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Abstract

Numerical simulation of liquid crystalline flows in complex geometries.
Kamil Fedorowicz
A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2022

The term complex fluids refers to a group of materials whose behaviour is intermediate between solids and
liquids. They have found applications in numerous areas and are used to manufacture foods, cosmetics and
medicines. With the rise of computer power over the last few decades and in the spirit of the Fourth Industrial
Revolution (Industry 4.0), there is an increased tendency for in-silico product development. Physical experi-
ments are reduced to the minimum and substituted with computer simulation in order to decrease the roll-out
time of new formulations. Numerical calculations can provide an insight into the microstructure behaviour,
however computations are only as good as the physics embedded in the constitutive equation. This project aims
to assess the suitability of some of the existing governing equations of liquid crystals to model soap behaviour.

In the thesis, we aim to examine the impact of the non-Newtonian microstructure on the material behaviour
in complex geometries. The flow of liquid crystals through a curved pipe in the limit of infinite Ericksen number
is analysed. The governing equations are solved analytically and reveal that the secondary flow arises at zero
Reynolds number due to the misalignment between the microstructure orientation (director) and flow. Different
mechanisms driving the secondary flow are distinguished: 1) the combination of normal stresses and geometry
curvature and; 2) non-axisymmetric stress distribution caused by the flow curvature. Depending on material
properties, those effects may act in the opposite direction, so the rotation of the secondary flow can vary. Addi-
tionally, the geometry curvature shifts the velocity field towards the bend axis, which results in the re-orientation
of the internal microstructure. Analytical estimations are complemented with numerical simulations to give an
insight into the flow behaviour at finite Ericksen numbers. The direction and intensity of the secondary motion
depend on the director orientation on boundaries and the Ericksen number that quantifies the strength of vis-
cous to elastic effects; for liquid crystals with specific material properties, a flow reversal is possible. Numerical
simulations show that the pipe curvature manifests its presence outside the elbow. There is a spike in the veloc-
ity field as the fluid enters/leaves the elbow, while the director development length downstream of the bend is
affected by the Ericksen number and material properties.

In the last part of the thesis, a planar contraction geometry is used to compare director andQ-tensor frame-
works of simulating liquid crystals. The vectorial approach cannot model the head-tail symmetry and predicts
different flow fields for boundary conditions with the same physical meaning; a drawback that is particularly
evident at low Ericksen number flows with homeotropic anchoring. There is less ambiguity with wall-parallel
anchoring, where vectorial and tensorial frameworks produce similar results, provided that the correct set of
boundary conditions is chosen.
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Chapter 1

Introduction

The term Fast Moving Consumer Goods (FMCG) describes a vast range of cheap products
that are purchased in high quantities such as medicines, cosmetics, foods, and drinks [1].
The worth of the FMCG market was estimated to be over $10 000 billion in 2017 with an
expected 50% rise by 2025 [2]. The last number can increase even further due to the impact of
COVID-19, which caused a 500% spike in demand on cleaning products [3]. The abundance
of the FMCG sector and the potential for significant financial benefits results in a highly
competitive environment. In order to increase market share and gain an advantage over other
contenders, FMCG companies aim to develop high-quality products in the shortest possible
time - releasing a new brand seven months before competitors generates 60% higher sales
[4]. The traditional development consists of a series of iterative tests of sample products,
which ends upon obtaining a satisfactory formulation [5]. The method is time-consuming,
generates much waste, and therefore companies search for alternative techniques of product
development. The reduction of the roll-out time and waste can be achieved through the use
of computer-aided engineering (CAE) [6, 7], which is one of the concepts of the Fourth
Industrial Revolution that aims to substitute physical experiments with computer simulations
[8].

Seemingly simple and cheap FMCG articles are usually required to have multiple features
that ensure the handiness of the product [9]. Toothpaste should not only have a cleaning
function, but it must flow when squeezed and stay put on the toothbrush [10, 11]. A shampoo
should easily spill out of the container but be viscous enough to not leak through a hand [12,
13]. Ice creams are kept in low temperatures to remain solid, but the impression of excessive
cold should be eliminated or delayed in order to improve the customer experience [9, 14].
The above characteristics can be achieved by exploiting the properties complex fluids, whose
microstructure may consist of multiple phases or contain solid-like objects, and is therefore
more intricate than the microstructure of simple fluids (water or oil) [15]. The functionality
of the FMCG products is predicated on their complex properties, such as variable viscosity
or solid-like behaviour, and the exploitation of complex fluids is necessary for further devel-
opment of the FMCG industry [16].

Newtonian fluids (water, oil, air) consist of such small particles that they instantaneously
respond to any deformation [17]. In contrast, complex fluids are made up of larger molecules
(fig. 1.1); in the case of soap, the microstructure is a mixture of high aspect ratio parti-
cles, called bricks and the lyotropic liquid crystal phase. The material’s relaxation time is
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comparable to the flow time-scale [15, 18] induced upon material processing. As a result,
the deformation response of many complex fluids is intermediate between solids and sim-
ple liquids; so-called non-Newtonian behaviour [16–18] with an example shown in fig. 1.2.
Depending on the structure of molecules and their arrangement, complex fluids are grouped
into emulsions (one fluid dispersed in another [19]), polymeric liquids (largemolecular chains
that consist of repeating units [20]) and liquid crystals (anisotropic molecules dispersed in a
solvent [21, 22]).

Figure 1.1. A schematic visualisation of the structure of a complex fluid based on the structure of soap.
Long, anisotropic particles (bricks) are distributed within a lamellar phase that consists of sheets of rod-like
molecules [23]. Reprinted with permission from [24]. Copyright Elsevier 2022.
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Figure 1.2. Response of a generic complex fluid to small amplitude periodic straining. The elastic response
(−) is proportional to the deformation (−−), while the viscous (−) response is proportional to the rate of
deformation. A typical non-Newtonian fluids has both viscous and elastic components, so the net response is
intermediate between those two.
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The intricate structure of non-Newtonian fluids is both a desirable and daunting charac-
teristic. It provides the functionality of the FMCG products (e.g. the solid-like behaviour
of a toothpaste) but also makes the manufacturing process highly challenging [25, 26]. In
contrast to Newtonian liquids, the viscosity of complex fluids varies and may depend on in-
ternal (solvent concentration, shear rate, deformation history) and external factors (magnetic
and electric fields) [15, 18, 27]. Additionally, the interaction of stretching molecules with the
flow complicates scaling [17], so flows with the same Reynolds number (which itself cannot
be unambiguously defined because of a variable viscosity) need not be dynamically similar
[28, 29]. The process of scaling from laboratory to industrial scales is often further compli-
cated by material elasticity, whose importance can be quantified by Ericksen or Weisenberg
numbers [15].

Significant progress was made in the last century in the development of non-Newtonian
constitutive relations. The early models were based on empirical observations, thus capable
of describing a wide range of fluids [18, 30, 31]. With an advance inmathematical techniques,
more recent constitutive relations focused on describing the materials stress as a result of the
applied deformation. Each constitutive equation aims to model the microstructure depen-
dent physics; for example, governing equations of entangled polymers concentrate on their
stretching and deformation [32, 33], while those of liquid crystals focus on the orientation
of anisotropic molecules and their interaction with the flow [34, 35]. Numerous constitu-
tive equations have been proposed, but the majority of them are capable of replicating only
some of the behaviour observed in experiments [15, 18, 27]. With increases in the comput-
ing power and the development of numerical techniques, it is possible to simulate the most
complex constitutive behaviours [36]. However, the simulation can only replicate the physics
that is embedded in the model [37], so understanding the constitutive relations and their lim-
itations is necessary to accelerate the transition to virtual product development.

1.1 Aims and objectives

This project aims to improve the understanding of the rheological properties of soap by
taking into account its liquid-crystalline structure. Soap bars are produced in a screw extruder
(plodder) where a noodle material (granular molecules consisting of fatty acids [23]) mixed
with perfumes and dyes is compressed and blended into a uniform mass, as shown in fig. 1.3.
Soap is classified as a viscoplastic material [5] - it is solid-like at low shear rates and liquid-
like as the deformation rate increases [38]. Experiments suggest that it also experiences wall
slip [39]. Origins of the wall slip are not clear; some studies associate it with fluid separation
and the migration of less viscous phase towards the wall [40].
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Figure 1.3. A schematic description of the soap extrusion process.

For industrial purposes, soap is modelled through empirical relations, where the viscosity
depends on the applied shear rate only [41]. The models are simple, robust and easy to use in
commercial codes [42]; however, they fail to describe the evolution of microstructure in any
detail. The assumption of a shear dependent viscosity generates a significant error associ-
ated with parameter fit [41] because the flow curve (the curve describing the relation between
stress and strain) strongly depends on other factors such as the characteristic dimension of the
geometry [41]. This length-scale is easily chosen in pipes or channels, but the situation com-
plicates as the geometry becomes more complex, e.g. the extruder used to produce soap bars.
Furthermore, empirical models assume that the physics of shear and elongation is the identi-
cal, so the effective viscosity changes in the same fashion irrespective of deformation mode.
That flaw does not impact predictions in shear dominated flows (pipes, channels); however,
it causes a significant discrepancy between experiments and simulations in geometries where
the extensional component is significant (contractions, T-junctions). Thus, this project aims
to explore more advanced constitutive equations as an alternative to modelling the soap flow.

This project examines the performance of constitutive equations dedicated to liquid crys-
tals as a precursor of soap. The majority of rheological descriptions were developed to un-
derstand phase transitions and near-static flows and they tend to perform well in simple flow
geometries [21, 43]. However, since typical industrial configurations are more complex than
straight pipes, the work presented in this thesis explores the behaviour of currently available
liquid crystal models in industry-relevant domains such as bends and contractions.

1.2 Outline of the thesis

This thesis summarises the research overtaken during the PhD project. Chapter 2 intro-
duces liquid crystals, describes their structure and basic concepts used in modelling. Non-
Newtonian rheology and the flow behaviour of liquid crystals is discussed. Different ap-
proaches of modelling the fluid flow are presented; we first introduce the Newtonian approxi-
mation and then present more advanced constitutive behaviours (generalised Newtonian fluid
models and nematodynamic equations). Chapter 3 introduces the novel OpenFOAM solver
dedicated to modelling the flow of nematic liquid crystals. The solver is used throughout the
thesis to investigate the behaviour of liquid crystals in complex geometries. Chapter 4 presents
the results of capillary simulations and quantifies the effect of wall anchoring on the rheology.
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Perturbation analysis is used in chapter 5 and provides an insight into the physics governing
the flow of nematic liquid crystals in a fully curved pipe flow at an infinite Ericksen number.
The work is extended in chapter 6 where numerical solutions of finite Ericksen number flows
are presented. The effect of wall anchoring and director development downstream/upstream
of the bend is discussed. Chapter 7 analyses the flow of liquid crystals through a 4:1 planar
contraction and a comparison of vectorial and tensorial frameworks to modelling the director
and flow field is made. Chapter 8 summarises the findings and provides suggestions for future
work.
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Chapter 2

Literature review

This chapter establishes the background material for discussions presented later in the the-
sis. Firstly, the structure of liquid crystals is discussed, and the director and order parameter
tensor approaches of representing liquid crystal microstructure are introduced. Later sections
describe the rheology of liquid crystals and the consequences of the anisotropic structure on
the material behaviour. Foundations of the Hamiltonian formulation are presented as an al-
ternative of developing the governing equations. Finally, we present a ladder of solution
techniques available to model the fluid flow: the Newtonian model with the non-Newtonian
empirical extensions (Generalised Newtonian Fluid models) are discussed first; later, liquid
crystal theories are introduced as an alternative that allows for a more accurate description of
the microstructure.

2.1 The structure of liquid crystals

Molecules of a crystal form a regular, three-dimensional lattice [44]. Small inter-molecular
distances combined with strong bonds result in rigid materials that are highly resistant to de-
formation. In contrast, there are no long-range positional correlations in the arrangement of
fluid molecules [45]; the structure cannot resist forces and flows arise when stress is applied.
Liquid crystals are an intermediate state of matter whose behaviour shares characteristics
common to fluids and solids. They consist of anisotropic elements (rods (fig. 2.1) or disks)
that, on average, align in the same direction. The liquid crystalline state can be achieved over a
wide spectrum of materials, ranging from elongated organic molecules (e.g. p-azoxyanisole,
fig. 2.1) with typical length O(20 Å) to large, synthetic polymeric fibres whose length is
O(100 µm) [21]. Due to the orientational ordering within their structure, liquid crystals
share some properties with solid materials, e.g. birefringence, anisotropic thermal and elec-
trical conductivity [21]. Similarly to isotropic fluids, liquid crystals cannot resist stresses and
are easily deformable; however, their flow properties are strongly dependent on the orienta-
tion of the microstructure, providing another link to solids. Additionally, the interaction of
anisotropic objects in a flow results in normal stresses. Normal stresses are insignificant in
simple shear flows, but they have a crucial effect on material behaviour in industrially relevant
geometries, such as extruders or mixers [18, 46].

An external electric or magnetic field can easily control the orientation of the long axis of
a liquid crystal. Therefore, liquid crystals were originally exploited in the production of opto-
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Figure 2.1. Due to the high aspect ratio, particles of p-azoxyanisole (PAA) and other liquid crystals often re-
semble rods.

electronic devices such as watches and portable calculators [47, 48]. Continuous progress in
the electronics industry allowed for extending the applications of liquid crystals to lasers and
liquid crystal display (LCD) devices [49, 50]. The traditional manufacturing method relied
on filling a thin gap with a nematic material [51]. The procedure is time consuming, and
alternative approaches of LCD production are investigated [52]. Faster methods allow for
an increased throughput; however, they introduce more strain on the nematic microstructure,
which can decrease the display quality. Therefore, modelling the flow-director interaction
plays a crucial role in the product development [53]. Further improvements in the quality of
LCD devices are more possible by the exploitation of liquid crystals with non-axisymmetric
molecules [54]. Liquid crystals are also used in the detergent industry to produce soaps,
which consists of amphiphilic molecules, whose hydrophobic part provides the cleaning ac-
tion. Amphiphiles assemble into larger structures, and the final shape of the macromolecules
is predicated on the amphiphile concentration [55]. At intermediate concentrations, am-
phiphiles form rod-like particles, while at high concentrations the structure resembles sheets
of elongated cylinders. Both structures are characterised by a high degree of orientational
alignment, therefore resulting in anisotropic properties [21].

In the case of simple materials (water, oil), the liquid-solid transition occurs by decreas-
ing temperature, which strengthens molecular interactions, resulting in rigid solids. For liq-
uid crystals, the transition involves several intermediate stages [56] and can be driven either
by changing temperature (thermotropic LC) or the concentration of anisotropic particles (ly-
otropic LC). As the liquid-solid transition occurs, the degree of orientational alignment be-
tween neighbouring macromolecules increases and the centres of gravity of anisotropic par-
ticles tend to exhibit a long-range ordering in one or two directions. The latter characteristic
is the basis for distinguishing different types of liquid crystals:

• Nematics - these consist of rod-like molecules oriented on average in the same direction,
and there is a short range ordering between their centres of mass (fig. 2.2 b) [57]. The
susceptibility of nematic particles to the electric field is exploited in the optoelectronic
industry to produce watches and portable calculators.

Cholesterics are a subgroup of nematics whose chiral structure lacks a mirror symmetry
(fig. 2.3) and resembles the shape of some cholesterol esters (hence the name cholester-
ics [58]). Similarly to nematics, cholesterics have also been predominantly exploited in
the display industry.

A subgroup of nematics can be identified with different degrees of orientational order
along three distinct axes, called biaxial liquid crystals [57]. The biaxial state can be
formed either by planks with both long and medium axes having common orientations
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Figure 2.2. Schematic depiction of the structure of a a) crystal, b) liquid crystal, c) isotropic fluid consisting of
anisotropic objects.

(fig. 2.4) or by axi-symmetric rods whose rotation is constrained along a certain di-
rection, giving an impression of a secondary alignment direction (fig. 2.5). Biaxial
nematics were discovered relatively recently, in 2004 [59, 60], over forty years after
their existence was predicted theoretically [61].

• Smectics have a lamellar structure, where the molecules in each layer point on average
in the same direction. We distinguish different types of smectics, depending on the
molecule orientation within each layer (smectic A and C [62, 63], fig. 2.6) [21, 64], or
the arrangement of their centres of gravity. The properties of smectic liquid crystals are
primarily exploited in the cleaning industry, as at high concentrations micelles tend to
form sheets of elongated cylinders [55].

• Columnar phase - is the phase with the highest positional order; each layer consists of
discotic elements arranged in a two-dimensional lattice, pointing in the same direction
(fig. 2.7) [65]. The fluid-like behaviour arises from the lack of positional order in each
column, as the distances between particles vary [21].

z

Figure 2.3. Schematic representation of alignment of particles in cholesterics.

2.2 Director and the order parameter

The complete information about the orientational distribution of rod-like molecules within
a nematic is provided by the orientational distribution function p(a) that describes the chance
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Figure 2.4. A biaxial liquid crystal consisting of planks with the medium axis aligned in a preferential direc-
tion.

of finding a particle, whose main axis points in the direction a [21]. Since liquid crystal
particles are represented by headless rods, a pair of vectors with the opposite signs represents
the same state p(a) = p(−a). For isotropic systems, the orientational distribution function is
independent of a and p = 1/4π [15]. This is not the case for nematic liquid crystals, in which
the long axis of rod-like particles points on average in a common direction. The description
of the microstructure via the orientational distribution function is computationally expensive
and thus rarely used for industrial purposes [66]. Instead, the structure is characterised via
the director field n, defined as the average molecular direction of an assembly of rod-like
particles [57] (fig. 2.8). n is a unit vector, which represents only the orientation of rod-like
particles and its length does not change. Due to the head-tail symmetry of nematics, vectors
n and −n represent the same physical state.

The director field describes only the average local orientation of rod-like particles, however
n does not provide any information on the degree of alignment, which can vary between
systems described by the same director field (fig. 2.9). The first approach to quantify the
degree of alignment is to use the first moment of the orientational distribution function

〈n · a〉 = 〈cos θ〉, (2.1)

where 〈·〉 is the average operator and θ measures the misalignment between director and a
single particle. Since liquid crystal particles are headless (p(a) = p(−a)), for each molecule
misaligned by θ with respect to the director field, there is a particle misaligned by θ + π, so
〈cos θ〉 = 0. Therefore, the degree of molecular alignment is measured by the secondmoment
of the distribution function

S =
1

2
〈3 cos2 θ − 1〉, (2.2)

referred to as the order parameter. In nematic systems, −0.5 ≤ S ≤ 1 [67]; when all
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Figure 2.5. Example of a biaxial liquid crystal field. The director (red rods) aligns on average along the z−di-
rection (the long axis), but there is also a preferential ordering along the x−direction (medium axis) repre-
sented by an ellipse with rx > ry .

a) b)

Figure 2.6. Comparison of a smectic A (a) and a smectic C (b). Particles in smectics A are aligned (on aver-
age) in the direction normal to the layer, and are tilted in case of a smectic C.

particles are perfectly aligned with n, S = 1, while for isotropic systems the director cannot
be defined and S = 0 [21]. The order parameter is a molecular quantity and changes in S
occur over distances significantly smaller than the mean director orientation. For that reason,
the majority of liquid crystal theories based on the director framework describe only the mean
orientation of rod-like particles and fails to provide any information on the order parameter.
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Figure 2.7. Schematic illustration of columnar phases, where individual disks represent disk-shaped
molecules. The distance between layers may vary.

- /2 0 /2
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Figure 2.8. Example distribution functions of nematic liquid crystal with a horizontal and vertical director
fields. θ measures the angle between a single liquid crystal particle and vertical direction. Due to the head-tail
symmetry, only the range −π/2 ≤ θ ≤ π/2 is shown.

2.3 Wall anchoring

Liquid crystals are characterised by the long-range orientational order that has a substantial
effect on their mechanical, electrical and optical properties [21]. In static cases, the direction
ofn can be controlled on solid boundaries through surface treatment [68]. Rubbing a surface
along a certain direction produces microscopic rows (fig. 2.10) and the director is more likely
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Figure 2.9. Schematic visualisation of a nematic field with a constant director orientation and varying order
parameter. Red, orange and green colours denote high, medium and low order parameters, respectively.

to align along them, in the wall-parallel direction [21, 69]. On the other hand, an application
of detergents with high aspect ratio particles (polyamides and lipids) attaches a polar head to
the surface, imposing a wall-normal (homeotropic) orientation (fig. 2.11) [21]. Depending
on the strength of wall effects, the boundary conditions may be grouped into [43]:

• Strong anchoring (Dirichlet boundary condition) - the wall interaction is strong enough
to fix the director orientation irrespective of other fields (i.e. magnetic or flow-induced).

• No anchoring (Neumann boundary condition) - when the wall exerts no effect on the
director, it aligns in the same direction as nearby particles to minimise the director dis-
tortion.

• Weak anchoring (Robin type boundary condition) - intermediate condition. The director
has a preferred orientation at the wall, but if the contribution from other fields (such as
the flow or magnetic fields) is strong enough, the anchoring deviates from the preferred
direction [70]. This generates an additional surface energy [43, 71]

fs =
1

2
a0(1 + φ(n · ν)2), (2.3)

where a0 controls the resistance to deviation from the preferred orientation, ν is the
wall-normal vector. If −1 < φ < 0, the director favours alignment parallel to ν
(homeotropic), while for φ > 0, a surface-aligned orientation minimises the additional
surface energy. In the limit of a0 → 0 and a0 → ∞ zero-gradient and fixed value
boundary conditions are restored respectively.

2.4 Rheology of liquid crystals

Some of the liquid crystal applications (display devices) exploit the optical properties of
liquid crystals and typically involve static configurations, where significant director distor-
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Figure 2.10. Schematic illustration of a surface imposing a wall-parallel anchoring. The surface was rubbed
along the y− direction, which created microscopic rows, hence imposing alignment in the parallel direction.

head

tail

Figure 2.11. Head of a detergent molecule is attracted to the solid surface, which imposes a wall normal ori-
entation.

tions can be caused by electric fields. That is not the case in injection moulding, where
anisotropic properties of liquid crystal polymers are utilised to produce high strength, light
materials (e.g. Kevlar) with numerous applications including medicine, sports equipment
and manufacturing of automotive parts [72]. Rheological characteristics of liquid crystals
not only determine the power expenditure required to pump the fluid but also, depending on
the orientation of the long axis, control the material strength [73]. Despite the importance
of liquid crystal polymers, their rheology is not completely understood. Mięsowicz demon-
strated that by restraining the orientation of the long axis through an external field (fig. 2.12),
the shear viscosity could differ by a factor of four; when the director lies parallel to the ve-
locity gradient, particles have limited freedom to travel as they frequently collide with each
other, increasing the flow resistance. On the other hand, particles aligned in the flow direc-
tion can easily slide past each other, which results in the smallest viscosity [74]. The viscosity
of a liquid crystal can also be controlled through temperature [75]; at low temperatures, the
viscosity displays a strong orientational dependence, as shown in fig. 2.13. However, above
the nematic to isotropic transition temperature, the long-range ordering is lost, the director
distribution is isotropic, thus erasing all effects of previous ordering [75].

