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THz, W ∗ = 1.24 eV, k∗b = 1.3806 · 10−23 J/K, V ∗M = −0.97 V (as

defined in (1.8)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8



2.16 The temperature dependence of the diffusion coefficients (DO∗
c , D̄O∗

c )

and electrical mobilities (µ∗q, µ̄
∗
q) of ions in moderate (as defined

by (2.59)) and strong electric fields (as defined by (2.71c)) re-

spectively, wherein E∗0 = −VM/L∗(t∗). Parameters chosen are:
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oxidation in metals
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Corrosion (or oxidation) of metals in ambient air produces metal oxide that is
undesirable in most cases. In the case of uranium, a solid corrosion product con-
sisting of uranium dioxide and uranium hydride is produced. Uranium hydride is
pyrophoric in air and can therefore self-ignite leading to operational safety issues
in nuclear waste storage facilities. In addition, hydrogen gas that is produced
when uranium reacts with water vapour is potentially hazardous when it accu-
mulates and leads to deterioration of the material. In this study, we investigate
the oxidation kinetics of uranium in environments that contain oxygen or wa-
ter vapour. Uranium dioxide is produced as the main corrosion product in such
environments, with uranium hydride formed as a reaction intermediate in the
presence of water vapour. The corrosion product is less dense than the parent
metal (uranium), resulting in expansion of the material when the metal is con-
verted to oxide or hydride. Experimental evidence indicates that the oxidation
rate in water vapour is at least 5000 times larger than the rate in dry air or
oxygen, suggesting different mechanisms or diffusing species. Uranium oxidation
is thus a complex process involving several physicochemical processes (including
advection, adsorption, diffusion, reaction and desorption), where diffusion of the
oxidising species through the oxide layer adhering to the metal or hydride largely
determines the overall oxidation rate. Here oxygen ions in dry air and hydroxide
ions in water vapour constitute the oxidising species.

In the oxidation of uranium by dry air, a self-induced electric field contributes
to the diffusing flux of oxygen ions, in addition to a concentration gradient. The
dry-air oxidation is modelled as a Stefan (discrete-layer) problem, where a Stefan
condition provides the velocity of the moving interface (or phase boundary) that
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separates different homogeneous phases. The Stefan model allows for unsteady
development of the concentration profile of the diffusing species in the oxide layer,
which forms the novel aspect of this problem.

As the underpinning chemistry becomes substantially more complex in a
water-vapour environment, it is unclear how to construct an analogous Stefan
problem (or even if one exists). For the water-vapour corrosion of uranium, a
one-dimensional reaction-advection-diffusion (RAD) problem is formulated as a
new model based on a proposed reaction scheme involving at least two diffusing
and three static components. A distinguishing feature in the RAD model com-
pared to the Stefan model is the presence of “reaction fronts” which are transition
(or mixed-phase) regions. The RAD model is tackled using both numerical and
asymptotic approaches, wherein two diffusion layers and two reaction fronts are
found in the large-time asymptotic solution. Asymptotic matching across the
different regions (or layers) provides analytical predictions for the thickness of
the diffusion layers, locations of the propagating reaction fronts and concentra-
tion profiles in the diffusion layers. The numerical solution strategy utilises a
Howarth-Dorodnitsyn transformation to allow for volumetric expansion during
corrosion. The full numerical solution is found to be consistent with the asymp-
totic predictions, showing that a few-nanometres-thick propagating hydride layer
that is bounded by a pair of coupled reaction fronts is possible in the RAD
model. A “parabolic” (square-root time dependence) oxidation regime is found
at the early stages of oxidation, whereas the late stages (i.e. after cracking or
spalling of the surface oxide) follow linear kinetics in both dry air and water
vapour environments. The influence of parameters associated with the diffusion
coefficients, material properties and the external gas state on the oxidation ki-
netics is investigated. For the water-vapour oxidation of uranium, even though
the oxide formation relies on the presence of an intermediate hydride phase, its
thickness is found to be dependent only on the material properties and the exter-
nal water vapour state. The RAD model is a first mechanistic model of uranium
oxidation in water vapour and gives qualitative predictions that are consistent
with the recent experimental observations using atom-probe tomography.

Keywords: uranium corrosion, moving boundary problem, reaction-diffusion
fronts, partial differential equations, matched-asymptotic analysis.
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Chapter 1

Introduction

Metal oxidation/corrosion is a process in which the metal (solid) reacts with an

oxidising species (gas/liquid) such as oxygen (O2) or water vapour (H2O) to form

a metal oxide product which in most cases is undesirable. A common feature

in such a system is a corroded layer (largely oxide) that forms at the solid-gas

interface and grows into the solid/metal. In this study, we focus on uranium (U)

which forms uranium dioxide (UO2) as the dominant corrosion product. We aim

to model the oxidation of uranium under different environments and investigate

the factors that influence the kinetics of the oxidation process. Oxidation involves

several physicochemical processes that include diffusion and reaction among oth-

ers. In cases of interest, the reaction is internal to the solid, and diffusion is

important in the transport of the reacting species into the metal. The density of

the corrosion product usually differs from that of the metal, resulting in advection

of the material. Therefore the overall oxidation process can be described by one

or more reaction-diffusion-advection partial differential equations. The overall

reactions in three different environments are given below:

U + O2 UO2 oxygen/dry air

U + 2 H2O(v) UO2 + 2 H2 pure water vapour

U + H2O(v) + 0.5 O2 UO2 + H2 moist air .

We study the kinetics of uranium oxidation in dry air (or oxygen) and water

vapour, although some of the literature on moist air (H2O(v) + O2) oxidation is

also reviewed.
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1.1. MOTIVATION 27

1.1 Motivation

In this thesis, the kinetics of uranium oxidation under different environmental

conditions is discussed. Although there are several empirical models for oxida-

tion/corrosion of uranium under dry air (atmospheric air without water vapour)

or moist air (air containing water vapour) (see for example Cubicciotti, 1952; Col-

menares, 1984; Ritchie, 1984; Lin et al., 2008; Chernia, 2009; Baker, Less, and

Orman, 1966a; Baker, Less, and Orman, 1966b; Martin et al., 2016), there is a

dearth of physically motivated mathematical models that explain the underlying

mechanisms of uranium oxidation in these environments.

Uranium is highly reactive in both dry (O2) and moist (O2 + H2O(v)) air,

where nitrogen in air acts as an inert species (i.e. unreactive towards uranium)

and the influence of other trace gases such as CO2 on the oxidation process is

insignificant. We therefore use the terms dry air and oxygen interchangeably in

the context of uranium oxidation. Uranium oxidation is a complex process that

involves several physical and chemical processes such as adsorption, surface re-

action, diffusion of the oxidising species and reaction with the underlying metal,

and finally desorption of the gaseous by-products. We mainly focus on the oxida-

tion of uranium by oxygen (or dry air) and pure water vapour in this thesis. The

mechanisms are different in dry air and water vapour on account of the different

diffusing species in these environments which will be discussed in the forthcoming

sections.

Uranium reacts with oxygen and water vapour to form uranium dioxide (UO2+x)
a

and uranium hydride (UH3), with the latter formed only in the presence of water

vapour (which is another feature that distinguishes dry-air oxidation from water-

vapour oxidation). Uranium hydride present in significant quantities (in high

mass and surface area) is pyrophoric in air and leads to operational safety issues

in nuclear facilities (Totemeier, 2000; also see Banos, Harker, and Scott, 2018).

Uranium hydride deteriorates the material quality of uranium and hence is unde-

sirable. It will be seen later that uranium hydride is formed as an intermediate in

the water vapour oxidation of uranium, with uranium dioxide and hydrogen gas

produced as the main products. The deterioration of material quality is caused

by both uranium hydride and hydrogen gas (H2) as the latter can further react

aHere, x represents the hyper-stoichiometry of the uranium dioxide formed. For oxides

formed in O2/dry air, x = 0.09, and x = 0−0.18 for oxides formed in a water vapour environment

(see Gharagozloo and Kanouff, 2013 and Banos and Scott, 2020).
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with uranium to form uranium hydride (Banos and Scott, 2020).

Although a majority of the studies on uranium oxidation are experimental,

there exist some theoretical models for metal oxidation in general (that can be

applied to uranium oxidation), such as Wagner’s theory (see reviews by Atkin-

son, 1985; Ritchie, 1984) for ‘thick’ filmsb (∼ 1µm) and Cabrera-Mott theory

(Cabrera and Mott, 1949) for ‘thin’ films (< 100 Å). However, these models do

not provide a mechanistic link of the oxidation kinetics to the physical and/or

chemical processes that occur during oxidation. Similarly, the theoretical model

of Haycock (1959), which models the transition from ‘parabolic’ (thickness of ox-

ide ∝
√

time) to linear kinetics in the formation of scalesc in metal oxidation is

based on empirical data fitting, and has limited connection with the underlying

physical/chemical processes. With this in mind, we aim to formulate a set of

models that relate the observable kinetic quantities such as thickness or weight of

the oxide formed per unit time with the physical/chemical processes that occur

during uranium oxidation.

1.2 Literature review

Our review of the current literature on metal/uranium oxidation is organised

as follows. The general theories and empirical models on metal oxidation are

first reviewed, which also encompass uranium oxidation in dry air (oxygen gas).

Subsequently, the literature on water vapour oxidation of uranium is reviewed. A

brief overview of the limitations/gaps in the current literature on metal oxidation

is then presented, and the chapter is ended with an overview of the content of this

thesis and its organisation. The focus of this review is on the existent theories and

models of uranium/metal oxidation rather than on the mathematical literature on

phase transition phenomena (for example). However, adequate and appropriate

mathematical literature will be reviewed in the respective chapters.

bHere, the term film refers to the oxide layer formed during metal oxidation.
cFilms thicker than ∼ 10µm are generally referred to as scales (Atkinson, 1985).
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1.2.1 General theories on metal oxidation (including ura-

nium oxidation in dry air/oxygen)

According to the early empirical models of metal oxidation (e.g. empirical models

of Tammann (1920) and Pilling and Bedworth (1923); see review by Atkinson,

1985), the oxide growth (increase in weight/thickness of the oxide) in most metals

is proportional to the square-root of time (called the ‘parabolic’ growth law, L∗
2

=

k∗pt
∗,d where L∗ is the (dimensional) oxide/film thickness at the (dimensional)

time t∗ and k∗p is the parabolic rate constant). In other words, the rate of oxide

growth is inversely proportional to the thickness of the oxide formed. This growth

law assumes the diffusion of uncharged oxidising species to be the rate-limiting

step (see Fromhold, 1972). However, several authors (see reviews by Ritchie,

1981; Ritchie, 1984) report that simple chemical diffusion (or diffusion due to a

chemical potential gradient) does not account for the rate of oxidation observed

experimentally; available estimates of the relevant diffusion coefficient are too

small to account for the observed rate of oxidation.

Migration of ions due to an additional driving force caused by a self-induced

electric field has been suggested as an additional mechanism that may explain

the observed oxidation rate. The main theories of charged particle transport in

metal oxidation has been developed by Cabrera and Mott (1949) and Fromhold

and Cook (1967). The continuum model of Fromhold and Cook (1967) has been

recently applied to uranium oxidation via a quasi-steady assumption by Gharago-

zloo and Kanouff (2013). We aim to develop a formal Stefan model (explained

later) based on the approach by Fromhold and Cook (1967), accounting for un-

steady effects. In what follows, we discuss some of the key ideas, history and

development of literature that led to the continuum model by Fromhold and

Cook (1967).

Ionic diffusion as the rate-limiting step in metal oxidation was first proposed

by Wagner in 1933 for thick (∼ 1µm) film growth (see Ritchie, 1984). Here, dif-

fusion of metal or oxygen ions due to the combined driving influences of chemical

and a self-induced electric potential gradient is considered. Whether metal or

oxygen ions form the diffusing species depends on the nature of the point defectse

dThroughout this thesis, the superscript asterisk (∗) denotes dimensional quantities, and

nondimensional quantities are represented without an asterisk.
ePoint defects are where there are missing, insterstitial or substitutional atoms in an other-

wise regular crystal lattice structure.
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in the oxide (Atkinson, 1985). In uranium oxidation for example, the oxygen

ions form the diffusing species rather than metal ions, as has been evidenced

from marker experiments in uranium oxidation (Schnizlein et al., 1960, also see

Ritchie, 1984). This may be due to uranium ions being much larger and there-

fore substantially less mobile than oxygen ions. Nevertheless, Wagner’s theory

of metal oxidation is applicable for diffusion of either oxygen or metal ions. The

theory of metal oxidation in general considers that the metal ions (in most cases)

diffuse through an already formed surface oxide layer, due to the combined influ-

ences of chemical and a self-induced electric potential gradient, and react with the

adsorbed oxygen to form new oxide at the surface/gas-oxide interface. Diffusion

(or migration) of metal ions is considered to be rate-limiting in such mechanisms.

For any diffusing species i, the ionic (or defect) current in a self-induced electric

field is then given by (see Atkinson, 1985)

J∗i =
D∗iC

∗
i

k∗bT
∗

(
−dµ∗i

dx∗
+ q∗iE

∗
)
, (1.1)

where C∗i is the (number) concentration of the diffusing species i, µ∗i is their

chemical potential (= k∗bT
∗ ln(C∗i ) + constant with k∗b the Boltzmann constant),

D∗i is their diffusion coefficient, q∗i is the effective charge on the diffusing species

and E∗ is the electric field strength. Equation (1.1) assumes that the electric field

is small and satisfies q∗E∗a∗ � k∗bT
∗f (i.e. the energy of thermal motion is much

greater than the energy provided by the electric field), where a∗ is the lattice

parameter (or the ionic jump distance), k∗b is the Boltzmann constant, and T ∗

is the absolute temperature. However, Wagner assumed no net electrical current

across the film and that local chemical equilibrium exists throughout the oxide

film. Thus he was able to eliminate all the coupled ionic transport equations of

type (1.1) across the film, and reduced the set of coupled equations to a single

transport equation for the chemical potential of oxygen.

Wagner’s theory gives a ‘parabolic’ (L∗ ∝
√
t∗) growth law for thick films or

oxide films formed at sufficiently high temperatures. Here, the rate of film growth

is related to the transport properties of the oxide (e.g. the diffusion coefficients)

through the Nernst-Einstein relation.

Mott (1940) later postulated his theory for the formation of ‘protective’ oxide

fThe consideration of a small electric field for the validity of (1.1) comes from the Nernst-

Einstein relation (for more details, see Atkinson, 1985).
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films on metals based on Wagner’s theory, and suggested that electrons from the

metal atoms pass through the oxide layer either by thermionic emission (if the

temperature is large enough for the electrons in the metal to overcome the work

functiong of the metal with an overlying oxide layer) or quantum mechanical

tunnelling (if the thickness of the oxide layer is less than 40 Å). In metals such

as aluminium and chromium, the oxide grows according to a parabolic law up to

a certain critical thickness and then the growth becomes negligible. The author

based his theory for the formation of ‘protective’ oxides upon the energy required

for the transfer of an electron from the metal into the conduction band of the

oxide (φ∗) and that required to bring a metal ion into an interstitial position in

the oxide (W ∗). Mott’s theory is applicable only for cases where the metal ions

are dissolved in the oxide and migrate towards the gas-oxide interface (i.e. the

metal ions form the diffusing species).

According to Mott’s theory, the (number) concentration of dissolved metal

ions near the oxide-metal interface is given by

n∗2i = A∗2 exp

(
−φ

∗ +W ∗

k∗bT
∗

)
, (1.2)

where A∗ is related to the volume of a unit cell in the oxide lattice and T ∗ is

the absolute temperature. He surmised that if φ∗ > W ∗, then the electrons

cannot pass to the conduction band of the oxide at room temperatures unless via

quantum mechanical tunnelling; hence for oxides of metals such as aluminium, the

number of electrons passing into the conduction band of the oxide via thermionic

emission given by

120T ∗2

e∗
e−φ

∗/k∗bT
∗

cm−2s−1 (1.3)

is negligible, where e∗ is the electronic charge in Coulombs. Mott noted that

thermionic emission would be impossible at room temperatures in metals with

work functions greater than 1 eV. Therefore, the growth of such oxides is limited

by quantum mechanical tunnel effect, with the thickness limited to about 40 - 50

gWork function of a ‘clean’ metal is the energy required to remove an electron from the

highest occupied electron level in the metal to a point in vacuum (field-free zone) immediately

outside the metal, at absolute zero temperature. It should be noted that the work function

depends on the configuration of atoms on the surface of the metal rather than the bulk properties

of the metal.
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Å (Mott, 1940; Mott, 1947) at room temperatures. The assumptions involved in

this theory in addition to metal ions forming the diffusing species are that the

oxide is stoichiometrich and in equilibrium with the oxygen gas.

However for oxides with limiting thicknesses that depend on temperature,

Mott hypothesised another mechanismi for the formation of protective films. He

proposed that if the work function φ∗ of the metal is small enough (say, φ∗ < 1

eV) to allow thermionic emission of electrons to the conduction band of the oxide,

then a potential gradient (now referred to as the Mott potential V ∗M) is set up

across the oxide upon rearrangement of charges, resulting in an electric field that

causes the metal ions to migrate towards the adsorbed anions (oxygen ions) at

the gas-oxide interface. The migration of the metal ions under such conditions is

then the rate-limiting step. Based on this theory, Mott proposed the existence of

a limiting thickness (for ‘protective’ oxides) that depends on temperature.

In his paper, Mott (1947) assumed that no space charge is set up in the oxidej,

and for small (or moderate) electric fields (E∗0 < 106 V/cm), the ionic current (in

A/m2) would then be proportional to the field strength E∗0 :

J∗ion = pN∗0 e
∗µ∗E∗0 , (1.4)

where N∗0 is the (number) concentration of the interstitial positions in the oxide, p

is the probability that an interstitial position near the oxide-metal interface is oc-

cupied by a metal (diffusing) ion (assuming Boltzmann statistics, p = e−W
∗/k∗bT

∗
)k

and µ∗ is the mobility of a diffusing ion.

In the case of strong fields (E∗0 > 106 V/cm), a nonlinear dependence of the

drift velocity (v∗d) of a metal ion on the electric field strength was given by Verwey

(1935):

v∗d = 4ν∗a∗e−U
∗/k∗bT

∗
sinh(a∗e∗E∗0/k

∗
bT
∗) , (1.5)

hStoichiometric oxide refers to an oxide that is formed with its constituent elements present

in the same proportion as indicated by the elementary reaction.
iFor quantum mechanical tunnelling to explain the formation of protective oxide films, the

limiting thickness should be independent of temperature.
jIf no space charge is set up in the oxide, then the electric field is homogeneous (denoted as

E∗0 ) and given by the surface charge distribution.
kBoltzmann probability (p) gives the probability that an ion in thermal equilibrium at a

temperature T ∗ can cross the potential barrier W ∗.



1.2. LITERATURE REVIEW 33

where 2a∗ is the distance between two interstitial positions (or potential minima)

in the oxide lattice, ν∗ is the frequency of atomic vibrations, U∗ is energy barrier

that has to be overcome in order to reach the adjacent interstitial position.

Mott (1947) replaced the ‘sinh’ term with an exponential term, and also took

into account the modification to p as a result of the field to describe the ionic

current (in A/m2) in strong fields and/or low temperatures as

J∗ion = e∗b∗ν∗n∗i e
−(W ∗+U∗)/k∗bT

∗
e(b∗e∗E∗0 )/k∗bT

∗
, (1.6)

where n∗i is the number concentration of (metal) ions at (or near) the oxide-metal

interface and b∗ is the distance between the position of a metal ion at the oxide-

metal interface and an adjacent interstitial position in the oxide lattice. Thus

an exponential dependence of the ionic current on the electric field strength was

proposed by Mott (1947), whilst a linear dependence on the field was given for

the ionic current/flux (in A/m2) in moderate fields and/or high temperatures:

J∗ion =
N∗0 e

∗2a∗2E∗0ν
∗

k∗bT
∗ e−(W ∗+U∗)/k∗bT

∗
. (1.7)

It is to be noted that the electrons pass from the metal atoms to the adsorbed

oxygen atoms at the surface through the oxide layer. This process continues

until a quasi-equilibrium is reached, that is, until the electron energy levels of

the adsorbed oxygen ions (O2–) at the surface is raised to the Fermi level of the

metal, resulting in a self-induced electric field. Although a steady-state ionic flux

is assumed, Fickian diffusion was not rigorously modelled by Mott.

Cabrera and Mott (1949)l then proposed their theory for the formation of thin

oxide films (< 100 Å) based on Mott’s hypothesis (Mott, 1947). They studied

ionic diffusion for different oxide thickness and temperature regimes. For high

temperatures and thick films, they suggested that the metal oxidation can be

modelled by a parabolic law. For low temperatures and thin films, however, the

oxide growth is assumed to have an exponential dependence on the field. A ‘ho-

mogeneous field approximation’ (i.e. a constant electric field across the oxide film)

is made for sufficiently thin films, based on the assumption that no appreciable

space charge is set up for this thickness. This approximation allows one to model

lTheir theory is notably called the Cabrera-Mott theory of metal oxidation.
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the movement of ions and electrons separately. Therefore the more mobile elec-

trons can easily set up a potential difference (also called the ‘Mott potential’).

A rough estimate of the Mott potential (V ∗M) was given by Cabrera and Mott

(1949) as

V ∗M = −EA
∗ +W ∗

bind − φ∗0
e∗

, (1.8)

where EA∗ is the electron affinity of O,W ∗
bind is the adsorption energy of an oxygen

ion on the oxide surface and φ∗0 is the work function of the metal against vacuum.

The electric field set up can then lower the energy barrier for the metal ions to dif-

fuse across the oxide layer, thereby contributing to the ionic current and increasing

the rate of oxidation compared to simple chemical diffusion. Cabrera and Mott

also analysed several experimental results and verified their theoretical model.

They found that all the metals investigated (e.g. Al, Cu, Ag) exhibited similar

behaviour at low temperatures, wherein the rate of growth slows down after a

rapid initial growth and finally becomes negligible. They found this behaviour

to be insensitive to the oxygen pressure to which the metal (or metal/metal ox-

ide) sample is exposed. It is to be noted that Mott assumed that the metal ions

(cations/positive ions) diffused through the oxide, owing to the difficulty of the

relatively large oxygen ions (anions)m diffusing through the interstitial positions

and/or vacancies in the oxide lattice. Whether metal ions or oxygen ions diffuse

through the oxide lattice is mainly attributed to the electrical/semi-conductor

properties of the oxiden.

Cabrera and Mott (1949) proposed that strong fields of the order of 107 V/cm

may be set up in an oxide layer of thickness about 50 Å, in which case the

diffusion (or drift) velocity is no longer proportional to the field strength. For

v∗d to be proportional to the field strength, the condition q∗a∗E∗0 � k∗bT
∗ should

be satisfied, where q∗ is the charge on the ion, a∗ is the lattice parameter. Thus

they derived a parabolic law when this condition is satisfied to explain the rate

of oxidation for aluminium between 350°and 450°C observed by Gulbransen and

mNote that the effective ionic radius of O2– is 140 pm, whilst that of Ag+ (for example) is 115

pm (Shannon, 1976); thus oxygen anions are larger than the cations considered, even though

the atomic radius of O is smaller than those of the metal atoms.
nMott predominantly studied the oxidation of d-block metals such as aluminium(Al),

chromium(Ch) and zinc(Zn). However, Mott (1947) also noted that metals such as copper

(Cu) form oxides which dissolve excess oxygen; that is, oxygen ions form the diffusing species.
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Wysong (1947). However, Cabrera and Mott did not adequately explain the

linear rate observed by Gulbransen and Wysong (1947) for Al at 500°C.

For oxides of Cu and Fe, for example, Cabrera and Mott (1949) proposed that

vacant cation sites form the diffusing species, the number (n∗i ) of which depends

on the oxide thickness, unlike the previous case (metal ions forming the diffusing

species) where it was solely dependent on the oxide-metal equilibrium (Cabrera

and Mott, 1949). Here, ni depends on the number concentration of the adsorbed

oxygen ions (N∗) which in turn is related to the field E∗0 = −V ∗M/L∗ via

N∗ =
κV ∗M
4πe∗

1

L∗
, (1.9)

from which Cabrera and Mott (1949) obtained a ‘cubic’ growth law for the oxide

thickness:

L∗3 = A∗t∗ . (1.10)

Here, A∗ is some parameter that is proportional to exp(−(W ∗+U∗)/k∗bT
∗), with

W ∗ being the energy to form a vacant cation site and U∗ the activation energy

for its diffusion in the oxide. It is interesting to note that Cabrera and Mott

(1949) derived their formula for the number of oxygen ions (or anions) adsorbed

at the surface based on the Coulomb formula (1.9) which implies that for a fixed

electric field (or Mott potential), a fixed number of oxygen ions are adsorbed at

the surface (that is, the rate of oxide growth will be independent of the external

oxygen/gas pressure). Cabrera and Mott then validated their theory based on

some experimental observations.

In the case of ‘very thin’ (order of nm) films, Cabrera and Mott (1949) derived

the drift velocity as given by

v∗d = ν∗a∗ exp(−U∗/k∗bT ∗)
[
exp

(
q∗a∗E∗0
2k∗bT

∗

)
− exp

(
−q
∗a∗E∗0
2k∗bT

∗

)]
. (1.11)

The authors suggested that for very strong fields (i.e. E∗0 > 107 V/cm), the growth

rate is determined by the rate at which the ions leave the metal lattice (for cases

where metal ions form the diffusing species). They then derived the growth rate

of oxide to be

dL∗

dt∗
= n∗iΩ

∗ν∗ exp(−(W ∗ + U∗)/k∗bT
∗) exp

(
q∗b∗E∗0
k∗bT

∗

)
, (1.12)
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where n∗i is the number concentration of the metal ions at the oxide-metal inter-

face, Ω∗ is the volume of oxide formed per metal ion. The exponential dependence

is applicable only for very strong electric fields (i.e. for ‘very thin’ films where

L∗ � L∗crit, L
∗
crit being |q∗b∗V ∗M/(k∗bT ∗)|).

Based on Cabrera-Mott theory of thin-film oxidation of metals, Fromhold and

Cook (1967) formulated their ionic diffusion model for discrete lattices. If J∗f and

J∗r (in units of number of ions per m2 per second) represent the forward and

reverse ionic currents at a lattice site k, then in the presence of an electric field,

J∗f and J∗r are given by

J∗f = n∗k−1ν
∗ exp{−(W ∗ − Z∗e∗E∗ka∗)/k∗bT ∗} , (1.13a)

J∗r = n∗kν
∗ exp{−(W ∗ + Z∗e∗E∗ka

∗)/k∗bT
∗} , (1.13b)

where n∗k−1 and n∗k are the number of ions (of charge Z∗e∗ per ion) per unit area at

the (k−1)th and kth potential minima respectively, ν∗ is the frequency with which

the ion attempts to cross the barrier W ∗ and a∗ is the lattice constant. We can

see that the activation barrier is decreased (in the presence of a forward electric

field E∗k) for the ion to move from (k − 1)th to kth potential minima, thereby

contributing to the forward ionic current, whereas the barrier is increased for an

ion to move from kth to (k − 1)th minima. This leads to a unidirectional net

ionic current given by J∗k = J∗f − J∗r .

Fromhold and Cook (1967) also derived the ionic current in the continuum

limit under steady-state by averaging the number of diffusing species at position

x∗ o as the bulk concentration. The steady-state ionic current under a homoge-

neous electric field is then

J∗i (x∗) = µ
′∗E∗0C

∗(x∗)−D′∗dC
∗(x∗)

dx∗
, (1.14a)

where

µ
′∗ = µ∗

k∗bT
∗

Z∗e∗E∗0a
∗ sinh

(
Z∗e∗E∗0a

∗

k∗bT
∗

)
, (1.14b)

oNote that the electric field (E∗k) independent of the position x∗k is a homogeneous field given

by E∗0 (i.e. no space charges).
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and,

D
′∗ = D∗ cosh

(
Z∗e∗E∗0a

∗

k∗bT
∗

)
. (1.14c)

Here, Z∗e∗ is the ‘effective charge’ of the diffusing species, instead of q∗i in Mott’s

equation which is the actual electric charge per particle of the diffusing species; µ∗

andD∗ are the mobility and the diffusion coefficient of the ions that are related via

the Sutherland-Einstein relation (also called the Einstein–Smoluchowski relation)

given by

µ∗ =

(
Z∗e∗

k∗bT
∗

)
D∗ . (1.14d)

In (1.14), µ
′∗ and D

′∗ correspond to the enhanced mobility and diffusivity as a

result of the electric field. The effective charge takes into account the partial

covalent bonding and hence is not equal to the actual charge on the diffusing

species. In (1.14a), the second term represents the contribution to the flux due

to a concentration gradient (i.e. from Fick’s I law), whilst the first term gives

the additional contribution to the flux due to the self-induced electric field. As

previously discussed, the contribution due to a concentration gradient alone does

not account for the oxidation rate observed in experiments, hence the interest in

the additional electric field contribution to the ionic flux.

Equation (1.14a) is based on the discrete model of the oxide lattice and its

derivation makes use of the homogeneous field approximation and the field due

to space charges is neglected. This approximation is valid in the continuum limit

and for small space charge concentrations. Fromhold and Cook (1967) show that

the equations for both the discrete and continuum models reduce to the simple

chemical diffusion case for electric fields below 104 V/cm. However, for electric

fields in the range E∗0 = 104− 106 V/cm, equation (1.14) reduces to the following

form at steady-state:

J∗i ≈ µ∗E∗0
[C∗(L∗)− C∗(0) exp(Z∗e∗E∗0L

∗/k∗bT
∗)]

[1− exp(Z∗e∗E∗0L
∗/k∗bT

∗)]
, (1.15)

with the appropriate approximations made for small E∗0 ; here J∗i is the con-

stant ionic flux in the oxide, C∗(L∗) is the concentration of the diffusing species
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at the oxide-gas interface and C∗(0) is the concentration at the oxide-metal in-

terface. According to Fromhold and Cook (1967), this equation is valid when

|Z∗e∗E∗0a∗/(2k∗bT ∗)| � 1.

Fromhold and Cook (1967) performed numerical computations of the ionic

current and compared the results with analytical calculations and experimen-

tal observations. They found that their discrete model in all cases (and their

continuum model in some cases) showed consistency with available data.

Building upon Fromhold and Cook (1967)’s continuum model for metal oxi-

dation, Gharagozloo and Kanouff (2013) (henceforth abbreviated as GK) studied

the low-temperature oxidation kinetics specific to uranium. Their model is based

on the diffusion of oxygen ions (ionic diffusion model) rather than metal ions

(owing to the large size of uranium ions), which is supported by several authors

(Auskern and Belle, 1961; Kim and Olander, 1981; Colmenares, 1975). Though

there have thus far been several empirical models for the uranium oxidation kinet-

ics (Chernia, 2009; Colmenares, 1984; Cubicciotti, 1952; Lin et al., 2008; Ritchie,

1984), Gharagozloo and Kanouff (2013)’s model is the first theoretical treatment

of the problem. They modelled the oxidation of uranium in dry air (i.e. pure

O2) and compared their numerical results with several published experimental

results. They reported good agreement with the experimental results with only

a few deviations.

GK applied Fromhold and Cook’s continuum formulation to uranium oxida-

tion. They assumed the following form of the ionic current from equation (4.1)

of Fromhold and Cook (1967) (p. 1550):

J∗i = 4a∗ν∗ exp (−W ∗/k∗bT
∗) sinh

(
Z∗e∗E∗0
k∗bT

∗

) [C∗(L)− C∗(0) exp(
Z∗e∗E∗0L

∗

k∗bT
∗ )

]
[1− exp(Z∗e∗E∗0L

∗/k∗bT
∗)]

,

(1.16)

where the diffusivity D∗ = 4a∗2ν∗ exp(−W ∗/(k∗bT
∗)). Here, the model assumes

quasi-steady diffusion and therefore time only appears implicitly through the

oxide thickness (L∗(t∗)).

Gharagozloo and Kanouff (2013) make the following assumptions:

G1. A linear concentration gradient of the oxide ions across the oxide layer

(corresponding to a quasi-steady assumption).

G2. Space charges are assumed to be negligible and therefore a homogeneous

field approximation is made.



1.2. LITERATURE REVIEW 39

G3. The initial oxide thickness is taken as one lattice constant (a∗ = 3.8682Å).

G4. Oxygen is said to adsorb on the uranium oxide surface as a O radical instead

of O–,O2– or O2 due to the smaller size of O compared to the other species.

G5. All adsorbed oxygen gets ionised; this assumption is supported by the claim

that uranium ions in the oxide lattice increase their oxidation states from

+4 to +5 or +6 as additional oxygen atoms get adsorbed onto the oxide

surface (Grønvold and Haraldsen, 1948; Yasutoshi, 1974), which implies

that the electrons from the uranium metal (or ion) ionise the adsorbed

oxygen atoms.

The assumptions G4 and G5 could have implications on the Mott potential (V ∗M)

considered by GK through W ∗
bind and EA∗ (cf. equation (1.8)) and therefore on

the electric field strength E∗0 . Gharagozloo and Kanouff (2013) cite an ‘inverse

logarithmic’p growth for oxidation at low temperatures and a parabolic growth at

high temperatures. The transition temperature is reported as 50°C. The authors

report the model results to be in good agreement with the published experimental

results in the temperature range up to 200°C and thicknesses smaller than 300

nm, whilst above this range, the model performs poorly in the prediction of the

experimental results. GK attribute the mismatch to the change in the mechanism

of oxidation caused due to the cracking and spalling of the oxide film above 300

nm.

1.2.2 Limitations/gaps in the current literature on dry-air

oxidation

As noted at the start of this introduction, there is a sparsity of theoretical in-

vestigations of the physical mechanisms of uranium oxidation in dry air (and in

water vapour, similarly for “moist air” which is a combination of the two, i.e.

H2O + O2). The growth laws discussed above are at best an order of magnitude

prediction, whilst the ionic flux expressions above have yet to be discussed in

pThe ‘inverse-logarithmic’ equation (dimensional) given by Ritchie (1984) describing the

oxide thickness (y) for low temperatures (and during the initial stages) at a time t is 1/y =

1/y0−K ′ ln(1 + a(t− t0)), where y0 is the oxide thickness at time t0 and K ′ is some parameter

that depends on temperature.
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the context of a governing diffusion equation, instead relying on simplistic quasi-

static theories, some of which will be put into the context of the ‘full’ unsteady

problem in Chapter 2 and Chapter 3 of this work.

1.2.3 Objectives of our study of the U-O2 system

We consider that oxygen ions diffuse through the surface oxide rather than the

metal (U4+) ions. We assume that diffusion occurs via lattice defects in the

oxide, the number or concentration of which may depend on the stoichiometry

of the oxide under consideration. The influence of stoichiometry is largely via

the theoretical diffusion coefficient, although (a small) influence of the (hyper-)

stoichiometry appears via a Stefan parameter that will be discussed in Chapter 2

of this thesis. Similarly, we will not consider the orientation of the crystal lattice,

that is if the oxide formed is a single-crystal or a polycrystalline lattice. Therefore,

distinction between diffusion via grain boundaries and the lattice will not be

considered.

In our present work, we extend the continuum model by Fromhold and Cook

(1967) to solve the full diffusion equation (using Fick’s second law) without mak-

ing a priori assumptions regarding the concentration distribution within the oxide

layer. That is, we include the unsteady effects of the ionic current to eliminate

the approximation of a linear concentration gradient of the oxygen (O2–) ions

across the film. Our dry-air model will address the early-stage oxidation be-

fore cracking/spalling, where the oxide growth shows a square-root dependence

on time (called ‘parabolic’ oxidation in chemistry parlance). We model the sys-

tem using a Stefan/discrete-layer model (in Chapter 2) which is commonly used

to model phase-transition phenomena (e.g. melting/freezing) in heat transfer.

We later model the same system using a mixed-phase/diffuse-interface model in

Chapter 3.

1.2.4 Oxidation studies of uranium by pure water vapour

Uranium oxidation in a water vapour environment is different and more complex

than that in dry air/oxygen. The oxidation rate in pure water vapour (U+H2O(v))

is at least 5000 times larger than in dry air (Baker, Less, and Orman, 1966a)

suggesting distinct mechanisms. Also note that the oxidation rate in moist air

(U+O2+H2O(v)) is less than that in pure water vapour. We will only address the
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pure water vapour case as being entirely distinct from that of dry-air oxidation,

although some of the literature on moist air oxidation of uranium is also reviewed.

Different mechanisms by various authors have been proposed for the water

vapour oxidation of uranium. We however use the reaction mechanism proposed

by Glascott and Findlay (2019), AWE plc and find support for the reaction scheme

which is outlined in § 1.2.6 through the surface science and kinetic studies reported

in the literature.

According to the proposed scheme, hydroxide ions (OH–) form the diffusing

species in a water vapour environment. Here, a uranium hydride (UH3) reaction

intermediate is formed that further reacts to produce the final products uranium

dioxide (UO2) and hydrogen gas (H2). Although, a slightly hyper-stoichiometric

product UO2+x, with x = 0 − 0.18 is observed (see Banos and Scott, 2020) in a

water vapour environment, we will consider that the uranium dioxide formed is

stoichiometric (UO2). The formation of H2 and UH3 makes corrosion in water

vapour more detrimental (by degrading the material (U) quality) than that in

oxygen/dry air.

We organise our review and analyses of the literature on uranium-water vapour

corrosion into two sections: the first section deals with the surface science studies

of the uranium and water vapour system, the second section with the diffus-

ing species and the possible reaction mechanisms resulting in the formation of

uranium hydride (UH3) and uranium dioxide (UO2). We mainly perform these

studies to corroborate our reaction mechanism for the oxidation of uranium in

a water vapour environment (see § 1.2.6), which has been proposed by Glascott

and Findlay (2019). We also briefly review some of the studies on oxidation of U

in moist air (O2 + H2O).

1.2.4.1 Surface science studies

It has to be noted that most of the studies on the reaction of pure water vapour

with the surface of stoichiometric or non-stoichiometric uranium dioxide were

performed on single-crystal surfaces. Some studies used poly-crystalline UO2+x

surfaces, which may represent a more realistic scenario. However, since the (111)

surface is the natural cleavage plane of the fluorite-type structure (Castell et al.,

1996), we place more importance on the studies involving UO2(111). Our choice

is also aided by the fact that UO2(111) is the most stably oriented surface among

(110), (111) and (100) (i.e. low index) surfaces, with a surface energy of 1.07
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J/m2 (Tasker, 1979).

Hedhili, Yakshinskiy, and Madey (2000) studied the interaction of water

vapour with stoichiometric UO2(001). Techniques such as electron stimulated

desorption (ESD) and X-ray photoelectron spectroscopy (XPS) among others

were employed to characterise the oxide surface, where the presence of both H+

and O+ (O+ being the dominant signal) has been observed. However, since the

authors did not observe any OH+ on the surface, they concluded that hydroxyl

species were not adsorbed. They suggested that oxygen as O– or O2– diffuses into

the bulk which is then responsible for the oxidation of uranium. In another ex-

periment involving heavy water (D 18
2 O), they exposed a sample UO2(001) surface

to 1000 Lq of D 18
2 O and concluded that the surface chemistry of UO2 remains

unaffected, basing their conclusion on a lack of evidence for the presence of D2O

or any OD species on the surface. Observance of an 18O peak only after 8 L of

D 18
2 O exposure has been reported, but again no evidence for an OD+ (mass-to-

charge ratio, m/e = 20), 18OH+ (m/e = 19) or 16OH+ (m/e = 17) signal was

found, thereby leading to the conclusion that no adsorbed hydroxyl species were

present. The work by Henrich and Cox (1996) was cited by the authors to in-

fer that the presence of lattice defects or vacancies appear to be important in

determining the adsorbate and therefore the diffusing species in water vapour

environments.

Hedhili, Yakshinskiy, and Madey (2000) also cite Winer et al. (1987) who

investigated the interaction of D2O with clean U at room temperature. Winer et

al. (1987) found the presence of strongly chemisorbedr OD– on U from their XPS

results. This result has also been confirmed by Secondary Ion Mass Spectrometry

(SIMS)s which showed a substantial relative amount of OD–after D2O exposure.

They also conducted temperature programmed desorption (TPD) studies and

qLangmuir(L) is a unit to define the exposure of a solid surface to gases and is used in

adsorption studies. 1 L = 10−6 Torr s, which is equivalent to an exposure of the surface to a

pressure of 10−6 Torr of the gas for 1 second.
rChemisorption refers to adsorption wherein there is occurrence of chemical reaction between

the absorbent and absorbate molecules, thereby involving exchange of electrons between them.
sSecondary Ion Mass Spectrometry (SIMS) is a surface analytical technique wherein a pri-

mary ion beam (high energy ions) is made to bombard the sample surface, leading to an ejection

of the surface ions in the sample (‘secondary ions’) which is called sputtering. The masses of

the secondary ions ejected can then be determined by measuring their times of flight in a de-

tector from which the ion species are identified. Depth profiling can be done by recording the

sequential SIMS spectra by the bombardment of the exposed surface.
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monitored the desorbing species by carefully heating the surface from 85 to 298 K.

They found that D2O strongly chemisorbed to the surface at 85 K, which formed

a first layer, covered by multilayer ice. They also found significant differences in

binding energies of oxygen 1s spectrat between water vapour adsorption on clean

and oxygen-covered uranium, and concluded that oxygen inhibition of U − H2O

reaction was due to a surface mechanism. This conclusion may have possibly been

misinterpreted by Hedhili, et al. who reported the differences in binding energy

spectra between the pure and oxygen-covered surfaces to be sufficient evidence

for no hydroxyl groups to form on the oxide surface. This has also been pointed

out by Stultz, Paffett, and Joyce (2004), who suggested that water dissociation

must take place for oxygen to be incorporated into the surface and also pointed

to the fact that hydrogen has not been monitored in the experiments conducted

by Hedhili, Yakshinskiy, and Madey (2000).

Further supporting evidence for the chemisorption of water on the oxide sur-

face, and its dissociation into H+ and OH– can be found in Colmenares (1984)

who investigated the corrosion of U by H2O(v) in the temperature range 333 - 453

K, with a H2O(v) pressure from 7× 10−3 to 20 kPa. He suggested that the trans-

port of OH– through the oxide layer occurs via an ‘interstitialcy’ mechanism to

then react with the metal. The study by Catlow (1977) has been cited, according

to which the transport of OH– is energetically favoured over the transport of O–

or O2– through the oxide layer, owing to the large Coulomb energyu opposing the

displacement of O– or O2– from their lattice positions.

Senanayake and Idriss (2004) investigated the interactions of water vapour

on UO2(111) surfaces by deliberately creating defects on the UO2 surface and

monitoring the amount of H2 evolved (or desorbed) as a function of the defect

concentration. The study was thus focused on hypo-stoichiometric (UO2–x) or

O-defected crystals (UO2 crystals with oxygen vacancies). The authors observed

that the adsorption of H2O molecules at 300 K on stoichiometric surfaces (no

defects) was mostly reversible (> 80%) implying that the stoichiometric oxide

surface was largely non-reactive (i.e. no dissociative adsorption), whereas disso-

ciative adsorption of water vapour was found to occur in the presence of defects.

This study further confirms that defects play an important role in the adsorption

tHere, oxygen 1s spectra refers to the X-ray photoelectron spectra of the core electron energy

levels in the oxygen species.
uCoulomb energy is the energy associated with the electrostatic forces within atoms or

molecules, such as between electrons, or between the nucleus and the electrons.
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of water vapour and in the subsequent diffusion of OH– through the oxide layer.

The evolution of hydrogen (H2) occurred only in cases where the surface was

O-defected (through Ar+ sputtering), while no H2 was formed in purely stoichio-

metric UO2 crystals, leading the authors to conclude that H2 was desorbed only

from O-defected sites.

The study of water adsorption on defective UO2(100) by Stultz, Paffett, and

Joyce (2004) lends further support to Senanayake and Idriss’s hypothesis that

H2 was primarily desorbed from the surface defects (O vacancies). Stultz et al.

observed significant amount of H2 evolution from highly defected oxide surfaces

at ∼ 400 K.

One of the pioneering studies on U oxidation by water vapour was conducted

by Baker, Less, and Orman (1966a). They proposed a mechanism involving

dissociation of water vapour to produce OH–, and the formation of UH3 as an

intermediate in the oxidation reaction, where the amount of UH3 formed was

indirectly estimated based on the hydrogen gas deficit. The involvement of OH– in

the oxidation of U in water vapour environments has been confirmed by the recent

advanced study using atom probe tomography (APT) techniquev by Martin et al.

(2016).

