
Anna_Hummingbird SubClassO f C,.

Axiom 4.8 can now be used to learn embeddings with the same method proposed
in Section 4.7. When doing so, I also define that Bird "C; M C, = L. Conceptually, C;
is a class that holds things that have a black bill colour and class C; holds things that
have a needle-like bill shape. Anna_Hummingbird is a Bird that is also a subclass of Cy
and C;. Hence, in the resulting embeddings, the n-ball of Anna_Hummingbird should
be enclosed by the n-balls of Bird, C; and C,, while Bird, C; and C; do not overlap.

The loss function for FO-EM is a modification of Equation 4.3, with a new class
definition function y added to convert 3E.Q into a concept, where E denotes an object
property and ¢y(3g o) and ry3g ) denote the centre and radius of the n-ball represent-
ing the concept y(JE.Q). Equation 4.9 shows the full loss function with the added

component 4.10.

lFo-EM ({CP7 cQ}P,Qeac’ {rp, rQ}P,QeE)C7 {cy(ﬂE-Q)}y(aE.Q)e@c7 {n@e.0 }y(HE.Q)€6C>
4.9)

=l ({CP’CQ}RQ€5C’ {re, rQ}RQ€5c>

+ Y max (0, |lep — ¢yar.o)ll2+ P — 1y3E.0) (4.10)
PCy(3E.Q)€ICH(0)

4.8.2 Transformation Embedding Method (TF-EM)

The Transformation Embedding Method takes the most similar approach to [KLWYH19]
when embedding multi-relational knowledge. It embeds object properties as points in
the embedding space and applies translations to n-balls according to the existential
restrictions found in the ontology, e.g., P C JE.Q is represented by the n-ball of P
enclosed by the translated n-ball of Q using the embedding e representing E. Complex
SubclassOf axioms such as P C Q1 Q> 1 Q3, where Q», Q3 are also concepts, should
broken down to fit the form P C Q to be used with this method.
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For example, taking a class axiom such as:

American_Crow SubClassO fBird 4.11)
and (hasPart some (Wing and hasColor some Black)) ,

I introduce a new concept named BlackWing and re-define the axiom as below:

American_Crow SubClassO fBird 4.12)
BlackWing SubClassOf Wing
BlackWing SubClassOf hasColor some Black

American_Crow SubClassOf hasPart some BlackWing.

The loss function for TF-EM is defined in Equation 4.13. It again takes inspiration
from Equation 4.3 to add radii regularisation and hyperparameter ¢ that governs the
allowed canvas area for the embeddings. Term 4.14 governs the translation of n-ball
during embedding training. Term 4.15 uses negative samples of existential restrictions

that are generated at random by replacing Q in P C JE.Q € O.

lrm—Em ({CP,CQ}P’Qeac, {re-ro}pocoy {e}E> (4.13)
=L ({er.co}pge: {rrrodnoca.)

+ Y, max(0,|[cp+e—cola+rp—rg) (4.14)
PCIE.Qe0

+ Z max (0, —||cp+e—cpll2+rp+ro) (4.15)
PCIE.Q¢0

4.8.3 Step-wise Partial Embedding Method (SP-EM)

The Step-wise Partial Embedding Method (SP-EM) is an approach taken to learn a
set of n-ball embeddings representing concepts with more control over how each n-
ball occupies the space. Similar to [KLWYH19], SP-EM learns point embeddings for
object properties that are used to translate n-balls according to the existential restric-
tions found in the ontology. As the initial step, separate sets of concepts are identified

according to the class definitions. These concepts are embedded independently and
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combined in a ‘step-wise’ manner until the whole ontology is represented in one em-
bedding space.

The novelty of SP-EM is twofold. First is the use of the intersection of two n-balls
representing concepts P and Q translated by E, to represent an axiom P C JE.Q, where
E is an object property. Second is the geometric construction of a new n-ball represent-
ing the collective intermediate concept of P C JE.Q. Intersections and constructions
are done step by step according to class axioms resulting in ‘partial’ embeddings. This

is a unique feature compared to the other embedding methods proposed in Section 4.8.

Figure 4.3 visualises the behaviour of SP-EM with the class axiom 4.16 as an ex-
ample. The main sets of concepts identified are colours and body parts that help define
the bird class American_Crow. So as the first step, n-balls of these concepts are learnt
independently using their subsumption and disjointness relations among each other as
shown in 4.3 (a). Next, to represent a property (hasPart some (Wing and hasColor some Black)),
the n-ball representing Black is translated using the hasColor property and projected
to a combined space with the body part n-balls to form the relevant intersections as
shown in 4.3 (b). The n-balls for the intermediate concepts such as Black Wing are
then constructed to occupy the lens at the intersections. Similar procedure is followed
with the other two properties as well. Finally, the n-ball of American_Crow is learnt to
intersect with Black Wing, Black Eye and Black Back as shown in 4.3 (¢).

American_Crow SubClassOf Bird 4.16)
and (hasPart some (Wing and hasColor some Black))
and (hasPart some(Eye and hasColor some Black))

and (hasPart some(Back and hasColor some Black))

The loss functions for SP-EM are defined for each step separately. At the initial
step of embedding concepts governed by subsumption and disjointness relations, I use
the same loss design in Equation 4.3.

The intersection of n-balls for P and Q and the embedding of £ when embedding
the axiom P C JE.Q is governed by the loss function in Equation 4.17. Here, term 4.18
ensures that the n-ball of P intersects with the n-ball of Q translated by embedding e.
Term 4.19 ensures that the n-ball of P is not enclosed by the n-ball of Q translated
by embedding e. Furthermore, I include an additional term 4.20 to use the negative

samples of existential restrictions that are generated randomly by replacing Q in P C
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Figure 4.3: An example visualising the behaviour of SP-EM

JE.Q € O during the learning process.

lsp—EM-1 ({CP,CQ}RQG(}C,{VP,FQ}RQeaC,{e}E) (4.17)

= Y  max(0,|ep+e—col2—rp—ro) (4.18)
PC3E.Q€0

+ Z max(O,—HcP—}—e—cQHz—rp+rQ) 4.19)
PC3E.QcO

= Y  max(0,—|lep+e—egll2+rp+rg) (4.20)
PC3E.QZ0

Equation 4.21 and 4.22 are used for the geometric construction of an n-ball that
fits inside the lens of an intersection of two n-balls, P, Q. They find the centre ¢; and

radius r7, of the constructed n-ball respectively.

L = (CP+CQ) n rPZ_er (CP—CQ> 4.21)
2 lep+eoll2® \ 2
2 2\ 2
42 =2(rp? Y — (22 ) _lept el (4.22)
COT T ertegla) TR |

Finally, the intersection of two n-balls of concepts P and Q is governed by the loss

function in Equation 4.23.
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Isp-ew-2 ({epse0}poes (P70} noca, ) (4.23)

= Z max(O, HCP — CQH2 —rp— I’Q)
PrQ

+ Z I‘IlaX(O7 —||Cp — CQHZ — rp+rQ)
PrQ

4.8.4 Embedding Quality and Hyperparameter Tuning

I extend the framework presented in Section 4.10 to measure the quality of the resulting
embeddings of the three methods FO-EM, SP-EM and TF-EM. In addition to the scores
Fl(an), Fl(leaf) and R, 1 introduce two new scores R**® and r?*8 to address the multi-
relational knowledge capturing. R*“? measures the recall of all existential restrictions
of the complex SubClassOf axioms and r*"8 measures the average radius of the n-balls
representing the label concepts.

Similar to Section 4.10, all the quality measures are used when tuning the hyperpa-
rameter ¢ of the embedding loss functions, where the best ¢ should result in the highest
al) + Fl(leaf) + RUis) 4 Rsub 4 pavg 4 BI;;). The modified Algorithm 1 in-
cluding the new scores is shown in Algorithm 2 which is used by all methods, FO-EM,

SP-EM and TF-EM.

value for (Fl(

Algorithm 2: multi-relational n-ball embeddings learnt for all concepts O of
@)
Require: Input O
Best overall score S? = 0
List of choices for ¢
Best ¢ (By)
for all values of ¢ do
Compute embeddings using FO-EM/SP-EM/TF-EM
(all) (leaf) and R(is)

Compute F;", F|
Compute S = Fl(a“) + Fl(leaf) + R\dis) . gsub y yavg 4 BI

if S > S5 then

SB=5§
By =0
end if
end for

return By, S®
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4.9 Experiments

4.9.1 Implementation Details of CSim Embeddings

CSim embeddings were computed on both minilmageNet and Stanford Dogs ontolo-
gies. The total number of label classes in both these datasets was 100, hence the
generated matrix M was of dimension 100x100. I do not use dimensionality reduction

in this case. The resulting embeddings were of dimension 100.

