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Abstract

This thesis presents two examples of the impact of behavioural phenomena

at macro scale within a social system. In the context of an asset market we

study the impact of leverage and the impact that borrowing behaviour has

for price dynamics. We find in turn that, the nature of that decision making

whilst subtle, has significant consequences for the stability of leveraged asset

markets. We also examine the role behaviour plays in the spread of a disease

through a population using a very similar technique. In this instance we

identify a parameter set that characterises a set of behaviours not previously

identified in the literature, that characterises both substantially different be-

haviours and would appear to better align with field data. The existence of

such alternative explanations for macro level dynamics has significant conse-

quences for policy makers and researchers.
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Preface

My own personal experience has been vital both in my motivation for undertak-

ing this research and in informing many of the assumptions and conclusions that

are drawn here. As an undergraduate I studied natural sciences, specialising in

physics. During this time I authored a paper on decay curves and forecasting

the estimated remaining yield of fracked shale oil and gas wells in the United

States. This work formed both an introduction to economics and also to non

linear estimation techniques. After my undergraduate degree I worked at the

fund management firm M&G Investments as an analyst on the Real Estate Debt

funds. This experience gave me significant insight into the operation of markets

in practice. In particular the decision making process involved. Throughout this

experience I was struck by the extent to which behavioural factors were factored

into the investment process, an insight that has significantly informed this body

of research.

Following my time at M&G I completed masters courses in Economics at the

University of Manchester and the University of Amsterdam. As a consequence of

my prior experiences I chose to focus my dissertations on the type of behaviourally

non linear macro problems that had first interested me. This included estimating

the level of behavioural heterogeneity for the FTSE 100 as well as investigating

the impact of financial transaction taxes on behaviour in asset markets.

Finally, whilst this thesis concerns research undertaken at the University of Manch-

ester as part of the PhD program, I have now progressed on to a position as a

senior forecasting analyst at a major UK based distressed debt fund. I am cur-

rently applying the insights gained from this body of research to optimise capital

allocation within an investment setup.
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1 Introduction

Scientific approaches to investigating social systems have become increasingly im-

portant, and effective, throughout time. Across history, societies have identified

and built systems (often self-fulfilling) on the basis of some set of expectations.

This stands in contrast to the standard approach of much of economics, to de-

scribe homo economicus - the ideal person. He (or she) is a singular representative

characterising the preferences, behaviour and decisions of an entire population.

This is a natural assumption given that the computational requirements needed

to represent even a crude distribution were out of the reach of researchers until

very recently. However, recent advancements in computer technology have made

estimations of human behaviour studying deviations from what would otherwise

be considered rational very much possible.

This thesis focuses primarily on a particular aspect of human behaviour, namely a

tendency for behavioural herding. We examine a form of herding behaviour within

a more general behavioural framework specific real world contexts. In doing so

we present evidence that behavioural factors in general, and behavioural herding

with agents switching between beliefs in particular, are important to understand

when considering the dynamics of macro level variables that describe social sys-

tems.

It is increasingly important to understand the role of human behaviour in the

macro level dynamics of such systems, with the rise of interconnectedness within

and between societies. To do so, we focus on the formation of beliefs in two narrow

sets of circumstances. We will introduce two applications of behavioural adap-

tions to macro-level models and demonstrate that proper consideration needs to

be given to behavioural factors when considering macro level emergent phenom-

ena. We will see that such factors produce different predictions when compared

with standard approaches. The results found here will also have policy implica-
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tions. As we will discuss later in this thesis, we must be careful in assuming that

behavioural equilibria (or at least sets of parameters that describe such an equi-

librium) are stable or unique as assumed. What we will see is that assumptions

regarding behaviour are crucial in our measurement of that behaviour and that

this has consequences for the observed dynamics and therefore the appropriate

policy response.

1.1 Motivation

The motivation for this thesis has its origins in the time I spent working as a

debt analyst at M&G investments, where behavioural factors played a key ele-

ment in investment decisions. In particular, rules of thumb were often used to

simplify decision making when considering investment propositions.1 Such rules

of thumb have been studied extensively at a micro level, but the importance of

such behaviours for macro level dynamics remains a subject of debate, but with

leading economists such as Akerlof and Shiller arguing for their importance. For

that reason I have chosen to use this thesis to focus on two specific examples of

behaviour phenomena that emerge in different macro contexts.

1A case in point is the use of notching when assessing investments. As an example for how
this works let us consider a senior loan secured against an office building. A fund manager
might start by notching down from the sovereign credit rating to get a base line for a senior
secured loan. The manager can then choose to adjust this rating further based on the differ-
ence in key metrics when compared to comparable investments, location, quality of security,
tenancy arrangements etc. Whilst this process normally involves an element of quantitative
analysis, the weight given to each factor is ultimately subjective and is assessed using a rule of
thumb based on a managers experience.
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1.2 Overview

This thesis is presented in a journal format. The work presented here is solely my

own, except where indicated otherwise by references. This format is chosen rather

than a more standard thesis format as the subsequent sections of this thesis from

distinct contributions to the relevant literatures. Whilst in this thesis these section

are closely related in conceptual origin, in application they are best understood

separately given the differences in literature to which they are relevant. As such

chapters II and IV are presented as self contained. In addition to this introduction,

the thesis contains three subsequent chapters. Chapter II covers an investigation

into the effects of leverage in a behavioural asset market. Chapter IV presents

a study on the importance of behaviour in the spread of a pandemic. Finally,

chapter V contains a summary of this body of research that draws together the

various results and offers suggestions for future work.
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2 Behavioural borrowing in the housing market

Abstract

We extend a behavioural model of boundedly rational investors by allowing

agents to borrow to purchase assets. Such a model allows for a Minsky style

interpretation of asset price movements. Agent strategies in our model are

characterised as either speculative or non-speculative investors, with spec-

ulative investors borrowing to finance their investments. Agents evaluate

strategies based on historic performance and switch between strategies using

a logistic switching rule. Simulations of the model show that the use of a bor-

rowing heuristic can leads to endogenous market cycles. We also estimate a

such two-type behavioural switching model with leverage using data for The

US housing market for the period Q1 1983 to Q1 2018. Our results indicate

that a Minskyian interpretation for the housing bubble during this period is

consistent with the observed data.

2.1 Background

The importance of behaviour on decision making has a long history in macroeco-

nomics. Keynes General Theory dedicates an entire chapter to the role of ’animal

spirits’. More recently, Akerlof (2002) in his Nobel acceptance lecture, highlighted

six phenomena that he felt were insufficiently explained at the time within main-

stream economic thinking and where behaviour may play a crucial role. As one

of these six phenomena, Akerlof highlighted role of behaviour in asset markets,

which is where this paper will focus.

Behavioural models have been proposed to account for some of the apparent incon-

sistencies in financial markets, providing a mechanism for amplification (Shiller,

1981) of fundamental movements in their effect on prices. As was observed by

Shiller (1981, 2000), stock markets exhibit excess volatility. That is to say, fluc-

tuations in stock prices are significantly larger than movements in the underlying

fundamentals would suggest as rational. This is particularly true of bubbles and
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crashes in stock markets where, as noted by Shiller, market valuations can deviate

wildly from that suggested by any fundamental assessment. Such behavioural in-

terpretations for asset price movements have become increasing popular since the

financial crisis of 2008 as a challenge to the more standard rational expectations

explanation of asset pricing.

Following this trend of challenges to the economic orthodoxy on asset pricing,

one development of note is that in the decade following the financial crisis of 2008

there has been a revival in the ideas of Hyman Minsky. Interestingly, this revival

has occurred largely outside of the economic mainstream and is probably best

summarised in The Economist (2016):

‘Minsky’s influence was, until recently, limited. Investors were faster than pro-

fessors to latch onto his views. More than anyone else it was Paul McCulley

of PIMCO, a fund-management group, who popularised his ideas. He coined the

term “Minsky moment” to describe a situation when debt levels reach breaking-

point and asset prices across the board start plunging. Mr McCulley initially used

the term in explaining the Russian financial crisis of 1998. Since the global turmoil

of 2008, it has become ubiquitous. For investment analysts and fund managers, a

“Minsky moment” is now virtually synonymous with a financial crisis.’

Such an explanation raises the question of what in fact is a Minsky moment -

and how should economists understand this concept in anything more than vague

descriptive terms. Indeed, it is interesting to ask if this is a concept that can

actually be applied in any useful analytical sense in markets, and if it can, does

it really provide an explanation for the financial crisis of 2008 as many investors

believe it does.

That an idea has gained such traction among investors whilst remaining relatively

unstudied within the economic mainstream would appear unusual, but is perhaps
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less surprising when we examine Minsky more closely. In brief, Minsky’s financial

instability hypothesis (Minsky 1982, 1992) characterises system instability as the

product of debt and describes three types of debt financing that economics units

can engage in: hedge, speculative and Ponzi.

Within Minsky’s framework, the hedge unit is one that can make debt repayments

that cover both the principal and interest from its cash flows. Speculative units

are able to cover interest payments with cash flows, but not pay down the princi-

pal, so will need to eventually refinance. Ponzi units are those cannot even make

repayments on the principal with current cash flows, but borrow in anticipation

that a rise is asset prices will allow them to make interest payments and hoping

that they can refinance the debt in the future. In this case of Ponzi borrowers,

falling prices, or even prices simply not rising fast enough is sufficient for them to

become insolvent leading to involuntary sales of assets and decrease in demand,

that puts additional downward pressure on prices. This decrease in prices in turn

causes speculative units to become Ponzi units as they can no longer refinance

their debt, so further exacerbating the problem. As prices collapse, eventually

even hedge units may not be able to take out loans. Minsky states that as an

economy enjoys a period of stable growth, units are increasing likely to move from

hedge, to speculative and finally to Ponzi financing as the perceived risk of doing

so decreases.

Unfortunately, such an explanation of financial crashes, is a little vauge. It is

likely for this reason that such an interpretation of the US housing market crash

and subsequent financial crisis of 2008 has found more traction with investors

than economists. However, a notable exception to this trend has been in the Post

Keynesian school of economic thought and a good overview of this literature is

provided by Nikolaidi & Stockhammer (2017). Much of the older literature in

this area focuses on firms as the relevant economic unit to study, whilst post 2008

there has been a renewed focus on asset prices, particularly notable is the work
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of Chiarella & Guilmi (2011) on equity prices and Ryoo (2016) focusing on real

estate. A common trait in this literature is the development of very large models;

models that because of their complexity do not then lend themselves to empirical

analysis. This results in such models lack both convincing verification and utility

beyond that of being able to tell a potentially interesting story.

However, one potentially promising avenue of research that has arisen out of the

existing Minsky literature is the potential for using agent based models as tool

to examine Minskyian dynamics. Indeed, this is the approach taken by Gatti et

al (2010) and Chiarella & Guilmi (2011). Given that there is already a relatively

large and growing literature using agent based models, and that it lies closer to

the economic mainstream, such an approach would appear sensible.

Much work has already been done on the subject of heterogeneous agent’s models

with a good summary provided by Chen et al (2012). Heterogeneous agent models

will typically, although not always, make use of adaptive expectations obtained

through learning behaviour and evolutionary processes. This allows market par-

ticipants to switch between beliefs, often referred to as shifting market fractions,

depending on relative performance and therefore the market to become dominated

by a particular belief type; sometimes leading to significant deviations of prices

from fundamental values.

While ostensibly studying different mechanisms, given the similarities between

heterogeneous agents models when applied to markets and Minsky’s hypothe-

sis, it is interesting to consider if the two views are compatible. The approach

of Chiarella & Guilmi (2011) is to note that using an appropriate heterogeneous

agent’s framework it can be assumed that on average fundamentalist investors will

tend to invest in hedge firms, and that chartists will prefer riskier investments.

This offers a nice intuition, suggesting that if a market becomes increasingly domi-

nated by chartists, we can also regard it is as likely becoming increasingly exposed
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to the risks of Ponzi finance under the Minskyian view, leading to market insta-

bility. Such an interpretation of Minsky’s theory provides an explicit mechanism

for the rapid collapse of a bubble, something often only speculated on or simply

missing from the literature on heterogeneous agent’s models. Given that previous

work with heterogeneous agents models has empirically identified shifting market

fractions and attributed bubble formation to them.

Perhaps the most attractive feature of the heterogeneous agent model literature

lies in the fact it has been applied empirically to a number of different asset

classes, with some success. For example, Chiarella et al (2014) and Lof (2014) all

use such models to empirically study the price of stocks. Additionally, Westerhoff

& Reitz (2003) use a similar type of model to study exchange rates and oil prices

are analysed by Ter & Zwinkels (2010).