In our study, we consider OH– to be the diffusing species in a pure water vapour

environment, as it has been established from several studies in the literature. We

will, however, not take into account the influence of deviation from stoichiometry

on the oxidation kinetics. The influence of hyper-stoichiometry is assumed to be

only via the lattice parameter appearing in the diffusion coefficient.

1.2.4.2 Studies on diffusion and reaction kinetics

Baker, Less, and Orman (1966a) proposed a mechanism involving diffusion of

OH– ions through an initially formed layer of oxide, which then react with the

metal underneath. Uranium hydride is formed as a reaction intermediate, and

diffusion of OH– ions was suggested as the rate-limiting step.

The influence of oxygen on the uranium and water vapour reaction was also

vAPT is an analytical technique to determine the material composition, wherein a sharp tip

(thickness of the order of nm) of the material sample is subjected to a focused ion beam that

vaporises and ionises the atoms one by one and then detects them using a Position Sensitive

Detector (PSD). The individual time of flight of the ions are then measured to identify the ions.

The atom probe microscope provides a 3D reconstruction of the sample tip analysed.
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studied by Baker, Less, and Orman (1966b) and they found that oxygen had

an inhibitory effect on the U+H2O(v) reaction, which has also been confirmed

by other studies (Draley and Ruther, 1957; Kondo et al., 1964). The effect of

parameters such as temperature, hydrogen pressure and relative humidity on the

corrosion rate were investigated by Baker, Less, and Orman (1966a) and the

results were reported. The authors also reported that the growth (thickness) of

the oxide layer and hydrogen evolution have a linear dependence on time. It will

be seen in the later chapters that whilst the initial stage of oxidation is parabolic,

the late stage is linear. Late stage is defined as the period after cracking and

spalling of the surface oxide, wherein a portion of the oxide adhering to the metal

is coherent whilst the remaining non-adherent portion is porous as a result of

cracking/spalling of the surface oxide (see Figure 1.2). The porous layer allows

the diffusion of water vapour molecules, and the dissociation of water vapour

into H+ and OH– occurs at the surface of the adherent oxide (beneath the non-

adherent surface layer) having constant width/thickness; the thickness of the

adherent layer is dependent on temperature. The late-stage oxidation of uranium

in water vapour (H2O(v)) thus shows a linear growth according to our models and

will be presented in Chapter 5 after an investigation of the early-stage oxidation

of uranium by water vapour in Chapter 4.

The major findings of Baker et al. (Baker, Less, and Orman, 1966a; Baker, Less,

and Orman, 1966b) that are relevant to our present study are:

i Hydroxyl anion (OH–) is the diffusing species in both pure water vapour and

moist air (O2 + H2O).

ii The oxide layer is not protective enough to prevent the evolved hydrogen at

the surface formed from the reaction of U with H2O(v) to re-diffuse through the

surface oxide and react with the underlying uranium metal. Cracking/spalling

of the oxide which makes it non-protective may be attributed to the build-up

of stress due to the difference in the densities of uranium and uranium dioxide.

Nevertheless, the oxide layer retards the rate of formation of uranium hydride

that may form from the reaction of the evolved H2 with uranium. Our study

will however not focus on the diffusion of the evolved hydrogen and its reaction

with the metal. Baker, Less, and Orman (1966a) (among other authors)

reported that a build up of hydrogen gas up to a pressure of 6 atm did not

alter the rate of oxidation, and hence we can safely neglect it.
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iii The uranium dioxide formed is hyper-stoichiometric i.e. UO2.06±0.02 in a ura-

nium and moist air (U + O2 + H2O(v)) system and stoichiometric (UO2) in

a pure water vapour (U + H2O(v)) system. Baker, Less, and Orman (1966b)

attributed the hyper-stoichiometry of the oxide in a moist air environment to

the oxidation of the already formed layer of uranium dioxide by O2.

iv The uranium hydride (UH3) that is formed as an intermediate product further

reacts with water vapour to form uranium dioxide and hydrogen; the amount

of UH3 formed depends on the relative humidity and pore size distribution

of the oxide (which we presume relates to the properties of the porous oxide)

among other factors (Baker, Less, and Orman, 1966b). The authors report

that a greater quantity (i.e. more mass at a fixed dimensional time) of hydride

at a higher relative humidity (in the case of moist air) is due to the blockage

of the diffusion path for water vapour (H2O(v)) by condensed water (H2O(l)) in

the pores of the oxide layer, which prevents the reaction of uranium hydride

with water vapour to form uranium dioxide. This statement however needs

further experimental verification and is out of the scope of our work.

Jones et al. (2013) suggested that the hydride nucleation sites occur at the metal-

oxide interface instead of the metal subsurface (i.e. within the metal). Banos,

Harker, and Scott (2018) proposed point defect sites on the surface of the metal

as one of the hydride nucleation sites apart from carbide inclusions and grain

boundaries. The formation of UH3 between the metal and the oxide layers has

also been irrefutably shown by the recent high spatial-resolution atom probe to-

mography (APT) studies conducted by Martin et al. (2016). A discrete hydride

layer of near constant thickness of 3 - 5 nm (during the time period of the experi-

ments of approximately 1-2 hours) is shown to exist between the metal and oxide

layers. It is noteworthy to mention that the formation of uranium hydride (UH3)

during ambient air oxidation was first explicitly observed in the atom probe to-

mography studies of Martin et al. (2016). This study confirms Baker, Less, and

Orman (1966a)’s hypothesis that UH3 forms as a reaction intermediate, which has

been previously disputed by several authors. Our reaction mechanism is largely

based on the reaction mechanism proposed by Baker, Less, and Orman (1966a).
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1.2.5 Oxidation studies in moist air (U + O2 + H2O(v))

McGillivray, Geeson, and Greenwood (1994) studied uranium oxidation in both

dry and moist air. They proposed that different diffusing species, viz., hydroxide

(OH–) and oxide (O2–) ions were produced in moist and dry air respectively. The

influence of water vapour pressure on the oxidation rate among other factors has

been studied under moist air conditions. Depth profiling of the oxide formed has

been performed using SIMS (Secondary Ion Mass Spectrometry) and the oxide

layer in a moist air environment was speculated to be formed from both O2 and

H2O. A linear rate of oxidation even at small times has been observed in the

temperature range 150 to 350°C and Langmuir adsorption isothermw has been

used to fit the data.

Haschke, Allen, and Martz (1998) and Haschke, Allen, and Morales (2001)

compared uranium(U) and plutonium(Pu) systems and proposed a mechanism

in which Pu or U reacts chemically with pure water vapour (H2O(v)) whilst cat-

alytically with O2 + H2O mixture wherein the hydride formed acts as a catalyst.

Haschke et al. dismissed OH– to be the diffusing species and instead proposed

oxygen ions (O2–) to be the sole diffusing species in the moist air environment,

which can be proved to be flawed based on the recent atom probe tomography

(APT) study by Martin et al. (2016) (refer figure 1.1(c) where UH molecular ions

are detected).

All the above discussed studies (Baker, Less, and Orman, 1966a; Baker, Less,

and Orman, 1966b; McGillivray, Geeson, and Greenwood, 1994; Haschke, Allen,

and Morales, 2001) proposed the uranium oxidation mechanisms based on exper-

imental results and empirical data-fitting. The rate of oxidation was determined

to be mostly linear even at small times in the temperature range studied.

1.2.6 Objectives of our study of the U-H2O(v) system

Our work follows from the reaction mechanism proposed by Glascott and Findlay

(2019) in an internally published report within AWE plc., on uranium corrosion

in water vapour environments. They suggested that the diffusing species in water

wAdsorption isotherm gives the variation of the amount of adsorbate on the absorbent surface

with the partial pressure of the gaseous absorbate molecules, at a constant temperature. The

Langmuir adsorption isotherm is given by θ =
Keqp

1+Keqp
where θ is the fractional occupancy of

the adsorption sites by the adsorbate molecules or ions or radicals, p is the partial pressure of

the gas (adsorbate) and Keq is the equilibrium constant for adsorption.
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Figure 1.1: (a) An atom probe map of a tip from a uranium sample exposed to air,
showing U and UOx ions in green and yellow respectively. (b) A 24 atomic % UOx
isosurface showing two oxide regions that indicates the percentage of UOx atoms to
the total amount of atoms present in that location. (c) An atom probe map showing a
0.5 atomic % UH in blue indicating the location of the hydride ions. Image reproduced
with permission from Martin et al. (2016).

vapour environments are the hydroxide ions (OH–) which is adequately supported

by the recent research using the high spatial resolution atom probe tomography

(APT) technique by Martin et al. (2016), wherein the authors infer that hydroxyl

(OH–) containing species are distributed throughout the oxide. These hydroxyl

species are observed to disappear at the location where the hydride (H–) molec-

ular ions are observed, thereby suggesting a mechanistic link for the formation

of UO2 through the reaction of UH3 with the hydroxide species. Glascott and

Findlay proposed that the diffusing OH– ions react with UH3 to form UO2 and

hydrogen radicals (H ), the latter reacting further with the metal to form UH3.

This mechanistic link of UH3 in the formation of UO2 is also supported by the

fact that there is no UO2 layer observed between the metal (U) and the hydride

layers, suggesting that the oxide is not formed directly from the metal once a

layer of UH3 is formed. It has been suggested in several studies (see reviews by

Banos, Harker, and Scott, 2018; Banos and Scott, 2020) that the oxide (UO2) is

immediately formed on a freshly polished or clean U surface under ambient condi-

tions such that an initial oxide layer is always observed regardless of the method
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of preparation. A hydride layer has not been reported in such studies, possibly

due to the high resolution needed to detect a few nanometers thick hydride layer,

which was only recently confirmed using the atom probe tomography technique

(Martin et al., 2016).

In our model, we therefore consider an initial thin (a few atomic layers) ox-

ide layer. Also, we consider an initial relatively thinner hydride layer in order

to initiate the reaction in accordance with the mechanism proposed. The reac-

tion mechanism proposed by Glascott and Findlay (2019) for the water vapour

corrosion of uranium is given in the form of the following elementary reaction

steps.

Proposed reaction for oxidation in water vapour

R1. Adsorption of water vapour molecules (H2O(v)) onto the surface of uranium

dioxide lattice to form two mobile hydroxide ions (OH–):

2 H2O(v) + 2 O2–

surface/lattice

k∗s
2 OH–

surface/lattice

+ 2 OH–

mobile

.

There is diffusion of the mobile OH– through the bulk medium.

R2. The diffusing OH– reacts with uranium hydride (UH3) to produce uranium

dioxide (UO2) and hydrogen radicals (H ), via

UH3 + 2 OH– k∗cH
UO2 + 5 H + 2 e– .

Therefore UH3 acts as an intermediate to form UO2 from uranium and water

vapour and this reaction is a source of H , which diffuse through the bulk

medium.

R3. The diffusing hydrogen radicals generated in R2 then react with uranium

to produce more UH3 via

3 H + U
k∗hM

UH3 .

R4. The hydrogen radicals may also react with each other at the surface (gas-

oxide interface) after diffusing through the oxide layer, subject to
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2 H
k∗H

H2 .

R5. The electrons produced recombine with the lattice OH– at the surface to

reproduce the uranium dioxide lattice:

2 e– + 2 OH–

lattice

k∗e
2 O2–

lattice

+ H2 .

H2O(v)

H2O(v)
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Figure 1.2: The various processes occurring during uranium oxidation in a pure water
vapour (H2O(v)) environment, where (a) represents diffusion of water vapour through
the porous oxide, (b) dissociation of water vapour molecules at the surface of the
adherent (or non-porous) oxide, diffusion of OH– ions through the non-porous oxide
and reaction of OH– with U to form UO2, (c) formation of UH3 and diffusion of H to
the surface of the adherent oxide to form H2. The formation of porous/non-adherent
oxide occurs after cracking/spalling of the surface oxide and leads to a linear oxidation
regime.

The overall reaction of uranium with pure water vapour is represented as

follows:
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U + 2 H2O(v) UO2 + 2 H2 .

Figure 1.2 shows the reaction mechanism proposed by Glascott and Findlay

(2019) in different stages. They suggested that H2O(v) molecules diffuse through

a porous (non-coherent) oxide, formed as a result of cracking and spalling at the

late stages of corrosion when the oxide layer has reached a thickness of 500 Å

(Harker, 2006) at room temperatures (thickness of the coherent oxide being a

function of temperature). In the schematic, we do not explicitly represent an

initial hydride layer that is considered in the model.

1.2.7 Assumptions in our U + H2O(v) models

In this section, we discuss the assumptions made before we venture into mathe-

matically modelling uranium corrosion in water vapour.

A1. The surface reactions represented in R1, R4 and R5 are neglected. The

justification for this assumption will be provided in Chapter 4.

A2. The hydrogen radicals coming in contact with the metal atoms (or ions)

spontaneously react to form UH3 and therefore the solubility of hydrogen

(as radicals or H2) in the metal is neglected.

A3. The amount of uranium hydride (UH3) formed is assumed to be not suffi-

cient to rupture the overlying oxide layer during the initial stages of uranium

corrosion. This assumption is also supported by the fact that we do not

observe a non-coherent oxide layer in these early stages, when the thickness

of the overlying oxide is less than 500 Å (Harker, 2006; Banos, Harker, and

Scott, 2018) at room temperatures.

A4. The effects of stress due to volume expansion on the kinetics of uranium

corrosion are neglected.

A5. Radiolysis of H2O (i.e. dissociation of water molecules by radiation) on the

surface of the oxide is not considered.

The other assumptions underpinning our mathematical models will be discussed

in the respective chapters.
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1.3 Thesis overview

The remaining chapters in this thesis are organised as follows.

� In Chapter 2, we present discrete-layer (Stefan) formulations of simple

chemical diffusion and ionic diffusion (in the presence of a self-induced elec-

tric field) problems for the dry-air oxidation of uranium. The models are

solved using numerical approaches, whilst analytical and/or asymptotic so-

lutions are also derived for some problems. We compare our unsteady model

with the quasi-steady model of GK and discuss the range of validity for the

quasi-steady approximation. The influence of different parameters on the

dry-air oxidation rate are discussed.

� In Chapter 3, a mixed-phase/diffuse-interface formulation for dry-air oxida-

tion is presented. This chapter provides a link between the work of Chap-

ter 2 and the approach taken in chapters 4 and 5. Here we validate the

mixed-phase formulation, before it is extended to model the more complex

water-vapour oxidation in Chapter 4.

� Chapter 4 discusses the early-stage oxidation of uranium in water vapour.

A reaction-advection-diffusion (RAD) model is formulated using a diffuse-

interface approach for which both numerical and asymptotic solutions are

presented. A matched asymptotic analysis is performed in the limit of a

large reaction rate constant or equivalently in the large-time limit. The nu-

merical simulation results are compared with the leading-order asymptotic

solution to validate the numerical formulation. The influence of different

diffusivity parameters, rate constants and initial conditions on the water-

vapour oxidation kinetics are explored. This chapter forms the basis of ma-

terial published in the paper, “Asymptotics of coupled reaction-diffusion

fronts with multiple static and diffusing reactants: uranium oxidation in

water vapor” by Natchiar, Hewitt, Monks and Morall in SIAM Journal on

Applied Mathematics (Monisha Natchiar et al., 2020).

� In Chapter 5, we discuss the late-stage oxidation of uranium in water vapour

that comprises the linear regime after cracking and spalling of the surface

oxide. For the same reaction RAD model presented in the previous chapter,

constant-flux solutions are explored; the motivation for this can be found

within the chapter.
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� Discussion on the different models for dry-air and water-vapour oxidation

and their comparisons with published results are presented in Chapter 6,

and we end the chapter with conclusions and future work.



Chapter 2

Dry-air oxidation of uranium

When uranium is oxidised by dry air or oxygen, uranium dioxide (UO2+x) is

produced at room temperatures; the formation of U3O8 that occurs at higher

temperatures will not be studied or discussed in this work. In this chapter, we

investigate the kinetics of uranium oxidation by dry air/oxygen to form UO2+x

using a range of modelling approaches. Nitrogen in dry air acts as an inert species

in the corrosion/oxidation of uranium (refer § 1.1); hence the terms dry air and

oxygen will be used interchangeably for the kinetic study in this chapter. It is

well-known that diffusion is the rate-determining step in the oxidation of uranium

by dry air/oxygen and the diffusing species in this case are oxygen ions (O2–).

Although the study of water vapour oxidation of uranium is more significant/rel-

evant in a practical setting (pertaining to nuclear waste storage applications),

there is a dearth of mathematical models for the study of uranium oxidation

per se, and the study of dry air oxidation of uranium provides a context for the

subsequent study of the more complicated water-vapour oxidation in Chapter 4.

Uranium dioxide is less dense than the parent metal (U) (refer Table A.1),

and can lead to deterioration of the material (U) quality after a prolonged storage

period. Motivated by these applications, we investigate the uranium oxidation

kinetics in dry air. Figure 2.1 depicts our workflow in the modelling and investiga-

tion of dry air-uranium oxidation kinetics; the detailed modelling approaches are

not depicted for the sake of brevity, and can be found in the respective sections.

54
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2.1 Quasi-steady chemical diffusion

We begin our investigation of uranium oxidation in dry air by considering the

quasi-steady diffusion model of Gharagozloo and Kanouff (2013). Gharagozloo

and Kanouff (henceforth abbreviated as GK) have modelled the uranium oxida-

tion process using two mechanisms, viz. chemical and ionic diffusion.

Dry-Air Oxidation (U + O2)

Chemical Diffusion

Quasi-steady diffusion

Comparison with the GK model

Unsteady diffusion

Neglecting volumetric changes

Numerical + Analytical

+ Asymptotics

Including volumetric changes

Numerical solution

Mixed-phase/ Diffuse-interface model

Ionic Diffusion

Moderate Electric Field

Quasi-steady diffusion

Unsteady diffusion

Strong Electric Field

Quasi-steady

Unsteady diffusion

Inclusion of mass of oxygen

absorbed (see appendix B)

Figure 2.1: Workflow for dry-air oxidation modelling.

When a quasi-steady approximation is made, the flux of oxygen in the oxide

layer is independent of the position in the layer; in other words, the concentration

gradient of the diffusing species is linear. We compare the results of our quasi-

steady formulation with that of GK, and then finally compare with the unsteady
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solution in §§§ 2.2.1.6 (also see § 2.3) to analyse the validity of this approach

(or to find the range of parameters for which the quasi-steady approximation is

valid).

We begin by modelling the dry-air oxidation process as a simple chemical

diffusion model that is further subdivided into quasi-steady and unsteady formu-

lations. We then model the process using an ionic diffusion model, again subdi-

vided into quasi-steady and unsteady formulations. Both the quasi- and unsteady

models are formulated as a Stefan problem in this chapter. The classical Stefan

problems typically describe phase-transition phenomena involved in heat transfer

(for e.g. melting/solidification). The characteristic feature of a Stefan problem

is the existence of one/more free boundaries (also called moving/phase bound-

aries) that are unknown a priori and the evolution of which is described by the

“Stefan condition”. Here, we define a Stefan problem as a discrete-layer model

consisting of sharp interfaces (i.e. phase boundaries) that separate the different

homogeneous (or pure) phases. The distinction between the quasi- and unsteady

Stefan models is based on a nondimensional parameter called the Stefan number.

Detailed discussion of the models are provided in the respective sections.

Generally a quasi-steady-state approximation can be applied to systems in

which the time taken for diffusion is much less than the time that is required to

change the bulk concentration of the material phase by the diffusing species.

c1(t)

c2(t)

(a)

c1(t)

c2(t)

(b)

Figure 2.2: Schematic of (a) unsteady/transient diffusion across a thick slab or layer
(b) quasi-steady diffusion across a thin layer. The concentrations of an arbitrary dif-
fusing species at the two boundaries of the slabs are denoted as c1(t) and c2(t).

For example, in the case of diffusion occurring through a thin slab or layer as

shown in subfigure 2.2(b), the diffusion is quasi-steady wherein the diffusive flux

inside the slab is constant and the concentration profile is linear. In more general

problems, although the thickness of the layer through which diffusion occurs does
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not in itself determine whether the diffusion is quasi-steady, it determines the

timescale over which quasi-steady behaviour is found.

2.1.1 The reduced model of GK

A one-dimensional model for the diffusion of oxygen ions (O2–) that is the rate-

determining step in the oxidation kinetics of uranium has been considered. From

Fick’s first law of diffusion, the chemical diffusive flux of oxygen ions is propor-

tional to their concentration gradient and the proportionality constant is called

the diffusion coefficient or diffusivity of oxygen (O2–) in uranium dioxide (UO2.09)
a.

The diffusivity can be determined either theoretically or from empirical data. The

chemical diffusive flux is then mathematically written (using Fick’s first law) as

J∗c = −DO∗
c

∂c∗

∂z∗
, (2.1)

where J∗c is the chemical diffusive flux in the z∗ direction, DO∗
c is the diffusivity of

oxygen ions in uranium dioxide and c∗(z∗, t∗) represents the (number) concentra-

tion of oxygen ions as a function of z∗ and time t∗. For a quasi-steady approach,

the governing equation for the diffusion of oxygen ions in the oxide layer is given

by ∂J∗c /∂z
∗ = 0, with an initial state consisting of both the metal layer and an

oxide layer of thickness δ∗O
b.

A schematic of the configuration is shown in Figure 2.3, where we choose to

measure z∗ relative to an initial oxide surface, z∗s(t
∗ = 0) = 0. Interfaces define

locations that separate one phase from the other. For example, a metal-oxide

interface separates the pure metal and oxide phases and is denoted by z∗ = z∗1(t∗).

As can be seen in the figure, the oxide surface z∗s(t
∗) is not stationary and advects

‘upwards’ (t∗ > 0) to accommodate the increased volume resulting from phase

conversion or density change (as the more dense metal is converted to less dense

oxide). The oxide-metal interface (z∗1(t∗)) in turn moves ‘downwards’ as the

reaction progresses. Here, the material expansion due to the phase changes is

considered to be only in the upward direction.

aA slight hyper-stoichiometry of x = 0.09 is considered for uranium dioxide, i.e. U +
(2+x)

2 O2 → UO2+x where x = 0.09 is in accordance with the experimental data of Colmenares

(1984) (see Gharagozloo and Kanouff, 2013).
bFrom the experimental studies, a ‘clean’ uranium sample without an initial oxide layer

has not been observed as the uranium metal is highly reactive with oxygen or water vapour

(Gharagozloo and Kanouff, 2013; Banos and Scott, 2020).
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z∗s(t
∗ = 0) = 0

z∗ = z∗1(t∗ = 0)

z∗ = −z∗∞

δ∗O

Metal

Oxide

O/M interface

Oxide surface
z∗ = z∗s(t)

z∗ = z∗1(t)

z∗ = −z∗∞

Metal

Oxide

O/M interface

Oxide surface

t∗ = 0 t∗ > 0

(a) (b)

Figure 2.3: Schematic of the (a) initial state and (b) later state of the metal (U)
+ metal oxide (UO2.09) system, with two moving interfaces at the locations z∗ =
z∗1(t∗) < 0 and z∗ = z∗s (t∗) > 0. Here the O/M interface represents the interface
that separates the pure metal and oxide phases, and the oxide surface represents the
gas-oxide interface.

The oxide surface is exposed to an ambient concentration of oxygen gas (O2).

We neglect the details of the surface reactions, where it is assumed that the

timescale for achieving the surface equilibrium concentration of the adsorbed

oxygen ions (O2–) is much less than the timescale for the diffusion of O2– through

the surface oxide to react with the metal (Gharagozloo and Kanouff, 2013). We

therefore consider a constant surface concentration of the oxygen ions equal to

C∗a ions/m3 in order to compare our quasi-steady results with that of GK. Fur-

thermore, we assume that the rate of reaction at the oxide-metal interface is much

faster (i.e. instantaneous reaction) than the rate of diffusion of oxygen, leading to

c∗|(z∗=z∗1 (t∗)) = 0. The boundary conditions are thus c∗(z∗1) = 0 and c∗(z∗s) = C∗a .

Assuming a quasi-steady solution implies that the diffusion equation,

∂2c∗

∂z∗2
= 0 (2.2)

gives a concentration profile that is a linear function of depth,

∂c∗

∂z∗
=
c∗|(z∗=z∗s ) − c∗|(z∗=z∗1 )

z∗s(t
∗)− z∗1(t∗)

=
C∗a

z∗s(t
∗)− z∗1(t∗)

, (2.3)
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where z∗1(t) is the location of the oxide-metal interface and z∗s(t) is the location

of the surface.

Using this quasi-steady approach, (2.1) can be simplified to a constant flux of

J∗c = −DO∗
c

C∗a
z∗s − z∗1

. (2.4)

The chemical diffusivity DO∗
c is defined in Gharagozloo and Kanouff (2013) as

DO∗
c = 4a∗2ν∗ exp

(
−W ∗

k∗bT
∗

)
, (2.5a)

with the lattice constant (length of a unit cell in the uranium dioxide lattice),

a∗ = 5.4713�A (Leinders et al., 2015)c; vibrational frequency of oxygen atoms in

uranium dioxide, ν∗ = 19 · 1012 Hz; energy barrier height, W ∗ = 1.98 · 10−19 J

(Gharagozloo and Kanouff, 2013); and the Boltzmann constant, k∗b = 1.3806 ·
10−23 J/K. Substituting these constants in (2.5a) gives

DO∗
c = 2.2751 · 10−5 m2/s exp

(
−14342 K

T ∗ (K)

)
. (2.5b)

For the concentration of O2– at the oxide surface (assuming an initial oxide

layer), we use the value from Gharagozloo and Kanouff (2013) given by C∗a =

6 · 1028 ions/m3. However, it should be noted that for C∗a = 6 · 1028 ions/m3, a

quasi-steady approximation is not valid as will be seen in §§§ 2.2.1.6.

It is to be noted that GK give two expressions for the diffusion coefficient

DO∗
c , one theoretical (given above by (2.5)) and the other from empirical data

fitting by Lay (1970). The empirical diffusivity of oxygen in uranium dioxide is

given as:

DO∗
c = 5 · 10−5 m2/s exp

(
−119244 J/mol

R∗gT
∗

)
(2.6)

where R∗g is the universal gas constant in units of J/(mol K) and T ∗ is the temper-

ature in Kelvin. In their paper (Gharagozloo and Kanouff, 2013), they state, “the

theoretical chemical diffusion coefficient is consistently a factor of 1.75 less than

cAlthough the recently published value of the lattice constant (a∗) by Leinders et al. (2015)

is more accurate, we use a∗ = 3.8682�A from Gharagozloo and Kanouff (2013) to reproduce the

GK results.
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(a) T ∗ = 20 to 100°C
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(b) T ∗ = 20 to 500°C

Figure 2.4: The temperature dependence of the theoretical and empirical chemical
diffusivities given by (2.5) and (2.6) respectively, ranging from approximately 10−26

m2/s at room temperature (e.g. 20 °C) to 10−13 m2/s at 500°C.

the published measured chemical diffusion coefficient in the temperature range

studied.”. Whereas, using the same two expressions and a lattice constant of

a∗ = 3.8682 Å, we find a difference of a factor approximately equal to 4.38.
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2.1.1.1 Calculation of oxide thickness

The metal-oxide interface velocity has been calculated by GK as the ratio of the

flux of diffusing species to their number concentration at the oxide-metal interface

that is involved in the phase transition from metal to metal oxide.

However, it is not clear as to how the density change is handled in GK,

as mass conservation of the whole system is not considered: “The outer oxide

surface velocity is calculated by dividing the flux by twice the number concentration

of UO2.09 in solid uranium dioxide minus the metal-oxide interface velocity to

account for the change in density between uranium and uranium dioxide”.

The change in the oxide thickness at any given time step was then calculated

by summing the velocities of the oxide-metal and the gas-oxide interfaces and

multiplying by the time-step (see p. 2945 Gharagozloo and Kanouff, 2013).

2.1.2 Comparison of results of the quasi-steady formula-

tion

We proceed with our quasi-steady formulation and compare the results with that

of the quasi-steady model of GK. We assume that the oxygen ions diffusing into

the uranium metal immediately react to form uranium dioxide. Therefore, the

oxide-metal interface moves downwards as the reaction progresses. A slight hyper-

stoichiometry (≈ 5%) of uranium dioxide is considered which implies that 2.09

oxygen ions are required to oxidise 1 uranium atom/ion to produce 1 molecule of

uranium dioxide. Over an area (∆A∗) and time (∆t∗), there is a total number of

J∗c∆A∗∆t∗ oxygen ions diffusing into the underlying metal layer. These oxygen

ions (O2–) react with J∗c∆A∗∆t∗/2.09 uranium atoms, which removes a volume

of J∗c∆A∗∆t∗/(2.09N∗M) from the metal, where N∗M is the number density of

uranium. If the velocity of the interface separating the metal from the oxide is

v∗, then the volume of metal lost is v∗∆A∗∆t∗. For consistency of these two views

we require a velocity of

v∗ =
dz∗1
dt∗

=
J∗c

2.09N∗M
= − DO∗

c

2.09N∗M

(
C∗a

z∗s(t
∗)− z∗1(t)

)
. (2.7)

Note that z∗1 < 0 and the oxide-metal interface velocity v∗ < 0, resulting in the

expected downward propagation of the interface into the metal.
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The number concentration of uranium in the uranium lattice is

N∗M =

(
ρ∗M
M∗

U

)
NA = 4.8235 · 1028 atoms/m3, (2.8)

where ρ∗M = 19.06 g/cm3 is the density of uranium, M∗
U = 238 g/mol is the

molecular weight of U and NA = 6.023 · 1023 is the Avogadro’s number. Typical

values for the dimensional physical constants are given in Table A.1.

2.1.2.1 Density changes at the interface

As the density of uranium dioxide (ρ∗O = 10.97 g/cm3) is less compared to that

of uranium (ρ∗M = 19.06 g/cm3), the material volume increases as the metal is

converted to oxide. Therefore, the gas-oxide interface moves upwards to accom-

modate the increased volume. The gas-oxide (or ‘upper’) interface velocity is

computed by considering a mass balance of the system.

Let the initial total mass of the system be M∗
0 and mass of the system at time

t∗ be M∗
0 + M∗

abs, where M∗
abs is the mass of oxygen absorbed in time t∗. As the

molecular weight of oxygen (32 g/mol) is smaller than the molecular weight of

uranium (238 g/mol), the increased mass due to absorption of oxygen will be

neglected in what follows, although we address this issue in Appendix B.

As shown in Figure 2.3, we assume an initial state with a metal layer of thickness

(z∗1(t∗ = 0) − (−z∗∞)) and an oxide layer of thickness δ∗O. An initial oxide layer

is considered to be representative of the actual experimental conditions wherein

a ‘clean uranium’ (i.e. uranium without an overlying oxide layer) has not been

observed. This is due to the fact that uranium is very reactive with oxygen or

water vapour. In the initial state, the total ‘mass’ (mass per unit area of the

sample) is given by

M∗
0 = ρ∗M(z∗1(0) + z∗∞) + ρ∗O(δ∗O) , (2.9)

where the density of the metal is denoted as ρ∗M and the density of the oxide is

ρ∗O.

At a later time t∗, the total mass of the system becomes

M∗
0 +M∗

abs = ρ∗M(z∗1(t∗) + z∗∞) + ρ∗O(z∗s(t
∗)− z∗1(t∗)), (2.10)
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where z∗1(t∗) and z∗s(t
∗) represent the positions of the oxide-metal and the gas-

oxide interfaces at time t∗ and z = −z∗∞ represents the metal truncation or the

far-field boundary. Equating (2.9) and (2.10) (i.e. by neglecting M∗
abs), we obtain

z∗1(t∗)

(
1− ρ∗M

ρ∗O

)
+
ρ∗M
ρ∗O

z∗1(0) + δ∗O = z∗s (2.11)

Differentiating the above equation with respect to time yields

dz∗s
dt

= −dz∗1
dt

(
ρ∗M − ρ∗O
ρ∗O

)
(2.12)

or

dz∗1
dt∗

= − ρ
∗
O

ρ∗M

d(z∗s − z∗1)

dt∗
, (2.13)

which relates the velocity of the surface (or the gas-oxide interface), dz∗s/dt
∗ with

the velocity of the oxide-metal interface, dz∗1/dt
∗.

Defining the dimensional oxide layer thickness as L∗(t∗) = z∗s(t
∗)− z∗1(t∗), we

can write (2.13) as
dz∗1
dt∗

= − ρ
∗
O

ρ∗M

dL∗

dt∗
. (2.14)

Now substituting the oxide-metal interface velocity given by (2.7) in the above

equation, we obtain
dL∗

dt∗
=

DO∗
c C∗a

2.09N∗M

ρ∗M
ρ∗O

1

L∗
, (2.15)

which on integrating with respect to the initial condition L∗(t∗ = 0) = δ∗O gives

L∗ =

√(
2ρ∗M
ρ∗O

)(
DO∗
c C∗a

2.09N∗M

)
t∗ + δ∗2O . (2.16)

Equation (2.16) gives an analytical expression for the dimensional thickness of

the oxide layer as a function of time t∗. This analytical expression has not been

derived by Gharagozloo and Kanouff (2013), and their results arise from a nu-

merical solution.

We can now reproduce the GK results using (2.16), as shown in Figure 2.5.

Interestingly, the results for ρ∗M/ρ
∗
O = 1 reproduce those of GK figure 3(a), even

though the authors claim to include the effect of density change arising from
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Figure 2.5: The development of the oxide layer thickness over 500 hours at three
different temperatures of 100°C (cyan), 125°C (green), 150°C (red). Here thinner lines
show the oxide thickness for no density change ρ∗M/ρ

∗
O = 1 whilst the thicker lines

assume that ρ∗M/ρ
∗
O ≈ 1.74. The GK results extracted from figure (3a) of Gharagozloo

and Kanouff (2013) are represented as data points (black) for the three temperatures.

volume expansion (ρ∗M/ρ
∗
O = 1.7375). It is to be noted that we have used the

same values of C∗a = 6 · 1028 ions/m3 and the lattice constant a∗ = 3.8682�A from

Gharagozloo and Kanouff (2013) to calculate the oxide thickness.

2.1.3 Accuracy of the quasi-steady approximation

The GK approach assumes a linear profile (2.3) for the oxygen ions concentration

in the uranium dioxide layer. In §§§ 2.2.1.6, we will show that the accuracy of

this assumption is governed by the dimensionless ratio,

λ =
C∗a

2.09N∗M
, (2.17)

which is referred to as the Stefan number. It is defined as the ratio of the surface

(number) concentration of the diffusing oxygen ions to the (number) concentra-

tion of oxygen ions at the oxide-metal interface involved in the phase transition
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from metal to oxide.

For C∗a = 6 ·1028 ions/m3 as stated in GK, λ ≈ 0.6. We will show that, for the

GK model which assumes a linear concentration gradient, quasi-steady diffusion

is a good first approximation to the unsteady diffusion model only when λ� 1.

2.2 Unsteady chemical diffusion: a Stefan prob-

lem

A chemical diffusion problem involving a phase change is analogous to the classical

Stefan problem which involves phase transitions as a result of transfer of heat,

and consists in solving a system of partial differential equations with one or more

moving boundaries. In a classical Stefan problem, the Stefan number is defined

as the ratio of the sensible to the latent heat (see Rubenstein, 2000; Gupta,

2017). In this section, we solve for the unsteady chemical diffusion problem

governed by Fick’s second law, where diffusion is considered to be rate-limiting,

thus neglecting the details of the reactions themselves that result in a phase

change (or density change) as metal (U) is converted to oxide (UO2.09). That

is, a Stefan problem deals with sharp interfaces between the different phases,

where the phase boundary/interface is not known a priori. We then compare

the solution obtained from solving the one-dimensional governing equations for

unsteady diffusion to that obtained for the quasi-steady diffusion case, which

enables us to find the range of parameter values for which quasi-steady diffusion

is a good approximation. We consider two scenarios: (i) neglecting the density

change as uranium is converted to uranium oxide, (ii) including the density change

due to the reaction.

2.2.1 Neglecting density/volumetric changes: ρ∗M = ρ∗O

If we neglect the density change associated with the transition from uranium

to uranium oxide, then the gas-oxide interface can be considered to be fixed at

z∗ = z∗s(t
∗ = 0) = 0. In the oxide phase we recover a standard diffusion problem:

∂c∗

∂t∗
= DO∗

c

∂2c∗

∂z∗2
for z∗1(t) < z∗ < 0, (2.18)

repeating the notation of the previous section, with c∗ the (number) concentration

of oxygen ions in the oxide phase, DO∗
c the constant diffusivity of oxygen ions in
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the oxide phase and z∗ is the spatial coordinate wherein the initial surface is

located at z∗s(t
∗ = 0) = 0.

The boundary conditions are

c∗ = C∗a(t∗) on z∗ = 0, (2.19a)

c∗ = 0 on z∗ = z∗1(t∗), (2.19b)

dz∗1
dt∗

= −λ∗DO∗
c

∂c∗

∂z∗
on z∗ = z∗1(t∗) , (2.19c)

where C∗a(t∗) is the time-varying surface concentration of oxygen ions, and z∗1(t∗)

represents the oxide-metal interface at time t∗. In this approach, an unsteady

surface concentration of oxygen ions can be allowed for, by taking the surface

concentration to be a function of time, i.e. C∗a = C∗a(t∗) until equilibrium is

attained. Here, equation (2.19c) is the unsteady diffusion analogue of (2.7) and

is a standard Stefan condition at the oxide-metal interface; it gives the velocity

of oxide-metal interface that is proportional to the flux of the diffusing ions.

The parameter λ∗ follows from (2.17) as

λ∗ =
1

2.09N∗M
, (2.20)

where N∗M is the (number) concentration of uranium and λ = λ∗C∗a .

The initial condition for the concentration of the diffusing species is given by

c∗(z∗, t∗ = 0) = 0 , (2.21)

which is an obvious choice when there is no oxide formed, that is when δ∗O = 0.

But any initial distribution can be considered. For example, the initial condition

assumed by GK is

c∗(z∗, t∗ = 0) = C∗a
z∗ + δ∗O
δ∗O

, (2.22)

which follows from a linear concentration profile c∗ = A∗z∗+B∗ (obtained from a

quasi-steady approximation), where A∗ and B∗ are constants that are determined

from the boundary conditions.
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2.2.1.1 Nondimensionalisation

We nondimensionalise using a constant (steady-state) surface concentration of

oxygen ions C∗a , an arbitrary length-scale L∗ref and the diffusion time scale L∗2ref/D
O∗
c ,

resulting in

∂c

∂t
=
∂2c

∂z2
for z1(t) < z < 0 , (2.23)

and subject to

c = Ca(t) on z = 0 , (2.24a)

c = 0 on z = z1(t) , (2.24b)

dz1

dt
= −λ∂c

∂z
on z = z1(t) . (2.24c)

Here,

λ = λ∗C∗a =
C∗a

2.09N∗M
(2.25)

is a Stefan number, z1(t) = z∗1/L
∗
ref is the relative interface position, and δO =

δ∗O/L
∗
ref is a relative measure of the initial oxide thickness (if any). The dimen-

sionless concentration of the diffusing species at the gas-oxide interface (or the

oxide surface) is defined by Ca(t), where Ca → 1 as t → ∞ by virtue of the

nondimensionalisation via the value C∗a .

We note that the neglect of any density change between the metal and the

oxide implies that the ‘upper’ surface of the oxide remains stationary at z = 0.

In this formulation both the concentration c(z, t) and the oxide-metal interface

location z1(t) are unknown and will be determined as part of the solution process.

2.2.1.2 A coordinate transformation for the moving boundary:

We use a boundary-fixing transformation to fix the moving boundary z = z1(t) in

the computational ζ-coordinate defined in (2.26). We can therefore find a solution

analytically in the transformed domain which is discussed in §§§ 2.2.1.3. To obtain

a numerical solution, the discretisation of the oxide phase by finite difference

schemes becomes difficult in the presence of a moving boundary and we must

account for the changing domain associated with the diffusion equation. This

again calls for a coordinate (or boundary-fixing) transformation. A numerical

solution is presented in §§§ 2.2.1.4 in order the verify the accuracy of our numerical
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scheme (by comparing with the exact analytical solution); this is done so that

an extension can be made to numerically solve the density change case (where

an analytical solution is not available, such as with unsteady surface conditions

or initial oxide present). Numerical simulations are also useful to investigate the

influence of different initial conditions and the parameter λ on the oxide growth.

It is to be noted that there is no advection of the material for the uniform density

case (ρ∗M = ρ∗O).

The space and time coordinates are transformed from (z, t) to (ζ, t). We define

the new coordinate ζ as

ζ =
z

z1(t)
, (2.26)

which leads to the oxide layer now being spanned by ζ ∈ [0, 1], with ζ = 0

denoting the gas-oxide interface and ζ = 1 denoting the oxide-metal/internal

interface. This transformation fixes the internal interface at the expense of a

more complicated governing equation, as determined by the transformations

∂

∂z
→ 1

z1(t)

∂

∂ζ
, (2.27a)

∂

∂t
→ ∂

∂t
− ζ

.
z1(t)

z1(t)

∂

∂ζ
, (2.27b)

where the dot notation above a variable indicates differentiation with respect to

the nondimensionalised time.

We model only the oxide phase, as it is assumed that there is no concentration

gradient in the metal phase (reaction time scale � diffusion time scale). The

governing equation in the oxide phase (2.23) therefore becomes

z2
1

∂c̄

∂t
− ζz1

.
z1
∂c̄

∂ζ
=
∂2c̄

∂ζ2
for 0 < ζ < 1 , (2.28a)

where c̄ denotes the transformed variable for the concentration of oxygen ions

(diffusing species) in the oxide phase.

This transformed version of the diffusion equation is solved subject to the similarly

transformed boundary conditions:

c̄ = Ca(t) on ζ = 0 , (2.28b)

c̄ = 0 on ζ = 1 , (2.28c)
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z1
dz1

dt
= −λ∂c̄

∂ζ
on ζ = 1 . (2.28d)

The interface position now appears explicitly in the governing equation (2.28a),

and furthermore appears as z2
1 or the derivative of this quantity with respect to

time. This suggests a further simplification in the form,

L(t) = zs − z1(t) ,= −z1(t) , (2.29a)

S(t) = L2(t) , (2.29b)

since zs = 0 and L(t) is now the dimensionless thickness of the oxide layer. This

approach leads to the full problem defined by

S
∂c̄

∂t
− ζ

.
S

2

∂c̄

∂ζ
=
∂2c̄

∂ζ2
for 0 < ζ < 1 , (2.30a)

c̄ = Ca(t) on ζ = 0 , (2.30b)

c̄ = 0 on ζ = 1 , (2.30c)

dS

dt
= −2λ

∂c̄

∂ζ
on ζ = 1 . (2.30d)

Again a variety of initial conditions could be applied, but an obvious one is

c̄ = S = 0 at t = 0. This corresponds to a sample that is purely metal, with

no oxide layer – a condition that is difficult to impose without the coordinate

transformation, as the domain of solution is vanishingly small at small times. This

problem (2.30) is well-known in fluid dynamics as a ‘one-phase’ Stefan problem

(in phase-transition problems such as ice melting or water freezing) and there

exists an exact analytical solution for the same which is presented in the next

section.

2.2.1.3 An exact analytical solution

In the case of Ca = 1 and δO = 0, there is an exact solution due to Neumann (cf.

Gupta, 2017) which is obtained by seeking a solution in the form

S(t) = (zs − z1(t))2 = td2
0 , (2.31)

c̄(ζ, t) = c̄(ζ) , (2.32)
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where S(t) is the square of the oxide thickness and d0 is a constant to be deter-

mined. In this case (2.30) reduces to

∂2c̄

∂ζ2
+
ζd2

0

2

∂c̄

∂ζ
= 0 for 0 < ζ < 1 , (2.33a)

c̄ = 1 on ζ = 0 , (2.33b)

c̄ = 0 on ζ = 1 , (2.33c)

d2
0 = −2λ

∂c̄

∂ζ
on ζ = 1 , (2.33d)

for which a solution is

c̄ = 1 + α erf

(
d0ζ

2

)
. (2.34)

Here α is such that

1 + α erf

(
d0

2

)
= 0 , (2.35)

in order to satisfy the interface Dirichlet condition. Finally the Stefan condition

provides

d2
0 = −2λα

d0

2

2√
π

exp(−d2
0/4) . (2.36)

We can determine α in terms of d0 directly from (2.35), leaving d0 (for any given

value of λ) to be found as the root of a transcendental equation:

d0

√
π

2λ
erf

(
d0

2

)
exp(d2

0/4) = 1 . (2.37a)

Having determined d0, the concentration profile in the oxide layer is

c̄ = 1− erf(d0ζ/2)

erf(d0/2)
, (2.37b)

and the dimensionless thickness of the oxide layer is

L = S1/2 = d0t
1/2 . (2.37c)
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2.2.1.4 A numerical formulation for the moving boundary problem

It has been seen in §§§ 2.2.1.3 that an analytical solution to (2.30) is possible

for trivial initial conditions. For general initial conditions and unsteady surface

conditions, however, we introduce a numerical formulation in this section. We

wish to solve (2.30) numerically for any given initial conditions for c̄(ζ, t) and

S(t), taking full account of the nonlinear terms Sc̄t and
.
Sc̄ζ . To achieve this, we

employ a finite-difference scheme on the mesh {ζj, tk} (where j and k denote the

indices of the spatial and temporal nodes respectively), using Newton iteration

at each time level. Before discretising the system we first decompose the solution

(c̄, S) into a current guess plus a correction via (dropping the overbar denoting

the transformed variable for clarity)

c = cig + c̃ , (2.38a)

S = Sig + s̃ . (2.38b)

Here i is an index that counts the number of iterations at a given fixed time level,

where the (i = 0) first guess at any time level simply uses the solution at the

previous time level.