4.9.2 Implementation Details of n-ball Embeddings

I chose the dimensionality of the concept embeddings to be 300 after several trials with
values 50, 100, 200, 300 and 500. 300 dimensions produced sufficient expressiveness
with an affordable computational cost. All embeddings were initialised within a range
[-1,1] at the beginning of the learning process. The learning rate was set to 0.001.

For the hyperparameter tuning process of each ontology, ¢ = {100, 30, 20, 10, 5},
y = {20, 1} and y= {0.01, 0.001, 0.0001}. Embedding training was carried out for

100 epochs in all cases.

4.9.3 Implementation Details of Multi-relational n-ball Embeddings

Out of the Birds Ontology variations, FO-EM uses the BO-IBP and both TF-EM and
SP-EM use BO-EBP. All embedding learning configurations are the same as in Section
4.9.2. During the hyperparameter tuning process, ¢ = {50, 40, 30, 20, 10, 5}

4.10 Discussions on Embedding Quality

4.10.1 Visualising CSim Embeddings

I visualise the resulting CSim embeddings of the minilmageNet and Stanford Dogs
ontologies reduced to 2 dimensions using t-SNE [VAMHOS] in Figures 4.4 and 4.5
respectively. As a comparison, I also plot the embeddings generated for the same
minilmageNet classes using the existing graph-based WordNet embeddings technique
introduced in Section 2.3.2. In all plots, the circles and triangles represent the base
classes and few-shot classes respectively, which is a selection of classes required in

Section 5.1. The colours represent clusters of similar classes that were found according
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to each set of embeddings using k-means clustering with kK = 15. The labels consist of

the relevant WordNet synset id along with the class name.

Comparing Figure 4.4 (a) and (b), it can be seen how CSim embeddings produce
more distinguishable clusters in the embedding space, such as the noticeable separation
is between living things and nonliving things. Also, more granular features such as the
similar positioning of dog classes is seen with CSim embeddings, whereas the graph-
based WordNet embeddings have produced a more uniform distribution without a clear
separation of clusters. 1 argue that the clear separation of similar class groups is a

superior capability of the CSim embedding learning process.

Figure 4.5 also shows a similar output with CSim embeddings produced on the
Stanford Dogs ontology, where more similar dog breeds (e,g,. Walker_hound and

English_foxhound) are clearly clustered together in the embeddings space.

4.10.2 Quality Scores of n-ball Embeddings

I compare several instances of the resulting n-ball embeddings for the three datasets
(all) F(leaf)
> 1

during the hyperparameter tuning process. Table 4.3 shows the F; and Sp
scores for a few selected values of ¢, W and Y. The highlighted row for each dataset is
the chosen configuration to take forward depending on BI;,. It can be noted that higher
¢ values generally result in higher quality scores but lower Bl accuracies. Since ¢
controls the overall canvas space that n-balls can occupy, higher ¢ values distribute the
embeddings further away from each other. This is found to be not favourable for the
vision task. The aim of the hyperparameter tuning process is to find the most satisfiable

embedding quality that is the most supportive for the vision task.

Figure 4.6 visualises the embeddings for the instances of the minilmageNet ontol-
ogy. For visualisation purposes, I reduce the dimensionality of the embeddings to 2,
hence the smaller n-balls appear to overlap. But in 300 dimensions, the majority of
these embeddings do not overlap as implied by the Sp score. I further visualise the
resulting embeddings for the instances of Stanford Dogs (reduced) ontology in Fig-
ure 4.7, where 4.7 (b) shows a set of embeddings learnt before the reduction of the
top-most classes. It can be seen that the bigger n-balls do not contribute much for the
structure of the leaf concepts. This was the reason behind working with the reduced

Stanford Dogs ontology.
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Table 4.3: Examples of n-ball embedding quality scores for the three datasets during
hyperparameter tuning.

(all) (leaf)

Ontology o | v Y F F, Sp | Bl (%)
100 | 20 | 0.0001 | 0.82 | 0.43 | 42 54.38

minilmageNet 30 | 1 | 0.0001 | 0.89 | 0.64 | 10 | 67.93
5 | 1 |0.0001 | 0.86 | 054 | 48 | 83.12
oredmaseNet 5 | 1 100001 079 | 035 | 136 | 58.13
teredimageine 20 | 1 | 0.0001 | 0.89 | 055 | 49 | 78.34
10 | 1 | 00001 | 0.87 | 075 | 30 | 70.92
Stanford Dogs (reduced) —c———0601 17085 | 054 | 45 | 85.84

4.10.3 Quality Scores of Multi-relational n-ball Embeddings

The tuned values of ¢ with other embedding quality scores for each method during
my experiments are shown in Table 4.4. Overall, it can be see that SP-EM produces
the highest quality embeddings with respect to all scores. Also it gives the lowest ¢
value with the highest average radius for label concepts, meaning the embeddings take
up lesser space compared to the other methods. FO-EM does better in three scores
compared to TF-EM. R’ of FO-EM is not computed as it does not embed object
properties separately. It can be seen that TF-EM gives the biggest ¢ value, meaning its

n-ball embeddings takes up more space when representing the concepts.

Table 4.4: Embedding quality scores and tuned hyperparameter value for FO-EM, TF-
EM and SP-EM

Method | ™) | F'V | s, | Réis | R | e | g
FO-EM | 0.79 | 0.99 | 6 | 098 | - | 1.01] 10
TF-EM | 076 | 1 | 0 | 097 | 047 | 0.67 | 50
SP-EM | 096 | 1 | 0 | 098053105 5

4.11 Ablation Study

4.11.1 ICH (O) vs Asserted Axioms for n-ball Embeddings

I empirically investigate the effect of the inferred class hierarchy of O during the con-
cept embedding learning process described in Section 4.7. Using the techniques in
Section 4.7.1, I measure the quality of embeddings produced with the asserted class

hierarchy as input. Here, the embedding procedure has to capture information such as,



4.12. SUMMARY AND DIRECTIONS 65

if PC Qand Q C E, then P C E without an explicit definition. As shown in Figure
4.8a using the minilmageNet ontology, the n-balls are mostly huddled together with
an incorrect interpretation of the class hierarchy when using the asserted hierarchy.
The ™

observed that with a higher number of classes and levels in the hierarchy (> 50 classes

score computed for these embeddings was 0.25, which is quite low. It was

or > 10 levels), capturing transitive knowledge becomes much harder with only the
asserted class hierarchy.

By using ICH (O) as input to learn embeddings, I provide all the inferred axioms
entailed by the ontology. The resulting embeddings in the case of minilmageNet are
shown in Figure 4.8 b, where the hierarchical structure and the main clusters of con-
cepts are are better defined by the size and placing of the n-balls. Here, the F; l(au) score
was reported to be 0.88, which is much higher than the previous case. This shows that
the inclusion of all inferred axioms as input leads to an effective embedding learning

process.

4.12 Summary and Directions

Overall, four new OWL ontologies were constructed to be used in the experiments of
this study. For minilmageNet, tieredImageNet and Stanford Dogs ontologies, I use
WordNet’s hypernym tree as the knowledge source to construct the class hierarchies.
I concentrate on building consistent subsumption and disjointness axioms in these on-
tologies without any extra object properties.

In the case of CUB-200-2011, the attribute annotations of the dataset were used as
the knowledge source to build an ontology that contains complex class axioms with
additional object properties such as hasColor, hasShape etc. All four ontologies were
saved in the OWL Functional Syntax format and tested for consistency via the HermiT
OWL reasoner. Next, these ontologies will be used in concept embedding learning
processes.

In this chapter, I introduced two main methods of learning embeddings from on-
tologies. The first captures the similarities between concepts and represent them as
points in an embedding space. The second embeds concepts as n-balls using the sub-
sumption and disjointness axioms in the ontology. I carry out experiments using the
ontologies constructed in Chapter 4 and discuss the quality and the features of the
resulting embeddings.

Geometrically, an n-ball can represent more information using both its radius and
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centre values when compared to CSim embeddings in a vector space. For example,
n-balls can clearly represent the axiom Poodle C Dog with the n-ball of Dog enclosing
that of Poodle. But in the case of CSim, this subsumption is represented only by the
proximity of Dog point to that of Poodle where the position is arbitrary. Hence, I argue
that n-balls are superior representations of ontology-based background knowledge in
an embedding space.

In Chapter 5, I utilise these embeddings to inform a vision model and evaluate their

contributions in guiding the task of few-shot image classification.
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Figure 4.4: Visualisation of minilmageNet ontology embeddings. (a) CSim embed-

dings. (b) Graph-based WordNet embeddings.
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Figure 4.6: Visualisation of learnt concept embeddings from minilmageNet ontology

with varying ¢ and y
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| a) Stanford Dogs Dataset (reduced): ¢ = 10, w = 1 \ b) Stanford Dogs Dataset: ¢ =5, w =1

Figure 4.7: Visualisation of learnt concept embeddings from Stanford Dogs ontology
with varying ¢ and y and reduction of classes

(@) (b)

Figure 4.8: Concept embeddings learnt from minilmageNet ontology a) Using the
asserted class hierarchy as input b) Using the inferred class hierarchy as input



Chapter 5

Few-shot Image Classification
Informed by Concept Embeddings

In this chapter, I use the ontology-based concept embeddings proposed in Chapter 4.4
to inform a DCNN-based vision model performing the task of few-shot image classifi-
cation. The goal is to evaluate the impact of integrating additional background knowl-
edge as concept embeddings and guiding the vision model in the training and inference
stages. I compare resulting classification accuracies with existing approaches in few-
shot image classification. Moreover, the errors during classification are analysed for
their semantic meaningfulness using the framework proposed in Chapter 5.6.