A different approach to studying asset markets and boom bust dynamics is found

in experimental literature. Work following an experimental asset market ap-

proach, for example Smith et al (1988) has found mixed evidence for the presence

of boom and bust asset market cycles, with some experiments producing boom

and bust dynamics, but others failing to do so. The results obtained by Smith

suggests that experience can reduce the probability of bubbles by eliciting the

formation of common expectations (priors). Interestingly Lei et al. (2004) sug-

gests that the departures from a fundamental value are not caused by the lack of

common knowledge of rationality that leads to speculation, but that the subject

behaviour can itself exhibit elements of irrationality, leading to the formation of

bubbles. Work by Haruvy et al. (2007) attempts to study this directly by elicit-

ing predictions from subjects, finding that beliefs about prices are informative in

predicting future price movements and adapt based on past trends, and therefore

play an important role in generating self fulfilling asset market cycles.
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A possible explanation for this mixed evidence on bubble formation or lack thereof,

is that it may be due to the complexity of the problem solving required during the

experiment for the participants. This view is supported by Bao et al. (2021) in

their review of the literature on Learning to Forecast Experiments. They observe

that a there is a rapid convergence to the rational expectations equilibrium in neg-

ative feedback markets, but persistent bubbles and crashes in positive feedback

markets. They also find that forecasting accuracy depends on the complexity

of the task. This could be understood as subjects in less complex tasks being

able to get sufficiently close to the ’correct answer’ for their prediction that the

asset price remains stable, whereas in more complex settings, subjects fall back

on insufficiently precise rules of thumb, leading to asset price cycles. This will

motivate one of the key contributions of this paper, where we examine a borrow-

ing heuristic as a substitute for agents dynamically optimising their level of debt,

given their beliefs over price changes. This is consistent with Lei et al. (2004) as

such behaviour has an element of irrationality, whilst also reflecting the findings

of Bao et al. (2021) with agents choosing to simplify a complex problem at the

expense of accuracy.

For the purposes of this paper we will focus on the theoretical approach pio-

neered by Brock & Hommes (1997) and Brock & Hommes (1998). An important

addition to the literature (for the purposes of this paper) was made by by the lat-

ter with the introduction of memory to heterogeneous agents models in Hommes

and in’t Veld (2018). This allowed agents over time to ‘forget’ past market history

as well as learning from it. Such a mechanism provides for a progression of agents

over time, from hedge to speculative to Ponzi financing, that Minsky suggests.

A futher advantage of this style of model is that it has previously been empiri-

cally applied to asset prices in Boswijk et al (2007), and more recently in Brock

& Hommes (2007) and Hommes & in’t Veld (2018). Given that a key motivation

of this paper to examine the validity of a Minsky style interpretation of the 2008
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housing market crash, this will allow us to test the model against US data for

house prices in this period.

There is already a substantial literature on the housing market and the deter-

minants of house prices. Particularly relevant for this paper is the work that

emphasises the role of leverage on house prices and vice versa. Work such as that

by Lamont & Stein (1997) finds that higher leverage ratios lead to a greater sen-

sitivity of house prices to shocks. More recent work such as that of Cloyne et al.

(2019) finds that there is also an effect of house prices on borrowing and that this

is largely determined by collateral effects. A similar result from Miles & Munro

(2021) emphasised the role of interest rates as a determinant of house prices, with

falling rates making credit more affordable, in turn leading to an increase in bor-

rowing and so pushing up prices. Together this suggests a feedback loop between

borrowing and house prices. We contribute to this literature here by offering an

approach that places the borrowing decision within a behavioural asset market

framework that allows for feedback between house prices and borrowing.

In this paper we to embed some of the ideas of a Minsky style explanation for a

leveraged asset market within a simple Heterogeneous agents model of an asset

market provided by Hommes and int’ Veld (2018). We use this model to study

the price dynamics of an asset market using both simulations and empirics and

examine if such a model can offer any advantages over a more standard model.

Specifically, we are asking to what is the contribution of borrowing behaviour to

the formation of asset market bubbles. This paper contributes to the existing lit-

erature in two significant ways. First, we extend a standard model of asset market

pricing to include borrowing, where agents can change between mean reverting

and trend following expectations for changes in future prices and borrow in line

with their beliefs. This allows us to capture the difference between hedge and

speculative/Ponzi investors in a manner analogous to that described by Minsky,

allowing for a mainstream Minskyian interpretation of the housing market. We
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show that under this formulation, agents will switch between beliefs as they ob-

serve movements in house prices and that different borrowing behaviours result

in very different price dynamics. In particular, we find that when agents borrow

optimally in a simulated asset market, we see only a small amplification of asset

price movements and do not observe any boom and bust price dynamics. How-

ever, the use by agents of a borrowing heuristic in a simulated asset market leads

to the kind of boom and bust behaviour we would expect according to Minsky.

Second, we use empirical estimation to verify that the observations from real

world data for the US housing market are consistent with our model assumptions.

This is in line with the results obtained by Hommes and in’ Veld (2018) for the

S&P 500 using a similar framework. We find that the model produces results

consistent with the results of Hommes and in’ Veld (2018). We also discover that

under this framework the estimated fraction of housing market speculators corre-

lates with the observed delinquency rate on mortgages in the US, suggesting that

this work supports a Minsky style narrative as a contributory factor leading to

the 2008 financial crisis.

The remainder of this paper is organised in the following way. In section 2 we

introduce the theory and model description. Section 3 contains simulated price

dynamics. In section 4 we provide the estimation methodology for the model and

the results obtained. Section 5 discusses these results and finally conclusions are

presented in section 6.

2.2 Theory

As mentioned in our introduction, the model that we will use in this paper in

based on that developed in Hommes & int Veld (2018) as this model allows us to

characterise several key components of Minsky’s financial instability hypothesis.

The model uses two types of boundedly rational traders, whose expectations over
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prices will differ in the short run, but that agree on a long run fundamental value

to which they expect prices to eventually return. These agents will then maximise

expected returns each period based upon their expectations. In our model we will

additionally allow our agents to borrow in order to boost their expected returns.

Our first contribution begins by augmenting the approach of Hommes & int Veld

(2018) by allowing agents to borrow and so introducing debt into agent returns.

Therefore, we start by calculating excess returns as follows:

Rt+1 =
Pt

Pt −Dt
[Pt+1 + Yt+1 − (1 + r)Pt − iDt] (1)

Where Rt is the excess return, Pt is the price of a risky asset Yt is the cash flow

derived from the risky asset Dt is the amount borrowed against the risky asset, r

is the return on a riskless asset and i is the interest rate on debt.

We assume that the risky asset is in zero net supply and that agents have de-

mand for the asset such that:

zh,t = Eh,t[Rt+1] (2)

H∑
h=1

zh,t = 0 (3)

Substituting LTVt = Dt
Pt

we can the under these assumptions write the pricing

equation as shown in equation (4), where with nh,t reflecting the proportion of

the market that uses forecasting rule h at time t.

Pt =

H∑
h=1

nh,t
1 − LTVh,t

Eh,t[Pt+1 + Yt+1]

1 + r + iLTVh,t
(4)

Assuming the growth rate of cash flows follows an iid process the relationship

between current and future cash flows can by described by equation (5) where g
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represents long run growth rate of earnings

Eh,t[Yt+1] = (1 + g)Yt (5)

For simplicity we will from here on formulate the model in terms of the price to

cash flow ratio where:

δt =
Pt
Yt

(6)

xt = δt − δ∗t (7)

R∗ =
1 + r

1 + g
(8)

The term δ∗t is used here to describe the fundamental value for the price-yield

ratio of the risky asset and xt is therefore the deviation of the price-yield ratio

from its fundamental value. Rewriting the pricing equation in terms of deviations

from the fundamental we get:

xt = δt − δ∗t =

H∑
h=1

nh,t
1 − LTVh,t

Eh,t[xt+1]
1 + g

1 + r + iLTVh,t
(9)

Instead of focusing on the three agent types described by Minsky, we instead use

two for the sake of simplicity and tractability. Whilst this may seem a significant

simplification, Aoki (2002) uses a theoretical model to argue that two groups are

sufficient to characterise the behaviour of many different market participants. We

can then represent these two groups with representative agents. As in Hommes &

int veld (2018) agents switch between beliefs using a logistic switching rule based

upon past performance:

nh,t+1 =
eβUh,t∑H
h=1 e

βUh,t
(10)

Where:

Uh,t = (1 − ω)πh,t + ωUh,t−1 (11)
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The ω that appears in equation (11) represents the memory of the agents, and

must lie between zero and one, with one being perfect recall and zero: not re-

membering anything. The parameter β controls how fast agents switch between

forecasting rules in the model. We expect that our estimated value for this will be

insignificant, as the model does not have sufficient power to determine this using

least squares estimation. The parameter is however still necessary for the rest of

the model to function.

Agents evaluate the performance of the beliefs by comparing expected returns

with the realised returns as follows:

πh,t+1 = α
(Eh,t[xt+1] −R∗xt − iLTVt

r−g )(xt+1 −R∗xt − iLTVt
r−g )

(1 − LTVt)2
(12)

Equation (12) allows agents to evaluate how well each belief performs by com-

paring the expected performance of each belief type, shown in the first set of

parentheses, with the observed performance, shown in the second set of paren-

theses. This is analogous to the form derived in Hommes and in’t Veld, but now

adjusted for the introduction of leverage. This means that agents now need to

account not only for the opportunity cost of the investment represented by R∗xt,

but also the amount that they borrow as well.2 The introduction of leverage into

the model here also leads to a (1 − LTVt)
2 term being present as a denominator.

This means that the payoff function becomes increasingly sensitive as leverage in-

creases and so should act as an additional amplification factor in the model that

is not present in Hommes and in’t Veld (2018).

We assume that Agents form beliefs regarding future price-cashflow ratios that are

2As an example: if there is a belief that Eh,t[xt+1] > R∗xt + iLTVt
r−g

and the agent then

observed that xt+1 > R∗xt + iLTVt
r−g

) the payoff function for holding this belief will be positive.
The agent will then be more likely to hold this belief in the subsequent periods. Conversely,
if the belief is such that Eh,t[xt+1] > R∗xt + iLTVt

r−g
and then the agent observed that xt+1 <

R∗xt + iLTVt
r−g

) the payoff function for holding this belief will be negative and the agent will be
less likely to hold this belief in the subsequent periods.
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linear in the last observation as shown in equation (13). The parameter φh is the

forecasting rule for agent h. We expect that we will have one agent that borrows

to buy assets and will have φh greater than one. This represents trend following

behaviour and these agents are the speculators in our market. As such they are

an analogue to the Ponzi investors of the Minsky interpretation. We also have a

second type of agent that we expect will have φh of less than or equal to one and

who may or may not borrow. This agent is analogous to the hedge/speculative

borrower.

Eh,t[xt+1] = fh(xt−1) = φhxt−1 (13)

Finally we will assume that agents choose between the two types of beliefs such

that:

xt =
1 + g

1 + r + iLTV1,t

n1,t
1 − LTV1,t

φ1[xt−1] +
1 + g

1 + r + iLTV2,t

n2,t
1 − LTV2,t

φ2[xt−1]

(14)
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2.3 Simulations

Using the theory developed in section 2, we simulate the price dynamics for the

model. Doing so allows us to verify that the price dynamics are consistent with

the intuition that motivates the model. As we have seen in the previous section,

the model contains a number of normalisation parameters. For simplicity, we

will ignore these for the purposes of the simulation and use normalised variables

instead. This will mean that some of the parameters that we use here will not be

directly comparable with those we find in our estimation but this will not affect

the price dynamics of the model. For reference the parameters we use are shown

in Table 1 and are selected to be broadly in line with those used in Hommes and

in’t Veld (2018). This is to illustrate the possible dynamics of the model, rather

than to suggest these parameters are reflective of what would be achieved in an

estimation.

Parameters Values

φ1 1.1
φ2 0.7
β 10
ω 0.8
r 0.1
g 0.03

Table 1: Representative parameters for the simulation of model dynamics.

Setting φ1 = 1.1 implies that agent holding belief 1 expect that following a posi-

tive price shock prices will continue to rise relative to the fundamental value and

that φ2 = 0.7 implies that agent holding belief 2 expect that following a positive

price shock prices will trend back towards the fundamental value. As discussed

in relation to equation (11), β controls how fast agents switch between forecast-

ing rules in the model. Values for β are only weakly identified in the literature,

beyond a requirement that it is large. Following Hommes and in’t Veld, we set

β = 10, as this should be sufficiently large. We will also ω = 0.8, roughly con-

sistent with the results found in Hommes and in’t Veld and would suggest that

agents in the model derive around 60% of their information from price observa-
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tions made in the preceding year. We also choose g and r to approximate the for

the owner equivalent rental value of housing and the capital growth derived from

home ownership respectively.

First, we examine the case where no borrowing is allowed, equivalent to Hommes

& int Veld (2018) and compare this with case where agents optimise borrowing for

their given beliefs. We impose a single positive shock of 5% to price deviations at

time t = 0, to approximately the higher end of historic quarterly price moves for

the US housing market. In order to examine the case where borrowing is allowed,

our agents choose a level of borrowing each period in order to maximise expected

returns given their price forecasting rule. This would be akin to the behaviour

expected by professional investors in an asset market. Agents are not credit con-

strained and switch between beliefs using the logistic switching model described

in the theory. It seems unrealistic that agents borrow at the same interest rate

for low and high levels of leverage so we model interest rates on debt as being

proportional to the square of the leverage employed such that:

i = γLTV 2
h,t (15)

We set γ such that at 70% LTV the interest rate is approximately equal to the

observed mortgage rate in the United States. As a consequence of equation (15),

the interest rate on agent borrowing i is state dependant when agents are free

to choose their level of borrowing, However, we note that given this setup agents

who believe prices will fall choose not to borrow at all, whilst only trend followers

will employ leverage.
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We see from Figure 1. that the dynamics shown are similar to that of the base

model without leverage. The difference between the two is that deviations in the

price from the fundamental in this case are slightly more persistent when leverage

is employed. In other words, debt has the effect of amplifying deviations from the

fundamental which is consistent with our intuition from the literature, and the

theory presented in equation (12) that borrowing should amplify the effect of a

price shock. However, interestingly, we do not see the boom and bust dynamics

of Hommes and in’t Veld (2018). This is due to the fact that agents are free to

select a level of borrowing that optimises returns given any interest payments,

so that potential gains from increasing leverage are offset by increased borrowing

costs providing a stabilising mechanism within the model.