Apart from external factors (temperature, magnetic field), the mechanical properties of
liquid crystals also depend on shear rate and deformation history. For that reason, their rheol-
ogy is complex and not fully understood. Based on experimental measurements, Onogi and
Asada [76] proposed a three region curve (fig. 2.14) consisting of a pair of shear-thinning
regimes separated by a Newtonian regime. The curve is not fixed for all materials with some
liquid crystals experiencing monotonic shear thinning in the range 10−3 s−1 < γ̇ < 103 s−1,
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Figure 2.12. Schematic representation of director orientations considered by Mięsowicz in his experiment.
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Figure 2.13. Qualitative behaviour of liquid crystal samples as a function of temperature with different direc-
tor orientation in the ordered state. The vertical black line represents a nematic-isotropic transition tempera-
ture.

which makes the distinction between region I and III hard or impossible [27]. Despite those
complications, there is a reasonable agreement on the mechanisms governing the material
behaviour in each regime.

2.4.1 Region I

The low shear rate region I was understood the latest and stimulated themost academic dis-
cussion [27]. The currently accepted explanation for shear-thinning stems from rheo-optical
measurement, wherein the system is seen to be an assembly of jammed domains (fig. 2.15
I), each with a different orientation [77]. The structured morphology results in high viscos-
ity understood as the yield stress. As the shearing progresses, liquid crystal domains align
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Figure 2.14. Three-region viscosity curve proposed by Onogi [76].

with the flow, and the viscosity decreases [76, 78]. Other mechanisms explaining the shear
thinning in region I have been suggested: 1) flow induced phase transition (however this is
more likely to be significant at higher shear rates) [27]; 2) mechanical stress arising from the
homeotropic boundary condition resisting the director deformation [79] (this only accounts
for a small fraction of the yield stress measured in experiments).

The rheology in the region I is strongly affected by mechanical, chemical or thermal his-
tories; for example, the poly-domain network can be partially destroyed by shearing, so the
effect of the previous deformation must be considered as it affects the current viscosity [80].
Similarly, the defect structure melts upon heating (thermotropic phase transition), reducing
or eliminating the yield stress and changing the flow behaviour to a constant viscosity region
II [81].

2.4.2 Region II

Region II is well understood and describes the behaviour of both isotropic and anisotropic
liquid crystals. The structure is not as jammed as in region I (fig. 2.15 II), however, elastic
effects are strong enough to maintain a fixed director orientation. This results in a constant
viscosity, which is strongly dependent on the molecular weight [82] and concentration. When
a concentration is increased beyond the threshold value, a lyotropic phase transition occurs,
decreasing viscosity by a factor of two compared to the isotropic state [83].

2.4.3 Region III

Region III is the simplest part of the flow curve to describe - the shear rate and stresses are
large, so any poly-domains are destroyed (fig. 2.15); the director aligns in the flow direction
resulting in a shear-thinning behaviour [78].
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Figure 2.15. Schematic illustration of material microstructure in different shear regimes [76].

2.4.4 Normal stresses

The long-range orientational order has a significant effect on normal stresses, where the
first normal stress difference N1 = τ11 − τ22 (numbers 1 and 2 denote the flow and flow
gradient directions, respectively) in ordered systems can be an order of magnitude larger than
in isotropic solutions with the same shear viscosity [73]. There is a significant disparity in
the normal stress behaviour of many liquid crystals; some of them only exhibit positive N1,
similarly to entangled polymers [20], while in others, regions of positive and negative normal
stresses exist. The range of shear rates with negative N1 depends on polymer concentration
and molecular weight [84]; however, it is most frequently encountered at the onset of region
III [15]. Negative normal stresses were observed in nematic and cholesteric states, but not
isotropic, suggesting that the phenomenon is related with long-range orientational effects
[84]. The hypothesis is confirmed by the theoretical calculations, which show that N1 < 0

occurs when the long axis of a liquid crystal is oriented at 45o − 135o to the flow direction
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[85]. Transient normal stresses were observed even for a larger group of materials, but they
are related with yield stress, and the flow reversal [81].

2.4.5 Scaling rules

Steady state viscosity

Liquid crystals also possess distinct scaling properties, which was demonstrated by Fishers
and Fredrickson [86]. They pumped p-azoxyanisole (PAA) through a set of pipes of different
sizes with homeotropic boundary conditions in the absence of external fields. It was observed
that the material is shear thinning, as predicted in the three region curve. The decrease in
viscosity is caused by the re-orientation of the director to a flow aligned state (fig. 2.16),
resulting in less resistance to the motion of rod-like molecules. The data points, however,
collapse onto a single curve when plotted against γ̇L2 (fig. 2.17), as opposed to polymeric
melts whose viscosity scales with the shear rate γ̇ [20, 87].

Figure 2.16. Viscosity as a function of shear rate (γ̇ ∝ 4Q
πR3 ) for a set of pipes with different diameter [86].

Higher numbers indicate larger diameters. Reprinted with permission from [86]. Copyright 2022 Taylor &
Francis Group.

Strain recovery

Larson and Mead [88] experimentally measured the strain relaxation upon the cessation
of torque in a Couette flow (fig. 2.18). In their experiment, a constant torque T is applied
on the inner cylinder and the fluid rotates until a steady state is reached. The torque is then
removed and material recoils. For a Newtonian fluid the strain relaxes exponentially [88]

γrelaxed = γ̇0 exp(−t/tI), (2.4)
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Figure 2.17. When the viscosity is plotted against γ̇L2 ∝ 4Q
πR data points measured at different diameters col-

lapse on the same curve [86]. Reprinted with permission from [86]. Copyright 2022 Taylor & Francis Group.

inner cylinder 

(rotating)

outer cylinder

(stationary)inner cylinder

(stationary)

fluid

Figure 2.18. Schematic depiction of the setup used in the experiment.

where γ̇0 is the steady state shear rate and tI = T
Jδ

is the relaxation time, J is the moment of
inertia of the inner cylinder and δ is the gap size. Thus the total strain is given by

∆γ =

∫ ∞

0

γ̇0 exp(−t/tI)dt = γ̇0tI , (2.5)

so upon the cessation of torque the strain scales linearly with the shear rate γ̇0. That is not
the case for liquid crystals, where the recovered strain is not a function of the γ̇0 (fig. 2.19a),
even in the low shear rate, constant viscosity region [88]. The strain relaxation history nearly
collapses when plotted as a function of γ̇0t (fig. 2.19b), suggesting that the deformation rate
imposes a characteristic time-scale of the process.
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Figure 2.19. a) Variation of recovered strain with time for a PBLG solution with 30% liquid crystal content.
The imposed stresses (from left to right were) 25, 50, 100, 200 and 450 dyn/cm2; b) the same variation plotted
as a function of dimensionless time γ̇0t. Reprinted with permission from [88]. Copyright 2022, The Society
of Rheology.
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Small amplitude oscillatory shear

The transient response of a complex fluid can be investigated in the small amplitude os-
cillatory shear (SAOS) test, which indicates the relative importance of liquid- and solid-like
stresses [18]. Applying a small, periodic deformation γ(t) = γ0 sin(ωt), the fluid responds
with stress that can be decomposed into components proportional to the strain (viscous) and
the strain rate (elastic):

τ12 = G′ sin(ωt) +G′′ cos(ωt), (2.6)

where G′ and G′′ are called storage and loss moduli. A Newtonian fluid can respond with a
shear stress only, so G′ = 0, while an elastic solid behaves like a spring and G′′ = 0.

Moldenaers and Mewis [89] experimentally measured the response of liquid crystals to
a periodic deformation. Their results show that the reaction strongly depends on the shear
rate; the microstructure is hardly distorted at low frequencies, so G′′ >> G′, indicating a
Newtonian behaviour. As the deformation rate increases, the loss and storage moduli tend
to the same value (fig. 2.20), so viscous and elastic components are equally important. As
shown by Fishers and Fredrickson, the geometry size also affects the fluid rheology. For
that reason, Moldenaers and Mewis used a domain with a gap large enough to erase any
wall induced effect. Their insight provides important information on the scaling properties;
industrial geometries need not be large enough, and wall anchoring may play a role.

It would be valuable tomeasure the storage and lossmoduli in situations where the effect of
boundary conditions is significant. The loss modulus is expected to be larger in the flow with
homeotropic anchoring due to the higher viscosity, but the behaviour of the storage modulus
is unknown. Homeotropic anchoring typically results in higher elastic stresses [15, 43], so
G′, would presumably increase, but in order to assess the effect of wall anchoring better, more
experiments must be undertaken.

2.5 Equations of motion

The motion of a fluid is governed by a set of partial differential equations describing the
conservation of mass and momentum. Fluids considered in this thesis are isothermal and
incompressible (∂ρ

∂t
= 0) and the mass balance equation becomes a velocity constraint

∇ · v = 0, (2.7)

where v is the velocity vector. Additionally, the linear momentum balance provides the ve-
locity evolution equation, which in the most general form is given by

ρ
Dv

Dt
= −∇p+∇ · τ , (2.8)
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Figure 2.20. Equilibrium values of G′ and G′′ as a function of shear rate. Reprinted with permission from
[89]. Copyright 2022, The Society of Rheology.

where D
Dt

= ∂
∂t

+ v · ∇ is the material derivative, p is pressure and τ is the stress tensor,
which includes viscous and elastic components. The stress may depend on the state of mi-
crostructure; therefore, it is often necessary to provide an additional equation of the form

Dc

Dt
= f(...), (2.9)

where c denotes the microstructure-related variable and f(...) is a material-dependent func-
tion.

2.6 Newtonian model

The Newtonian approximation is the simplest approach to model the stress tensor. The
building blocks of a fluid (atoms/molecules) are assumed to be infinitely small compared
with the characteristic size of the flow, so the pressure and density change continuously on
the macroscopic scale [17]. Upon deformation, the system returns to the equilibrium state
withinO(10−12) s [90]. This is negligibly small compared to industrial time-scales, typically
in the range O(10−3) − O(103) s [17]. Therefore, as far as the industrial flow times scales
are concerned, the microstructure of a Newtonian flow responds instantaneously to imposed
deformation (fig. 2.21); equilibrium of the microstructure is thus always maintained, and the
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stress tensor is linearly proportional to the strain rate

τ = ηγ̇ = 2ηD, (2.10)

where

γ̇ = ∇v +∇vT = 2D. (2.11)

The assumption of constant viscosity η works well for commonly encountered Newtonian
fluids such as water, oil and air (at low speeds) [45, 91, 92]. Their relaxation time is very
small, so an enormous deformation rate (either impossible or impractical to achieve) is needed
to alter the fluid microstructure. That is not the case for complex fluids (emulsions, polymers
or liquid crystals), whose relaxation and deformation time-scales are much closer and often
of a similar order of magnitude [17]. The microstructure of a non-Newtonian fluid at low
shear rates remains unaltered (similarly to a Newtonian fluid), but as the deformation rate
increases, the structure cannot fully relax, which results in a complex stress-strain response
with variable viscosity or history effects [18, 93–95]. None of these characteristics can be
represented by the Newtonian approximation, so another approach is needed to model the
behaviour of complex fluids [17, 18].

deformation

Newtonian uid Fluid with a complex

 microstructure

Figure 2.21. Schematic representation of the effect of deformation on the microstructure. The structure of a
Newtonian fluid remains unaltered (for industrially-relevant timescales), while the internal structure of fluids
with a complex microstructure is deformed, affecting material properties.

2.7 Generalised Newtonian Fluid models

The drawback of the constant-viscosity Newtonian approach is addressed by the Gen-
eralised Newtonian Fluid (GNF) models, which are derived based on the observation that
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the viscosity changes with the shear rate. They represent only a phenomenological behaviour
without providing any insight into the physics of material deformation. The stress in the GNF
relations maintains the same structure as in the Newtonian fluid (eq. 2.10), but the viscosity
becomes a shear rate-dependent variable [17]

η = η(γ̇). (2.12)

GNF models are versatile - the viscosity definition (2.12) can represent many non-Newtonian
characteristics such as shear thinning (viscosity decreases as the shear rate increases), shear
thickening (viscosity increases as the shear rate increases), or a yield stress [17].

Viscosity is a scalar quantity, and thus, its value should be independent of the reference
frame. Assuming that the effective viscosity depends on the rate of strain tensor, η must be a
function of the invariants of γ̇ to remain frame indifferent [18]. The first invariant is [17]:

Iγ̇ =
3∑
i=1

γ̇ii = ∇ · v. (2.13)

Iγ̇ equals zero for an incompressible fluid and therefore is not suitable to model η. The second
invariant of γ̇ is

IIγ̇ = γ̇ : γ̇ =
3∑
i=1

3∑
j=1

γ̇ij γ̇ji, (2.14)

and the third invariant is

IIIγ̇ = tr(γ̇ · γ̇ · γ̇) =
3∑
i=1

3∑
j=1

3∑
k=1

γ̇ij γ̇jkγ̇ki. (2.15)

For two-dimensional flows, one of the components of eq. (2.15) is always zero. Thus, IIIγ̇
cannot be used in the viscosity function. The only non-zero invariant is then IIγ̇ [18] whose
magnitude:

|γ̇| =
√
IIγ̇
2
, (2.16)

is used as a basis to calculate the shear-dependent viscosity.

2.7.1 Power-law model

The power-law model is the simplest of the GNF models, where η is a power function of
the shear rate [18]

η(γ̇) = m|γ̇|n−1, (2.17)
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where m is the consistency index (it can be understood as the viscosity at γ̇ = 1 s−1 [18])
and n determines the type of non-Newtonian behaviour (fig. 2.22):

• n = 1 produces a constant viscosity η = m.

• n < 1 describes the shear thinning behaviour.

• n > 1 describes the shear thickening behaviour.
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Figure 2.22. Viscosity variation predicted by the power-law model.

The power-law model predicts that in a shear-thinning fluid, the viscosity becomes infi-
nite at low shear rates and tends to zero for large γ̇ [18, 96, 97]. This feature is unphysical
and computationally expensive - higher viscosity enforces smaller time steps, thus increasing
the simulation time [37]. Experiments show that in those limiting scenarios, the viscosity
plateaus [17] (fig. 2.23), which is not accounted for in the power-law model; thus, its appli-
cability is limited to flows where γ̇ falls in the variable viscosity regime (between γ1 and γ2
in fig. 2.23).

Figure 2.23. Typical viscosity variation of a shear-thinning fluid. The viscosity changes between γ̇1 and γ̇2
and remains constant outside this region.
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2.7.2 Carreau-Yasuda (CY) model

The problem of unbounded viscosity is eliminated in the Carreau - Yasuda model which
expresses the effective viscosity as [17]:

η(γ̇) = η∞ + (η0 − η∞)[1 + |γ̇λ|a]
n−1
a , (2.18)

η0 and η∞ are zero and infinite shear limits, n < 1 and a > 0 control the viscosity variation in
the shear-thinning/shear-thickening region. λ does not have a physical meaning, but since it
has units of time, it can be understood as the fluid relaxation time-scale and thus λγ̇ describes
the ratio of fluid relaxation to flow time-scales. For λγ̇ << 1, the fluid relaxes more quickly
than the strain rate perturbation; the second term in eq. (2.18) approaches η0 − η∞, and the
viscosity reaches the low strain rate plateau η0. As λγ̇ → O(1) and larger, the strain rate
deforms the flow faster than it can relax; the stress increases, and this is manifested by the
power-law dependence in the square bracket, which initially causes the viscosity to decrease
(for a shear-thinning fluid), before reaching the high strain rate plateau. For fluids with a large
difference between limiting viscosities η0 >> η∞, the Carreau-Yasuda model at large strain
rates λγ̇ >> 1 simplifies to [17]

η(γ̇) = η0|γ̇λ|n−1, (2.19)

which is the power-law behaviour.

The shear curve of the CY model (fig. 2.23) displays a similarity to many non-Newtonian
fluids. For that reason, the relation has been successfully applied to model non-Newtonian
flows in shear dominated geometries such as arteries [98–100] and microchannels [101–103].

2.7.3 Bingham model

There is a special class of materials that are solid-like at low shear rates and liquid-like
at higher shear rates, for example toothpaste, mayonnaise and drilling muds [104]. The first
model to capture this behaviour of fluids was suggested by Bingham [105], who proposed
modelling the viscosity according to

η =

∞, |γ̇| ≤ γ̇0.

η0 + τ0|γ̇|−1, |γ̇| > γ̇0.
(2.20)

γ̇ and γ̇0 denote the applied shear rate and the critical shear rate above which the material
yields, respectively. The Bingham model is suitable for viscoplastic [106] fluids, where the
yield stress has an effect on the flow. In the limit of high shear rate, the Bingham model
predicts a constant Newtonian viscosity, which need not be the case for complex fluids such
as gels and soaps [40, 41].
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2.7.4 Herschel-Bulkley model

A correction to the Bingham model, allowing shear thinning/thickening behviour at high
shear rates is provided by the Herschel-Bulkley model, where the effective viscosity is given
by [30]

η =

∞, |γ̇| ≤ γ̇0.

η0|γ̇|n−1 + τ0γ̇
−1, |γ̇| > γ̇0.

(2.21)

n is a material parameter that controls the viscosity variation in the shear thinning region.
In a pipe flow, the HB equation predicts the existence of a plug flow near the axis (the size
of which depends on the magnitude of the yield stress τ0 (fig. 2.24)) and for that reason the
model is used to analyse the flow of soap [5].
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Figure 2.24. Increasing the yield stress τ0 increases the width of the plug region.

2.7.5 Summary of the GNF models

Because of the similarity to the Newtonian model, GNF relations are simple to use or
implement in numerical solvers [107]. They have been successful in predicting the pressure
drop of polymeric flows [108] in shear dominated geometries. On the other hand, there are
some drawbacks of the GNF models that limit their reliability:

• Experimental measurements of complex fluids (such as polymeric melts or liquid crys-
tals) indicate non-zero normal stress differences in simple shear flows [15, 18, 27]. Nor-
mal stresses are a manifestation of elasticity of the internal microstructure; they cannot
be captured by GNF relations, which have Newtonian characteristics, and therefore fail
to account for stresses unrelated with the mode of deformation (e.g. shearing produces
only shear stresses, extension results only in normal stresses). The incorrect prediction
of normal stresses is not an issue in simple geometries, e.g. straight pipes, where the
pressure drop comes from shearing only [18]. However, as the geometry complexity
increases (which is typical in FMCG processing), the improper technique of modelling
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normal stresses is detrimental, particularly with flows where the extensional component
is significant, e.g. the screw extruder.

• The viscosity of complex fluids depends on the deformation history [27]; in the case
of liquid crystals, the previous shearing can destroy some of the existing defects, hence
reducing the viscosity. On the other hand, GNF fluids model the viscosity as a function
of the instantaneous deformation rate, so incorporating history effects is impossible.

• As discussed in section 2.4, the effective viscosity of liquid crystals depends on the
orientation of the director. Particles aligned in the direction of the velocity gradient
result in a higher viscosity compared to the flow aligned state [109]. The presence of
walls can control the director/velocity alignment. Therefore, since GNF models assume
that the deformation rate is the only variable that can affect the viscosity, they cannot
replicate the effect of wall anchoring.

2.8 Nematodynamics

Generalised Newtonian Fluid models address some drawbacks of the Newtonian approx-
imation; however, they fail to account for the anisotropic properties of liquid crystals, which
is the motivation to introduce nematodynamic equations. The theories covered in this sec-
tion treat the nematic fluid as an assembly of rod-like particles, and the state of the system is
governed by the interaction of anisotropic particles with the flow (fig. 2.25). In addition to
continuity and linear momentum equations, the system is described by the angular momentum
balance governing the director orientation.

shear rateorientation

stress

γn

σ

Figure 2.25. Coupling between stress, flow and the director orientation.

2.8.1 Transversely isotropic fluid (TIF) model

The first constitutive equation devoted to liquid crystals was introduced by Ericksen [110],
who considered an assembly of ellipsoidal particles with preferred orientation described by
the directorn. Ericksen assumed that the stress has only a viscous component, which depends
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on the interaction between flow and microstructure

τ = τ (n,D). (2.22)

Additionally, in the absence of elasticity, Ericksen proposed that the director orientation
evolves according to

N = ṅ− n · ω = g(n,D), (2.23)

where the superscripted dot denotes the material derivative and g is an unknown function
describing effect of material deformation on director evolution. D = 1

2
(∇v + (∇v)T ) and

ω = 1
2
(∇v−(∇v)T ) are symmetric and anti-symmetric components of the velocity gradient.

Hence, the corotational time derivative of the directorN measures the relative rotation of n
with respect to the surrounding fluid. The evolution equations are formulated in termsN and
D instead of ṅ and∇v to ensure frame indifference [111]. Ericksen then made the following
assumptions about the stress and director fields [110]

• n and−n represent the same orientation, so τ (n,D) = τ (−n,D).

• τ and g depend linearly on the strain rate tensorD.

• The director remains a unit vector |n|2 = 1, so ∂(|n|2)
∂t

= 2n · ṅ = 0.

• The stress tensor is symmetric.

Therefore, the most general forms of τ and g satisfying the above requirements are given by
[110]

τ = A0 +A1 ·D +D ·A1, (2.24)

g = B1 ·D +D ·B1, (2.25)

where Ai and Bi are constant matrices. In order to ensure frame invariance, each matrix
must be a linear combination of nn and the identity tensor δ [110], which in index notation
can be written as

A0
ij = β1δij + β2ninj, (2.26a)

A1
ijkp = β3δijδkp + β4δijδjp + β5δipδjk + β6δijnknp + β7δjkninp + β8δiknjnp

+β9δipnjnk + β10δjpnink + β11δkpninj + β12ninjnknp,
(2.26b)

B1
ijk = β13niδjk + β14njδik + β15nkδij + β16ninjnk, (2.26c)

Combining eq. (2.24) with (2.26) gives the most general form of the stress tensor

τ = 2µD + µynn+ 2µ1D : nnnn+ µ2(nn · D +D · nn), (2.27)

where 2µD is a Newtonian contribution, while 2µ1D : nnnn and µ2(nn · D + nn · D)
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can be understood as stresses oriented along the director and straining axis [112], respectively.
The second term in eq. (2.27), µynn, represents an orientation-dependent yield stress, which
is often omitted [15]. Since the stress (2.27) was derived from purely formal arguments [110],
the last two terms are not easy to interpret physically.

The derivation of the angular momentum equation follows the same procedure as for the
stress tensor, and the angular momentum balance reads

ṅ− n · ω + λn · D = κn, (2.28)

where ω is the vorticity tensor and λ is the tumbling parameter, which quantifies the relative
importance of extensional and rotational effects acting on the director. κ is a Lagrange mul-
tiplier that enforces a constant director magnitude; κ can be calculated by taking the scalar
product of eq. (2.28) with n, and the angular momentum balance can be re-written as

ṅ− n · ω + λ(n · D − nnn : D) = 0. (2.29)

Equations (2.27) and (2.29) combined with the momentum and continuity equations consti-
tute the transversely isotropic fluid model.

Interpretation of the angular momentum equation

The angular momentum equation indicates that the director orientation is governed by the
competition of rotational and extensional flows. In the limit of λ→ 0, the director only feels
the action of rotational flow; therefore n spins as long as ω 6= 0. On the other hand, when
λ → ∞, the contribution of vorticity is negligible and a steady-state director orientation is
given by the solution of

n · D − nnn : D = 0. (2.30)

In a two-dimensional flow, the director can be represented in terms of the polar angle θ (fig.
2.26)

n =
[
nx ny

]
=
[
cos θ sin θ

]
, (2.31)

and the symmetric strain rate tensor in the most general form is given by

D =

[
A 1

2
1
2

−A

]
γ̇, (2.32)

whereA quantifies the ratio of extensional to shear flows. For |A| >> 1 the flow is dominated
by the extensional component, while A → 0 corresponds to shear flow. Substituting the
simplified definitions ofn (2.31) andD (2.32) into eq. (2.30) and solving for the steady state
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angle gives

tan(2θ) =
1

2A
. (2.33)

n
x

y

θ

φ

n

Figure 2.26. Schematic visualisation of angles θ and φ.