One of the research goals of this study is to investigate the contribution of back-
ground knowledge in helping a vision model train on on limited data. The existing
work on few-shot image classification [CLK*19a, HGP20b] presents several bench-
marks that can be used to compare performance of approaches to this end. I make use
of four benchmark datasets in this study, dealing with both few-shot and fine-grained
few-shot [HQDN19] image classification tasks. Fine-grained classification focuses on
distinguishing classes that are visually similar (e.g., breeds of dogs [KJYFF11]), which
is a harder task.

Another major consideration was the stage at which background knowledge was
integrated with the vision model. I select the training stage in this case, where knowl-
edge in the form of concept embeddings guide the loss function when mapping images
to a vector space. This approach was inspired by earlier proposals of Frome et al.
[FCS™13] where they used word embeddings in a similar manner. I argue that the
choice to control the image mapping with background knowledge increases the trans-

parency of the prediction space. It informs the vision model on what classes should be
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mapped similarly based on the background knowledge, that in turn allows a better un-
derstanding of a prediction using the same knowledge. For example, the mapping of a
Poodle image should be more similar to that of a Golden _retriever than an Arctic_fox.
This is because both Poodle and Golden_retriever falls under Dog which makes them
more similar to each other than to an Arctic_fox, that can also look visually similar to
a Dog. In order to obtain this behaviour from a trained vision model, I argue that inte-
grating the background knowledge during the training stage as concept embeddings is
suitable approach.

The following sections introduce a framework to integrate concept embeddings
with a DCNN-based vision model and evaluate its performance on the task of few-shot
image classification. I present results on the semantic meaningfulness of errors and

further analyse the behaviour of the overall system.

5.1 Proposed Method: ViIOCE

I propose a framework named ViOCE! that can be used to inform a vision model with
ontology-based background knowledge. It is composed of two main components: (1)
a process to embed the ontology O in a vector space using the approaches proposed
in Chapter 4.4, (2) a vision model to embed images as points in the same Euclidean
space as the concept embeddings with a suitable arrangement, and to infer the class for
a query image based on its image embedding and the concept embeddings of the can-
didate classes. Figure 5.1 shows the general flow of the framework with an overview
of all processes and example data inputs. If a suitable ontology for the task does not
exist, the ontology O for background knowledge was constructed using the class label
information Cp and CF, along with their super-class information Cy from WordNet.
Next, the flow shows the two main components of ViIOCE - A) Concept embedding
learning process that starts with computing the inferred class hierarchy (/ICH ) of the
input ontology that also checks the consistency of knowledge. Then it generates con-
cept embeddings for all concepts found in the ontology via the Embedding Generator
(The Embedding Generator represents any of the proposed methods used for embed-
ding learning). B) Vision model (DCNN+MLP) training where, first the background
images are used to train a base model which gets fine-tuned (only MLP) using the
few-shot images to produce the final model. During both base learning and few-shot

learning processes, the concept embeddings guide the learning process by setting the

'ViOCE is an acronym for ‘Vision model informed by Ontology-based Concept Embeddings
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objective of the model to project the image feature points relative to the concept em-

beddings representing the ground truth label of an input image.
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Figure 5.1: The overview of the proposed ViOCE framework

The DCNN-based vision model is trained using m background images BI = {(I;,y;) }"* |
(base set) from X classes with y; € Cg = {c1,¢2,...c«} and s few-shot images FI =
{(I;,yi)}3_, (novel set) from w classes with y; € Cr = {¢1,¢2,...,é,}, where CpN
Cr = 0, and I; denotes the collection of images with labels y; from classes C, where
C = CpUCF. In practice, I first train the DCNN and MLP from scratch by minimising
the respective loss function of the vision model using the background images BI. This
is called base learning (BL). Then, I fine tune the MLP by using the few-shot images
FI by minimising the same loss, but keep the weights of DCNN fixed. This is called
few-shot learning (FSL).

The few-shot success is usually assessed by how accurate a model can select a
correct class from the candidate class set for a new image in Cr. This is often referred

to as the w-way s-shot few-shot image classification.
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When using ViOCE to integrate concept embeddings learnt in Chapter 4.4, the
image embedding learning process of the vision model has to adjusted according to the

form of the embedding, i.e., according to whether they are point or n-ball embeddings.

5.1.1 Image Embedding Learning with CSim embeddings

The vision model is composed of a base DCNN architecture coupled with a multi-layer
perceptron (MLP). The DCNN computes the visual features for an image by taking its
raw pixel representation as the input: f; = ¢p(I;,0p) where f; € R?. The MLP is
responsible for mapping the visual features f; to the n-dimensional Euclidean space
where the concept embeddings sit: h; = Om(f;,0m) where h; € R”. 1 use Op and
O\ to denote the neural network parameters to be trained for the DCNN and MLP,
respectively.

When using CSim embeddings, the idea is to identify visual features of an image
(using a DCNN) so that they can be mapped (by an MLP) as an image point as close as
possible to the embedding of the concept representing its ground truth class. For exam-
ple, an image containing the visual features of a Miniature_Poodle should be mapped
as close as to the CSim embedding of the miniature_poodle.n.01 concept learnt from
the ontology.

To achieve this, the following pairwise ranking loss is used to optimise the network

parameters:

m

lI(OD,GM) :Z max(O,m—ep-h,-+eQ-h,~) , (5.1

i=1
where m is the margin constant, ep and eg stand for positive and negative concept
embeddings respectively, for an image i. eg is chosen at random out of the candidate

classes such as ep # ep.

5.1.2 Image Embedding Learning with n-ball embeddings

The vision model used with n-ball embeddings follows the same DCNN + MLP con-
figuration as in Section 5.1.1. But a change in the objective when mapping takes place,
where now the goal is to map image points to go inside the relevant n-balls represent-
ing the ground truth labels. For example, an image containing the visual features of a

Miniature_Poodle should be mapped to be inside the radius of the n-ball representing
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miniature_poodle.n.01 concept learnt from the ontology.

To achieve this, the pairwise raking loss is modified as below:

m

OD,GM :Z max 0 HCP hHZ yrp)+
i=1

Z max(0,vrg — |lco —hil|,) |,
oec!™

(5.2)

where u, v > 0 are hyperparameters. The set Cl-(_) contains the negative classes defined
for each image. When setting u = v = 1, the loss enforces ||cp — h;||, < rp, push-
ing the embedded image point to stay inside the n-ball of the correct class P, while
lco — hil|, > ro, to stay outside the n-ball of each incorrect class Q. The hyperparam-
eters u and v are placed to control the intensity of this effect, e.g., u < 1 requiring to
lie closer to the center which makes the task harder.

With n-ball embeddings, a specification crucial to learning performance is the se-
lection of concepts in Cl-(f). Following the notion of “hard negatives” in [MIWG12],
we select “hard negatives” based on proximity. For example, the “poodle” concept
is more similar to “golden retriever” in contrast to the “street sign”, therefore it is
more challenging to distinguish between “poodle” and “golden retriever”. Hence, we
identify “golden retriever” as the hard negative of “poodle”. Specifically, we evalu-
ate similarities between concepts by Euclidean distances between the centre vectors
of their corresponding n-balls, and perform k-means clustering based on these. After
clustering the centre vectors of the leaf concepts (image classes), for each image class,
all the other image classes from the same cluster are treated as the “hard negatives”
(=)

and are included in C;

5.1.3 Model Inference

Following the vision model training process, concept embeddings are used when mak-
ing predictions with the test set of FI (FI,) as well. With both CSim and n-ball
embeddings, given a new query image I, I compute its image embedding by h(I) =
oM (Op(Z,0p),0M) using the respective trained vision model.

During inference with CSim embeddings, I select the closest concept embedding e;
to h(I) out of the candidate classes by argmin;e,, ||e; — h(I)|| as the prediction. This is

following the objective that the vision model should map image points as close as to
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the respective concept embeddings of the ground truth classes.
In the case of n-ball embeddings, I choose the closest candidate class n-ball centre
¢; to h(I) by argmin;e,, ||c; — h(I)||, as the prediction. According to this, h(I) being

inside the n-ball of the predicted class is not always a necessity.