Figure 1: Plot of the price deviations from the fundamental value over time
comparing price deviations in the case of no borrowing and optimised leverage
in response to a positive shock

.

To investigate this further, we examine the case where agents who are trend fol-

lowers will respond to a positive shock by borrowing at a fixed loan to value.

Based on the experimental literature on asset markets (Bao et al., 2021) we sug-

gest that this kind of behaviour may be more consistent with the behaviour of

home buyers borrowing from a bank in order to buy a house given that the calcu-

lation needed in previous example is a complex one. In this sense such a decision

rule can be understood as a heuristic for optimising returns. We see in Figure 2.

28



that this setup, whilst still reflecting the underlying assumptions for the model,

leads to markedly different price dynamics than in the previous cases. Whereas in

Figure 2: Plot of the simulated price dynamics for an asset market subjected to
a positive shock and where speculators have a fixed leverage level.

Figure 1. we see deviations from the fundamental being attenuated over time and

borrowing playing only a small amplifying role, in this case a single shock causes

a persistent deviation of the asset price from the fundamental value for the pa-

rameters we examine. Perhaps most notably the model also produces endogenous

cycles in price and debt deviations that are driven by shifting market fractions of

agents between beliefs. This is due to agents observing the initial price increase,

and then some of the agents that previously believed that prices would revert to

the fundamental shifting to the belief that the trend of deviating from the funda-

mental will continue. This leads these agents to increasing their demand for the

asset and so driving up the price even further. As an increasingly large share of

agents transition to this trend following belief, there is a smaller pool of agents

left to transition in future periods. This reduces the demand impulse in future

periods, leading to a decline in the growth rate of the price deviation. As the

price growth rate falls trend following becomes relatively less attractive and some

agents transition back to a fundamental reversion belief. This continues until the

price peaks and then declines, where this process then begins to repeat.
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The difference in the borrowing behaviour between the simulation shown in Fig-

ures 1. and 2. is that agents in Figure 2. borrow according to a heuristic rather

than dynamically optimising their leverage. In Figure 1., the agent will decrease

their leverage ratio as prices deviate from the fundamental, providing a stabilisa-

tion mechanism to the dynamics, whereas in Figure 2., the agent leverage ratio

is fixed as a function of their price belief. This is again amplification driven by

debt, but very different to what we observed seen in Figure 1. 3

Memory ω plays an important role in this framework by allowing agents to ‘re-

member’ how well each belief type did in the past. Based on the past performance

of each belief type agents will choose which strategy to follow each period with

more successful beliefs being relatively more popular and followed by a larger

fraction of agents. This is in line with the findings of the experimental literature

(Smith et al, 1988) that emphasises the importance of learning on asset market

dynamics. Using ω here, allows for the agents to have imperfect memory, so that

they place more emphasis on recent price moves4. In the model this prevents,

agents converging to a single belief and provides for persistent boom and bust cy-

cles. This is again consistent with the experimental literature (Bao, 2021), where

cycles can persist even in the absence of shocks.

3As an example consider an asset that generates a fixed cash flow such as a bond. If the
price of the bond increases, the coupon payments remain unchanged. We can borrow some
money to purchase that bond, but if the increase in interest on the borrowed money is super-
linear then there is an optimal amount that should be borrowed against the asset in order
to maximise our return. So if the bond increases in price, we will look to borrow more, but
reduce our overall leverage ratio as the cash flow from the bond remains stays the same.

4This can also be thought of as agents forgetting past events over time.
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To study this mechanism further we test to see how the fraction of speculators

changes over time, shown in Figure 3.

Figure 3: Plot of the fraction of speculators for an asset market subjected to a
positive shock and where speculators have a fixed leverage level.

We can see from Figure 3. that the proportion of speculators varies over time as

agents shift between beliefs. This is as we expected and is the mechanism that

allows us to have a Minsky style interpretation of the asset market dynamics.

To verify that it is this switching behaviour that leads to bubble formations we

reexamine the dynamics with a fixed leverage ratio, but holding the fractions of

the population that can hold each belief type constant.

Figure 4: Plot of the simulated price dynamics for an asset market subjected
to a positive shock and where speculators have a fixed leverage level and the
proportion of speculators is also fixed.

Figure 4. Shows that where the fraction of speculators is not permitted to vary

over time, the prices in the market remain stable. This confirms our expectation

that this is the key mechanism driving the asset market cycles generated in Figure
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2. Leverage in this model then provides an amplification factor by allowing spec-

ulators to inflate their demand for an asset by borrowing money. It also makes

them more sensitive to slowdowns in the price increase for the same reason and

because they now have to cover interest payments.

In summary, we can identify two different borrowing behaviours for agents in

the model that are both consistent with a Minskyian motivation, but lead to very

different price dynamics. This leads us to our first conclusion in this paper - that

the motivation for borrowing, and therefore agents borrowing behaviour may play

a significant role in markets. For this reason, careful consideration must be given

to how borrowing is implemented within Minsky style models.

2.4 Estimations

In order to examine the usefulness of our model in more detail we examine how

it performs in estimating behaviour in the US housing market. The estimation

procedure is conducted in two stages. First, we construct the dataset of deviations

from a fundamental as described by the theory shown in the previous section.

Then we estimate parameters for beliefs, memory and switching using non-linear

least squares regression. Estimation results are then compared with benchmark

models.

2.4.1 Data

To construct the time series of deviations we use quarterly data obtained from

the St Louis Fed for the period Q2 1983 to Q1 2020.5 We construct a time series

for the estimated total value of owner occupied homes in the united states by

multiplying the number of owner occupied homes by the All-Transactions House

Price Index for the United States and then fitting the data to match the observed

mean sales price for houses in Q1 2010. Because we use mean sales price to fit the

5We are limited by the availability of data needed to calculate r. This is shorter than
Hommes and in’t Veld (2018), but should still be sufficient to obtain reasonable estimates for
the behavioural parameters.
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data, it is likely that our dataset provides a small overestimate for the total value

of owner occupied housing, but this effect is likely to be small in comparison to

the overall values.6

We combine this calculated data for prices with the dataset for the imputed

rental rate of owner-occupied housing to get an estimate for the implied earnings

yield of owner occupied housing. For the sake of simplicity we use the solution

to the standard Gordon model (Gordon, 1962), as shown below, to estimate the

fundamental value of house prices.

δ∗t =
1 + g

r − g
(16)

The growth rate of implied rents g, and the implied cost of equity r = d/p+ g are

shown below in Table 2 alongside the calculated static Gordon fundamental.

r g i LTV δ∗

10.51 3.28 6.9 90 9.80

Table 2: Calculated parameters for the US housing market.

The values for r and g calculated here for owner occupied housing in the United

States are somewhat higher than those found by Hommes and in’t Velt (2018)

for the S&P 500, resulting in a significantly lower Gordon fundamental. This is

due to the time period over which the model is calculated and would likely be

somewhat more similar if a longer time series of data were available.

Using the calculated value for the fundamental we can the construct the time

series of price-earnings deviations by inverting the yield, as shown in equation

(6) and then applying equation (7). The St Louis Fed also provides a data se-

6This is due to changes in the composition of the housing stock over time. As newly built
houses are added to the housing stock the value of these houses will be recorded at the point
of sale. However, given we might expect that new houses are more likely to be built in areas
of high housing demand, we may also expect that these houses should have relatively higher
prices. However, we expect this effect to be negligible as the number of newly completed and
sold housing units each quarter will be small relative to the overall size of the housing stock.
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ries for the total value of home mortgage obligations belonging to households and

non-profits as a proxy for the total value of owner occupier mortgages. This will

be a small overestimate for the total value of mortgages secured against owner

occupied properties, but given that the vast majority of mortgages are held by

households rather than non-profits this effect should negligible. We can make a

useful comparison with the calculated prices to verify our intuition that the level

of mortgage debt outstanding should be correlated with the total value of the

owner occupied housing stock as seen below.

Figure 5: Comparison of the total value of the owner occupied housing stock,
and the total value of residential mortgage debt belonging to households and
non-profits. Both datasets are calculated reflect 2010 prices. We see that the
two data series appear to co-move.

Comparing the time series for the estimated value of owner occupied homes and

the total value of mortgages of owner occupied homes around the 2008 financial

crisis, as shown in Figure 4., we see that there seems to be significant correlation

between the two. This supports our motivating intuition behind the link between

house prices and mortgage debt. Our model cannot however explain the upwards

trend in both prices and debt.
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2.4.2 Model Estimation

For the model estimation we follow a similar approach of Hommes and in’t Veld

(2018). First we calculate the fundamental value for housing using the static

Gordon model. Then, following Hommes and in’t Veld we estimate the model pa-

rameters using non-linear least squares. This is necessary given the non-linearities

present in the model. Finally, we also introduce a benchmark model against which

to compare our results for robustness.

In order to estimate the model we will assume a constant leverage ratio and

interest rate for borrowers. These are significant simplifying assumptions, but

necessary in order to properly identify the parameters in the model given the

data available and model non-linearity. We assume a constant leverage ratio of

90% for our speculators and 0% for our non-speculators. This is in an attempt

to ensure we capture the extreme ends of the expected behavioural distribution.

Additionally use the average interest rate of 30 year fixed mortgages, calculated

to be 6.9%, as the interest rate.

We compare our version of the model with leverage to the case where the model

is estimated with no borrowing as a benchmark with the results shown in Table

3 below.

Parameters 1983-2018 Without debt 1983-2018 With debt

φ1 1.382 1.168
(0.063) (0.055)

φ2 0.53 0.932
(0.071) (0.080)

β 0.573 0.009
(0.317) (0.002)

ω 0.429 0.694
(0.053) (0.105)

Table 3: Estimation results using data for the US housing market for the period
Q1 1983 to Q1 2018.
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We notice that the difference between φ1 and φ2 for the estimation without bor-

rowing is significantly greater than for the estimation with leverage. This is

interesting as the difference between φ1 and φ2 provides the main amplification

mechanism in the model without leverage. The theory presented in equations

(12) and (14) suggests that when borrowing is included, then it should act as an

additional amplification factor in the model. These results support this predic-

tion, as with leverage included the estimated level of behavioural heterogeneity

needed to fit the data is reduced, implying that leverage is indeed providing an

extra amplification factor.

For the model with leverage, estimations for the agent price expectation rules

give results of 1.168 and 0.932 for agents employing leverage and those that do

not respectively, similar values to those found in Hommes and in’t Veld (2018).

We find a standard error for φ1 of 0.055, meaning that we reject the hypothesis

that φ1 = 1 at a 95% significance level. This implies that φ1 is consistent with

speculative behaviour as defined in our theory. We further find that φ2 has a

standard error of 0.080. As such we fail to reject the hypothesis that φ2 = 1 at a

95% significance level, which is consistent with näıve expectations. We also reject

the hypothesis that φ2 = φ1, implying that the behaviours of the two agents types

are statistically significantly different. We also find an R2 value of 0.970, suggest-

ing the model is able to explain 97% of the variation in the data. This is similar

to the R2 value of 0.985 for the model without any borrowing. Our estimate for

ω for the model with borrowing is found to be 0.694, suggesting that agents gain

77% of their information from observations made in the last year. This is slightly

smaller than the values obtained in Hommes & int Veld (2018), but still larger

than the 0.429 found for the model estimated without borrowing.
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We also estimate an AR(1) model for the deviations, as a benchmark for our

model. This is done by re-estimating the model with the restriction that φ2 =

φ1 = φ, which collapses the model to an AR(1) process. We find a regression

coefficient for φ2 of 0.975 with a standard error of 0.009., which is statistically

significantly different from one. The model obtains an R2 of 0.961, which is

slightly lower than that for the estimation with leverage, suggesting that using

leverage might allow for a slight improvement in fit over an AR(1) process, but

the difference between the two is small.

As we are specifically interested in the period around the 2008 financial crisis,

and to test the robustness of this approach we re-estimate the model on data for

the period Q1 2000 to Q1 2018. To do this we first have to recalculate values for

r and g, along with the static Gordon fundamental as shown below in Table 4.

r g i LTV δ∗

8.59 2.60 5.3 90 11.91

Table 4: Calculated parameters for the US housing market.

The values we calculate for this shortened period, shown in Table 5, are slightly

lower than those calculated previously.