Substitution of (2.38) into (2.30) and considering only the linear corrections

under the assumption that the corrections (c̃, s̃) are small, leads to (on dropping

the i superscript for clarity):

s̃
∂cg
∂t

+ Sg
∂c̃

∂t
− ζ

2

{
.
s̃
∂cg
∂ζ

+
.
Sg
∂c̃

∂ζ

}
− ∂2c̃

∂ζ2
=
∂2cg
∂ζ2
− Sg

∂cg
∂t

+
ζ

2

{
.
Sg
∂cg
∂ζ

}
,

(2.39a)

subject to the boundary conditions:

c̃ = Ca(t)− cg on ζ = 0 , (2.39b)

c̃ = −cg on ζ = 1 , (2.39c)

ds̃

dt
+ 2λ

∂c̃

∂ζ
= −dSg

dt
− 2λ

∂cg
∂ζ

on ζ = 1 . (2.39d)

We approach this with a standard Crank-Nicolson finite-difference scheme. The

spatial and temporal discretisation of (2.39) is undertaken in the standard man-

ner using a second-order scheme. The diffusion equation (2.39a) is solved at the
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spatial node ζj and temporal half-step tk+1/2, using a central-differencing sten-

cil. The Dirichlet boundary conditions (2.39b) and (2.39c) are imposed at the

first/last spatial node and current time level tk+1, whilst (2.39d) is solved at tk+
1
2

using a three-point backward-differenced expression for the ζ-derivative to main-

tain a second-order accuracy. After each solution of (2.39) to find the corrections

(c̃, s̃), the current guess is updated using ci+1
g = cig + c̃ and Si+1

g = Sig + s̃ before

we compute new corrections (c̃, s̃). A solution is judged to have been obtained for

t = tk+1 when the largest absolute value of c̃k+1
j and s̃k+1 is below a set tolerance

(typically 10−8).

2.2.1.5 Convergence of the numerical scheme

The second-order convergence of the Crank-Nicolson scheme can be verified for

the one-moving boundary Stefan problem. The error (ε) between the numerical

solution of (2.39) for the oxide thickness and the analytical solution (2.37c), for

different spatial (∆ζ) and time steps (∆t) is depicted in the log-log plot of ε versus

(∆t,∆ζ) in Figure 2.6, wherein the finite difference scheme shows second-order

convergence, i.e. ε = O((∆t)2, (∆ζ)2).

Clearly a numerical approach is not needed here for trivial initial conditions

due to the availability of an analytical solution, but the methodology has been

introduced and validation of the numerical scheme has been performed for later

use in solving more complex (or general) problems.

2.2.1.6 Comparison with the quasi-steady solution

We can now compare the unsteady Stefan solution for the one-moving boundary

problem with the corresponding solution obtained using the quasi-steady approx-

imation, where the (nondimensional) oxide thickness,

L =
√

2λt (2.40)

is obtained by nondimensionalising the quasi-steady solution (2.16) for the case

of equal densities (ρ∗M/ρ
∗
O = 1) and no initial oxide layer (δ∗O = 0).

In the limit of λ� 1, since erf(x) ∼ 2x/
√
π for small x, we recover

d2
0 = 2λ+ · · · , (2.41)
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E
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Figure 2.6: Error (ε) between the numerical (2.39) and analytical (2.37c) solutions for
oxide thickness for different spatial step sizes and time steps (with ∆t = ∆ζ for each
numerical simulation). The gradient of the log-log plot is found to be approximately
2.03, hence satisfying second-order convergence. Other parameters include an ad hoc
choice of the Stefan number of λ = C∗a/(2.09N∗M ) ≈ 0.05.

from (2.37a), which yields

L = d0

√
t ∼
√

2λt+ · · · . (2.42)

The corresponding concentration profile in the oxide layer is then

c̄ = 1− ζ + · · · , (2.43)

from (2.37b). The quasi-steady solution is therefore valid in the asymptotic limit

of small Stefan number (λ � 1). As noted earlier, for the parameters used

by Gharagozloo and Kanouff (2013), the Stefan number λ ≈ 0.6 and hence the

quasi-steady approximation may not be valid in this case. However, GK have not

formulated their model in a rigorous manner, and the oxide layer thickness given

by (2.40) has not been derived, nor any asymptotic predictions made.

Figure 2.7 shows the solution for the growth coefficient (d0) of the Stefan model

obtained numerically from (2.37a) over a range of values of λ. Also shown in this
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Figure 2.7: The relative oxide layer thickness (for ρ∗M = ρ∗O) is predicted to grow like√
2λt in the quasi-steady model, and (more accurately) as d0

√
t in the unsteady Stefan

model for equal densities. Here we compare the growth coefficients d0 (exact solution
(2.37a)),

√
2λ (quasi-steady solution) and

√
2λ− 2/3λ2 (two-term asymptotic solution

(2.47)) over a range of λ. For the GK parameters, λ ≈ 0.6 leading to an (approximate)
error of 9% associated with the quasi-steady approximation. For larger λ (i.e. larger
C∗a), the error obviously increases.

same figure is the corresponding growth coefficient (
√

2λ) from the analysis of

our quasi-steady model and the growth coefficient from the two-term asymptotic

solution (2.47) that is derived in the next section. Again we see that the quasi-

steady solution is consistent with the Stefan solution in the limit of small λ. At

λ ≈ 0.6 (appropriate to the parameters chosen by GK) the error is approximately

9% in the growth coefficient (that is,
√

2λ compared to d0), with the quasi-steady

solution over-predicting the thickness of the oxide layer.

2.2.1.7 Two-term asymptotic expansion for the unsteady Stefan prob-

lem

We perform an asymptotic analysis in the limit of the Stefan parameter λ � 1

for the unsteady Stefan problem involving one unknown interface or boundary

that is determined as part of the solution. In the limit of λ � 1, we can write
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an asymptotic expansion in powers of λ, the Stefan parameter which is a ratio of

the atmospheric (number) concentration of the diffusing species to the number of

diffusing ions required to convert a unit volume of metal atoms (or ions) to metal

oxide (i.e. λ = C∗a/(2.09N∗M)). We seek an asymptotic solution in the form:

c̄ = c̄0 + λc̄1 + λ2c̄2 + . . . , (2.44a)

d2
0 = D0 +D1λ+D2λ

2 + . . . , (2.44b)

where the coefficients at different orders, viz. c̄0, c̄1, D0, D1, . . . are determined

by substituting the above asymptotic expansions for c̄ and d0 in the governing

equation and the boundary conditions (2.33), and then equating the coefficients

of like powers of λ. Through this process, we obtain

c̄0 = 1− ζ ,

D0 = 0

}
at O(λ0) , (2.45a)

c̄1 =
ζ3

6
− ζ

6
,

D1 = 2

 at O(λ) . (2.45b)

and,

D2 = −2/3 at O(λ2) . (2.45c)

Therefore, the two-term asymptotic expansions for the concentration (c̄) and the

square of the oxide thickness (S(t) = L(t)2) can be written as

c̄ = (1− ζ) + λ

(
ζ3

6
− ζ

6

)
+ . . . (2.46)

S(t) = d2
0t = 2λt− 2

3
λ2t+ . . . . (2.47)

Obviously the quasi-steady model as suggested by GK predicts the oxide thickness

only up to the leading order of the full asymptotic solution.



76 CHAPTER 2. DRY-AIR OXIDATION OF URANIUM

2.2.2 Including density changes (ρ∗M 6= ρ∗O)

As noted above, there is a density change associated with the phase transition

from metal to oxide (mass densities of U and UO2 are ρ∗M = 19.06 g/cm3 and

ρ∗O = 10.97 g/cm3). This implies that a stationary sample surface is not possible,

whilst still conserving mass. To accommodate this density change we must also

allow z∗s to be time varying. Now considering a mass balance of the entire domain

at any time t∗ (see Figure 2.3 for the schematic of the system), we have (as before;

see equation (2.10))

M∗
0 +M∗

abs = M∗
t ,

⇒ (z∗s(0)− z∗1(0))ρ∗O + (z∗1(0) + z∗∞)ρ∗M +M∗
abs = (z∗s(t

∗)− z∗1(t∗))ρ∗O

+(z∗1(t∗) + z∗∞)ρ∗M ,
(2.48a)

and neglecting M∗
abs, we have

δ∗Oρ
∗
O + z∗1(0)ρ∗M = (z∗s(t

∗)− z∗1(t∗))ρ∗O + z∗1(t∗)ρ∗M . (2.48b)

Here M∗
0 is the mass per unit area of the system at the initial state (t∗ = 0), M∗

abs

is the mass per unit area of the diffusing species absorbed into the system in the

time interval t∗, M∗
t is the mass per unit area of the system at time t∗ and δ∗O is

the initial oxide thickness. We have assumed that M∗
abs is negligible compared to

the total mass of the system in what follows.

A consequence of including the change in density is that the oxide surface and

therefore the oxide layer must have an upward (ie. away from the internal/oxide-

metal interface) velocity of
.
z∗s , such that

.
z∗s =

.
z∗1

(
1− ρ∗M

ρ∗O

)
, (2.49)

which is obtained by differentiating (2.48b) with respect to time. This surface

velocity (z∗s) is positive, since ρ∗M/ρ
∗
O > 1 and z∗1 is a decreasing function of time

(associated with the downward propagating internal interface).

The (dimensional) diffusion problem in the oxide layer is now

∂c∗

∂t∗
+

dz∗s
dt∗

∂c∗

∂z∗
= DO∗

c

∂2c∗

∂z∗2
, (2.50a)
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where the advection term associated with the ‘upward’ movement of the oxide

layer is
.
z∗s

∂c∗

∂z∗
with

.
z∗s given by (2.49). This is to be solved in the domain

z∗1(t∗) < z∗ < z∗s(t
∗) . (2.50b)

Conditions at the (now moving) surface and interface follow from the previous

section:
c∗ = C∗a(t∗) on z∗ = z∗s(t

∗),

c∗ = 0 on z∗ = z∗1(t∗),

dz∗1
dt∗

= −λ∗D∗c
∂c∗

∂z∗
on z∗ = z∗1(t∗) .

(2.50c)

We choose appropriate initial conditions that will be specified in §§§ 2.2.2.2 after

a coordinate transformation of the governing equations and boundary conditions.

2.2.2.1 Nondimensionalisation

Nondimensionalising (2.50) similar to that in §§§ 2.2.1.1 gives

∂c

∂t
+

dzs
dt

∂c

∂z
=
∂2c

∂z2
for z1(t) < z < zs(t) , (2.51a)

c = Ca(t) on z = zs(t) , (2.51b)

c = 0 on z = z1(t) , (2.51c)

dz1

dt
= −λ∂c

∂z
on z = z1(t) . (2.51d)

Similarly, nondimensionalising (2.49) gives

.
zs(t) =

.
z1(t)(1− γ) , (2.51e)

where λ is the Stefan number and γ = ρ∗M/ρ
∗
O is the relative density of the metal

with respect to the metal oxide.

2.2.2.2 A coordinate transformation for the two moving boundaries

In this case where we do not neglect the density change due to the conversion of

uranium (ρ∗M = 19.06 g/cm3) to uranium dioxide (ρ∗O = 10.97 g/cm3), the upper

boundary (oxide-gas interface) and consequently the oxide layer advects with time

as opposed to just the internal (or oxide-metal) interface in the uniform density

(i.e. ρ∗M = ρ∗O) Stefan problem. We apply a similar coordinate transformation to



78 CHAPTER 2. DRY-AIR OXIDATION OF URANIUM

map the oxide layer to a fixed domain, such that the boundary-fixing coordinate,

ζ =
zs(t)− z

zs(t)− z1(t)
. (2.52)

This leads to the oxide layer now spanned by ζ ∈ [0, 1], with ζ = 0 denoting the

gas-oxide interface and ζ = 1 denoting the oxide-metal interface. The governing

equations, boundary and initial conditions are now transformed to the fixed ζ

coordinate, with the transformations given by

∂

∂z
→ −

(
1

zs(t)− z1(t)

)
∂

∂ζ
, (2.53a)

∂

∂t
→ ∂

∂t
+

( .
zs − ζ(

.
zs −

.
z1)

zs(t)− z1(t)

)
∂

∂ζ
, (2.53b)

where the dot notation indicates differentiation with respect to the nondimen-

sionalised time.

The transformed governing equation is now

(zs − z1)2∂c̄

∂t
+ (zs − z1) { .zs − ζ(

.
zs −

.
z1)} ∂c̄

∂ζ
− (1− γ)

.
z1(zs − z1)

∂c̄

∂ζ

=
∂2c̄

∂ζ2
in 0 < ζ < 1 . (2.54)

where c̄ denotes the transformed variable for the concentration of the diffusing

species.

The transformed governing equation is further simplified using (2.49) whilst

we define S(t) = L(t)2, where L(t) = zs(t) − z1(t) is the (dimensionless) oxide

thickness. Then (2.54) simplifies to

S
∂c̄

∂t
− ζ

2

.
S
∂c̄

∂ζ
=
∂2c̄

∂ζ2
in 0 < ζ < 1 . (2.55a)

subject to the boundary conditions:

c̄ = Ca(t) on ζ = 0 , (2.55b)

c̄ = 0 on ζ = 1 , (2.55c)

.
S = −2γλ

∂c̄

∂ζ
on ζ = 1 , (2.55d)
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and appropriate initial conditions; for example, from the exact solution for the

unsteady one-moving boundary Stefan problem given by (2.37b), we assume

c̄ = 1− erf(d0ζ/2)

erf(d0/2)
at t = 0 . (2.55e)

We consider that no oxide is present initially:

S = 0 at t = 0 . (2.55f)

We should note that the governing equation is the same as that for the uniform

density case, however the Stefan boundary condition at the oxide-metal interface

differs by a factor of γ (where γ is the relative density of metal to metal oxide)

owing to the change in density as a result of the phase transition. Therefore, the

procedure for the numerical formulation of the Stefan problem considering density

change follows the same as that for the uniform density case (refer §§§ 2.2.1.4 for

the numerical solution procedure).

2.3 Numerical results for the chemical diffusion

models

The evolution of the oxide thickness with time obtained for the unsteady for-

mulation (2.55) with a constant surface concentration (i.e. Ca ≡ 1) is plotted

for different values of the parameters such as λ (= C∗a
2.09N∗M

), (dimensionless) initial

oxide thickness δO and γ (=ρ∗M/ρ
∗
O); γ ≈ 1.7375 corresponds to metal and oxide

densities of ρ∗M = 19.06 g/cm3 and ρ∗O = 10.97 g/cm3. However, we consider γ to

be an arbitrary parameter in Figure 2.8 to illustrate the influence of the volumet-

ric/density change (attributed to phase transition) on the oxide growth kinetics.

It can be seen that the oxide formed at any particular time is thicker where the

change in density (as U is converted to UO2) is considered (i.e. γ = 1.7375 in-

stead of γ = 1), which is in accordance with what we might expect physically, as

the oxide layer advects ‘upwards’ to accommodate the increased volume resulting

from the phase conversion. However, it should also be noted that there will be a

reduction in the diffusive flux with the thickening of the oxide layer.

A comparison of the oxide growth with time for different values of λ � 1 is

shown in Figure 2.9, where the (nondimensionalised) quasi-steady solution (2.16)



80 CHAPTER 2. DRY-AIR OXIDATION OF URANIUM

t

D
im

en
si

on
le

ss
ox

id
e

th
ic

k
n
es

s

Figure 2.8: The evolution of the dimensionless oxide layer thickness (L(t)) with time
obtained by solving the unsteady Stefan problem (2.55) for different γ values. Other
parameters include: Ca(t) ≡ 1 , λ ≈ 0.05 , S(t = 0) = δ2

O = 0.
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Figure 2.9: Comparison of the unsteady evolution of (nondimensional) oxide thickness
with time (obtained by solving (2.55)) for different values of λ = C∗a/(2.09N∗M ) � 1
with the quasi-steady solution (2.16) (red dotted lines). Other parameters include:
γ = 1.7375 , S(t = 0) = δ2

O = 0.
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is plotted as red dotted lines. A good agreement between the unsteady and the

quasi-steady solutions can be observed for these low λ values corresponding to

significantly lower surface concentration (C∗a) of the diffusing species compared

to the metal concentration (N∗M). For C∗a values comparable to the metal con-

centration, the quasi-steady diffusion is a poor approximation to the unsteady

problem and the same is depicted in Figure 2.10. It can be clearly observed that

for λ ≈ 0.6 (as considered by GK), the quasi-steady formulation over-predicts the

oxide thickness.

Time-varying boundary conditions such as that shown in Figure 2.11 only

affect the transient kinetics and not the long-time behaviour. Similarly, the effect

of the initial parameters such as the (nondimensional) initial oxide thickness (δO)

is only significant at small times, and do not influence the long-time oxide growth,

and the same is depicted in Figure 2.12.

The evolution of the dimensional oxide thickness with dimensional time is

plotted in Figure 2.13 for a range of temperature values. The influence of temper-

ature on the oxide growth kinetics occurs via the dimensional diffusion coefficient

(DO∗
c ) given by (2.5a). Note that, a lattice constant of a∗ = 5.4713 Å (Leinders

et al., 2015) is used instead of a∗ = 3.8682 Å (Gharagozloo and Kanouff, 2013).

Also, a surface concentration of C∗a = 5 · 1027 ions/m3 (for which λ ≈ 0.05)

is considered in this figure instead of the GK value of C∗a = 6 · 1028 ions/m3

(λ ≈ 0.6). To re-dimensionalise the unsteady Stefan solution, a reference diffu-

sivity of D∗ref = DO∗
c is used where the theoretical diffusivity DO∗

c given by (2.5) is

an exponential function of temperature; then correspondingly a reference length

scale of L∗ref = (t∗D∗ref/t)
1/2 is used, where t = t∞

d is taken to be equivalent to

t∗ = 500 hours. A good agreement between the unsteady and quasi-steady (rep-

resented as black dots) solutions can be observed for different temperatures. As

we may expect, higher diffusivities corresponding to higher temperatures result

in an increased oxide thickness.

dt∞ is the nondimensional time up to which the simulation is run.
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Figure 2.10: Comparison of the unsteady Stefan solution (2.55) for the (nondimen-
sional) oxide thickness with the quasi-steady solution (2.16) (red dotted lines) for higher
values of λ than those in figure 2.9. Other parameters include: γ = 1.7375 , S(t = 0) =
δ2
O = 0.
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Figure 2.11: The evolution of relative oxide layer thickness with time for time-varying
surface concentration of the diffusing species (Ca(t)), obtained by solving (2.55). Other
parameters include: λ ≈ 0.05 , γ = 1.7375 and δ2

O = 0.
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Figure 2.12: The evolution of the relative oxide layer thickness with time obtained by
solving (2.55) for different initial oxide thicknesses given by δO where S(t = 0) = δ2

O.
Other parameters include: λ ≈ 0.05 , γ = 1.7375.

t∗ = t(L∗2ref/D
∗
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Figure 2.13: Comparison of the unsteady Stefan solution obtained by solving (2.55)
with the quasi-steady solution (2.16) (represented as black dots) for the evolution of the
(dimensional) oxide layer thickness with (dimensional) time at various temperatures.
Other parameters include: C∗a = 5 · 1027 ions/m3 (λ ≈ 0.05), γ = ρ∗M/ρ

∗
O = 1.7375 and

δ∗O = 0.
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2.4 Ionic diffusion: influence of a self-induced

electric field

It has been well established (see review by Ritchie, 1984) that diffusion of oxygen

ions through uranium dioxide (oxide layer) is the rate-determining step in the

oxidation of uranium in a dry-air environment. However, the rate of chemical

diffusion (i.e. due to a chemical potential gradient) alone does not account for

the oxidation rate observed in the uranium oxidation experiments (Gharagozloo

and Kanouff, 2013). As mentioned previously in Chapter 1, there are two driv-

ing forces for the diffusion of oxygen ions (O2–) through the oxide layer, viz.,

the chemical and electrical potential gradients. Numerous studies (Evans, 1960;

Ritchie, 1984; McEachern and Taylor, 1998) have indicated that an electric po-

tential gradient across the oxide layer predominantly influences the diffusion of

oxygen ions at low temperatures compared to chemical potential/concentration

gradient.

A self-induced electric field is established when electrons from metal atoms

pass through the oxide layer to the adsorbed oxygen atoms on the oxide surface,

either due to quantum tunneling or thermionic emissions (at high temperatures).

The redistribution of charges from the metal to the adsorbed oxygen atoms sets

up an electrostatic potential that results in a diminishing electric field as the oxide

layer grows. It should be noted that quantum tunnelling of electrons occurs only

when the thickness of the oxide layer is less than 40 Å (Mott, 1940).

To take into account this additional driving force (i.e. due to an electric po-

tential gradient) for the diffusion of oxygen ions, we formulate an ionic diffusion

model in this section. As already discussed in Chapter 1, we neglect the spatial

variations in the electric field strength (or space charges) and consider a homoge-

neous field E∗0 , where the electric field strength can be weak (E∗0 < 104 V/cm),

moderate (E∗0 = 104 − 106 V/cm) or strong (E∗0 > 106 V/cm; see Fromhold and

Cook, 1967). We will show later how these values of E∗0 are derived based on

physical parameter values; however, it should be noted that these are only order

of magnitude estimates. We identify different regimes of behaviour of our ionic

diffusion model based on the relative influence of the electric field to tempera-

ture on the oxide growth. Two additional regimes associated with the Stefan

parameter, namely the quasi-steady and unsteady behaviours for the ionic dif-

fusion model will also be discussed in the forthcoming sections. Based on these
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identified regimes, we categorise our study into the following: (i) unsteady ionic

diffusion in (a) moderate and (b) strong electric fields; (ii) quasi-steady ionic

diffusion in (a) moderate and (b) strong electric fields.

It has been proposed by Fromhold and Cook (1967) that electric fields larger

than 106 V/cm have a significant influence on the ionic current (or flux) of the

diffusing species (with a nonlinear dependence on the field via the diffusion coeffi-

cients) compared to fields in the range of 104−106 V/cm; hence the categorisation

of the study based on the aforementioned electric field regimes.

2.4.1 Unsteady ionic diffusion in a moderate electric field

In this section, we formulate a Stefan problem for the diffusion of the oxidising

species (O2–) under the influence of a self-induced moderate electric field.

2.4.1.1 Problem formulation

As discussed previously (see § 2.2), the (dimensional) equation governing the

diffusion of any species can be written using Fick’s second law as (neglecting

any material advection associated with a density change caused by the oxidation

reaction):
∂c∗

∂t∗
= −∂J

∗

∂z∗
, (2.56)

where J∗ is the (dimensional) flux of the diffusing species. If the density change

associated with the metal to metal oxide transition is taken into account, then

the governing equation becomes

∂c∗

∂t∗
+

dz∗s
dt∗

∂c∗

∂z∗
= −∂J

∗

∂z∗
. (2.57)

Here dz∗s
dt∗

∂c∗

∂z∗
denotes the additional advective flux. Note that the advection ve-

locity is constant in the oxide layer and is equal to the velocity of the gas-oxide

interface (or surface of the oxide), since the transition from U to UO2 occurs at

an interface of infinitesimal thickness.

In a moderate electric field, the form of the diffusive flux is such that

J∗ = −DO∗
c

∂c∗

∂z∗
+ µ∗qE

∗c∗ , (2.58)

where DO∗
c is the diffusion coefficient of oxygen ions (O2–) in uranium dioxide
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and µ∗q is the electrical mobility of the charged particle (q∗ = −2e∗ for O2–, where

e∗ = 1.6022 · 10−19 Coulombs is the magnitude of electronic charge) and E∗ is

the electric field normal to the surface. Here, the flux of the diffusing species

has a linear dependence on the electric field. The electrical mobility is related

to the diffusion coefficient by the Sutherland-Einstein relation (also called the

Einstein–Smoluchowski relation; Ferrari, Goldstein, and Lebowitz, 1985) given

by

µ∗q =

(
q∗

k∗bT
∗

)
DO∗
c , (2.59a)

for an absolute temperature T ∗, with k∗b denoting the Boltzmann constant. The

theoretical diffusion coefficient is (as before, see (2.5a)) defined as

DO∗
c = 4a∗2ν∗ exp

(
− W ∗

k∗bT
∗

)
, (2.59b)

where a∗ is the uranium dioxide lattice constant, ν∗ is the vibrational frequency,

and W ∗ is the energy barrier height.

The second term on the right-hand side of (2.58) arises from the drift velocity

(v∗d) of a charged particle in a steady electric field:

v∗d = µ∗qE
∗ . (2.60)

In a moderate electric field, the nonlinear effects of the electric field on the dif-

fusion coefficient and the electrical mobility are negligible. In this ‘linear’ (i.e.

the ionic flux varies linearly with the electric fielde) model, we also assume that

changes in the electric potential/field occur over sufficiently small times, so that

we can treat their contribution via an electrostatic formulation. Therefore, the

scalar component of the steady electric field normal to the oxidising surface is

defined in terms of the electric potential V ∗ as

E∗ = −dV ∗

dz∗
. (2.61)

In general, the electric field is related to the space charge distribution through

eHenceforth, we refer the ionic diffusion model for a moderate electric field as the ‘linear’

ionic model, whereas the ionic diffusion model for a strong electric field is referred to as the

nonlinear ionic model.
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the Poisson’s equation which is given as

dE∗

dz∗
=
ρ∗(z∗; t∗)

ε∗
, (2.62)

where ρ∗ is the charge density in the medium (oxide) and ε∗ is the permittivity.

We assume that there are negligible space charges (Fromhold and Cook, 1967) set

up in the medium (which implies that ρ∗/ε∗ = 0⇒ divE∗ = 0f), and therefore the

contribution to the electric field is only due to the surface charge distribution,

giving rise to a quasi-steady electric field denoted by E∗0 . This approximation

is called the ‘homogeneous field approximation’ since the electric field remains

constant over the entire oxide thickness; however the electric field implicitly varies

with time due to the growth of the oxide layer with time. The homogeneous

electric field is thus

E∗0 = − ∆V ∗

L∗(t∗)
= − V ∗M

L∗(t∗)
, (2.63)

where ∆V ∗ = V ∗M is the Mott potential given by (1.8) across the oxide layer of

thickness L∗(t∗). The Mott potential (V ∗M) is constant, whilst the electric field

(E∗0) decreases with the growth of the oxide, i.e. E∗0 implicitly varies with time.

The (dimensional) governing equation for the diffusion of a charged species in

a moderate homogeneous electric field (‘linear’ ionic model) is therefore

∂c∗

∂t∗
+

dz∗s
dt∗

∂c∗

∂z∗
= DO∗

c

∂2c∗

∂z∗2
− µ∗qE∗0

∂c∗

∂z∗
for z∗1(t∗) < z∗ < z∗s(t

∗) , (2.64)

where the velocity of the upper interface,
.
z∗s = 0 if we neglect any density changes

associated with the conversion from U to UO2. The boundary and initial condi-

tions are as given before (see (2.50c)).

2.4.1.2 Nondimensionalisation

We nondimensionalise using a reference length scale L∗ref , time scale L∗2ref/D
O∗
c ,

and the constant surface concentration C∗a as the concentration scale to arrive at

the following nondimensional equation:

∂c

∂t
+

.
zs
∂c

∂z
=
∂2c

∂z2
−
(

Γ0

zs(t)− z1(t)

)
∂c

∂z
for z1(t) < z < zs(t) , (2.65)

fWe consider only variation along the z-coordinate and therefore divE∗ = dE∗

dz∗
.
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where Γ0 = −(V ∗Mq
∗)/(k∗bT

∗) < 0 is a nondimensional parameter that gives the

relative importance of the electric field to the temperature effects in driving dif-

fusion.

The governing equation (2.65) is subject to an appropriate initial concentra-

tion distribution c(z, t = 0), with boundary conditions at the oxide-metal and

the gas-oxide interfaces given by c(z = z1(t), t) = 0 and c(z = zs(t), t) = 1

respectively, whilst the Stefan boundary condition

dz1

dt
= −λγ ∂c

∂z
at z = z1(t) , (2.66)

where λ = C∗a/(2.09N∗M) and γ = ρ∗M/ρ
∗
O.

2.4.1.3 Coordinate transformation

As before (refer coordinate transformation for two moving boundaries in §§§ 2.2.2.2),

we transform the system from (z, t) to (ζ, t) coordinates (i.e. from the moving

physical domain to a fixed computational domain), wherein

ζ ≡ zs(t)− z
zs(t)− z1(t)

. (2.67)

The transformed governing equation is now

(zs(t)− z1(t))2∂c̄

∂t
− ζ(zs(t)− z1(t))(

.
zs −

.
z1)

∂c̄

∂ζ
=
∂2c̄

∂ζ2
+ Γ0

∂c̄

∂ζ
, (2.68)

where c̄ is the transformed variable representing the concentration of the diffusing

species.

We now define L = (zs(t)− z1(t)) and S = L2 as before, which yields

S
∂c̄

∂t
−
[
ζ

2

.
S + Γ0

]
∂c̄

∂ζ
=
∂2c̄

∂ζ2
, (2.69)

a nondimensional form of the transformed governing equation. Note that the

transformed governing equation is the same for systems with or without a density

change as the parameter γ = ρ∗M/ρ
∗
O only affects the Stefan condition.
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Transformed boundary and initial conditions: The transformed nondi-

mensionalised governing equation (2.69) is subject to the same boundary condi-

tions as before (see (2.55b) and (2.55c)). The Stefan boundary condition is also

the same as for the simple chemical diffusion given by (2.55d).

We choose an initial concentration profile given by an exact analytical solution

for the one-moving-boundary Stefan problem (chemical diffusion; see (2.37b)),

which is:

c̄ = 1− erf(d0ζ/2)

erf(d0/2)
for t = 0 , (2.70)

where S(t) = d2
0t and d0 is determined from (2.36).

We will discuss the numerical results after presenting the model formulations

for the unsteady ionic diffusion in a strong electric field and the quasi-steady

formulations.

2.4.2 Unsteady ionic diffusion in a strong electric field

2.4.2.1 Problem formulation

In the case of a sufficiently ‘strong’ electric field (E∗0 > 106 V/cm), there is a

nonlinear dependence of the diffusion coefficient and electrical mobility on the

electric field strength (Fromhold and Cook, 1967), and we must account for this

effect in the governing equation. The (dimensional) governing equation remains

(considering the change in density as the metal is converted to oxide; see (2.57)):

∂c∗

∂t∗
+

.
z∗s
∂c∗

∂z∗
= −∂J

∗

∂z∗
for z∗1(t∗) < z∗ < z∗s(t

∗) , (2.71a)

where
.
z∗s ∂c

∗/∂z∗ is the advection term with
.
z∗s denoting the ‘upward’ velocity of

the surface (or the oxide layer).

In (2.71a), the diffusive flux J∗ is given by

J∗(z∗, t∗) = −D̄O∗
c

∂c∗

∂z∗
+ µ̄∗qE

∗
0c
∗ , (2.71b)

where D̄O∗
c and µ̄∗q are the nonlinear diffusion coefficient and electrical mobility
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that are defined as (Fromhold and Cook, 1967):

D̄O∗
c = DO∗

c cosh

(
q∗E∗0a

∗

k∗bT
∗

)
,

µ̄∗q = µ∗q

(
k∗bT

∗

q∗E∗0a
∗

)
sinh

(
q∗E∗0a

∗

k∗bT
∗

) (2.71c)

Here DO∗
c and µ∗q are related via (2.59a), and we recall that a∗ is the uranium diox-

ide lattice constant, q∗ is the charge on the diffusing species, k∗b is the Boltzmann

constant and T ∗ denotes temperature in Kelvin. Here, the diffusion coefficient

and electrical mobility have a nonlinear dependence on the electric field via the

‘cosh’ and ‘sinh’ terms, whereas the electric field has an insignificant influence

on the diffusion coefficient and mobility of the ions in a moderate electric field

(E∗0 < 106 V/cm). In Figure 2.14, it can be seen that temperature also plays a

role in determining the influence of the electric field strength on these quantities.

The dimensionless parameter q∗E∗0a
∗/(k∗bT

∗) for E∗0 = 104 , 105 , 106 V/cm and

T ∗ = 300 K are respectively 4.233 · 10−4, 4.233 · 10−3 and 4.233 · 10−2.

E∗0 (V/m)

D̄
O
∗

c
/D

O
∗

c

(a) D̄O∗
c /DO∗

c for moderate EF
(E∗0 = 106 − 108 V/m)

E∗0 (V/m)

µ̄
∗ q/
µ
∗ q

(b) µ̄∗q/µ
∗
q for moderate EF

(E∗0 = 106 − 108 V/m)

Figure 2.14: The diffusivity ratio D̄O∗
c /DO∗

c and mobility ratio µ̄∗q/µ
∗
q are plotted

against the electric field strength E∗0 for different temperatures. The parameters in-
clude: a∗ = 5.4713 Å, ν∗ = 19 · 1012 Hz, W ∗ = 1.24 eV, k∗b = 1.3806 · 10−23 J/K.
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2.4.2.2 Nondimensionalisation

We nondimensionalise (2.71) in a similar manner to the linear ionic model (see

§§§ 2.4.1.2) and obtain

∂c

∂t
+

.
zs
∂c

∂z
= cosh

(
Γ0δ

zs(t)− z1(t)

)
∂2c

∂z2
− δ−1 sinh

(
Γ0δ

zs(t)− z1(t)

)
∂c

∂z
, (2.72a)

where δ = (a∗/L∗ref ) is the nondimensional lattice parameter and Γ0 = − (q∗V ∗M )

(k∗bT
∗)

is

a nondimensional parameter that gives the relative importance of the electric field

to temperature effects in driving diffusion. This governing equation is subject to

the boundary conditions

c(z = z1(t), t) = 0 , c(z = zs(t), t) = 1 , (2.72b)

and the Stefan condition:

dz1

dt
= −λγ cosh

(
Γ0δ

zs − z1

)
∂c

∂z

∣∣∣∣
z=z1(t)

, (2.72c)

where λ = C∗a/(2.09N∗M) and γ = ρ∗M/ρ
∗
O = 1.7375. The initial conditions

remain the same as before (refer § 2.4.1.3). It has to be noted that in the limit of

z1(t)→ zs(t) (i.e. for very thin films), the governing equation (2.72a) is singular

as E∗0 → ∞; however for practical applications, we note that an oxide-free state

has not been observed even in ultra-high vacuum conditions (Banos and Scott,

2020).

2.4.2.3 Coordinate transformation

Applying the usual coordinate transformation (for two moving boundaries) given

by (2.53) to governing equation (2.72a), we obtain

S
∂c̄

∂t
− ζ

2

.
S
∂c̄

∂ζ
= cosh

(
Γ0δ

S1/2

)
∂2c̄

∂ζ2
+
S1/2

δ
sinh

(
Γ0δ

S1/2

)
∂c̄

∂ζ
, (2.73a)

where S(t) = L(t)2 = (zs(t) − z1(t))2. The transformed form of the Stefan

condition (2.72c) is then

dS

dt
= −2λγ cosh

(
Γ0δ√
S

)
∂c̄

∂ζ

∣∣∣∣
ζ=1

. (2.73b)
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It is worth noting that Γ0 � 1 recovers the linear (or moderate electric field)

model (2.69).

2.4.2.4 Numerical scheme

The solution procedure used is the same as before (see §§§ 2.2.1.4). Applying

Newton iteration (where the dimensionless oxide thickness is decomposed as L =

Lg + l̃, whilst c = cg + c̃) to (2.73a) yields (dropping the overbar denoting the

transformed variable for clarity)

L2
g

∂c̃

∂t
− cosh

(
Γ0δ

Lg

)
∂2c̃

∂ζ2
− Lg

[
1

δ
sinh

(
Γ0δ

Lg

)
+ ζ

.
Lg

]
∂c̃

∂ζ
− ζLg

∂cg
∂ζ

.
l̃

+

[
2Lg

∂cg
∂t

+

{
Γ0

Lg
cosh

(
Γ0δ

Lg

)
− 1

δ
sinh

(
Γ0δ

Lg

)
− ζ

.
Lg

}
∂cg
∂ζ

+

(
Γ0δ

L2
g

)
sinh

(
Γ0δ

Lg

)
∂2cg
∂ζ2

]
l̃

= −L2
g

∂cg
∂t

+ Lg

[
1

δ
sinh

(
Γ0δ

Lg

)
+ ζ

.
Lg

]
∂cg
∂ζ

+ cosh

(
Γ0δ

Lg

)
∂2cg
∂ζ2

, (2.74)

where we have used the binomial expansions to reduce (1 + l̃/Lg)
−1 to (1− l̃/Lg)

and therefore

cosh

(
Γ0δ

Lg + l̃

)
= cosh

(
Γ0δ

Lg

)
−
(

Γ0δ

L2
g

)
sinh

(
Γ0δ

Lg

)
l̃ , (2.75a)

and similarly,

sinh

(
Γ0δ

Lg + l̃

)
= sinh

(
Γ0δ

Lg

)
− Γ0δ

L2
g

cosh

(
Γ0δ

Lg

)
l̃ . (2.75b)

It is to be noted that only linear corrections are considered and we know that

l̃� Lg.

Similarly, applying Newton iteration to the Stefan boundary condition at

ζ = 1, we obtain

2
d(Lg l̃)

dt
−
[
2λγ

(
Γ0δ

L2
g

)
sinh

(
Γ0δ

Lg

)
∂cg
∂ζ

]
l̃ + 2λγ cosh

(
Γ0δ

Lg

)
∂c̃

∂ζ

= −
dL2

g

dt
− 2λγ cosh

(
Γ0δ

Lg

)
∂cg
∂ζ

. (2.76)
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Now, a second-order Crank-Nicolson scheme is applied to (2.74) at the spatial

node ζj and temporal half-step tk+1/2, and similarly for the boundary conditions

(refer §§§ 2.2.1.4 for the numerical procedure). A tolerance of 10−8 is set for the

linear corrections. A comparison of the different results is presented in § 2.5.

2.4.3 Quasi-steady diffusion in a strong electric field

In this section, we review (and interpret) the quasi-steady approximation made in

the work of Gharagozloo and Kanouff (2013). This will allow us to contrast their

approach with the full solution of the unsteady ionic diffusion problems (2.72)

and (2.69), to assess the range of parameters for which the GK analysis is valid.

Mathematically, the quasi-steady diffusion can be written as

∂J∗

∂z∗
= 0 , (2.77)

which results in J∗ = J∗0 , a constant-in-space (but implicitly time-varying) flux

of O2– in the oxide layer. A nonlinear flux of the diffusing ions dependent on

the electric field is of the form given in (2.71b). Solving the quasi-steady ionic

diffusion model (2.77) (with the appropriate flux J∗ given by (2.71b)) for c∗ gives

c∗(z∗) =
J∗0
E∗0 µ̄

∗
q

+ A∗ exp

(
E∗0 µ̄

∗
qz
∗

D̄O∗
c

)
, (2.78)

where A∗ is a constant of integration. We determine A∗ and J∗0 from the boundary

conditions c∗(z∗1) = 0 and c∗(z∗s) = C∗a , which then gives

c∗(z∗) =
C∗a

1− exp
(
E∗0 µ̄

∗
q(z
∗
s − z∗1)/D̄O∗

c

) [1− exp

(
E∗0 µ̄

∗
q(z
∗ − z∗1)

D̄O∗
c

)]
, (2.79a)

and therefore

J∗0 = E∗0 µ̄
∗
q

{
C∗a

1− exp(E∗0 µ̄
∗
q(z
∗
s − z∗1)/D̄O∗

c )

}
. (2.79b)

The above expressions for the constant flux J∗0 and concentration c∗(z∗) are anal-

ogous to those derived by Fromhold and Cook (1967).

The previously discussed Stefan condition still applies to determine the rate of

advancement of the oxide-metal interface. On defining L∗ = z∗s(t
∗) − z∗1(t∗), we
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obtain

dL∗

dt∗
= −λ∗γJ∗0 = −λ∗γE∗0 µ̄∗q

{
C∗a

1− exp(E∗0 µ̄
∗
qL
∗/D̄O∗

c )

}
, (2.80)

where E∗0 = −V ∗M/L∗ , λ∗ = 1/(2.09N∗M) and γ = ρ∗M/ρ
∗
O.

2.4.3.1 Nondimensionalisation

Using the same characteristic scales (length-scale L∗ref , time scale L∗2ref/D
O∗
c , and

concentration scale C∗a) to nondimensionalise (2.80), we obtain

dL

dt
= −γλ

δ
sinh

(
Γ0δ

L

)[
1

1− exp(Lδ−1 tanh(Γ0δ/L))

]
, (2.81)

subject to L(t = 0) = δ∗O/L
∗
ref = 1, where δ∗O is the initial oxide thickness. Here,

we have assumed that L∗ref = δ∗O, however any arbitrary reference length scale can

be considered. The diffusivity and mobility are given by (2.71c) and have been

substituted to arrive at the above equation. Here, δ = a∗/L∗ref , λ = C∗a/(2.09N∗M)

and Γ0 = −V ∗Mq∗/k∗bT ∗.

2.4.4 Quasi-steady diffusion in a moderate electric field

For a sufficiently small Γ0 (i.e. Γ0 � 1), the nonlinear diffusivity and mobility

given by (2.71c) become (2.59). In this ‘moderate’ electric field, (D̄O∗
c , µ̄∗q) in

(2.80) are replaced with (DO∗
c , µ∗q) and exp(Γ0) ≈ (1 + Γ0), in which case the

Stefan condition at the oxide-metal interface becomes

dL∗

dt∗
= −λ∗γJ∗0 =

λ∗C∗aγD
O∗
c

L∗
, (2.82)

where (DO∗
c , µ∗q) are given by (2.59).

Nondimensionalising using the same characteristic scales as before, we obtain

L
dL

dt
= λγ , (2.83)

which on integration gives

S(t) = L(t)2 = 2λγt+ δ2
O , (2.84)
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where the initial (dimensionless) oxide thickness is given by δO = δ∗O/L
∗
ref . There-

fore in the limit of vanishingly small ionic forcing, the result is consistent with

the chemical diffusion problem (2.16), as we should expect. The validity of the

quasi-steady approximation to model the ionic diffusion for a moderate electric

field is analysed in §§§ 2.4.4.1, where it is required that the surface concentration

of the diffusing species should be much less than the concentration of the diffusing

species at the oxide-metal interface involved in the phase transition (i.e. λ� 1).

A comparison of our numerical results with those of GK, and with the pub-

lished experimental results will be presented in Chapter 6.

2.4.4.1 Asymptotic Analysis for the Ionic Diffusion Model with a Lin-

ear Forcing

The quasi-steady results from (2.84) can be arrived at from the general formula-

tion (equations (2.69) for a moderate electric field) in the limit λ� 1.

The nondimensional transformed governing equation for ionic diffusion in the

presence of a moderate electric field that involves density change accompanying

a phase transition is given by (see equation (2.69))

S
∂c̄

∂t
−
[
ζ

2

.
S + Γ0

]
∂c̄

∂ζ
=
∂2c̄

∂ζ2
, (2.85)

subject to appropriate initial conditions and the boundary conditions:

c̄(ζ = 0, t) = 1 , c̄(ζ = 1, t) = 0, (2.86)

whilst the Stefan condition is

dS

dt
= −2γλ

∂c̄

∂ζ

∣∣∣∣
ζ=1

. (2.87)

Seeking asymptotic solutions of the form

c̄ = C0(ζ) + λC1(ζ) + . . . , (2.88a)

and

d2
0 = D0λ+D1λ

2 + . . . , (2.88b)
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where S = d2
0 t. Substituting these expansions in the governing equation above,

we obtain

∂2(C0 + λC1 + . . . )

∂ζ2
+

[
ζ

2
(D0λ+D1λ

2 + . . . ) + Γ0

]
∂(C0 + λC1 + . . . )

∂ζ
= 0 .