5.2 Experiments

During all the experiments, ResNet50 [HZRS16c¢] architecture was chosen to be the
base network and the MLP was composed of 5 layers with sizes of 2048, 1024, 512,
512, and 300 (or 100 in one instance of CSim embeddings), respectively. The last layer
size is determined by the dimensionality of the concept embeddings used. Except the
last two stages, each MLP layer performs batch normalisation followed by a linear
layer with ReLU activation. We use Tanh as activation in the fourth stage and the
output from the linear layer at the fifth stage was taken without activation to match
with the distribution of the concept embeddings. Stochastic gradient descent was used
with a momentum value of 0.9 and a learning rate of 0.001, where a learning rate decay
was performed every 10 epochs with a factor of 0.1. Base learning (BL) was carried
out for only 30 epochs with every dataset along with a batch size of 64.

We perform w-way s-shot image classification in this study, where w is the number
of candidate classes in a given few-shot task and s is the number of images available
per class during training. The w unseen classes and s images per class are randomly
selected for each task. Analogous to existing studies [TWK™20], we conduct experi-
ments for w = {5,20} and s = {1,5}.

At the stage of few-shot learning (FSL), the same gradient decent parameters were
used from BL but without decay in learning rate. F'SL was carried out for 100 epochs
with a batch size of 16. All experiments were iterated 10 times and the average accu-
racies were reported.

In terms of dataset splits, following the configuration in [HQDN19] with minilm-
ageNet dataset, 80 and 20 classes were allocated for BI and F1, respectively. This is
analogous to the 64 class meta-training, 16 class meta-validation and 20 class meta-
testing split in some few-shot learning studies [RL16a, TWK™20], if the training and
validation classes were combined. According to the specification of tieredImageNet,
for BI 1 use a set of 448 classes belonging to 26 higher-level categories. For FI, a
set of 160 classes were selected belonging to 8 higher-level categories. Following the

configuration in [HQDN19] with the Stanford Dogs dataset, I randomly select a subset
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of 100 classes and randomly subdivide them into 80 BI classes and 20 F[I classes. The
200 classes of CUB-200-2011 were randomly divided into 150 classes of BI and 50

classes and FI. were randomly divided into 150 classes of BI and 50 classes and F1.

5.2.1 Experimental Setup for CSim Embeddings

In Equation 5.1, m was set to 30 during BL and 100 during FSL. A higher m makes
the task of minimising of the objective function harder, helping the vision model learn

the mapping with a few examples during FSL.

5.2.2 [Experimental Setup for n-ball Embeddings

In Equation 5.2, u and v parameters were set to 0.1 and 1 respectively. k values for the
selection of hard negatives were set to 15 for minilmageNet and Stanford Dogs and 26
for tieredImageNet.

During FSL, u was kept at 0.1, the same as BL, but v was increased to 10 to allow
the negative samples to have more effect. Especially with 1-shot learning, this was
found to be helpful to make the training more effective. k was set to 3 during 5-way
classifications and 15 during 20-way.

This setup was used when training with both n-ball and multi-relational n-ball em-
beddings.

5.3 Results and Comparative Analysis

5.3.1 Few-shot Classification: CSim and n-ball Embeddings

Table 5.1 shows the 5-way 1-shot and 5-shot performance comparisons with state-of-
the-art few-shot image classification approaches on minilmageNet and tieredlmageNet
datasets. Additionally, I include the performance of several standard vision models in
the same 5-way setting that are not designed for few-shot learning, namely, ResNet
[HZRS16¢], SqueezeNet [[HM*16], VGG [SZ14] and DenseNet [HLVDMW17]. Also
as a control experiment, I add results of a vision model trained in ViOCE with ran-
domly generated point embeddings without any background knowledge.

It can be seen that VIOCE generally surpasses the performance of all other ap-

proaches in every 5-way task on both the datasets while achieving >90% accuracy
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Table 5.1: 5-way 1-shot and 5-shot accuracy comparison with existing approaches
using minilmageNet and tieredlmageNet benchmarks. Accuracies are reported with

95% confidence intervals.

minilmageNet 5-way

tieredImageNet 5-way

Model
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)
ResNet [HZRS16¢] 20.89 24.90 - -
SqueezeNet [[HM'16] 19.86 21.39 - -
VGG [SZ14] 21.93 67.70 - -
DenseNet [HLVDMW 17] 27.04 32.49 - -
MAML [FALI17] 4870 £ 1.84 63.11 £0.92 51.67£1.81 70.30 £ 1.75
Matching Networks [VBL ' 16a] 43.56 + 0.84 55.31 £0.73 - -
IMP [ASST19] 49.20+0.70 64.7 +0.70 - -
Prototypical Networks [SSZ17] 4942 £0.78 68.20 £ 0.66 53.31 £0.89 72.69 £0.74
TAML [AJQS18] 51.77 £ 1.86 66.05 £+ 0.85 - -
SAML [HHC™19] 5222+ n/a  66.49 + n/a - -
GCR [LLX"19] 5321+ 0.80 72.34 £+ 0.64 - -
KTN (Visual) [PLZ"19] 54.61 £0.80 71.21 £ 0.66 - -
PARN [WLGJ19] 55.224+0.84 71.55+0.66 - -
Dynamic Few-shot [GK18b] 56.20 £ 0.86 73.00 + 0.64 - -
Relational Networks [SYZ18b] 50.44 +0.82 6532+0.70 5448 +0.93 71.32+£0.78
R2D2 [BHTV18b] 51.2+£0.6 68.8 £ 0.1 - -
SNAIL [MRCA17] 55.71 £0.99 68.88 £ 0.92 - -
AdaResNet [MYMT18] 56.88 £ 0.62 71.94 + 0.57 - -
TADAM [ORLI18] 58.50 £0.30 76.70 £ 0.30 - -
Shot-Free [RBS19] 59.04 £n/a 77.64+n/a 6352+n/a 82.59 +n/a
TEWAM [QSL"19] 60.07 £ n/a 7590 £ n/a - -
MTL [SLCS19] 61.20 + 1.80 75.50 + 0.80 - -
Variational FSL [ZZN"19] 61.23 £0.26 77.69 £ 0.17 - -
MetaOptNet [LMRS19] 62.64 + 0.61 78.63 +0.46 65.99+0.72 81.56+ 0.53
Diversity w/ Cooperation [DSM19] 59.48 £0.65 75.62+0.48 - -
Fine-tuning [DCRS19b] 5773 £0.62 78.17+£0.49 66.58 +0.70 85.55+0.48
LEO-trainval [RRST18b] 61.76 £ 0.08 77.59 £0.12 66.33 +0.05 81.44 £0.09
Embedding-distill [TWK120] 64.82 +0.60 82.14+043 71.52+£0.69 86.03 £0.49
PAL [MXH"21] 69.37 £ 0.64 8440+ 0.44 72.254+0.72 86.95+0.47
ViOCE (Random point embeddings) 4047 +£0.90 77.93 +0.69 - -
ViOCE (WordNet embeddings [SBRS18]) 67.30 £ 0.85 91.03 £ 0.51 - -
ViOCE (Owl2vec embeddings [HMCJR19b]) 52.65 + 0.62 73.25 £+ 0.32 - -
ViOCE (EL embeddings [KLWYH19]) 61.124+0.72 8241 +0.12 - -
ViOCE (CSim embeddings) 68.41 + 0.84 90.81 +£0.52 - -
ViOCE (n-ball embeddings) 65.71 £ 0.13 93.65+0.07 73.4+0.13 88.95 £ 0.09

in minilmageNet 5-shot task. The model informed by random point embeddings per-

forms worse compared to all other models informed by concept embeddings. One no-
ticeable result is in the 5-way 1-shot setting, VIOCE with both WordNet embeddings

and CSim embeddings surpass the performance of VIOCE with n-ball embeddings.

This implies that learning with a very small number of examples (in this case just 1

image per class) is a harder task with n-ball embeddings than with point form embed-

dings. To further understand this effect I visualise the behaviour of image embeddings
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and relevant n-balls of the candidate classes during an instance of 5-way 1-shot and 5-
shot few-shot classification training. Figure 5.2 demonstrates this, where the projected
image points are shown in blue and the candidate concept embeddings are shown in
red. The objective of the vision model here was to embed an image as a point inside
its label’s n-ball. Comparing Figure 5.2 (a) and (b), it can be seen that this is harder
to achieve in the 1-shot case than the 5-shot. Even though the distribution of points is
somewhat directed towards the n-balls during 1-shot, they do not reach the inside as
much as with 5-shot. The higher accuracies of 5-shot classification in Table 5.1 reflect
this behaviour. These observations were consistent with all the other datasets when

using n-ball embeddings.

Next, the study further extends the evaluation with the minilmageNet dataset to
the task of 20-way 1-shot and 5-shot classification. Having all the 20 few-shot classes
should offer a bigger challenge to the model, having to distinguish between more pos-
sible classes with a few examples. Table 5.2 presents the result comparison for this
task with other state-of-the-art few-shot classification models. I add a vision model

trained with randomly generated point embeddings in this task as well.