Parameters 2000-2018 Without debt 2000-2018 With debt

φ1 1.130 1.132
(0.034) (0.052)

φ2 0.992 1.097
(0.038) (0.056)

β 2.509 0.063
(3.695) (0.049)

ω -0.555 0.869
(0.147) (0.167)

Table 5: Estimation results using data for the US housing market for the period
Q1 2000 to Q1 2018. Note that the estimation fails for the case without debt as
can be identified by the negative memory parameter ω.
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The most notable result we observe in the table above is the sign difference in the

memory parameter between the two estimations. As defined in our theory, the

memory parameter must fall between zero and one inclusive. With the memory

parameter falling outside of this range we conclude that the estimation cannot

properly identify parameters in the model without leverage. This means that

leverage is a component necessary to successfully estimate of this kind of hetero-

geneous agents model for the US housing market.

Our estimations for our agents price expectation rules give results of 1.132 and

1.097 for agents employing leverage and those that do not respectively. We find

a standard error for φ1 of 0.052, meaning that we reject the hypothesis that φ1

= 1 at a 95% significance level. This implies that φ1 is consistent with specula-

tive behaviour as defined in our theory. We further find that φ2 has a standard

error of 0.056. As such we fail to reject the hypothesis that φ2 = 1 at a 95%

significance level. Such a result is consistent with näıve expectations. Conversely,

cannot reject the hypothesis that φ2 = φ1. We also find an R2 value of 0.853,

suggesting the model is able to explain 85% of the variation in the data. This is

similar to the R2 value of 0.870 for the model without any borrowing, albeit this

is only achieved with the memory parameter ω falling outside the possible range

as previously discussed. Our estimate for ω for the model with borrowing is found

to be 0.869. This is similar to the values obtained in Hommes & int Veld (2018)

as we would again expect. All together this suggests that our formulation of the

model is supported by the empirical data.

We also estimate an AR(1) model for the deviations. This is done by re-estimating

the model with the restriction that φ2 = φ1, which collapses the model to an AR(1)

process. We find a regression coefficient of 1.0076 with a standard error of 0.014.

We cannot reject the hypothesis that this is statistically significantly different

from one. The model obtains an R2 of 0.851, which is slightly lower than that for

the estimation with leverage, but the difference between the two is small.
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Using the parameter estimates we obtained from our estimation for the period Q1

2000 to Q1 2018 we construct the time series for the market fraction of speculators,

by substituting the behavioural parameters we obtained in the estimation back

into our simulation. We observe from Figure 5. that the fraction of speculators

remains relatively constant until the around Q4 2005 at which point it begins to

rise until it reaches a peak in Q2 2009. After this point the fraction of speculators

falls away again until it returns to levels close to those observed at the beginning

of the period. For comparison we have also plotted the delinquency rates for home

mortgages.

Figure 6: Plot of the market fraction of speculators.

We notice that up to Q2 2009 the proportion of speculators in the market closely

tracks the delinquency rate. This makes sense in our model, given we expect that

our speculators rely on rising asset prices to make repayments, so in other words

would likely be struggling to otherwise repay their debts. From this point onwards

however, the proportion of speculators and the delinquency rate begin to deviate.

This is likely a hangover effect from the collapse of the housing market, wherein

the proportion of speculators drops, but homeowners are unable to deleverage as

quickly as they would like to and so remain delinquent on their mortgages for an

extended period of time. This something for which our model does not account.

We also notice that the estimated proportion of speculators is a relatively noisy
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time series. This is due to the fraction of speculators being sensitive to changes

in the price and amplifying them.

For completeness, and to check the robustness of the estimation procedure, we

also attempted to estimate the model for the period Q1 1983 to Q1 1999. We

found that in this instance the estimation would not converge. This highlights

a specific weakness of this approach, that the estimation procedure often strug-

gles to identify parameters where the length of data is relatively short. In this

specific instance this issue is potentially be further compounded by the changing

macroeconomic environment of the 1980s and 1990s, with a large decrease in in-

terest rates, inflation and an expansion of credit provision that accompanied the

increase in house prices that took place in this period. To test this we attempted

to reestimate the model for leverage ratios set at 60, 70 and 80%. A potential

improvement here could be to use a time varying fundamental value or a time, to

account for changing rates of interest and returns.

2.5 Discussion

Our motivation for the work we do in this paper is to place a Minskyian interpreta-

tion of asset price movements in a leveraged asset market, within the mainstream

economic literature. To do this we have extended a standard behavioural asset

market model developed by Hommes & int Veld (2018) to include leverage. We

have seen from our data that there is co-movement between net borrowing and

house prices in the USA. This serves to reinforce the intuition that house prices

and mortgage debt are linked, as would be expected under a Minskyian interpre-

tation.

We further explore the Minsky story through our simulations. The model we

study in this paper is a two-type behavioural switching model and we construct

so that our two representative agents act as rough analogues for Minsky style
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agents. On examining two different cases of borrowing, our first key result is that

we find very different results depending on the borrowing behaviour. Specifically,

agents that use a heuristic of maintaining a fixed leverage ratio to manage their

borrowing, cause endogenous boom bust cycles to occur in response to only a

single small shock to valuations, but this is not true when agents optimise their

borrowing, given their beliefs. Whilst surprising, this is consistent with the re-

sults found in some asset market experiments. If such a result can be verified

empirically it would be significant for our understanding of the role of debt plays

in determining house prices, and possibly markets more generally.

In section 4 of this paper we attempt to estimate the model using data for the

US housing market to test if the results are consistent with a Minsky style in-

terpretation of the the 2008 financial crash. First we estimate the model on a

dataset constructed for the period from 1983 to 2018 for the cases with and with-

out borrowing. We find that excluding borrowing leads to the model predicting

a significantly greater level of belief heterogeneity. As we examined through our

simulations, it is agents switching between beliefs that leads to boom and bust

asset market cycles in this model. The smaller difference in belief heterogeneity

we find when including leverage suggests that this must provide an additional

amplification factor in the model.

We further attempt to estimate the model for the periods 1983 to 2000 and 2000

to 2018, to check the robustness of this result. When doing so we find that the

model fails to differentiate between the different agent’s prediction strategies in

the estimation procedure for 2000 to 2018, and to even converge for the period

1983 to 2000 highlighting a significant limitation in our methodology. However,

for the period 2000 to 2018 we obtain results that are broadly in line with our

expectations. Agents that employ leverage in the model are estimated to have

a behavioural coefficient of 1.132 which is significantly different from 1 at a 95%

confidence level. This is consistent with our assumption that such agents are be-
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having speculators. Agents that do not employ leverage in out estimation of the

model are found to have a behavioural parameter of 1.097. This is not statistically

significantly different from one at a 95% confidence level (albeit only just), mean-

ing that they are best interpreted as behaving as if they have naive expectations.

While this is not what we initially assume when we develop our theory, it may

be explained by our study of a time interval wherein prices remain persistently

elevated above fundamentals. However, we cannot reject the possibility in this

paper that our agents follow the same prediction strategies due to the size of our

standard errors and further work is needed to resolve this issue.

Comparing the results from the full estimation to the one restricted to 2000 to

2018, we find that the the behavioural coefficient for our speculators are similar

in both periods, but that non speculators are found to have a smaller belief coeffi-

cient in the full estimation. This would suggest that there is a level of convergence

towards speculative behaviour over time. We also find that the estimated mem-

ory parameter in the full estimation is smaller. This would imply that agents in

the period 2000 onwards placed greater emphasis on historic house prices than

measured over the full dataset. Given the greater access to historic house price

data after 2000 when compared with before, due to the internet, it makes sense

that agents would place greater emphasis on historic information. We note that

for a majority of the sample period we have available, price-income deviations are

positive. In other words, the price-yield we calculate for the US housing market

remains persistently above the fundamental value for housing. This is therefore

consistent with an assumption that housing has been overvalued in recent decades.

Such a market characterisation is supported by the price dynamics we observe in

our simulations; however, it also raises the possibility that the fundamental value

we use here may not be the most appropriate for use in our estimation procedure.

In this paper we use the Gordon fundamental to reflect a typical method used by

investors to value assets, including real estate. However, the appropriateness of
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the measure is a limitation that could be further studied. Given that we assume

that homeowners use a heuristic to borrow, it is also possible that homeowners

use alternative heuristics to evaluate house prices, leading to different results.

Further investigation would be needed to identify if this is indeed the case. Us-

ing more granular data would allow us to identify if the Gordon fundamental

more accurately reflects valuations. Additionally, examining different valuation

methodologies for real estate that may more realistically reflect home owner be-

haviour would be another avenue for further work.

A significant issue arising for the methodology is that our non-linear estima-

tion has some difficulty identifying the model parameters when estimating the

model over shorter time periods. That we find a challenge in estimating non-

linear models is a problem by no means unique to this paper. Indeed, this issue is

encountered by Hommes & int Veld (2018) in their similar estimation for the S&P

500. As in their paper, we find that the model has insufficient power to identify

the switching parameter in the model - albeit our estimate for the parameter is

significantly smaller as expected. We also find standard errors for our parameters

that are larger than those of Hommes & int Veld (2018). This is due to the rela-

tively smaller sample of data we use in our estimations.

It is primarily because of identification issues that arise in estimating a non-

linear model that we choose static values for leverage and interest rates in our

regression. While we have quarterly data available that we could use in our esti-

mation procedure, we find if we do so, there is not sufficient convergence power to

estimate the models’ behavioural parameters. It is likely that this problem could

again be overcome by using a longer time series. We suggest that a possible better

alternative to the datasets that we use here in this paper could be to use data

such as that available in the Consumer Expenditure Survey. Another potential

avenue for exploring this problem could be to elicit priors from homeowners, in a

manner similar to that done in the experimental literature. This would allow the
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micro data to pin down the behavioural parameters. Whilst this would preclude

the kind of approach taken in this paper, given that the beliefs and fractions are

codetermined, it could be possible under an alternative framework. This could

allow for an estimation procedure over a that has both a greater level of precision

and covers a longer period. Further work on this is necessary but may resolve

many of the issues that we have identified here.

Our final result in this paper is obtained by taking the values from our esti-

mation and comparing the predicted proportion of speculators with the level of

mortgage delinquencies observed in the US around the 2008 housing crisis. We

expect that these should be correlated, as following a Minsky style telling of this

period, we would expect the proportion of speculators to increase in the run up

to 2008 and decrease afterwards, with the fall in house prices causing them to

deleverage and being associated with a rise in delinquency rates. This is indeed

what we observe, adding weight to the idea of a Minskian interpretation of the

2008 financial crisis.

2.6 Conclusion

The collapse of the US housing market was a watershed event in recent economic

history, a moment that led to the implosion of the global financial sector and

drove the world economy into recession. As such, understanding housing market

dynamics and the role of leverage is an important step in helping to understand

and anticipate for a future reoccurrence. The research we undertake here is of

relevance to both policy makers and investors who wish to be better prepared for

future crises.

In this paper we study asset price movement in a leveraged asset market using

a model with behaviourally heterogeneous agents. Motivated by a Minsky style

interpretation of the global financial crisis that is increasingly favoured by profes-
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sional investors, we develop a simple Minsky inspired model for a leveraged asset

market, building on the work of Hommes and in’t Veld (2018) by allow investors

to make use of leverage. Simulating the model, we see that agent borrowing be-

haviour plays an important role in determining price dynamics. Specifically, our

first key result is that under this framework borrowing alone does not lead to any

significant amplification in price movements provided that agents borrow opti-

mally given their beliefs. However, where agents fall back on a simple heuristic

to determine their level of borrowing we find that it can lead to boom and bust

asset price cycles.

We then use a variation of the model with a borrowing heuristic to perform an

empirical analysis of time series macro data the US housing market and find that

our estimation results are consistent both with our theory and the empirical re-

sults obtained for other markets. Comparing our model with several benchmarks

we see that leverage is an important component of analysis within a heterogeneous

agents model framework. We also see that the model provides a small improve-

ment in performance over an AR(1) model, whilst also offering an addition to our

behavioural and economic intuition.

Looking specifically at the period around the 2008 financial crisis, we find our

second key result: that using the model to estimate the fraction of speculators

in the market allows us to match the mortgage delinquency rates observed in the

US over this period. Interpreting speculators in this model as analogous to spec-

ulative/ponzi investors lends support to a Minskyan interpretation of the 2008

housing market crash.

Finally, we note that the estimations in this paper are limited by our use of

macro data in estimating behavioural rules for market participants. Whilst this is

convenient due to its availability and ease of use, the short time period available

and aggregation of behaviour makes these estimations imprecise, and sometimes

45



impossible. Combined with the significant non-linearities of the model, this makes

identification of the behavioural parameters a particular challenge. A significant

improvement to this methodology could be achieved using micro level data for

longer time spans and more sophisticated valuation techniques which to attempt

to address many of the identification issues.

To summarise, our analysis supports the idea of the Minsky style interpreta-

tion favoured by many investors regarding house price dynamics. Specifically,

that a significant driving factor behind the US housing bubble was the increasing

dominance of speculative investors using leverage to purchase assets. We do this

by extending an asset market model proposed by Hommes and in’t Veld (2018)

to allow investors to make use of leverage. Simulations conducted in this paper

show that, contrary to expectations, borrowing alone was not sufficient to lead

to Minskyian dynamics under a price shock. However, with the introduction of

a simple borrowing heuristic we recover the kind of boom and bust behaviour

described by Minsky.