(2.89)

Similarly, the boundary conditions become

C0 + λC1 + · · · = 1 on ζ = 0 , (2.90a)

C0 + λC1 + · · · = 0 on ζ = 1 , (2.90b)

D0λ+D1λ
2 + · · · = −2γλ(C0ζ + λC1ζ + . . . )|ζ=1 on ζ = 1 . (2.90c)

Equating the coefficients of different powers of λ, we obtain at O(λ0):

C0ζζ + Γ0C0ζ = 0 , g , (2.91)

subject to

C0 = 1 on ζ = 0 , (2.92a)

C0 = 0 on ζ = 1 . (2.92b)

The Stefan condition arises at O(λ):

D0 = −2γC0ζ |ζ=1 . (2.93)

Solving (2.91) subject to the boundary conditions (2.92), we obtain the leading-

order concentration profile of oxygen ions across the uranium dioxide layer:

C0 = 1−
(

1− e−Γ0ζ

1− e−Γ0

)
=
e−Γ0ζ − e−Γ0

1− e−Γ0
. (2.94)

The Stefan condition (2.93) then determines

D0 = 2γΓ0

(
e−Γ0

1− e−Γ0

)
, (2.95)

which when substituted in (2.88b) gives the leading-order coefficient for square

of the oxide thickness.

gHere, the subscript ζ represents differentiation with respect to ζ.
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Now solving the problem at O(λ), we have the governing equation:

C1ζζ +
ζ

2
D0C0ζ + Γ0C1ζ = 0 , (2.96)

subject to the boundary conditions:

C1 = 0 on ζ = 0 , (2.97a)

C1 = 0 on ζ = 1 . (2.97b)

The Stefan condition at O(λ2) provides the first-order correction to the square of

the oxide growth-coefficient:

D1 = −2γC1ζ |ζ=1 . (2.97c)

Substituting the value of D0 and C0ζ , and solving the governing equation (2.96)

subject to boundary conditions (2.97a) and (2.97b), we obtain

C1 = − γe−Γ0

(1− e−Γ0)3

[(
1− e−Γ0

)(ζ2

2
Γ0 + ζ

)
+ e−Γ0

(
Γ0

2
+ 1

)(
e−Γ0ζ − 1

)]
.

(2.98)

The coefficient D1 is then determined as

D1 =
2γ2e−Γ0

(1− e−Γ0)3

[
(1− e−Γ0)(1 + Γ0)− e−2Γ0

Γ0

(
Γ0

2
+ 1

)]
. (2.99)

The asymptotic expansion for the concentration of oxygen ions in the uranium

dioxide layer given by

c̄(ζ) = C0 + λC1 + λ2C2 + . . . , (2.100)

therefore becomes

c̄(ζ) =

(
e−Γ0ζ − e−Γ0

1− e−Γ0

)
− λ γe−Γ0

(1− e−Γ0)3

[ (
1− e−Γ0

)(ζ2

2
Γ0 + ζ

)
+ e−Γ0

(
Γ0

2
+ 1

)(
e−Γ0ζ − 1

) ]
+ . . . . (2.101)
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Similarly, the square of the oxide thickness (S(t)) is

S = d2
0t = D0λt+D1λ

2t+ . . . , (2.102a)

which implies

S(t) = 2γΓ0λ

(
e−Γ0

1− e−Γ0

)
t+ λ2 2γ2e−Γ0

(1− e−Γ0)3

[
(1− e−Γ0)(1 + Γ0)

− e−2Γ0

Γ0

(
Γ0

2
+ 1

)]
t+ . . . . (2.102b)

To determine the effectiveness of this perturbation expansion, we compare the

asymptotic and numerical solutions for different values of λ in § 2.5.

2.5 Results for the ionic diffusion model

In this section, we discuss the numerical results obtained for the different regimes

of the ionic diffusion model. Validation of the numerical results is done for the

unsteady linear ionic diffusion model using an asymptotic solution that has been

derived in §§§ 2.4.4.1. Furthermore, a detailed discussion of the comparison with

experimental results will be presented in Chapter 6 to analyse the effectiveness

of the model.

The dependence of the diffusivity and mobility of the oxygen ions (in the

oxide layer) on the oxide thickness (L∗(t∗)) and implicitly on the electric field

via E∗0 = −V ∗M/L∗(t∗) is shown in Figure 2.15a and Figure 2.15b, respectively.

Negative values for the ion mobility signify that the transport of oxygen ions

(anions; O2–) is in the opposite direction to that of the electric field. As can be

seen in Figure 2.15a, the diffusivity at very small times (i.e. when L∗(t∗) ∼ a∗)

differs by at least 25 orders of magnitude to its value at later times (for e.g.,

when L∗(t∗) ∼ 500 a∗ ≈ 274 nm). Similarly, the mobility of ions at very small

times differs by at least 24 orders of magnitude to its value at later times. Thus

the nonlinear influence of the strong field on these quantities is only significant

at very small times when the oxide thickness is of comparable magnitude to the

lattice constant, and this effect subsides at later times.

Similarly, in Figure 2.16, the temperature dependence of the diffusivity and

mobility of ions is depicted at different times (or different oxide thicknesses). This
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Figure 2.15: The dependence of the diffusion coefficient, D̄O∗
c and electrical mobility

(µ̄∗q) of O2– ions on the oxide thickness, L∗(t∗) (and implicitly on the homogeneous
electric field, E∗0 = −VM/L∗(t∗)) for various temperatures (refer equations (2.71c) for
D̄O∗
c and µ̄∗q). Negative values for µ̄∗q indicate that the movement of ions is in the

opposite direction to E∗0 . Parameters chosen are: a∗ = 5.4713 Å, ν∗ = 19 THz,
W ∗ = 1.24 eV, k∗b = 1.3806 · 10−23 J/K, V ∗M = −0.97 V (as defined in (1.8)).
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figure lends further support to the earlier statement about the influence of the

electric field strength on the diffusivity and ion mobility. It is evident from the

figure that the nonlinear effect of the field (‘strong’ field) is only felt when the

oxide thickness is of comparable magnitude to the lattice constant. At a later

instant in time, that is when L∗ � a∗, D̄O∗
c → DO∗

c and the same is shown in the

figure. As is apparent, the influence of the temperature compared to the electric

field strength on the diffusivity and mobility becomes predominant only at later

times (for e.g. when L∗ ∼ 5a∗). It can be seen that the influence of the electric

field strength is dominant compared to temperature effects at earlier times (i.e.

when L∗ ∼ a∗).

The numerical solution for the oxide thickness obtained from the linear un-

steady ionic diffusion model (2.69) is validated against the asymptotic solution

(2.102b) as shown in Figure 2.17. As can be seen in the figure, the leading-order

(i.e. one-term) asymptotic solution captures the behaviour of the full numerical

problem for a sufficiently small λ. Here, subfigure 2.17a shows the plot of oxide

thickness with time for λ = 0.5952 corresponding to a surface concentration of

C∗a = 6 ·1028 ions/m3 that has been assumed by Gharagozloo and Kanouff (2013).

From this figure, it is appropriate to conclude that the quasi-steady approxima-

tion is not valid for the O2– surface concentration considered by GK.

Similarly, a comparison of the numerical solution (solid lines) for the linear

unsteady problem with the asymptotic solution (2.101) (dashed lines) for a suf-

ficiently small value of λ = 0.01 is shown in Figure 2.18. A good agreement

between the numerical and asymptotic solutions can be observed.

In Figure 2.19, the growth of the (dimensionless) oxide with time for the

quasi-steady and unsteady models in both moderate (linear; denoted as Lin. in

the figure) and strong (nonlinear; denoted as NL) electric fields are plotted. As

may be expected, chemical diffusion is the slowest which is reflected in the oxide

growth being the slowest compared to the ionic diffusion models. However, the

difference in the oxide growth at any particular time between the density change

(γ = 1.7375) and no density change (γ = 1) cases is the smallest for the chemical

diffusion model compared to the ionic diffusion models. The difference in the

oxide growth between γ = 1.7375 and γ = 1 is more pronounced in the quasi-

steady ionic diffusion model compared to unsteady ionic model. It is also evident

from the figure that both the linear and nonlinear ionic models result in the

same behaviour at sufficiently large times. Also note that the quasi-steady model
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Figure 2.16: The temperature dependence of the diffusion coefficients (DO∗
c , D̄O∗

c ) and
electrical mobilities (µ∗q , µ̄

∗
q) of ions in moderate (as defined by (2.59)) and strong electric

fields (as defined by (2.71c)) respectively, wherein E∗0 = −VM/L∗(t∗). Parameters
chosen are: a∗ = 5.4713 Å, ν∗ = 19 THz, W ∗ = 1.24 eV, k∗b = 1.3806 · 10−23 J/K,
V ∗M = −0.97 V (as defined in (1.8)).
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Figure 2.17: Validation of the numerical results (obtained from the solution of the
unsteady moderate electric field Stefan model (2.69)) against the asymptotic solution
(see (2.102b)). Other parameters include: γ = 1.7375, δ = 0.1, Γ0 = −76.2 correspond-
ing to T ∗ = 22°C, V ∗M = −0.97 V.

over-predicts the oxide thickness compared to the unsteady model.

The influence of surface concentration of the diffusing species (C∗a) via the

nondimensional Stefan parameter λ = C∗a/(2.09N∗M) (ratio of the surface concen-

tration of the diffusing species C∗a to its concentration at the oxide-metal interface

required for the conversion of one cubic meter of metal with a concentration N∗M)

on the oxide growth kinetics in a quasi-steady model (with moderate electric field)

is plotted in Figure 2.20. As may be anticipated, an increase in λ results in an

increase in the oxide thickness at any particular time. Similarly, the same plot

for the unsteady ionic diffusion model is shown in Figure 2.21.

Similarly, increasing the magnitude of the nondimensional parameter Γ0, which

gives the relative influence of the electric field to the temperature effects, results in
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Figure 2.18: Validation of the numerical solution (solid lines) for the concentration
profiles obtained from the linear ionic model (2.69) with the asymptotic (dashed lines)
solution for the same (given by (2.101)). The parameters include: λ = 0.01, γ = 1.7375,
δ = 0.1, Γ0 = −76.2 corresponding to T ∗ = 22° C and V ∗M = −0.97 V.
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Figure 2.19: Evolution of oxide thickness (nondimensional) with time for the quasi-
steady (denoted as QS) and unsteady (denoted as US) models showing the influence
of density/volumetric changes (γ = 1.7375 for density change (solid lines) and γ = 1
for no density change (dashed lines)). Other parameters include: λ ≈ 0.6, Γ0 = −76.2
corresponding to T ∗ = 22 °C and V ∗M = −0.97 V (as defined in (1.8)).
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Figure 2.20: Effect of varying λ = C∗a/(2.09N∗M ) on the evolution of oxide thickness
with time for the quasi-steady model with moderate electric fields (solution obtained
by solving (2.84)). Other parameters include: γ = 1.7375, δ = 0.1, L(t = 0) = 1,
Γ0 = −62.8 corresponding to T ∗ = 85 °C and V ∗M = −0.97 V.
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Figure 2.21: Effect of varying λ = C∗a/(2.09N∗M ) on the evolution of oxide thickness
with time for the unsteady linear ionic model given by (2.69). Other parameters include:
γ = 1.7375, L(t = 0) = 1, Γ0 = −62.8 corresponding to T ∗ = 85 °C and V ∗M = −0.97
V.
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Figure 2.22: Effect of the electric field forcing, as measured by Γ0 = −q∗V ∗M/(k∗bT ∗)
on the oxide growth kinetics for the unsteady Stefan model with strong (represented
as black dots; obtained by solution of (2.73)) and moderate (as lines; obtained by
solution of (2.69)) electric fields. Other parameters include: γ = 1.7375, δ = 0.1 and
λ = C∗a/(2.09N∗M ) = 0.5952. The same figure on a log-log axis (b) shows the difference
in oxide thickness between moderate and strong fields at small times.
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Figure 2.23: Evolution of oxide thickness with time for the unsteady Stefan model
with strong (denoted as black dots; obtained by solution of (2.73)) and moderate
(as lines; obtained by solution of (2.69)) electric fields for different values of Γ0

(=−75.45 ,−47.53 ,−29.09 corresponding to temperatures T ∗ = 25° , 200°, 500° C and
V ∗M = −0.97 V) and λ. The other parameters include: γ = 1.7375, δ = 0.1,
L(t = 0) = 1. The same figure on a log-log axis (b) shows the difference in oxide
thickness between moderate and strong fields at small times.
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Figure 2.24: The growth of oxide thickness for small time (t ≤ 50) for the unsteady
Stefan model with strong (denoted as dots; obtained by solution of (2.73)) and moderate
(as dashed lines; obtained by solution of (2.69)) electric fields for different values of Γ0

(=−75.45 ,−47.53 ,−29.09 corresponding to temperatures T ∗ = 25° , 200°, 500° C and
V ∗M = −0.97 V). The other parameters include: γ = 1.7375, δ = 0.1, L(t = 0) = 1.
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Figure 2.25: Evolution of oxide thickness with time for the quasi-steady Stefan
model with strong (denoted as black dots; obtained by solution of (2.81)) and mod-
erate (as lines; obtained by solution of (2.84)) electric fields for different values of
Γ0 (=−75.45 ,−47.53 ,−29.09 corresponding to temperatures T ∗ = 25° , 200° , 500° C
and V ∗M = −0.97 V) and λ. The other parameters include: γ = 1.7375, δ = 0.1,
L(t = 0) = 1.
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an increased oxide thickness. The (nondimensional) oxide thickness as a function

of (nondimensional) time for different values of Γ0 in the unsteady ionic diffusion

model is plotted in Figure 2.22. Here, it can be seen that both the nonlinear

(strong electric field; as black dots) and linear (moderate electric field; as lines)

models essentially lead to the same behaviour (to the graphical accuracy known),

with differences between the linear and nonlinear models only apparent at very

small times.

The combined influence of Γ0 and λ on the oxide growth with time for the

unsteady ionic diffusion model is plotted in Figure 2.23, where the values of

Γ0 = −75.45 ,−47.53, −29.09 correspond to the dimensional temperature values

T ∗ = 25° , 200°, 500° C and V ∗M = −0.97 V. The same plot at small times (i.e.

t ≤ 50) is shown in Figure 2.24. It can be seen that there is a larger deviation of

the behaviour of the nonlinear model from the linear ionic model at very small

times (for e.g. t ≤ 1), with the deviation more pronounced at lower temperatures.

This corroborates our earlier statement that the nonlinear influence of the strong

field on the oxidation kinetics is only significant at very small times when the

oxide thickness is of comparable magnitude to the lattice constant, and this effect

subsides at later times. The oxide thickness for the quasi-steady model with

different values of Γ0 and λ is shown in Figure 2.25. A similar behaviour to the

unsteady model is observed, but an increased oxide thickness at any particular

time is predicted compared to the unsteady model.

2.6 Discussion on dry-air oxidation

Diffusion of O2– due to a concentration gradient alone does not account for the

observed experimental oxidation rate. A self-induced electric potential gradient

due to the rearrangement of charges provides an additional driving force for the

migration of O2– to then react with the metal, which results in an increase in

the oxidation rate. We have formulated a one-phase unsteady Stefan model for

this ‘ionic diffusion’ problem that involves two main parameters: Γ0 and λ. Here,

Γ0 measures the importance of the additional ionic component due to the self-

induced electric field. If Γ0 is sufficiently large, we are in the “strong-field” regime

in which the diffusivity and mobility of the O2– ions are nonlinearly affected by

the field. At lower Γ0, we find a “moderate-field” regime. The moderate-field

regime is the most relevant and the strong-field effects are only found at very
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early times (very thin oxides; L∗(t∗) < 100 a∗ for example) as has been shown

through the results (see figures 2.15 and 2.16 for example). This brief period of

a strong field has little lasting effect on the evolution of the oxide growth and

the moderate-field approach is sufficient to describe the oxidation kinetics for

practical timescales. When Γ0 is sufficiently small, we recover the Stefan prob-

lem without the ionic (electric field) effects, and therefore chemical diffusion is

dominant at these small values of Γ0. The value of the other nondimensional pa-

rameter λ that gives the ratio of the surface concentration of the diffusing species

to its concentration at the oxide-metal interface involved in the phase transition,

determines if quasi-steady approximation can be made. When λ is sufficiently

small, we recover a quasi-steady theory compatible with the GK model. How-

ever, the parameter values taken by GK are out of the regime of validity of the

quasi-steady approximation; therefore the results reported by Gharagozloo and

Kanouff (2013) should be treated with some caution.

Comparison of the dimensional numerical results with the published experi-

mental results of various authors is presented in Chapter 6.

In the next chapter, we derive a mixed-phase (diffuse-interface) model for

dry-air oxidation where we have a finite width of the ‘interface’ (called “reaction

fronts”) between the different homogeneous/pure phases, instead of an infinites-

imally thin interface (or “sharp interface”) assumed in the Stefan model.



Chapter 3

Mixed-phase model: dry-air

oxidation of uranium

The models we have discussed so far treat the material as being composed of

discrete layers separated by an interface. At such an interface, the transition

between (for example) U and UO2 is assumed to occur over an infinitesimal

length scale. This simplification allows us to formulate the corrosion problem

as a classical Stefan problem, where we track the movement (or velocity) of the

interface using a Stefan condition.

As the underpinning chemistry and physics become complex in more challeng-

ing corrosion environments, it is unclear how to construct an analogous Stefan

problem (or even if one exists). For example, in Chapter 4 we examine a corro-

sion problem in water vapour that requires three material phases, one of which

is generated as a reaction intermediate in a complex two-step reaction process,

and two diffusing species. We need to be able to address these complex situa-

tions and to do this we propose an alternative approach based on a mixed-phase

(or diffuse-interface) model. This approach removes the assumption of discrete

layers, and allows instead for smooth continuous transitions in the material (e.g.

from U to UO2); this approach will be critical in later chapters but here we take

the opportunity to reformulate the dry-air oxidation problem in this manner to

ensure that there is consistency with our earlier treatments.

To this end, we now represent the distribution of the phases (U/UO2) as a

continuum instead of discrete layers. In this approach, the composition of the

material (e.g. the volume fractions of UO2 and U) become continuous functions

of position and time across the whole material domain. The reactions in this

109
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approach will still be found to occur in spatially localised regions (also called “re-

action fronts”). These reaction fronts separate regions of homogeneous material

composition where diffusion dominates over chemical reactions.

The pioneering work that provides a theoretical understanding of the reaction

fronts in reaction-diffusion systems with second-order reaction kinetics was done

by Gálfi and Rácz (1988), where they considered a one-dimensional model of the

form

∂a

∂t
= Da

∂2a

∂z2
− kab , ∂b

∂t
= Db

∂2b

∂z2
− kab . (3.1)

Here, both species A (with concentration a) and B (with concentration b) are

diffusing with diffusivities Da , Db respectively; kab is the (dimensional) reaction

rate for the reaction A+B → C where C is the inert solid product. They showed

that at large times and for Da = Db, the reaction rate has the (dimensional) form

kab ∼ kt−2/3F

(
z − zf
t1/6

)
, (3.2)

where F is some functional form and zf is the propagating reaction front location

at any time t. Later, Koza (1996) considered the same system, but with Da 6= Db

(and also for the case where one of the diffusivities is zero) and showed that the

exponents in the asymptotic form (3.2) is true for any reaction-diffusion system

with second-order kinetics irrespective of the diffusivities of the reactants. These

length scales have also been confirmed by the computational work of Jiang and

Ebner (1990) and the theoretical analysis of Koza (1997). In addition, the con-

clusions of these theoretical studies have been validated through the experiments

of Léger, Elezgaray, and Argoul (1997). The more recent theoretical work of

Bazant and Stone (2000) investigated generalised higher-order reaction kinetics

with reaction rate kambn, where m,n ≥ 1 (m,n being the reaction orders for

the diffusing and non-diffusing reactants respectively). They demonstrated the

following form for the reaction rate:

kambn ∼ kt−ν1F

(
z − zf
tν2

)
, (3.3)

where ν1 = m/(m + 1) and ν2 = (m− 1)/(2 · (m + 1)). Note that ν1 and ν2 are

only dependent on the reaction order of the diffusing reactant.

Now, we return to our uranium oxidation problem, which has the additional
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complexities of a non-constant diffusion coefficient that is a function of the ma-

terial composition, and advection accompanying the reaction and diffusion pro-

cesses.

3.1 Problem formulation

We consider the diffusion of oxygen ions (O2−) in the bulk material, with a phase

change from U to UO2 determined by the overall reaction U4+ + 2 O2− → UO2.

Here, we have neglected the hyper-stoichiometry in the representation of the

oxide (i.e. UO2 instead of UO2.09) for simplicity. The hyper-stoichiometry is

however incorporated in the numerical simulations. To describe the evolution

of the system we will make use of (where the asterisk denotes a dimensional

quantity) the following three quantities:

c∗(z∗, t∗) the number concentration of O2−,

M∗(z∗, t∗) the number concentration of U,

O∗(z∗, t∗) the number concentration of UO2.

The only diffusing species is O2– with a concentration c∗ that has constant dif-

fusivities DM∗
c and DO∗

c in a pure metal and pure oxide respectively. Here, a

lower-case letter for the concentration denotes the diffusing species (c∗) whilst

upper-case letters denote the nondiffusing phases (M∗, O∗). Note that the con-

centrations of the O2– diffusing species, metal and the oxide are tracked in this

model, as opposed to tracking only the diffusing species in the Stefan model.

We consider a fixed control volume ∆V ∗ with a constant cross-sectional area

∆A∗. Applying particle conservation of an individual species in the control vol-

ume, we have that the change in the quantity (or total number) of a particular

species in the control volume during the time interval ∆t∗ is given by the summa-

tion of the net influx of the species and the formation (or depletion) of the species

within the control volume in the same time interval. The net influx (through ad-

vection and/or diffusion) is the difference between the influx and efflux of the

species via the control surfaces. Formation or depletion (source or sink) of the

species occurs due to chemical reactions within the control volume.

Taking the limits ∆V ∗ → 0 (∆z∗ → 0 in the one-dimensional case) and

∆t∗ → 0, we have the governing equation for the diffusing species (oxygen ions)
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as

∂c∗

∂t∗
= −∂F

∗
c

∂z∗
+ r∗c , (3.4)

where the flux F ∗c is taken to be the sum of the diffusive and advective compo-

nents:

F ∗c = v∗c∗ −D∗c
∂c∗

∂z∗
. (3.5)

Here D∗c is a diffusion coefficient that is a function of the material composition

(that is, its value will vary locally according to the amount of U and UO2 present)

and in general varies with z∗ and t∗, and v∗(z∗, t∗) is the advection velocity

that arises due to phase/volumetric changes as the relatively more dense metal

is converted to a less dense oxide. Similarly, the governing equations for the

nondiffusing phases M ,O are respectively written as

∂M∗

∂t∗
= −∂F

∗
M

∂z∗
+ r∗M ,

∂O∗

∂t∗
= −∂F

∗
O

∂z∗
+ r∗O ,

(3.6)

where the fluxes include only the respective advective components: F ∗M = v∗M∗

and F ∗O = v∗O∗.

The governing equations for c∗, M∗ and O∗ are then

∂c∗

∂t∗
+
∂(v∗c∗)

∂z∗
=

∂

∂z∗

(
D∗c

∂c∗

∂z∗

)
+ r∗c , (3.7a)

∂M∗

∂t∗
+
∂(v∗M∗)

∂z∗
= r∗M , (3.7b)

∂O∗

∂t∗
+
∂(v∗O∗)

∂z∗
= r∗O , (3.7c)

where the effective diffusion coefficient in the material is assumed to be the

weighted sum of the diffusivities in the pure phases. Zhu et al. (2001) calculated

the effective diffusivity in a composite material with diffuse interfaces, using a

spectral method. They had formulated a continuum description of the effective

diffusivity based on the discrete formulation that had been derived from the Reuss

bound (lower-bound) by Nan (1993). We have used an equivalent upper-bound

(Voigt model of the ‘rule of mixtures ’) for ease of computation using numerical
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schemes. Using the upper-bound of the rule of mixtures, the effective diffusivities

D∗h and D∗c are calculated as:

D∗c =
O∗

N∗O
DO∗
c +

M∗

N∗M
DM∗
c . (3.7d)

Here N∗O,M are the number concentrations of the pure oxide (UO2) and metal

phases (U) with O2– diffusivitiesDO∗
c andDM∗

c respectively; (O∗/N∗O) and (M∗/N∗M)

represent the local volume fractions of the oxide and the metal.

The nonlinear reaction terms r∗i where i = (c, O,M) can be defined using the

rate law for elementary chemical reactions if the reaction mechanism is known.

It states that the rate of formation or depletion of an entitya in an elementary

chemical reaction is proportional to the product of the concentrations of the

individual reactants, each raised to the power of its respective stoichiometric

coefficient in the elementary reaction. For a non-elementary reaction such as

in this case, we can write the rate law or the mean-field approximation which

has a power-law structure for the rate of formation of a product; for example,

r∗P ∝ C∗αA C∗βB for a reaction A + B
k∗−→ P where r∗P is the reaction rate for the

formation of product P , C∗(A,B) are the concentrations of the species A, B and

α, β are the ‘kinetic orders’ of the reaction which are either written from the

stoichiometry of the rate-limiting step if the reaction mechanism is known, or

determined experimentally.

For the sake of simplicity, we assume the simplest form of the rate law for the

overall reaction U4+ + 2 O2– k∗
UO2; we will return in a later chapter to in-

clude higher-order kinetics in a more complex configuration. The aforementioned

reaction leads to a sink of O2− and U, whilst (3.7c) has a source of UO2. The

reaction terms in (3.7a) - (3.7c) are therefore

r∗c = −2k∗c∗M∗ , r∗M = −k∗c∗M∗ , r∗O = +k∗c∗M∗ , (3.7e)

where k∗ is a dimensional second-order reaction rate constant.

Given the number concentration of each species, we define a concentration (or

density) of the mixed phase via

%∗ = M∗ +O∗ . (3.7f)

aAn entity here refers to an atom, molecule or compound involved in a chemical reaction.
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Simple addition of the evolution equations for M∗ (3.7b) and O∗ (3.7c) is sufficient

to confirm that the reaction conserves %∗, given the source/sink terms defined in

(3.7e):

∂%∗

∂t∗
+

∂

∂z∗
(%∗v∗) = 0 . (3.7g)

The system (3.7) is closed by imposing that the bulk material consists of only

the O∗ and M∗ phases. From particle conservation of uranium, as the metal is

converted to oxide, we have:

O∗ = (N∗M −M∗)
N∗O
N∗M

, (3.7h)

which implies

O +M = 1 , (3.7i)

where O = (O∗/N∗O) ,M = (M∗/N∗M) are the respective nondimensional concen-

trations or the volume fractions of the oxide and metal, and N∗M,O correspond to

the number concentrations of pure U and UO2 respectively.

The system of equations (3.7) are solved, subject to the initial conditions of

M∗ = N∗M , O
∗ = 0, c∗ = 0 that represent an unexposed initial sample of pure

uranium, and with the imposition of c∗ = C∗a on the surface of the material

(z∗ = z∗s(t
∗)). In general, C∗a can be time-dependent, but we will consider a

constant value in what follows. The boundary conditions considered are:

c∗(z = z∗s(t
∗), t∗) = C∗a , c∗(z∗ = −z∗∞, t∗) = 0 ,

M∗(z∗ = −z∗∞, t∗) = N∗M ,

O∗(z∗ = −z∗∞, t∗) = 0

 for t∗ ≥ 0; (3.8a)

no boundary condition is required for the advection velocity v∗ since we will

transform the problem in a way which will eliminate it from the equations. The

metal base/truncation boundary is represented as z∗ = −z∗∞. The boundary

conditions represent that the diffusing ions have a constant concentration of C∗a

at the oxide (UO2) surface, whilst a pure metal is recovered far away from the

surface at z∗ = −z∗∞.
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3.1.1 The dimensionless problem

We nondimensionalise using an arbitrary length scale L∗ref and a diffusive timescale

L∗2ref/D
∗
ref . The concentrations of the different species in the material are nondi-

mensionalised using the respective pure-phase concentrations (refer A.1 for ma-

terial densities or pure-phase concentrations). The quantity %∗ that represents

the local density of the mixed phase is nondimensionalised using the pure metal

density (considering that the initial phase is purely metal). We therefore have

t∗ =
L∗2ref
D∗ref

t , z∗ = L∗refz , v∗ =
D∗ref
L∗ref

v(z, t) , c∗ = C∗a c(z, t) ,

M∗ = N∗M M(z, t) , O∗ = N∗O O(z, t) , %∗ = N∗M% , k∗ =
D∗ref

L∗2refN
∗
M

k .

(3.9)

Here C∗a is the surface concentration of the diffusing oxygen ions (O2−). The

reference diffusivity will be taken as D∗ref = DO∗
c (i.e. the diffusivity of O2–

in UO2) in what follows. The dimensionless equations of this mixed-phase (or

diffuse-interface) model are then

∂c

∂t
+

∂

∂z
(vc) =

∂

∂z

(
Dc(M)

∂c

∂z

)
− 2kcM , (3.10a)

∂M

∂t
+

∂

∂z
(vM) = −kcM C∗a

N∗M
, (3.10b)

∂O

∂t
+

∂

∂z
(vO) = kcM

C∗a
N∗O

, (3.10c)

where

O +M = 1 , (3.10d)

Dc(M) = 1 +M(µ− 1) , (3.10e)

with µ = DM∗
c /DO∗

c (the ratio of the diffusivities in the two phases).

As noted above, on defining the mixture concentration

% = M +O
N∗O
N∗M

, (3.10f)
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it is clear that

∂%

∂t
+

∂

∂z
(v%) = 0 , (3.10g)

is a consequence of (3.10b) and (3.10c) as expected for a purely chemical reaction.

The boundary conditions for c,M,O are

c(z = zs(t), t) = 1 , c(z = −z∞, t) = 0 ,

M(z = −z∞, t) = 1 , O(z = −z∞, t) = 0

}
for t ≥ 0 . (3.11a)

The initial conditions are given as

M(z, t = 0) = 1 , O(z, t = 0) = 0 and c(z, t = 0) = 0 , (3.11b)

with the imposition of c = 1 at the surface z = zs(t) for all t.

We solve the system of equations (3.10) subject to boundary and initial con-

ditions (3.11) for two cases, namely, with and without the consideration of den-

sity/volumetric changes. We then compare the results of this new mixed-phase

dry-air problem in the limit of a large reaction rate constant or equivalently in

the limit as t → ∞ with the results of the Stefan formulation (see § 2.2 for the

unsteady Stefan formulation). It has been formally proven by Hilhorst, Van Der

Hout, and Peletier (1996) that a simpler reaction-diffusion problem of the type

A+ B → C, where A diffuses and reacts with the substrate B, can be modelled

as a Stefan problem (discrete-layer model) in the limit of a large reaction rate

constant (i.e. as k → ∞) or equivalently as t → ∞. That is, the authors there

proved that the free boundary of the reaction-diffusion problem converges point-

wise to the free boundary of the Stefan problem as k →∞. Here, the term ‘free

boundary’ refers to the unknown domain boundary (or surface boundary) that is

found as part of the solution to the problem.

Solving the mixed-phase problem with density/volumetric changes leads to a

more difficult computation as we have to deal with the advection terms in (3.10)

that arise as a result of the expanding domain. We will investigate a method

for dealing with the expanding domain based on the Howarth-Dorodnitsyn trans-

formation. The Howarth-Dorodnitsyn transformation is generally used to reduce

the compressible boundary-layer equations to a form similar to the incompressible

equations. In our case, we use the transformation to fix the moving boundaries for
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ease of application of the numerical scheme. Since the position and velocity of the

moving boundaries are not known a priori, it is simpler to discretise the domain

by using a fixed computational coordinate system. This approach in formulating

and solving the governing equations over a transformed fixed domain is similar to

a Lagrangian approach instead of an Eulerian (control volume) approach to track

the expanding material. It is essentially a trade-off between ease of application

of the numerical scheme and more complicated governing equations.

3.1.2 Case 1: Excluding density change

We first consider the simpler case wherein there is no density/volumetric change

as the metal is converted to oxide, that is, N∗M = N∗O and v = 0. Hence the whole

domain is fixed in space, with no expansion of the material. The dimensionless

problem (3.10) reduces to

∂c

∂t
=

∂

∂z

(
Dc(M)

∂c

∂z

)
− 2kcM , (3.12a)

∂M

∂t
= −kcM C∗a

N∗M
, (3.12b)

∂O

∂t
= kcM

C∗a
N∗O

, (3.12c)

with

O +M = 1 , (3.12d)

Dc(M) = 1 +M(µ− 1) , (3.12e)

and

% = M +O = 1 . (3.12f)

The system of equations (3.12) has been solved subject to boundary and ini-

tial conditions (3.11) by the method of lines in Matlab using the ODE solver

ode15sb which is straightforward.

bThe ode15s solver is a variable time-step, variable-order, stiff differential equations solver

which has been used instead of ode45 solver as the latter was extremely slow requiring a

large number of time steps that resulted in the solution array exceeding the “maximum array

size preference” for integrating the differential equations (say) up to a nondimensional time of
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The results are presented with discussion in § 3.2.

3.1.3 Case 2: Including density change: a solution strat-

egy for the moving domain

Considering that at time t = 0 the bulk material occupies a domain z ∈ [−z∞, zs(0)],

and as the reaction proceeds, the change in density due to the phase transition

(metal→ metal oxide) leads to a moving surface with a domain z ∈ [−z∞, zs(t)];
here zs(t) defines the surface location of the expanding material, where the ex-

pansion is due to a reduction in the (number) density (or concentration) as the

metal is converted to oxide (refer Table A.1 for pure-phase densities). In the

case of a mixed phase where there is a continuous variation in the composition of

the material, this results in an advection velocity that depends on the material

composition (i.e. v(z, t)). To cope with the spatially varying advection velocity

(and the changing domain size) we will use a (ζ, t) coordinate system where the

ζ coordinate is obtained via a Howarth-Dorodnitsyn transformation that moves

with the bulk material:

ζ =

∫ z

−z∞
% dz , (3.13)

where % is defined in (3.10f). Here a position defined by ζ = constant maintains

a constant number of uranium atoms/ions (in both U and UO2) below it as the

reaction proceeds. The physical domain [−z∞, zs(t)] is thus mapped to [0, ζs] in

the transformed coordinates.

The surface of the material is located at a fixed value of ζ = ζs, where

ζs =

∫ zs(t)

−z∞
% dz . (3.14a)

As the total number of uranium atoms is conserved, if the initial state is purely

metal represented by c = O = 0 and M = 1, with the sample surface at the

nondimensional location of z = zs(0) = 0 then

ζs =

∫ 0

−z∞
% dz (3.14b)

t = 500 with both relative and absolute error tolerances 10−6, ∆z = 0.02 , µ = 1 and k = 1.
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for all time.

Transformation rules: In terms of this new coordinate system the solution

is for (c,M,O, v) as functions of ζ and t, where

∂

∂t
→ ∂

∂t
− %v ∂

∂ζ
, (3.15a)

∂

∂z
→ %

∂

∂ζ
, (3.15b)

with the first of these following from an integration over z of (3.10g) (assuming

that v = 0 on z = −z∞):

∫ z

−z∞

(
∂%

∂t

) ∣∣∣∣
z

dz + %v = 0 (3.16a)

which gives

−%v =

∫ z

−z∞

(
∂%

∂t

) ∣∣∣∣
z

dz =
∂

∂t

∣∣∣∣
z

∫ z

−z∞
% dz . (3.16b)

Note that the operators (∂/∂t)|z and
∫

dz commute with each other as z is

independent of time in the Eulerian coordinates.

In this new (ζ, t) coordinate system, equations (3.10a)–(3.10c) now reduce to

∂c

∂t
= %

∂

∂ζ

(
%Dc

∂c

∂ζ

)
− 2kcM − %∂v

∂ζ
c , (3.17a)

∂M

∂t
= −kcM C∗a

N∗M
− %∂v

∂ζ
M , (3.17b)

∂O

∂t
= kcM

C∗a
N∗O
− %∂v

∂ζ
O , (3.17c)

where Dc, which is a function of the metal concentration, is determined from

(3.10e). Here the advection terms (proportional to v) are removed in the new (ζ)

coordinate, but the expansion of the bulk material during the phase change leads

to additional source/sink terms proportional to vζ .
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From the last two equations, or equivalently (3.10g), together with the re-

quirement of O +M = 1 leads to

%
∂v

∂ζ
= kcM

C∗a
N∗M

(
N∗M
N∗O
− 1

)
. (3.18)

So we can determine the velocity field of the mixed-phase material explicitly in

terms of the reacting material and the associated change in (number) density

between the phases. Hence we are left to solve

∂c

∂t
= %

∂

∂ζ

(
%Dc

∂c

∂ζ

)
− kcM

(
2 + c

(
C∗a
N∗O
− C∗a
N∗M

))
, (3.19a)

∂M

∂t
= −kcM C∗a

N∗M

(
1 +M

(
N∗M
N∗O
− 1

))
, (3.19b)

∂O

∂t
= kcM

C∗a
N∗O

(
1−O

(
1− N∗O

N∗M

))
, (3.19c)

with the effective diffusivity Dc given by (3.10e), subject to the following initial

and boundary conditions. The initial conditions are associated with an initial

state entirely in the U phase:

M(ζ, t = 0) = 1 , O(ζ, t = 0) = 0 , c(ζ, t = 0) = 0 , (3.20a)

and the boundary conditions for the diffusing species are

c(ζ = ζs, t) = 1 , c(ζ = 0, t) = 0. (3.20b)

The system (3.19) subject to initial and boundary conditions (3.20) is solved by

the method of lines in Matlab using ode15s which is found to be more efficient

than ode45. The solution of the mixed-phase model is validated against the

Stefan model for large k and/or large t and is presented in § 3.2.

Inverting the coordinate transformation provides the solution in the physical

space:

z = −z∞ +

∫ ζ

0

1

%
dζ . (3.21)
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3.2 Results for the mixed-phase dry-air model

The numerical results for the mixed-phase dry-air oxidation model for both the

cases that include and exclude density changes are discussed in this section. The

results are then compared either with the analytical solution (see §§§ 2.2.1.3)

for the case excluding density change or with the Stefan solution in the limit

of a suitably large reaction rate constant (k → ∞) or equivalently in the large-

time limit (t→∞). It will be seen in this section that the mixed-phase model is

consistent with the Stefan model in the appropriate limits. To calculate the oxide

thickness, we define the center of the reaction front as the location (z = z1(t))

where the reaction rate,

R(z, t) = kcM (3.22)

is maximised. The oxide thickness is then calculated as the distance (in the z

coordinate) from the surface location zs(t) to the location of the reaction front

center, z1(t); that is the oxide thickness ∆O = zs(t) − z1(t). As a reminder, a

reaction front in a mixed-phase model is a region where there is a transition from

one phase to the other. The reaction rate (3.22) is plotted in Figure 3.1 and the

location of the maximum reaction rate is at z1(t) = −0.4247 for t = 5.

3.2.1 Dry-air oxidation without density change

Subfigure 3.2(a) shows the evolution of oxide thickness with time for the rate

constant values k = 1 , 10 , 100; subfigure 3.2(b) depicts the same plot on a log-

log axes. It can be seen that the mixed-phase model agrees with the discrete-

layer/Stefan model at a suitably large t or k. The numerical solution is calculated

using the method of lines which has been implemented using Matlab (ode15s

solver).

We define a quantity λ = C∗a/(2N
∗
M) for the sake of comparison with the

Stefan solution (obtained from solving (2.51)). Now, the evolution of the oxide

thickness with time is plotted in Figure 3.3 for different values of λ. Smaller

values of λ result in a reduction in oxide thickness (at fixed values of time)

as we may expect. Here, the analytical solution (given by (2.37c)) with the

appropriate surface concentration of the diffusing species is compared with the

solution obtained by solving (3.12). A good agreement between the two solutions
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Figure 3.1: Variation of the reaction rate (3.22) with the z coordinate at a nondi-
mensional time t = 5. The center of the reaction front (z = z1(t)) is defined as the
location of the maximum reaction rate. Parameters include: C∗a = 5 × 1027 ions/m3,
µ = 1 , k = 5 , zs(t = 5) = 0.4997 , z1(t = 5) = −0.4247 , z∞ = −5 and the number
densities of the metal and the oxide are given in Table A.1.
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Figure 3.2: Evolution of oxide thickness (∆O) with time for the mixed-phase (without
density change) model (given by (3.12)) and Stefan model (obtained from the solution
of (2.51)) for dry-air oxidation. Other parameters include: λ = C∗a/(2N

∗
M ) = 0.05 and

µ = 1.

can be observed.

Figure 3.4 depicts the influence of the diffusivity ratio µ = DM∗
c /DO∗

c on the

oxide growth. It can be seen that an increase in the diffusivity ratio µ results
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Figure 3.3: Comparison of the mixed-phase (without density change) (defined by
(3.12)) and analytical (given by (2.37c)) solutions for the oxide growth with time for
different values of λ = C∗a/(2N

∗
M ). Other parameters include: k = 500 , µ = 1.
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Figure 3.4: Evolution of the oxide thickness with time obtained by solving (3.12)
(no density change) for different values of the diffusivity ratio, µ = DM∗

c /DO∗
c . Other

parameters include: k = 500 , λ = 0.05.
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in an initial increase in the oxide thickness as more metal is converted to oxide,

and vice-versa. However, at a suitably large time (not depicted in the figure),

the solution obtained from the mixed-phase model approaches the Stefan solution

which is independent of µ.

3.2.2 Dry-air oxidation with density change

For the case including density change in the mixed-phase model, we solve the

system (3.19) subject to the appropriate boundary and initial conditions and the

results are presented in this section. A good agreement between the mixed-phase

and the Stefan solutions for different values of the diffusivity ratio µ and a suitably

large rate constant k = 500 can be observed in Figure 3.5.

Similarly, Figure 3.6 shows the oxide growth with time for different rate con-

stant values k where the solutions obtained from the mixed-phase model (3.19)

and the Stefan model are compared. As it can be seen, the solution from the

mixed-phase model approaches the Stefan solution as k →∞ or as t→∞.
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Figure 3.5: Comparison of the oxide growth with time for the mixed-phase model
(3.19) and the Stefan model including density change for different values of the diffu-
sivity ratio µ = 0.01 , 0.1 , 1 , 10 , 100. Other parameters include: k = 500 , λ = 0.05.

Figure 3.7 depicts the concentration profiles for the different diffusing and

nondiffusing species at times t = 5 and t = 50, and a reaction front propagating

to the left with time as more metal is consumed to produce the oxide. The
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Figure 3.6: Evolution of the oxide thickness with time obtained by solving mixed-
phase sytem (3.19) for different rate constant values k and its comparison with the
Stefan model. Other parameters include: λ = 0.05 , µ = 1.

steep transition region in the concentration profiles where the metal is converted

to oxide phase is called the ‘reaction front’. The width of the reaction front

is a function of the reaction rate constant. Higher values of the rate constant

results in a thinner reaction front as is depicted in Figure 3.8. We will return to

investigate the details of the reaction fronts in the next chapter.

Having verified our mixed-phase formulation (which can handle an expanding

or advecting medium) by comparing with the discrete-layer Stefan model for the

oxidation kinetics of uranium in dry air, we now extend our model to study

the more complex oxidation of uranium in water vapour, which is presented in

Chapter 4.
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Figure 3.7: Concentration profiles of the diffusing and nondiffusing species at different
times (a) t = 5 and (b) t = 50 showing the reaction front propagating to the left. The
parameters include: λ = 0.05 , µ = 1 , k = 500. The plot shows the material domain
extending from −z∞ = −5 to zs(t) with zs(t = 5) = 0.48 and zs(t = 50) = 1.52.
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Figure 3.8: Concentration profiles of the diffusing and nondiffusing species at time
t = 50 for different rate constant values (a) k = 500 and (b) k = 1. Other parameters
include: λ = 0.05 , µ = 1 with −z∞ = −5 , zs(t = 50) = 1.52 and the location of the
reaction front, z1(t = 50) = −1.55 for k = 500 , z1(t = 50) = −1.42 for k = 1.



Chapter 4

Early-stage corrosion of uranium

in water vapour

This chapter forms the basis of material published in the paper, “Asymptotics

of coupled reaction-diffusing fronts with multiple static and diffusing reactants:

uranium oxidation in water vapor” by Natchiar, Hewitt, Monks and Morall in

SIAM Journal on Applied Mathematics (Monisha Natchiar et al., 2020).