Table 5.2: 20-way 1-shot and 5-shot accuracy comparison with existing approaches
using minilmageNet dataset.

minilmageNet 20-way

Model 1-shot (%) 5-shot (%)
MAML [FAL17] 16.49 19.29
Meta LSTM [VBL " 16a] 16.70 22.69
Matching Networks (Vinyals et al.) 17.31 26.06
Meta SGD [LZCL17] 17.56 28.92
Deep Comparison Network [ZQS™ 18] 32.07 47.31
TIM-GD [BMR "20] 39.30 59.50
ViOCE (Random point embeddings) 25.51 46.08
ViOCE (WordNet embeddings [SBRS18]) 34.81 58.83
ViOCE (CSim embeddings) 31.63 54.75
ViOCE (n-ball embeddings) 48.02 84.13

It can be seen that ViOCE with n-ball embeddings surpasses the performance of the
existing approaches in both 20-way 1-shot and 5-shot tasks. Referring to Figure 5.2 (c)
and (d) visualising the behaviour of image points and candidate n-ball concept embed-

dings during 20-way FSL, it can be seen that the task of mapping images towards the
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Figure 5.2: Visualisation of projected image feature points (in blue) in the vicinity of
target concept embeddings (in red) during instances of 5-way and 20-way few-shot
training of ViOCE using minilmageNet.

n-balls has become somewhat easier for the vision model in this case, especially dur-
ing 5-shot. I see this as a result of having more negative samples to direct the feature

points during training in the case of 20 candidate classes.

Moreover with Stanford Dogs dataset, I produce fine-grained few-shot image clas-
sification results for ViIOCE and compare them with several existing few-shot ap-
proaches using the same dataset. Table 5.3 shows the results for both 5-way and

20-way settings with Stanford Dogs.



80CHAPTER 5. FEW-SHOT IMAGE CLASSIFICATION INFORMED BY CONCEPT EMBEDDINGS

Table 5.3: Fine-grained few-shot image classification accuracies of VIOCE compared
with exiting approaches.

Stanford Dogs 5-way  Stanford Dogs 20-way

Model 1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)
MAML [FAL17] 31.52 59.66 - ;
Meta-Learner LSTM [RL16b] 38.37 53.65 - -
Matching Nets FCE++ [VBL* 16a] 46.01 57.38 - ;
DN4-DA (k=1) [LWX*19] 45.73 66.33 - ;
MATANet [CLLC20] 55.63 70.29 - ;
MML [CLLC21] 59.05 75.59 - ;
Standard ResNet50 [HZRS 16¢] 36.09 71.13 5.4 7.1
ViOCE (WordNet embeddings [SBRS18])  88.70 93.32 5257 71.67
ViOCE (CSim embeddings) 87.45 90.68 44.69 65.55
ViOCE (n-ball embeddings) 74.76 95.45 60.51 86.29

Overall with fine-grained few-shot image classification, ViOCE produces supe-
rior accuracies in the tasks with all embedding types when compared to existing ap-
proaches. The observation from Table 5.1 is consistent in this case as well, where
the point embeddings perform significant better in the 5-way 1-shot setting. This is
again implying the difficulty of learning with n-balls with just 1 image per class. But
this effect is overcome in the 20-way 1-shot setting as the increase in the number of
candidate class seems to have helped the F'SL process with n-balls.

In general, the higher differences in the performance of all ViOCE approaches in
this task when compared to the existing methods imply the supportive role of back-
ground knowledge during the challenging task of identifying similar-looking classes

with a few examples.

5.3.2 Few-shot Classification: Multi-relational n-ball Embeddings

Multi-relational n-ball embeddings were evaluated separately on the CUB-200-2011
dataset and compared with other existing state-of-the-art approaches that perform few-
sot image classification on the same dataset. Table 5.4 shows the accuracies of VIOCE
using the three types of embeddings proposed in Section 4.8.

It can be seen that VIOCE with all three embedding methods produces accuracies
greater than 80% in both 5-way 1-shot and 5-shot tasks. ViOCE (FO-EM) shows the
best performance, producing accuracies above 90%, while surpassing the state-of-the-

art in the 5-way 5-shot task.
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Table 5.4: 5-way 1-shot and 5-shot image classification on CUB-200-2011

5-way classification

Methods
1-shot (%) 5-shot (%)
Baseline++ [CLK ™ 19b] 69.55+0.89 85.17£0.50
MAML [FAL17] 70.32+£0.99 80.93 +£0.71
ProtoNet [SSZ17] 72.99 +(0.88 86.64 +0.51
Matching Networks [VBLT16b] 73.49 £ 0.89 84.45 +0.58
S2M2_R [MKS™20] 80.68 £0.81 90.85+0.44
Transfer+SGC [HGP20a] 88.35+0.19 92.14+0.10
PT+MAP [HGP20c] 91.55+0.19 93.99 +£0.10
ViOCE (FO-EM) 90.34 £0.18 96.48 +0.11
ViOCE (TF-EM) 81.64 £0.23 88.23+0.19
ViOCE (SP-EM) 85.37+£0.21 94.14+0.16
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5.4 VIiOCE vs Knowledge Encoded as Class Labels

An alternative simpler approach to inform a vision architecture with background knowl-
edge is setting up the vision task as multi-label classification, where the labels of the
images are extended using the background knowledge. It can be argued that the ex-
tra information in the label space can then be transferred into the vision model during
training [WYMT16]. I explore how this technique compares with VIOCE by setting
up an experiment to perform the multi-label classification with ViOCE using n-ball
embeddings and a standard ResNet [HZRS16c¢] architecture. I only use VIOCE with
n-ball embeddings here, as modifying the CSim embedding setup to perform multi-

label classification is challenging.

In multi-label classification, for a prediction to be correct, a model should output
all of the relevant labels given an input image. To this end, I modify the inference
procedure of VIOCE with n-ball embeddings, where a prediction is taken only when
an image point is inside a n-ball. During inference, the candidate classes are extended
with all the n-balls of their more general classes, i.e., the prediction can be several
concepts. For example, an image point mapped inside the Poodle n-ball can predict
both Poodle and Dog, since the Poodle n-ball is enclosed by the Dog n-ball.

This experiment used the 80 training classes of minilmageNet dataset with 500
images per class and each label was extended with all its super-classes according to
the minilmageNet ontology. The ResNet model was trained using stochastic gradient

descent with a learning rate of 0.1 and a binary cross-entropy loss coupled with a



82CHAPTER 5. FEW-SHOT IMAGE CLASSIFICATION INFORMED BY CONCEPT EMBEDDINGS

sigmoid layer to be assessed against a one-hot encoded vector in the label space. The
model was trained for 100 epochs with a batch size of 8.

The results recorded a training accuracy of 47.33% and a testing accuracy of 75.82%
for the standard ResNet vision model. Whereas, ViIOCE reported 79.34% and 95.01%
as training and testing accuracies respectively. Even though the standard model attains
considerable accuracy and an effective generalisability, VIOCE achieves much better
performance in the multi-label classification task. We argue that this is caused by the
effectiveness and transparency of the knowledge infusion technique using concept em-
beddings in ViOCE, whereas providing more information in the form of labels can be

inefficient and noisy.

5.5 Ablations Studies

5.5.1 Random Hard Negatives with n-ball Embeddings

A vital part of the technique proposed to train vision model with n-ball embeddings is
the selection of hard negatives as discussed in Section 5.1.2. I look at the importance
of choosing hard negatives via the proposed k-means clustering technique by compar-
ing it with a random selection of hard negatives. Taking the 20-way 5-shot setting
with the minilmageNet dataset, I setup an experiment to choose 5, 10 and 15 classes
at random from the 20 classes as hard negatives during the training process. I select
the 20-way case because it gives us enough classes with similarities and dissimilarities
to understand how the selection of hard negatives can be important. All other exper-
imental details remains the same as in Section 5.2.2. The results reported accuracies
of 67.32%, 75.37% and 79.14% for the cases of 5, 10 and 15 random hard negatives
respectively. This compares with the accuracy of 84.13% in Table 5.2 for ViOCE with
the proposed method of hard negative selection. This empirically shows that the ap-
proach of selecting the most similar classes as negatives via clustering can help guide

the mapping of the vision model.

5.6 Semantically Meaningful Errors

This chapter introduces the notion of semantically meaningful errors in an image clas-
sification task and proposes a framework which is used to capture them in the proceed-

ing few-shot image classification experiments. Existing work in image classification
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[HZRS16¢c, KSH12b] expects the prediction from the vision model to be the ground
truth label of the image and otherwise it is considered incorrect. But I argue that not all
classification errors are equal, especially when evaluating a model for its ability to gain
a conceptual understating about objects. Prediction of a comparatively similar concept
to the ground truth concept should be “less wrong” than predicting a largely dissimilar
concept. For example, classifying a Poodle image as a German_Shepherd should be
less wrong than classifying it as a Fish. So, according to the similarity between the
concepts in the prediction space there should be a way to capture the degree of error

during evaluation.