By decomposing the strain rate tensor (2.32), the eigenvector corresponding to the positive
eigenvalue lies along the direction prescribed by the vector

[
cosφ sinφ

]
=

[
− 1

(
√
4A2+1+2A)

√
(
√
4A2+1+2A)2+1

1√
(
√
4A2+1+2A)2+1

]
, (2.34)

where φ is the angle between the eigenvector corresponding to the positive eigenvalue and
the horizontal direction (fig. 2.26). Some algebraic manipulation reveals that φ satisfies

tan(2φ) =
1

2A
= tan(2θ). (2.35)

Therefore, the termn · D−nnn : D acts to align the director along the extension direction.
Thus, λ describes the relative importance of rotational effects (that continuously rotate the
director) and extensional effects (acting to align the director along the extension direction).
In a shear flow, for 0 < |λ| < 1 the director rotates continuously with a period P = 2π

γ̇
√
1−λ2

[113] (tumbling), while when |λ| ≥ 1, n aligns at an angle θL to the flow direction:

tan θL = ±
√
λ− 1

λ+ 1
. (2.36)

For the liquid crystals considered in this thesis, the tumbling parameter λ > 1, characteristic
for flow aligning materials [15].

Limitations of the TIF model

The TIF model performs well in strong flows where the director orientation is only af-
fected by the flow. However, in the absence of flow, the angular momentum equation (2.29)
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simplifies to

∂n

∂t
= 0, (2.37)

which effectively allows for any director configuration. The TIF model fails to account for
microstructure elasticity and therefore permits arbitrary long-range orientational distortions;
two example configurations allowed by the TIF model are shown in fig. 2.27.

(a)
(b)

Figure 2.27. Possible static configurations (well ordered nematic (a) and isotropic (b) allowed by the TIF
model in the absence of flow. In both cases the stress field is zero.

The drawbacks of the TIF model can be eliminated by introducing elastic effects, which
act to minimise distortions of the director field.

2.8.2 Thermodynamic potential

When complex fluids are deformed, they respond with a viscoelastic stress [18]. The
elastic contribution has entropic origins and represents the effects of reversible changes in
the configuration of macromolecules. In the absence of external forces, the microstructure
of a complex fluid evolves towards the equilibrium state, which maximises the entropy of the
universe [114, 115]. Since the entropic effects are absent in the TIF model, the theory fails
to account for non-zero elastic stresses that would otherwise drive the system towards the
equilibrium state; this failure allows for arbitrary director distortions (fig. 2.27), which have
no entropic consequences.

More generally, the thermodynamic state of the system can be considered as a potential
(in an analogy with mechanical or electrostatic potentials), which reaches its minimum value
in the stable equilibrium [115]. Depending on the nature of the process, different potential
definitions can be provided, e.g. Gibbs and Helmholtz free energies [114]. For a system at
constant volume and temperature, the maximisation of universe’s entropy is equivalent to the
minimum system’s Helmholtz free energy, which is defined as [64, 116]

dF = dU − TdS = 0, (2.38)

where U is the internal energy of the system, T is the temperature and S represents system’s
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entropy. The exact form of S and thus F is determined by the physics of the microstructure
and modelling assumptions. This thesis focuses on liquid crystals, where the Helmholtz free
energy density f = f(n,∇n) depends on the distortion of the director field [35]. The total
energy of the system is thus given by

F (n,∇n) =

∫
Ω

f(n,∇n)dΩ, (2.39)

where Ω is the control volume enclosing the liquid crystal and the director orientation is
known on the boundary ∂Ω. Introducing a variation δn to the director field in the bulk of the
fluid, the corresponding variation of the total system’s energy density is

δF =

∫
Ω

(
∂f

∂n
· δn+

∂f

∂∇n
· δ(∇n)

)
dΩ

=

∫
Ω

(
∂f

∂n
−∇ ·

(
∂f

∂∇n

))
· δn dΩ +

�������������∫
Ω

∇ ·
(

∂f

∂∇n
· δn

)
dΩ , (2.40)

where the crossed-out term can be transformed into a surface integral and vanishes because
δn = 0 on the boundary. Hence, the functional derivative of F with respect to n can be
defined as

δF

δn
≡ ∂f

∂n
−∇ ·

(
∂f

∂∇n

)
, (2.41)

and measures the deviation of the system from the minimum energy state. The system is in
equilibrium when δF

δn
= 0, which is known as the Euler-Lagrange equation.

Nematic energy (director)

Nematic liquid crystals act like elastic materials when their microstructure is distorted.
Ideally, the director field is uniform throughout the whole domain, which corresponds to the
state of no distortion. However, perfect alignment is not always possible, as the presence of
walls may enforce spatial variation in the director field, producing a long-range orientational
distortion. When the director orientation imposed by the walls varies across in the domain,
liquid crystals have less freedom to rotate, which introduces a free energy density penalty
predicted by the Frank-Oseen theory [35, 43, 117]

fd =
1

2
K1(∇ · n)2︸ ︷︷ ︸

splay

+
1

2
K2(n ·∇× n)2︸ ︷︷ ︸

twist

+
1

2
K3(n×∇× n)2︸ ︷︷ ︸

bend

+
1

2
K24∇ · [(n · ∇)n− (∇ · n)n]︸ ︷︷ ︸

saddle-splay

, (2.42)

whereKi are Frank constants quantifying the strength of each effect (fig. 2.28) and the saddle-
splay contribution can be neglected in confugurations with the strong anchoring boundary
condition. Experimental measurements suggest that Ki are of the same order of magnitude
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[118–120], so it is often assumed that

K1 = K2 = K3 = K, (2.43)

which simplifies eq. (2.42) to

fd =
1

2
K(∇n) : (∇n)T , (2.44)

(known as the one-constant approximation).

Bend

Splay
Twist

Figure 2.28. Possible modes of distortion for a liquid crystal [15].

2.8.3 Hamiltonian description of complex fluids

The content presented in the following sections gives the framework for deriving new
constitutive equations, and shows how the nematodynamic theories can be unified by the
Poisson bracket approach.

Lagrangian

The exact evolution of a single particle can be calculated from Hamilton’s principle of
least action, which states that the integral

I =

∫ t2

t1

L(q, q̇)dt (2.45)

is extremum [121]. t1 and t2 are the initial and final times at which the state of the system
is known, L = T − V is the Lagrangian, which measures the difference between kinetic
(T = 1

2
mq̇2) and potential (V = V (q)) energies,m is the particle mass, q and q̇ are position

and velocity vectors, respectively. The minimisation of the Lagrangian over time and space
requires a variational formulation, leading to the Euler-Lagrange equation:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0, (2.46)
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which enables to find the actual evolution of a point particle.

Hamiltonian

The motion of a particle can be alternatively described in terms of its position q and gen-
eralised momentum p = ∂L

∂q̇
. Since the Lagrangian uses q and q̇ as the arguments, it is neces-

sary to employ another function that describes the system in terms of position and momentum
[121]. The Hamiltonian is obtained through the Legendre transform of the Lagrangian

H(q,p) = p · q̇ − L(q, q̇), (2.47)

and measures the total energy of a particle H = T + V . In the Hamiltonian framework, the
system’s evolution is described by a pair of first order differential equations [122]

dq
dt

=
∂H

∂p
,

dp
dt

= −∂H
∂q

. (2.48)

Hence, L and H provide different techniques for modelling the motion of solid bodies.

Properties of the Hamiltonian can be further exploited to describe the time evolution of
functionals, whose value depends on the generalised position and momentum F = F (q,p).
The time derivative of F is given by

d
dt
F (q,p) =

∂F

∂q

dq
dt

+
∂F

∂p

dp
dt

=
∂F

∂q

∂H

∂p
− ∂F

∂p

∂H

∂q
= {F,H}, (2.49)

where {F,H} is the Poisson bracket. Hence, we can model the time evolution of any func-
tional of q and p, provided that the Hamiltonian is specified. In the special case when F
represents the total energy of a particle, F = H , dH

dt = {H,H} = 0, indicating that the
system’s energy is conserved.

Lagrangian and Eulerian description of the flow

So far, the analyses were concerned with single-particle systems, whose evolution can be
expressed through a Poisson bracket. The approach can be generalised to fluids bymonitoring
the evolution of position and velocity of each particle (fig. 2.29a). Particles are labelled with
their coordinates at a reference time t0, and as the flow progresses, the position q and velocity
q̇ are specified as a function of the initial coordinate [122]. This approach to describing the
fluid flow is called the Lagrangian description; it is rarely used in fluid mechanics since fluids
consist of many particles, and tracking each element’s evolution is impossible.

Alternatively, the fluid flow can be described by the Eulerian framework, where instead
of following each particle, properties of the flow field (mass density, momentum density) are
monitored in control volumes, whose position is fixed in time (fig. 2.29b). The transformation
from Lagrangian to Eulerian reference frame is done by the mapping function R, which
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converts the particle label (position at a reference time t0) into a position at an arbitrary
time t′ [123]. The Eulerian-Lagrangian transformation is performed analogously by using
the inverse of the mapping function. The Poisson bracket for a fluid element enclosed in the
control volume Ω is analogous to eq. (2.49) [64]

{F,H} =

∫
Ω

[
δF

δq

δH

δp
− δF

δp

δH

δq

]
dΩ. (2.50)

The bracket formulation provides a systematic mathematical framework for introducing new
phenomenon to the problem. Any physical quantity (for example, velocity or director field)
can be included in the Poisson bracket by assuming that F = F [v(q,p),n(q,p)], which
appropriately modifies the definition of functional derivatives

δF

δq
=
δF

δv

δv

δq
+
δF

δn

δn

δq
,

δF

δp
=
δF

δv

δv

δp
+
δF

δn

δn

δp
. (2.51)

Evolution equations are obtained by converting variables between Lagrangian and Eulerian
frames and replacing the Hamiltonian with the Helmholtz free energy describing material
deformation and kinetic energy. In the case of liquid crystals, whose microstructure is repre-
sented by the director field, the n-dependent part of Hamiltonian represents the Frank-Oseen
distortion energy density (2.42) described in the previous subsection.
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Figure 2.29. Schematic depiction of the a) Lagrangian and b) Eulerian description of the flow.
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Dissipaton bracket

The Poisson bracket describes non-dissipative processes which conserve the system’s en-
ergy; hence the approach is suitable to modelling systems where reversible, elastic stresses
arise due to the deformation of the microstructure. The drawback of the Poisson bracket for-
mulation is that it cannot describe dissipative processes, which are also important in fluid
flow. Therefore, it is a common practice to supplement the Poisson bracket with a dissipation
bracket [F,H], whose purpose is to model fully phenomenological processes, e.g. diffusion,
or flow-director interaction [64]. The dissipation bracket can have an arbitrary form and con-
tain several phenomenological coefficients, provided that [F,H] does not violate the laws of
thermodynamics [124]. By combining the dissipative and Poisson brackets, we obtain a set
of constitutive equations describing the evolution of the system’s variables (e.g. momentum,
microstructure).

2.8.4 Leslie-Ericksen (LE) model

Drawbacks of the transversely isotropic fluid model are addressed by the Leslie-Ericksen
theory, which takes into account director elasticity. Materials considered in this thesis are
incompressible, so the state of the system is described in terms of the velocity and director
fields. The Hamiltonian has kinetic (1

2
v2) and elastic (fd) components with the latter de-

scribing effects of the distortion of director field on the Helmholtz free energy. The Poisson
bracket, which depends on v and n, is supplemented with a fully phenomenological dissi-
pation bracket describing the flow-director interaction [64]. The combination of Poisson and
dissipation brackets enables one to obtain the velocity and director evolution equations. The
momentum balance has the standard form (2.8) with the non-Newtonian stress given by

τ = α1nnnn : D + α2nN + α3Nn+ α4D + α5nn ·D + α6D · nn︸ ︷︷ ︸
viscous stress

− ∂fd
∂∇n

· (∇n)T︸ ︷︷ ︸
elastic stress

.

(2.52)

The elastic stress comes from the Poisson bracket and describes the reversible effects of mate-
rial deformation. The viscous stress tensor arises from the dissipation bracket, and therefore
is purely phenomenological. Apart from α4D, individual stress components do not have
a clear physical interpretation, however their combinations have a clear physical meaning.
Depending on the relative orientations of flow and director, we distinguish three Miesowicz
viscosities: η1 = α3+α4+α6

2
corresponds to a flow, where the director aligns with the velocity;

η2 =
−α2+α4+α5

2
describes the case when the director aligns in the velocity gradient direction

and η3 = α4

2
is the viscosity when the director aligns in the vorticity direction. Calculation of

the total stress tensor requires the specification of the director field, for which the evolution
equation is given by

h− nn · h
γ1

− γ2
γ1

(n ·D − nnn : D)−N = 0, (2.53)
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where γ1 = α3 − α2, γ2 = α6 − α5 = α2 + α3 [125]. Equation (2.53) resembles the angular
momentum balance in the transversely isotropic fluid model (2.29) with the addition of the
molecular field

h = −δfd
δn

, (2.54)

which expresses the contribution of elastic effects to the director orientation. The constant
magnitude of the director field is ensured by the inclusion of nn · h and nnn : D.

Static limit

In the static limit, the flow-related terms in eq. (2.53) vanish and the steady-state director
orientation satisfies

h− nn · h = 0, (2.55)

indicating that in the absence of flow the director aligns tominimise theHelmholtz free energy
with the constraint |n|2 = 1.

Zero elasticity limit

In the limit of negligible elasticity, the distortion effect h can be neglected and the angular
momentum balance (2.53) reduces to

N +
γ2
γ1

(n ·D − n ·D) = 0, (2.56)

which is identical to the director transport equation of the TIF model (2.29) with λ = −γ2
γ1

=

−α3+α2

α3−α2
[125]. Substituting eq. (2.56) into the stress definition (2.52) recovers the stress

tensor of the transversely isotropic fluid (2.27) with the modified coefficients µi

µ =
α4

2
, µ1 =

1

2

(
α1 + γ2 +

2γ2α2

γ1

)
, µ2 = α5 −

γ2α2

γ1
, (2.57)

indicating that the TIF model is a zero elasticity limit of the Leslie-Ericksen theory.

Summary of the LE model

The Leslie-Ericksen model is the most frequently used constitutive equation in nemato-
dynamic simulations [126, 127]. It is relatively simple yet capable of coupling the effects
of flow and material elasticity controlling the director orientation [128]. In the limiting case
of small elasticity, the LE theory accurately captures flow alignment, while for nearly static
cases, the flows induced by director rotation (backflow effect) can be modelled [129]. The
latter property is important even in static cases, where an unwanted rotation of the director
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field may reduce the contrast in optical devices [53, 130]; backflow effects can also be used in
microfluidic devices as an alternative for mechanical pumps, where an external field rotates
the director and induces flow [131].

2.8.5 Order parameter tensor

Despite the number of advantages of the LE theory, its main drawback is the vectorial
nature of the director and the assumption of a constant order parameter. The model does
not perform well in the presence of significant variations of the order parameter [126], or
when the geometry has discontinuities in the director orientation. If the director orientation
changes discontinuously over a small distance, say, in corner bounded flows, the Frank-Oseen
theory predicts infinite distortion energy density [35]. These problems can be solved by de-
scribing the microstructure via the tensor-based order parameter Q, which has the following
advantages over the vectorial approach

• Apolarity of the director field [57]. Even though vectors n and −n represent the same
state, the vectorial framework enforces director polarity. As will be shown in the next
chapters, the sign of n does affect the flow field in vectorial based models, which is
unphysical. The problem becomes particularly important in more complex, industrial
geometries, where the simulation outcome depends on the boundary conditions. For
a planar contraction consisting of six walls joined by sharp corners, the wall-normal
boundary condition can be prescribed in 64 ways; some examples are shown in fig. 2.30.
The situation becomes evenmore problematic formixers ormanifoldswithmore degrees
of freedom. The orientability issue is resolved by employing the Q-tensor approach
[132], where the orientation of the nematic element is represented as a directionless
line, and each boundary condition can be uniquely defined.

• Varying order parameter [64] - the Leslie-Ericksen theory models only the director ori-
entation and fails to provide any information on the degree of molecular alignment.
Material characteristics (viscosity, normal stresses) depend on the ordering within the
system [133]; therefore, taking into account the order parameter enables a more accurate
microstructure description.

• Defects - these are discontinuities in the orientation of rod-like particles (fig. 2.31) with
a lower order parameter, and where the uniaxial director is not well defined [134, 135].
Defects arise in locations where a purely vectorial based description is not well defined,
for example, in corners (fig. 2.32). In addition, defects introduce local biaxiality in the
state of a liquid crystal, which cannot be captured in the director framework due to the
uniaxial symmetry of n.

Q is a traceless, symmetric second order tensor whose eigenvector corresponding to the
largest eigenvalue determines the mean orientation of the long axis of n. For biaxial liquid
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A B

C D

Figure 2.30. Some examples of the homeotropic anchoring in the vectorial framework, each representing the
same physical state.

Figure 2.31. Director field with a pair of defects enclosed by red lines.
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Figure 2.32. Schematic illustration of the director field polluted with defects in a contraction. Further details
on the flow of liquid crystals in a contraction will be presented later in the thesis.

crystals, the eigenvector corresponding to the second largest eigenvalue describes the direc-
tion of the medium axism. Thus, in the most general form,Q can be written as [57]

Q = S1nn+ S2mm− (S1 + S2)
δ

3
, (2.58)

where S1 and S2 describe the ordering of the system along the long and medium axis and δ is
the identity tensor. The degree of alignment Si can be found from the eigenvalues ofQ [67]:

S1 = λ1 + λ2, S2 = λ3 − λ2, (2.59)

where λ1 > λ2 > λ3 are the eigenvalues of the order parameter tensor.

2.8.6 Nematic energy (order parameter tensor)

Elastic energy

The Frank-Oseen theory (section 2.8.2) was developed to model uniaxial, constant order
parameter systems and was exploited in the design of display devices [136, 137]. However, it
fails when the order parameter varies significantly; in such cases, the Q-tensor may be used
to describe the liquid crystal field.

The physics described by the earlier Frank-Oseen theory can be formulated through the
Q-tensor framework, since a constant order parameter, uniaxial director field n is a limiting
case ofQ. Assuming that the distortion energy density depends only on quadratic and cubic
variations of∇Q, a possible, frame indifferent form for the free energy density of a distorting
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liquid crystal is given by [138]

fQd =
1

2

[
KQ

2 Qik,jQik,j +KQ
3 Qik,iQjk,j +KQ

5 QijQlk,iQik,j

]
, (2.60)

where Qik,j ≡ ∂Qik

∂xj
and KQ

i are Frank constants in the Q tensor framework. Other choices
of the cubic terms are possible; however, the inclusion of the term KQ

3 Qik,iQjk,j ensures
that in the uniaxial, constant order parameter limit, eq. (2.60) expresses the same physics as
the Frank-Oseen theory in the vectorial framework. The phenomenological constants in the
tensorial framework KQ

i can be expressed in terms of the Frank constants Ki [138]

KQ
2 =

3K2 −K1 +K3

6S2
, KQ

3 =
K1 −K2

S2
, KQ

5 =
K3 −K1

2S2
, (2.61)

where S is the order parameter. In the limit of the one constant approximation with K1 =

K2 = K3, the constants KQ
i simplify to

KQ
2 =

K

2S2
, KQ

3 = KQ
5 = 0, (2.62)

which simplifies the energy density (2.60) to

fQd =
1

2
K2Qik,jQik,j (2.63)

Bulk free-energy

In the absence of director distortions, the degree of molecular alignment within a liquid
crystal is controlled either by the concentration of anisotropic particles (lyotropic LC), or
by the temperature (thermotropic LC). In thermotropic liquid crystals, the additional bulk
free-energy density can be modelled by an empirical theory provided by Landau, where the
order-dependent bulk potential is expanded in terms of invariants of Q around the isotropic
state [139]

fnematic =
a

2
tr(Q ·Q)− b

3
tr(Q ·Q ·Q) +

c

4
tr2(Q ·Q), (2.64)

where a = α(T−T ∗), T ∗ is a critical temperature, below which the isotropic state is unstable
and α, b, c > 0 [57, 140] are material parameters. For uniaxial systems,Q = S(nn− δ

3
) and

the bulk energy density can be represented solely in terms of the order parameter S

fnematic =
1

3
aS2 − 2

27
bS3 +

1

9
cS4. (2.65)

In equilibrium, the nematic energy density of the uniaxial system is extremized with respect
to variations in the order parameter tensor

δfnematic
δQ

=
∂fnematic
∂Q

=
∂fnematic
∂S

∂S

∂Q
= 0, (2.66)
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which is satisfied by three different order parameters

S1 = 0, (2.67a)

S2 =
b+

√
b2 − 24ac

4c
, (2.67b)

S3 = −−b+
√
b2 − 24ac

4c
. (2.67c)

S1 corresponds to the isotropic ordering, S2 represents a nematic state which is stable for
sufficiently low temperatures (T < T ∗ + b2

27ac
) [57] and S3 is a nematic state, whose stability

depends on the temperature. S3 is unstable at high temperatures (T > T ∗ + b2

24ac
), while for

lower T , S3 represents a metastable state with a negative order parameter [57]. For systems
considered in this thesis, material parameters a, b, c are chosen such that the minimum of
fnematic is in the nematic state with order parameter S2.

Landau-de Gennes energy

In the Q-tensor framework, the Helmholtz free energy has two contributions: the elastic
component acting to minimise the distortion of Q and the bulk free energy density driving
the system to the equilibrium order parameter S2. Therefore, for the systems described by the
order parameter tensor, the Helmholtz free energy requires the specification of both elastic
(2.60) and bulk (2.64) components. Their sum is called the Landau-de Gennes energy density
[140]

fLdG = fQd + fnematic, (2.68)

and similarly to the vectorial framework, the system is in equilibrium when the Landau-de
Gennes energy density is minimum with respect to variations in the order parameter tensor
δfLdG

δQ
= 0.

2.8.7 Beris-Edwards (BE) model

The drawbacks of the Leslie-Ericksen theory have been addressed by the constitutive equa-
tion proposed by Beris and Edwards [64, 141], which models the evolution of theQ-tensor. It
is assumed that the state of an incompressible, liquid crystalline material is described by the
velocity v and the order parameter tensorQ, where the latter represents the mean orientation
and alignment of the microstructure. Similarly to the Leslie-Ericksen theory, the Hamil-
tonian contains the kinetic 1

2
v2 and a configuration-dependent components. However, the

microstructure contribution is expressed in terms of the order parameter tensor and is quan-
tified through the Landau-de Gennes free energy density (eq. (2.68)). The Poisson bracket is
supplemented with a phenomenological dissipation bracket. The linear momentum balance
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has the standard form (2.8) with the viscoelastic stress tensor now given by [64, 131]

τ = µD − ξ

[
(Q+

δ

3
) ·H +H · (Q+

δ

3
)− 2(Q+

δ

3
)(H : Q)

]
+H ·Q−Q ·H︸ ︷︷ ︸

viscous stress

− ∂fLdG
∂Qij,α

Qij,β︸ ︷︷ ︸
elastic stress

, (2.69)

where

H = −δfLdG
δQ

+
1

3
tr
δfLdG
δQ

, (2.70)

measures the deviation of the microstructure from the minimum Helmholtz free energy. The
momentum equation is supplemented with the Q-tensor evolution equation, which models
the competition of static and hydrodynamic effects acting on the microstructure [64, 126]

DQ

Dt
= S + ΓH , (2.71)

where S represents the action of hydrodynamic torques on the Q-tensor and is defined as
[64]

S = (ξD −Ω)(Q+
δ

3
) + (Q+

δ

3
)(ξD +Ω)− 2ξ(Q+

δ

3
) tr(Q ·∇u). (2.72)

The underlined terms in equations (2.70) and (2.72) are included to ensure thatQ is traceless.
The Beris-Edwards model contains three phenomenological parameters Γ, µ, ξ, whose mean-
ing is clearer than in the LE theory; Γ controls the relaxation towards the state of minimum
Helmholtz free energy [142], µ is the Newtonian viscosity, and ξ controls the misalignment
between the flow and director, analogous to the tumbling parameter in the TIF model [64].