We test this framework against data for the US housing market and find that

we can produce results that are broadly in line with what has been observed in

the literature for other markets. However, we note that the weak convergence

power of the estimation procedure places a limit on the robustness of the results

and as such, work to improve on this such as incorporate fluctuations in funda-

mental asset values, or the use of micro level data, would be a valuable extension

to this paper. We also more closely examine the period around the 2008 financial

crisis, and find that the fraction of speculators predicted in the model correlates

with the delinquency rates observed both leading up to and in the aftermath

of the US housing market collapse. This is as expected under a Minsky style

framework, where the proportion of speculative/ponzi investors are predicted to

increase during a bubble as they take on more risk, before getting caught out

when the bubble bursts.
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This paper offers an alternative to much of the Minsky style modelling that has

been done to date in attempting to place it within a mainstream body of work and

supported by a measure of empirical verification. Given the findings presented

here, policy makers and researchers may find a Minsky style interpretation of as-

set market dynamics a useful addition to their toolbox when assessing risks and

opportunities in the housing market with a potential to be applied to financial

markets more generally.
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3 Interlude

We have seen in the previous chapter how borrowing behaviour can affect the

dynamics of an asset market. Specifically, its supports the argument that Minsky

style borrowing behaviour influences the prices of assets, as supported by evidence

for the US housing market. At the core of this results is the interaction of herd-

ing with individual level behaviours, an interaction that is often neglected from

many economic models but in this instance has a significant impact of the market

dynamics.

Whilst the preceding chapter focuses on the importance of behaviour in the con-

text of asset markets, an area in which this type of model has been applied with

some success previously, it is interesting to consider the possibility that such

models could have relevance outside of such settings. Indeed, given that human

behaviour is limited only by the extent of human activity, then we could expect

to find such behavioural results in all areas of the social sciences. However, sim-

ply the existence of such an effect does not make it useful to understand it in

such a way. Given the disciplining forces of markets in many contexts the added

complexity of behavioural factors, may prove a false economy. For that reason I

again choose in the next chapter to focus on an example in which the existing lit-

erature, in the absence of behavioural factors has smuggled to explain the macro

level dynamics of a social system.

The following chapter will now use a similar technique to describe the behaviour

of a population during a pandemic. We will again use a combination of individual

level behaviour and macro herding but in this instance to examine the dynamic

spread of a pandemic through a population. We will also introduce a second be-

havioural factor, namely attrition, as this will allow us to estimate the model from

real world data, and see that behavioural factors are important for understanding

the spread of a disease at a population level.
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4 The behaviour of pandemics

Abstract

This paper introduces a novel adaption to a standard pandemic model that

endogenizes agent behaviour using a discrete choice framework. In this model

agents choose their preferred level of social interaction based upon observa-

tions of the current death rate, with this level of interaction then determining

the future spread of the pandemic. Behavioural parameter estimates are ob-

tained for the model in the case of the current Covid-19 pandemic using data

for a several European countries, with a specific focus on the behaviour influ-

encing the rate of transmission. Model estimates for these countries suggest

a transmission period that is shorter than generally assumed in Covid-19

forecasts, but more consistent with emerging evidence from lab based stud-

ies, with implications for the continued spread of the pandemic and policy

response. This paper also examines the role of behavioural attrition in de-

termining the magnitude of outbreaks in pandemics with multiple waves. Fi-

nally, we use the parameters estimates to demonstrate a forecast for deaths

due to Covid-19.
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4.1 Background

Disease outbreaks and epidemics within human society are likely as old as human

society itself. Indeed, one proposed explanation for the existence of religious di-

etary and hygiene rules is that they help inhibit the spread of disease amongst

followers. It is unsurprising that epidemics throughout history have been recorded

both in folk memory and by scholars, but it is interesting that they can also be

associated with behavioural changes within a population long before disease itself

were scientifically understood.

This paper investigates the spread of a disease through a population, where the

population is aware of the spread of the disease and responds according to a sim-

ple decision rule. To do this we introduce a novel adaption of a standard SIRD

model that allows for endogenous change in population behaviour in response to

an epidemic. We use two types of agents that respond to changes in observed

deaths and using that information according to a discrete choice function choose

whether or not to engage in social distancing. We then simulate this model based

on estimated parameters for suitable populations during the current COVID-19

pandemic to obtain projections of possible future outcomes.

This paper aims to empirically identify and investigate the importance of be-

haviour in the spread of Covid-19 using widely available macro data. Using this

framework we can examine the validity of several behavioural assumptions that

are commonly made in pandemic forecasting models. Additionally, we forecast

based on these estimated parameters, future growth paths of the epidemic. As the

estimated behavioural parameters in this model are structural, the model serves

a further purpose as being able to identify the impact of changes in the spread of

the virus due to the emergence of new strains of the disease.
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As with much of the current mathematical modelling of epidemics, this paper

finds its origins in the work of Kermack and McKendrick (1927). This body of

work uses a compartmental approach to split population into multiple groups, and

then tracks how agents move across these groups over time based upon a num-

ber of specified parameters. The unprecedented economic impact of the current

COVID-19 epidemic combined with the widespread failure of standard epidemi-

ological models has given rise to significant interest by economists into compart-

mental models and what contributions can be made stemming from the economics

literature to improve future projections of the disease and its likely impact.

Many models have been produced by competing research groups to predict the

future path of the pandemic. As an illustration of this, the data journalism spe-

cialists at FiveThirtyEight (538)7 had ten different forecast models for the United

States alone listed on their website as of May 28, 2021 when they stopped updat-

ing the list. As we can see from Table 6 on the following page summarising this

list, these models differ across a variety of key assumptions.

These models are concerned specifically, with informing and influencing policy

and as such choose to model policy interventions explicitly requiring large num-

bers of assumed fixed behaviours, meaning that the behaviour underpinning them

is inherently non-structural. This allows for models that can produce reasonable

short-run predictions for the impact of government interventions, but are con-

sequently less well able to predict over longer time horizons as the underlying

behaviour changes in response to both policy and the progress of the virus.

7FiveThirtyEight is a news outlet that specialises in data driven analytics and news report-
ing
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Covid 19 Models and key assumptions

Johns Hopkins University Incorporates information about stay-at-home
orders and assumes that the effectiveness of
social distancing measures in a given state de-
creases by roughly 25 percent after those or-
ders are lifted.

Iowa State Does not make specific assumptions about the
interventions in effect.

Colombia University Assumes that contact between people will in-
crease by 5 percent each week for the next two
weeks.

University of Massachusetts Factors affecting transmission will remain simi-
lar over the forecast horizon.

Northeastern University Current social distancing policies will continue
indefinitely

University of Arizona Assumes interventions will remain in effect
for at least four weeks after the forecasts were
made

Los Alamos Assumes that there will continue to be inter-
ventions, such as stay-at-home orders, but it
does not specifically assume what those inter-
ventions will be. Instead, it considers various
possible interventions to arrive at its forecast

Georgia Tech Assumes that the effects of interventions are
reflected in the observed data and will con-
tinue.

MIT Accounts for state reopenings, and assumes
that interventions would be reenacted if cases
continue to increase.

UCLA Incorporates state reopenings and assumes
contact rates will increase after states are re-
opened.

Table 6: List of Covid 19 forecasting models and key assumptions taken from
the list curated by FiveThirtyEight.
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Given the non-linearities present in pandemic forecasting model, they are highly

sensitive to assumptions. As such, work to determine the key parameters of these

forecasting models is crucial. Meta-analyses by Alimohamadi et al (2020), Lo-

catelli et al. (2021) and Billah et al. (2020) find values for R0 to be 3.3, 2.2

and 2.87 respectively. Suggesting a wide range of uncertainty around these key

assumptions. A notable contribution is made by here by Feretti et al. (2020)

studying matching transmission pairs China. R0 = 2, with almost half of this

being attributed to presymptomatic transmission. Additionally, a very recent hu-

man challenge trial conducted in the UK by Killingley et al. (2022) established

the average length of time from first exposure to the virus to viral detection and

symptoms onset (incubation period) to be just 42 hours. This is much shorter

than the time period that has typically been assumed in forecasting models. We

attempt to contribute to this debate here by using a behavioural adaption of a

standard pandemic model to estimate these parameters using data for observed

death rates.

In addition to more traditional epidemiological studies, a new body of litera-

ture has recently emerged within economics that is concerned with endogenizing

the dynamics of epidemiological models, inspired by the Covid-19 pandemic but

with origins dating to the HIV outbreak of the 1990s. McAdams (2020b) pro-

vides a comprehensive review of economic epidemiology with a focus on recent

developments. The key mechanism we will use in this paper is to endogenize

social distancing by embedding an individual trade-off decision within an agent

based behavioural framework, in order to study the implications of behaviour on

the spread of Covid 19. As such this paper is similar to the work of Toxvaerd

(2020) studying endogenously arising equilibrium social distancing and McAdams

(2020a) thats endogenizes individual decisions to see how the epidemic trajectory

can be shaped through the coordination of expectations. However, we will differ

in approach by identifying the endogenous behaviour directly from the observed

death rate. This paper also relates to the work of Farboodi et al. (2020) and
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Bethune & Korinek (2020) and Garibaldi et al. (2020) on incentives and the

tradeoffs arising from catching Covid and the implications this has for spread of

the disease. This paper builds on that idea by considering an individual’s tradeoff

between catching Covid 19 and potentially dying that is embedded in the model.

Alternative approaches to pandemic forecasting have been proposed, such as that

by Youyang Gu (2021) with his Covid-19-projections model, as well as in work

by economists such as Cochrane (2020), Jones (2020). These models differ from

those used in the aforementioned studies by focusing on characterising underly-

ing behaviour using only minimal assumptions. In particular this approach differs

from the vast majority of the literature in the sense that most other work assumes

fixed behaviours and then allows for modellers to vary policy choices. Instead,

this approach assumes that policy is fixed but that behaviour will change endoge-

nously. This has a distinct advantage by allowing the model parameters to be

estimated directly from the data rather than fixed by assumption.

The model presented in this paper lies in spirit between the approaches taken by

Gu (2021) and that proposed by Jones (2020). In particular we follow the SIRD

framework of Jones, adding behavioural switching in a discrete choice model as

has previously been applied by Brock and Hommes (1998, 2000), Hommes and

in’t Veld (2018) in the context of financial markets to characterise herding within

a population. This allows us to test a different set of assumptions regarding the

underlying behaviours when compared with Gu, whilst allowing the more complex

endogenous behaviour when compared to Jones that is necessary to match longer

run observations on the path of the epidemic.

However, we would expect that herding of the style employed here could be insuf-

ficient to explain the large second waves of infections observed in many countries,

given that in the long run it forces convergence towards an equilibrium. As such

I consider a form of behavioural fatigue as a second factor that could influence
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individual decision making. Such a phenomenon is somewhat controversial with

several prominent behavioural scientists asserting that no such behavioural fa-

tigue exists, particularly early on in the pandemic. However, recently many more

models have included such a phenomenon in models, so I will allow for the possi-

bility in this setup that behavioural fatigue may occur within the population.

In order to build our model, we abstract away from several phenomena. This

is necessary in order to have a model that is tractable but introduces several

limitations. First, we assume that once an individual has been infected and re-

covered, they cannot then be reinfected. There is evidence that whilst contracting

Covid-19 confers a level of immunity from reinfection, this immunity wanes over

time and that individuals can be reinfected. In addition to this, we further as-

sume in this paper that there is no widespread and effective vaccination program,

or emergent variants of the virus that might previously infected individuals sub-

ject to reinfection. In all these cases this would substantially change the future

growth path of the pandemic in way that cannot be described with this current

model. We attempt to mitigate the effect of these assumptions by focusing the

estimations on the period between March and November 2020, when the alpha

variant emerged in the UK, before the rollout of effective vaccines and whilst and

those previously infected will still have a level of immunity. Whilst these events

are beyond the scope of the current model to handle they provide an interesting

avenue for future research.

We also make a further assumption that government does not play substantial

role in influencing the spread dynamics of the pandemic by following a ’Zero

Covid’ policy as seen in countries such as China. This is done for two reasons.

First, we focus on the spread of Covid-19 in European countries that are liberal

democracies. We can imagine that any restrictions on individual liberty that

members of that population do not wish to comply with would be circumvented
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by failing to obey restrictions or challenging them through the legal system8.

Equally any measure that granted more freedom than preferred would not be

exercised. Furthermore, trying to impose a policy that differed substantially from

the societal preferences would undermine confidence in the government, leading

to increasing levels of non compliance, disincentivising government from doing so.

As such, for liberal democracies we could might expect government interventions

that align with the social equilibrium for preferred interventions. This does not

necessarily mean that government exactly follows the preferences of the ’average’

voter, but we might expect that democratic governments not to deviate too far

provided they wish to be reelected9.