Better understanding of errors can be useful when evaluating how a trained model
is behaving during a classification task. Information such as frequently misclassi-
fied class pairs provides insights into biases captured during the training phase. Al-
though misclassifications between very similar fine-grained classes can sometimes be
expected, confusions between totally dissimilar classes should be considered as big-
ger errors. Identification of these guides the revisiting of the training data and the

background knowledge used during training.

The use of background knowledge about the classes in the classification task is the
factor that enables the measure of errors in this case. To this end, I have proposed a
systematic framework to measure the degree of error in few-shot image classification

results using the class hierarchy of the ontologies used as background knowledge.

5.7 Existing Evaluation Method

The main metric during the existing evaluation of few-shot image classification is
found to be the score of accuracy when classifying a test set of a task [CLK™*19a].
Here, the accuracy is governed by the portion of the correct predictions out of all the
predictions of a model. A correct prediction is an exact match between the predicted

class and the ground truth class, otherwise it is considered an error.

This framework does not contain a mechanism to understand more about the errors,
which is important because some errors can be better than the others. But existing ap-
proaches that does not incorporate background knowledge about the classes also lacks
the extra knowledge needed to evaluate these errors meaningfully. Hence, I propose
an extension to the evaluation framework in this study, that also measures the degree

of errors during a few-shot image classification task.
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5.8 Proposed Framework

Along with the existing accuracy calculation, the proposed framework is designed
to determine the semantic meaningfulness of the predicted class with respect to the
ground truth label class in case of an error in prediction among the candidate classes.
The similarity value between these two classes is taken as the degree of error in classi-
fication, where a higher similarity means a lower degree of error, i.e., a more semanti-
cally meaningful error.

Figure 5.3 shows the general flow of the similarity computation process of the
proposed framework that outputs the degree of error. Given the prediction of the vision
model for an input image, first it is compared with the ground truth class to determine
if it is an error. If so, both the predicted and the ground truth classes are fed into the
similarity computation process that takes in an ontology-based similarity measure as
another input. This measure determines the similarity between the two classes, the
score of which becomes the output degree of error during that classification instance.

The framework is open to any choice of a similarity measure according to the in-
formation available from the background knowledge used in a task. In this study, I
propose the feature-based similarity between concepts of an ontology (introduced in
Section 2.2.2) as the default measure to be used in this error analysis. The type of
feature-based similarity, whether it should be atomic or subconcept similarity, is de-
cided according to the knowledge available in the ontology in a given case. For exam-
ple, considering the Birds Ontology (Section 4.3.2), since it provides more features of
the bird species in the class expressions rather than via the class hierarchy, subconcept
similarity (Section 2.2.2.2) would be a better choice than the atomic similarity (Section
2.2.2.1). Figures 5.4 (a) and 5.4 (b) are two snapshots of the Birds Ontology showing
the information available in the class hierarchy and the class expressions, respectively.

For each trained vision model during the experiments in Chapter 5, I determine the
semantic meaningfulness of its classification errors using this framework. For errors
when classifying a test set, I calculate the mean, max and mode values of the feature-
based similarities between the predicted and the ground truth classes. Provided that
more similar classes have a higher similarity score between them according to the
feature-based similarity measure, the mean value determines how wrong the predic-
tions are on average during the given classification task. The max determines the most
similar pair of classes that has resulted in an error, while the mode determines the
hardest pair to distinguish for the model.

Table 5.5 shows an example format with demo results on how the error analysis
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Vision model

l

Predicted label Ground truth label

Errar

Degree of error

Similarity computation

Ontology-based similarity
measure

Figure 5.3: The overall flow of the proposed framework to compute the degree of error
during a classification error according to a ontology-based similarity measure.

will be help to understand the difference in the behaviour of two vision models. It can
be seen that even though Model 1 has higher accuracy in the classification task than
Model 2, the mean of similarity scores during the errors of Model 1 is lower than that
of Model 2. This means that Model 1 tends to misclassify between classes that more
dissimilar compared to the errors of Model 2. Hence, Model 2 makes better errors than
Model 1 even with less accuracy overall. Also, looking at the max and mode values it

can be further seen that the highest similarity and the most frequent similarity during
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v owl:Thing
v

Acadian_Flycatcher
American_Crow
American_Goldfinch
American_Pipit
American_Redstart
American_Three_toed_Woodpecker
Anna_Hummingbird
Artic_Tern
Baird_Sparrow
Baltimore_Oriole
Bank_Swallow
Barn_Swallow
Bay_breasted_Warbler
Belted_Kingfisher
Bewick_Wren
Black_and_white_Warbler
Black_billed_Cuckoo
Black_capped_Vireo
Black_footed_Albatross
Black_Tern
Black_throated_Blue_Warbler
Black_throated_Sparrow
Blue_Grosbeak
Blue_headed_Vireo
Blue_Jay
Blue_winged_Warbler
Boat_tailed_Grackle
Bobolink
Bohemian Waxwing

(a) Class hierarchy of the Birds Ontology

Equivalent To

SubClass Of

(has_back_pattern some solid)

and (has_belly_color some white)

and (has_belly_pattern some solid)
and (has_bill_length some shorter_than_head)
and (has_bill_shape some all-purpose)
and (has_breast_color some white)

and (has_breast_pattern some solid)
and (has_eye_color some black)

and (has_leg_color some black)

and (has_shape some perching-like)
and (has_size some small_5_-_9_in)
and (has_tail_pattern some solid)

and (has_throat_color some white)

and (has_underparts_color some white)
and (has_wing_pattern some striped)

Bird
(b) The set of axioms defining the bird class Acadian_Flycatcher

Figure 5.4: A snapshot of the Birds Ontology
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the errors in Model 2 is higher than that of Model 1, again implying the better errors
of Model 2.

Table 5.5: An example of semantically meaningful error analysis results during a clas-
sification task.

Classification task

Method | Overall Accuracy (%) | Semantically Meaningful Error Analysis (SMEA)

Mean - 0.8
Model 1 85 Max - 2.3
Mode - 2.1

Mean - 1.2
Model 2 83 Max - 2.6
Mode - 2.3

5.9 Semantically Meaningful Error Analysis (SMEA)

The Semantically Meaningful Error Analysis (SMEA) was carried on the few-shot
image classification results using the framework proposed in Chapter 5.6. SMEA cap-
tures the degree of error in when classifying the test set F';, in each case of ViOCE,
according to the class hierarchy information of the labels. This gives the opportunity
to understand the properties of the trained vision model in terms of the average degree

of error, most frequent errors and the hardest combinations of classes to classify.

5.9.1 SMEA: CSim and n-ball Embeddings

For ViIOCE models informed with CSim and n-ball embeddings, 1 use the atomic
similarity between concepts according to the taxonomy information (as discussed in
Section 2.2.2.1) to capture the semantic meaningfulness of errors when performing
few-shot image classification on minilmageNet, tieredlmageNet and Stanford Dogs
datasets.

Table 5.6 shows the results of SMEA during 5-way few-shot image classification of
the different vision models. Comparing with the classification accuracy results of the
same models, it can be seen that the mean values increase as the accuracies increase.
This means that the errors of the better performing models are predicting more similar
classes to the ground truth label (representative by the higher atomic similarity be-

tween predicted and label classes). The max values are consistent among all datasets,
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Table 5.6: Results of SMEA using atomic similarity during 5-way classification on-
minilmageNet, tieredImageNet and Stanford Dogs datasets.

minilmageNet 5-way
Methods 1-shot 5-shot
Accuracy (%) SMEA Accuracy (%) SMEA
Mean - 0.34 Mean - 0.58
ViOCE (WordNet embeddings) 67.30 Max - 0.89 91.03 Max - 0.89
Mode - 0.71 Mode - 0.71
Mean - 0.37 Mean - 0.54
ViOCE (CSim embeddings) 68.41 Max - 0.89 90.81 Max - 0.89
Mode - 0.71 Mode - 0.68
Mean - 0.31 Mean - 0.67
ViOCE (n-ball embeddings) 65.71 Max - 0.89 93.65 Max - 0.89
Mode - 0.68 Mode - 0.89
tieredImageNet 5-way
Mean - 0.48 Mean - 0.62
ViOCE (n-ball embeddings) 73.40 Max - 0.90 88.95 Max - 0.90
Mode - 0.61 Mode - 0.61
Stanford Dogs 5-way
Mean - 0.76 Mean - 0.80
ViOCE (WordNet embeddings) 88.70 Max - 0.90 93.32 Max - 0.90
Mode - 0.72 Mode - 0.72
Mean - 0.74 Mean - 0.78
ViOCE (CSim embeddings) 87.45 Max - 0.90 90.68 Max - 0.90
Mode - 0.72 Mode - 0.72
Mean - 0.69 Mean - 0.83
ViOCE (n-ball embeddings) 74.76 Max - 0.90 95.45 Max - 0.90
Mode - 0.65 Mode - 0.80

meaning the models always made an error classifying between two classes that are very
similar. The mode values also imply the same outcome where mostly similar classes
(higher atomic similarity) are harder to classify for all the models.