Reduction to the Leslie-Ericksen theory

Let us consider a uniaxial, constant order parameter nematic that does not contain defects.
In such case, the Beris-Edwards model represents the same physics as the Leslie-Ericksen
model: competition of viscous and elastic effects that can only affect the director orientation.
The uniaxial, constant order parameter tensor is then given by

Q = S

(
nn− δ

3

)
, (2.73)

and the viscous stress tensor can be formulated solely in terms of n in the Leslie-Ericksen
form [142]

τ visc = α1nnnn : D + α2nN + α3Nn+ α4D + α5nn ·D + α6D · nn, (2.74)
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where αi are Leslie viscosities, that can be expressed solely in terms of the parameters of the
BE model [142]

α1 = −2

3
S2
1(3 + 4S − 4S2)ξ2

1

Γ
, (2.75a)

α2 =

[
−1

3
S(2 + S)ξ − S2

]
1

Γ
, (2.75b)

α3 =

[
−1

3
S(2 + S)ξ + S2

]
1

Γ
, (2.75c)

α4 = µ+
4

9
(1− S)2ξ2

1

Γ
, (2.75d)

α5 =

[
1

3
S(4− S)ξ2 +

1

3
S(2 + S)ξ

]
1

Γ
, (2.75e)

α6 =

[
1

3
S(4− S)ξ2 − 1

3
S(2 + S)ξ

]
1

Γ
. (2.75f)

A quick inspection of eq. (2.75) indicates that apart from α4, the magnitude of αi rises
as the order parameter S increases, indicating a larger microstructure contribution to the
stress tensor. On the other hand, in the isotropic limit, S = 0 and αi=1:6,i 6=4 = 0 removing
orientational dependence from the stress tensor.

2.8.8 Dimensional groups and relevant scales

The nematodynamic equations describe a multiphysics problem, with several mechanisms
controlling the director orientation and thus flow behaviour. Below are described the relevant
length scales and dimensionless numbers, whose properties will be used in the following
chapters.

Reynolds number

The linear momentum balance (2.8) is an example of a convection-diffusion equation,
which can be written as

ρ
∂v

∂t
+ ρv ·∇v︸ ︷︷ ︸

convection

= −∇p+∇ · τ︸ ︷︷ ︸
diffusion

. (2.76)

For a Newtonian fluid, the stress tensor is linear with the shear rate γ̇. Introducing the fol-
lowing scaled variables

∇ =
1

L
∇∗, v = V v∗, p = ρV 2p∗, τ = µ

V

L
τ ∗, t =

L

V
t∗, (2.77)

enables to re-write the momentum balance (2.76) in a dimensionless form

∂V ∗

∂t∗
+ V ∗ ·∇∗V ∗ = −∇∗p∗ +

µ

ρV L
∇∗ · τ ∗ (2.78)
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where V , L, µ are velocity-, length- and viscosity-scales and starred variables denote dimen-
sionless quantities. Thus, eq. (2.78) indicates that the relative importance of convective to
diffusive effects is quantified by

Re =
V Lρ

µ
, (2.79)

called the Reynolds number [45]. The interpretation of the Reynolds number becomes more
ambiguous for non-Newtonian fluids, as their viscosity is not constant. Therefore, in order to
keep the analysis consistent, a particular viscosity limit is chosen as the representative value
of viscosity, for example, the zero shear-rate viscosity [18]. The typical flows considered in
this thesis focus on the motion of highly viscous fluids, which take place in small geometries
(O(mm)) at low speeds. Therefore, the Reynolds number is significantly smaller than unity,
so the importance of inertial effects is negligible.

Ericksen number

The total stress tensor in the Leslie-Ericksen theory has both viscous and elastic compo-
nents and is given by

τ = α1nnnn : D+α2nN+α3Nn+α4D+α5nn·D+α6D·nn− ∂fd
∂∇n

·(∇n)T . (2.52)

Let us use the following scaled variables

∇ =
1

L
∇∗, D =

V

L
D∗, N =

V

L
N ∗,

αi = α4α
∗
i , fd = K

(
∇∗n

L

)2

, τ = α4
U

L
τ ∗,

(2.80)

where starred variables represent dimensionless quantities and the Newtonian viscosity was
chosen for the viscosity-scale. The stress can be written in a dimensionless form

τ ∗ = α∗
1nnnn : D∗ + α∗

2nN
∗ + α∗

3N
∗n+D∗ + α∗

5nn ·D∗ + α∗
6D · nn− K

V Lα∗
4
∇∗n · (∇∗n)T , (2.81)

indicating that the relative importance viscous to elastic stresses is described by

Er =
V Lα∗

4

K
, (2.82)

called the Ericksen number. With the same scaling, the director transport equation becomes

1

Er

h∗ − nn · h∗

γ∗1
− γ∗2
γ∗1

(n ·D − nnn : D∗)−N ∗ = 0, (2.83)

indicating that forEr → 0, the stress and director fields are controlled by elastic contribution,
while when Er → ∞, flow effects govern the stress and director orientation [15, 43].

In order to make a direct comparison between the LE and BEmodels, the Ericksen number
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in the Beris-Edwards framework is defined through eq. (2.82). The corresponding Newtonian
viscosity α4 and the Frank elastic constant K are expressed via eq. (2.75d) and (2.62) to
ensure a consistent definition of Er

ErBE =

[
µ+

4

9
(1− S)2ξ2

1

Γ

]
V L

2KQS2
eq

. (2.84)

Flow elastic length-scale

For moderate Ericksen number flows, the director orientation in the bulk of the fluid is
controlled by viscous torques; close to the wall, the fluid is nearly static, particles align in the
direction prescribed by the wall anchoring, so the Helmholtz free energy is minimum with
respect to the geometry induced distortions. The changeover from wall dominated to flow
dominated dynamics occurs across a boundary layer whose thickness can be estimated from
[21]

w =

√
K

µγ̇w
, (2.85)

where γ̇w is the shear rate at the wall. In a simple shear flow, assuming that γ̇ is uniform and
given by γ̇w = V

L
eq. (2.85) yields

w

L
=

1√
Er

, (2.86)

so the thickness of the near-wall layer dominated by elastic effects decreases as the Erick-
sen number increases. Thus, to resolve the near-wall director transition, the computational
domain must be appropriately refined in the locations where steep director gradients occur.

Deborah number

The Beris-Edwards theory accounts for three distinct contributions to theQ-tensor evolu-
tion: 1) hydrodynamic effects quantified by S; 2) material elasticity− δfQd

δQ
acting to maintain

the uniform Q field across the domain; 3) molecular ordering − δfQnematic

δQ
, which drives Q

towards the equilibrium order parameter. Hence, theQ-tensor evolution equation (2.71) can
be written as

DQ

Dt
= S − Γ

δfQnematic
δQ

− Γ
δfQd
δQ

. (2.87)

We introduce the following scaling

D

Dt
=
V

L

D∗

Dt∗
, S =

V

L
S∗, fQnematic =

a+ b+ c

3
fQ∗
nematic, f

Q
d =

KQ

L2
fQ∗
d , (2.88)
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where the starred variables refer to dimensionless quantities, V and L are the velocity- and
length scales respectively, a, b, c are parameters of the nematic bulk energy density and KQ

is the Frank constant. Hence, the Q-tensor evolution equation (2.87) can be written in the
dimensionless form as

D∗Q

Dt∗
= S∗ − ΓK

V L

δfQ∗
d

δQ
− (a+ b+ c)LΓ

3V

δfQ∗
nematic

δQ
. (2.89)

Since Γ has the units of reciprocal viscosity, the term V L
ΓK

is related to the Ericksen number,
which quantifies the relative strength to hydrodynamic and elastic effects. The coefficient of
the last term on the right-hand side of eq. (2.89) is defined as the Deborah number

De =
3V

(a+ b+ c)LΓ
, (2.90)

and quantifies the relative strength of nematic and hydrodynamic effects acting on the order
parameter [143]. When De → 0, nematic effects are strong enough to maintain a constant
order parameter. Only in the limit of strong flows, De >> 1 and deformation effects are
strong enough to affect the order parameter [143].

Defect size

Consider a static liquid crystal sample constrained in a one-dimensional domain with the
same anchoring on both walls (fig. 2.33). In such a system, the director is horizontal across
the whole domain and only the order parameter changes. In the one-constant approximation,
the Landau-de Gennes energy density is given by

fLdG = fQd + fnematic =
1

3
K(∇S)2 +

1

3
aS2 − 2

27
bS3 +

1

9
cS4. (2.68)

Using the scaling

a =
a+ b+ c

3
a∗, b =

a+ b+ c

3
b∗, c =

a+ b+ c

3
c∗, fLdG =

K

L2
f ∗
LdG,

(2.91)

the dimensionless Landau-de Gennes energy density becomes

f ∗
LdG =

1

3
(∇∗S)2︸ ︷︷ ︸
elasticity

+
a+ b+ c

3

L2

K

(
1

3
a∗S2 − 2

27
b∗S3 +

1

9
c∗S4

)
︸ ︷︷ ︸

bulk energy

, (2.92)

which shows that the term a+b+c
3

L2

K
= ( L

ξN
)2 controls the relative importance of elastic and

bulk effects and

ξN =

√
3K

a+ b+ c
(2.93)
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provides the length-scale over which the elastic and bulk contributions are of a equal impor-
tance. Elasticity drives system to the state with a uniform order parameter imposed by the
boundaries, while the bulk energy density term acts to minimise fnematic; for typical liquid
crystal parameters, S ≈ 0.5 [57, 140]. In small geometries (with respect to the geometry size)
ξN >> L (fig. 2.33, blue line), the equilibrium value of the order parameter is governed by
the elastic contribution and S = 1, as imposed by the boundaries. On the other hand, for large
domain sizes, ξN << L, so apart from the near-wall locations (with the order parameter im-
posed by the wall orientation), S takes the value which minimises fnematic (fig. 2.33, yellow
curve). Hence, material elasticity imposes a characteristic length-scale over which the order
parameter varies, and ξN can be understood as a measure of the defect size. Therefore, to
capture potential defects in numerical simulations, the grid spacing should be small enough
to resolve any rapid variations of the order parameter; for example, ten nodes for each defect
dimension ξN .
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Figure 2.33. Left: a pair of parallel plates with the homeotropic anchoring on both boundaries. Right: distri-
bution of the order parameter dependent on the defect size.

2.8.9 Other models

Several other nematodynamic theories have been proposed to model the flow of liquid
crystals. Ericksen [144] suggested an extension of the Leslie-Ericksen theory, which provides
an additional transport equation for the variable order parameter S. However, the same model
can be obtained from the Beris-Edwards equation by assuming a uniaxial director field [141].
Doi [83] introduced a constitutive equation that models the orientation and distribution of rod-
like particles based on the probability distribution function; this approach requires significant
computational efforts to solve, even in the simplest geometries; therefore, it is impractical to
use in industry-relevant domains. Doi’s theory can be simplified to model the evolution of the
order parameter tensor. The model has no elasticity in the original form and can be recovered
from the BE theory by neglecting elastic effects. The extended Doi theory [133] includes
elastic effects; however, the model can also be recovered from the bracket formulation by
altering the dissipative contribution [F,H] [64]. The expanded dissipation bracket requires
even more phenomenological coefficients without a clear physical meaning. For that reason,
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in the remainder of the thesis, we limit the attention to the baseline theories: the transversely
isotropic fluid, the Leslie-Ericksen model and the Beris-Edwards model.

2.9 Computational fluid dynamics

The fluid motion is described by a system of nonlinear, partial differential equations. Due
to the complexity of the governing equations, obtaining analytical solutions of flow problems
may be possible in basic geometries (channel, pipe flows). That is of limited use from the
industrial point of view since the industrially relevant flows occur in manifolds, contractions
and mixers. The increase of available computing power in the last fifty years have given rise
to a new area of fluid mechanics - computational fluid dynamics (CFD) [36]. A typical CFD
solution is based on dividing the domain of interest (e.g. mixer, extruder) into a large number
of smaller sub-domains, discretising the governing relations and solving the resultant system
of equations for the unknown variables such as the velocity and pressure. For more complex
materials, information about the microstructure orientation and deformation can be obtained
by solving additional transport equations. Numerical calculations presented in this thesis are
solved with the finite volume method; a detailed description is provided in [36, 37].
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Chapter 3

Numerical solver

This chapter presents details of the implementation and validation of the solver used to
conduct the simulations, whose results are discussed in subsequent chapters.

3.1 Implementation

Numerical simulations described in further chapters of the thesis are performed in rheoTool
- the open-source OpenFOAM toolbox dedicated to modelling non-Newtonian and electri-
cally driven flows [145]. OpenFOAM is an object-oriented, unstructured, finite volume solver
used for numerical simulations of both laminar and turbulent flows [107]. The code employs
the SIMPLEC pressure-velocity coupling scheme to solve the Navier-Stokes equations sup-
plemented with the non-Newtonian stress tensor [145].

RheoTool and, more specifically, one of its solvers rheoFoam has been frequently used
by the non-Newtonian fluid mechanics community to model viscoelastic flows [46, 146, 147]
with a symmetric stress tensor. The stress tensor in the models considered in this thesis (trans-
versely isotropic fluid, Leslie-Ericksen and Beris-Edwards) need not be symmetric [43, 64],
so rheoFoam is not suitable to model the flow of liquid crystals. One of the major contribu-
tions from the research in this thesis is the development of the solver rheoFoam2, which is
capable of simulating constitutive equations with a non-symmetric stress tensor; the source
code of the solver is presented in the appendix A. rheoFoam2 can simulate any constitutive
behaviour, however in this thesis we limit our attention to nematodynamic equations. Open-
FOAM provides a consistent framework for the implementation of new models, where the
physics introduced by each model is described in a single file. In case of the Leslie-Ericksen
and Beris-Edwards models the solution algorithm follows the same procedure

1. Solution of the microstructure evolution equation: director transport equation in the LE
theory or theQ-tensor transport equation in the BE model.

2. Calculation of the non-Newtonian stress contribution based on the director/Q-tensor
field.

3. Solution of the Navier-Stokes equation with both Newtonian and non-Newtonian con-
tributions to the stress tensor.
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Source codes of the Leslie-Ericksen and Beris-Edwards models are presented in the appendix
A.

3.2 Director evolution upon a pure rotation

Analytical solutions of the Leslie-Ericksen and Beris-Edwards models are possible only
in the limiting cases of simple geometries (e.g. channel flow at an infinite Ericksen num-
ber). For more complex flow geometries (bends, contractions, mixers), numerical solutions
only are achievable. In this section, we consider the evolution of a single director element
subject to a pure rotation (fig. 3.1). The suitability of time discretisation schemes is exam-
ined by comparing analytical and numerical predictions. Simulations of viscoelastic flows
with rheoTool employ either the first-order Euler (forward and backward) or the second-order
Crank-Nicholson schemes [46, 107, 147]; hence, the performance of these discretisation tech-
niques is examined and compared with the analytical solution.

ω

x2

x1

n

Figure 3.1. Rotation of the director field in a channel flow.

3.2.1 Analytical solution

Consider a simplified version of the Leslie-Ericksen equation (2.53) withD = 0,K = 0,
that reduces the angular momentum balance to

N = ṅ− n · ω = 0, (3.1)
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and represents a pure rotation of nematic molecules. If the flow and director are confined to
the same plane (fig. 3.1), the director and vorticity tensor are defined as

n = [n1, n2], (3.2)

ω =
∇v − (∇v)T

2
=

[
0 −1

1 0

]
γ̇

2
,

where v is the fluid velocity and γ̇ = ∂v1
∂x2

− ∂v2
∂x1

is assumed constant. Re-writing the vorticity
tensor via a similarity transform, equation (3.1) can be diagonalised to give

∂

∂t

[
ν1

ν2

]
+

[
i 0

0 −i

][
ν1

ν2

]
γ̇

2
= 0. (3.3)

The analytical solution of eq. (3.3) is:

ν1 = cos
(
γ̇

2
t+ c1

)
+ i sin

(
γ̇

2
t+ c1

)
, (3.4a)

ν2 = cos
(
− γ̇
2
t+ c2

)
+ i sin

(
− γ̇
2
t+ c2

)
, (3.4b)

where c1 and c2 are integration constants. Inverting the similarity transform and assuming
that at t = 0, n = [cos(θ0), sin(θ0)]T , the director evolves as

n1 = cos
(
γ̇

2
t− θ0

)
, (3.5a)

n2 = − sin
(
γ̇

2
t− θ0

)
, (3.5b)

which thus satisfies |n|2 = 1.

3.2.2 Solution with the explicit Euler scheme

In order to solve the simplified director evolution equation (3.1) numerically, we limit our
attention to a single grid point. Assuming that the orientation of n is known at the kth time
level, the director orientation at the (k + 1)th time level can be calculated by applying the
explicit Euler scheme [148]

nk+1
1 = nk1 − nk2a, (3.6a)

nk+1
2 = nk2 + nk1a, (3.6b)

where a = γ̇
2
∆t. The magnitude of n is then |nk+1|2 = |nk|2(1 + a2); hence, for |γ̇| 6= 0, n

grows unbounded as shown in fig. 3.2.

73



0 10 20 30 40 50 60 70 80 90 100

time

-3

-2

-1

0

1

2

3

Euler explicit

analytical

Figure 3.2. Comparison of the evolution of n1 predicted analytically and numerically with the first order for-
ward Euler scheme. The variation of n2 is analogous and thus not shown here.

3.2.3 Solution with the implicit Euler scheme

The director evolution at a fixed grid point can be numerically modelled through the im-
plicit Euler scheme [148]. If the components of n are known at the kth time level, then the
director orientation at the next time step is calculated as

nk+1
1 =

nn1 − ann2
1 + a2

, (3.7a)

nk+1
2 =

ann1 + nn2
1 + a2

, (3.7b)

where a = γ̇
2
∆t. Thus |nk+1|2 = 1+a2

(1+a2)2
|nk|2 and the magnitude of director decreases with

each time step as shown in fig. 3.3.
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Figure 3.3. Comparison of the evolution of n1 predicted analytically and numerically with the first order back-
ward Euler scheme. The variation of n2 is analogous and thus not shown here.

3.2.4 Crank-Nicholson scheme

As shown in the previous sections, the first order Euler schemes are inappropriate to model
the evolution of the director field, since these approaches cannot maintain |n|2 = 1. There-
fore, we investigate the performance of the second-order Crank-Nicholson scheme [148]. If
the components of n are known at the kth time level, then the director orientation at the next
time step is calculated as

nk+1
1 =

(4− a2)nk1 + 4ank2
4 + a2

, (3.8a)

nk+1
2 =

(4− a2)nk2 − 4ank1
4 + a2

, (3.8b)

where a = γ̇
2
∆t. Therefore, (nk+1

1 )2 + (nk+1
2 )2 = (nk1)

2 + (nk2)
2, so the Crank-Nicholson

scheme maintains a constant director magnitude in a pure rotation.

3.3 Director normalisation

Examples above illustrate that among the time discretisation techniques available in Open-
FOAM, only the Crank-Nicholson scheme maintains the constant director magnitude whenn
is subject to a pure rotation. In real flows, an accurate modelling of the director field requires
to incorporate both extensional and elastic effects and n evolves as

ṅ =
h− nn · h

γ1
− γ2
γ1

(n ·D − nnn : D) + n · ω. (3.9)
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By taking the scalar product of the above equation with n, we obtain the evolution equation
for the director magnitude

1

2

D|n|2

Dt
= (1− |n|2)

[
n · h
γ1

− γ2
γ1

n ·D
]
. (3.10)

Provided that the initial director field is of unit magnitude everywhere in the domain, the
inclusion of nnn ·D and nn · h is supposed to ensure that |n|2 = 1. However, due to the
finite computer precision, the director magnitude need not be identically one after each time
step, and the term (1−|n|2)

[
n·h
γ1

− γ2
γ1
n ·D

]
can alter the director’s magnitude. The round-

off errors may propagate further, violating the requirement of a unit-length director field. For
that reason, the OpenFOAM solver described in section 3.1 re-normalises the magnitude of
the director field after each iteration.

3.4 Solver validation

Validation of the full Leslie-Ericksen model is undertaken by analysing the steady-state
flow of nematic liquid crystal through a straight pipe with homeotropic boundary conditions
(fig. 3.4). The analytical solution at Er << 1 is compared with the numerical predictions.

homeotropic anchoring

�ow direction
r

r=0

r=1

s r
φθ

Figure 3.4. Fully developed, steady-state, straight pipe flow is considered in this section.

3.4.1 Analytical solution

Angular momentum

The director orientation is governed by the angular momentum balance in the Leslie-
Ericksen theory

h− nn · h
γ1

− Er

(
γ2
γ1

(n ·D − nnn : D)−N

)
= 0, (2.83)

where γi are dimensionless coefficients and h, D represent dimensionless molecular field
and strain rate tensors respectively. At finite Ericksen numbers, the system is fully non-linear
and intractable. Therefore, we focus on the Er << 1 limit (the director orientation is not
affected by the flow and the steady-state director configuration minimises the free energy),
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where the steady-state director balance simplifies to

h− nn · h = 0. (3.11)

In the one-constant approximation, the dimensionless molecular field reads

h = ∇2n. (3.12)

At the boundary (r = r∗

R∗ = 1), the director is anchored normal to the wall direction

n = [nr, nφ, ns] = [−1, 0, 0], (3.13)

where nr, nφ, ns are radial, tangential and axial components of the director respectively. We
assume that the steady-state solution is axisymmetric, so the nφ = 0. The solution of eq.
(3.11) was presented in [149, 150] and reads

[nr, nφ, ns] = [− sin θ, 0, cos θ], (3.14)

where

θ = π − 2 tan−1

(
R∗

r∗

)
, (3.15)

is schematically denoted in fig. 3.4. Components of the director field are plotted in fig. 3.5.
The director escapes from the radial direction at the wall into the axial direction at the pipe
axis, hence the configuration shown in fig. 3.6 is called an escaped solution [43].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

n
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

n
r

n
s

Figure 3.5. Variation of radial and axial components of the director.
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Figure 3.6. Director field in the limit of zero Ericksen number.