In this setting the government plays the role of a coordinator taking decisions

that individuals cannot make on their own, such as by closing schools or intro-

ducing furlough schemes to allow employees to stay away from work when these

are broadly popular. This paper attempts to model the social equilibrium directly

using a population with heterogenous beliefs, such that some people can ignore

even very strict lockdowns, and others stay home even when there are very few

Covid-19 cases. By allowing agents in the model to switch between beliefs we can

allow the aggregate behaviour of the population to vary over time and in response

to news about the pandemic.

The second motivation for eliminating the government from the model is that

it allows us to avoid modelling policy interventions directly. This significantly

reduces the number of additional assumptions required. Given the model is non-

linear and so estimation will be prone to overfitting, the ability to eliminate any

extra assumptions allows us to have greater confidence in any parameter estimates

and forecasts.

8Whilst not a country studied here, this was particularly true for the US where many
Covid restrictions were overturned by courts.

9This is in essence an appeal to the Median Voter Theorem (Black,1948).
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The remained of this paper is presented as follows. In the following section I

present and discuss some of the data available regarding the Covid-19 pandemic.

Data quality has been on particular concern to many researchers, and examina-

tion of the data allows us to identify the appropriate data to use as well as sanity

check our behavioural structure for the model. Using our assumptions regard-

ing behaviour, in section 3. I then present the theoretical details of the model.

Section 4 contains the simulated dynamics for a representative set of behavioural

parameters where we can examine the effects of changes to these values. In sec-

tion 5 we empirically determine the relevant parameter values for several different

countries. The results are discussed in section 6 and the paper then closes with

some final conclusions.

4.2 Data

In this section I will briefly discuss some of the data available to researchers,

both in the context of its utility for modelling, as well as how it has informed

the behavioural structure I have chosen to employ in this paper. A particularly

significant difficulty during the COVID-19 outbreak has been the quality of avail-

able data. During the initial outbreak researchers understandably focused on case

data from reported positive tests as a result of it being the only available data

set. This proved to be wildly misleading. As was observed in many countries the

demand for testing far exceeded capacity to supply tests, leading to significant

underreporting of case numbers. Estimates suggest that this may have been by as

much as a factor of 20 at the peak of the epidemic in some cases. A good contem-

porary analysis of the limitations of this approach is provided by the researchers

at FiveThirtyEight.

An alternative to positive case numbers as a measure for the spread of the epi-

demic within the population is hospitalisations. Indeed in a number of countries
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modellers have moved towards this metric as an alternative. This is again not

without its limitations. The use of hospitalisations data once again relies on the

timely and complete reporting of admissions. In many countries where health

care systems do not operate within a single unifying framework but rather in-

dependently either as sole hospitals or within healthcare groups. This has led

to differences in reporting standards with data being significantly incomplete in

some instances. Most importantly, if a country changes their testing methodology

part way through the sample period, the data points before and after that change

are no longer comparable.

Given the limitations of the previously discussed datasets, I will follow Gu (2021)

and Jones (2020) in this paper focus on raw death tallies for COVID related cases.

Death data is assumed to be harder to manipulate by governments that wish to

make it appear as if their Coronavirus response is performing better than actu-

ality, and is also significantly less prone to underreporting due to lack of testing

capability, a significant problem observed in the first wave case data for many

countries.

It is also important for us to consider country choice when identifying appro-

priate sets of data to use for the estimation procedure we will perform later. For

countries that are too small we will find any trend in the data is swamped by

statistical noise, this is equally true of countries that have not had significant out-

breaks. Additionally, for countries that are too large geographic spread becomes

a significant concern. This is a less important factor for a medium sized Euro-

pean country, or even a larger one where the population highly geographically

concentrated, so for that reason we will focus on several European countries for

comparisons. However, this would need to be considered for a country like the

USA or India, which is a limitation of this approach. Finally we cannot consider

countries where the government exerts significant control over the actions of its

population, as this would violate our initial assumptions regarding the role of
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government. For that reason, we also exclude a number of countries, in particular

China.

As we can see from the plot in Figure 7., the 7 day moving average for Covid-19

deaths in the United Kingdom, Italy and the Netherlands we observe multiple

waves of infection, with a large gap between the first and second waves. We

choose to use a 7 day moving average to adjust for the reduction in reporting that

occurs over the weekend. Moreover, it is worth observing that there appears to

be a third wave on infections that occurs towards the end of the period, this is

due to the emergence of a new and more transmissible variant of the virus and is

discussed in greater detail later in this paper.

Figure 7: Plot of 7 day moving average of deaths per million for Italy (green),
the Netherlands (red) and the UK (blue)

We see from Figure 7. that initially all the countries suffered very similar initial

waves of infections, with the correlation between countries dissipating over time.

There are several explanations for this. First is that this is due to the spread of

variants to different countries at different times. This is likely true for the large
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second wave in the UK that coincided with the emergence of the alpha variant

in that country. A second, is that this difference is partly due to the speed

of vaccination programs in each country. As there is no easy way of handling

these factors within our model, we will restrict our empirical work to the period

before these happened and study the period from the start of the pandemic to

the beginning of November. During this period we see that the countries all have

very similar patterns for deaths, so we expect that the behavioural parameters we

estimate should also be similar.

4.2.1 Population Behaviour

It is also useful for us to examine what data there is on the behaviour of popu-

lations, both to check our initial assumption that there should be an endogenous

behavioural response to the state of the pandemic and also to inform our modelling

intuition. Figures 8. and 9. show data on population mobility and lockdowns for

the UK and Italy respectively.

Figure 8: Percentage change in time spent at recreation venues (green), public
transit usage (red) and at work (blue) in the UK since the start of the Covid-19
pandemic
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Figure 8. shows that in the UK the amount of time spent in work and using pub-

lic transport significantly decreased at the beginning of the pandemic, and that

much of this decrease took place in advance of any implementation of a national

lockdown. This is suggestive that the behaviour of the population changes en-

dogenously, and in response to new information, rather than to strict government

rules. We also observe that not only does behaviour change in advance of the

lockdown order, the population behaviour continues to change during the lock-

down, with mobility trending upwards throughout the lockdown periods. This

again supports our reasoning that we expect behaviour to change endogenously,

but also that some element of behavioural attrition may be at work, as agents tire

of maintaining altered behaviours.

It is particularly interesting to examine second UK lockdown, when the UK gov-

ernment introduced a short lockdown with the intention of reducing infections

rates before the Christmas period. This was unusual in that most lockdowns in-

volved slowly relaxing restrictions, but in this case the lockdown restrictions that

were imposed were removed all at once. We see that the deviation in behaviour is

very small relative to both the initial drop and subsequent changes in behaviour.

To confirm this we examine the same data for Italy, shown in Figure 9.
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Figure 9: Percentage change in time spent at recreation venues (green), public
transit usage (red) and at work (blue) in the UK since the start of the Covid-19
pandemic

Figure 9. shows that in Italy the amount of time spent in work and using public

transport significantly also decreased at the beginning of the pandemic, but not

before the imposition of lockdown. This may be due to Italy being the first

European country to suffer a major outbreak. However, like the UK we see that

behaviour changes throughout the period, not only in response to lockdowns. This

supports our argument that government interventions such as lockdowns are not

the primary factor in determining population behaviour.

4.3 Theory

In this section we outline the theoretical setup of the model. First we introduce

the basic SIRD model as used in Cochrane (2020) and Jones (2020). Then we will

adapt that setup to allow for endogenously changing behaviour with the addition

a discrete choice framework. Finally we will discuss the integration of behavioural

attrition into the model.
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4.3.1 SIRD model

We begin by following standard notation in the literature and assume a constant

population of N individuals, each of whom may be in one of five states:

St = Susceptible

It = Infectious

Rt = Resolving

Dt = Dead

Ct = ReCovered

Where the sum of all the states is equal to the total number of agents in the

population and t is time. For the purposes of this paper t will be in days and the

pandemic begins at t = 0.

St + It +Rt +Dt + Ct = N (17)

We choose to make use of a SIRD rather than a SIR framework as one of the

significant encouraged behaviours is that of self-isolation when individuals know

that they are infected. This would result in having many infected individuals

within the population who are not infectious to others due to their temporary

withdrawal from interacting with the rest of the population. For that reason it

is important for us to draw a distinction between those individuals that are both

infected and infectious and others that are infected but not infectious.

The transitions between the different states of the compartmental model are de-

scribed below. We start with the evolution of the number of susceptible individuals

in our population. For simplicity I assume here that there is no time lag between

exposure and infectiousness. This strictly decreases with the rate depending on

β, which can be roughly interpreted as the number of significant contacts per day

and the proportion of infectious individuals in our population. Notably in this

paper, we will allow β to vary over time, allowing for multiple waves of infections.
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∆St+1 = −βtStIt/N (18)

Next, we have the number of individuals in the population that are infectious.

The first term describes the number of individuals that become infectious each

period, and the second gives us the number that leave the infectious group (such

as because the self isolate). The parameter 1/γ can be interpreted as the average

length of time that an individual remains infectious to others within the popula-

tion. This differs from a standard SIR model in that we assume agents are not

infectious for the entire period that they are infected. In doing so we isolate the

average length of time that agents actually spend infecting other agents, which

has significant relevance for policies such as contact tracing. The size of γ also has

implications for the proportion of transmission that is asymptomatic, with higher

γ implying more asymptomatic transmission for a given period of infection for a

given length of time before the onset of symptoms.

∆It+1 = βtStIt/N − γIt (19)

Once individuals transition out of the infectious stage, they enter a recovery pe-

riod. This is necessary to reflect the time lag observed in the data between in-

dividuals being initially exposed to the disease and deaths being recorded, which

on average can be anywhere from 2 to 4 (Linton et al., 2020, Ward & Johnsen,

2021) and is determined by parameter 1/θ.

∆Rt+1 = γIt − θRt (20)

Finally individuals exit the recovery stage either by dying or making a full recovery

and becoming immune to the disease. The proportion of individuals that make a

full recovery is given by the parameter δ as shown below.

∆Ct+1 = δθRt (21)
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Conversely the proportion that die from the disease is given as (1 − δ).

∆Dt+1 = (1 − δ)θRt (22)

We assume that agents are aware of the number of deaths that occur and use

this number to determine their level of social interaction as shown in the next

subsection.

4.3.2 Discrete Choice

Our innovation to the standard SIRD model introduced in this paper is to allow

for β to vary over time using the type of discrete choice framework that has

previously been employed by Brock and Hommes (1998, 2000) to model asset

market bubbles. In order to have a time varying level of social interaction β we

will use a discrete choice model where individuals can choose one of two levels

of interaction, either high or low. This model has been used extensively in the

literature on asset pricing to characterise belief heterogeneity amongst agents,

with two types of agents, as I use here, have been shown by Aoki (2002) to be

sufficient to characterise the majority of behavioural heterogeneity in a population.

To do this we further divide the population N into two fractions, those with a

high beta and those with a low beta, such that: low

βt = nlow,tβlow,t + nhigh,tβhigh,t (23)

The sum of the factions again adds to the total number of agents in the population.

N = nlow,t + nhigh,t (24)

We assume that these fractions vary over time using a discrete choice rule such

that for agent type h (high or low):

nh,t+1 =
eUh,t∑H
h=1 e

Uh,t
(25)
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Agents in each fraction evaluate the current prevalence of the disease within the

population by comparing the number of deaths Dt with some constant value

placed on life, w. αt is a scaling parameter that determines the sensitivity of

agents to their tradeoff, and is allowed to vary over time. Equations (26) and

(27) mean that when the observed death rate is high relative to the value agents

place on their lives, Ulow,t is positive and so more agents switch to the low level

of interaction βlow,t. Conversely when the death rate is low relative to the value

agents place on their lives, Uhigh,t is positive and so more agents switch to the

high level of interaction βhigh,t.

Ulow,t = αtDt − w (26)

Uhigh,t = −(αtDt − w) (27)

We choose this functional form for agents to use to evaluate their decisions rather

than a more standard utility function in order to avoid having to make additional

assumptions over parameters, in keeping with Anderson (1993) and the preceding

literature. It could be possible to construct a utility based objective function,

as has been done in the economic literature for similar problems. However, in

this instance, given that we will estimate w directly from the data and that the

evaluation rule has the same structure as a simple utility function, using a full

utility function would offer little improvement in performance at the expense of

additional complexity. Using these evaluations agents can then switch between

fractions depending on the difference in their relative values.

Finally, we introduce behavioural attrition into the model. As has been seen

from the data on avoiding public places in the previous section, we see that over

time the population as a whole returns slowly towards normal behaviour. In order

to account for this we allow (but do not assume) for an element of behavioural

attrition in the actions of our agents.
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αt = αe−κt (28)

Given that we will obtain a value for w empirically later in the paper and ascribe

in no special meaning, we can allow α here to serve both as a normalisation factor

on the level of behavioural attrition and a sensitivity parameter which would be

typical of a discrete choice model. This is necessary as otherwise α is codetermined

with the switching sensitivity and therefore not possible to disentangle empirically

using this setup.