4.1 Introduction

In this chapter, we discuss our mathematical model for the early-stage oxidation of

uranium by water vapour which has been derived based on a reaction mechanism

proposed by Glascott and Findlay (2019) (outlined in § 1.2.6). Here, ‘early-stage’

oxidation refers to oxidation before cracking and spalling of the surface oxide; note

that early-stage behaviour is not the same as small time behaviour. Recent atom-

probe tomography studies by Martin et al. (2016) has confirmed that oxidation in

a water-vapour environment occurs via a different reaction mechanism compared

to that in dry air/oxygen. In the water-vapour oxidation of uranium, uranium

hydride (UH3) is formed as an intermediate, which further reacts to form the

uranium oxide (UO2) product. As already discussed in Chapter 1, in a water-

vapour environment, hydroxide ions (OH–) from water vapour (H2O(v)) constitute

the diffusing species as opposed to oxygen ions (O2–) in a dry-air environment.

However, the modelling approach for water-vapour oxidation remains the same

as that of the mixed-phase dry-air model (see §§ 3.1.3).

The system is modelled as a diffuse-interface (or mixed-phase) model that

127
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includes density changes, as the underpinning chemistry/physics of water-vapour

oxidation is too complex to model it as a (discrete-layer) Stefan problem. The

density/phase changes in the mixed-phase model give rise to a moving domain

as a result of advection or material expansion. We therefore adopt the same

solution strategy as tested and verified in §§ 3.1.3 to solve the problem in this

moving domain. In addition, we neglect the elaborate surface processes such

as adsorption, desorption and the surface reactions and replace them with ap-

proximate simple Dirichlet boundary conditions at the surface. An asymptotic

analysis is performed to deduce the behaviour at large times or for high reaction

rate constants. We know from Chapter 3 that the “reaction fronts” are localised

for sufficiently large reaction rate constants and/or large times, and therefore we

can recover an equivalent “discrete-layer” model through an asymptotic analysis.

The numerical results obtained are discussed in §§ 4.2.4 and their comparison with

the large-time asymptotic predictions are discussed in §§ 4.2.6. The parameter

space is explored and the effect of different parameters such as the diffusivities,

material densities and the rate constants of the reactions on the oxidation kinetics

is discussed.

4.2 A diffuse-interface model

Similar to the mixed-phase model for dry-air oxidation, in a mixed-phase (diffuse-

interface) model for water-vapour oxidation, we represent the distribution of

phases (nondiffusing species) as a continuum instead of discrete layers. In this

chapter, we use the term ‘species ’ to denote both the diffusing and nondiffusing

components in the system, whereas the term ‘phase’ is used exclusively for the

nondiffusing components. Here, the physical variables such as concentration, ad-

vection velocity, and so on are continuous functions of position and time in the

entire material domain. The dimensionless concentrations or volume fractions

determine the material composition; for example, a nondimensional concentra-

tion of M = 1 denotes a pure metal phase. This model can therefore take into

account transition regions (also called reaction fronts where reaction terms bal-

ance with the diffusion term; see Bazant and Stone, 2000) between the different

pure phases. That is, here reaction fronts separate regions of homogeneous com-

positions referred to as the ‘diffusion’ layers, rather than the sharp interfaces

between the pure phases that are a characteristic feature of the Stefan model. In
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this alternative approach, we consider that there are ‘mixed’ regions which are a

more realistic representation (see the experimental studies of Martin et al., 2016)

than the discrete-phase Stefan model.

4.2.1 Formulation

In accordance with the reaction scheme discussed in § 1.2.6, we will consider the

diffusion of hydroxide ions (OH–) through the surface oxide, followed by reaction

of the hydroxide ions with the hydride (UH3) to form uranium dioxide (UO2)

and hydrogen radicals (H ). The further diffusion of hydrogen radicals into the

metal (U) regenerates the hydride phase. The reaction-induced phase changes are

associated with density changes and therefore volume expansion in the material,

thus contributing to a local time-varying advection velocity v∗(z∗, t∗). To describe

the evolution of such a system, we will denote the (number) concentrations of the

species, with lower-case letters representing the diffusing and upper-case letters

the nondiffusing species, as (where the asterisk denotes a dimensional quantity):

c∗ ≡ [OH–], h∗ ≡ [H ],

O∗ ≡ [UO2], H∗ ≡ [UH3], M∗ ≡ [U] .

The mathematical description of the oxidative corrosion of uranium by water

vapour can then be written as a system of one-dimensional coupled reaction-

diffusion-advection partial differential equations:

∂c∗

∂t∗
+

∂

∂z∗
(v∗c∗) =

∂

∂z∗

(
D∗c

∂c∗

∂z∗

)
+ r∗c , (4.1a)

∂h∗

∂t∗
+

∂

∂z∗
(v∗h∗) =

∂

∂z∗

(
D∗h

∂h∗

∂z∗

)
+ r∗h , (4.1b)

∂O∗

∂t∗
+

∂

∂z∗
(v∗O∗) = r∗O , (4.1c)

∂H∗

∂t∗
+

∂

∂z∗
(v∗H∗) = r∗H , (4.1d)

∂M∗

∂t∗
+

∂

∂z∗
(v∗M∗) = r∗M , (4.1e)

subject to the boundary conditions:

c∗(z∗s , t
∗) = C∗a , c∗(−z∗∞, t∗) = 0, h∗(z∗s , t

∗) = 0, h∗(−z∗∞, t∗) = 0,

O(−z∗∞, t∗) = 0, H(−z∗∞, t∗) = 0, M(−z∗∞, t∗) = N∗M , v∗(−z∗∞, t∗) = 0 ,

(4.2)
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and appropriate initial conditions which will be discussed after nondimensional-

ising the above system of equations.

Here for example, c∗(z∗, t∗) is the local concentration of OH– ions, v∗(z∗, t∗)

is the local advection velocity, D∗c,h(z
∗, t∗) are the effective diffusivities of species

OH–, H respectively and r∗i denotes the local reaction rate of species i, with

i = c, h,O,H,M . The material domain ranges from z∗ = −z∗∞ (representing a

position far into the metal i.e. the bottom truncation of the domain) to z∗ = z∗s (at

the material surface exposed to water vapour that dissociates into H+ and OH–).

The surface concentration of OH– is taken to be C∗a . The effective diffusivities

are functions of the local material composition and given by (4.3).

It is worth noting that the hydrogen radical concentration at the surface is zero

as we assume that they instantaneously recombine to form gaseous hydrogen at

the surface. The boundary conditions at z∗ = −z∗∞ represent far-field conditions

away from the oxide surface and into the metal. The initial conditions that have

been considered are representative of the experimental observations and will be

discussed later. For example, a thin (of the order of a few nm) oxide layer has

always been observed in the experiments (see Baker, Less, and Orman, 1966a;

Martin et al., 2016 and Banos and Scott, 2020) irrespective of the method of

preparation of the sample.

Effective diffusivities D∗c and D∗h: The effective diffusivities in the material

are assumed to be the weighted sum of the diffusivities in the pure phasesa (similar

to that in (3.7d)):

D∗c = MDM∗
c +ODO∗

c +HDH∗
c ,

D∗h = MDM∗
h +ODO∗

h +HDH∗
h ,

(4.3)

where Dj∗

i represents the dimensional diffusivity of species i in phase j, and M ,O,

H are the volume fractions of the metal, oxide and hydride respectively. We also

assume that the effective diffusivities of OH– and H are independent of c, h at

the (small) concentration levels of interest.

Based on the proposed reaction scheme (refer § 1.2.6), we apply the rate law for

aHere ‘pure’ phases mean the pure metal, oxide and hydride phases with (number) concen-

trations given by N∗M , N∗O , N
∗
H respectively (see §§§ 4.2.1.1).
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elementary chemical reactions, also called the mean-field approximationb to write

the reaction rates of the different species as:

r∗c = −2k∗cH c
∗2H∗ , (4.4a)

r∗h = 5k∗cH c
∗2H∗ − 3k∗hMh

∗3M∗ , (4.4b)

r∗H = k∗hM h∗3M∗ − k∗cHc∗2H∗ , (4.4c)

r∗M = −k∗hM h∗3M∗ , (4.4d)

r∗O = k∗cH c
∗2H∗ . (4.4e)

Here, k∗cH and k∗hM represent the rate constants of the elementary reactions that

vary with temperature as defined by the Arrhenius equationc. However, there is

not much information available in the literature on these rate constant values;

we will return to this issue of practically relevant values later in Chapter 5. The

reaction rate r∗i is negative if there is depletion (sink term) and positive if there is

formation (source term) of species i. The coefficients in the reaction (source/sink)

terms arise from the stoichiometry of the elementary reaction steps, where for

example, 2 molecules/ions of OH– react with 1 molecule of UH3 in a reaction

with rate constant k∗cH to produce 5 hydrogen radicals and 1 UO2 molecule.

We assume that the recombination of hydrogen radicals to form hydrogen

gas (H2) occurs only at the material surface and hence is not accounted for in

the bulk reactions. This assumption finds support in the literature (Ao et al.,

2016) as hydrogen is known to exist only in three forms in the oxide (UO2), viz.,

as hydride ion, proton in hydroxide ion or as hydrogen radical. In accordance

with the proposed reaction scheme and for the sake of simplicity, we assume that

hydrogen exists in the form of radicals, the recombination of which can happen

only at the active sites on the oxide surface. Furthermore, we neglect the surface

reaction of water vapour with the oxide lattice (rate constant k∗s in § 1.2.6) as a

simplistic first approach. Also, we neglect the reaction of surface hydroxide ions

with the electrons to form hydrogen gas (rate constant k∗e).

bRefer § 3.1 for a detailed explanation of the mean-field approximation, which has been used

for the dry-air problem.
cThe Arrhenius equation is defined as k∗ = A∗ exp(−E∗a/(R∗gT ∗)), where k∗ is the dimen-

sional rate constant at temperature T ∗ for a reaction with activation energy E∗a , A∗ is the

frequency factor that gives the frequency of collisions, and R∗g is the universal gas constant.
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4.2.1.1 Nondimensionalisation

The pure-phase number concentrations of U, UO2 and UH3 are respectively,

N∗M = 4.8235 · 1028 no. of U atoms/m3 ,

N∗O = 2.4471 · 1028 no. of UO2 molecules/m3 ,

N∗H = 2.7366 · 1028 no. of UH3 molecules/m3 .

(4.5)

The concentrations of the nondiffusing phases are nondimensionalised via

H∗ = N∗H H(z, t) , M∗ = N∗M M(z, t) , O∗ = N∗O O(z, t) . (4.6)

For the diffusing phases, we nondimensionalise using the surface concentration

C∗a of OH–, which is assumed to be known from the external gas state:

c∗ = C∗a c(z, t) , h∗ = C∗a h(z, t) . (4.7)

Now using a reference length scale L∗ref and diffusion coefficientD∗ref , we introduce

further dimensionless quantities:

z∗ = L∗ref z , t∗ =
L∗2ref
D∗ref

t , v∗ =
D∗ref
L∗ref

v(z, t) . (4.8)

The resulting dimensionless form of (4.1) is now

∂c

∂t
+

∂

∂z
(vc) =

∂

∂z

(
Dc

∂c

∂z

)
+ rc , (4.9a)

∂h

∂t
+

∂

∂z
(vh) =

∂

∂z

(
Dh

∂h

∂z

)
+ rh , (4.9b)

∂H

∂t
+

∂

∂z
(vH) = rH , (4.9c)

∂M

∂t
+

∂

∂z
(vM) = rM , (4.9d)

∂O

∂t
+

∂

∂z
(vO) = rO . (4.9e)

Note that the term ‘concentration’ will henceforth be used to refer to the ‘number

concentration’ of the respective species.
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The nondimensional system (4.9) is now subject to source/sink terms of the form:

rc = −2

{
k∗cHC

∗
aN
∗
HL
∗2
ref

D∗ref

}
c2H , (4.9f)

rh = 5

{
k∗cHC

∗
aN
∗
HL
∗2
ref

D∗ref

}
c2H − 3

{
k∗hMC

∗2
a N

∗
ML

∗2
ref

D∗ref

}
h3M , (4.9g)

rH =

{
k∗hMC

∗2
a N

∗
ML

∗2
ref

D∗ref

} (
C∗a
N∗H

)
h3M −

{
k∗cHC

∗
aN
∗
HL
∗2
ref

D∗ref

} (
C∗a
N∗H

)
c2H ,

(4.9h)

rM = −

{
k∗hMC

∗2
a N

∗
ML

∗2
ref

D∗ref

} (
C∗a
N∗M

)
h3M , (4.9i)

rO =

{
k∗cHC

∗
aN
∗
HL
∗2
ref

D∗ref

} (
C∗a
N∗O

)
c2H , (4.9j)

where the bracketed terms are all dimensionless ratios, and we can introduce the

associated dimensionless parameters:

ε =
C∗a
N∗M

, kcH =

{
k∗cHC

∗
aN
∗
HL
∗2
ref

D∗ref

}
, khM =

{
k∗hMC

∗2
a N

∗
ML

∗2
ref

D∗ref

}
. (4.9k)

Here ε is a small parameter in the model which is the ratio of the surface con-

centration of the diffusing species to the concentration of the pure metal phase;

kcH and khM are the nondimensional reaction rate constants of the reactions be-

tween OH– and UH3 (reaction 1), and between U and H (reaction 2) respectively.

These are essentially Damköhler numbers for each reaction, based on the reference

length scale and diffusivity.

With these definitions, (4.9f) - (4.9j) become

rc = −2kcH c
2H , (4.9l)

rh = 5kcH c
2H − 3khM h3M , (4.9m)

rH = ε(khM h3M − kcH c2H)

(
N∗M
N∗H

)
, (4.9n)

rM = −εkhM h3M , (4.9o)

rO = εkcH

(
N∗M
N∗O

)
c2H . (4.9p)
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Since H,M,O are in essence the volume fractions of the nondiffusing phases, we

have H+M +O = 1 and therefore the advection velocity resulting from material

expansion can be determined from the addition of equations (4.9c), (4.9d) and

(4.9e):

∂v

∂z
= εkhMh

3M

(
N∗M
N∗H
− 1

)
+ εkcHc

2H

(
N∗M
N∗O
− N∗M
N∗H

)
. (4.9q)

For ambient conditions we expect ε � 1; that is, we expect the surface con-

centration of the diffusing OH– species (C∗a) to be much less than the pure metal

concentration N∗M . The atmospheric concentration of water vapour is found from

the saturation vapour pressure of water (P ∗s ) at a particular temperature using

the ideal gas law. We use the (dimensional) Arden Buck equation (Buck, 1981)

to calculate the saturation vapour pressure of water P ∗s (in kPa) as a function of

temperature T ∗ (in °C):

P ∗s = 0.61121 kPa exp

[(
18.678− T ∗

234.5 °C

)(
T ∗

257.14 °C + T ∗

)]
. (4.10)

For example, at 22°C, the saturation vapour pressure calculated using (4.10) is

P ∗s = 2.6442 kPa. Therefore at 60% RHd, the water vapour pressure is calculated

to be 1.5865 kPa, for which the concentration of water vapour using the ideal gas

law is given as

n∗

V ∗
=

P ∗

R∗T ∗
=

1.5865 · 103 Pa

8.314 J/mol K · 295 K
= 0.6468 mol/m3 ≈ 11.6 g/m3 . (4.11)

Thus at 22°C and 60% RH, there is approximately 11.6 g/m3 of water vapour in

air, which is equivalent to approximately 0.65 mol/m3 of water vapour. We take

this value to be the atmospheric concentration of pure H2O(v) in our model, as-

suming that the concentration of dry air (i.e. O2, N2) is zero. If we naively assume

that the surface concentration of OH– matches the atmospheric concentration of

water vapour, then a molar density for U of 8 · 104 mol/m3, leads to

ε ≈ 8.13 · 10−6 � 1 . (4.12)

dNote that the percentage of relative humidity is only used to obtain a representative amount

of water vapour under ambient conditions. It should not be assumed that a moist air environ-

ment (water vapour including dry-air/oxygen) has been considered in this model.
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This suggests that, even allowing for more complex adsorption mechanisms, the

relative concentration of OH– may still be much less than unity for ambient

conditions. Hence ε is a small parameter in the model, which can be made use of

whilst numerically solving the system (4.9). Figure 4.1 shows ε as a function of

temperature for increasing (bottom to top) values of relative humiditye. Note that

Figure 4.1 follows the familiar pattern of the Psychrometric Chart widely used

by engineers to analyse the thermodynamic and physical properties of vapour-gas

mixtures.

@
@

@
@

@
@

@
@

@I

Increasing RH

T ∗ (°C)

ε
=
C
∗ a
/N
∗ M

Figure 4.1: Variation of the relative surface concentration of OH–, ε = C∗a/N
∗
M as

a function of temperature and relative humidity calculated using (4.10) and (4.11);
we have assumed the surface concentration of OH– to be equal to the atmospheric
concentration of water vapour. The relative humidity is varied from 0.1 to 1 in steps
of 0.1 (bottom to top).

4.2.2 Model reduction

4.2.2.1 Choice of reference length scale (L∗ref)

As the choice of length scale is arbitrary, we can choose L∗ref to make the rate

constant khM = 1, such that kcH remains as the only rate constant parameter

eAlthough the terminology relative humidity has been retained, it should not be assumed

that dry air (O2,N2, etc.) is present. It has only been used for ease of comparison.
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in the model in addition to the diffusivity parameters. However, this reduction

in the number of parameters by one does not remove C∗a from the problem; C∗a

remains hidden in the other reaction rate constant kcH . The choice of L∗ref that

makes khM = 1 is

L∗ref =

(
D∗ref

k∗hMC
∗2
a N

∗
M

)1
2

, (4.13)

which in turn leads to

kcH =
k∗cHN

∗
H

k∗hMC
∗
aN
∗
M

. (4.14)

4.2.2.2 Slow timescale

We can make use of the multiple time scales occurring in the model to further

reduce the model. Considering ε to be a small parameter in the model, we

introduce a long time scale (or slow-time variable)

τ = εt , (4.15)

such that τ = O(1), and hence

∂

∂t
→ ε

∂

∂τ
. (4.16)

The dimensionless system (4.9) is then transformed to give a nonlinear (moving-

boundary) problem defined by

ε

(
∂c

∂τ
+

∂

∂z
(V c)

)
=

∂

∂z

(
Dc

∂c

∂z

)
− 2kcH c

2H , (4.17a)

ε

(
∂h

∂τ
+

∂

∂z
(V h)

)
=

∂

∂z

(
Dh

∂h

∂z

)
+ 5kcH c

2H − 3khM h3M , (4.17b)

∂H

∂τ
+

∂

∂z
(V H) = (khM h3M − kcH c2H)

(
N∗M
N∗H

)
, (4.17c)

∂M

∂τ
+

∂

∂z
(VM) = −khM h3M , (4.17d)

∂O

∂τ
+

∂

∂z
(V O) = kcH c

2H

(
N∗M
N∗O

)
, (4.17e)

where v = εV (V is the velocity measured on the slow-time scale) and khM can

be set to unity by choice of L∗ref .
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The rescaled velocity is now determined from

∂V

∂z
= khM h3M

(
N∗M
N∗H
− 1

)
+ kcH c

2H

(
N∗M
N∗O
− N∗M
N∗H

)
. (4.17f)

The small parameter ε multiplying the time derivatives in equations (4.17a) and

(4.17b) implies that the diffusion is essentially quasi-steady as ε → 0, i.e. an

O(1) change in the concentration of the diffusing phases (c , h) produces only an

ε change in the concentration of the nondiffusing phases (O ,H ,M). Hence the

model is reduced using the quasi-steady approximation by considering ε = 0 and

is solved using a numerical strategy as detailed in §§ 4.2.3.

4.2.3 Solution strategy for the moving domain

4.2.3.1 Howarth-Dorodnitsyn transformation

We now employ a coordinate transformation that is frequently used in reducing

the compressible flow equations to a simpler form equivalent to that for an incom-

pressible fluid. As was done for the dry-air mixed-phase problem (see §§ 3.1.3),

the Howarth-Dorodnitsyn transformation is used here to fix the moving bound-

aries for ease of application of the numerical scheme.

Similar to that in §§ 3.1.3, we introduce a material coordinate which exists in

the form of

ζ =

∫ z

−z∞
% dz ∈ [0, ζs] , (4.18)

where the quantity %, denoting the mixture concentration nondimensionalised

with respect to the concentration of the metal, is defined as

% = M +O
N∗O
N∗M

+H
N∗H
N∗M

; (4.19)

ζs is the fixed (dimensionless) size of the transformed domain (or material) that

denotes the total number of uranium atoms/ions present in the oxide, hydride

and metal across the whole domain. It is assumed that the expansion of the

material domain is unidirectional (along increasing z coordinate which is from

the metal towards the oxide surface), and therefore we assume that the advection

velocity V = 0 on z = −z∞ that is a bottom truncation present in the metal
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sufficiently far away from the oxide surface.

Transformation rules: Transforming from (z, τ) to (ζ, τ) coordinate system

(cf. transformation rules defined earlier in §§ 3.1.3), we have

∂

∂z
→ ∂ζ

∂z

∂

∂ζ
= %

∂

∂ζ
, (4.20a)

∂

∂τ
→ ∂

∂τ
+
∂ζ

∂τ

∂

∂ζ
=

∂

∂τ
− %V ∂

∂ζ
, (4.20b)

where (4.20b) is defined using the continuity equation (conservation of uranium

atoms), similar to that derived in §§ 3.1.3.

We transform the system (4.17) using the above transformation rules and set

ε = 0 as a quasi-steady approximation for low surface concentrations (C∗a � N∗M),

but retain kcH as an O(1) parameter. This then makes diffusion quasi-steady

which essentially means that at very low concentrations of OH–, reactions take

a ‘long’ time to lead to O(1) changes in the volume fractions (or dimensionless

concentrations) of the three phases (O ,H ,M) in the material. On this long time

scale we can treat diffusion as quasi-steady.

4.2.3.2 Transformed governing equations

In terms of the (material) coordinate ζ, the final problem is now reduced to the

following non-linear fixed-domain version:

0 = %
∂

∂ζ

(
Dc %

∂c

∂ζ

)
− 2kcH c

2H , (4.21a)

0 = %
∂

∂ζ

(
Dh %

∂h

∂ζ

)
+ 5kcH c

2H − 3h3M , (4.21b)

∂H

∂τ
= (h3M − kcH c2H)

(
N∗M
N∗H

)
− %VζH , (4.21c)

∂M

∂τ
= −h3M − %VζM , (4.21d)

∂O

∂τ
= kcH c

2H

(
N∗M
N∗O

)
− %VζO , (4.21e)

%Vζ = h3M

(
N∗M
N∗H
− 1

)
+ kcHc

2H

(
N∗M
N∗O
− N∗M
N∗H

)
, (4.21f)

% = M +O

(
N∗O
N∗M

)
+H

(
N∗H
N∗M

)
, (4.21g)
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Dc = MDM
c +ODO

c +HDH
c , (4.21h)

Dh = MDM
h +ODO

h +HDH
h , (4.21i)

where we solve for the nine unknowns c , h ,H ,M ,O , % , (%Vζ) , Dc and Dh. Here

the variables % , (%Vζ) , Dc and Dh can be trivially eliminated; however we retain

them in the formulation to simplify the resulting numerical scheme. The param-

eters in the model are kcH , DM
c , DH

c , DO
c , DM

h , DH
h and DO

h , whilst khM has been

set to unity. Note that O can instead be obtained from O = 1 − H −M than

solving using the above specified governing equation for O.

4.2.3.3 Initial and boundary conditions

Initial conditions: We can solve (4.21) using arbitrary initial conditions for

(O ,M ,H), but we choose to impose the following smooth initial conditions:

O(τ = 0) =
1

2
(1 + tanh(ζ − (ζs − δO))) ,

M(τ = 0) =
1

2
(1− tanh(ζ − (ζs − δM))) ,

H(τ = 0) = 1−M(τ = 0)−O(τ = 0) ,

(4.22)

in the region ζ ∈ [0, ζs]. These initial conditions represent a slightly pre-oxidised

state with an initial oxide thickness δO and an initial hydride thickness δH =

(δM − δO), and the transition between different phases are considered to be suf-

ficiently smooth. As (4.21a) and (4.21b) are quasi-steady, the initial profiles for

(c , h) are determined by the choices (4.22). Note that a smoothly-varying initial

oxide and hydride layers allow for the initiation of the reaction, based on our pro-

posed reaction scheme § 1.2.6. Absence of an initial hydride layer would result in

the hydroxide ions (OH–) simply diffusing through the material domain without

reacting, whereas an initial oxide layer is more representative of the experimental

conditions.

We cannot impose arbitrary initial conditions for c and h since we have quasi-

steady approximation for the diffusing species, which then prompts us to obtain

initial profiles for the diffusing species (c, h) using a numerical continuation tech-

nique, where the continuation parameter (say, s) is the surface concentration of

the OH– diffusing species. We increment the continuation parameter s starting

from s = 0 and obtain the initial profiles for c and h until the desired boundary
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condition is reached. For s = 0, an initial solution c = h = 0 across the whole

domain is obtained. We increment the continuation parameter by a small value,

say ∆s = 0.1 and find the solution by solving equations (4.21a) and (4.21b)

using a suitable iterative method such as Newton iteration in conjunction with

a finite-difference scheme; this is continued until we reach the desired surface

boundary condition which corresponds to s = 1. The solution obtained at s = 1

will then constitute the initial quasi-steady concentration profiles for (c, h) across

the material domain.

Boundary conditions: We have the nondimensionalised surface boundary

conditions:

c(ζ = ζs, τ) = 1 , h(ζ = ζs, τ) = 0 for τ ≥ 0 . (4.23a)

When sufficiently deep into the sample, we always recover a pure metal phase,

whilst there is no diffusing species:

c(ζ = 0, τ) = 0 , h(ζ = 0, τ) = 0 ,

O(ζ = 0, τ) = 0 , H(ζ = 0, τ) = 0 ,

M(ζ = 0, τ) = 1 , V (ζ = 0, τ) = 0 ,

 for τ ≥ 0 , (4.23b)

representing the far-field boundary conditions. Note that the advection velocity

is zero in the metal.

4.2.3.4 Remapping to the physical coordinate

Having solved in the computational ζ domain, the solution can be remapped to

the physical coordinate system via

z =

∫ ζ

0

1

%
dζ . (4.24)

4.2.3.5 Numerical solution scheme

We numerically solve the transformed system (4.21) subject to the initial and

boundary conditions (4.22) and (4.23) using a combination of Newton iteration

to handle the nonlinearity and a second-order semi-implicit Crank-Nicolson finite-

difference scheme for the time marching, as has been used for the dry-air oxidation
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problem.

The governing equations, boundary and initial conditions are thus converted

into a linear matrix system, wherein we solve for the linear corrections to the

guess values at each time-level (see §§§ 2.2.1.4 for details). The guess values are

updated iteratively until the corrections are below some specified tolerance (say

10−8). The updated solution at a particular time-level then becomes the guess

value for the solution at the next time-level; the process is continued until some

desired time value. In what follows, superscript k denotes the previous time level.

The solution at the current time-level k+1 is decomposed into a guess value plus

a correction as (for example) ck+1 = cg + c̃.

Applying Newton iteration to (4.21a) at the current time-level (k + 1) and

neglecting the higher-order correction terms, we write the equation for c as:

−%2
gDcg

∂2c̃

∂ζ2
−
[
2%gDcg %̃+ %2

gD̃c

] ∂2cg
∂ζ2

−

[
2%g

∂Dcg

∂ζ
%̃+ %2

g

∂D̃c

∂ζ
+
(
Dcg %̃+ %gD̃c

) ∂%g
∂ζ

+ %gDcg

∂%̃

∂ζ

]
∂cg
∂ζ

−
[
%2
g

∂Dcg

∂ζ
+ %gDcg

∂%g
∂ζ

]
∂c̃

∂ζ
+ 2kcH

(
2cgHg c̃+ c2

gH̃
)

= %2
gDcg

∂2cg
∂ζ2

+

[
%2
g

∂Dcg

∂ζ
+ %gDcg

∂%g
∂ζ

]
∂cg
∂ζ
− 2kcH c

2
gHg , (4.25a)

where we apply central differences to approximate the derivatives at each nodal

point (ζj, τ
k+1):

∂2c̃

∂ζ2
≈ (c̃j+1 − 2c̃j + c̃j−1)

(∆ζ)2
, (4.25b)

∂c̃

∂ζ
≈ (c̃j+1 − c̃j−1)

∆ζ
, (4.25c)

and so on; ∆ζ is the spatial step-size of the one-dimensional computational do-

main.
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Similarly, the equation for h given by (4.21b) can be written as:

−%2
gDhg

∂2h̃

∂ζ2
−
[
2%gDhg %̃+ %2

gD̃h

] ∂2hg
∂ζ2

−

[
2%g

∂Dhg

∂ζ
%̃+ %2

g

∂D̃h

∂ζ
+
(
Dhg %̃+ %gD̃h

) ∂%g
∂ζ

+ %gDhg

∂%̃

∂ζ

]
∂hg
∂ζ

−
[
%2
g

∂Dhg

∂ζ
+ %gDhg

∂%g
∂ζ

]
∂h̃

∂ζ
−
[
5kcH

(
c2
gH̃ + 2cgHg c̃

)
− 3

(
h3
gM̃ + 3h2

gMgh̃
)]

= %2
gDhg

∂2hg
∂ζ2

+

[
%2
g

∂Dhg

∂ζ
+ %gDhg

∂%g
∂ζ

]
∂hg
∂ζ

+ 5kcH c
2
gHg − 3h3

gMg ,

(4.25d)

and the equations for H, M, (%Vζ), %, Dc, Dh are respectively,

H̃ − ∆τ

2

[
N∗M
N∗H

{(
h3
gM̃ + 3h2

gMgh̃
)
− kcH

(
c2
gH̃ + 2cgHg c̃

)}
−(%Vζ)gH̃ − ˜(%Vζ)Hg

]
= Hk −Hg

+
∆t

2

[{(
h3
gMg − kcHc2

gHg

) N∗M
N∗H
− (%Vζ)gHg

}
+

{(
h3M − kcHc2H

) N∗M
N∗H
− (%Vζ)H

} ∣∣∣∣k] ,
(4.25e)

M̃ − ∆τ

2

[
−
(
h3
gM̃ + 3h2

gMgh̃
)
− (%Vζ)gM̃ − ˜(%Vζ)Mg

]
= Mk −Mg

+
∆t

2

[{
−h3

gMg − (%Vζ)gMg

}
−
{
h3M + (%Vζ)M

} ∣∣∣∣k] , (4.25f)

˜(%Vζ)−
(
N∗M
N∗H
− 1

)[
h3
gM̃ + 3h2

gMgh̃
]
− kcH

(
N∗M
N∗O
− N∗M
N∗H

)[
c2
gH̃ + 2cghg c̃

]
= −(%Vζ)g +

(
N∗M
N∗H
− 1

)
h3
gMg + kcH

(
N∗M
N∗O
− N∗M
N∗H

)
c2
gHg ,

(4.25g)

%̃− M̃ − N∗O
N∗M

Õ − N∗H
N∗M

H̃ = −%g +Mg +Og
N∗O
N∗M

+Hg
N∗H
N∗M

, (4.25h)
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D̃c −DM
c M̃ −DO

c Õ −DH
c H̃ = −Dcg +DM

c Mg +DO
c Og +DH

c Hg , (4.25i)

D̃h −DM
h M̃ −DO

h Õ −DH
h H̃ = −Dhg +DM

h Mg +DO
hOg +DH

h Hg , (4.25j)

where the Crank-Nicolson scheme is used for time-marching and ∆τ is the time

step used. The equations (4.25) are solved at each of the nodal points in the

one-dimensional computational grid. It should be noted that since the governing

equations for c, h are quasi-steady, the corresponding discretised equations have

been evaluated at just a single time-level (k+1), whereas the discretised governing

equations for M, H involve both k and (k + 1) time-levels.

Now, applying Newton iteration to the boundary conditions, we have

c̃(ζ = ζs, τ) = 1− cg , h̃(ζ = ζs, τ) = −hg
c̃(ζ = 0, τ) = −cg , h̃(ζ = 0, τ) = −hg , Ṽ (ζ = 0, τ) = −Vg
M̃(ζ = 0, τ) = 1−Mg , H̃(ζ = 0, τ) = −Hg ,

 for τ ≥ 0 ,

(4.25k)

and similarly for the initial conditions.

A linear matrix system Ax = B can now be constructed, where x repre-

sents the vector of linear corrections (c̃j , h̃j , H̃j , M̃ j , ( ˜%Vζ)j , %̃j , D̃cj , D̃hj) with

the spatial nodal index, j = 0, 1, . . . , N . The linear system has been solved using

Matlab® version 9.3. The Matlab code has been optimised for speed through

vectorisation, for example, and uses functions specific to sparse matrices such as

sparse and colamd. The latter function has been used to reorder the matrix

A by applying suitable column permutations so that the cost of computing and

applying the L and U factors of the matrix A are cheaper than the traditional

backslash operator (\ or mldivide) in order to obtain the vector x. The com-

putational time taken to run the code on a machine with 16 GB RAM, Intel i7 -

6700 CPU @ 3.4 GHz processor was 3.9 · 104 s for a typical problem with τ up to

105, ∆τ = 0.5 and ∆ζ = 0.15.

4.2.4 Numerical results

Numerical experiments were conducted for different ranges of the diffusivity and

rate constant parameters and the results are reported in this section. The numer-

ical results are obtained by solving the system (4.21) using the solution strategy

detailed in §§ 4.2.3. In order to calculate the oxide and hydride thicknesses based

on our numerical results, we define the location of the centre of the first reaction
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front (i.e. z1(τ)) as the position where the reaction rate,

R1(z, τ) = kcH c
2(z, τ)H(z, τ) (4.26)

is maximised. Similarly, the centre of the second reaction front (i.e. z2(τ)) is

defined as the location where the reaction rate,

R2(z, τ) = h3(z, τ)M(z, τ) (4.27)

is maximised. The (dimensionless) oxide and hydride thicknesses are then calcu-

lated as

∆O = zs(τ)− z1(τ) , ∆H = z1(τ)− z2(τ) (4.28)

respectively, where zs(τ) is the surface location.

Typical spatial concentration (dimensionless) profiles of the diffusing (OH–

(c), H (h)) and the nondiffusing (U (M), UO2 (O) and UH3 (H)) components

at a nondimensional time of τ = 104 are shown in Figure 4.2. The initial surface

is located at z = zs(0) = 0 and it can be seen that zs(τ) > zs(0) (τ = 104 in

Figure 4.2) due to advection/material expansion that result from phase changes.

In Figure 4.2, the transition from hydride to oxide phase occurs at z ≈ −75

and will be referred to as the reaction front 1 or RF1, and the transition from

metal to the intermediate hydride phase occurs at z ≈ −100 henceforth referred

to as the reaction front 2 or RF2. The direction of propagation of the reaction

fronts is into the bulk metal and opposite to that of the surface. Reaction fronts

are transition regions and hence account for the steep concentration gradients of

the nondiffusing phases in these regions. They separate regions of homogeneous

compositions of the nondiffusing phases constituting the ‘diffusion layers’ wherein

diffusion is the dominant physical process, whereas reactions are the dominant

physicochemical process occurring in the reaction fronts. These ‘reaction fronts’

are infinitely thin compared to the ‘diffusion layers’ at large times, and the same is

verified using large-time (τ) asymptotic analysis that will be described in §§ 4.2.5.

Unless otherwise specified, the numerical results presented in this section use an

initial dimensionless oxide thickness of δO = 10 and an initial hydride of δH = 5

in the computational domain.

The choice of diffusivity of H in UH3 (DH
h ) in Figure 4.2 is three orders of
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magnitude smaller than the other diffusivity parameters and is reflective of the

actual diffusivity values that are tabulated in Table 4.1.
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Figure 4.2: Typical dimensionless concentration profiles of the nondiffusing (O, H
and M) and the diffusing (c, h) components at a nondimensional time of τ = 104. The
other dimensionless parameters chosen are: DM

c = DO
c = DH

c = DM
h = DO

h = 1, DH
h =

10−3, kcH = 10, and khM = 1. Here z = 0 represents the initial surface location zs(0).

Initial concentration profiles: Plots of typical initial concentration profiles

of the different species as a function of the diffusivity and rate constant (kcH)

parameter values are shown in Figures 4.4 to 4.7. In all these figures, the initial

oxide surface position is represented as zs(0) = 0 whilst z = −z∞ represents

the (truncated) metal base of the physical domain. Here the normalised (or

nondimensional) concentration profiles across the physical domain are plotted.

It will be seen via the numerical results that only three diffusivity parameters

influence the kinetics of the oxidation process, which will also be verified using

an asymptotic analysis presented in §§ 4.2.5.

The initial conditions depicted in Figures 4.4 to 4.7 represent quasi-steady

state concentration profiles for the diffusing species OH– (concentration c) and

H (concentration h) that have been obtained using numerical continuation tech-

niques described earlier in §§§ 4.2.3.3. It can be seen from Figure 4.4 that the rate
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Table 4.1: Orders of magnitude of the diffusion coefficients (units in m2/s) of OH–,
H and H2 in the different phases (U/UO2/UH3) at 300 K.

Phase
Diffusing species

OH– H H2

U - - 10−15 a

UO2 10−16 b 10−16 c -

UH3 - 10−19 d -

a
Powell and Condon (1973) calculated diffusivity of H2 in U to be

7.1658 · 10−15.

b
Marchetti et al. (2011) calculated the diffusivity of ‘water species’

through the grain boundaries of polycrystalline UO2 to be 2.3·10−16

m2/s.

c
Wheeler (1971);

d
Peretz et al. (1976).

constant kcH significantly influences the peak value of the hydrogen radical (H )

concentration (henceforth referred to as hp), whilst the concentration gradient of

the hydroxyl ions (OH–) across the oxide layer is only slightly influenced. Since

the reaction time scale is much smaller than the diffusion time scale, a higher

reaction rate constant kcH implies that the consumption of OH– to produce H

occurs at a faster rate than the diffusion of the product H , resulting in an in-

crease in hp with an increase in kcH . Similarly in Figure 4.3, it can be seen that

a lower value of H diffusivity in the hydride phase (DH
h ) results in an increase

in the H concentration at the first reaction front (RF1). The diffusivity of H in

the oxide phase (DO
h ), however, has a greater influence on hp than DH

h as shown

in Figure 4.5. The H diffusivity in metal (DM
h ) has an insignificant influence

on the initial hp and is depicted in Figure 4.6; however it can be seen that DM
h

influences the concentration and depth of penetration of H into the metal with a

larger DM
h resulting in a higher H concentration within the metal and vice versa.

As we may expect, a reduction in DO
c reduces the amount of OH– available at

RF1 for the production of H , which is shown in Figure 4.7. Note that the other

rate constant parameter khM has been scaled out of the problem.

Contour plots of concentration: Having discussed the influence of the

diffusivities and the reaction rate constants on the initial concentration profiles,
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Figure 4.3: Initial concentration profiles of the different species across the material
domain for different values of H diffusivity in the hydride phase as given by (a) DH

h =
0.1 and (b) DH

h = 0.001. Other parameters include kcH = 1, Dc = DM
h = DO

h = 1,
δO = 10, δH = 5.
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Figure 4.4: Initial concentration profiles of the different species across the material
domain for different values of the rate constant kcH = 1, 10, 100 and uniform diffu-
sivities (Dc,h = 1) are shown in subfigures (a), (b) and (c). Other parameters include
δO = 10, δH = 5.
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Figure 4.5: Initial concentration profiles of the different species across the material
domain for various diffusivity values of H in the oxide phase as given by (a) DO

h = 0.1,
(b) DO

h = 0.01 and (c) DO
h = 0.001. Other parameters include kcH = 1, Dc = DM

h =
DH
h = 1, δO = 10, δH = 5.
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Figure 4.6: Initial concentration profiles of the different species across the material
domain for various diffusivity values of H in the metal phase as given by (a) DM

h = 1
and (b) DM

h = 0.001. Other parameters include kcH = 1, Dc = DO
h = DH

h = 1,
δO = 10, δH = 5. The coordinates for the h profile are shown to indicate that DM

h has
insignificant influence on the initial profiles of the diffusing species.
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Figure 4.7: Initial concentration profiles of the different species across the material
domain for various diffusivity values of OH– in the oxide phase as given by (a) DO

c = 0.1,
(b) DO

c = 0.01 and (c) DO
c = 0.001. Other parameters include kcH = 1, Dc = DM

h =
DO
h = 1, δO = 10, δH = 5.
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(a) Hydride (H) (b) Metal (M)

(c) Oxide (O) (d) OH– (c)

(e) H (h)

0 0.2 0.4 0.6 0.8 1

Normalised concentration

Figure 4.8: Evolution of the dimensionless concentration of UH3, U, UO2, OH– and H
as denoted by H ,M ,O , c and h respectively, in the z−τ domain up to a dimensionless
time of τ = 104. The initial surface is located at zs(0) = 0. The parameters chosen are:
Dj
i = 1, for i = {c, h}, j = {H,M,O}, kcH = 10, initial thicknesses for oxide, δO = 4

and hydride, δH = 1 in the computational domain.
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we now discuss the evolution of the concentrations of the different species with

time. Figure 4.8 shows contours of c, h, H, M and O in the z − τ domain for

an evolution of the system (4.21) with a rate constant kcH = 10 and effective

diffusivities, Dc,h = 1. Here, the slow-time variable τ is represented along the

horizontal axis and the physical spatial coordinate (z) is represented along the

vertical axis. A relatively slowly growing hydride layer (∝ τ 1/2 at large times;

see §§ 4.2.5) between the oxide and metal layers can be observed in subfigure

4.8a, whilst subfigure 4.8c shows the parabolic (∝ τ 1/2) growth of the oxide layer.

The (downwards) propagating reaction fronts, RF1 and RF2, are clearly visible

in subfigure 4.8a indicating a sharp variation in the concentrations at the fronts.

The reaction front where the metal is converted to hydride (RF2) can be observed

in subfigure 4.8b, whilst subfigure 4.8c shows RF1 where the transition from the

hydride to oxide phase occurs. Subfigures 4.8d and 4.8e both depict constant

fluxes (i.e., a linearly varying spatial concentration profile) of the diffusing species

OH– and H respectively, where a maximum in the concentration of the hydrogen

radicals is proximal to the oxide-metal boundary, and a maximum in c is at the

surface. Note that the surface evolves from its initial position z = 0 = zs(0)

to a higher z value owing to the expansion of the material as the metal (higher

density) is converted to hydride and oxide (lower densities compared to the metal)

(refer Table A.1 for ρ∗M,H,O). Note that the material is allowed to expand freely

only in the ‘upward’ direction as the truncated metal base is considered fixed.

Influence of kcH on the oxide and hydride growth: As one of the rate

constants, khM has been eliminated via our choice of an appropriate reference

length scale, the influence of only the rate constant kcH on the large-time growth-

kinetics will be explored. We consider arbitrary values of kcH in our numerical

experiments, and study the evolution of the corresponding dimensionless oxide

and hydride thicknesses with time. We found that kcH does not have a significant

influence on the overall oxidation kinetics (see Figure 4.9), whilst affecting only

the growth rate of the reaction front between the oxide and hydride phases (RF1)

(see Figure 4.15a). In Figure 4.9, the oxide thickness at any time τ is calculated

from the surface zs(τ) to the location of the maximal reaction rate at the first

reaction front (denoted as z1) where a rapid transition from the hydride to oxide

phase occurs, i.e. ∆O = zs(τ) − z1(τ); and similarly for the calculation of the

hydride thickness, ∆H = z1(τ)− z2(τ) where z2(τ) is the location of the maximal
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reaction rate at the second reaction front. The oxide and hydride thicknesses for

kcH = 1, 10, 100 are shown in Figure 4.9, and the plots showing the evolution of

the oxide thickness are found to overlap for the range of kcH chosen, and similarly

for the hydride thickness.

Dimensionless time (τ = C∗a/N
∗
M t)
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Figure 4.9: Dimensionless oxide and hydride thicknesses over a period of nondimen-
sional time (τ) with initial oxide and hydride thicknesses of δO = 10 and δH = 5
respectively. Three values of the dimensionless reaction rate constant kcH = 1
(blue solid), 10 (red dashed), 100 (green dotted) are shown. The curves for ox-
ide (or hydride) thickness are found to overlap for different values of kcH suggesting
that kcH has negligible influence on the overall kinetics. Other parameters include
DM
c = DO

c = DH
c = DM

h = DO
h = DH

h = 1, khM = 1.