Linear momentum

Even in the limit of Er << 1, the analytical solution of the momentum balance is not
obtainable for an arbitrary set of Leslie viscosities αi. For typical liquid crystals [21, 43]

|α1| ≈ |α3| ≈ |α6| << |α2| ≈ |α5| = O(1), (3.16)

so in order to obtain the analytical solutions we assume that

α1 = α3 = α6 = 0, α2 = −α5. (3.17)

The above assumption enables to obtain an analytical solution for the flow of the Leslie-
Ericksen fluid at a low Ericksen number, and the velocity profile is given by

v∗s

2∂p
∗

∂s∗
(r∗0)

2

α∗
4

=
1− r2

4
− 1

2
α2 ln

(
1 + r4 + (−4α2 + 2)r2

)
+ tanh−1

(
r2 − 2α2 + 1

2
√
α2(α2 − 1)

)
α2
2 − 1

2
α2√

α2(α2 − 1)

+ tanh−1

(
α2 − 1√
α2(α2 − 1)

)
α2
2 − 1

2
α2√

α2(α2 − 1)
+
α2[2 ln(2) + ln(−α2 + 1)]

2
(3.18)

where the full derivation of eq. (3.18) is presented in the appendix A.2 and the starred vari-
ables refer to dimensional quantities, αi = 2

α∗
i

α∗
4
are dimensionless viscosities. The inclusion

of the non-Newtonian contribution makes the material more viscous in the regions where
the director is parallel to the velocity gradient direction. Hence, the effective viscosity is the
largest at the wall and the smallest at the pipe axis (fig. 3.7). The difference between max-
imum and minimum viscosities depends on α2; as |α2| increases, the shear-thinning effects
are more pronounced and the peak velocity is higher (fig. 3.8). For low Ericksen number
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flows, the effective viscosity can be calculated from the analytical velocity profile

ηeff =
2η∗eff
α4

= − 8

v̄∗sR
∗2
∂p∗

∂s∗
, (3.19)

where

v̄∗ =
1

πR2

∫ 2π

φ=0

∫ R

r=0

v∗s(r)rdr, (3.20)

is the mean velocity. The effective viscosity as a function of α2 is plotted in fig. 3.9 and
indicates that ηeff increases linearly with |α2|. That is also the case in a channel flow with
homeotropic anchoring; however, since the director aligns with the velocity gradient every-
where in the domain, the increase in the effective viscosity is more significant than in a pipe
flow (fig. 3.9).
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Figure 3.7. Distribution of dimensionless effective viscosity for a range of α2.
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Figure 3.8. Velocity profile for a range of α2. v̄s represents the mean streamwise velocity.
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Figure 3.9. Effective viscosity as a function of α2 in a capillary and channel flows in the limit of Er → 0.
The effective viscosity in a channel flow is given by ηeff = −α2+α4+α5

2 .
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The non-Newtonian contribution also affects the distribution of normal stresses. The vis-
cous component of the first normal stress difference is given by

N1 = −α2nrns
∂vs
∂r

. (A.8)

In the low Er limit n is independent of α2 and the velocity profile depends at most only
weakly on α2, so the peak of N1 is predominantly determined by the magnitude of α2, as
shown in fig. 3.10. The second normal stress difference is given by

N2 =
2α1n

2
r + α2 + α3 + α5 + α6

2

∂vs
∂r

(3.21)

and therefore due to the simplification (3.17), N2 = 0 for the set of parameters chosen in this
section. For materials where eq. (3.17) is not satisfied, the second normal stress difference
need not be zero, but its magnitude is usually much smaller than N1 [15].
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Figure 3.10. Distribution of the viscous component of the first normal stress difference for a range of α2.

3.4.2 Verification of the numerical solution

The solver described in section (3.1) is verified by comparing the numerical results with
the benchmark analytical solution. We assume that the fluid is stationary and use homeotropic
anchoring for the director field. A cyclic boundary condition is implemented at the inlet and
outlet by neglecting the director and velocity gradients in the stream-wise direction. The fixed
pressure gradient is chosen to set Er = 0.001, as a representative case for the low Ericksen
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number limit. The cyclic boundary condition enables us to use a mesh with a single unit
cell in the flow direction, as shown in fig. 3.11. Spatial gradients are discretised through a
second-order central differencing scheme with an absolute convergence criteria for velocity,
pressure and director set to 10−6. Computations are initialised with zero velocity and the
director field oriented in the axial direction n = [nr, nφ, ns] = [0, 0, 1]

Grid refinement study

The mesh refinement of the capillary geometry considered in this section is controlled by
the parameters c1 and c2, schematically depicted in fig. 3.11. We conduct the grid refinement
study by considering three meshes with different cell densities:

• M1 with c1 = 8 and c2 = 16, giving N = 576 cells in total;

• M2 with c1 = 16 and c2 = 32, giving N = 2304 cells in total;

• M3 with c1 = 32 and c2 = 64, giving N = 9216 cells in total.

Numerical predictions of director, velocity and normal stress profiles collapse on the same
curve as the corresponding analytical solutions (fig. 3.5, 3.8 and 3.10) even on the coarse
M1 mesh. We quantify the convergence of the numerical solution through the normalised
l2-norm [151]

E(Solnumerical) =

√∑
(Solanalytical − Solnumerical)2∑

(Solanalytical)2
. (3.22)

The relative errors in the prediction of θ, vs and N1 are compared in table 3.1 and indicate
that as the mesh density increases, the numerical solution is closer to the reference analytical
solution. Therefore, we conclude that the solver was implemented correctly.

Table 3.1. Relative errors obtained on meshesM1 −M3 for α2 = −0.5.

Relative errorM1 Relative errorM2 Relative errorM3

θ 5.6 · 10−3 1.6 · 10−3 9.2 · 10−4

vs 8.1 · 10−3 6.4 · 10−3 2.4 · 10−3

N1 6.3 · 10−2 3.9 · 10−3 3.1 · 10−3

3.4.3 Convergence rate

The convergence time varies depending on the mesh refinement. When the computations
run on four cores in parallel, the simulation converges in around 30 minutes, three hours,
and 16 hours for theM1,M2 andM3 grids. The calculation requires about 60 · 1012 floating
point operations on the M1 mesh. The convergence history of vs and θ in the M1 grid is
shown in fig. 3.12 and the convergence plots forM2 andM3 meshes are qualitatively similar
and not shown. The computation time onM2 andM3 meshes can be reduced by employing
the mapFields utility [107], which allows to map inputs (velocity, pressure, director fields)
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Figure 3.11. Grid used for the mesh refinement study.

between different meshes. The computational cost of the simulation on theM2 mesh can be
decreased by initialising the relevant variables with the solution obtained on the coarse M1

grid. An analogous procedure can be repeated on the most refined grid. ThemapFields utility
will be exploited in further chapters when dealing with more complex geometries.

3.4.4 Alternative validation approaches

The solver presented in this chapter was validated in the limit of weak flow, where the di-
rector orientation is only affected by elastic effects, and hence the director-flow cross-coupling
has not been tested. Therefore, a further solver validation could involve other potential test
cases:

• High Ericksen number shear flow to examine whether the director aligns at a Leslie
angle to the flow direction.

• Low Ericksen number channel flow with a wall-parallel anchoring. Since the director
is nearly horizontal, the velocity profile remains parabolic, while the flow causes minor
director distortions. This method of solver validation was presented in [151].

• Comparison with analytical solutions for the backflow effect [43].
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Figure 3.12. Convergence of the relative velocity error.

• Comparison with other solvers, which use alternative solution techniques, for example
the lattice Boltzmann [142], or the finite element method [152].
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Chapter 4

Flow of liquid crystals in straight pipes

Straight pipes are the fundamental element of any piping system. Their presence has a
gross effect on the pressure drops encountered in process equipment, based onwhich pipework
is chosen. Understanding the fluid rheology in this simple configuration is the first step to-
wards validating model predictions against experiments. In this chapter, we examine the
predictions of the nematodynamic equations (TIF, LE, BE models) in straight pipes (fig. 4.1)
with wall parallel and homeotropic boundary conditions. The straight pipe configuration is
also a precursor for the curved pipe flow, which is discussed in the next chapter; some of the
conclusions made in subsequent sections of this chapter are also applicable to more complex
geometries.

flow direction
r

r=0

r=R

s r
φθ

vs(r=R)=0

homeotropic/wall parallel anchoring

Figure 4.1. Geometry considered in this chapter: a straight pipe with no-slip boundary condition on the wall.
Homeotropic and wall-parallel director boundary conditions are considered. Throughout the simulations we
employ a fixed pipe radius R = 1 mm.

4.1 Transversely isotropic fluid

Since the TIF model does not contain an elasticity contribution, its predictions are inde-
pendent of the anchoring type. In steady-state capillary flow, the stress field is axisymmetric,
the secondary motion vanishes so we are interested in the streamwise component of the mo-
mentum balance [18]

∂p

∂s
=
∂τrs
∂r

+
τrs
r
, (4.1)

where ∂p
∂s

is the streamwise pressure gradient and τrs is the shear component of the stress
tensor. The TIF model neglects elastic stresses, so τ has only a viscous contribution and is
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given by

τ = 2µD + 2µ1D : nnnn+ µ2(nn · D +D · nn), (2.27)

where µi are material viscosities. The director orientation n is calculated from the angular
momentum equation

ṅ− n · ω + λ(n · D − nnn : D) = 0, (2.29)

where λ is a tumbling parameter. The solution of the angular momentum equation (2.29) is
given by [15]

n(r 6= 0, φ) = [nr, nφ, ns] =

[
−
√
λ− 1

2λ
, 0,

√
λ+ 1

2λ

]
, (4.2)

hence, the shear component of the stress reads

τrs =
(
µ+ 2µ1 (nrns)

2 +
µ2

2

) ∂vs
∂r

. (4.3)

Since the director orientation does not change, the term µ + 2µ1 (nrns)
2 + µ2

2
is constant

and can be treated as a modified Newtonian viscosity. Implementing the no-slip boundary
condition vs(r = R) = 0, the velocity profile is given by

vs =
(
µ+ 2µ1 (nrns)

2 +
µ2

2

) ∂p
∂s

R2

4

[( r
R

)2
− 1

]
, (4.4)

which is the same as for isotropic, constant viscosity fluids. However, in contrast to the
Newtonian approximation, the TIF model introduces non-zero normal stress differences

N1 = −2µ1nrns(n
2
r − n2

s)
∂vs
∂r

, (4.5a)

N2 = (2µ1n
2
r + µ2)nrns

∂vs
∂r

. (4.5b)

The presence of normal stresses does not affect the flow in a straight pipe, however as will be
shown in the next chapter,N1 andN2 control the secondary motion in curved pipes [24, 153,
154].

4.2 Leslie-Ericksen and Beris-Edwards models

In contrast to the transversely isotropic fluidmodel, the Leslie-Ericksen andBeris-Edwards
theories account for microstructure elasticity, and the orientation of rod-like particles is gov-
erned by the competition of static and hydrodynamic effects. Each of the models introduces
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a viscoelastic stress

τLE = α1nnnn : D + α2nN + α3Nn+ α4D + α5nn ·D + α6D · nn

−K∇n · (∇n)T ,
(4.6)

τBE = µD − ξ

[
(Q+

I

3
) ·H +H · (Q+

I

3
)− 2(Q+

I

3
)(H : Q)

]
+H ·Q−Q ·H −KQ∂Qkl

∂xi

∂Qkl

∂xj
,

(4.7)

which is computed from the solution of the angular momentum equation describing the ori-
entation and degree of alignment within the microstructure:

h− nn · h
γ1

− γ2
γ1

(n ·D − nnn : D)−N = 0, (4.8a)

DQ

Dt
= S + ΓH , (4.8b)

where h = − δfd
δn

and H = − δfLdG

δQ
+ 1

3
tr δfLdG

δQ
measure the configurational departure of n

or the Q from the minimum Helmholtz free energy. We consider the one-constant approxi-
mation, with the nematic energies given by

fd =
1

2
K(∇n) : (∇n)T , (4.9)

fLdG = fQd + fnematic

=
1

2
KQQik,jQik,j +

a

2
tr(Q ·Q)− b

3
tr(Q ·Q ·Q) +

c

4
tr2(Q ·Q),

(4.10)

where K is the Frank elastic constant and a, b, c are coefficients in the expansion of the bulk
energy density; S expresses the contribution of hydrodynamic effects acting on theQ-tensor
field

S = (ξD −Ω)(Q+
δ

3
) + (Q+

δ

3
)(ξD +Ω)− 2ξ(Q+

δ

3
) tr(Q ·∇u). (4.11)

Material parameters used in the Beris-Edwards model are similar to those used in [155]:

• The Frank constant KQ = 40 pN.

• The tumbling parameter in the BE model ξ = 1.02.

• The relaxation parameter Γ = 7.29 (Pa · s)−1.

• The Newtonian viscosity µ = 0.2 Pa · s.

We consider two sets of bulk free energy density coefficients

• Set 1: a = −2 · 10−3MJ
m3 , b = 4 · 10−2MJ

m3 , c = 4 · 10−2MJ
m3 → ξN ≈ 3.9 · 10−5 m

and the equilibrium order parameter is Seq = 0.6208 (eq. (2.67b)). These material
parameters are representative for flows where the defect size is significantly smaller
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than the characteristic geometry length-scale ξN/R = 3.9 ·10−2 << 1. For thermotropic
liquid crystals, the typical defect dimension is O(nm) [140], however this thesis aims to
explore the rheology of lyotropic liquid crystals, where the defect size can be of larger
magnitudes due to the inclusion of solid-like particles (bricks) that are used to provide
a solid-like soap consistency.

• Set 2: a = −2 · 10−5MJ
m3 , b = 4 · 10−4MJ

m3 , c = 4 · 10−4MJ
m3 → ξN ≈ 3.9 · 10−4 m and

Seq = 0.6208. These parameters are representative for flows where the defect size is of
a comparable magnitude as the geometry length-scale ξN/R = 3.9 · 10−1.

Throughout the calculations, the Ericksen number is defined as

Er =
v̄Rα4

K
, (4.12)

where v̄ denotes the mean stream-wise velocity and the pipe radius R is chosen as the ge-
ometry length-scale. K and α4 are Frank constant and the Newtonian Leslie viscosity, both
of which are required in the Leslie-Ericksen theory. The Frank constant can be mapped be-
tween LE and BE models through eq. (2.61) and is given by K = 2S2

eqK
Q = 30.8 pN.

Leslie viscosities are calculated via eq. (2.75): α1 = −0.1445 Pa · s, α2 = −0.1287 Pa · s,
α3 = −0.023 Pa · s, α4 = 0.2091 Pa · s, α5 = 0.1757 Pa · s, α6 = 0.0239 Pa · s.

The Ericksen number in the BE model is defined as

ErBE =

[
µ+

4

9
(1− S2)2ξ2

1

Γ

]
v̄R

2KQS2
eq

, (4.13)

which ensures that in the uniaxial, constant order parameter limit, the same Ericksen number
represents an identical partitioning of hydrodynamic and elastic contributions, which control
microstructure orientation. Additionally, in case of the Beris-Edwards model, the relative
importance of flow and bulk effects acting on the order parameter is quantified through the
Deborah number

De =
3v̄

(a+ b+ c)RΓ
. (4.14)

Analytical solutions of the Leslie-Ericksen and Beris-Edwards theories are not possible
due to the high degree of nonlinearity of these equations. For that reason, the governing
equations in the LE and BE models are solved numerically on theM3 grid discussed in the
previous chapter (fig. 3.11). The cyclic boundary condition on the inlet and outlet is em-
ployed, enabling use of a single cell in the axial direction, thus reducing the computational
cost of simulations. Spatial gradients are discretised through a second-order central differenc-
ing scheme with absolute convergence criteria for velocity, pressure and director set to 10−6.
Computations are initialised with zero velocity and horizontal director fields throughout the
whole domain.
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4.2.1 Homeotropic anchoring

Low Ericksen numbers

Computations are undertaken to describe the flow of the LE and BE fluids, as these equa-
tions are too complex to obtain an analytical solutions for both orientation and velocity dis-
tribution. Numerical calculations indicate that at low Er, the defect size plays a key role in
determining the director configuration in the BE model. In the ξN/R << 1 limit:

• The Q-tensor has a pair of repeating eigenvalues (fig. 4.2), indicating that the liquid
crystal is uniaxial.

• The degree of molecular ordering is predominantly governed by fnematic, which drives
the liquid crystal towards the uniaxial state, as shown in fig. 4.3 (red line).

• The order parameter is controlled by the bulk contribution fnematic, and apart from a
thin near-wall layer (0.85 ≤ r/R ≤ 1), S does not vary significantly (fig. 4.4).

• The director points in the radial direction at the wall and escapes into the axial direction
at the pipe axis (fig. 4.5). The behaviour is qualitatively similar to the Leslie-Ericksen
theory, which is the uniaxial, constant order parameter limit of the BE model.

The configuration of the micostructure significantly differs when the defect size is of a
comparable size to the geometry length-scale:

• TheQ-tensor has three distinct eigenvalues (fig. 4.2), meaning that the liquid crystal is
not uniaxial, as in the case for ξN/R << 1.

• There is not enough space for the director to escape into the axial direction, so the
Helmholtz free energy is minimised by reducing the order parameter near the axis, as
shown in fig. 4.4.

• The director is oriented in the radial direction everywhere except from the pipe axis (fig.
4.5), where the vector corresponding to the non-repeating eigenvalue is parallel to the
axial direction.

• The behaviour of the microstructure is schematically illustrated in fig. 4.6, where the
liquid crystal transforms from uniaxial state at the wall to fully biaxial state at r ≈ 0.5

(fig. 4.3) and back to a planar-uniaxial field at the core.
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Figure 4.2. Distribution of eigenvalues for flows with different defect sizes. Red labels correspond to a uni-
axial state, while at ξN/R = 3.9 · 10−1, the liquid crystal has three distinct eigenvalues and the system is in a
biaxial state.
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Figure 4.5. Predictions of the axial component of the director field at Er = 0.05. For ξN/R = 3.9e − 1 only
the near wall director field can be represented as a vector and hence ns near the axis is not shown.
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Figure 4.6. The planar-radial solution predicted in the nearly static configuration. The order parameter at the
axis is negative meaning that the director lines in a plane normal to the pipe axis. Reprinted with permission
from [135].

Despite the varying defect size and its implications on the microstructure, the velocity
profiles are similar in all three cases analysed (fig. 4.7). The similarity between LE and BE
model with ξN/R << 1 is expected since both represent a uniaxial liquid crystal with a
constant (or nearly constant) order parameter. The director orientation at the wall is the same
in all three cases considered: n is parallel to the velocity gradient direction, and the fluid
is most viscous. However, depending on the relative magnitude of the defect size (ξN/R), the
mechanism of shear-thinning differs; for ξN/R << 1, the shear-thinning occurs via the director
reorientation and n aligns with the velocity direction at the pipe axis (fig. 4.5). In contrast,
for larger ξN/R, the decrease in viscosity is predominantly caused by the reduction in the order
parameter (fig. 4.4), which decreases the contribution of the non-Newtonian stresses.
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Figure 4.7. Predictions of the axial velocity at Er = 0.05.

The similarity of velocity profiles need not imply the similarity of normal stresses (fig.
4.8) and emphasise the complex nature of non-Newtonian fluids where normal stresses are
also significant. The first normal stress differenceN1 = τss− τrr can be of the same order of
magnitude as the shear stress, however it does not have any effect on the velocity distribution
in a straight pipe [18]. The stress tensor in the LE and BEmodels has both viscous and elastic
components and eq. (2.52) implies that the distribution of normal stresses strongly depends on
the microstructure configuration, which is controlled by the defect size. When ξN/R << 1, the
uniaxial limit is recovered, and the prediction of the BE model resembles the LE theory (fig.
4.8). In contrast, for larger ξN/R, the viscous component of the first normal stress difference
is negative and much smaller in magnitude than in the escaped radial solution.
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Figure 4.8. Variation of the viscous component of N1.
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Intermediate Ericksen numbers

As the Ericksen number increases, hydrodynamic effects become stronger. In the planar
radial configuration (ξN/R = 0.39), the biaxial ring shrinks (fig. 4.9) and is completely de-
stroyed at Er ≈ 5. Above a threshold Ericksen number, the director assumes the escaped
radial configuration irrespective of the relative magnitude of the defect size (fig. 4.10). The
non-uniform order parameter introduces a spatial variation in the strength of elastic effects;
the Frank constant is effectively smaller in the regions of lower S (eq. (2.61)), which are
thus more prone to director distortions. As ξN increases, the order parameter at the pipe axis
becomes smaller (fig. 4.11), and in effect, the resistance to director rotation is the weakest
there. In contrast, the presence of walls imposes perfect alignment (S = 1), so the resistance
to imposed distortions is the strongest there. In the case of ξN/R = 0.39, the region of the ele-
vated order parameter is the widest, which corresponds to the smallest rotation of the director
field (fig. 4.10). The Leslie-Ericksen theory is a limiting case of the Beris-Edwards model
with ξN/R → 0; as a result, the microstructure resistance to director rotation in the near-wall
region is smaller than in the BE model with a spatially varying order parameter.
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Figure 4.9. Biaxiality at Er = 2.5 for different ξN
R . Compared to fig. 4.3 the region of biaxial behaviour

shrinks.

95



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/
R

LE

BE,
N
/R=3.9e-2

BE,
N
/R=3.9e-1

Figure 4.10. Comparison of the director field at Er = 5
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Figure 4.11. Comparison of the distribution of order parameter at Er = 5.

The velocity distribution is similar to the low Ericksen number regime, and the shear
thinning mechanism is the same for all configurations (fig. 4.12)- the effective viscosity is
largest at the wall, where the director is parallel to the velocity gradient direction and smallest
at the axis, where n and v align. The varying order parameter changes the distribution of the
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first normal stress difference (fig. 4.13); a high gradient in the order parameter near the wall
produces significant elastic stresses, which are absent in the LE theory. Themaximum normal
stress is larger as the defect size decreases because the order parameter changes over a smaller
distance (fig. 4.11).
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Figure 4.12. Comparison of the velocity field at Er = 5
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Figure 4.13. Comparison of normal stress difference profiles at Er = 5.
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High Ericksen numbers

At higher Ericksen numbers, the director orientation is controlled by the flow effects, and
apart from the near-wall layer, n aligns at a small angle to the flow direction (fig. 4.14). For
the parameters employed in this chapter, the shearing motion is strong enough to affect the
order parameter, as shown in fig. 4.15. The Deborah number is higher for the second set of
parameters (eq. (4.14)), and hence, the dominance of flow effects causes a more significant
increase in the order parameter. The degree of molecular ordering affects the Leslie angle,
which for a uniaxial, constant order parameter in theQ tensor framework is given by

θL =
1

2
cos−1

(
3S

(2 + S)ξ

)
. (4.15)

Therefore, the elevated order parameter at higher Ericksen (and thus Deborah) numbers (fig.
4.15), results in a better director/flow alignment as shown in fig. 4.14. For typical liquid
crystal parameters, θL < 10o, so the increased alignment has little effect on the velocity dis-
tribution, which has a Newtonian-like profile everywhere except the near-wall, highly viscous
region, as shown in fig. 4.16.
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Figure 4.14. Comparison of the axial component of the director field at Er = 100.
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Flow alignment at the infinite Ericksen number

In the Leslie-Ericksen theory with K = 0, the director aligns at the Leslie angle (eq.
(4.15)) to the flow. The situation is more complex in the case of the Beris-Edwards model,
where the alignment angle depends on the order parameter (eq. (4.15)). The alignment is
controlled by the order parameter, which depends on the Deborah number;De quantifies the
relative importance of flow aligning to bulk effects, thus controlling the distribution of the
order parameter (fig. 4.17). For De << 1, bulk effects dominate, and the order parameter
is only weakly affected by the flow; increasing De improves the molecular alignment. Since
the shearing effects are the strongest at the wall, the order parameter is highest at r/R → 1

(fig. 4.17); conversely, the increase in S is the smallest at r/R → 0, where the shear rate is
minimum.
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Figure 4.17. Variation of order parameter at infinite Ericksen number with different Deborah numbers. Ratios
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b = 1 are constant in all cases; a, b, c are parameters of the bulk-free energy density (eq.
2.64) in the BE model.
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4.2.2 Wall-parallel anchoring

Thewall-parallel anchoring produces less interesting rheological behaviour than the homeotropic
boundary condition. The director aligns with the flow (fig. 4.18), and the viscosity is nearly
constant across the pipe, which results in a Newtonian velocity profile (fig. 4.19).
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Figure 4.18. Comparison of the director field at Er = 2.5 with wall parallel anchoring. Note that the x-axis
scale starts at 0.92, so the director is nearly aligned with the flow.
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Figure 4.19. Comparison of the velocity field at Er = 2.5 with wall parallel anchoring.