Figures 5.5, 5.6 and 5.7 show examples of misclassified pairs according to the
SMEA analysis for all three datasets.

5.9.2 SMEA: Multi-relational n-ball Embeddings

With Multi-relational n-ball Embeddings, I face a challenge when using the atomic
similarity measure with the Birds Ontology. This is due to the reason that it does not
provide information on a rich hierarchical structure for the bird species (all bird classes
are defined under one superclass ‘Bird’). I use the subconcept similarity (discussed in
Section 2.2.2.2) when analysing the semantic meaningfulness of errors during the few-
shot classification on CUB-200-2011. Table 5.7 shows the SMEA results during 5-way
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(a) (b)
Figure 5.5: Example pair of misclassified classes from the minilmageNet dataset with
atomic similarity of 0.89 (a) Ibizan_hound (b) Saluki

(a) (b)

Figure 5.6: Example pair of misclassified classes from the tieredlmageNet dataset with
atomic similarity of 0.90 (a) Tiger_shark (b) Great -white_shark

(a) (b)

Figure 5.7: Example pair of misclassified classes from the Stanford Dogs dataset with
atomic similarity of 0.90 (a) Curly_coated retriever (b) Gordon_setter
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1-shot and 5-shot classification.

Table 5.7: Results of SMEA using subconcept similarity during 5-way classification

CUB-200-2011

CUB-200-2011 5-way
Methods 1-shot 5-shot
Accuracy (%) SMEA Accuracy (%) SMEA
Mean - 0.37 Mean - 0.55
ViOCE (FO-EM) 90.34 Max - 0.66 96.48 Max - 0.66
Mode - 0.61 Mode - 0.61
Mean - 0.33 Mean - 0.36
ViOCE (TF-EM) 81.64 Max - 0.66 88.23 Max - 0.66
Mode - 0.61 Mode - 0.61
Mean - 0.35 Mean - 0.42
ViOCE (SP-EM) 85.37 Max - 0.61 94.14 Max - 0.66
Mode - 0.61 Mode - 0.61

According Table 5.7 it can be observed that the best performing method, ViIOCE
(FO-EM), has the highest mean in the subconcept similarity compared to the other
models. This indicates that the similarity between the errors and the ground truth is
high on average. Overall, the max indicates that the worst errors made by all models are
between pairs that are very similar (e.g., similarity = 0.66). The mode which indicates
the most frequent error is consistent among all models where subconcept similarity =
0.61. An example for a pair of bird classes with these values is Lazuli_Bunting and
Painted _Bunting. Figure 5.8 shows images of these two classes. They are the hardest
to distinguish for each model.

Furthermore, I perform 50-way 5-shot classification using all 50 classes of F/ to
check the consistency of the above observations on errors during a classification task
with higher number of classes. This is not a standard benchmark task on CUB-200-
2011, hence I do not compare the accuracies with existing approaches. The results
for both few-shot image classification accuracy and SMEA are shown in Table 5.8.
Again, it can be seen that the mean of subconcept similarity increases as the accura-
cies increase, indicating that higher similarities among classes make the classification
harder. The max values indicate that all models struggle with the most similar pair
of classes out of the 50 and the mode values point towards classes that are the hard-
est to classify. Two example pairs of birds according to these values were found to
be {Brandt_Cormorant, Pelagic Cormorant} and {Forsters_Tern, Common_Tern }.

Some images of these classes are shown in Figure 5.9.
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(a) (b}

Figure 5.8: Two bird classes that are the hardest to distinguish during 5-way 1-shot
and 5-shot classification. (a) Lazuli_Bunting (b) Painted Bunting

5.10 Discussion

The proposed framework in this Chapter evaluates the errors during the inference stage
of a vision model. I argue that it is important to understand the behaviour of the errors
separate from the correct predictions in an informed machine learning approach. This
way a vision model is evaluated not only according to its prediction accuracy, but also
according to the semantic meaningfulness of its errors. A good model is expected to
achieve high accuracy together with high meaningfulness in errors, especially with the

integration of background knowledge.

Table 5.8: Results on 50-way 5-shot accuracy and SMEA during 50-way classifica-
tionon CUB-200-2011

Methods 50-way S-shot (%) SMEA
Mean - 0.88
ViOCE (FO-EM) 75.83 Max - 0.96
Mode - 0.96
Mean - 0.81
ViOCE (TF-EM) 70.24 Max - 0.96
Mode - 0.85
Mean - 0.86
ViOCE (SP-EM) 73.19 Max - 0.96
Mode - 0.96
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(c) (d)

Figure 5.9: Bird pairs that are the hardest to distinguish during 50-way 5-shot
classification. (a) Brandt_Cormorant (b) Pelagic_Cormorant (c) Forsters_Tern (d)
Common_Tern

Moreover, this framework can be seen as an extension to a confusion matrix that
can be generated using the prediction results in a classification task. A confusion
matrix records the misclassifications between the predicted classes and visualises them
in a way that emphasises which classes are often interchangeably predicted by the
vision model. The proposed error analysis framework uses a measure of similarity to
additionally capture the severity of the misclassifications of the vision model. The final
results show an aggregated view of the confusion matrix in a quantitative manner.

I use this framework to evaluate all vision models trained according to the pro-
posed approaches of this study during the subsequent experiments in few-shot image

classification.
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This chapter introduced the overall framework named ViOCE that is used to inte-
grate ontology-based background knowledge into a DCNN-based vision model. Sev-
eral instances of the vision model were informed by the different concept embeddings
learnt in Chapter 4.4. The techniques used during training and inference with different
embedding types were presented. The approaches were evaluated on tasks of few-shot
image classification using all datasets presented in Chapter 4.

Results in 5-way classification with minilmageNet, tieredlmageNet and Stanford
Dogs datasets from Table 5.1 show that the model informed with n-ball concept em-
beddings performed better than others in all cases except during 5-way 1-shot classi-
fication. But during the20-way setting in Table 5.2, it performed the better than other
even in the 1-shot case. This implies that the image embedding process with n-balls
is harder than with point embeddings when the number of images and the number of
candidate classes are very limited in a task. This observation is consistent with the
results in Table 5.3 as well, where few-shot image classification is performed with
fine-grained classes of the Stanford Dogs dataset.

Looking at the results of semantic meaningfulness of errors with the same datasets
in Table 5.6, it can be seen how the meaningfulness of errors increase (i.e. the sim-
ilarities between predicted and the ground truth class labels increase) with the model
performance. This indicates that background knowledge helps to improve not only the
performance, but also errors in a vision model.

In terms of the results in Table 5.4 for vision models informed by multi-relational
n-ball embeddings, it can be seen that VIOCE (FO-EM) is performing better than the
other models. But according to the earlier embedding quality results in Table 4.4,
SP-EM produces better embeddings than FO-EM. I argue that this is due to FO-EM
producing embeddings that are more favourable for the vision task when compared to
SP-EM. The difference between FO-EM and SP-EM is the way object properties are
handled during the embedding learning process. It can be concluded that represent-
ing them as translations on n-balls, in the case of SP-EM, is slightly ineffective when
compared to eliminating translations and embedding only subsumptions and disjoint-
nesses.

Looking at the error analysis from Section 5.9.2, again it is seen that highly similar
classes are hard to classify for all models. Observing the example images in Figures
5.8 and 5.9, it is clear that these classes are visually very similar, resulting frequent

classification errors.



Chapter 6
Conclusions

This chapter presents the overall conclusions of this thesis including the takeaways
and the limitations of each contribution. Also, I present some future directions for the

approaches proposed.

6.1 Thesis Overview

This thesis investigates the use of ontology-based background knowledge to inform
a DCNN-based vision model when performing few-shot image classification. To this
end, Chapter 4 addresses the first challenge of findings suitable ontologies that can be
used as background knowledge for existing benchmark vision tasks. It describes how
four OWL ontologies were constructed using knowledge sources such as WordNet and
dataset annotations containing information such as the hierarchical structure and the
visual features of the class labels of four image datasets. Chapter 4.4 presents the
proposed approaches to learn ontology-based concept embeddings that can meaning-
fully represent each concept of an ontology in a vector space. Two main embedding
types were investigated, namely, CSim and n-ball embeddings that can capture knowl-
edge from an ontology in two different ways. I further propose techniques to deter-
mine the quality of the learnt embeddings. In Chapter 5.6, a framework was proposed
to capture the semantic meaningfulness of the errors of a vision model and analyse
them according to ontology-based background knowledge. The framework involves
an ontology-based similarity measure that is selected according to the features of the
ontology used. Subsequently, Chapter 5 presents the overall framework named ViOCE
that is used for the integration of ontology-based concept embeddings with the vision

model. The training and inference techniques used with each embedding type were
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discussed and the performance results in several tasks of few-shot image classification
are presented. Furthermore, the errors of each vision model were analysed for their
semantic meaningfulness that explained the behaviour of the models with respect to

the background knowledge used.