Concentration profiles showing the influence of kcH and DH
h : Fig-

ure 4.10 depicts the concentration profiles at a particular instant in time (τ = 104)

for different values of kcH and DH
h . As previously discussed, it can be observed

that a change in kcH does not substantially influence the overall kinetics (oxide

and hydride thicknesses), whilst it has a profound effect on the width of the re-

action front between the oxide and hydride phases (RF1). An increase in kcH

decreases the width of the first reaction front (RF1) correspondingly, which will
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be further discussed in §§ 4.2.5. However, a decrease in the diffusivity of the hy-

drogen radicals in the hydride phase (DH
h ) reduces the width of the intermediate

hydride layer as less H diffuses to react with the metal, and the same is depicted

in subfigure 4.10(d). A corresponding increase in the concentration of the hydro-

gen radicals in RF1 (h) can be seen with a decreased diffusivity in the hydride.

A smaller DH
h resulting in a thinner intermediate hydride layer is also shown in

Figure 4.11. An elaborate quantitative description of the dependence on diffusiv-

ities will be studied via an asymptotic analysis (see §§ 4.2.5 and Figure 4.18 in

particular).

Influence of the diffusivities: The quantitative dependence of the oxidation

kinetics (predominantly the growth kinetics of the oxide and the hydride layers)

on the diffusivity parameters will be studied in detail using a matched-asymptotic

analysis (see §§ 4.2.5). We have studied the influence of the diffusion coefficients

on the overall kinetics of the oxide and hydride growth through the numerical

simulations. A reference diffusion coefficient of D∗ref = 10−16 m2/s is used in the

simulations; therefore for a typical concentration profile (e.g. Figure 4.2), the

nondimensional diffusion coefficients are DM
c = DO

c = DH
c = DM

h = DO
h = 1 and

DH
h = 10−3 (refer Table 4.1 for observed experimental diffusivity values). There is

some degree of uncertainty in the accuracy of the available diffusion coefficients,

and there is not much data available on the diffusivity values DM∗
c , and DH∗

c .

Through our numerical experiments, we find that DM∗
c and DM∗

h do not have any

influence on the overall kinetics. We also find that DH∗
c does not influence the

oxide growth, however it will be seen in §§§ 4.2.5.5 that for practically relevant

diffusivity values, DH∗
c plays a crucial role in determining the hydride growth

kinetics.

Influence of DO
h : As we may expect, the diffusivity of H in the oxide

phase (DO
h ) only influences the time-evolution of the hydride as it is produced

when H diffuse through an already present UH3 layer to react with the metal,

whilst it does not have any influence on the oxide growth. It can be seen from

Figure 4.12 that an increase in DO
h reduces the hydride thickness, as less H will

be available at RF1 to diffuse through the hydride layer and react with the metal,

and vice-versa.
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(a) kcH = 1, Dc,h = 1. (b) kcH = 10, Dc,h = 1.

(c) kcH = 100, Dc,h = 1.
(d) kcH = 10, DH

h = 0.001, whilst other
diffusivities are equal to 1.

Figure 4.10: Concentration profiles of the different species across the material domain
at τ = 104 for different values of the rate constant kcH = 1, 10, 100 and uniform
diffusivities (Dc,h = 1) are shown in subfigures (a), (b) and (c). Subfigure (d) shows
the profile for kcH = 10 and a substantially lower value of diffusivity, DH

h = 0.001.
Other parameters include δO = 10, δH = 5.
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Dimensionless time, τ = C∗a/N
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Figure 4.11: Evolution of the (dimensionless) thickness of the hydride layer over a
period of nondimensional time (τ) for different values of DH

h . The other parameters
include DM

c = DO
c = DH

c = DM
h = DO

h = 1, kcH = 10, khM = 1 and initial conditions
δH = 1 , δO = 4.
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Figure 4.12: Evolution of the oxide and hydride thicknesses (dimensionless) over a
period of nondimensional time (τ) for different values of the diffusivity of hydrogen
radicals (H ) in the oxide phase, DO

h = 0.1, 0.01. Other parameters include δO = 4,
δH = 1, Dc = DM

h = DH
h = 1, kcH = 1 and khM = 1.
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Figure 4.13: Evolution of the oxide and hydride thicknesses (dimensionless) over a
period of nondimensional time (τ) for different values of the diffusivity of hydroxide
ions (OH–) in the hydride phase DH

c = 1 , 0.1 , 0.01. Other parameters include DM
c =

DO
c = Dh = 1, δO = 4 , δH = 1 and khM = 1.
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Figure 4.14: Evolution of the oxide and hydride thicknesses (dimensionless) over a
period of nondimensional time (τ) for different initial oxide and hydride thicknesses: (i)
δO = 10 , δH = 15 (red), (ii) δO = 2 , δH = 4 (yellow), (iii) δO = 5 , δH = 2.5 (green), (iv)
δO = 10 , δH = 5 (blue). Other parameters include DM

c = DO
c = DH

c = DM
h = DO

h = 1,
DH
h = 10−3, kcH = 10 and khM = 1.
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Influence of DH
c : Figure 4.13 shows the time-evolution of the oxide and

hydride thicknesses for varying hydroxide (OH–) diffusivity in the hydride phase.

It appears from the figure that the diffusivity parameter DH
c has little influence

on the large-time kinetics of both the oxide and hydride growth for the chosen

parameter values.

Effect of the initial conditions: The initial conditions only affect the tran-

sient growth-kinetics and not the long-time behaviour as clearly depicted in Fig-

ure 4.14. Variable initial oxide and hydride thicknesses converge to the same long-

time behaviour. Here, the vertical axis denotes the dimensionless layer thickness

and horizontal axis the time (τ) coordinate.

4.2.4.1 Width of the reaction fronts

Width of RF1: The width of the first reaction front (δ1) is calculated from

the numerical simulations using the second moment of R1(z, τ) defined as (Gálfi

and Rácz, 1988; Polanowski and Koza, 2006)

δ2
1(τ) =

zs(τ)∫
−z∞

(z − z1(τ))2 R1(z, τ)

R1(τ)
dz , (4.29a)

where R1(z, τ) is the local reaction rate in the first reaction front as defined in

(4.26) and R1(τ) represents the total reaction rate of R2 (see § 1.2.6 for details

of R2) defined as

R1(τ) =

zs(τ)∫
−z∞

R1(z, τ) dz . (4.29b)

It should be noted that the width of RF1 is defined in this way as the second

moment of R1(z, τ) captures the variance of the reaction rate at RF1.

The time evolution of the width of the first reaction front for a range of kcH ,

DH
c and DH

h is depicted in Figure 4.15. A decrease in the rate constant kcH widens

the reaction front as the transition from one phase to the other occurs on a wider

spatial scale. This can be speculated as due to the reaction processes occurring

at a slower rate with a decrease in kcH allowing diffusion of the reactants and

products, thereby increasing the width of the reaction front. Similarly, widening
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of the RF1 is observed with an increase in DH
c , but DH

h appears to not have a

significant influence compared to its influence on the hydride width, which is as

expected. Figure 4.15 clearly depicts that kcH and DH
c have a greater influence

on the width of RF1 compared to that of DH
h .

τ

δ 1

(a) Influence of kcH ; Dc,h = 1.
τ

δ 1

(b) Influence of DH
c ; kcH = 10, Dh = 1.

τ

δ 1

(c) Influence of DH
h ; kcH = 10, Dc = DO

h = 1.

Figure 4.15: Influence of the different parameters on the evolution of the width
of RF1 obtained numerically using (4.29). Other parameters include DO

c = 1 (by
choice of nondimensionalisation), DM

c = DO
h = 1, initial oxide and hydride thicknesses,

δO = 10, δH = 5.
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τ

δ 2

(a) Influence of kcH with Dc = Dh = 1.

τ

δ 2

(b) Influence of DH
h with kcH = 10 , Dc = DM

h = DO
h = 1.

Figure 4.16: Plots showing the numerical results for the width of the second reaction
front as a function of time τ for different values of (a) kcH and (b) DH

h . Other param-
eters include initial oxide and hydride thicknesses, δO = 10, δH = 5.

Width of RF2: Similar to (4.29), the width of the second reaction front (δ2)

can be calculated through the second moment of R2(z, τ) defined as

δ2
2(τ) =

zs(τ)∫
−z∞

(z − z2(τ))2 R2(z, τ)

R2(τ)
dz , (4.30)
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where the local reaction rate R2(z, τ) is given by (4.27) and the total reaction

rate of reaction R3 (see § 1.2.6) can be found by integrating the local reaction

rate across the material domain. The maximum of the reaction rates R1(z, τ)

and R2(z, τ) occur within the respective reaction fronts, and the centre of RF2

(i.e. z2(τ)) is considered as the location where (4.27) is maximised.

Figure 4.16 clearly depicts that DH
h and kcH do not have any significant in-

fluence on the kinetics of the reaction between H (hydrogen radicals) and U

(uranium metal) and thence on the width of the second reaction front.

The influence of different parameters on the rate of water vapour corrosion of

uranium has been studied via the numerical experiments. However, the leading-

order quantitative dependencies of the oxidation kinetics on parameters such as

the diffusivities, material densities and the rate constants can be investigated only

via a large-time asymptotic analysis. The motivation for a large-time (τ � 1)

asymptotic analysis is threefold. We hope it will (i) explicitly reveal the dominant

parameters in the model that influence the oxidation kinetics, (ii) provide an ap-

propriate discrete-layer analogue for the mixed-phase model that investigates the

complex physicochemical processes involved in the water-vapour oxidation, and

(iii) serve to validate the numerical results presented in this section. The asymp-

totic formulation for the uranium/water-vapour oxidation is presented in the next

section, whilst a validation of the numerical results against the asymptotic results

will be presented in §§ 4.2.6.

4.2.5 Large-time asymptotic analysis

In this section, we discuss the large-time asymptotics (in the slow-time variable τ)

of the system (4.17). In our multi-component reaction-diffusion-advection system,

we assume a priori that we have three diffusion layers and two reaction fronts,

and look for the large-time scaling behaviours of each of those layers. We label

the diffusion layers (from the surface inwards) as layer A (oxide layer), layer B

(hydride layer) and the bulk (unreacted metal); the reaction fronts between the

diffusion layers are labelled as RF1 and RF2. A schematic of the diffusion layers

and the reaction fronts with asymptotic predictions of their widths (which will

be subsequently obtained) is presented in Figure 4.17.

Reaction fronts are spatially localised regions where there is occurrence of

maximal reaction rates (Bazant and Stone, 2000) of the respective reactions.
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τ

z

z = 0 Layer A: O(τ 1/2)

Layer B: O(τ 1/2)

] RF1: O(τ 1/6)

] RF2: O(τ 1/4)
Bulk Metal

zs(τ)

Figure 4.17: A schematic of the asymptotic regions in the general case of DH
h 6= 0.

The initial surface is located at z = zs(0) = 0 but the medium expands as the reactions
proceed, with the surface identified by z = zs(τ) > 0 for τ > 0. The two reaction fronts
are found at z = z1(τ) (RF1) and z = z2(τ) (RF2) and are separated by a diffusion
layer (layer B) of thickness O(τ1/2). The depicted scaling predictions for the reaction
fronts are obtained later.

As a reminder, in RF1, hydroxide ions (c) react with uranium hydride (H) to

produce uranium dioxide (O) and hydrogen radicals (h); in RF2, regeneration of

the hydride occurs by the reaction of hydrogen radicals with uranium metal (M).

The reaction fronts move into the bulk metal as the reactions proceed to consume

the reactants at the respective fronts. Thus, there is an intricate coupling of the

reaction kinetics in RF2 with that in RF1; that is, whilst the two reactions occur

in spatially isolated regions, the full solution remains coupled.

In addition to the physical processes of diffusion and reaction, there is advec-

tion resulting from material expansion owing to differing densities of the nondif-

fusing phases. This contributes to additional complexity in solving the system.

4.2.5.1 Oxide layer: Diffusion layer A

It has been well-established by several authors (Gálfi and Rácz, 1988; Jiang and

Ebner, 1990; Bazant and Stone, 2000; Koza, 1996) that a ‘diffusion layer’ (where

diffusion dominates over reaction) has a square-root time dependence. Therefore

an overlying oxide which has not yet cracked or spalled has a square-root de-

pendence on time given by ∆O ∼ τ 1/2, where ∆O is the dimensionless width (or

thickness) of the oxide layer. In this layer, we have H ,M � 1, and therefore the

set of governing equations (4.17) (with ε = 0) reduces to

∂

∂z

(
Dc

∂c

∂z

)
= 0 , (4.31a)
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∂

∂z

(
Dh

∂h

∂z

)
= 0 , (4.31b)

O ≈ 1 , (4.31c)

which on integration gives linear concentration profiles for c and h in the oxide

layer (as H ,M � 1 implying that Dc,h are constant). Applying the boundary

condition c = 1 on z = zs(τ), and the asymptotic matching condition c → 0 as

z → z+
1 on (4.31a), we have

c ∼ z − z1(τ)

zs(τ)− z1(τ)
(4.32)

at leading order, where zs(τ) represents the time-varying surface position and

z1(τ) is the position of maximal reaction rate in reaction front 1. Note that we

still work in the physical domain as opposed to the computational domain which

was used for ease of solving the system numerically.

Now, applying the boundary condition h = 0 on z = zs(τ) and the asymptotic

matching condition h = O(1) as z → z+
1 on (4.31b), we obtain

h ∼ A(τ)(zs(τ)− z)) (4.33)

at leading order, where A(τ) = O(τ−1/2). The solutions (4.32) and (4.33) repre-

sent the outer solutions of c and h in the oxide layer.

4.2.5.2 Reaction front 1 (RF1)

We have assumed a priori that the diffusion layers have a different thickness

scaling compared to that of the reaction fronts. We therefore, look for a scaling

of RF1 of the form: δ1 ∼ τα, where δ1 represents the width of the RF1. The

scaling exponent α is such that 0 < α < 1/2, since the oxide is produced from

the hydride over a spatial scale relatively thin compared to the growing oxide

thickness, i.e., the reaction front is spatially localised with respect to the diffusion

layers over large times (Bazant and Stone, 2000).

As the initial surface is located at zs(0) = 0, we can write the location of the

first reaction front as

z1(τ) = −LAτ 1/2 + · · · , (4.34)
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where LA > 0 is defined as the growth-coefficient of the oxide layer (layer A)

from the initial surface location zs(0).

The growth of the free surface due to volume expansion is then expressed as

zs(τ) = Lsτ
1/2 + · · · , (4.35)

where Ls > 0 denotes the growth-coefficient of the free surface (or oxide surface)

from the initial surface location; growth-coefficients are constants multiplying the

time-dependent terms describing the kinetics of surfaces/interfaces and are de-

pendent on the material properties such as the material densities and diffusivities.

The opposite signs of (4.34) and (4.35) signify that the direction of propagation

of the surface is opposite to that of the reaction front. From (4.34) and (4.35),

the definition of width (or thickness) of the oxide layer is

∆O = zs(τ)− z1(τ) ∼ (LA + Ls) τ
1/2 . (4.36)

In this inner region (RF1), we define an inner coordinate

X ≡ (z − z1(τ))

τα
(4.37)

in a moving reference frame, with the transformation rules

∂z → τ−α∂X , ∂zz → τ−2α∂XX ,

∂τ → ∂τ +

{
1

2
LAτ

− 1
2
−α − αXτ−1

}
∂X , (4.38)

as z1(τ) = zs(0)− LAτ 1/2 at leading-order.

The governing equations (4.17) (with ε = 0) in terms of this inner coordinate

are now:

τ−2α ∂

∂X

(
Dc

∂c

∂X

)
= 2kcH c

2H , (4.39a)

τ−2α ∂

∂X

(
Dh

∂h

∂X

)
= −5kcH c

2H + 3h3M , (4.39b)

∂O

∂τ
+

{
1

2
LAτ

− 1
2
−α − αXτ−1

}
∂O

∂X
+ τ−α

∂

∂X
(V O) = kcH c

2H

(
N∗M
N∗O

)
,

(4.39c)
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∂H

∂τ
+

{
1

2
LAτ

− 1
2
−α − αXτ−1

}
∂H

∂X
+ τ−α

∂

∂X
(V H)

= (h3M − kcH c2H)

(
N∗M
N∗H

)
,

(4.39d)

∂M

∂τ
+

{
1

2
LAτ

− 1
2
−α − αXτ−1

}
∂M

∂X
+ τ−α

∂

∂X
(VM) = −h3M , (4.39e)

in RF1.

The transformed equation for advection velocity (4.17f) in this inner region

is now:

τ−α
∂V

∂X
= h3M

(
N∗M
N∗H
− 1

)
+ kcHc

2H

(
N∗M
N∗O
− N∗M
N∗H

)
. (4.39f)

In order to assume the form of the asymptotic expansions for the concentrations

in RF1, we make use of the asymptotic matching principles. In the limit z → z+
1 ,

around the neighbourhood of z1, we can write the outer solution of c (4.32) in

terms of the inner variable X as

c ∼ X

(LA + Ls)
τα−

1
2 , (4.40)

where (LA + Ls) represents the overall growth-coefficient of the oxide layer as

defined in (4.36).

Similarly, if we write the outer solution of h (4.33) in terms of the inner

variable X as z → z+
1 , we obtain

h ∼ A(τ) [zs(τ)− z1(τ)−Xτα] . (4.41)

We know from numerical simulations that the peak hydrogen radical concentra-

tion (hp) remains constant for large times, and hence we take

A(τ) =
hp

LA + Ls
τ−

1
2 , (4.42)

such that the leading-order concentration of h asymptotes to hp in RF1. There-

fore, we can write

h ∼ hp

[
1− X

LA + Ls
τα−

1
2

]
, (4.43)
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from the definition of ∆O (see equation (4.36)).

Therefore, based on (4.40) and (4.43), we suggest asymptotic expansions in

RF1 of the form:

c = τα−
1
2 c̄0(X) + · · · , (4.44a)

h = h̄0(X) + τα−
1
2 h̄1(X) + · · · , (4.44b)

O = Ō0(X) + · · · , (4.44c)

H = H̄0(X) + · · · , (4.44d)

M � 1 , (4.44e)

where c̄0(X), h̄0(X), Ō0(X) and H̄0(X) are the leading-order asymptotically time-

invariant solutions in the inner region RF1, which are functions of the inner vari-

ableX, and h̄1 represents a first-order correction term of h. Hence, the asymptotic

approximation of the advection velocity in RF1 can be written as

V = τ−γV̄0(X) + · · · , (4.45)

which follows from (4.39f) for some γ.

Now, considering a non-trivial balance in (4.39a), we have that

α =
1

6
, (4.46)

which determines γ = 1/2.

The leading-order (O(τ−
2
3 )) governing equations in RF1 are thus,

d

dX

(
D̄c

dc̄0

dX

)
= 2kcH c̄

2
0H̄0 , (4.47a)

d

dX

(
D̄h

dh̄1

dX

)
= −5kcH c̄

2
0H̄0 , (4.47b)

1

2
LA

dH̄0

dX
+

d
(
H̄0V̄0

)
dX

= −kcH c̄2
0H̄0

N∗M
N∗H

, (4.47c)

dV̄0

dX
= kcH c̄

2
0H̄0

(
N∗M
N∗O
− N∗M
N∗H

)
, (4.47d)

whilst the governing equation for h containing the leading-order term yields the
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trivial equation

d

dX

(
D̄h

dh̄0

dX

)
= 0 , (4.47e)

where

D̄c,h(X) = DH
c,hH̄0 +DO

c,h (1− H̄0) , (4.47f)

and DO
c = 1 by our choice of a reference diffusivity (D∗ref = DO∗

c ). Here, Ō0 =

1 − H̄0 provides the oxide fraction which is also consistent with (4.39c). The

neglected quantity M = o(τ−
2
3 ).

The first-order correction term h̄1 is needed to determine the gradient of the

h-profile in the hydride layer, which will then be used to determine the matching

conditions for h in RF2.

Matching (4.47) with layer A (refer (4.40) and (4.43) for outer solutions of c

and h), we obtain

dc̄0

dX
∼ 1

Ls + LA
, h̄0 ∼ hp ,

dh̄1

dX
∼ − hp

Ls + LA
, H̄0 → 0 as X → +∞ ,

(4.48)

and matching with layer B, we have

c̄0 → 0 ,
dh̄1

dX
∼ µ , H̄0 → 1 as X → −∞ , (4.49)

where µ will be determined later. The above matching condition for c̄0 as X →
−∞ essentially implies that the diffusing OH– ions are fully consumed in RF1,

which is consistent with the experimental results of Martin et al. (2016) and the

theoretical reaction front solutions of Bazant and Stone (2000). The matching

conditions for the advection velocity will be found subsequently.

We can solve (4.47) numerically using a shooting method to obtain the concen-

tration profiles within the first reaction front, which will be discussed in § 4.2.7.

However, the full solution within the reaction front is not essential to making

progress with the asymptotic description and to obtain the matching conditions

for the hydride layer. We integrate (4.47) across first reaction front to find µ and

the relevant matching conditions for the advection velocity.
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Integration across RF1: Now, on integrating (4.47a) across RF1, i.e. from

X → −∞ to X → +∞, we obtain[
D̄c

dc̄0

dX

]∞
−∞

= 2 kcH

∫ ∞
−∞

c̄2
0H̄0 dX . (4.50)

Defining

IRF1 ≡ kcH

∫ ∞
−∞

c̄2
0H̄0 dX , (4.51)

and using the matching constraints

c̄0(−∞) = 0 ,

(
dc̄0

dX

) ∣∣∣∣
∞

=
1

(LA + Ls)
, D̄c(+∞) = DO

c = 1 , (4.52)

we obtain

IRF1 =
1

2(LA + Ls)
. (4.53)

Similarly, on integrating (4.47b) across RF1, from X → −∞ to X → +∞, we

obtain

DO
h

(
dh̄1

dX

) ∣∣∣∣
∞
−DH

h

(
dh̄1

dX

) ∣∣∣∣
−∞

= −5

2

(
1

LA + Ls

)
. (4.54)

Substituting (4.48) in the above equation gives

µ =

(
dh̄1

dX

) ∣∣∣∣
−∞

=
1

2DH
h

[
5− 2DO

h hp
(LA + Ls)

]
, (4.55)

thus providing the gradient for the concentration of H (h) in layer B.

Determination of advection velocity: Taking the same approach and

integrating (4.47c), we find that

1

2
LA
[
H̄0

]∞
−∞ +

[
V̄0H̄0

]∞
−∞ = −N

∗
M

N∗H
IRF1 , (4.56)

where H̄0(+∞) = 0 and H̄0(−∞) = 1. The advection velocity ‘ahead’ of the

front (with respect to the direction of propagation of the reaction front) is thus
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determined to be

V̄0|−∞ = −LA
2

+
N∗M
N∗H

1

2 (LA + Ls)
, (4.57)

and the advection velocity ‘behind ’ the front (i.e., as X → +∞) is determined

from the leading-order governing equation for the oxide fraction which is written

from (4.39c):

1

2
LA

dŌ0

dX
+

d
(
Ō0V̄0

)
dX

= kcH c̄
2
0H̄0

N∗M
N∗O

. (4.58)

On integrating the above equation using appropriate matching constraints (where

Ō0 = 1− H̄0), we obtain

V̄0|∞= −LA
2

+
N∗M
N∗O

1

2 (LA + Ls)
. (4.59)

4.2.5.3 Hydride layer: Diffusion layer B

The hydride layer exists as an intermediate layer between the two reaction fronts,

and diffusion dominates over the reaction terms in this region. At sufficiently

large times, the width of the hydride layer scales with time (τ) as

∆H ∼ LBτ
1
2 , (4.60)

where ∆H is the dimensionless width and LB > 0 represents its corresponding

growth-coefficient, the form of which will be derived subsequently. Since there is

quasi-steady diffusion of hydrogen radicals (h) in the hydride layer, the concen-

tration of H remains linear in layer B, which can then be written in terms of the

inner coordinate X as

h = hp +

(
dh̄1

dX

) ∣∣∣∣
−∞

Xτ−
1
3 + · · · . (4.61)

The above equation on matching with RF1 gives

h = hp +
1

DH
h

[
5 − 2hpD

O
h

2 (LA + Ls)

]
(z − z1)τ−

1
2 + · · · . (4.62)
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The second reaction front is found at z = z2(τ), where there is maximal reaction

rate for the formation of uranium hydride (H) from hydrogen radicals (h). This

implies that h = o(1) at z = z2(τ), and therefore (4.62) becomes

0 = hp +
1

DH
h

[
5 − 2hpD

O
h

2 (LA + Ls)

]
[−LB] + · · · , (4.63)

where the leading-order description of z2(τ) given by

z2(τ) = z1(τ)− LBτ 1/2 (4.64)

has been substituted. This results in a leading-order mathematical expression for

the growth-coefficient of the hydride layer given by

LB =
2hp(LA + Ls)D

H
h

5 − 2hpDO
h

. (4.65)

It should be noted that the ∼ τ 1/2 dependence of the hydride thickness is found

based on the reasoning that the asymptotic expansion (4.62) disorders at the

second reaction front found at z = z2(τ).

4.2.5.4 Reaction front 2 (RF2)

At large times, we consider that the width of the second reaction front scales with

time as δ2 ∼ τβ with 0 < β < 1/2.

We define an inner coordinate (i.e., a stretched coordinate) Y in the second

reaction front (RF2):

Y ≡ z − z2(τ)

τβ
, (4.66)

where z2(τ) represents the location of maximal reaction rate in RF2.

In order to obtain matching conditions for the limit Y → +∞ (i.e. behind

RF2), we match with the limit X → −∞ (i.e. ahead of RF1). This approach

is valid since we have quasi-steady diffusion in the hydride layer, as explained

before.

Therefore, in the second inner region (RF2), where z = z2 + Y τβ, the outer
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asymptotic expansion for h (4.62) can be written using the inner variable Y as

h ∼ 1

DH
h

(
5 − 2hpD

O
h

2 (LA + Ls)

)
Y τ−

1
2

+β , (4.67)

which gives insight into the form of the asymptotic expansions in RF2.

We now look for asymptotic expansions in RF2 of the form:

h = ĥ0(Y )τβ−
1
2 + · · · , (4.68a)

M = M̂0(Y ) + · · · , (4.68b)

H = Ĥ0(Y ) + · · · , (4.68c)

c , O � 1 , (4.68d)

where the variables with the hat symbol (◦̂−−−−−––) represent the transformed variables

in RF2 that are functions of the inner variable Y . The transformed advection

velocity in RF2 is assumed to have a power-law scaling of the form:

V = τ−µV̂0(Y ) + . . . . (4.68e)

The transformed governing equations (i.e., transformation from (z, τ) 7→ (Y, τ)

coordinates) for c , h ,H ,M ,O and V in RF2 are given by,

τ−2β ∂

∂Y

(
Dc

∂c

∂Y

)
= 2 kcHc

2H , (4.69a)

τ−2β ∂

∂Y

(
Dh

∂h

∂Y

)
= 3h3M − 5 kcHc

2H , (4.69b)

∂H

∂τ
+

{
1

2
(LA + LB)τ−

1
2
−β − βY τ−1

}
∂H

∂Y
+ τ−β

∂

∂Y
(V H)

=
(
h3M − kcHc2H

) N∗M
N∗H

,

(4.69c)

∂M

∂τ
+

{
1

2
(LA + LB)τ−

1
2
−β − βY τ−1

}
∂M

∂Y
+ τ−β

∂

∂Y
(VM) = −h3M , (4.69d)

∂O

∂τ
+

{
1

2
(LA + LB)τ−

1
2
−β − βY τ−1

}
∂O

∂Y
+ τ−β

∂

∂Y
(V H) = kcHc

2H
N∗M
N∗O

,

(4.69e)

τ−β
∂V

∂Y
= h3M

(
N∗M
N∗H
− 1

)
+ kcHc

2H

(
N∗M
N∗O
− N∗M
N∗H

)
, (4.69f)
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where

Dh = DH
h H +DM

h M +DO
hO . (4.69g)

On substituting the asymptotic expansions (4.68) in (4.69b), a dominant balance

of the diffusion term on the left-hand side with the reaction term 3h3M on the

right-hand side provides

β =
1

4
. (4.70)

Substituting (4.68) in (4.69f), we have the scaling for the advection velocity in

RF2 as µ = 1/2, which is derived from a balance of

τ−β−µ
dV̂0

dY
∼ τ 3β− 3

2 ĥ0

3
M̂0

(
N∗M
N∗H
− 1

)
. (4.71)

The leading-order (O(τ−
3
4 )) governing equations derived by substituting the asymp-

totic expansions (4.68) in (4.69) are now,

d

dY

(
D̂h

dĥ0

dY

)
= 3ĥ3

0M̂0 , (4.72a)

1

2
(LA + LB)

dĤ0

dY
+

d
(
V̂0Ĥ0

)
dY

=
N∗M
N∗H

ĥ3
0M̂0 , (4.72b)

1

2
(LA + LB)

dM̂0

dY
+

d
(
V̂0M̂0

)
dY

= −ĥ3
0M̂0 , (4.72c)

dV̂0

dY
= ĥ0

3
M̂0

(
N∗M
N∗H
− 1

)
, (4.72d)

where

D̂h(Y ) = DH
h Ĥ0 +DM

h (1− Ĥ0) , (4.72e)

with the following constraints obtained from matching with layer B :

dĥ0

dY
∼ 1

DH
h

(
5− 2hpD

O
h

2(Ls + LA)

)
, Ĥ0 → 1 ,

M̂0 → 0 , V̂ 0 → V̂ 0(∞)

 as Y → +∞ . (4.72f)
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Similarly, matching with the unreacted metal yields

ĥ0 → 0 , Ĥ0 → 0 , M̂0 → 1 , V̂ 0 → 0 as Y → −∞ . (4.72g)

The neglected quantities are determined to be c = o(τ−
3
8 ) and O = o(1) from

(4.69). The advection velocity V̂0(∞) as Y → +∞ will be determined as part

of the solution process. We will solve for the concentration profiles in RF2 nu-

merically using a shooting method in § 4.2.7, but for now, we proceed with the

asymptotic solution by integrating across RF2.

Integration across RF2: Integrating (4.72a) from Y → −∞ to Y → +∞,

we obtain [
D̂h

dĥ0

dY

]∞
−∞

= 3

∫ ∞
−∞

ĥ3
0M̂0 dY . (4.73)

If we define

IRF2 ≡
∫ ∞
−∞

ĥ3
0M̂0 dY , (4.74)

and substituting ĥ0(−∞) = 0 in (4.73), we obtain

DH
h

(
dĥ0

dY

)∣∣∣∣∣
Y→+∞

= 3 IRF2 . (4.75)

From the matching constraints, we know that

dĥ0

dY

∣∣∣∣
Y→+∞

=
dh̄0

dX

∣∣∣∣
X→−∞

=

[
5 − 2hpD

O
h

2DH
h (LA + Ls)

]
, (4.76)

from which IRF2 is determined to be

IRF2 =
1

6

(
5 − 2hpD

O
h

(LA + Ls)

)
. (4.77)

Determination of the advection velocity in RF2 : Having obtained an

analytical expression for IRF2, the advection velocity in RF2 can be determined by

integrating the governing equations in the region using the matching constraints.

If we integrate the leading-order governing equation for H (4.72b) across RF2,
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we obtain

1

2
(LA + LB)[Ĥ0]∞−∞ + [V̂0Ĥ0]∞−∞ =

(
N∗M
N∗H

)
IRF2 . (4.78)

As Ĥ(+∞) = 1 and Ĥ(−∞) = 0, we have the leading-order advection velocity

in RF2 in the limit Y → +∞ given by

V̂0|∞ = −1

2
(LA + LB) +

N∗M
N∗H

1

6

(
5 − 2hpD

O
h

LA + Ls

)
. (4.79)

Similarly, from the leading-order governing equation for M , we derive the

advection velocity in the limit Y → −∞ as

V̂0|−∞ = −1

2
(LA + LB) +

1

6

[
5 − 2hpD

O
h

LA + Ls

]
. (4.80)

Since there is no advection in the metal layer, we have V̂0(−∞) = 0, which implies

that

1

2
(LA + LB) =

1

6

(
5 − 2hpD

O
h

LA + Ls

)
. (4.81)

It must be noted that the above expression has been determined by using the

matching constraints M̂(−∞) = 1 and M̂(+∞) = 0.

Now, requiring that the advection velocities match across layer B as the

advection velocity is spatially varying only in the reaction fronts, i.e. since

V̂0(+∞) = V̄0(−∞) (see (4.57) and (4.79)), we have

−(LA + LB)

2
+
N∗M
N∗H

1

6

(
5 − 2hpD

O
h

LA + Ls

)
= −LA

2
+

(
N∗M
N∗H

)
1

2 (LA + Ls)
, (4.82)

which provides an algebraic equation relating the three unknown coefficients LA,

LB, Ls and the peak hydrogen radical concentration hp as a function of the

material densities and the diffusion coefficients.

We now have three algebraic equations (4.65), (4.81) and (4.82) relating the

four unknown quantities. To obtain closure to the system of equations, we have

V̄ (+∞) = Ls/2 derived from (4.35) (as the surface is advected during the material
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expansion), and hence we find that

LA + Ls =

√
N∗M
N∗O

. (4.83)

After some algebraic manipulations performed on (4.65), (4.81), (4.82) and (4.83),

we find that

LA =

√
N∗O
N∗M

+

(
N∗H
N∗M
− 1

)
LB , (4.84)

and

8DO
h hp = 14 + 6

DH
h

DO
h

N∗H
N∗O
−

{(
14 + 6

DH
h

DO
h

N∗H
N∗O

)2

− 160

}1
2

. (4.85)

Substituting the above expression for DO
h hp and (4.83) in (4.65), we obtain the

growth-coefficient of the hydride layer LB, which in turn can be substituted

in (4.84) to obtain LA. The dependence of the unknown growth-coefficients

DH
h /D

O
h

Figure 4.18: Dependence of LA, LB, Ls andDO
h hp on the ratio of diffusivitiesDH

h /D
O
h .

Given LA,B,s the positions of the two reaction fronts and the expanding surface of
the solid are known via (4.34), (4.64) and (4.35) respectively. Here these results use
N∗H/N

∗
O ≈ 1.12 and N∗M/N

∗
H ≈ 1.76, as appropriate for the uranium oxidation example.
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LA , LB , Ls and the peak hydrogen radical concentration hp on the diffusivity

ratios and the material densities is shown in Figure 4.18. The growth-coefficients

LA , LB , Ls determine the positions of the first and second reaction fronts and the

surface respectively, from which the leading-order oxide and hydride thicknesses

can be found. From equations (4.65), (4.83), (4.84) and (4.85), it is evident that

these coefficients depend only on the ratio of the diffusivities DH
h /D

O
h for fixed

material densities (see Table A.1) at leading-order. Furthermore, it is evident

that the reaction rate constant kcH does not have an impact on this leading-order

description of the growth-kinetics and only influences the thickness of the first

reaction front (see § 4.2.4 and Figure 4.10).

There is some degree of uncertainty in the precise values of the diffusion

coefficients, and therefore we will compare the results over a range of parameters

in §§ 4.2.6. However, from the literature, the expectation is for DH
h to be small

relative to DO
c . For DH

h = 10−3 and DO
h = 1, we find

Ls = 0.6921, LA = 0.7119, LB = 0.0009 and hp = 0.9989 , (4.86)

which will be compared with the numerical results in §§ 4.2.6.

4.2.5.5 A special case: DH
h = 0 , DO

h 6= 0:

As DH
h /D

O
h → 0, the leading-order thickness of the hydride layer as defined by

(4.64) tends to zero, i.e. LB → 0 (where LB is given by (4.65)). We therefore

address the limiting behaviour when DH
h = 0 in this subsection. It can be seen

from the governing equations (4.47) that the coupling is only one way between

the quantities (c̄0 , H̄0 , V̄0) and h̄1. The diffusivity ratio DH
h /D

O
h only impacts the

hydrogen radical concentration, and does not influence the quantities (c̄0 , H̄0 , V̄0)

at the first reaction front. Hence we proceed to find h̄1 in the limit when DH
h = 0.

The leading-order governing equation for h in RF1 given by (4.47b) is inte-

grated to yield

D̄h
dh̄1

dX
= −5kcH

∫ X

−∞
c̄2

0H̄0 dX + P , (4.87)

where the constant of integration P is found by matching with layer A (refer
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(4.48) for the matching constraints):

P = D̄h(∞)

(
− hp
Ls + LA

)
+ 5kcH

∫ ∞
−∞

c̄2
0H̄0 dX , (4.88a)

= DO
h

(
− hp
Ls + LA

)
+ 5IRF1 , (4.88b)

where IRF1 is given by (4.53). Substituting for the constant P in (4.87) we find

the gradient of h in RF1:

dh̄1

dX
=

1

D̄h(X)

[
5− 2hpD

O
h

2(Ls + LA)
− 5kcH

∫ X

−∞
c̄2

0H̄0 dX

]
. (4.89)

In the general case where DH
h > 0, D̄h(−∞) = DH

h as H̄0(−∞)→ 1 (see (4.47f)

for D̄h) and the gradient of h remains finite for large negative values of X. How-

ever, in this special case where DH
h = 0, D̄h(X) � 1 as X → −∞ (see equation

(4.47f)) and the gradient of h becomes unbounded for large negative values of X.

We address this limiting behaviour as X → −∞ in order to analyse the factors

that determine the hydride thickness when DH
h = 0.

For large negative values of X in RF1, we seek asymptotic expansions of the form:

c̄(X) = a1X
−µ1 + · · · , (4.90a)

H̄(X) = 1 + a2X
−µ2 + · · · , (4.90b)

V̄ (X) = a4 − a3X
−µ3 + · · · , (4.90c)

where the constants a1 , a2 , a3 , a4 > 0. The leading-order term for H̄(X) has been

determined from the limit as X → −∞ and similarly, the leading-order term for

V̄ (X) (transformed advection velocity in RF1) will be V̄ (−∞). Substituting

the above asymptotic expansions in the leading-order (in τ) governing equations

(4.47) in RF1, we arrive at

d

dX

(
D̄c(X)[−a1µ1X

−µ1−1 + · · · ]
)

= 2kcH(a1X
−µ1 + · · · )2(1 + a2X

−µ2 + · · · ) ,

(4.91a)
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1

2
LA
(
−µ2a2X

−µ2−1 + · · ·
)

+
(
a4 − a3X

−µ3 + · · ·
) (
−a2µ2X

−µ2−1 + · · ·
)

+
(
1 + a2X

−µ2 + · · ·
) (
a3µ3X

−µ3−1 + · · ·
)

= −kcH
N∗M
N∗H

(
a2

1X
−2µ1 + · · ·

) (
1 + a2X

−µ2 + · · ·
)
,

(4.91b)

a3µ3X
−µ3−1 = kcH

(
N∗M
N∗O
− N∗M
N∗H

)(
a2

1X
−2µ1 + · · ·

) (
1 + a2X

−µ2 + · · ·
)
.

(4.91c)

Now, considering a dominant balance of the leading-order terms in (4.91a), we

obtain

DH
c a1µ1(µ1 + 1)X−µ1−2 ∼ 2kcHa

2
1X
−2µ1 , (4.92)

which yields the scaling relation

−µ1 − 2 = −2µ1 , ⇒ µ1 = 2 . (4.93)

Substituting µ1 = 2 in (4.92), we determine the coefficient

a1 =
3DH

c

kcH
. (4.94)

Similarly, from (4.91c), a dominant balance between the different terms

a3µ3X
−µ3−1 ∼ kcHa

2
1

(
N∗M
N∗O
− N∗M
N∗H

)
X−2µ1 , (4.95)

yields the scaling relation

−µ3 − 1 = −2µ1, ⇒ µ3 = 3 , (4.96)

and therefore, we find

a3 =
3(DH

c )2

kcH

(
N∗M
N∗O
− N∗M
N∗H

)
. (4.97)

The leading-order term in the asymptotic expansion for V̄ is a constant a4 as the

advection velocity is constant outside of the reaction fronts. The leading-order
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constant term will then be a4 = V̄ (−∞) (i.e., V̄ = V̄ (−∞) as X → −∞).

Now, a dominant balance of the reaction term with the 1
2
LAH̄X term in the

leading-order governing equation (see equation (4.91b)):

1

2
LA[−µ2a2X

−µ2−1] + (−a2a4)µ2X
−µ2−1 + a3µ3X

−µ3−1 = −kcH
N∗M
N∗H

a2
1X
−2µ1 ,

(4.98)

gives the scaling relation

−µ2 − 1 ∼ −2µ1, ⇒ µ2 = 3 . (4.99)

Now, substituting µ2 = µ3 = 3, a4 = V̄ (−∞) from (4.57), a3 from (4.97) and

Ls +LA =
√
N∗M/N

∗
O in (4.98), and performing some algebraic manipulations we

obtain

a2 = 6
(N∗M/N

∗
O)

3
2

(N∗M/N
∗
H)

(DH
c )2

kcH
. (4.100)

Having obtained the coefficients and exponents in the asymptotic expansions,

we now have

D̄h(X) ∼ DO
h (−a2X

−3) , (4.101)

since DH
h = 0 and a2 is given by (4.100).

Substituting (4.101) in (4.89), we obtain

dh̄1

dX
=

1

DO
h (−a2X−3 + · · · )

{
5− 2hpD

O
h

2(Ls + LA)

− 5kcH

∫ X

−∞
[(a2

1X
−4 + · · · )(1 + a2X

−3 + · · · )] dX + · · ·
}
, (4.102)

which on integration gives the leading-order expression for h̄1 as X → −∞,

h̄1 = − 1

a2DO
h

(
5− 2hpD

O
h

2
√
N∗M/N

∗
O

)
X4

4
+O(X) , (4.103)

where a2 is given by (4.100). If DH
h = 0, then hp = 1/DO

h from (4.85). Therefore,
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we have

h̄1 = −

[
3

8a2DO
h

√
N∗O
N∗M

X4 +O(X)

]
. (4.104)

Now, substituting (4.104) in the large-time (τ) asymptotic expansion for h given

by h = hp + h̄1(X)τ−1/3 + · · · (as given by (4.44b)), we have the corresponding

behaviour of h in RF1 as

h = hp −

[
3

8a2DO
h

√
N∗O
N∗M

X4 +O(X)

]
τ−

1
3 + · · · . (4.105)

It can be seen that the expansion disorders when |X| = O(τ 1/12). In terms of the

outer coordinate (z), the above expression can be written as

h = hp −

[
3

8a2DO
h

√
N∗O
N∗M

(z − z1)4τ−
2
3 + · · ·

]
τ−

1
3 + · · · . (4.106)

At the (leading-order) location of the second reaction front (RF2) z = z2(τ), we

have h = o(1) and therefore, the above expansion reduces to

0 = hp −

[
3

8a2DO
h

√
N∗O
N∗M

(z2 − z1)4τ−
2
3 + · · ·

]
τ−

1
3 + · · · , (4.107)

⇒ 0 = hp −

[
3

8a2DO
h

√
N∗O
N∗M

L4
B τ

4βτ−1

]
+ · · · , (4.108)

wherein the large-time prediction of the hydride thickness is given by (z1(τ) −
z2(τ)) ∼ LBτ

β. The above expansion disorders at z = z2(τ), which results in the

scaling relation

4β − 1 = 0, ⇒ β =
1

4
. (4.109)

The large-time prediction for the hydride growth is thus described by

LB =

(
8hpa2D

O
h

3

√
N∗M
N∗O

) 1
4

, (4.110)



180 CHAPTER 4. EARLY-STAGE CORROSION IN WATER VAPOUR

which on substituting hp = 1/DO
h and a2 from (4.100) becomes

LB = 2

√
N∗M/N

∗
O

(N∗M/N
∗
H)

1
4

(DH
c )

1
2

(kcH)
1
4

. (4.111)

Thus the thickness of the intermediate hydride layer is described by ∆H =

(z1(τ) − z2(τ)) ∼ LBτ
1/4 resulting in ∆H = O((kcH)−

1
4 τ

1
4 ), whereas we found

the intermediate hydride thickness to be O(DH
h τ

1/2) when DH
h > 0. Neverthe-

less, there is asymptotic scale separation even when DH
h = 0 and the two reaction

fronts remain spatially isolated. It should be noted that since µi in (4.90) are

found to be integer-valued, it is appropriate to have considered asymptotic ex-

pansions in terms of X instead of |X|.