4.3 Summary

Predictions of the Leslie-Ericksen and Beris-Edwards models were investigated in a cap-
illary flow. Homeotropic anchoring results in a rich rheological behaviour: the effective vis-
cosity decreases with the Ericksen number, and the zero-shear viscosity limit is controlled by
the relative magnitude of the defect size ξN/R (fig. 4.20). At low Ericksen numbers, the di-
rector distribution is predicated on ξN/R; when ξN/R << 1, we recover the Leslie-Ericksen
number limit and the shear-thinning occurs via director reorientation. As the capillary di-
mension decreases (keeping ξN constant), there is a phase transition in the director field; the
director field changes from the uniaxial state at the wall, to the bixaial state at r = 0.5, and
back to the uniaxial state at the pipe axis. In contrast to the ξN/R << 1 limit, shear thinning
occurs via a local reduction of the order parameter. All simulations discussed in this chapter
were initialised with a horizontal director field. A future investigation of other initial director
configurations and a potential time variation of the imposed pressure gradient could help to
reveal potential hysteresis in the selection of the steady-state.

The wall-parallel anchoring nearly aligns the director with the flow, which results in a
Newtonian behaviour with a nearly constant shear viscosity α3+α4+α6

2
≈ α4

2
[15]. At high

Ericksen number (O(103)), the flow aligning effects are so strong that the wall anchoring
is irrelevant, so the wall-parallel and homeotropic boundary conditions result in the same
effective viscosities (high shear plateau).
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Chapter 5

Flow of transversely isotropic fluid in

curved pipes

The majority of liquid crystal studies present in the literature focus either on static prob-
lems [135, 156] or investigate flow of nematic liquid crystals in simple geometries, such as
straight channels [66, 142, 155] and pipes [157, 158]. These studies are of limited use for
industrial purposes since the manufacturing of FMCG products involves material transport
through complex pipeworks, which may consist of bends, manifolds and contractions. The
flow of Leslie-Ericksen fluids in a planar contraction was investigated by Cruz et al. [151];
their results demonstrate a strong dependence of the microstructure orientation and flow on
the Ericksen number. Cruz’s work was extended to model free surface flows [159] and indi-
cated the key role of wall anchoring in controlling process parameters such as filling time. Kos
et al. [160] analysed the behaviour of the Beris-Edwards in a junction of three perpendicular
pipes and found that the number of inlet and outlets determines the flow and microstructure
configuration.

One of the major undertakings of this thesis is the investigation of liquid crystal behaviour
in curved pipes. Studies of flow in bends were initiated by Dean [161, 162], who has shown
that for a Newtonian fluid, the combination of fluid inertia with pipe curvature is responsible
for the emergence of secondary flow. Experimental measurements of complex fluids demon-
strate that in the absence of inertia, secondary flow can be generated by non-zero normal
stress differences [163]. The effect can be modelled through Oldroyd-B and UCM mod-
els [154, 164], where the (positive) first normal stress difference acts similar to fluid inertia.
Analyses of viscoelastic flows in curved pipes were extended by Fan et al. [153], who demon-
strated that the (negative) second normal stress difference in the Oldroyd 3-constant model
reduces the magnitude of secondary motions. The normal stresses within liquid crystals are
generated by the interaction of microstructure with the flow; they can be of any sign, depend-
ing on the material properties and the shear rate [27]. This chapter uses perturbation analysis
to investigate soap flow (represented as a nematic liquid crystal) in the limit of infinite Er-
icksen and zero Deborah numbers. The governing equations are simple enough to yield an
analytical solution, which provides insight into the behaviour of liquid crystalline materials
in geometries that induce flow curvature.
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5.1 Problem formulation

5.1.1 Geometry

We analyse the steady-state, fully developed flow of liquid crystals in a curved pipe. The
system is schematically shown in fig. 5.1 and can be most conveniently described in toroidal
coordinates (r∗, φ, s∗).

R*

r*

2r*
0 s*

bend axis

0

Figure 5.1. Toroidal geometry used in the analysis. Reprinted with permission from [24]. Copyright Elsevier
2022.

5.1.2 Equations of motion

The flow of a non-Newtonian fluid through a curved pipe with a constant diameter is
described by a set of momentum and continuity equations [154]

∂p∗

∂r∗
=
∂τ ∗rr
∂r∗

+
1

r∗
∂τ ∗rφ
∂φ

+
1

r∗
N∗

2 +
1

R∗
0 + r∗ cosφ

[
−τ ∗rφ sinφ−N∗

1 cosφ
]
, (5.1a)

1

r∗
∂p∗

∂φ
=
∂τ ∗rφ
∂r∗

+
1

r∗
∂τ ∗φφ
∂φ

+
2

r∗
τ ∗rφ +

1

R∗
0 + r∗ cosφ

[
τ ∗rφ cosφ+ (N∗

1 +N∗
2 ) sinφ

]
,

(5.1b)
1

R∗
0 + r∗ cosφ

∂p∗

∂s∗
=
∂τ ∗rs
∂r

+
1

r∗
∂τ ∗φs
∂φ

+
1

r∗
τ ∗rs +

2

R∗
0 + r∗ cosφ

[
τ ∗rs cosφ− τ ∗φs sinφ

]
,

(5.1c)

0 =
∂u∗

∂r∗
+
u∗

r∗
+

u∗ cosφ
R∗

0 + r∗ cosφ
− v∗ sinφ
R∗

0 + r∗ cosφ
+

1

r∗
∂v∗

∂φ
, (5.2)

where p∗ is the pressure, τ ∗ij denotes the symmetric stress tensor, u∗ and v∗ represent dimen-
sionless radial and tangential velocity components, respectively. The normal stress differ-
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ences are defined as

N∗
1 = τ ∗ss − τ ∗rr, (5.3a)

N∗
2 = τ ∗rr − τ ∗φφ. (5.3b)

Throughout this chapter, starred variables refer to dimensional quantities, while their dimen-
sionless counterparts appear without a star.

5.1.3 Constitutive equation

Here, we treat soap as a uniaxial, constant order parameter nematic liquid crystal, where
the orientation of the microstructure is represented by the director field n. The behaviour
of the microstructure can be described by the Leslie-Ericksen theory, which introduces a
configuration-dependent stress tensor [34, 43]

τ ∗ = α∗
1nnnn : D∗ + α∗

2nN
∗ + α∗

3N
∗n+ α∗

4D
∗ + α∗

5nn · D∗ + α∗
6D

∗ · nn−K∗∇∗n(∇∗n)T ,

(2.52)

where N∗ is the corotational derivative of the director, α∗
i are Leslie viscosities, K

∗ is the
Frank constant and D∗, ω∗ are symmetric and antisymmetric components of the velocity
gradient tensor. Computation of the stress tensor requires knowledge of the microstructure
orientation, which is modelled by the angular momentum balance [34]

h∗ − nn · h∗ − γ∗2(n · D∗ − nnn : D∗)− γ∗1N
∗ = 0. (2.53)

For the distortion energy density, we use the one constant approximation and the molecular
field reads

h∗ = −δfd
δn

= K∗∇∗2n. (5.4)

5.1.4 Non-dimensionalization

Throughout this chapter, we introduce the following dimensionless quantities

s =
s∗

r∗0
, r =

r∗

r∗0
, u =

v∗ · er

W ∗
0

, v =
v∗ · eφ

W ∗
0

, w =
v∗ · es

W ∗
0

,

h =
(r∗0)

2

K
h∗, τ =

r∗0
α4

2
W ∗

0

τ ∗, αi =
α∗
i

α∗
4

2

, δ =
r∗0
R∗ , p = p∗

r∗0
α4

2
W ∗

0

,
(5.5)

whereW ∗
0 - the maximum axial velocity - denotes the velocity scale.
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Equations of motion

Substituting scaled variables (eq. (5.5)) into the momentum equation (5.1) gives the set
of dimensionless momentum balance equations

∂p

∂r
=
∂τrr
∂r

+
1

r

∂τrφ
∂φ

+
1

r
N2 +

δ

B
[−τrφ sinφ−N1 cosφ] , (5.6a)

1

r

∂p

∂φ
=
∂τrφ
∂r

+
1

r

∂τφφ
∂φ

+
2

r
τrφ +

δ

B
[τrφ cosφ+ (N1 +N2) sinφ] , (5.6b)

1

B

∂p

∂s
=
∂τrs
∂r

+
1

r

∂τφs
∂φ

+
1

r
τrs +

2δ

B
[τrs cosφ− τφs sinφ] , (5.6c)

and the continuity equation reduces to

0 =
∂(urB)

∂r
+
∂(vB)

∂φ
, (5.7)

where

B = 1 + δr cosφ, (5.8)

is the distance from the bend axis normalised by the bend radius. In the limiting case of a
small curvature, δ → 0, and the system can be considered as a straight pipe.

Angular momentum and stress

The dimensionless stress is obtained by substituting eq. (5.5) into the stress definition:
(2.52)

τ = 2D+α1nnnn : D+α2nN+α3Nn+α5nn · D+α6D · nn− 1

Er
∇n(∇n)T , (5.9)

whereEr = W ∗
0 r

∗
0α4

K∗ is the Ericksen number. The non-dimensional angular momentum equa-
tion is obtained in the same manner and reads

h− nn · h
Er

− γ2(n · D − nnn : D)− γ1N = 0. (5.10)

Based on the process parameters given by Bryan et al. [38], soap is typically manufactured
at Er >> 1, which allows us to neglect the elastic contributions in eq. (5.9) and (5.10),
therefore reducing the stress and director balance to the transversely isotropic fluid model
provided by Ericksen [110]:

τ = 2D + 2µ1nnnn : D + µ2(nn · D +D · nn), (2.27)

ṅ = λ(n · D − nnn : D) + n · ω, (2.29)
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where

µ =
α4

2
, µ1 =

1

2

(
α1 + γ2 +

2γ2α2

γ1

)
, µ2 = α5 −

γ2α2

γ1
. (2.57)

Stream-wise pressure gradient

Results presented in section 4.1 show that the TIF model predicts a uniform director dis-
tribution in a straight pipe with a constant viscosity. The velocity profile is parabolic with the
peak value of [45]

W ∗
0 = − (r∗0)

2

4η∗eff

∂p∗

∂s∗
. (5.11)

η∗eff is the orientation-dependent effective viscosity given by

η∗eff =
α∗
4

2
+ 2µ∗

1

(
n(0)
r n(0)

s

)2
+
µ∗
2

2
, (5.12)

where n(0)
i = n

(0)
i (λ) are director components obtained from the straight pipe (zero curvature)

calculation. The dimensionless pressure gradient in a straight pipe is obtained by substituting
the scaling equation (5.5) into the definitions of peak velocity (5.11) and viscosity (5.12) to
yield

∂p

∂s
= −4

(
1 + 2µ1

(
n(0)
r n(0)

s

)2
+
µ2

2

)
. (5.13)

5.1.5 Stream function

For a steady-state, fully developed flow in a bend, the motion in the r − φ plane can be
considered separately from the stream-wise component. For that reason, we use the stream
function approach [165] with r− and φ− velocity components defined as [154]

u = − 1

rB

∂ψ

∂φ
, (5.14a)

v =
1

B

∂ψ

∂r
. (5.14b)

5.1.6 Perturbation method

Solutions to the linear and angular momentum equations ((5.6) and (2.29), respectively)
are obtained as perturbations to the straight pipe solution. The perturbation parameter is
chosen as δ << 1, and solutions are sought in the form of

w =
m=∞∑
m=0

δmw(m)(r, φ), (5.15a)
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ψ =
m=∞∑
m=0

δmψ(m)(r, φ), (5.15b)

n =
m=∞∑
m=0

δmn(m)(r, φ), (5.15c)

where w is a dimensionless axial velocity.

5.1.7 Boundary conditions

We assume that the fluid is stationary at the wall. Hence, the no-slip boundary conditions
impose the following restrictions on the s−, r−, φ− velocity components:

w(m)(r = 1) = 0, ψ(m)(r = 1) = 0,
∂ψ(m)

∂r
(r = 1) = 0. (5.16)

There is no long range ordering of the director field because of the absence of elasticity, so
the director orientation on the boundaries need not be specified.

Perturbation equations were solved with the mathematical manipulation software Maple
2020 [166].

5.2 Solution

5.2.1 Solution procedure

The flow of a transversely isotropic fluid in a curved pipe is described by the solution
of the linear and angular momentum equations (5.6) and (2.29), respectively. Substituting
the definition of dimensionless pressure gradient (5.13) into the s− component momentum
equation (5.6c) enables us to eliminate the axial pressure gradient:

0 = −∂p
∂s

1

B
+
∂τrs
∂r

+
1

r

∂τφs
∂φ

+
1

r
τrs + 2

δ

B
[τrscosφ− τφs sinφ] , (5.17)

where ∂p
∂s

is specified by eq. (5.13). The steady-state momentum balance equation (5.6) can
be written in the form∇p = ∇·τ , expressing the pressure-stress balance. Hence, the curl of
the pressure gradient describes the rotational force balance within the fluid; the ith component
of ∇ × ∇p represents the force balance in a plane normal to the ith coordinate. The radial
and azimuthal components of the pressure gradient terms are eliminated, and the momentum
balance in the r − φ plane reads

(∇×∇p)s = 0 =

[
−1

r

∂2N2

∂r∂φ
− 1

r2
∂N2

∂φ
+
∂2τrφ
∂r2

+
3

r

∂τrφ
∂r

− 1

r2
∂2τrφ
∂φ2

]
+
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δ

r

(
∂[B−1r(τrφ cosφ+ (N1 +N2) sinφ)]

∂r
− ∂[B−1(−τrφ sinφ−N1 cosφ)]

∂φ

)
.

(5.18)

The equality above suggests two sources of the secondarymotion: 1) a combination of normal
stress differences and bend curvature expressed by the second bracket on the right-hand side
of eq. (5.18); 2) an imbalance of the second normal stress difference N2 and the shear stress
τrφ in the r − φ plane. In the limiting case of a straight pipe flow, δ = 0 and the stress
distribution is axisymmetric, so there exists no secondary motion.

5.2.2 Leading order (O(1)) solution

The leading order solution represents the straight pipe limit (δ = 0) and describes major
contributions to the director and velocity distributions. The leading order s− and r − φ

components of momentum balance (equations (5.17) and (5.18)) are given by(
∂p

∂s

)(0)

=
∂τ

(0)
rs

∂r
+

1

r
τ (0)rs , (5.19a)

(∇×∇p(0))s = 0. (5.19b)

(
∂p
∂s

)(0) is the O(1) component of the pressure gradient (eq. (5.13)) while the shear stress
depends on both director orientation and the shear rate

τ (0)rs =
µ2 + 4µ1(n

(0)
r )2(n

(0)
s )2 + 2

2

∂w(0)

∂r
. (B.3a)

Other components of τ (0) are not relevant to the leading order solution and are thus listed in
the appendix B.2. The stress tensor is computed based on the director orientation, which is
calculated form theO(1) components of angular momentum balance equations. The r−, φ−
and s− components of the steady-state director balance are given by

(
2λ(n(0)

r )2 − λ+ 1
) ∂w(0)

∂r
= 0, (5.20a)

n(0)
r n(0)

p n(0)
s

∂w(0)

∂r
= 0, (5.20b)(

2λ(n(0)
s )2 − λ− 1

) ∂w(0)

∂r
= 0. (5.20c)

The non-trivial solution for the director field reads

n(0)(r 6= 0, φ) = [n(0)
r , n

(0)
φ , n(0)

s ] =

[
−
√
λ− 1

2λ
, 0,

√
λ+ 1

2λ

]
, (5.21)

where λ is the tumbling parameter; for |λ| > 1, the liquid crystal aligns in the shear plane,
while |λ| < 1 describes tumbling materials; in this thesis we focus on the former group. Note
that the director balance equation (5.20) is also satisfied for arbitrary director field when
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∇v = 0.

Substituting eq. (B.3a) into the axial momentum balance (eq. (5.19)) and imposing the
no-slip boundary condition (eq. (5.16)), the solution is given by

w(0)(r, φ) = 1− r2, (5.22)

and further details are presented in the appendix B.2. The O(1) solution represents a straight
pipe flow with the axisymmetric distribution of stress and velocity. τrφ = 0 and N2 is inde-
pendent of φ (appendix B.2), so the secondary motion vanishes and

ψ(0)(r, φ) = 0. (5.23)

The flow rate is found by integrating the velocity profile across the pipe cross section:

Qs = Q(0) =

∫ 2π

φ=0

∫ 1

r=0

w(0)rdrdφ =
π

2
. (5.24)

5.2.3 First order (O(δ)) solution

The leading order solution corresponds to a straight pipe and predicts an axisymmetric
velocity and director distributions. We pursue the first order solution to investigate the ef-
fect of flow curvature on the configuration of the microstructure and the velocity distribution.
Studies of other non-Newtonian fluids in curved pipes [154, 163, 167] indicate that the com-
bination of geometry curvature and normal stresses induces a secondary motion. Secondary
flows lead to additional viscous losses, while not contributing to the throughput, thus affect-
ing the power consumption. Hence, a correct estimation of the power expenditure can serve
as a guideline when selecting the pumping equipment.

The solution of higher order terms follows the same procedure as for the leading order
components. Grouping O(δ) components in the expansions of linear momentum s− and
r − φ equations gives

0 =
∂p

∂s
r cosφ+

∂τ
(1)
rs

∂r
+

1

r

∂τ
(1)
φs

∂φ
+

1

r
τ (1)rs + 2

[
τ (0)rs cosφ− τ

(0)
φs sinφ

]
, (5.25)

0 = −1

r

∂2N
(1)
2

∂r∂φ
− 1

r2
∂N

(1)
2

∂φ
+
∂2τ

(1)
rφ

∂r2
+

3

r

∂

∂r
τ
(1)
rφ − 1

r2
∂2τ

(1)
rφ

∂φ2

+sinφ

(
1

r

∂τ
(0)
φr

∂φ
+

1

r
(N

(0)
2 ) +

∂τ
(0)
ss

∂r
+
∂τ

(0)
φφ

∂r

)
+cosφ

(
1

r

∂N
(0)
1

∂φ
+

2

r
∂τ

(0)
rφ +

∂τ
(0)
rφ

∂r

)
,

(5.26)

where τ (1) is the O(δ) contribution to the stress tensor defined in appendix B.3. Similarly
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to the leading order solution, calculation of the stress tensor requires the solution of angular
momentum equation, whose O(δ) components read

0 = −4
∂w(0)

∂r
n(1)
r

√
λ(λ+ 1) +

√
2
∂u(1)

∂r
(λ+ 1), (5.27a)

0 = −2n(1)
p

√
λ2 + λ

∂w(0)

∂r

+
√
2
√
λ2 − λ

[
(λ− 1)∂u

(1)

∂φ
+ (λ+ 1)

(
∂v(1)

∂r
r − v(1)

)]
− (λ− 1)

√
λ2 + λ

(
w(0)r sinφ+ ∂w(1)

∂φ

)
,

(5.27b)

0 = 4n(1)
s

∂w(0)

∂r

√
λ(λ− 1)−

√
2
∂u(1)

∂r
(λ− 1). (5.27c)

Expressing τ (1) in terms of w(1) and ψ(1) (eq. (B.5)) and substituting into the linear momen-
tum balance equations (5.25) and (5.26) we obtain a pair of differential equations of w(1) and
ψ(1) (eq. (B.7) and (B.8) in the appendix B.3). Further algebraic manipulation and imple-
mentation of no-slip boundary condition (eq. (5.16)) provides the solutions

w(1)(r, φ) = (k1r
3 + k2r + k3 + k4r

b−1) cosφ, (5.28)

ψ(1)(r, φ) =

(
r4 +

4− b

b− 1
r − 3

b− 1
rb
)
a sinφ, (5.29)

where a, b and ki are material-dependent parameters. The contribution of O(δ) solution to
the flow rate is given by

Q(1) =

∫ 2π

φ=0

∫ 1

r=0

w(1)rdrdφ = 0, (5.30)

so despite the fact that the first order solution affects the distribution of the axial velocity
profile, the flow rate remains unchanged. We can use the definition of the stream function to
compute components of the secondary velocity

u(1)(r, φ) = −1

r

∂ψ(1)

∂φ
= −

(
r3 +

4− b

b− 1
− 3

b− 1
rb−1

)
a cosφ, (5.31)

v(1)(r, φ) =
∂ψ(1)

∂r
=

(
4r3 +

−3rb−1b− b+ 4

b− 1

)
a sinφ. (5.32)

Components of the director field are found by substituting the velocity components into eq.
(5.27) and rearranging:

n(1)
r (r, φ) = −3

√
2(rb − r4)a

√
λ+ 1

8r3
√
λ

cosφ, (5.33a)
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n
(1)
φ (r, φ) =

−

[
9aλ+ 7a+

√
λ− 1(k1 + 1)

√
λ+ 1

]√
2

4
√
λ+ 1

√
λ

r

−

√
2

[
− 3a

[
(b− 1)2λ+ b2 − 2b− 1

]
+ k4

√
λ2 − 1(b− 1)

]
√
λ(λ+ 1)(4b− 4)

rb−3

−
√
2(k2 − 1)

√
λ− 1

4
√
λ

1

r
+

√
2
[
2a(b− 4) + (b− 1)k3

√
λ2 − 1

]
4
√
λ(λ+ 1)(b− 1)

1

r2

 sinφ,

(5.33b)

n(1)
s (r, φ) = −3

√
2(rb − r4)a

√
λ− 1

8r3
√
λ

cosφ. (5.33c)

Material dependent coefficients a, b and ki representative for some liquid crystalline materials
are listed in table 5.1. Since |a| << 1, the O(δ) contribution only marginally affects the
radial and axial components of the director field (eq. (5.33a) and (5.33c) ). There is however
a problemwith with n(1)

φ , as the last two fractions on the right-hand side of eq. (5.33b) diverge
at the pipe axis (r → 0). The singularity can be avoided when the coefficients of r−1 and r−2

are zero, which happens when

λ = 1. (5.34)

In this limit
√
λ− 1 = a = k3 = 0, so the coefficients of r−1 and r−2 in eq. (5.33b) are zero.

The limit represents a liquid crystal, whose molecules align with the flow direction, normal
stresses are zero, so the secondary flow disappears. The singularity at r = 0 comes from the
leading order solution, where the director orientation is indeterminate at the pipe axis due to
the zero shear rate [168]. That causes problems in calculating the O(δ) contribution. The
n
(1)
φ component is only significant close to the pipe axis (fig. 5.2), where the director field

rotates towards the bend axis. The singularity is an artefact of the perturbation approach and
violates the requirement |n|2 = 1; however, n(1)

φ but has little effect on the flow field, as it only
contributes to τ (2), and has therefore no impact on the O(δ) velocity solution. The problem
of an indeterminate director field is eliminated in the Leslie-Ericksen and Beris-Edwards
models, where the director director orientation on the pipe axis is such that the Helmholtz
free energy is minimised [142, 169].