4.4 Simulations

It is instructive for us to examine the behaviour of the model using some sim-

ulations using some representative parameters. We can broadly characterise the

parameters as being either epidemiological or behavioural. It should be empha-

sised that for some of these parameters, an arguments can be made that they

could fit into both categories. However for the purposes of the simulations here

we will use values consistent with those identified in the epidemiological literature

where they are available, either by assumption or estimation (although we will

see later in our estimations that some of these parameters may not be entirely

reflective of the parameters used in this simulation, this is discussed further in

the estimation section).

Additionally, because βlow,t and βhigh,t are codetermined in the simulation proce-

dure we need to set one of them as constant. We choose to set βlow,t as constant

because it is bounded between zero and βhigh,t, whereas βhigh,t is only bounded

below by βlow,t. For this reason we set βlow,t to be 0.1, so that there is some

minimal level of interaction for agents of this type. This accounts for the fact

that even agents that are trying to avoid social interaction will still engage at

some level with the rest of the population, for example by purchasing food. We

can then generate βhigh,t and the evolving population fractions nlow,t and nhigh,t
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endogenously in the simulation. We set the remaining parameters in line with the

literature as shown in Table 4.

Representative Parameters

Symbol Value

R0 3
βlow 0.1
γ 0.15
θ 0.05
δ 0.008
α 1
w 1

Table 7: Representative parameters given in the Covid-19 literature

Using these values we construct simulations of the path of deaths and cases that

could occur during the Covid-19 pandemic. We will first examine the case without

behavioural attrition. The key idea here is that the spread of the pandemic is

driven by agents evaluating the behaviour according to equations 26 and 27 and

as they observe deaths rising some choose to switch to a lower level of interaction

to reduce their risk of dying. In doing so the overall level of interaction and

therefore transmission in the population falls. Eventually, this leads to the wave

of infections peaking and then decreasing, with this process continuing in reverse.

Provided the disease is not fully eliminated in the population this process repeats

until there is an insufficiently large proportion of susceptible people left despite

everyone having eventually switched to a high level of interaction, i.e achieving

complete herd immunity.
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Figure 10: Short run pandemic simulation without behavioural attrition

We can see from the simulation in Figure 10. that with no behavioural attrition we

can generate multiple waves of infection that occur as a result of agents responding

endogenously to the number of deaths, as we would expect. However, we also

observe that each subsequent wave is smaller than the previous wave. We have

seen from the data in Figure 7. that this is not necessarily the case in practice.
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Figure 11: Short run simulation of a pandemic with behavioural attrition

Therefore in Figure 11. we simulate the model with behavioural attrition, setting

κ = 0.001. We see that by allowing for behavioural attrition, we can now generate

waves of increasing size over time, matching what we see in the data. This would

appear to more closely correlate with the fact that some countries appear to have

had second waves larger than the first.
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Figure 12: Short run simulation of a pandemic with behavioural attrition

Comparing the case rates from Figures 11. and 12., Figure 13. also shows us that

the addition of behavioural attrition leads to more agents being infected more

quickly. As a result of this, higher rates of behavioural attrition will lead to a

population achieves complete herd immunity sooner.

It is also interesting to examine the long run behaviour of the model. Many

of the alternative formulations available in the literature that are interested in

using time varying interactions of agents rely on a mechanistic formulation such

as Jones (2020) that results in a permanent decline in the rate of interaction. In

this model, the rate of interaction is able to begin returning to its original pre-

pandemic level once a degree of herd immunity is reached. We can see from the

Figure below that the reproduction rate R, as shown by the dashed line, returns

to its initial value, as it should in the event of the entirety of the population ac-

quiring immunity
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Figure 13: Long run simulation of a pandemic with behavioural attrition

Finally we examine the impact of the infectious period. It is commonly assumed

in the literature that the infectious period of an individual that has been exposed

to Covid-19 is around 5-7 days. This assumption is normally derived from clinical

observations that an average individual can infect others for this length of time,

but does not take into account the change in behaviour that could occur once

individuals know they are infected. This is perhaps one of the most important

parameters in the model given it is the focus of many policy interventions, such

as the implementation of test and trace and the encouragement by governments

of self isolation for symptomatic individuals and their close contacts.
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Whilst the simulations we have seen above, are able to produce waves of infec-

tions similar to those seen in the data, given that model is non-linear we should be

concerned that there may be other parameter sets that are also capable of fitting

the data. An example of this is shown in Figure 14.

Figure 14: Short Run simulation of a pandemic without behavioural attrition
using alternative parameter set

In the Figure 14 we shorten the infectious period to one day and decrease the R

number to 1.3. Whilst the simulations shown here are just examples, we can see

that two different sets of parameters can produce broadly similar dynamics. This

is a phenomenon not found in other pandemic models, given that the infectious

period is assumed fixed. This has the effect of pinning any estimation to a partic-

ular parameter set before an estimation is performed. Given that a high value of γ

implies a low value of R identifying the appropriate parameter set has substantial

implications for the spread of a pandemic and potential policy interventions such

as the effectiveness of test and trace systems.
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4.5 Estimation and Forecasting

This paper departs from the standard SIRD setup of Cochrane (2020) and Jones

(2020) by utilising a discrete choice function that allows for heterogeneity over

social distancing within the population. More specifically we assume that agents

within the model can be broadly characterised as high or low social distancers.

Agent choice over social distancing is then informed by observations of the daily

death rate. The fractions of agents that choose each option is calculated using

a discrete choice function in the style of Brock and Hommes (1998, 2000). This

approach has the advantage of allowing the level of social interaction, and therefore

transmission rates, to be determined endogenously within the model and as a

function of data that is observable by the population. This means that unlike

alternative formulations we do not have to rely on an exogenously determined

fall in the level of social interaction over time and that over long periods the

population level behaviour will return to its pre-outbreak level. As discussed in

the previous section, there is a concern that there are multiple parameter sets that

allow the model to fit the data. A further advantage of the approach taken in this

model is that by endogenizing social interaction we can estimate the behavioural

parameters directly from the data, allowing us to identify the most appropriate

parameter set.

4.5.1 Parameter Estimates

Due to the nonlinear nature of both the model and the data most standard re-

gression techniques are either inappropriate or fail due to insufficient convergence

power. In particular, we might suspect that the distribution of parameters will

not be normal. This is a well known problem for this kind of estimation problem

and can often be mitigated by further assumptions on the shape of the underly-

ing distribution. In this case however, given the level of uncertainty around the

transmission of Covid-19 and the relevant data, we would like to avoid making

these assumptions. For that reason we will estimate our parameters with a Mon-
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tecarlo method using 10 million simulations for each country, comprising 10,000

simulations per pass to estimate an initial best fit, with this process repeated

1000 times to obtain a distribution for the fit. This technique is in keeping with

Hommes & int Veld (2018) and has the advantage of being agnostic to the shape

of the underlying probability distribution for our parameters, at the expense of

being slow and computationally expensive.

There are several other drawbacks to this approach. First, the use of macro

data, which whilst easy to obtain, is less optimal for estimating than micro level

data sets that contain more detail. Second, this model does not allow for vaccines

or variants that might affect transmission, in order to isolate the population be-

haviour. Given that there have been a number of Covid 19 variants discovered

and vaccinations widely available, we are required to limit the data used for our

estimation to the period before this happened. Finally, it requires assuming that

government intervention does not significantly impact the level of social interac-

tion beyond what the population would choose. We have some confidence that

this should be the case for the UK from the mobility data presented earlier in

Figure 8, but this remains a limitation to the approach. To address these issues

in our estimation we will use a time series of death data for the UK, truncated at

the beginning of November.

We assume as fixed θ = 0.03 and δ = 0.008. The parameter θ differs from

the previous section for as we found that a smaller value produces a better fit,

and it is not possible to estimate both θ and γ simultaneously10. We choose to

fix these particular parameters for two reasons. First, the estimation procedure is

too computationally expensive to estimate all the parameters. Given that we are

particularly interested in the transmission of Covid-19 and the relevant behaviours

10We are limited in a practical sense here by the length of time it would take to run the
Montecarlo estimations. The current model requires around 24 hours using a reasonably pow-
erful computer. Including an additional estimation parameter would result in an estimation
time on the order of multiple weeks. This could potentially be overcome with access to a dis-
tributed computing facility and this would offer an interesting avenue for future research.
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we need to include parameters such as γ in the estimation, whereas θ and δ, are

the least relevant for what we are looking to study. Second, we have relatively

more certainty that their values are reasonable based upon the wider literature,

as they are at least partially observable. In the case of θ, the parameter value

corresponds with an infected (but not infectious period) of around one month

rather than the 20 days implied by a value of 0.05 used previously. This is not too

far outside the range found Linton et al. (2020) for cases in China of 15.1-29.5

days and Ward & Johnsen (2021) using clinical data for the UK of 17.4-24.7 days

from infection determined by symptom onset to death. The discrepancy may be

explained in this model by the significantly increased size of γ that we estimate,

as shown in the table below for our parameter estimates.

Parameter estimates for a selection of countries

Parameter UK Italy Netherlands

R0 1.2 1.2 1.1
γ 1.6 1.7 1.8
α 0.6 0.7 1.4
w 4.9 4.8 4.4
κ 0.02 0.02 0.06

Table 8: Behavioural parameter estimates across countries for Covid-19

From our parameter estimates we see that in contrast to much of the literature

we find that R0 is somewhat lower than typically assumed in forecasting models.

This is unsurprising however given that our estimates for γ is around 1.6. That

would imply that whilst a single individual in our population could expect to in-

fect only 1.2 people they do so in the space of less than one day on average. This

is in contrast to our original assumption, with a high R and low γ where an indi-

vidual would infect more people, but over a longer period of time. The parameter

estimates, whilst substantially different to those used in our initial simulations,

do not significantly alter the appearance of the simulation plot as seen in Figure

14. This is due to the of multiple parameter sets that can fit the observed macro

data, as is common with non-linear models.
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An advantage of using Monte Carlo methods is that we can examine the sum

of squared errors for each parameter set that is drawn to identify which param-

eter set provides a better fit in the event we have multiple possible fits. Doing

so reveals that this model can select from two possible sets of parameters, from

within the estimation space that fit the data. One of those sets is already identi-

fied widely in the literature. Namely a parameter set with a large R value and a

small γ. Whilst we also find this fit, the estimation here finds a better fit with a

small R value and a large γ.

Unfortunately, the existence of multiple fits means that the tools we would ordi-

narily use to check the robustness of our results are not applicable in this case.

However, we can compare our results with studies conducted that do not rely on

fixing γ. Crucially, the first human challenge trial conducted by Killingley et al

(2022). found that the time between initial exposure and becoming symptomatic

was less than two days. Given that it is unlikely that individuals become infectious

immediately after exposure and in the countries such as the UK were required to

self isolate on displaying symptoms and so could not infect anyone. Therefore, it

seems likely that this study places an upper bound for the value of transmission

period for the data we study that is substantially shorter than that 5-7 days that

is commonly assumed, but is consistent with our larger value of γ.

Our result is further supported by analysis produced by the UK Government

UK Health Security Agency (2022) for the R value in the UK over the relevant

time period to fall within a of range 0.7-0.9 in June 2020, and peaking at 1.3-1.6

in October. This is slightly higher than predicted by this estimation, but we are

much closer than the values of around 3-5 for R0 that are required to obtain a

small value for γ. This result might also go some way to explaining why many

of the forecasting models have also proven to perform badly when used for fore-

casting beyond the very short term despite claiming high levels of confidence. We

will test the forecasting ability of this model with the estimated parameters in
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the following section.

4.5.2 Behavioural Forecasts

Using the parameter estimates that we have obtained we can generate forecasts

for the future growth path of deaths that occur as a result of the pandemic. We

test this here, by using an estimate of the behavioural parameters obtained from

data up to November 1st 2020, and then simulating the expected deaths for the

next 3 months. We choose November 1st as a cutoff here as this is when a new

variant of Covid-19 began to emerge in the UK.

Figure 15: Forecast from November 1st 2020 for Covid deaths in the UK (shown
in the shaded area)

We see that projecting the forecast forwards from November 1st 2020, the model

is able to closely predict the number of observed cases up to the beginning of Jan-

uary. After this point the forecasts diverge, however this is expected as this was

the alpha variant established itself of the dominant strain in the UK. This model

performs well compared with alternative pandemic models, which often struggle

to forecast more than a few weeks ahead with any accuracy due to their reliance

on large numbers of fixed assumptions.
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A significant contribution of the approach taken in this paper is that because

the behavioural parameters are structural in nature the behaviour in the model

changes endogenously and in a predictable manner. In the event of a new variant

emerging this allows us to form a counterfactual forecast and gain a baseline for

what would have happened in the absence of the new variant. Such forecasting

could be of use to policy makers for the purposes allocating resources to best

combat surges in cases and deaths as the pandemic progresses through multiple

waves. In principle, it may be possible to use this model to identify the some of

the key parameters of an emergent strain, such as the reproduction number R.

However, this exercise would be highly computationally expensive given the need

to disentangle the impact of the new variant from the original, and not possible

without access to significant computing power11. Whilst this would put such a

tool out of reach for individuals, for countries that do not have the ability to

conduct surveillance of new variants in other ways, a technique that allows for

the identification of more transmissible variants from data already being collected

may be useful tool to have.