4.2.6 Comparison of the asymptotic solution with the nu-

merical results

In this section, we compare the numerical results obtained by solving the system

(4.21) with the asymptotic solution presented in §§ 4.2.5, thereby validating our

results. To begin with, we note that the reaction front solutions to (4.47) and

(4.72) are invariant under the translations X → X + X1 and Y → Y + Y1

respectively, where X1 , Y1 are higher-order corrections to the locations of the

reaction fronts. In order to compare the numerical results with the leading-order

asymptotic predictions, we define the centre of reaction fronts I (z1(τ)) and II

(z2(τ)) as the locations where (4.26) and (4.27) are respectively maximised. To

write (4.26) and (4.27) in terms of the reaction front coordinates X and Y , we

define equivalent expressions for R̄1(X) using (c̄0 , H̄0) and similarly for R̂2(Y )

using (ĥ0 , M̂0):

R̄1(X) = kcH c̄
2
0(X)H̄0(X) , (4.112a)

R̂2(Y ) = ĥ3
0(Y )M̂0(Y ) . (4.112b)

Figure 4.19 shows a comparison of the numerical results for the oxide growth-

coefficient ((zs(τ)−z1(τ)) τ−1/2) with the large-time asymptotic prediction (LA+

Ls) for different values of the rate constant kcH and diffusivities (DO
h , D

H
h ). It

was seen earlier through numerical simulations (see § 4.2.4) that only three

diffusivity parameters affected the leading-order oxidation kinetics (albeit mostly
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(b) Influence of DO
h ;

kcH = 1, Dc = DH
h = 1.
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(c) Influence of DH
h ; kcH = 1,

Dc = DO
h = 1.

Figure 4.19: A comparison of the numerical solution for the oxide growth-coefficient,
(zs(τ) − z1(τ))τ−1/2 obtained by solving (4.21) with the large-time (τ) asymptotic
prediction (LA+Ls). The influence of kcH , D

O
h , D

H
h on the oxide growth-coefficient has

been plotted. Here the black solid lines represent the asymptotic prediction (LA +Ls).
The material densities are given in Table A.1. Other parameters include DO

c = 1
(by choice of nondimensionalisation), DM

h = 1 and initial oxide, δO = 4 and hydride
thickness, δH = 1 for the numerical results.
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the hydride growth) qualitatively, viz., DO
c , D

O
h , D

H
h and we have set DO

c = 1

by virtue of the nondimensionalisation. The numerical results tend towards the

predicted asymptotic value given by LA + Ls =
√
N∗M/N

∗
O (as derived in (4.83))

at large times for varying values of kcH , D
O
h , D

H
h . The leading-order asymptotic

prediction depends only on the material densities and hence remains constant

for the different diffusivity and rate constant parameters. The numerical results

were obtained by solving the system (4.21) via the solution scheme described in

§§ 4.2.3.

Comparison between the numerical solution and the leading-order asymptotic

prediction (given by ∆O ∼ (Ls + LA)τ 1/2) for the oxide thickness is shown in

Figure 4.20 for varying values of the initial oxide and hydride thicknesses. From

the figure, it is observed that the full numerical solution agrees remarkably well

with the leading-order asymptotic solution for a range of initial parameter values.

τ

∆
O

=
z s

(τ
)
−
z 1

(τ
)

Figure 4.20: A comparison of the numerical solution for the oxide thickness (∆O =
zs(τ) − z1(τ)) obtained by solving the system (4.21) with the large-τ asymptotic pre-
diction (LA+Ls)τ

1/2 for various initial oxide (δO) and hydride (δH) thicknesses. Other
parameters include: kcH = 10 , Dc = 1 , DO

h = DM
h = 1 , DH

h = 10−3.

We now compare the numerical and asymptotic solutions for the hydride

growth-coefficient for a range of diffusivity, rate constant and initial parameter
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Figure 4.21: A comparison of the numerical solution for the hydride growth coefficient
obtained by solving (4.21) with the large-τ asymptotic prediction for different values of
the H diffusivity ratio DH

h /D
O
h , rate constant kcH and initial parameters δO , δH . Here

the black solid and dashed lines represent the asymptotic predictions for the hydride-
coefficient, LB (see (4.65)) when DH

h /D
O
h = 0.1 and DH

h /D
O
h = 1 respectively. Other

parameters include Dc = DH
h = DM

h = 1, N∗H/N
∗
O ≈ 1.12 and N∗M/N

∗
H ≈ 1.76.

values as shown in Figure 4.21. The numerical solution for the hydride growth-

coefficient is calculated as (z1(τ) − z2(τ))τ−1/2, where z1(τ) and z2(τ) are the

locations of the centres of the first and second reaction fronts respectively, whilst

the leading-order asymptotic prediction for the hydride growth-coefficient is given

by LB (see equation (4.65)). Note that the comparison is only made for DH
h > 0

in this figure on account of the asymptotic structure for DH
h > 0 being different

from that for DH
h = 0 as already discussed in §§§ 4.2.5.5. It can be observed

from the figure that for smaller DH
h /D

O
h values, the numerical solution takes a

much longer time (τ) to agree with the asymptotic prediction. This may be due

to the higher-order correction terms becoming comparable in magnitude to the

leading-order term (O(τ 1/2)); therefore the leading-order solution alone does not

capture the behaviour of the full numerical problem. The leading-order asymp-

totic coefficient for the hydride thickness (LB) varies as 0.3859 , 0.0796 , 0.0092

and 9.34 · 10−4 for DH
h /D

O
h = 1 , 0.1 , 0.01 , 0.001 (LB is given by (4.65)). As
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an example, for DH
h /D

O
h = 0.001, if the coefficient of the first-order correction

term (O(τ 1/4)) is of the order of magnitude 100 (say), then we require τ � 1012

for the leading-order asymptotics (O(τ 1/2)) to capture the behaviour of the full

problem. In addition, as already noted, the rate constant kcH and the initial pa-

rameters do not affect the leading-order kinetics, which will be further confirmed

in Figure 4.22 and Figure 4.23 respectively.

τ

∆
H

=
z 1

(τ
)
−
z 2

(τ
)

Figure 4.22: A comparison of the numerical solution for the hydride thickness,
∆H = z1(τ) − z2(τ) obtained by solving the system (4.21) with the large-τ asymp-
totic prediction LBτ

1/2 (where LB is given by (4.65)) for different rate constant values:
kcH = 1 (blue solid), kcH = 10 (orange dash-dotted), kcH = 100 (green dashed). Other
parameters include Dc = Dh = 1, δO = 10 and δH = 5.

Figure 4.22 demonstrates that the rate constant kcH does not have any sig-

nificant influence on the leading-order oxidation kinetics. The hydride thickness

is plotted against time (τ) for kcH = 1 , 10 , 100. The full numerical solution is

consistent with the leading-order asymptotic solution.

The hydride growth over time for different initial parameters and DH
h = 0.001

is plotted in Figure 4.23a. Here, the numerical solution does not agree with

the leading-order asymptotic prediction (LBτ
1/2 for DH

h > 0) at τ = 104 as the

leading-order coefficient is found to be very small (LB = 9.34 · 10−4 for DH
h =

0.001) and any hope of recovering this behaviour would require τ � 1012 for the
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(a) For DH
h = 0.001 , kcH = 10.

τ

∆
H

=
z 1

(τ
)
−
z 2
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(b) For DH
h = 1 , kcH = 1.

Figure 4.23: A comparison of the numerical solution for the hydride thickness,
∆H = z1(τ) − z2(τ) obtained by solving the system (4.21) with the large-τ asymp-
totic prediction LBτ

1/2 for various initial oxide (δO) and hydride (δH) thicknesses and
a H diffusivity in UH3 of (a) DH

h = 0.001, (b) DH
h = 1 . Other parameters include:

Dc = 1 , DO
h = DM

h = 1 .
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τ

δ 1
/(
τ

1
/
6
)

Figure 4.24: The numerical solution for the width of RF1 (δ1) approaches the asymp-
totic prediction, δ1 ∼ τ1/6 at large times. Here we show that the rescaled width δ1/τ

1/6

approaches a constant value at a large τ for different kcH values. Other parame-
ters include uniform diffusivities Dc = Dh = 1, initial oxide and hydride thicknesses,
δO = 10, δH = 5.

τ

δ 2
/(
τ

1
/
4
)

Figure 4.25: The numerical solution for the width of the RF2 (δ2) approaches the
asymptotic prediction, δ2 ∼ τ1/4 at large times. Here we show that the rescaled width
δ2/τ

1/4 approaches a constant value at a large τ for various values of DH
h . Other pa-

rameters include kcH = 10, Dc = DO
h = DM

h = 1, initial oxide and hydride thicknesses,
δO = 10, δH = 5.
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numerical solution to be consistent with the leading-order prediction. However,

the numerical result for the hydride width agrees with the asymptotic prediction

for the limiting case wherein DH
h = 0 (see §§§ 4.2.5.5 for the derivation of this

limiting case). For DH
h = 1 as shown in Figure 4.23b, the numerical solution

agrees with the leading-order asymptotic result (LBτ
1/2 with LB = 0.3859) for

various initial parameters.

The numerical solution for the width of RF1 (see § 4.2.4.1) agrees with the

asymptotic scaling δ1 ∼ τ 1/6 as shown in Figure 4.24, where δ1/τ
1/6 tends to a

constant value at large times. Similarly, for the width of RF2, δ2 ∼ τ 1/4 and

therefore δ2/τ
1/4 tends to a constant value at large times, which is depicted in

Figure 4.25.

4.2.7 Determination of concentration profiles across the

reaction fronts

Concentration profiles across RF1: Having solved for the unknown growth-

coefficients and parameters involved in the oxidation kinetics of uranium via

an asymptotic analysis, we now numerically solve for the concentration profiles

within the reaction fronts using a shooting method.

In order to eliminate the rate constant kcH , the governing equations (4.47) in

RF1 are rescaled via the substitutions

X → k
− 1

3
cHX, c̄0 → k

− 1
3

cH c̄0, h̄1 → k
− 1

3
cH h̄1, (4.113)

to give the nonlinear boundary value problem:

∂D̄c

∂X

∂c̄0

∂X
+ D̄c

∂2c̄0

∂X2
= 2c̄2

0H̄0 , (4.114a)

∂D̄h

∂X

∂h̄1

∂X
+ D̄h

∂2h̄1

∂X2
= −5c̄2

0H̄0 , (4.114b)

1

2
LA

∂H̄0

∂X
+
∂
(
H̄0V̄0

)
∂X

= −c̄2
0H̄0

N∗M
N∗H

, (4.114c)

∂V̄0

∂X
= c̄2

0H̄0

(
N∗M
N∗O
− N∗M
N∗H

)
, (4.114d)
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subject to the matching boundary conditions:

c̄0(−∞) = 0,
∂c̄0

∂X

∣∣∣∣
∞

=
1

Ls + LA
,

∂h̄1

∂X

∣∣∣∣
∞

= − hp
(LA + Ls)

,
∂h̄1

∂X

∣∣∣∣
−∞

=
1

2DH
h

[
5− 2DO

h hp
LA + Ls

]
, (4.114e)

H̄0(+∞) = 0, H̄0(−∞) = 1 ,

where DO
c = 1 (by nondimensionalisation) and the boundary conditions for V̄0

given by (4.57) and (4.59); whilst we require only one boundary condition each

for V̄0 and H̄0, the other boundary condition will be automatically satisfied. Here,

the nondimensional diffusion coefficient D̄i in RF1 can be calculated using the

expression

D̄i = (1− H̄0)DO
i + H̄0D

H
i , (4.115)

where species i = {c, h}.

We first solve the coupled governing equations (4.114a), (4.114c) and (4.114d)

for c̄0, H̄0 and V̄0 in RF1 via a shooting method in Matlab using the built-in

functions ode15i and fzero. Here, ∂c̄0/∂X is taken as a new variable in or-

der to reduce the system of equations (4.114a), (4.114c) and (4.114d) to first-

order ordinary differential equations. We iterate on the boundary condition

(∂c̄0/∂X)|X→−∞ with an initial guess value of (∂c̄0/∂X)|X→−∞ = 0 until we

satisfy the boundary condition (∂c̄0/∂X)|X→∞ = 1/(LA + Ls). The converged

value using Newton-Raphson method is (∂c̄0/∂X)|X→−∞ = 7.7165 ·10−5 with the

maximum reaction rates and leading-order coefficients for the OH– concentration

at z = z1(τ) (or X = 0) tabulated in Table 4.2 for different kcH . We then solve

for h̄1 using (4.114b) from the solution obtained. The domain truncation in the

numerical simulation is taken to be X∞ = 30.

Figure 4.26a depicts the time-evolution of the concentration of the OH– diffus-

ing species at the centre of the first reaction front for kcH = 1 , 10 , 100. The figure

shows good agreement between the full numerical solution obtained by solving

(4.21) and the large-τ asymptotic solution.

Figure 4.27 shows a comparison of the numerical and the asymptotic solutions

for the concentration of the OH– diffusing species and the UO2 phase across the

first reaction front; consistency between the numerical and asymptotic solutions
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Table 4.2: Values of the leading-order coefficient for OH– concentration at z1 and
the maximum reaction rate R1 for different kcH obtained by solving (4.47) numerically
using a shooting method. Other parameters include Dc = Dh = 1 and a domain
truncation of X∞ = 30 taken for the numerical simulation.

kcH c̄0(X = 0) Max. R1

1 0.7003 0.1527

10 0.3250 0.3291

100 0.1509 0.7090

can be observed.

Figure 4.28 shows a comparison of the full numerical and the asymptotic

solutions for the concentration of UO2, the leading-order coefficients for the

advection velocity and the reaction rate R1 across the first reaction front for

kcH = 1 , 10 , 100. The maximum reaction rate is found to increase with an in-

crease in kcH as we may expect. The asymptotic scaling laws for the advection

velocity (V ∼ τ−1/2 V̄0(X)) and the reaction rate (R1 ∼ τ−2/3kcH c̄
2
0H̄0) are con-

sistent with the full numerical solution.

Concentration profiles across RF2: In reaction front 2 (RF2), we similarly

solve for the concentration profiles of the diffusing (h) and nondiffusing (H,M)

species. The leading order governing equations are given by (4.72) with khM = 1.

The leading order advection velocity in RF2 can be determined from

∂V̂0

∂Y
= ĥ3

0M̂0

(
N∗M
N∗H
− 1

)
. (4.116)

We now solve (4.72) using a shooting method. Figure 4.26b shows a comparison

between the full numerical solution and the asymptotic prediction for the time-

evolution of the concentration of the H diffusing species at the centre of the

second reaction front (i.e., at z = z2(τ)). The numerical solution is consistent

with the asymptotic scaling law h ∼ τ−1/4ĥ0(Y ). Similarly, a good agreement

between the numerical and the asymptotic solutions can be observed for the

concentrations of H and U across RF2 that are plotted in Figure 4.29. The

asymptotic scaling laws for the reaction rate and the advection velocity across

RF2 are verified in Figure 4.30.
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τ

c(
z

=
z 1

(τ
))

(a) Time evolution of c at z = z1(τ).

τ

h
(z

=
z 2

(τ
))

(b) Time evolution of h at z = z2(τ).

Figure 4.26: Comparison of the numerical and asymptotic (red dashed-dotted lines)
solutions for the time-evolution of the concentration of the diffusing species OH– and H
at the centre of the respective reaction fronts. The asymptotic scaling for c(z = z1(τ)) ∼
c̄0 τ

−1/3 where c̄0(X = 0) = 0.7003 , 0.3250 , 0.1509 respectively for kcH = 1 , 10 , 100 and
a domain truncation of X∞ = 30 in the numerical simulation; the asymptotic scaling for
h(z = z2(τ)) ∼ ĥ0(Y = 0) τ−1/4 where ĥ0(Y = 0) = 1.1543 with a domain truncation
of Y∞ = 30 in the numerical simulation. Here X = 0 and Y = 0 are centres of the
respective reaction fronts where (4.26) and (4.27) are maximised. Other parameters
include Dc = Dh = 1; initial oxide and hydride thicknesses, δO = 10, δH = 5 for the
numerical results.
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X

c

(a) Concentration of OH– within RF1.

X

O

(b) Concentration of UO2 within RF1.

Figure 4.27: A comparison of the numerical and asymptotic (red dashed-dotted lines)
solutions for the concentration of the diffusing species OH– and the oxide (UO2) phase
within the first reaction front for kcH = 1 , 10 , 100. Other parameters include Dc =
Dh = 1; initial oxide and hydride thicknesses, δO = 10, δH = 5 for the numerical
results.
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X
(a) kcH = 1 (caption overleaf).

X
(b) kcH = 10 (caption overleaf).
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X
(c) kcH = 100.

Figure 4.28: A comparison of the numerical and asymptotic solutions for the concen-
tration of UO2, and the quantities V τ1/2 (V being the advection velocity),R1τ

2/3 across
RF1. Consistency between the full numerical solution and the asymptotic scaling laws
can be observed (the leading-order asymptotic coefficients are given by V̄0(X) ∼ V τ1/2

and R̄0(X) ∼ R1τ
2/3 for the advection velocity and reaction rate). Other parameters

include Dc = Dh = 1, initial oxide and hydride thicknesses; δO = 10, δH = 5 for the
numerical results.

Y

h

(a) Concentration of H across RF2.
Y

M

(b) Concentration of U across RF2.

Figure 4.29: A comparison of the numerical and asymptotic (red dashed-dotted lines)
solutions for the concentrations of the diffusing species H and the metal U across the
second reaction front. The reaction rate constant kcH has no influence on the reaction
kinetics in RF2. Other parameters include Dc = Dh = 1; initial oxide and hydride
thicknesses, δO = 10, δH = 5 (for the numerical results).
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Y

Figure 4.30: A comparison of the numerical and asymptotic solutions for the con-
centration of UH3, and the quantities V τ1/2, R2τ

3/4 across RF2. Consistency be-
tween the full numerical solution and the asymptotic scaling laws can be observed (the
leading-order asymptotic coefficients are given by V̂0(Y ) ∼ V τ1/2 and R̂0(Y ) ∼ R2τ

3/4

for the advection velocity and reaction rate). Other parameters include Dc,h = 1;
δO = 10 , δH = 5 for the numerical results.
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4.3 Discussion

We have formulated a one-dimensional reaction-advection-diffusion (RAD) model

for the early-stage corrosion of uranium in pure water vapour. A distinguishing

feature of the diffuse-interface/mixed-phase model compared to the Stefan model

is the presence of (propagating) reaction fronts, which are spatially localised

regions where transition from one (nondiffusing) phase to another occurs. The

material advects owing to volumetric changes that result from phase transitions

with a spatially and time-varying advection velocity; at any particular time, the

advection velocity is however constant in each of the homogeneous phases outside

of the reaction fronts. The reaction terms in the governing equations are written

using the “mean-field approximation” (also called the rate law) in accordance

with the proposed reaction scheme given in § 1.2.6. Note that the locations of

maximum reaction rates of reactions R2 and R3 define the centres of respective

fronts.

We have a small parameter ε = C∗a/N
∗
M � 1 appearing in the model which

has allowed us to make the quasi-steady approximation in order to further reduce

the model. This gives quasi-steady diffusion of OH– and H , whilst time deriva-

tives still appear in the governing equations for the nondiffusing phases (U, UO2

and UH3) (see §§§ 4.2.2.2). A solution strategy for the moving domain has been

implemented through the Howarth-Dorodnitsyn transformation for the numerical

simulations. In addition to solving the system numerically, we have tackled the

problem using a large-time asymptotic analysis and identified four main asymp-

totic regions consisting of two diffusion layers and two reaction fronts. The kinetic

behaviour of these four regions has been described by analytical expressions that

indicate their dominant parameter dependencies.

We have found that the locations of the oxide and hydride layers (in the

asymptotic large-time limit) are dominated by the diffusivity ratio DH
h /D

O
h . The

large-time (nondimensional) oxide thickness is described by ∆O = (LA + Ls)τ
1/2

with LA + Ls =
√
N∗M/N

∗
O, whilst the hydride thickness ∆H = LBτ

1/2 with

LB = 2hp(LA + Ls)D
H
h /(5 − 2hpD

O
h ) at leading order (for DH

h = O(1); see

Figure 4.23). The leading-order thickness of the hydride layer is thus a function

of DH
h /D

O
h . Note that the reference diffusivity D∗ref is taken to be the diffusivity

of OH– in UO2; hence DO
c = 1 and does not appear as a parameter in our

nondimensional asymptotic results.

The rate constant kcH has been found to have little influence on the overall
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leading-order kinetics (note that khM = 1 by choice of a suitable reaction length

scale). The influence of kcH has only been on the solutions within the first reaction

front (RF1), and does not affect the long-term evolution of the oxide and hydride

growth. The widths of the first and second reaction fronts have been found to be

δ1 ∼ τ 1/6 and δ2 ∼ τ 1/4 respectively.

For DH
h � 1, however, the asymptotic prediction for the hydride thickness

is ∆H ∼ LBτ
1/4 with LB = 2

√
N∗M/N

∗
O(DH

c )1/2/((N∗M/N
∗
H)1/4k

1/4
cH ); that is, the

leading-order hydride thickness is dependent on the rate constant kcH . For prac-

tical parameter values, the diffusivity of H in UH3 is at least 103 times smaller

than D∗ref and therefore the expected observable hydride thickness in this regime

is ∆H = O(τ 1/4).

A discussion of the dimensional results for the oxidation kinetics of uranium

in water vapour, and its importance and relevance in an industrial setting will be

presented in Chapter 6.



Chapter 5

Late-stage corrosion of uranium

by water vapour

The material in this chapter is currently being written up for publication that

is titled, “Hydride prediction during late-stage oxidation of uranium in a water-

vapour environment” and is co-authored with R.E. Hewitt and P.D.D. Monks.

The ensemble of 250 simulations (see for e.g. Figure 5.4) was performed by R.E.

Hewitt and the table of diffusivity parameter values (see Table 5.2) was calculated

by P.D.D. Monks.

5.1 Introduction

There is sufficient empirical evidence (see for e.g. Baker, Less, and Orman,

1966a; Harker, 2006; Banos and Scott, 2020) that suggests a linear regime in

the water-vapour corrosion of uranium after cracking and spallation of the sur-

face oxide. A porous oxide layer results when the surface oxide breaks away due

to a build-up of internal stresses caused by the difference in densities of the metal

(ρ∗M = 19.06 g/cm3) and oxide (ρ∗O = 10.97 g/cm3). The formation of low-density

hydride from metal between the oxide and metal phases also contributes to the

internal stresses within the oxide. This porous oxide layer allows rapid diffusion

of the water vapour molecules, the dissociation of which occurs at the surface of

a coherent (or adherent) oxide layer beneath the porous layer. The diffusion of

OH– through this adherent oxide layer will then constitute the rate-determining

step. Experiments indicate that this adherent oxide layer has a constant thick-

ness which depends on temperature and the material properties. In what follows,

197
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we will model diffusion through this adherent oxide layer, where its thickness is

considered as a parameter in our model.

In this work, we follow the reaction scheme outlined in § 1.2.6, which proceeds

with the following elementary steps within the material:

UH3 + 2 OH– k∗cH
UO2 + 5 H + 2 e– , (5.1a)

U + 3 H
k∗hM

UH3 , (5.1b)

where chemical state symbols have been omitted for simplicity. A surface reaction

scheme that links with the reactants and products of (5.1) is

2 H2O + 2 O2–
l 2 OH–

l + 2 OH– , (5.2a)

2 e– + 2 OH–
l 2 O2–

l + H2 , (5.2b)

2 H H2 , (5.2c)

where the subscript l refers to lattice-bound species. The overall reaction is

therefore

U(s) + 2 H2O(g) UO2(s) + 2 H2(g) . (5.3)

5.1.1 The RAD model

We begin from the one-dimensional reaction-advection-diffusion (RAD) model

(4.1) given in §§ 4.2.1:

∂c∗

∂t∗
+

∂

∂z∗
(v∗c∗) =

∂

∂z∗

(
D∗c

∂c∗

∂z∗

)
+ r∗c , (5.4a)

∂h∗

∂t∗
+

∂

∂z∗
(v∗h∗) =

∂

∂z∗

(
D∗h

∂h∗

∂z∗

)
+ r∗h , (5.4b)

∂O∗

∂t∗
+

∂

∂z∗
(v∗O∗) = r∗O , (5.4c)

∂H∗

∂t∗
+

∂

∂z∗
(v∗H∗) = r∗H , (5.4d)

∂M∗

∂t∗
+

∂

∂z∗
(v∗M∗) = r∗M , (5.4e)

Here r∗c,h,H,M,O define the reaction rate densities and v∗ is a spatially-varying

advection velocity induced by density reductions during the transitions from U
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to UH3 and then UO2. The concentrations being determined are both the diffusing

(OH–,H ) species and the bulk material volume fractions of (UH3, U, UO2):

(c∗, h∗) ≡ ([OH–], [H ]) , (H∗ ,M∗ , O∗) ≡ ([UH3], [U], [UO2]) . (5.4f)

The relevant diffusion coefficients are assumed to be functions of the local material

composition via

D∗c,h = M∗DM∗
c,h +O∗DO∗

c,h +H∗DH∗
c,h , (5.5)

but independent of the relatively low concentrations of OH– and H present in

the material.

The corresponding reaction source/sink terms for the reaction scheme (5.1)

are

(r∗c , r
∗
h) =

(
−2k∗cH c

∗2H∗ , 5k∗cH c
∗2H∗ − 3k∗hMh

∗3M∗) , (5.6a)

(r∗H , r
∗
M , r

∗
O) =

(
k∗hM h∗3M∗ − k∗cHc∗2H∗ , −k∗hM h∗3M∗ , k∗cH c

∗2H∗
)
, (5.6b)

where k∗cH and k∗hM are the reaction rate constants.

To nondimensionalise this system, we use the peak (surface) concentration of

OH– denoted by C∗a and known maximum concentrations N∗H,M,O for pure phases

of uranium hydride (4.54 · 10−2 mol/cm3), uranium (8.01 · 10−2 mol/cm3) and

uranium dioxide (4.06 · 10−2 mol/cm3) respectively.

c∗ = C∗a c(z, t) , h∗ = C∗a h(z, t) , (5.7a)

H∗ = N∗H H(z, t) , M∗ = N∗M M(z, t) , O∗ = N∗O O(z, t) . (5.7b)

For the early-stage oxidation of uranium in water vapour presented in §§ 4.2.1,

a length scale and time scale associated with k∗hM was chosen, but here we in-

stead choose an arbitrary reference length scale of L∗ref to nondimensionalise the

problem:

z∗ = L∗ref z , t∗ =
L∗2ref
D∗ref

N∗M
C∗a

t , (5.7c)

and a velocity scale follows directly from the ratio of length and time scales. For

simplicity, the choice of L∗ref will be taken as 1 nm, and D∗ref = 10−12 cm2/s.
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Under the assumption that ε = C∗a/N
∗
M � 1, corresponding to peak concen-

trations of OH– being much less than that for U, the non-dimensional RAD model

reduces to quasi-steady diffusion:

∂

∂z

(
Dc

∂c

∂z

)
= rc ,

∂

∂z

(
Dh

∂h

∂z

)
= rh ,

∂H

∂t
+

∂

∂z
(vH) = rH ,

∂M

∂t
+

∂

∂z
(vM) = rM ,

∂O

∂t
+

∂

∂z
(vO) = rO ,

(5.8a)

where

(rc, rh) =
(
2kcH c

2H , 3khMh
3M − 5kcH c

2H
)
, (5.8b)

(rH , rM , rO) =

((
khMh

3M − kcHc2H
) N∗M
N∗H

, −khMh3M , kcH c
2H

N∗M
N∗O

)
,

(5.8c)

and the dimensionless reaction coefficients are

kcH =
k∗cHC

∗
aN
∗
HL
∗2
ref

D∗ref
, khM =

k∗hMC
∗2
a N

∗
ML

∗2
ref

D∗ref
. (5.8d)

A simple volume-fraction weighted combination of the diffusivity coefficients

is employed,

Dc,h =
∑

j=H,M,O

Dj
c,hj , (5.8e)

whereDj
c,h is the constant diffusivity of c, h in a region where j = 1. The boundary

conditions are a fixed surface concentration of OH– with an unreacted metal far

away from the surface:

c = 1 , h = 0 at z = zs(t)

c, h→ 0 , (H,M,O)→ (0, 1, 0) as z → −∞

}
for t ≥ 0 . (5.8f)

This model was derived for the parabolic oxidation regime, where there is no

breakup of the surface oxide layer, however in the linear oxidation regime the

domain is shown in Figure 5.1.

The difference lies with the upper cracked/porous oxide layer, and underlying

fixed depth (∆∗adh) adherent oxide. We will discuss an approach to modelling this
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configuration within the confines of (5.8) below in § 5.3.

z∗ = z∗c (t) = z∗1(t) + ∆∗adh

?z∗ → −∞

z∗ = z∗s(t)

cracked/porous oxide

adhered oxide

@
@

@@I

hydride layer

bulk uranium

?

6

z∗ = z∗1(t)
z∗ = z∗2(t)

∆∗adh

Figure 5.1: A schematic diagram of the late-stage oxidation, where a cracked/porous
upper layer has developed leaving a constant thickness (∆∗adh) adhered oxide layer.
Although the oxide/hydride/bulk regions are shown as distinct regions, there is a rapid
(smooth) transition between each, associated with two propagating reaction fronts at
z∗ = z∗1,2.

5.1.2 Typical dimensional parameter values

Solution of the RAD model above requires values for six diffusivity coefficients

(Dj∗
i with i = {c, h}, j = {H,M,O}), corresponding to the two diffusing quan-

tities in three phases, two reaction rates (k∗cH , k
∗
hM) in (5.1), the adherent layer

thickness (∆∗adh) and the peak concentration (C∗a) of OH–. In the discussion below

we restrict ourselves to room temperature conditions.

We will start from a reference set for these values, as presented in Table 5.1,

some of which can be approximated from existing work, whilst others are ad hoc

choices. For the diffusion of hydrogen radicals (Dj∗
h ) there is available data that

can be extrapolated down to 25°C, giving rise to the log-normal distributions

outlined in Table 5.2.

For the corresponding diffusivity of OH– (i.e. Dj∗
c ) we have little information
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Dj∗
c DH∗

h DM∗
h DO∗

h k∗cH k∗hM

cm2 s−1 cm2 s−1 cm2 s−1 cm2 s−1 mol−2cm6s−1 mol−3cm9s−1

D∗ref = 10−12 9 · 10−16 1.49 · 10−10 5 · 10−13 108 1015

Table 5.1: Representative choices for the dimensional parameters associated with
diffusivity and reaction rate constants.

Diffusion coefficient (cm2/s) mean mean (log) s.d. (log)

DH∗
h 9 · 10−16 -34.65 0.86

DM∗
h 1.49 · 10−10 -22.63 0.41

DO∗
h 5 · 10−13 -28.33 0.36

Table 5.2: Log-normal distributions of values for the diffusivity of (top to bottom) H
in UH3, U and UO2 at a temperature of 25°C. Here the values are obtained from Peretz
et al. (1976) for DH∗

h , Mallett and Trzeciak (1958) for DM∗
h and Wheeler (1971), UoM

private communication (2020) for DO∗
h .

and will consider all three values to be the reference diffusivity (10−12 cm2/s).

For the adherent layer thickness we appeal to Table 2 of Harker (2006) (albeit for

O2 environments). The adherent layer typically thickens at higher temperatures

and herein we consider values of 30 and 50 nm for the adherent oxide thickness

at room temperatures. For the reaction rate constants in (5.1) we choose ad hoc

reference values of k∗cH ≈ 108 mol−2cm6s−1 and k∗hM ≈ 1015 mol−3cm9s−1. Later

results will allow for variability of all the parameters listed in Table 5.1, enabling

us to characterise the sensitivity of predictions for the internal hydride layer to

these reaction/diffusion parameters.

Finally for C∗a (the peak concentration of OH–), we first derive (see § 5.2) a

simple theoretical relationship for the oxidation rate, then use this to infer a value

of C∗a consistent with available empirical data.

The recent review paper by Banos and Scott (2020) provides the following empir-

ical fit for the (linear regime) oxidation rate of U in a water vapour environment

with vapour pressure P ∗H2O
:

1.614 · 105 (P ∗H2O
)

1
2 exp

(
−5396.8 K

T ∗

)
mgU cm−2 h−1 , (5.9)
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where P ∗H2O
is measured in millibars.

With a density for U of 19.1 g/cm3, this reduces to

8.45 · 107 (P ∗H2O
)

1
2 exp

(
−5396.8 K

T ∗

)
nm h−1 . (5.10)

Evaluated at a temperature of 25°C and a vapour pressure of 20 Torr (26.66

mbar) the material is corroded at a rate of approximately 6 nm h−1 with a loss

of U of approximately 1.15 · 10−2 mg cm−2 h−1.

5.2 A constant-rate oxidation solution

An extensive analysis of (5.8) has been provided in Chapter 4, providing both

computational results and a theoretical description (valid at large exposure times)

under the assumption that the adhered oxide layer can grow without bound.

Following some initial transient behaviour associated with the details of the initial

state of the material, it was shown that the thickness of this adherent layer

ultimately grows parabolically (as at1/2, for some coefficient a) and that the oxide

remains separated from the bulk uranium by a UH3 layer.

In the RAD model (5.8), the generic theoretical behaviour is that the interme-

diate hydride layer also thickens like δt1/2 (for some constant δ) in tandem with

the oxide layer. However a notable feature is that the diffusivity of H in UH3 is

small compared to that of OH– in UO2 (i.e., DH∗
h /DO∗

c � 1; also DH∗
h /DO∗

h � 1

as in Table 5.1). It has been shown that the limit DH∗
h /DO∗

h � 1 is a special

case for the RAD model; the thickness of the UH3 layer becomes proportional to

t1/4k
−1/4
cH (as shown in §§§ 4.2.5.5). Of course these predictions are based on the

assumption of a sufficiently long exposure of the material, whilst still neglecting

the break up of any surface oxide layer.

As the oxide layer grows, diffusive flux of OH– to the reaction front is re-

duced, and it is this fundamental mechanism that leads to an eventual parabolic

behaviour for early-stage oxidation. However, the assumption of an adherent ox-

ide layer that grows without limit is obviously expected to fail at some point.

The oxide layer is known to crack and spall (Figure 5.1), the effect of which is

to provide an upper limit for the adhered oxide thickness (∆∗adh). Beyond this

limit, the flux of OH– stops decreasing and this motivates the examination of

constant-flux solutions to the same RAD model provided by (5.8). Determining
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the size of the adherent layer (i.e., ∆∗adh) is out of the scope of this model, as it

must depend upon the mechanical properties of the oxide and any stress distri-

bution within the material; instead we seek a solution where the adherent layer

thickness is specified as a parameter.

In the late-stage linear regime, we suppose that the top of the adhered oxide

layer (see Figure 5.1) is given by zc = z∗c/L
∗
ref = ξc − V t, where V is the (di-

mensionless) propagation velocity and ξc an offset. The value ξc is determined by

the full history of the evolution and remains arbitrary when considering only the

late-stage linear behaviour, so we take ξc = 0 here without loss of generality. We

now seek a uniformly translating solution to (5.8) via a ξ coordinate defined by

z = ξ − V t , (5.11)

where V is a constant to be found, which determines the rate of the ‘shrinking

core’ during oxidation. The domain of solution is now ξ ∈ (−∞, 0], with two (now

stationary in the ξ frame) reaction fronts at ξ = ξ1,2 where the two reactions of

(5.1) dominate. Here ξ1,2 correspond to the points indicated in the dimensional

schematic of Figure 5.1 as z∗1,2.

In the translating coordinate, assuming an otherwise steady solution results

in the ordinary-differential system

d

dξ

(
Dc

dc

dξ

)
= rc ,

d

dξ

(
Dh

dh

dξ

)
= rh , (5.12a)

V
dH

dξ
+

d

dξ
(vH) = rH , V

dM

dξ
+

d

dξ
(vM) = rM , V

dO

dξ
+

d

dξ
(vO) = rO ,

(5.12b)

where Dc,h remain dependent on ξ through (5.8e).

A cracked/porous oxide allows direct access of water vapour to the top surface

of the adhered oxide layer, leading to the boundary conditions

c = 1 , h = 0 at ξ = 0 , (5.12c)

c, h→ 0 , (H,M,O)→ (0, 1, 0) as ξ → −∞ . (5.12d)

This final condition requires that we recover unreacted U sufficiently deep into

the metal.

Whilst solution of (5.12) will provide the local behaviour, we can predict the
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bulk behaviour by integration from ξ = −∞ to ξ = 0 (assuming that the surface

layer reduces to a pure oxide phase). This reveals that

DO
c

dc

dξ

∣∣∣∣∣
ξ=0

= 2I1 , DO
h

dh

dξ

∣∣∣∣∣
ξ=0

= 3I2 − 5I1 , (5.13)

I2 = I1 , V = I2 , V + vc = I1N
∗
M/N

∗
O , (5.14)

where vc = v(ξ = 0) is the advection velocity of the surface of the adherent oxide

layer (as induced by the material expansion during the reaction process). The

two quantities I1,2 are related to the total consumption/production of OH– and

H via:

I1 = kcH

∫ 0

−∞
c2H dξ , and I2 = khM

∫ 0

−∞
h3M dξ . (5.15)

Eliminating I1,2 in (5.13) leads us to conclude that the (downward into the

bulk) propagation speed V (of both reaction fronts and the constant-thickness

adherent oxide layer) and (upward) advection of the adherent surface layer vc are

V =
DO
c

2

dc

dξ

∣∣∣∣∣
ξ=0

, vc = V (N∗M/N
∗
O − 1) . (5.16)

Diffusion of OH– in the adherent oxide layer is quasi-steady. Hence a good ap-

proximation (as confirmed in Figure 5.2) for c in the adherent layer is a simple

constant-flux state:

c ≈ 1 +
ξ

∆adh

. (5.17)

This satisfies c(0) = 1 and c(−∆adh) = 0, where the latter state is associated

with a reaction front at ξ = ξ1 = −∆adh at which all the OH– is consumed. In

terms of the (dimensionless) adherent oxide thickness ∆adh = ∆∗adh/L
∗
ref we can

therefore say that

V =
1

2

DO
c

∆adh

. (5.18)

Hence, in this regime, the reaction fronts, adherent oxide and hydride layers all
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Figure 5.2: An example solution of the steady problem (5.12), for a uniformly trans-
lating reaction front state associated with the linear oxidation regime. Here the (di-
mensionless) adhered oxide depth is 50. Dimensionless parameters are DH

h = 9 · 10−4,

DM
h = 148.7, DO

h = 0.497, Dj
c = 1 (j = H,M,O), kcH = 6.13 and khM = 14611; these

correspond to dimensionless versions of the reference values discussed in Table 5.1 with
C∗a chosen as described in §§ 5.1.2. The two (vertical) dashed lines indicate the reaction
front positions ξ = ξ1,2, which maximise reaction rates R1,2 defined by (5.21).

propagate into the bulk metal with a constant dimensional velocity of

V ∗ =
DO∗
c

2∆∗adh

C∗a
N∗M

= ε
DO∗
c

2∆∗adh
. (5.19)

Here ∆∗adh = L∗ref∆adh is a dimensional thickness of the adherent layer, DO∗
c is

the diffusion coefficient for OH– in UO2, C
∗
a is the near-surface concentration of

OH– and N∗M is the number density of U.

For consistency between this constant oxidation rate solution to (5.8) and

the empirical observation (5.10) we require (for example, at 25°C and a vapour

pressure of 20 Torr) that V ∗ = 6 nm/h. So for given values for DO∗
c and ∆∗adh,

we can obtain a value for C∗a from (5.19) that will give results consistent with

observation.
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Figure 5.3: Solutions of (5.12) with V = DO
c /(2∆adh) and ∆adh = 50 (i.e., a 50 nm

adherent layer). (a) thickness of the hydride layer (5.22), kcH ∈ [1, 50] corresponds to
dimensional reaction rates in the range k∗cH ∈ [1.6 · 107, 8.2 · 108] mol−2 cm6 s−1. (b)
mass (per unit area) of hydride (5.23), khM ∈ [104, 105] corresponds to dimensional
reaction rates in the range k∗hM ∈ [6.8 · 1014, 6.8 · 1015] mol−3 cm9 s−1. Any parameters
not shown are fixed at the values specified in Table 5.1.

The expression (5.19) can also be obtained simply by considering the surface

flux of oxygen required to produce UO2 at the correct rate, without recourse

to any detailed RAD model. A more interesting (and a much more sensitive

metric to assess the model) is the corresponding prediction for the hydride layer

thickness, which we will obtain from numerical solution of (5.12).

From (5.13) we can confirm that the hydride layer should be of constant

thickness (in the linear regime), by noting that the flux of OH– into the bulk is

balanced by the outward flux of H :

DO
c

dc

dξ

∣∣∣∣∣
ξ=0

+DO
h

dh

dξ

∣∣∣∣∣
ξ=0

= 0 . (5.20)

So any internal bulk hydride owes its origin to the initial transient/parabolic

stage, and once in the linear oxidation phase its volume remains constant.
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5.2.1 Numerical solutions of the constant-rate oxidation

regime

The constant-rate oxidation system (5.12) can be computed by a shooting method.

At fixed values of the dimensionless parameters kcH , khM and Dj
i with i = {c, h},

j = {H,M,O}, we can obtain solutions that correspond to a dimensionless ad-

herent layer thickness of ∆adh, by taking V = DO
c /(2∆adh) as given by (5.18).

Figure 5.2 presents the solution obtained for ∆adh = 50 (with other parameter

values taken to be the reference values discussed in §§ 5.1.2). The figure shows

(dimensionless) concentrations of the diffusing species c, h, material volume frac-

tions H,M,O and the two reaction terms

R1(ξ) = kcHc
2H , R2(ξ) = khMh

3M . (5.21)

Unlike the parabolic response at earlier times, in the linear oxidation regime

described here a key feature is that these reaction fronts maintain a constant

separation in line with (5.13). A natural thickness measure for the UH3 layer is

therefore

∆∗UH3
= L∗ref (ξ1 − ξ2) , (5.22)

where the asterisk again signifies a dimensional quantity and ξ1,2 are the locations

of the respective maxima of R1,2.

Figure 5.2 also demonstrates that the return to an unreacted U state (i.e.

M = 1) can occur relatively slowly depending on the precise parameter values

chosen. As an additional measure we therefore also consider the total mass of

UH3 (per unit area of material), as obtained from depth integration of the volume

fraction:

I∗UH3
= L∗ref ρ

∗
H

∫ 0

−∞
H(ξ) dξ , (5.23)

where ρ∗H is the (mass) density of UH3 (approximately 10.95 g/cm3).

Numerical solutions of (5.12) indicate that ∆∗UH3
is most sensitive to DH

c

(relative diffusivity of OH– in UH3) then kcH (the dimensionless reaction rate

constant for UH3 and OH–). This is consistent with the asymptotic behaviour

described in §§§ 4.2.5.5, where again DH
c and the first reaction rate dominated
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the hydride thickness for large times in the parabolic regime (in cases of DH
h � 1,

as is the case here).

An examination of I∗UH3
shows that it is most sensitive to the values of DM

h

(relative diffusivity of H in U) and khM (the dimensionless reaction rate constant

for U and H ). For smaller relative diffusivity coefficients or faster reaction rates,

the return to unreacted U within the metal occurs over a smaller lengthscale (as

expected).

In figures 5.3(a,b) we show the dependence of ∆∗UH3
and I∗UH3

as functions of

the two relevant dominant parameters (beingDH
c , kcH andDM

h , khM respectively).

We return to these predictions below to compare full (unsteady) solutions to the

RAD model with randomised parameter choices.

5.3 Evolution through to late-stage oxidation

To validate the conclusions drawn from (5.12) discussed above, we return to

the original initial-value problem posed by (5.8) and time march the system,

following the same procedure outlined in §§ 4.2.3. For a simplistic model of the

cracked/porous oxide (as shown in Figure 5.1) the diffusivity of OH– and H is

increased by two orders of magnitude in the region z > zc(t) = z1(t) + ∆adh

where ∆adh is a specified constant. This large increase in diffusion through the

non-adherent oxide leads to an approximate constant concentration of OH– in the

cracked/porous region.

For early times, where the oxide thickness is less than ∆adh the problem is

that described in Chapter 4, but beyond the point of breakaway, which is achieved

when zs(t) > zc(t), we expect to transition to a constant flux (of OH–), revealing

the constant-rate oxidation state discussed in § 5.2.

As the system evolves, we will focus on analogous metrics for (now unsteady)

hydride production (i.e., ∆∗UH3
and I∗UH3

), together with additional measures for

the mass loss/gain of U/UO2

I∗UH3
= L∗ref ρ

∗
H

∫ 0

−∞
H(z, t) dz , (5.24a)

I∗U = L∗ref ρ
∗
M

∫ −∞
0

(1−M(z, t)) dz , (5.24b)

I∗UO2
= L∗ref ρ

∗
O

∫ 0

−∞
O(z, t) dz , (5.24c)
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Figure 5.4: An ensemble of 250 evolutions to the initial-value problem (5.8), spanning
the parameter range listed in Table 5.2 and (5.25) with an assumed adherent layer of
thickness ∆∗adh = 50 and 30 nm. Measures of the mass gain/loss of each phase are
shown (I∗UO2

blue, I∗UH3
green and, I∗U red) as defined by (5.24). Dashed lines indicate

(A) the prediction of Monisha Natchiar et al. (2020) for oxide growth in the parabolic
stage, (B) the prediction for hydride production from the solution of § 5.2 and (C) the
empirical rate of loss (5.9) assumed from Banos and Scott (2020).

where ρ∗M = 19.1 g cm−2 and ρ∗O = 10.97 g cm−2 are the (mass) densities for U

and UO2 respectively. Here I∗U < 0 is the mass loss of U whilst I∗UO2
> 0 is the

mass gain of UO2 (per unit area) and the definition of I∗UH3
is consistent with that

presented earlier (5.23) but using the non-translating coordinate.