Table 5.1. Coefficients a and b for different liquid crystals.

Liquid crystal µ1 µ2 λ a b k1 k2 k3 k4

5CB 1.32 -0.76 1.09 0.012 3.20 0.749 −0.754 0.003 0.003

MBBA 1.16 -0.84 1.02 0.001 3.21 0.749 −0.753 0.002 0.002

PAA 1.73 -0.77 1.06 0.018 3.31 0.750 −0.751 < 0.001 < 0.001

Newtonian fluid [154] 0 0 0 0 0 0.750 −0.750 0 0
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Figure 5.2. Contour of the director magnitude and the projection of the director field onto the r − φ plane for
5CB, δ = 0.2. Director magnitude increases near the pipe axis, which is caused by a singularity in n(1)φ . The
region of pipe axis is blanked out for visualisation purposes.

5.2.4 Second order (O(δ2)) solution

We pursue the second order solution to investigate the effect of pipe curvature on the flow
rate. Other studies concerned with the fluid motion in curved pipes show that the O(δ2)
velocity component is of the form [154, 164]

w(2)(r, φ) = w
(2)
1 (r) + w

(2)
2 (r) cos(2φ), (5.35)

where the exact definition of w(2)
i depends on the constitutive equation. The expression is

universal and comes from the expansion of axial momentum balance (eq. (5.17)). There
cannot be a component proportional to sin(2φ), which would violate the symmetry about the
centreline. The O(δ2) contribution to the flow rate is thus

Q(2) =

∫ φ=2π

φ=0

∫ r=1

r=0

w(2)(r, φ)rdrdφ =

∫ φ=2π

φ=0

∫ r=1

r=0

w
(2)
1 (r)rdrdφ, (5.36)

so only solutions for w(2)
1 are sought as w(2)

2 has no effect on the flow rate. Due to the co-
ordinate induced singularity in n(1), the second-order analytical solution is not realisable for
arbitrary µi and λ, so we consider the following set of material parameters

µ1 = − 2λ2µ2

2λ2 − λ− 1
, λ = −5 +

√
17

4
, (5.37)

which via eq. (B.11b) gives b = 3. Fortunately, this is within 10% of the values measured
for liquid crystals such as MBBA, 5CB and PAA (table 5.1). λ is negative, which is typical
for discotic liquid crystals [158]. Despite that, the calculations are pursued further to observe
the effect of pipe curvature on the flow rate. Following the same procedure as with the lower
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order contributions, the stream-wise velocity is given by

w
(2)
1 (r) = p1r

4 + p2r
3 + p3r

2 + p4r + p5, (5.38)

where pi = pi(µ2) are constants derived and listed in appendix B.4. The O(δ2) contribution
to the flow rate is found by integrating the velocity across the pipe and yields

Q(2) =

∫ 2π

φ=0

∫ 1

r=0

w(2)rdrdφ = 2π
(p1
6

+
p2
5

+
p3
4

+
p4
3

+
p5
2

)
. (5.39)

5.3 Results

5.3.1 Sources of the secondary flow

Curvature induced motion

The role of normal stresses is demonstrated through the r− and φ− components of the
momentum balance (equations (5.6a) and (5.6b), respectively). The effect ofN1+N2 comes
through the φ component of the momentum equation (5.6b) and is responsible for propelling
the secondary flow in the upper part of the pipe near the wall. Analogously, N1 appears in
the r− component of momentum equation (5.6a) and drives the returning secondary motion
at the symmetry plane. The action of normal stresses is schematically depicted in fig. 5.3.

N1+N2

N1

Figure 5.3. Schematic illustration of the action of normal stress differences in the r − φ plane. Reprinted with
permission from [24]. Copyright Elsevier 2022.

Inspecting components of τ (0) (eq. (B.3) in appendix B.2) we note that

• τ (0)rφ = 0.

• N (0)
1 and N (0)

2 are linear in r and independent of φ.

Observations above enable us to simplify the O(δ) contribution of normal stress differences
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to the momentum balance in the r − φ plane (eq. (5.18)):

1

r

{
∂[r(τrφ cosφ+ (N1 +N2) sinφ)]

∂r
− ∂[(−τrφ sinφ−N1 cosφ)]

∂φ

}
=
N

(0)
1 + 2N

(0)
2

r
sinφ = (Ψ1 + 2Ψ2) sinφ, (5.40)

where

Ψ
(0)
i = −2

N
(0)
i

∂w(0)

∂r

, (5.41)

is the coefficient of the ith normal stress difference. Ψ(0)
i is undefined on the pipe axis, due to

the zero shear rate and indeterminate director orientation. If we neglect the non-Newtonian
contribution in τ (1) (we assume that the first bracket on the right-hand side of eq. (5.18)
contains only the Newtonian contribution), the combination of stress imbalance and geometry
curvature is the only mechanism driving the secondary flow, and the stream function is given
by

ψ(1)
curv = −

r(r + 1
2
)(1− r)2

45
(Ψ1 + 2Ψ2) sinφ. (5.42)

The derivation of the equation above is presented in appendix B.4.1. A schematic visualisa-
tion of the vortex (rotating region of a fluid) is shown in fig. 5.4; its intensity is proportional
to Ψ1 + 2Ψ2 and the vortex eye has a fixed location φcent = π

2
, rcent ≈ 0.42. The direction

of the secondary motion is controlled by the sign of N (0)
1 + 2N

(0)
2 ; if N (0)

1 + 2N
(0)
2 > 0, the

stream function is negative and the vortex rotates counter-clockwise in the upper half of the
pipe. That is qualitatively similar to the constitutive behaviour represented by the Oldroyd-B
and UCM models, where |N1| >> |N2| [15], so the rotation is effectively controlled by the
sign of N1. The normal stress differences within liquid crystals can be of any sign [15, 27],
hence a flow reversal is possible. Substituting components of τ (0) defined in eq. (B.3) into
eq. (5.40) gives

N
(0)
1 + 2N

(0)
2 = −4(µ1 + µ2)n

(0)
r n(0)

s r, (5.43)

indicating, that for infinite Ericksen number flows and in the absence of other effects, the sign
of µ1 + µ2 governs the direction of secondary motion.
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Figure 5.4. Schematic illustration of a vortex driven only by the normal stress difference.

The order of magnitude analysis conducted by Fan et al. [153] show that for zero Reynolds
number flows, the pressure gradient and normal stresses balance in the pipe core (fig. 5.5).
Therefore, the secondary motion is initiated by the imbalance of normal stresses and ∇p in
the near-wall region. When |N1| >> |N2|, the direction of the secondary motion is gov-
erned by the sign of N1. A positive first normal stress difference represents tension within
the microstructure (not within the flow, since ∂w

∂s
= 0) [170]. The stress is reduced as the fluid

migrates towards the pipe axis, and induces a counter-clockwise motion (fig. 5.6). The mech-
anism is similar to the rod-climbing effect, where the normal stress reduction occurs when the
fluid climbs along the rod [170]. Conversely, when the microstructure is in compression, the
fluid reduces its deformation by migrating away from the bend axis, and a clockwise rotation
in the upper half of the pipe arises.

bend axis

-
p N1/R)

direction of rotation

depends on N1

Figure 5.5. The pressure gradient is balanced by normal stresses in the core of a bend.
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Figure 5.6. Schematic illustration of the effect of microstructure tension on the direction of the secondary
motion. The red line represents a flow streamline, whose strain produces a secondary motion. Blue arrows
denote the direction of the secondary motion.

In plane stress imbalance

The contribution of stress imbalance to the momentum balance in the r−φ plane is given
by the second term on the right-hand side of eq. (5.18)[

−1

r

∂2N
(1)
2

∂r∂φ
− 1

r2
∂N

(1)
2

∂φ
+
∂2τ

(1)
rφ

∂r2
+

3

r

∂τ
(1)
rφ

∂r
− 1

r2
∂2τ

(1)
rφ

∂φ2

]
, (5.44)

and indicates that imbalances between N (1)
2 and τ (1)rφ can produce secondary motion. This

mechanism of flow generation was investigated by Ravnik and Yeomans [171], who have
shown that the presence of defects in a cylindrical capillary results in stress imbalances, thus
inducing a secondary motion; the resultant director and flow fields are schematically depicted
in fig. 5.7. The secondary motion is strongest close to the defects, which accelerate the flow
[171]. In case of the TIF model, the absence of defects in the steady-state does not allow for
secondary flows in a straight pipe. However, due to the combination of flow curvature with
microstructure deformation we distinguish other mechanisms that contribute to a flow in the
r − φ plane:

• Shift of the stream-wise velocity field towards the bend axis. The velocity distortion
produces additional gradients in the φ direction, thus contributing to a stress imbalance;

• Director reorientation caused by a non-axisymmetric flow field;

• Inhomogeneous viscous contribution dependent on the director orientation.
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These mechanisms are illustrated in the definition of τ (1)rφ

τ
(1)
rφ = 2n(0)

s n
(1)
φ (µ1(n

(0)
r )2 +

µ2

4
)
∂w(0)

∂r︸ ︷︷ ︸
director reorientation

+2n(0)
s

µ2n
(0)
r sinφ
4

w(0)
µ2n

(0)
r n

(0)
s

∂w(1)

∂φ

2r︸ ︷︷ ︸
axial velocity shift

+
µ2(n

(0)
r )2 + 2

2r

(
∂u(1)

∂φ
+
∂v(1)

∂r
r − v(1)

)
︸ ︷︷ ︸

inhomogeneous viscous contribution

. (B.5b)

Figure 5.7. Schematic depiction of a secondary flow driven by a pair of defects [171]. Dashed black lines de-
note director field and the red lines indicate the direction of rotation.

Relative importance of curvature and imbalance effects

The cumulative contribution of the curvature and stress imbalance effects on the secondary
flow is described in the expression for the stream function ψ (eq. (5.29). The vortex strength
(and thus the secondary flow velocities u(1) and v(1)) scale with the parameter a, which is
defined as

a = − 2
√
λ2 − 1(5λµ1 + 5λµ2 − 3µ1)

9(7λ2µ1 + 7λ2µ2 + 10λ2 − λµ1 − 6µ1)
. (5.45)

The curvature and imbalance effects can be separated by noting that
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• The contribution of N (0)
1 + 2N

(0)
2 depends linearly on µ1 + µ2 irrespective of the value

of λ (eq. (5.43)).

• As λ → 1, the contribution of µ1 to the stress imbalance effect vanishes (eq. (5.21),
(B.5b)).

• In the limit µ1 = −µ2, curvature effects vanish and for λ → 1, the stress imbalance
depends only on µ2.

The above observations enable us to distinguish the separate contributions to the material-
dependent constant a:

a = −2
√
λ2 − 1[

curvature effects︷ ︸︸ ︷
2λ(µ1 + µ2)+

in plane stress imbalance︷ ︸︸ ︷
3µ1(λ− 1) + 3λµ2]

9(7λ2µ1 + 7λ2µ2 + 10λ2 − λµ1 − 6µ1)
, (5.46)

with their relative importance described by the factor

χ =
curvature effects
stress imbalance

=
2λ(µ1 + µ2)

3µ1(λ− 1) + 3λµ2

. (5.47)

For the liquid crystals listed in table 5.2,−1 < χ < 0, showing that imbalance effects govern
the rotation of the director field; the negative sign of χ implies that curvature effects resist
the rotation and thus decrease the magnitude of the secondary flow. In the case of PAA, the
ratio χ is closest to−1 (curvature and imbalance effects are of comparable strength), and the
secondary flow is the weakest.

Table 5.2. Nematic viscosities converted to match the TIF model [43], the imbalance ratio χ, analytical pre-
dictions of horizontal velocities at the pipe axis.

Liquid crystal µ1 µ2 λ χ u0

δ

5CB 1.32 -0.76 1.09 -0.57 8.9 · 10−3

MBBA 1.16 -0.84 1.02 -0.26 10.8 · 10−3

PAA 1.73 -0.77 1.06 -0.95 8.7 · 10−4

5.3.2 Magnitude of the secondary flow at the pipe axis

The secondary flow is generated by the non-Newtonian stresses arising from the flow-
director interaction. At r = 0, flow is parallel to the symmetry line and the magnitude of the
velocity directed towards the bend axis (fig. 5.8) is given by eq. (5.14)

u0
δ

=
ur|(r=0,φ=π)

δ
=
u(r = 0, φ = π)

δ
=
b− 4

b− 1
a. (5.48)

Velocity predictions are compared in table 5.2. Since u0 is positive for all materials con-
sidered in table 5.2, the fluid rotates clockwise in the upper half of the pipe; the rotation is
opposite to inertia [161, 162] and elasticity [154, 164] driven flows. The smallest velocity is
predicted for PAA due to the weakest dominance of stress imbalance effects.
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bend axis

u0

Figure 5.8. Schematic illustration of u0. When u0, the secondary flow on the symmetry line is directed to-
wards the bend axis and the fluid rotates in the clockwise direction in the upper half of the pipe.

Based on table 5.2, |λ− 1| << 1, so choosing this as a basis for a power series expansion
of u0 describes the scaling of the secondary velocity with the tumbling parameter

lim
λ→1+

(u0)

δ
= −

2(2µ1+5µ2)
(
−3µ2+

√
2
√

(µ2+2)(µ2+4))−6
)

9
√

(µ2+2)(µ2+4)(7µ2+10)

√
λ− 1 +O

(
(λ− 1)3/2

)
.

(5.49)

Above expansion indicates that for λ close to unity the secondary flow scales linearly with
√
λ− 1 ∝ n

(0)
r . Therefore, the misalignment between director and stream-wise velocity

produces non-zero normal stresses that generate the secondary motion. When λ = 1, the
director perfectly aligns with the stream-wise flow, normal stresses vanish, and the motion in
the r − φ plane ceases. We can extend this result to flows with finite Ericksen numbers: for
flows with homeotropic anchoring, the increased misalignment will strengthen the secondary
flow. A flow reversal can happen if the curvature and elastic contribution outweigh the stress
imbalance. In contrast, the wall-parallel anchoring improves the flow/director alignment and
thus weakens the secondary flow.

The intensity of secondary flow on the axis given by eq. (5.48) is plotted in fig. 5.9 as a
function of µi. Assuming that µ1 > 0 and µ2 < 0 (as indicated in table 5.2), u0 increases
as the magnitude of non-Newtonian viscosities increases. In the limit when when µ1 = 0,
µ2 → −2, the shear viscosity ηshear = 1+ µ2

2
→ 0, so even a small normal stress can produce

a strong secondary flow.
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u
0

Figure 5.9. Cross-pipe velocity magnitude at the pipe axis as a function of µ1 and µ2 for λ → 1. Inset: loca-
tion where u0 is evaluated. Reprinted with permission from [24]. Copyright Elsevier 2022.

High director/velocity misalignment limit

In this paragraph we consider the effect of significant misalignment between stream-wise
flow and the director field on the fluid rheology. The director/velocity misalignment can
arise at low Ericksen number flows with homeotropic anchoring and usually varies spatially,
depending on the proximity to the wall. Perturbation analysis presented in this chapter cannot
account for effects of elasticity and for that reason we consider limit λ → ±∞ (in which
|n(0)
r | = |n(0)

s | =
√
2
2
, eq. (5.21)) as a precursor for flows with a significant director/velocity

misalignment. When λ → ±∞, the magnitude of horizontal velocity directed towards the
pipe axis is given by

lim
λ→∞

(u0)

δ
=

(µ1 + µ2)
[
− 5

√
2
√

(µ1 + µ2 + 2)(µ1 + µ2 + 4) + 15(µ1 + µ2) + 30
]√

2√
(µ1 + µ2 + 2)(µ1 + µ2 + 4)(63(µ1 + µ2) + 90)

.

(5.50)

The magnitude of secondary flow is a function of µ1+µ2, indicating equal importance of both
viscosities. As theµi increase, effect of normal stresses becomesmore significant, leading to a
stronger secondary flow. At the same time, the fluid becomes more viscous, so the magnitude
of the secondary motion remains finite for large µi, as shown in fig. 5.10.
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The effective shear viscosity in the limit of λ = ∞ is given by

ηeff |λ=∞ = 1 + 2µ1

(
n(0)
r n(0)

s

)2
+
µ2

2
= 1 +

µ1 + µ2

2
, (5.51)

and must be greater than zero to avoid violation the second law of thermodynamics [45, 64].
Fig. 5.10 indicates that u0 strongly increases as µ1 + µ2 → −2; in this limit the effective
viscosity becomes negligible, and even small normal stresses generate secondary flows of
large magnitudes.
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Figure 5.10. Magnitude of the secondary flow as a function of µ1 + µ2.

5.3.3 Structure of the secondary flow

The secondary motion of liquid crystals in a curved pipe consists of a pair of vortices
rotating in opposing directions. In the absence of inertial effects, for all liquid crystals con-
sidered in this work, the first order contribution to the stream function ψ(1) > 0 in the upper
half of the pipe, and the fluid rotates counter-clockwise. The stream function distribution is
very similar for each of the fluids (PAA, MBBA and 5CB) considered, so only the contour
plot of ψ(1) for 5CB is shown in fig. 5.11. Because |χ| < 1, the secondary flow direction is
governed by stress imbalance effects, which is unique compared to other viscoelastic mod-
els (i.e. Oldroyd-B, UCM). In the latter models, the secondary flow is driven solely by the
combination of geometry curvature and normal stresses [154, 164].
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Figure 5.11. Contours of the stream function for 5CB. Positive stream function implies that the flow is rotat-
ing clockwise, which is opposite to the direction of a secondary flow driven by inertia. The left side of the
plot is closer to the bend axis. Reprinted with permission from [24]. Copyright Elsevier 2022.

5.3.4 Non-uniqueness of the shear viscosity and the effect on the secondary motion

The effective shear viscosity in the TIF model in a straight pipe flow is given by

ηeff =
τ
(0)
rs

∂w(0)

∂r

= 1 + 2µ1(n
(0)
r n(0)

s )2 +
µ2

2
= 1 +

(µ1 + µ2)λ
2 − µ1

2λ2︸ ︷︷ ︸
ηnN

. (5.52)

A fixed value of ηnN , can be composed from an arbitrarily large set of material parameters
λ and µi. As a result, the normal stress viscosity in materials with fixed ηeff need not be
constant:

ηN1 =
N

(0)
1

∂w(0)

∂r

=
−2ηnN + µ2√

λ2 − 1
. (5.53)

The effect is illustrated in fig. 5.12, where ηeff varies significantly for a fixed shear viscos-
ity, indicating that materials with similar shear properties can display significantly different
extensional behaviour. ηN1 is particularly sensitive to the value of tumbling parameter in the
limit λ → 1, as ηeff is only weakly affected by λ in this regime (because n(0)

r → 0). There-
fore, the intensity and direction of the secondary flow can vary for materials with a fixed
shear viscosity (fig. 5.13), indicating that ηnN is not sufficient to characterise the complex
rheology of liquid crystals. The TIF model contains three material parameters (λ, µ1, µ2),
so an additional two measurements are required to describe the liquid crystal flow at infinite
Ericksen number, e.g. the measurement of the first normal stress difference and the Leslie
angle. These, in conjunction with the effective viscosity, enable full characterisation of the
material properties of the transversely isotropic fluid.
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Figure 5.12. The first normal stress viscosity ηN1 need not be constant for materials with a fixed shear viscos-
ity. Reprinted with permission from [24]. Copyright Elsevier 2022.

Figure 5.13. The magnitude and direction of the secondary motion in materials with fixed ηnN can vary sig-
nificantly. The plot was obtained for ηnN = 1. Reprinted with permission from [24]. Copyright Elsevier
2022.

5.3.5 Streamwise flow

Curvature effect on the stream-wise velocity and the director

In a straight pipe flow, the axisymmetric velocity profile produces an axisymmetric direc-
tor distribution, as shown in the inset of fig. 5.14. This is not the case in a curved pipe, where
due to the pipe curvature and non-Newtonian contribution the velocity field is given by (eq.
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(5.22) and (5.28)):

w = w(0)+ δw(1)+O(δ2) = 1− r2+ δ

[
k1r

3+k2r+k3+k4r
b−1

]
cosφ+O(δ2). (5.54)

The O(δ) component shifts the peak axial velocity towards the bend axis (fig. 5.14), which
produces velocity and stress gradients in the φ− direction. The velocity profile on the symme-
try line is similar to the Newtonian flow profile (fig. 5.15), indicating that the non-Newtonian
stresses have little effect on the stream-wise flow. Compared to the Newtonian fluid, the TIF
model introduces new parameters (k3 and k4) into the O(δ) contribution; however, for typi-
cal liquid crystals listed in table 5.1, the additional parameters are two orders of magnitude
smaller than coefficients k1 and k2, and therefore the velocity profile changes only marginally.
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Figure 5.14. Contours of the streamwise velocity field w = w(0) + δw(1) and the projection of the director
field n = n(0) + δn(1) onto the r − φ plane. A shift in the director field is caused by the shift in the stream-
wise velocity field. Inset: the director field in a straight pipe. Reprinted with permission from [24]. Copyright
Elsevier 2022.
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Figure 5.15. Comparison of stream-wise velocity in a curved pipe predicted for a Newtonian and 5CB fluids.

The presence of flow curvature affects the velocity distribution, which in turn distorts the
director field: as r → 1, the velocity gradient in the radial direction dominates, and n is
confined to the r − s plane, similarly to the straight pipe flow. However, at r → 0, the
O(1) component of the velocity gradient vanishes (∂w(0)

∂r
= 0), and the director orientation is

governed by O(δ) effects. As a result, both director and velocity fields shift towards the bend
axis, as shown in fig. 5.14.

Power consumption and flow rate

For zero Reynolds number, isothermal flows any pressure work performed on a fluid is bal-
anced by the viscous losses [45, 165]

∫
∇p · udV =

∫

∂p

∂s
w +

∂p

∂r
u+

1

r

∂p

∂φ
v︸ ︷︷ ︸

dissipative contribution of
the secondary motion

 dV = −
∫

ΦdV, (5.55)

whereΦ = D : τ is the dissipation, which represents the work required to overcome resisting
stresses. Since the secondary flow is absent in a straight pipe flow, all the pressure work is
spent to overcome the viscous losses in the axial direction. The situation is more complex in a
curved pipe, where the combination of stream-wise velocity and the secondary flow produce
a non-axisymmetric distribution of the dissipation, as shown in fig. 5.16. Smaller dissipation
away from the bend axis is only partially compensated for by increased dissipation near the
axis.
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Figure 5.16. Contours of viscous dissipation in the bend cross-section for 5CB. Dissipation is normalised
with respect to the maximum value, δ = 0.2. Reprinted with permission from [24]. Copyright Elsevier 2022.
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Figure 5.17. Change in the flow rate and the dissipation (at a fixed pressure gradient) compared with the
straight pipe flow. The green curve represents dissipation changes, while the blue dashed curve denotes flow
rate changes. Reprinted with permission from [24]. Copyright Elsevier 2022.