4.6 Discussion

We have seen that a relatively simple compartmental model with behavioural het-

erogeneity can be used to simulate the dynamics and spread of a pandemic within

a population, and forecast its future growth path. Importantly the approach pre-

sented here relies on agents reacting endogenously to changes in the information

available to them rather than this behaviour being mechanically determined by

assumption.

An important result of our estimation procedure is that the average period of

time in which one agent transmits the infection to another is far shorter in the

11We would have liked to do this as an extension to this paper, but on attempting this,
discovered we do not have access to the computing power required
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UK than is typically assumed in many forecasting models. We are able to find this

result by allowing behaviour to respond endogenously within the model and our

estimation procedure. Moreover, it is interesting to note that the results suggest

that the average infectious period for the UK is less than 18 hours. This coin-

cides with medical evidence that most individuals are asymptomatic in the first

24-48 hours post exposure, and are not infectious for all of that period (Killingley,

2022). In turn this would suggest that a majority of infections in the UK are ac-

tually transmitted by presymptomatic carriers, with many of the those only later

developing symptoms and self isolating when they do so. This is consistent with

the results of Feretti et al (2020) where 45% of transmission could be attributed

to presymptomatic carriers whilst only 40% of Covid-19 transmission originated

from carriers displaying symptoms.12

We also estimate a value for the behavioural attrition κ and find that behavioural

attrition and behavioural responsiveness to deaths being similar to across Euro-

pean countries, along with the mobility data presented for the UK and Italy, this

suggest that behavioural attrition plays a role in the spread of Covid-19. Finally

we would expect the R0 number to also be very similar in across these countries

as well, given that in this setup it is determined by the biological fundamentals

of the virus and not human behaviour. This is indeed the case with R0 being

calculated as 1.2 for the UK and Italy and 1.1 for the Netherlands. As with the

estimated values for γ, this value is significantly smaller than those found in other

pandemic models of Covid-19. A limitation of estimating parameters from the

data in the way the we have done here is that R0 may be underestimated. This

is because observations begin only once Covid 19 is spreading in the population

and therefore behaviour has begun to adjust. This should not substantially alter

the ultimate dynamics, as using the time varying social interaction employ, we

can actually permit R in the model to exceed R0 at points in time. Despite this,

12For completeness: the remaining 15% of transmission was attributed to asymptomic carri-
ers (5%) and environmental transmission (10%).
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the value for R0 found here does appear to match fairly closely with empirical

fieldwork done on the spread of the virus where R is often measured to be close to

one such as that produced by UK Health Security Agency (2022). They estimated

R to be in the range 0.7-0.9 in June 2020 and only reached a range of 1.3-1.6 in

October, when there was substantial relaxation of any government interventions

and mobility data showing a return to close to normal behaviours. Whilst this

is slightly higher than our estimate, we are substantially closer than pandemic

forecasting models that assumed R0 to be around 3.

One very significant point to highlight is potential for the existence of multiple

equilibria for the estimation procedure, as demonstrated by comparing Figures

10 and 14, with two different parameter sets being able to produce simulations

of infection waves. Specifically, the estimation procedure identifies two different

equilibria as possible candidates, both the equilibria that is commonly identified

in the literature, as well as a second with a lower R number and higher γ, pre-

ferring the latter. This is of significant interest as the assumptions we allow to

vary here and which allow us to identify this new equilibrium are fixed in most

pandemic models in such a way that the first equilibrium is found by construction.

Moreover, the equilibrium we identify here appears to more closely match much

of the estimates from fieldwork conducted on the spread of the virus, as well as

the behaviour we would expect from individuals. This highlights the importance

of developing models that can accommodate testing the behavioural assumptions

that underpin them.

We have deliberately chosen to study three countries in this paper that are rel-

atively similar on the expectation that they should produce relatively similar

results. The fact that we are able to obtain very similar parameter for all the

countries we look at gives us a degree of confidence in our results, However, as

with any non-linear model that is estimated from data, there is always a concern

with overfitting. This is a significant issue for all coronavirus models, and the

84



model presented here is no exception. In this paper however we attempt to ad-

dress this problem my reducing the number of variables to a minimal level required

to generate the observed dynamics, within a structural framework. Given that

parameters are still to some extent co-determined in our estimation procedure it

is likely that this model is still overfitted, but to a lesser extent than alternative

models.

In addition, we do still have to assume values for certain parameters in this model,

such as δ controlling the Incidence fatality rate,, the length of time for which in-

dividuals are infected θ, and βlow the minimal level of social distancing that it is

possible to achieve. Whilst the assumptions we make for these parameter values

are consistent with the literature, as we have seen in this paper, such assumptions

are not necessarily accurate. We have good reason to suspect that δ in particular

should change over time as doctors gain greater knowledge in how to treat the

disease. However, without sufficient data to form a strong assumption of how δ

has changed over time then for the sake of simplicity we assume it as constant.

We do not consider in this model the elimination of the virus, either by gov-

ernment action or by the rollout of an effective vaccine. In the case of government

intervention, we have seen from outbreaks in China that it is possible to eradicate

the virus through the use of lockdown measures combined with other methods of

controlling a population. We do not consider this here, as this paper concerns

the type of society where such measures would be impossible to implement, and

where when weaker measures are used - they are not fully complied with. In the

case of a successful vaccination program, we would expect to begin to see sig-

nificantly altered dynamics with regards the spread of the virus within a matter

of weeks or months. Whilst this would certainly form an interesting extension

to this paper, it would require accurate data on the specifics of a given vaccina-

tion program as well as good estimates of a given vaccines ability to both reduce

death rates and viral transmission. We also do not consider the impact of vari-
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ants that emerge. For the purposes of our estimation we select a time interval

that does not include any variants as we expect this would alter the dynamics,

but the model could in principle be extended to accommodate this in future work.

An important point to note is that in the setup presented here we are agnostic

regarding the presence of a government. This does not imply that the presence

and actions of a government do not matter. The function of a government in

within this framework is to provide a coordination mechanism that allows for the

collective action of a population. As such the government serves to communicate

information centrally to the population and impose measures such as lockdowns

that are generally preferred but require central coordination in order to obtain

compliance. This remains a significant abstraction from reality and a limitation

of this approach.

An area where this assumption could potentially fail is in the instance where

government behaviour is not consistently reflective of the population over time,

either as the result of a change in policy or in response to a change in social

attitudes. As we have seen from a number of countries, governments have chosen

to alter their approach to the pandemic around the holiday period and this will

likely lead to an increase in infections that would not be predicted by this model.

In that case, the model serves as a useful counterfactual to assess what would

have happened if the government had continued to behave in a consistent manner

and will allow in the future an assessment of costs of such a change in approach

that can weigh the benefits to the economy with the cost of increased infections

and therefore additional lives.

Finally, it is worth discussing the implications of these results for the notion

of herd immunity. Under a standard SIR model herd immunity is commonly un-

derstood as being achieved when a sufficiently large proportion of the population

has obtained immunity to a disease. In a typical epidemiological setting this state
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occurs through the infection and recovery or vaccination of a proportion of the

population. However, it is also possible to at least temporarily depress transmis-

sion rates to significantly reduce the number of infections within a population.

The model in this paper suggests that a population will do this through endoge-

nously changing behaviour in response to information regarding an epidemic. We

can see from the results of both the simulations and the estimations performed

here that herd immunity exists not simply as a raw function of viral transmission

within a population, but as the interaction of that transmission rate with the

endogenously changing behaviour of that population.

4.7 Conclusions

It is speculated that as the world population grows and societies across the globe

become more interconnected that pandemics are an increasingly likely threat. In

this context it is important to understand not just the biological mechanisms of

transmission, but also the social and behavioural components. This paper iden-

tifies a novel adaption of a standard SIRD model that allows for endogenous

change in population behaviour in response to an epidemic. I find that changing

behaviour within a population has a significant impact on the spread of the dis-

ease within a population. This leads to a reconsideration of the concept of herd

immunity as being a function of population behaviour as well as the fundamentals

of transmission for a given disease.

in particular, this paper highlights the importance of the infectious period in

determining the transmission dynamics of a pandemic. Whilst most pandemic

models assume this value is fixed at 5-7 days, we estimate that it in fact may

be far shorter for some countries. This is important both for the production of

accurate pandemic models, and for informing policy interventions. Estimates for

the UK suggest that encouraging self isolation could have a significant impact on
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the pandemic dynamics that has been previously overlooked in the forecasting

literature. Furthermore, this paper adds to the body of evidence that behavioural

attrition is an important factor in understanding the spread of a virus within a

population. This is contrary to some assertions in the literature that such an

effect does not exist or is unimportant. Here we show that it both exists and

is important for determining the size of later outbreaks in a pandemic that has

multiple waves.

Whilst this model provides useful insights into the Covid-19 pandemic, it does

so based on the assumptions that individuals cannot be reinfected and that there

is no change in the infectious rate due to the emergence of new strains. As we

have seen, new more transmissible strains of Covid-19 are emerging and that re-

infection is possible, providing both a challenge to the techniques employed here

and an avenue for future work.

Finally, whilst this model has been applied to the specific instance of Covid-

19, unlike most other models it contains no assumptions that are unique to this

pandemic beyond the fundamental nature of the disease itself. As such the model

may prove a useful starting point for the modelling of future pandemics if we can

assume population level economic and social behaviours to be relatively consistent

over time.
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5 Summary

In this thesis we present two distinct instances of behavioural phenomena that

influence the dynamics of macro level systems. In chapter II we have seen that

the borrowing behaviour of agents in a leveraged asset market model can lead to

boom bust cycles in asset prices. This is framed in the context of the housing mar-

ket where we see that the expansion and contraction of borrowing combined the

behaviour as a driving factor. Chapter IV in contrast focuses on the behavioural

factors that underpin the spread of a pandemic within a population. We see here

that behaviour is a key factor in understanding the dynamics of the Covid-19 epi-

demic and that understanding such behaviours is of significance for policy makers.

What ties these papers together is the use of a behavioural framework that allows

for the encapsulating of behavioural herding in macro models in such a way that

these models can then still be estimated from data.

5.1 Discussion

A significant challenge to the work that presented here is the necessity of utilising

non linear models. As discussed in the previous chapters, nonlinear estimation

techniques are challenging to implement and have weak convergence power. Fur-

thermore, it is often the case that there are multiple sets of values within the

parameter space that can fit the model to data. As such significant discretion is

required on the part of the researcher in performing estimations. This inevitably

leads to situations where results are misidentified and poses two key problems,

as we have seen in chapter IV of this thesis. First, it is entirely possible to miss

a parameter set if it is excluded from the regression window by assumption. In

the case of the Covid-19 pandemic this is the result of an entirely understand-

able modelling assumption that is made widely in the literature. Secondly, the

existence of multiple sets of parameters that provide a reasonable fit for the data

introduces significant uncertainty over estimation results. For this reason I have

attempted to identify instances where such instances occur, what choices are taken
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and the rationale for doing so. Whilst it is generally accepted that behavioural

factors play a role in social and economic decision making, it is still a matter of

uncertainty the extent to which such behaviours manifest at a macro level and

how best to describe them. In this thesis we take the position that it is primarily

behaviour that can be used to explain the variation observed in the data we study,

but recognise that other alternative explanations are possible.

5.2 Further work

As we have seen from the work contained in this thesis, the macro-level effects

of individual behaviour are important for understanding emergent dynamics of

complex systems. We have seen that in the context of a leveraged asset market,

understanding the borrowing behaviour of individuals is necessary to predict the

market dynamics. Equally, in a pandemic setting, understanding the behaviour of

the population is important to properly inform any policy response. This thesis is

limited to only two examples of the macro consequences of behaviour in very the

specific contexts. In both cases, the choice to examine the relevant phenomena

from a behavioural perspective resulted from the lack of convincing explanation

in the existing literature obtained using more standard techniques. This raises a

question regarding what other phenomena can also be investigated in this way.

An interesting extension of chapter II would be to incorporate a similar frame-

work into a real business cycle model. This would be in keeping with the Minsky

style conceptualisation whilst also tying in neatly with more recent thinking on

short run debt cycles from industry. Such an extension would provide improved

behavioural foundations for the boom and bust debt cycles that characterise the

business cycle that whilst a common focus of interest in the investment industry,

is often overlooked in academic economics. In addition, chapter IV has some ob-

vious extensions such as examining the impact of disease variants in a pandemic.

It may also has some less obvious applications such as predicting the transmission
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dynamics internet memes.13

A significant limitation in this field is in the absence of effective estimation tech-

niques. Many of these questions we have managed to answer would not have

been possible to answer even a few years ago, and it is only the improvements

in computer processing power that allows us to investigate them now. However,

advances in machine learning and artificial intelligence have the potential to sig-

nificantly improve our ability to investigate the types of non linear behavioural

relationships studied here and several machine learning techniques are used in this

thesis, although these are not without their own drawbacks. From an economists

point of view, there is utility to be gained from observing not just the result, but

the mechanism as well and AI systems do not yet offer that capability. That being

said, in the near future advancements in computer technology may enable us to

investigate the types of problems we study here with far greater accuracy, and

with any luck understand them in far greater detail.

13They are called viral for a reason. This was the context in which I originally developed
the model before repurposing it for the Covid-19 pandemic.
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