6.2 Contributions, Limitations and Future Directions

6.2.1 Ontology Construction for Image Datasets

I produced new OWL ontologies that extends the knowledge about the class labels
found in the image datasets - minilmageNet, tieredlmageNet, Stanford Dogs and CUB-
200-2011." These will contribute towards more research in the area of hybrid learning
systems that combines vision tasks and ontologies.

Constructing the ontologies involved a few manual processes, hence it was a time
consuming process. Hence, it will be beneficial to explore ways of automating the on-
tology construction process for a given dataset in the future. Moreover, the ontologies
in this study can be further extended with more expert knowledge. For example, the
minilmageNet ontology can be improved by including more features about the classes
in their expressions, as it currently contains information only about the hierarchy of
classes. In contrast, the birds ontology can benefit from more information about the
hierarchy or a high level categorisation of the bird species, as it mostly contains only
a set of attributes about a bird. I further identify the opportunity to improve the on-
tologies via the errors during the vision task. Misclassifications can point to missing
information in the ontology that is used as background knowledge. These areas can be

further investigated.

6.2.2 Learning Ontology-based Concept Embeddings

The concept embedding approaches in Chapter 4.4 were found to be effective in em-
bedding concepts of an ontology in a vector space. It was shown how n-ball embed-
dings provide the opportunity to systematically determine the quality of the learnt em-
beddings with respect to the ontology-based knowledge. Whereas, CSim embeddings
lack this capability.

IThese  ontologies are released via https://github.com/miranthajayatilake/
ViOCE-Ontologies
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Looking at the experimental results in Chapter 5 where the models informed with
n-ball embeddings generally perform better others, it can be argued again that n-balls
can represent the ontology information more faithfully than point form CSim embed-
dings. This is due to n-balls being able to utilise both centre and radius values, whereas
CSim 1s limited to just points. For example, an n-ball enclosed by another represent
the property of subsumption, whereas points represent subsumption only by the prox-
imity of embeddings with arbitrary positioning in the vector space. Additionally, I
present how n-balls provide the opportunity to quantitatively measure the quality of
the embeddings learnt from an ontology.

A common limitation of both CSim and n-ball embeddings is that they do not per-
fectly model all knowledge from an ontology in the continuous space. The current
CSim embedding approach only considers the specialisations (i.e., subsumption rela-
tions) of a concept and ignores other available knowledge such as partonomies. Going
forward, this can be improved by incorporating more similarity information coming
from the class expressions. With respect to n-ball embeddings, the loss function-driven
learning process comes with an inherent loss of information. Additionally, I find that
the proposed radii regularisation step can contribute to more loss of information if not
handled carefully, as it limits the expressiveness of the n-balls in the vector space. This
is further seen during the learning of multi-relational n-ball embeddings, where the
translation of the n-balls representing the existential restrictions adds more noise to the
vector space. Going forward, there are opportunities to investigate further the ways of
controlling the n-balls with different axiom types, especially when embedding multi-
relational information. Making use of other geometrical properties of the vector space
and even considering different geometrical shapes when embedding will be interest-
ing. This is to investigate how the expressiveness of the embeddings can be improved
while understanding the computational costs involved.

Improvements to both CSim and n-ball embedding approaches are important, but I
would encourage efforts to improve the n-ball embeddings when it comes to learning

ontology-based concept embeddings.

6.2.3 Few-shot Image Classification informed by Concept Embed-
dings

The experimental results in Chapter 5 showed that overall the vision models informed

with the concept embeddings produce superior performance in the tasks of few-shot
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image classification compared to the exiting approaches. This demonstrates that the
integration of ontology-based background knowledge can help a DCNN-based vision

model to learn from few image examples.

When considering the few-shot classification performance generated by different
types of embeddings used as background knowledge, it can be seen that n-ball em-
beddings generally performs better than others. One limitation observed during the
training of the vision models with n-ball embeddings was the difficulty in projecting
the image embeddings to be right inside the target n-balls, especially in the 1-shot
case. This is also clear from the results where the models informed with CSim em-
beddings perform better during 5-way 1-shot tasks than the ones informed with n-ball
embeddings. It was further noticed that if the candidate class embeddings were dis-
tantly placed from each other, this again made the mapping of image embeddings hard,

resulting in lower classification accuracies.

Overall, the results show that an ontology can be a rich source of background
knowledge for an informed machine learning approach performing few-shot image
classification. The properties of ontology-based knowledge such as the well-defined
structure, consistency and the ability to infer implicit information were found to be
useful not only when learning with few examples, but also when improving the trans-
parency of the predictions of a vision model with regard to its errors. Also, using
ontology-based concept embeddings to guide the loss function during the training of a
DCNN-based vision model is a good strategy when integrating the background knowl-
edge.

Furthermore, I argue that all types of ontology information will contribute towards
good concept embeddings. In the case of few-shot image classification, information
from both the class hierarchy and other object properties in class expressions were
found to be equally useful. But is noted that the extent of knowledge coming from a
particular ontology feature can be important. For example, a shallow class hierarchy

would not provide much use when learning the concept embeddings.

Going forward, improvements to the vision model design can be investigated in or-
der to overcome the challenge of mapping image embeddings. Areas such as ensemble
neural networks [ZWT02] and image transformers [RKH"21] are interesting in this
regard, given their recent successes. There is space to further investigate different vi-
sion tasks other than few-shot image classification, where ontology-based background
knowledge can be used. Some prospects are tasks such as visual question answering
[AAL™15], image captioning [YJW'16] and out-of-distribution detection [DT18].
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Also, another interesting aspect would be enabling continuous integration of addi-
tional knowledge in the proposed framework. Background knowledge can be expanded
and updated continuously over time. It will be useful to have techniques to iteratively
update the downstream models that uses the background knowledge during applica-

tions.

6.2.4 Improved Error Analysis with Background Knowledge

The results of the proposed error analysis showed that in addition to better image clas-
sification accuracy, the informed vision models had better errors when looking at the
semantic meaningfulness of the errors during the inference stage. It was presented
how the frequently occurring errors were between classes that are highly similar which
makes the classification harder. This method can be extended to any informed machine
learning approach during evaluation in the future.

I further identify the opportunity to extend this analysis on semantic meaning-
fulness of errors towards approaches to explain the predictions of the vision model.
Background knowledge is found to improve the transparency of the model’s behaviour
during inference and it will be important to address the aspect of explainability in the

future.
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Appendix A

Appendix

A.1 Few-shot Image Classification Settings

Table A.1 lists different settings that few-shot image classification is evaluated in the

existing approaches.

Table A.1: List of exiting datasets and evaluation settings in few-shot image classifi-

cation
Paper Datasets Evaluation metics
Qiao et al. Full ImageNet (ILSVRC2015) 1000-way / 1, 2, 3-shot
CUB-200-2011
He et al. 5-way / 1, 5-shot
Stanford Dogs
5- /1, 5-shot
Omniglot way SO

Vinyals et al.

20-way / 1, 5-shot

Full ImageNet (ILSVRC2015)

5-way / 1-shot

Chen et al. CUB-200-2011 5-way / 1, 5-shot
CUB-200-2011
Zhang et al. 5-way / 1, 5-shot
Flower102
CUB-200-2011 100-way / 1, 2, 5-shot
Sun et al. —
miniPPlankton
5-way / 1, 5-shot
Stanford Dogs
Full ImageNet (ILSVRC2015) 100-way / 1, 5, 10-shot
Xu et al.

Openlmages

100-way / 5-shot

126




A.1. FEW-SHOT IMAGE CLASSIFICATION SETTINGS

127

Sung et al.

Omniglot

5-way / 1, 5-shot
20-way / 1, 5-shot

Wang et al.

Never-Ending Image Learning (NEIL)
Full ImageNet (ILSVRC2015)

Zero shot 2-hop/3-hop

Triantafillou et al.

Omniglot
minilmageNet
CUB-200-2011

5,20-way / 1,5-shot
5,20-way / 1-shot (image retrieval)
5,20-way / 1-shot (image retrieval)

Omniglot

Hilliard et al. CUB-200-2011 5-way / 1, 5-shot
CUB-200-2011
Zhu et al. Stanford Dogs 5-way / 1, 5-shot
Stanford Cars
FGVC Aircraft
tieredImageNet
Hu et al. CUB-200-2011 5-way / 1, 5-shot
CIFAR-FS
Chen et al. CUB-200-2011 5-way / 1, 5-shot
Lietal. Omniglot S-way / 1, 5-shot
Park et al. tieredImagenet 5-way / 1, 5-shot