We consider 250 evolutions (for an adherent oxide thickness of 50 nm) with

a water vapour pressure of 20 Torr at room temperature. In each evolution

the seven dimensionless parameters in (5.8) are randomised, with D
(j)
h chosen

according to Table 5.2 whilst other parameters are chosen to cover two orders of

magnitude with

D(j)∗
c ∈ [10−13, 10−11] cm2 s−1 , (5.25a)

k∗cH ∈ [107, 109] mol−2 cm6 s−1 and k∗hM ∈ [1014, 1016] mol−3 cm9 s−1. (5.25b)

Figure 5.4 shows the measures (5.24) over a 10 hour exposure for the 250

randomised evolutions. A parabolic phase is apparent in the first few hours, until

the oxide has grown sufficiently to reach the ∆∗adh limit (50 or 30 nm). Beyond
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Figure 5.5: Equilibrated (a) hydride thickness and (b) mass of hydride (per sq. cm of
material) after 10 hours of exposure, at room temperature and 20 Torr water vapour
pressure, assuming a 50 nm adherent layer. Data are extracted from the randomised
evolutions of Figure 5.4 and colours indicate the corresponding values of the reaction
rates k∗cH and k∗hM . The solid red lines are the predictions obtained from (5.12) as
presented in Figure 5.3.

this point there is a smooth transition towards a linear response for sufficiently

long exposure times, and the constant-rate oxidation solution of § 5.2 becomes

apparent. The mass of hydride produced is consistent with the prediction arising

from (5.12) as shown by the dashed line (B) in Figure 5.4(a) as obtained using the

reference values of Table 5.1. Similarly, within the first few hours the (asymptotic)

prediction of oxide mass obtained from Monisha Natchiar et al. (2020) works

well, taking equation (6.1) from that work and multiplying by the density of the

produced oxidea.

Using Figure 5.4 we can also compare the mass of hydride once the evolution is

well into the linear regime (i.e., after 10 hours of exposure) with the predictions

obtained from (5.12). The predictions of Figure 5.3 are obtained by varying

only the two parameters shown in each sub-figure, whilst keeping all others at

the values of Table 5.1. In this section all parameters are randomised according

to Table 5.2 and (5.25), so we can now compare both approaches as shown in

Figure 5.5.

Figure 5.5(a) shows the thickness of the hydride region (as measured by the

spatial separation of the two peaks in reaction rates kcHc
2H and khMh

3M). The

aNote that the same has been derived in (6.1) in the next chapter.
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two red lines in the figure repeat the (kcH = 1, 50) data of Figure 5.3(a). The two

parameters of DH∗
c (diffusion coefficient of OH– in UH3) and k∗cH (the reaction

rate constant for OH– and UH3 appearing in (5.1)) clearly capture the variation

of hydride thickness.

Figure 5.5(b) shows the total (depth integrated) mass of hydride. The two

red lines are the predictions of Figure 5.3(b) at two fixed values of the second

reaction rate constant k∗hM (or its dimensionless analogue khM). Again the two

parameters of DM∗
h (diffusion coefficient for H in U) and k∗hM (the reaction rate

constant for H and U) capture the bulk of variability.

5.4 Conclusions

The RAD model (5.8) was presented (Monisha Natchiar et al., 2020) as a new

model for uranium oxidation in a water-vapour environment, but only investi-

gated in detail in the parabolic regime prior to cracking/spalling of the evolving

surface oxide layer. This regime is mathematically interesting, with a pair of

propagating reaction fronts that remain coupled via an intermediate diffusion

layer of UH3. However, clearly practical interest is mostly aimed at the later

regime, where empirical evidence indicates a transition to oxidation at a constant

rate for sufficient long exposure times.

Hydride production is characterised by two measures (i) ∆∗UH3
is the spatial

separation between the two reactions of (5.1) and (ii) I∗UH3
is the depth integrated

mass (of UH3) per unit area. When in the linear oxidation regime (e.g., after 10

hours of exposure) the first measure is dominated by the diffusivity of OH– in UH3

(DH∗
c ) and the first reaction rate constant (k∗cH) as confirmed by Figure 5.4(a).

The second measure is dominated by the diffusivity coefficient of H in UH3 (DM∗
h )

and the second reaction rate constant (k∗hM), as confirmed by Figure 5.4(b).

Evidence from the atom probe tomography (APT) experiments of Martin et

al. (2016) points to a hydride region of approximately 5 nm thick after an hour of

exposure in room conditions, so this should be considered as a lower bound to the

equilibrated layer size (∆∗UH3
) in the linear oxidation regime. Figure 5.4 demon-

strates that there are plausible choices of diffusivity coefficients and reaction rates

that lead to comparable length scales. The second metric I∗UH3
is bounded below

by ρ∗H∆∗UH3
(approximately the mass associated with the hydride region per unit

area) but above this it becomes a measure of the length scale over which the
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transition from UH3 to U occurs. For example, Figure 5.2 shows a relatively slow

recovery of M from 0 to 1 over a length scale of about 50 nm (for L∗ref = 1 nm),

this is too slow to be consistent with the concentration profiles recovered from

the APT experiments. Figure 6(a) from Martin et al. (2016) suggests that the

recovery to a region of unreacted metal occurs over a span of closer to 10 nm, so

any experimental refinement of the values for k∗hM and DM∗
h would have to lead

to values for I∗UH3
at the lower end of the range shown in Figure 5.4(b) for this

RAD model to be consistent with observation.

We conclude by noting that this work not only assumes that the reaction

scheme (5.1) holds, but also that any surface processes associated with this re-

action can be largely ignored in favour of a static boundary condition for the

concentration of OH–. We also assume that any H instantaneously reacts at this

same location. In addition, we also impose a quasi-steady model for the diffu-

sion of OH– and H , for which we require C∗a � N∗M (for example). We cannot

rule out the possibility that unsteady diffusion effects may be re-introduced for

H in UH3 owing to the low relative diffusivity in that region associated with

DH∗
h /D∗ref ≈ 10−3. Finally, we have taken a relatively simple linear superposition

of diffusivities when dealing with the mixed-phase material (5.8e).



Chapter 6

Discussion and conclusions

6.1 Dry-air oxidation

We have formulated both chemical and ionic diffusion models for uranium ox-

idation in dry air, the motivation being that chemical diffusion alone does not

account for the oxidation rate observed in experiments. In this section, our un-

steady ionic diffusion model is compared with the results of Gharagozloo and

Kanouff (2013), and with published experimental results for the oxide thickness.

As we have previously remarked (see §§§ 2.1.1.1), it is not entirely clear as to

how the change in density accompanying the phase transition from metal (U) to

metal oxide (UO2.09) is incorporated into the GK model. Therefore, a distinction

is made between the quasi-steady limit of our model and the stated results of

GK.

We recover the moderate-field regime from the strong-field model for relevant

or practical timescales of interest (i.e., the nonlinear effects of a strong field are

only dominant at very small timescales for which the oxide thickness L∗(t∗) <

100 a∗ (see Figure 2.16); a∗ being the lattice constant). We therefore mainly

focus on the unsteady ‘linear’ ionic diffusion model (governed by the equation

(2.69)) for comparisons with published results, although some comparisons are

also made with the results of the nonlinear quasi-steady model. We first compare

the results of our unsteady ionic model with the quasi-steady ionic model of

GK, using the same parameter values specified in the published work of GK.

For example, the lattice constant is a∗ = 3.8682 Å; the surface concentration of

oxygen ions is assumed to be C∗a = 6 · 1028 ions/m3, even though this value seems

large. An accurate (order-of-magnitude) estimate of the surface concentration

214
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of oxygen ions in the dry-air oxidation of uranium remains to be found through

experimental measurements and is out of the scope of the diffusion model we have

presented herein.

In order to re-dimensionalise our nondimensional results, we choose the ref-

erence length scale to be the initial oxide thickness (L∗ref = δ∗O)a; the reference

diffusivity (D∗ref ) is the theoretical chemical diffusivity of O2– given by (2.5a); the

reference timescale is then taken as L∗
2

ref/D
∗
ref .
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Figure 6.1: The evolution of oxide layer thickness (in nm) over 500 hours at various
temperatures. Here the dotted lines represent the results extracted from figure 3(b) of
Gharagozloo and Kanouff (2013) and the solid lines show the results of our unsteady
ionic diffusion model. Other dimensional parameters include: a∗ = 3.8682 Å, DO∗

c given
by (2.5a), q∗ = −2e∗, ν∗ = 19 THz and V ∗M = −0.97 V (as specified by Gharagozloo
and Kanouff, 2013).

A comparison of our unsteady ionic model predictions with the GK results (ex-

tracted from figure 3(b) of Gharagozloo and Kanouff, 2013) is plotted in Figure 6.1

for different temperatures. The GK model (i.e. quasi-steady model) over-predicts

the oxide thickness compared to our unsteady model as shown clearly, with the

disagreement increasing with increasing temperatures.

The simulation results of different models are compared with the published

experimental results in figures 6.2 to 6.4. The experimental results of Lin et

aFor comparison with the GK results, we consider the initial oxide thickness (δ∗O) to be one

lattice constant (Gharagozloo and Kanouff, 2013).
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Figure 6.2: A comparison of the simulation results for the oxide thickness (in nm)
over 500 hours with the experimental results of Lin et al. (2008) at 65°C. The models
compared here are our unsteady (US) and quasi-steady (QS) ionic diffusion models,
and the GK ionic diffusion model (GK QS, extracted from figure 4 of Gharagozloo and
Kanouff, 2013). Other dimensional parameters include: T ∗ = 65°C, C∗a(t∗) = 6 · 1028

ions/m3, a∗ = 3.8682 Å, δ∗O = a∗, DO∗
c given by (2.5a), q∗ = −2e∗, ν∗ = 19 THz and

V ∗M = −0.97 V (as specified by Gharagozloo and Kanouff, 2013).

al. (2008) at temperatures 65°C and 85°C are compared in figures 6.2 and 6.3,

respectively. The simulation results of GK have been extracted from figure 4

of Gharagozloo and Kanouff (2013)b. In figures 6.2 and 6.3, it is found that

the GK results do not agree with our quasi-steady model results for the same

parameter values. Moreover, for the surface concentration, C∗a = 6 · 1028 ions/m3

considered here, which gives the Stefan number λ = C∗a/(2.09N∗M) ≈ 0.6, the

quasi-steady assumption is not appropriate and leads to an over-prediction for

the oxide thickness. As discussed in §§§ 2.2.1.6, the quasi-steady approximation

is valid only for λ � 1. Note that the notation US Lin. EF and QS NL EF

in figures 6.2 and 6.3 denote the unsteady ‘linear’ electric field and quasi-steady

‘nonlinear’ electric field models respectively.

Gharagozloo and Kanouff (2013) report that their quasi-steady model results

agree well with the experimental results of Lin et al. (2008) at both 65°C and 85°C.

They state that the data from Lin et al. (2008) were measured using an effective

bSome inconsistencies have been found between the model formulation and the reported

results of GK, therefore the simulation results have been directly extracted from the figures for

comparison.
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Figure 6.3: A comparison of the simulation results for the oxide thickness (in nm)
over 500 hours with the experimental results of Lin et al. (2008) at 85°C. The simulation
results are those of our unsteady (US) and quasi-steady (QS) ionic diffusion models,
and the GK ionic diffusion model (GK QS, extracted from figure 4 of Gharagozloo and
Kanouff, 2013). Other dimensional parameters include: T ∗ = 85°C, C∗a(t∗) = 6 · 1028

ions/m3, a∗ = 3.8682 Å, δ∗O = a∗, DO∗
c given by (2.5a), q∗ = −2e∗, ν∗ = 19 THz and

V ∗M = −0.97 V (as specified by Gharagozloo and Kanouff, 2013).

ellipsometry technique for uranium sample oxidised with 99.999% pure oxygen

under ultra-high vacuum, whilst they attribute the poor agreement with some

of the other experimental results to measurement errors or sample preparation

techniques. It can be argued that the agreement of GK results with that of Lin

et al. (2008) at only 85°C and from 10 - 30 hours (see Figure 6.3) might have been

fortuitous, and the conclusions of GK are thereby misleading. We also note that

the quasi-steady model is a poor predictor of the oxide thickness when λ = O(1),

which is the case for the values specified by GK. The unsteady model is a better

model compared to the quasi-steady GK model for values of λ = O(1) and even

though the quasi-steady GK model appears to agree with the experimental results

of Lin et al. (2008) at 85°C in Figure 6.3, the conclusions made by GK cannot be

generalised nor taken as definitive and the reasons are further elaborated below.

The oxide thickness over time obtained by solving the unsteady ionic dif-

fusion model using the dimensional parameter values specified by Gharagozloo

and Kanouff (2013) is plotted in Figure 6.4, and compared with some of the

published experimental results of Adda (data taken from the review by Ritchie,
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Figure 6.4: A comparison of our unsteady ionic diffusion model (solid lines) with the
experimental results of Adda (represented as data points; taken from Ritchie, 1984)
for oxide growth (in nm) over time (in minutes) using GK parameters at the temper-
atures of 180°C, 205°C, 225°C and 265°C. Data points (Adda): 180°C (black); 205°C -
‘texture I’ (blue), ‘texture II’ (green); 225 °C - ‘texture I’ (cyan), ‘texture II’ (yellow);
265°C - ‘texture I’ (red), ‘texture II’ (violet). The dimensional parameters specified
by Gharagozloo and Kanouff (2013) include: a∗ = 3.8682 Å, δ∗O = a∗, DO∗

c given by
(2.5a), q∗ = −2e∗, V ∗M = −0.97 V.

1984), wherein the uranium samples have been reported as vacuum annealed and

electropolished, and subjected to 200 mm O2/dry air. Ritchie (1984) reports

an initial parabolic growth (∝ t∗1/2) followed by a linear behaviour attributed

to cracking/spalling. It can be clearly observed from the figure that different

samples (labelled ‘texture I’ and ‘texture II’) exhibit widely different oxidation

rates at the same temperature, which Ritchie (1984) (p. 206) has ascribed to the

different grain orientations of the samples. Gharagozloo and Kanouff (2013) have

compared their quasi-steady model predictions with the experimental data of

Adda at the temperatures of 180° and 225°C, and have reported good quantita-

tive agreement at both temperatures. However, as clearly evident from the figure,

using the same parameter values specified by GK, the full unsteady ionic model

(which has been validated against an asymptotic solution in the limit λ � 1)

does not quantitatively reproduce either of the results (texture I and II) of Adda

at 225°C. Although not easily discernible in the figure, it should also be noted

that the difference between the predicted and measured values of oxide thickness

at approximately 100 minutes for the sample at 180°C (for example) is at least 50
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nm. There are sufficient unknown parameters to artificially construct agreement

with individual data sets; that is, we could fit k∗pt
∗1/2 (k∗p being the parabolic

rate constant) for ad hoc values of k∗p without it necessarily being generalisable

to describe multiple data sets over a range of conditions. This indicates that the

parameters specified by GK may not be definitive; for example, the equation for

DO∗
c given by (2.5a) need not necessarily be accurate if the diffusivity is also a

function of the ‘texture’ (for example), which depends on the grain orientation,

grain size or defect concentration that in turn affect the mechanical and electrical

properties of the material. Thus, the oxidation rate may be dependent on several

factors such as the grain orientation, grain size, surface/lattice defect concen-

tration and external gas state, among others. However, the parabolic trend for

the temperatures considered has been captured by the unsteady ionic diffusion

model.

Although the unsteady ionic diffusion model predicts the ‘parabolic’ behaviour

for the oxide thickness that occurs at high temperatures before cracking and

spalling, the ‘inverse-logarithmic’ growth (as reported by Ritchie, 1984) at small

times and/or low temperatures (e.g. experimental results of Larson and Taylor,

see Ritchie, 1984) is not accurately captured by the model.

The presence of several degrees of freedom (for e.g., impurities present in the

oxide/metal, surface and lattice defect concentration, partial pressure of oxygen

gas at the surface, crystallographic orientation of the oxide surface, presence of

humidity, and other experimental conditions) in uranium oxidation experiments

makes it nearly impossible to conduct these experiments under precisely mea-

surable and/or strictly controlled conditions. The thickness measurements at

very small length scales (order of a few nm) in these experiments are not nec-

essarily precise or reliable. It should be noted that only very recently (Martin

et al., 2016), the presence of a discrete hydride layer of about 5 nm thickness

has been explicitly detected and measured using an advanced atom probe tomog-

raphy technique, albeit in uranium corrosion experiments conducted in ambient

air containing water vapour. Therefore, a lack of reliable experimental results at

very small lengthscales of the oxide could be a possible cause that the model is

unable the reproduce the trend observed at low temperatures (100° C) and/or

small times. The measurements at these small times/lengthscales will also be

affected by the initial states, which may not be accurately known.
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6.2 Water-vapour oxidation

In §§ 4.2.1, a one-dimensional reaction-advection-diffusion (RAD) model is pre-

sented as a new model for the early-stage (before cracking/spalling) corrosion

of uranium in water vapour. For the water-vapour oxidation of uranium, the

hydroxyl ions (OH–) constitute the diffusing species whose chemical diffusivity

in UO2+x is many orders of magnitude larger than that of oxygen anions (O2–).

Diffusion is found to be the rate-determining step in oxidation by water vapour,

similar to that in dry air/oxygen. In the water-vapour case, however, chemical

diffusion (without the need to include ionic effects) has been found to be suffi-

cient to account for the experimentally observed oxidation rate as reported by

Baker, Less, and Orman (1966a). The RAD system evolves into pure UO2 phase

near the oxide-gas interface/surface of the material. Sufficiently far away from

the surface, we recover pure metal (U). A UH3 phase is found between the oxide

and metal phases. The transition from UO2 to UH3 occurs rapidly in a narrow

propagating reaction front (labelled RF1) where reaction R2 dominates. Simi-

larly, transition from U to UH3 occurs in a second narrow propagating reaction

front (labelled RF2) where reaction R3 dominates (see § 1.2.6 for the proposed

reaction mechanism and details of R2 and R3).

We have provided a large-time asymptotic analysis of the RAD model (in

addition to solving it numerically) and found that the dimensional oxide thickness

(∆∗O) for early-stage oxidation obeys a ‘parabolic law’ for sufficiently large times,

with a leading-order behaviour described by ∆∗O = (LA + Ls) (C∗a/N
∗
M t)

1/2L∗ref
(see equations (4.36), (4.9k), (4.15) and §§ 4.2.2) which simplifies to

∆∗O =

(
DO∗
c C∗a
N∗O

) 1
2

t∗
1
2 , (6.1)

where t∗ is the dimensional time. The leading-order oxide thickness is only influ-

enced by the diffusivity of OH– in UO2 (DO∗
c ), the (number) density of UO2 (N∗O)

and the surface concentration of OH– (C∗a). For DH∗
h ∼ DO∗

c , the dimensional

hydride thickness ∆∗H ∼ L∗B t
∗1/2 for large times (before cracking/spalling), where

L∗B is a function of the diffusivity ratio DH∗
h /DO∗

h (see Figure 4.18).

The leading-order oxide and hydride thicknesses are independent of the ‘rate

constants’, k∗cH and k∗hM . These rate constants are only found to affect the so-

lutions within the respective reaction fronts which are spatially isolated. The
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qualitative large-time oxidation kinetics is not affected by the details of reactions

that occur within localised fronts.

However, in practice the diffusivity of H in UH3 is substantially smaller than

OH– diffusivity in UO2 (i.e., DH∗
h � DO∗

c ; refer Table 4.1). For this low level of

relative diffusivity DH
h , we find that the dimensional hydride thickness takes the

form ∆∗H ∼ t∗1/4 for sufficiently large times (before cracking/spalling), with the

leading-order behaviour given by

∆∗H = 2

(
DH∗
c

N∗O

) 1
2

k
∗− 1

4
cH t∗

1
4 . (6.2)

Therefore, for practical values of the diffusion coefficients, the hydride layer re-

mains thin compared to the oxide phase, i.e., ∆∗H/∆
∗
O � 1 over sufficiently long

timescales. Also, for these practical parameter values, the hydride thickness be-

comes sensitive to the diffusivity of OH– in the hydride (UH3). The leading-order

oxide thickness, however, is only sensitive to DO∗
c of all the diffusivity parameters,

irrespective of the parameter values.

The reaction fronts remain spatially isolated and are much thinner than the

leading-order oxide width for plausible timescales. The leading-order width of

the reaction front RF1 is given by (refer §§§ 4.2.5.2; (4.37) in particular),

δ∗1 = α1k
∗− 1

3
cH

(
N∗2H C

∗
aN
∗
M

)− 1
6 (DO∗

c )
1
2 t∗

1
6 , (6.3)

where α1 is a constant, and the width of RF2 (refer §§§ 4.2.5.4; (4.66) in partic-

ular), is

δ∗2 = α2

(
k∗hMC

∗
aN
∗2
M

)− 1
4 (DO∗

c )
1
2 t∗

1
4 (6.4)

for some constant α2. The constants α1,2 can be found by solving for the local

reaction front profiles in the asymptotic limit. For example, if we define δ∗2 as

the width over which the volume fraction of U changes from 5% to 95% then we

find that α2 ≈ 2.9 for the set of parameter values given by DM∗
c = DO∗

c = DH∗
c =

10−16 m2/s = DO∗
h = DM∗

h , whilst H diffusivity in UH3 is equal to 10−19 m2/s.

Thus the widths of the reaction fronts depend on their respective reaction rate

constants. Here, the second reaction front will remain wider compared to RF1 at

sufficiently large times owing to higher-order reaction kinetics in RF2 (i.e., 4th

order in RF2 compared to 3rd order in RF1). For practical parameter values,
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the widths of the hydride layer and the second reaction front are comparable in

the asymptotic large-time limit. Our predictions of the reaction front widths are

found to agree with general reaction-diffusion scales presented by Bazant and

Stone (2000).

We thus have a square-root time dependence of the oxide thickness in the

early stages before cracking and spalling. The overall oxidation kinetics therefore

follows a parabolic law (square-root time dependence) as both the hydride layer

(for practical parameter values) and the reaction fronts remain thin compared to

the oxide layer at sufficiently large times. The RAD model assumes that the oxide

layer grows continuously without cracking or spalling. However, it is known from

experiments that cracking/spalling of the surface oxide occurs due to a build-up of

internal stresses owing to the different densities of the oxide and metal, resulting

in a porous/cracked oxide at the surface and an adherent layer near the metal.

After cracking/spalling, the growth is linear due to a constant width of the ad-

herent oxide ∆∗adh (which in general is found empirically to be dependent on tem-

perature). In the linear regime, diffusion of OH– in the adherent oxide forms the

rate-determining step. Whilst new oxide is still formed at an internal interface,

the oxide layer spalls near the surface after it reaches a critical thickness given

by ∆∗adh. We have considered ∆∗adh as a parameter in our model, and examined

constant-flux solutions to the same RAD model. We have shown that the adherent

oxide layer moves with a constant ‘downward’ velocity of (DO∗
c C∗a)/(2 ∆∗adhN

∗
M).

A constant width hydride layer consistent with the experimental observations of

Martin et al. (2016) has been found in this late-stage regime. This constant hy-

dride width depends on the details of the reactions, notably through the reaction

rate constants.

6.3 Conclusions

We have modelled uranium oxidation in both dry air (or oxygen) and pure water

vapour environments, where uranium dioxide (UO2+x) is formed as the main cor-

rosion product. In a water-vapour environment, an intermediate hydride (UH3)

phase exists between the oxide and metal phases in accordance with the proposed

reaction scheme. The kinetics of oxidation in both these environments has been

found to be determined by the diffusion of the oxidising species (O2– for dry air

and OH– for water vapour). We have examined the dry-air oxidation kinetics
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via an unsteady ionic diffusion model (a Stefan problem), wherein a self-induced

electric field contributes to the ionic flux in addition to a concentration gradi-

ent. This electric field contribution to the ionic flux increases the oxidation rate

compared to chemical diffusion alone. Although we present a detailed derivation

of a fully nonlinear, unsteady Stefan formulation of the ionic diffusion problem

(including the effects of material expansion associated with the corrosion pro-

cess), we have been unable to reproduce the agreement claimed by GK with the

experimental results of Lin et al. (2008) at a temperature of 85°C. The GK model

restricts attention to a quasi-steady formulation (thereby avoiding the need to

solve a moving-boundary diffusion problem), but even in the quasi-steady limit

the results presented by GK are not reproduced by our derivation. In support

of our derivation we should note that it is shown to be consistent with a later

reaction-diffusion model in the absence of ionic effects and numerical results have

been validated against analytical solutions where available. There is of course

sufficient freedom to modify any of the Stefan parameter, diffusion coefficient or

electric field strength to recover similar agreement of the unsteady Stefan model

with the results of Lin et al. (2008), but we have not taken this approach - partly

due to wide variability in available data sets for dry air (see Figure 6.4).

Although the unsteady ionic diffusion model yields a ‘parabolically’ (∝ t∗1/2)

growing oxide at high temperatures for the early-stage corrosion in dry air, it

has been found that the model does not reproduce the experimental results of

Larson and Taylor (data from Ritchie, 1984) at low temperature conditions (23°-

100°C). Lack of reliable and precise experimental data at small times (when the

oxide thickness is of the order of a few nm) and/or low temperatures (< 100°C)

constrains our ability to make any conclusions regarding the oxidation rate at

these conditions.

The water-vapour oxidation of uranium has been modelled using a diffuse-

interface (or mixed-phase) approach instead of the discrete-layer (Stefan) ap-

proach used for modelling dry-air oxidation. A one-dimensional reaction-advection-

diffusion (RAD) model for the water-vapour oxidation of uranium has been de-

veloped based on the proposed reaction scheme outlined in § 1.2.6. We have

solved the water-vapour corrosion problem using both numerical simulations and

a matched-asymptotic (theoretical) analysis. To solve the system numerically, a

Howarth-Dorodnitsyn transformation has been used to handle the moving/ad-

vecting domain. The transformed system of equations is then solved using a
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second-order Crank-Nicolson scheme along with Newton iteration. We have found

our numerical results to be consistent with our asymptotic solution, where both

methods predict a thin propagating hydride layer that is bounded by a pair of

coupled reaction fronts. Our results are based on the assumption that the sur-

face concentration of the diffusing OH– ions is much less than the density of the

metal (C∗a � N∗M); that is we have quasi-steady diffusion of OH– and H , the

latter being produced at the first reaction front. We have found that the oxide

growth is ‘parabolic’, which is consistent with the observed experimental results

before cracking of the surface oxide. We know from empirical measurements that

DH∗
h � DO∗

c , for which the leading-order growth of the hydride layer (in the

early-stage regime) is given by (6.2). We have also found that even though the

oxide formation relies on the presence of an intermediate hydride layer, its thick-

ness is not sensitively dependent on the precise size of the hydride layer; the oxide

thickness only depends on the material properties and external gas/water vapour

state.

A linear growth of oxide is found after cracking/spalling of the surface oxide,

owing to the constant thickness of the adherent oxide (∆∗adh). In this regime

(late-stage corrosion), diffusion of OH– through the adherent oxide constitutes the

rate-determining step, whence the linear growth. We have examined constant-

flux solutions of the RAD model for this regime, and have found that the reaction

fronts, adherent oxide and hydride layers propagate into the bulk metal with a

constant velocity of (DO∗
c C∗a)/(2∆∗adhN

∗
M). We have considered two measures for

the hydride growth in this late-stage regime, namely the hydride width (∆∗H)

measured as the distance between the maximum reaction rates at the two fronts,

and the total mass of hydride produced per unit area of the material (I∗UH3
). We

found that whilst hydride width is most sensitive to the diffusivity of OH– in

UH3 (DH∗
c ) and the rate constant k∗cH , the mass of hydride per unit area of the

material is sensitive to DM∗
h and k∗hM . There are plausible ranges of reaction rates

and diffusivity coefficients that predict a hydride thickness of < 10 nm (for room

temperature oxidation in a vapour pressure of 20 Torr when ∆∗adh = 50 nm),

consistent with the experimental results of Martin et al. (2016) for oxidation at

room temperature in moist air.
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6.4 Future work

There are multiple directions in which this work can be extended; a couple of

directions are elaborated in this section. Understanding the corrosion kinetics

of uranium in moist air (containing O2 + H2O(v)) is of practical interest, mainly

for the safe storage of uranium in nuclear waste-disposal facilities. The pres-

ence of oxygen in a uranium-water vapour system has been reported to decrease

the oxidation rate by a factor varying from 30-100 that depends on the sam-

ple properties and external gas state (Baker, Less, and Orman, 1966b). Baker

et al. analysed the residual gases during the corrosion experiments in moist air

and found that the partial pressure of H2O(v) remained nearly constant, whilst

that of O2 decreased linearly. They also found that only small amounts of H2

evolved during this stage. However after the pressure of O2 dropped to zero, they

found that H2 pressure raised sharply with a concomitant decrease in the wa-

ter vapour pressure. They suggested that oxygen regenerates water vapour, and

does not directly contribute to the diffusing species within the oxide/material for

the corrosion reaction. They ascribed the decrease in oxidation rate to surface

poisoning by O2, i.e., oxygen was suggested to retard the oxidation via a surface

mechanism involving chemisorption of oxygen ions thereby resulting in a reduced

number/concentration of available sites for water vapour adsorption.

Baker, Less, and Orman (1966b) also suggested that some oxygen was con-

sumed to further oxidise the oxide product, i.e., increasing the hyper-stoichiometry

of UO2+x from x = 0.09 to x = 0.25. The oxidation rate has been reported to be

independent of the oxygen pressure up to 100 cm Hg. It would be informative to

put Baker et al.’s hypothesis to test by modelling the diffusion of both OH– and

O2– in a moist air environment, and determining the rate. It has been reported

that the rate of moist air oxidation although less than the water-vapour rate, is

higher than that of dry-air oxidation. The oxidation rates in these environments

can be found in the recent review by Banos and Scott (2020).

Secondly, heat is released during oxidation of uranium in air (Baker Jr, Schni-

zlein, and Bingle, 1966; Tetenbaum, Mishler, and Schnizlein, 1962; Epstein et al.,

1996). If the rate of heat production outweighs the rate of heat loss to the am-

bient environment, this could potentially result in increasing the temperature of

the material to its ignition temperature, leading to fire hazards. We could explore

this scenario by coupling governing equations for heat transfer and solving for the
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unsteady development of temperature along with the concentration distribution

within the material.
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Léger, C., J. Elezgaray, and F. Argoul (1997). “Experimental demonstration

of diffusion-limited dynamics in electrodeposition.” Physical Review Letters

78.26, p. 5010.

Leinders, G., T. Cardinaels, K. Binnemans, and M. Verwerft (2015). “Accurate

lattice parameter measurements of stoichiometric uranium dioxide.” Journal

of Nuclear Materials 459, pp. 135–142.

Lin, S., X. Lai, X. Lv, and H. Zhang (2008). “Study of the initial oxidation

characteristics of uranium with pure oxygen below 100° C by spectroscopic

ellipsometry.” Surface and Interface Analysis 40.3-4, pp. 645–648.

Mallett, M. W. and M. J. Trzeciak (1958). “Hydrogen-uranium relationships.”

Transactions of the American Society of Metals 50.981-993, p. 13.

Marchetti, I., F. Belloni, J. Himbert, P. Carbol, and T. Fanghänel (2011). “Novel

insights in the study of water penetration into polycrystalline UO2 by sec-

ondary ion mass spectrometry.” Journal of Nuclear Materials 408.1, pp. 54–

60.

Martin, T. L., C. Coe, P. A. J. Bagot, P. Morrall, G. D. W. Smith, T. Scott,

and M. P. Moody (2016). “Atomic-scale studies of uranium oxidation and

corrosion by water vapour.” Scientific Reports 6, p. 25618.

McEachern, R. J. and P. Taylor (1998). “A review of the oxidation of uranium

dioxide at temperatures below 400° C.” Journal of Nuclear Materials 254.2-3,

pp. 87–121.

McGillivray, G. W., D. A. Geeson, and R. C. Greenwood (1994). “Studies of the

kinetics and mechanism of the oxidation of uranium by dry and moist air A

model for determining the oxidation rate over a wide range of temperatures

and water vapour pressures.” Journal of Nuclear Materials 208.1-2, pp. 81–97.

Monisha Natchiar, S. R., R. E. Hewitt, P. D. D. Monks, and P. Morrall (2020).

“Asymptotics of coupled reaction-diffusion fronts with multiple static and



BIBLIOGRAPHY 231

diffusing reactants: uranium oxidation in water vapor”. SIAM Journal on

Applied Mathematics 80.5, pp. 2249–2270.

Mott, N. F. (1940). “The theory of the formation of protective oxide films on

metals, II.” Transactions of the Faraday Society 35, pp. 472–483.

— (1947). “The theory of the formation of protective oxide films on metals.—III.”

Transactions of the Faraday Society 43, pp. 429–434.

Nan, C. W. (1993). “Physics of inhomogeneous inorganic materials.” Progress in

Materials Science 37.1, pp. 1–116.

Peretz, M., D. Zamir, G. Cinader, and Z. Hadari (1976). “NMR study of hydrogen

diffusion in uranium hydride.” Journal of Physics and Chemistry of Solids

37.1, pp. 105–111.

Polanowski, P. and Z. Koza (2006). “Reaction-diffusion fronts in systems with

concentration-dependent diffusivities.” Physical Review E 74.3, p. 036103.

Powell, G. L. and J. B. Condon (1973). “Mass spectrographic determination of

hydrogen thermally evolved from uranium and uranium alloys.” Analytical

Chemistry 45.14, pp. 2349–2354.

Ritchie, A. G. (1981). “A review of the rates of reaction of uranium with oxygen

and water vapour at temperatures up to 300° C.” Journal of Nuclear Materials

102.1-2, pp. 170–182.

— (1984). “The kinetics of the initial stages of the reaction of uranium with

oxygen.” Journal of the Less Common Metals 98.2, pp. 193–214.

Rubenstein, L. I. (2000). The Stefan Problem. Vol. 8. American Mathematical

Society.

Schnizlein, J., J. Woods, J. Bingle, and R. Vogel (1960). “Identification of the dif-

fusing species in uranium oxidation.” Journal of The Electrochemical Society

107, p. 783.

Senanayake, S. D. and H. Idriss (2004). “Water reactions over stoichiometric and

reduced UO2 (111) single crystal surfaces.” Surface Science 563.1-3, pp. 135–

144.

Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of

interatomic distances in halides and chalcogenides.” Acta Crystallographica

Section A: Crystal Physics, Diffraction, Theoretical and General Crystallog-

raphy 32.5, pp. 751–767.



232 BIBLIOGRAPHY

Stultz, J., M. T. Paffett, and S. A. Joyce (2004). “Thermal evolution of hydrogen

following water adsorption on defective UO2 (100).” The Journal of Physical

Chemistry B 108.7, pp. 2362–2364.

Tasker, P. W. (1979). “The surface properties of uranium dioxide.” Surface Sci-

ence 87.2, pp. 315–324.

Tetenbaum, M., L. Mishler, and G. Schnizlein (1962). “Uranium powder ignition

studies.” Nuclear Science and Engineering 14.3, pp. 230–238.

Totemeier, T. C. (2000). “Characterization of uranium corrosion products in-

volved in a uranium hydride pyrophoric event.” Journal of Nuclear Materials

278.2-3, pp. 301–311.

Verwey, E. (1935). “Electrolytic conduction of a solid insulator at high fields The

formation of the anodic oxide film on aluminium.” Physica 2.1-12, pp. 1059–

1063.

Wheeler, V. J. (1971). “The diffusion and solubility of hydrogen in uranium diox-

ide single crystals.” Journal of Nuclear Materials 40.2, pp. 189–194.

Winer, K., C. A. Colmenares, R. L. Smith, and F. Wooten (1987). “Interaction of

water vapor with clean and oxygen-covered uranium surfaces.” Surface Science

183.1-2, pp. 67–99.

Yasutoshi, S. (1974). “Nonstoichiometry in uranium dioxide.” Journal of Nuclear

Materials 51.1, pp. 112–125.

Zhu, J., L.-Q. Chen, J. Shen, and V. Tikare (2001). “Computing the effective

diffusivity using a spectral method.” Materials Science and Engineering: A

311.1-2, pp. 135–141.



Appendix A

Typical values of physical

constants.

Table A.1: Model parameters.

Parameter Symbol Value Units

Adsorption energy of oxygen ion W ∗
bind

†2.4 eV

Avogadro’s number N∗A 6.023 · 1023 1/mol

Boltzmann constant k∗b 1.3806 · 10−23 J/K

Charge on oxide Z -2 -

Density of uranium ρ∗M
\19.06 g/cm3

Density of uranium dioxide ρ∗O
\10.97 g/cm3

Density of uranium hydride ρ∗H
\10.95 g/cm3

Electron affinity of oxygen E∗ †2.2 eV

Lattice constant of UO2 at 20°C a∗ ‡5.4713 Å

Mass of an oxygen atom/ion m∗O
\2.6565 · 10−26 kg

Molar concentration of pure uranium n∗M N∗M/N
∗
A moles/m3

† Gharagozloo and Kanouff (2013).
‡ Leinders et al. (2015).
\ Standard values.
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Parameter Symbol Value Units

Molar concentration of UO2 n∗O N∗O/N
∗
A moles/m3

Molar concentration of UH3 n∗H N∗H/N
∗
A moles/m3

Mass of an oxygen atom/ion m∗O
\2.656 · 10−26 kg

Number concentration of pure uranium N∗M 4.8235 · 1028 1/m3

Number concentration of UO2 N∗O 2.4471 · 1028 1/m3

Number concentration of UH3 N∗H 2.7366 · 1028 1/m3

Potential barrier W ∗ †1.24 eV

Vibrational frequency of ions ν∗ †19 THz

Work function Φ∗0
†3.63 eV



Appendix B

Effect of mass absorbed in the

chemical diffusion model

In instances where the Stefan condition has been reformulated in terms of the

(nondimensional) rate of the oxide growth instead of the velocity of the internal

interface (
.
z1(t)) (for example in (2.55d)), the mass of oxygen absorbed has been

neglected whilst considering a mass balance of the system at two different times

(see §§ 2.2.2). This is under the assumption that the mass of oxygen absorbed

remains negligible compared to the mass of uranium and uranium dioxide. How-

ever, weight gain has been used to quantify the rate of oxidation in quite a few

experimental studies; we therefore study the influence of the absorbed mass on

the oxidation rate in this section.

The (nondimensional) governing equation for the (chemical) diffusion of oxygen

ions through the oxide layer is (see equations (2.51))

∂c

∂t
+

dzs
dt

∂c

∂z
=
∂2c

∂z2
for z1(t) < z < zs(t) , (B.1a)

subject to boundary conditions:

c(z = zs(t), t) = 1 , c(z = z1(t), t) = 0 , (B.1b)

and the Stefan condition:

dz1

dt
= −λ∂c

∂z

∣∣∣∣
z=z1(t)

, (B.1c)
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and with appropriate initial conditions. Here the oxide thickness is defined as

L(t) = zs(t) − z1(t), and z1(t) denotes the location of the internal (oxide-metal)

interface.

The Stefan condition (B.1c) that gives the velocity of the internal (oxide-

metal) interface can be written in terms of the rate of growth of the oxide (
.
L a)

by considering the mass conservation of the system.

Case 1:
.
M∗

abs = 0

If the rate of mass absorbed is assumed to be zero (i.e.
.
M∗

abs = 0), then the rate

of growth of the oxide layer is related to the velocity of the oxide-metal interface

as (see (2.49))

dL∗

dt∗
= −γdz∗1

dt∗
, (B.2)

where γ = ρ∗M/ρ
∗
O is the relative density of the metal to the oxide, and L∗ =

z∗s(t
∗)− z∗1(t∗) is the dimensional oxide thickness.

Case 2:
.
M∗

abs 6= 0

In reality, the rate of mass absorbed is non-zero (i.e.
.
M∗

abs 6= 0), as it varies

proportionally to the concentration gradient at the oxide surface. The rate of

mass absorbed per unit area is then the mass flux of the diffusing species across

the gas-oxide interface (or surface of the oxide), which is mathematically written

as

.
M∗

abs = −m∗ODO∗

c

∂c∗

∂z∗

∣∣∣∣
z∗=z∗s (t∗)

. (B.3)

Here m∗O is the mass of 1 oxygen atom/ion (= 2.6565× 10−26 kg), c∗ is the (num-

ber) concentration of the diffusing oxygen ions. The negative sign indicates that

the flux is down the concentration gradient or along a negative concentration

gradient (Fick’s first law).

The mass flux across the surface is then related to the velocity of the interfaces

(by the application of mass conservation; see figure 2.3) as

−m∗ODO∗

c

∂c∗

∂z∗

∣∣∣∣
z∗=z∗s (t∗)

= ρ∗M
.
z1
∗ + ρ∗O

.
L∗ , (B.4)

aHere, the dot notation
.
◦−−−−−–– indicates differentiation with respect to time.
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where
.
z1
∗(t∗) is the velocity of the oxide-metal interface and

.
L∗(t∗) =

.
zs
∗(t∗) −

.
z1
∗(t∗) is the velocity of the oxide layer.

Nondimensionalising (B.4), we obtain

−κ∂c
∂z

∣∣∣∣
z=zs(t)

= γ
.
z1 +

.
L , (B.5a)

where κ = m∗OC
∗
a/ρ

∗
O and γ = ρ∗M/ρ

∗
O . The above equation on transforming

using (2.52) gives

.
z1 =

1

γ

(
κ

L

∂c

∂ζ

∣∣∣∣
ζ=0

−
.
L

)
, (B.5b)

Now, substituting the velocity of the oxide-metal interface (
.
z1) in terms of the

rate of change of the square of oxide thickness (dS/dt) in (B.1c) and transforming

to the (ζ, t) coordinates, we obtain

1

γ

(
κ

L

∂c

∂ζ

∣∣∣∣
ζ=0

− dL

dt

)
=
λ

L

∂c

∂ζ

∣∣∣∣
ζ=1

, (B.6a)

resulting in

dS

dt
= 2

(
κ
∂c

∂ζ

∣∣∣∣
ζ=0

− γλ∂c
∂ζ

∣∣∣∣
ζ=1

)
, (B.6b)

where S = L2 and
.
S = 2L

.
L.

In the limit of κ � 1 (i.e. m∗OC
∗
a � ρ∗O), we recover ‘Case 1 ’ where

.
M∗

abs = 0. Although this seems unlikely, the GK value of the surface (num-

ber) concentration of the diffusing species, C∗a = 6 · 1028 ions per m3 corre-

sponds to m∗OC
∗
a = 1593 kg/m3, whilst ρ∗O = 10970 kg/m3 (refer A.1). Therefore

(m∗OC
∗
a)/ρ∗O = 0.1453; using this argument, we provide a justification for assum-

ing that the mass absorbed is negligible and therefore continue to neglect M∗
abs in

our further formulations (mass absorbed in the chemical diffusion model is taken

to be representative of the ionic models as well).

The cumulative mass of oxygen absorbed as a function of time and the mass

absorbed (∆M∗
abs) over a small time interval ∆t∗ have been plotted in figures B.1

and B.2. Figure B.3 shows the oxide thickness as a function of time for the cases

when both inclusion and exclusion of mass of oxygen absorbed are considered.
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Figure B.1: Cumulative mass of oxygen ions absorbed over a period of time. L∗ = 0 at
t∗ = 0. Parameters: C∗a = 6 ·1028 ions per m3, T ∗ = 358 K, DO∗

c = 1.9945 ·10−22 m2/s,
γ = ρ∗M/ρ

∗
O = 1.7375 and L∗(t∗ = 0) = 0.
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Figure B.2: Mass of oxygen absorbed ∆M∗abs over a small time interval ∆t∗ plotted
as a function of time. The parameters are those listed in figure B.1.
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Figure B.3: A comparison of the evolution of the oxide thickness, both with/without
taking account of the mass of oxygen ions absorbed (chemical diffusion with density
change). Parameters: γ = 1.7375 , λ = 0.5952 and L(t = 0) = 0.
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