Compared to a straight pipe flow, the change in the flow rate can be written as

∆Q

Qs

=
Qc −Qs

Qs

= δ2
(
2p1
3

+
4p2
5

+ p3 +
4p4
3

+ 2p5

)
, (5.56)

whereQc = Q(0)+ δQ(1)+ δ2Q(2) is total flow rate in a curved pipe and pi are defined in ap-
pendix B.4. SinceQ(1) = 0 (eq. (5.30)), the pipe curvature introduces an O(δ2) perturbation
to the flow rate. For a fixed pressure gradient, the higher flow rate increases the dissipation,
as shown in fig. 5.17. The later quantity increases by more due to the secondary motion,
which increases the total energy expenditure without contributing to the throughput.
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5.3.6 Validity of the perturbation method

The perturbed solutions are valid when higher-order contributions only marginally modify
the leading order solution. In the case of Newtonian flows, the Reynolds number and bend cur-
vature δ need to be sufficiently small so that the O(1) solution dominates. In this chapter, we
have neglected the inertial contribution to the flow; however, the TIF model introduces addi-
tional non-Newtonian stresses that interacts with the flow, and for the solution to remain valid,
we require the first order contributions to be smaller than theO(1) solution. A comparison of
relative magnitude of O(1) and O(δ) components is made in table 5.3, which shows that the
perturbation solutions are valid for µ1, µ2, λ > −1. The case µ1 = −1, µ2 = −1.5, λ = 2 is
unphysical, which manifests in the excessively large contribution of theO(δ) director compo-
nents. The shear viscosity (µ1+µ2+2)λ2−µ1

2λ2
in a shear flow becomes negative, which produces

in a complex coefficient b. As the magnitude of the TIF parameters increases, the relative im-
portance of the first order solution also increases, reducing the solution accuracy. Therefore,
in order to avoid excessive, leading order contributions, it is recommended to use material
parameters in the range −1 < µ1, µ2 < 7, 1 ≤ |λ| < 7 (well within the range of material
parameters presented in table 5.2).

Table 5.3. The relative magnitude of first order terms with respect to the leading order solution for δ = 0.2.
Red values indicate a singular behaviour, where radial and axial director components diverge.

µ1 µ2 λ max
(∣∣w(1)/w(0)

∣∣) max
(∣∣∣n(1)r /n

(0)
r

∣∣∣) max
(∣∣∣n(1)s /n

(0)
s

∣∣∣)
-1 -1 2 0.21 0.05 0.19

-1 -1.5 2 0.53 642 208

-1 -1.5 1.1 0.16 0.08 <0.01

2 -1.5 2 0.13 <0.01 <0.01

3 5 2 0.14 0.19 0.06

7 7 7 0.14 0.21 0.16

10 10 10 0.14 0.23 0.19

15 15 15 0.14 0.26 0.23

5.4 Summary

The creeping flow of a transversely isotropic fluid in a curved pipe is analytically described
through a perturbation expansion. We show that the secondarymotion arises as a consequence
of the misalignment between stream-wise flow and director, which leads to generation of non-
Newtonian stresses. In the limit of |λ − 1| << 1, the magnitude of secondary flow in the
r − φ plane scales with n(0)

r , while for flows with a large director/velocity misalignment, µ1

and µ2 are equally important, and the intensity of the secondary flow depends on µ1 + µ2.

We distinguish two different effects responsible for the secondary flow: 1) a combination
of the normal stresses with the pipe curvature; 2) an imbalance of the second normal stress
difference and the shear stress in the r−φ plane. The latter effect can also be present in straight

129



pipe flows of active nematics, where an imbalance of elastic stress caused by defects produces
a secondary flow. In typical liquid crystalline fluids (5CB, PAA, MBBA), the curvature and
stress imbalance effects work against each other, the latter of which is dominant. For that
reason, the secondary flow rotates in the direction opposite to inertially and elastically driven
flows [154, 161]. There are two possibilities to tune the secondary flow: 1) by controlling the
magnitude of the parameter a (defined in eq. (B.11)), the strength of the secondary motion
can be effected; 2) by applying an external field (electric, magnetic), the director field can be
rotated, which would alter the non-Newtonian stress tensor, and therefor influence both the
secondary and streamwise motions.

A fixed effective shear viscosity of a transversely isotropic fluid can be constructed in
infinitely many ways from the material parameters λ, µi. That does not guarantee a fixed
extensional characteristics, and ηNi

can be orders of magnitude different from the shear vis-
cosity, depending on the choice of material parameters. As a result, materials with a fixed
effective viscosity can induce secondary flows of different intensities and directions. Hence,
an accurate characterisation of transversely isotropic fluids requires other flow characteristics,
such as first and second normal stress differences.

The geometry curvature affects the stream-wise velocity profile, which, compared to the
straight pipe solution, is shifted towards the bend axis. The perturbed velocity profile deforms
the director field, whose orientation is governed by theO(1) components at the wall andO(δ)
contribution near the pipe axis. For a fixed pressure gradient, the flow curvature increases
both the flow rate and the dissipation. The increase in the latter quantity is more significant,
which is a manifestation of additional losses induced by the secondary flow. Therefore, it is
necessary to use stronger pumps to overcome additional viscous losses.

The next chapter provides an extension of the analysis made in this chapter by considering
the effect of wall anchoring in the finite Ericksen number regime and assessing the flow and
director development upstream/downstream of the bend.
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Chapter 6

Flow of Leslie-Ericksen fluids through

90o bends

This chapter investigates the flow of Leslie-Ericksen fluids through bends at finite Ericksen
numbers. Simulations are conducted to: 1) examine the effect of elasticity on the director and
flow fields; 2) assess the effect of bend entrance and exit on the velocity and director field; 3)
estimate the additional pressure drop due to the presence of a bend.

6.1 Geometry

The geometry considered in this chapter is schematically depicted in fig. 6.1 and consists
of two straight pipes with a radius r∗0 connected by a 90o bend. The outlet pipe has a length of
30r∗0 to provide enough space for flow andmicrostructure to reach a fully developed state after
leaving the bend. R∗

0 denotes the bend radius, and bend curvature has the same definition as
in the previous chapter (δ =

r∗0
R∗

0
). The flow is laminar, which enables us to assume that it is

symmetric about the z = 0 plane [161, 172]; thus, in order to reduce the computational cost
of simulation, we only consider flow above the symmetry plane.

6.2 Methodology

6.2.1 Governing equations

The motion of a Leslie-Ericksen fluid in a bend is described by a set of Navier-Stokes
equations. Numerical solutions are obtained in OpenFOAM and we have used our new solver
rheoFoam2 (introduced in section 3.1) to model the director and stress evolution. The lin-
ear momentum balance is supplemented with a viscoelastic stress tensor describing the mi-
crostructure contribution

τ ∗ = α∗
1nnnn : D∗+α∗

2nN
∗+α∗

3N
∗n+α∗

4D
∗+α∗

5nn·D∗+α∗
6D

∗·nn− ∂f ∗
d

∂∇∗n
·(∇∗n)T ,

(2.52)
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Figure 6.1. Schematic depiction of a 90o pipe bend and the pipe cross-section at the inlet. The red dot denotes
the centre of the coordinate system, which is located at the axis of inlet.

where the starred variables refer to dimensional quantities; α∗
i are Leslie viscosities, N ∗

denotes the co-rotational time derivative of the director field and f ∗
d is the Helmholtz free

energy, for which the one-constant approximation (eq. (2.44)) is used. Dimensionless vari-
ables appear without stars and are non-dimensionalised in the same fashion as in the previous
chapter (eq. (5.5)). The stress is computed based on the director orientation, whose evolution
is described by the angular momentum balance

h∗ − nn · h∗ − γ∗2(n ·D∗ − nnn : D∗)− γ∗1N
∗ = 0, (2.53)

where the molecular field h∗ = − δf∗d
δn

quantifies system’s departure from the minimum
Helmholtz free energy.

6.2.2 Boundary conditions

Boundary conditions employed in simulations are summarised in table 6.1; we impose a
uniform velocity distribution at the inlet, with the director aligned in the flow direction. The
outlet is located far enough downstream the bend exit, so the flow is fully developed; hence,
we prescribe a zero-gradient boundary condition for velocity and director.

Results of chapter 4 suggest that the fluid rheology significantly depends on the Ericksen
number and the type of wall anchoring. Director orientation not only affects the velocity
profile but also controls the magnitude of normal stresses, which were shown to have a sig-
nificant impact on the flow in a curved pipe [24, 167]. Therefore, we consider configurations
with both homeotropic and wall-parallel anchoring; details on the implementation of director
boundary conditions in OpenFOAM are given in appendix C.1.
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Table 6.1. Boundary conditions for the velocity, director and pressure fields.

location velocity director pressure

inlet uniform, fixed value w∗ = w̄∗
0 flow-aligned, n = [1, 0, 0] zero-gradient

outlet zero gradient zero gradient fixed value p = 0

wall no-slip homeotropic/wall parallel zero-gradient

symmetry plane symmetry symmetry symmetry

The Ericksen number is defined based on the inlet flow properties, in the same manner as in
chapter 4:

Er =
w̄∗

0r
∗
0α

∗
4

K∗ , (6.1)

where w̄∗
0 is the uniform inlet velocity, r∗0 is the pipe radius, α∗

4 represents a viscosity scale
and K∗ is the Frank constant.

6.2.3 Material parameters

We consider three different fluids whose material properties are listed in table 6.2. Pa-
rameters of fluid 1 are identical to 5CB [43]; it has a small Leslie angle and −1 < χ < 0

(χ and describes the relative importance of curvature and imbalance effects (section 5.3.1)).
Parameters for fluids 2 and 3 are selected to investigate the effect of higher Leslie angles and
positive χ (curvature and stress imbalance effects are additive in the limit of infinite Ericksen
number) on the flow behaviour.

Table 6.2. Nematic viscosities of the fluids considered in this chapter.

αi(Pa · s) α1 α2 α3 α4 α5 α6 θL χ

Fluid 1 -0.0060 -0.0812 -0.0036 0.0652 0.064 -0.0208 12o −0.57

Fluid 2 -0.01 -0.30 -0.05 0.200 0.400 0.050 22o 3.02

Fluid 3 -0.01 -0.091 -0.046 0.200 0.173 0.037 35o 2.03

6.2.4 Computational domain and solution details

Simulations are conducted on a bend with curvature δ = 0.2 using three differently refined
meshes: M1 = 118 200 cells (coarse), M2 = 799 600 cells (fine), M3 = 2 007 500 cells
(refined). Cross sections of the coarse mesh on the inlet and symmetry plane are shown in
fig. 6.2.

Simulation on the coarse grid is initialised with a stationary fluid and a horizontal director
field. Spatial gradients are computed with the least squares method [107] and the conver-
gence criteria for all variables are set to 10−8. All simulations are run using four cores. The
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numerical solution is first obtained on a coarse grid; we then use the mapFields utility to map
the coarse grid solution as an initial condition for the fine meshM2 and reduce the compu-
tational cost. The procedure is repeated on the refined M3 mesh. The calculation requires
about 10 ·1015 floating point operations on theM1 mesh and takes about six times longer than
the laminar, Newtonian solution.

Figure 6.2. Computational domain of the bend used for simulations. For visualisation purposes only the
coarse gridM1 is shown. The grid is refined in the near-wall region to capture sharp gradients of the direc-
tor field, as the size of flow-elastic layer scales with Er−0.5.

6.3 Results

6.3.1 Director field in a bend

The distribution of the director field in a bend shares characteristics with the flows already
analysed in previous chapters (flow at finite Er in a straight pipe and flow at infinite Er in a
curved pipe). The main features of the microstructure distribution are:

• Shift of the director field towards the bend axis

– At high Ericksen numbers, a displacement of the director field is caused by the
distortion of the velocity profile, whose peak moves closer to the bend axis. Due
to a small elastic contribution, the director field nearly aligns with the flow, and the
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stream-wise velocity profile resembles the Newtonian solution, for which the peak
velocity occurs at [154] R∗−R∗

0

r∗0
≈ −0.074 when δ = 0.2; the location coincides

with the location where the director aligns with the flow direction (θ = 0), as
shown in fig. 6.3.

– For small Ericksen number flows, the director orientation is governed by elastic
effects, which act to minimise the Helmholtz free energy. The curved pipe geome-
try is too complex to obtain analytical solutions for the director orientation even at
zero Ericksen number; however, analytical solutions in a curved duct can provide
a qualitative explanation. Calculations performed in appendix C.2 indicate that for
flows with the homeotropic anchoring, in the limit of one-constant approximation,
the Helmholtz free energy in a curved duct is minimised by the angle θ (shown in
fig. 6.3) that measures the director deviation from the stream-wise direction

θ(r) = π
ln
(
r
r1

)
+ ln

(
r
r2

)
ln
(
r2
r1

) , (C.5)

where r1 and r2 are inner and outer radii of the duct. Therefore, the location where
the director aligns with the axial flow r∗(θ = 0) = R∗

0

√
(1 + δ)(1− δ) ≤ R∗

0

moves towards the bend axis as the bend curvature increases. The solution is
schematically visualised in fig. 6.4.

• Wall anchoring governs the director orientation in the near-wall region (director bound-
ary layer), whose size is determined by the Ericksen number, as shown in fig. 6.3. For
configurations with homeotropic anchoring, the director field escapes from the radial
into the axial direction. In contrast, there is little change in director orientation in con-
figurations with wall-parallel anchoring due to small Leslie angles.

Distribution of the director field with homeotropic and wall-parallel boundary conditions is
schematically illustrated in fig. 6.5.
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Figure 6.3. Variation of the director orientation at the centre of the bend predicted for fluid 1; distributions for
fluids 2 and 3 are similar and therefore not shown. θ denotes an angle between director and flow direction.

Figure 6.4. Due to the geometry curvature, the director field at Er = 0 moves towards the bend axis to min-
imise the Helmholtz free energy.
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Figure 6.5. Director profile for Er = 10 at the symmetry plane of the bend for fluid 3. The red colour repre-
sents orientation for homeotropic anchoring and the black colour is the result for a wall-parallel anchoring.

6.3.2 Stream-wise velocity

The geometry curvature has a similar effect on the stream-wise velocity profile as on the
director field, and the velocity peak shifts towards the bend axis, as shown in fig. 6.6. For con-
figurations with homeotropic anchoring, the near-wall director-velocity alignment produces a
high viscosity layer; wall-parallel anchoring results in a nearly uniform viscosity distribution
with a Newtonian-like velocity profile.
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Figure 6.6. Stream-wise velocity profile in the bend centre predicted for 5CB. Letters h and p refer to
homeotropic and wall-parallel respectively.

6.3.3 Secondary flow

Analysesmade in the previous chapter describe two independentmechanisms that generate
the secondary flow: 1) the combination of normal stresses with geometry curvature, whose
strength scales with N1 + 2N2 and; 2) the imbalance of N (1)

2 and τ (1)rφ in the r − φ plane,
(N (1)

2 = N bend
2 − N straight

2 is the change in the second normal stress difference due to the
geometry curvature, τ (1)rφ has an analogous meaning). τ is the dimensionless stress tensor
non-dimensionalised through eq. (5.5) and Ni are dimensionless normal stress differences.
The relative importance of these effects in the limit of infinite Ericksen number (no elasticity)
is quantified through χ = curvature effects

imbalance effects . For liquid crystals considered in the previous chapter
−1 < χ < 0, suggesting that imbalance effects control the direction of the secondary motion;
negativity of χ indicates that curvature and imbalance effects oppose each other (χ > 0 for
fluids 2 and 3, so these effects are additive, which results in stronger secondary flows). The
situation becomes more complex when elastic effects are present as the sign and magnitude
of χ depend on Ericksen number and wall anchoring.

Fig. 6.7 and 6.8 show that the distribution of normal stresses in the bend centre is sig-
nificantly affected by the Ericksen number and type of wall anchoring. In order to measure
the relative change of a given effect (N1 + 2N2 or N (1)

2 ) with respect to the infinite Ericksen
number limit we use the following expression

%(E) =
E(Er)

E(Er = ∞)
=

√ ∑
[E(Er)2]∑

[E(Er = ∞)2]
, (6.2)

138



where E = N1 + 2N2 or E = N
(1)
2 . The relative changes are compared in table 6.3 and

indicate that the reduction of Ericksen number in flows with the wall-parallel anchoring de-
creases the contribution of curvature effects more significantly than the contribution of flow
imbalance effects. As a result there is a small increase in the intensity of the secondary mo-
tion, as shown in fig. 6.9. That is not the case for configurations with homeotropic anchoring,
where the increased contribution of curvature effects surpasses the strength of stress imbal-
ance effects and a flow reversal occurs at lower Ericksen numbers (fig. 6.9).
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Table 6.3. Change in the strength of a given effect with respect to the infinite Ericksen number limit for fluid
1.

%(N1 + 2N2) %(N
(1)
2 )

10p 0.42 0.57

100p 0.87 0.88

10h 2.28 1.93

100h 1.35 1.11
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Figure 6.9. Effect of the Ericksen number on the magnitude of the secondary flow. For u∗sec > 0 the sec-
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Noticeably different behaviour is observed for fluids 2 and 3, where χ > 0, meaning that
the curvature and imbalance effects are additive. In flows with homeotropic wall anchoring,
a decrease of Ericksen number increases the director/velocity misalignment, leading to an
increase in normal stresses, as shown in fig. 6.10 and 6.11; as a result, the intensity of the
secondary motion increases (fig. 6.9). In contrast, the wall-parallel anchoring decreases
the director/velocity misalignment, so the non-Newtonian stresses decrease, resulting in a
weaker secondary flow. It should also be noted that fluids 2 and 3 are characterised by a
considerably larger Leslie angle than fluid 1 (table 6.3). A large θL imposes a significant
director/velocity misalignment even in the infinite Ericksen number limit, and therefore the
magnitude of secondary motion is less sensitive to the Ericksen number and wall anchoring
compared with fluids where λ→ 1.
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6.3.4 Entrance and exit velocity effects

The fully developed velocity profile in a bend is shifted towards the bend axis compared
to the straight pipe flow, as shown in fig. 6.12. Therefore, as the flow transitions between
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straight and curved pipe solutions, there is a stress gradient in the axial direction, which is
responsible for a spike in the transverse velocity (velocity component directed towards the
bend axis) as the fluid enters/leaves the bend (fig. 6.13). In the case of a creeping Newtonian
flow, the entrance and exit spikes are of the same magnitude because of zero normal stresses
[24, 154]. Further quantitative details on the origins of the spike are provided in appendix
C.3.
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Figure 6.12. Comparison of Newtonian velocity profiles in a straight pipe and a bend.
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The analysis of entrance/exit effects in the case of liquid crystals is more complex due to
their non-Newtonian nature. Calculations conducted in appendix C.3 indicate two contribu-
tions to the velocity spike:

• Gradients of the shear stress in the axial direction (also present in a Newtonian flow).
In the case of liquid crystals, the shear stress has both Newtonian and non-Newtonian
contributions.

• Non-Newtonian stresses that drive the secondary motion in a fully developed curved
pipe.

Since there is a non-zero secondary motion in a fully developed curved pipe flow, spikes are
not of the same magnitude at bend entrance and exit, as shown in fig. 6.14 and 6.15. A
comparison of τsr with N (1)

2 indicates that the shear stress and its gradients are significantly
larger in magnitude than the second normal stress difference (fig. 6.16 and 6.17). For the
purpose of scaling analysis, let us assume that the spike magnitude is solely controlled by τsr,
which in the steady-state, fully developed straight pipe flow is given by

τsr =
1

2

[
α4 + 2α1n

2
sn

2
r + (−α3 + α6)n

2
r + (α2 + α5)n

2
s

]∂w
∂r
, (C.15d)

where subscripts r and s denote radial and stream-wise components of the director field re-
spectively. If we consider the flow close to the pipe axis, where nr → 0, τsr (and thus the
spike magnitude) is proportional to α2+α4+α5. The effect is confirmed in fig. 6.18, where
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the stress-velocity dependence for fluids with different material properties collapse onto a
single line.
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Figure 6.14. Transverse velocity of fluid 1 across the bend. s = 0 corresponds to the location of the bend
entrance. δ = r0
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6.3.5 Director development downstream of the bend

In a straight pipe flow with finite Ericksen number, the director on the axis is oriented in
the stream-wise direction as this orientation minimises the distortion energy. That is not the
case at the bend exit (fig. 6.5), where the velocity and director fields are shifted towards the
bend axis. Thus, as the flow leaves the bend, there is a transition region with an intermediate
director distribution. We first present a qualitative estimation of the development length and
use the findings to interpret numerical results.

Analytical estimation of director development

Consider a distorted director field entering a straight channel as shown in fig. 6.19. For
two-dimensional flows, the director orientation can be expressed in terms of the polar angle
θ that the director makes with the horizontal direction ([nx ny] = [cos θ sin θ]), and the
dimensionless momentum balance equation (2.53) simplifies to [151]

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

Erγ1

[
∂2θ

∂x2
+
∂2θ

∂y2

]
− 1

2

γ2
γ1

[
(
∂u

∂y
+
∂v

∂x
) cos(2θ) + (

∂v

∂y
− ∂u

∂x
) sin(2θ)

]
− 1

2

(
∂u

∂y
− ∂v

∂x

)
, (6.3)

where u and v are x− and y− dimensionless velocities. Let us make the following assump-
tions in order to simplify the evolution equation (6.3):
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• The system is in a steady state, so the time derivative ∂
∂t
vanishes.

• Director convection takes place predominantly in the flow direction |v ∂θ
∂y
| << |u ∂θ

∂x
|.

• Flow velocity is maximum at the channel centerline, so flow effects are significantly
smaller than elastic effects.

• Director gradients in the y− direction dominate: |∂2θ
∂y2

| >> | ∂2θ
∂x2

|.

u(y)

x=0

8

x=

θy=0x

y

Figure 6.19. Distorted director field entering a straight channel.

With the assumptions above, the director transport equation (6.3) simplifies to

u
∂θ

∂x
=

1

Erγ1

∂2θ

∂y2
, (6.4)

which indicates a competition between convective and elastic contributions. Convective ef-
fects act to propagate director distortions downstream, while elasticity drives the system to-
wards the straight channel configuration with θ(y = 0) = 0. Calculations performed in
appendix C.5 indicate that for small θ we can make the following approximation

∂2θ

∂y2
|θ→0 ≈ −θ

2
, (6.5)

indicating that in a fully developed flow ( ∂θ
∂x

= 0), the system tends to the straight channel
solution with θ = 0. Substituting eq. (6.4) into eq. (6.5) and assuming a fixed director angle
at the channel entrance θ(x = 0) = θ0, the director director evolution is described by

θ(x) = θ0e
− x

2uErγ1 , (6.6)

the solution is visualised in fig. 6.20 and indicates that the director development length is a
function of γ1Er, which measures the relative strength of convective to elastic effects acting
on the director. Convection propagates the director distortion, which is resisted by material
elasticity acting to recover the straight channel solution.
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Figure 6.20. Evolution of the director angle downstream the bend exit for fluids 2 and 3 according to eq. (6.6).

Numerical results

The numerical predictions of the director development for fluids 2 and 3 are shown in fig.
6.21 and 6.22 and indicate that the development length can be O(10r∗0) in the limit of high
Ericksen number. Analytical predictions agree with simulations in the following aspects:

• The director development length increases with the Ericksen number.

• Director development is also affected by γ1, so the transition to the straight flow solution
takes longer for fluid 2 (larger γ1) than fluid 3.
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Figure 6.21. Director development on the centerline with homeotropic anchoring for δ = r0
R = 0.2. yd de-

notes the distance downstream the bend exit. Results for wall-parallel anchoring are qualitatively similar and
hence not shown.
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Simulations also indicate that the director angle at the bend exit increases with the Ericksen
number, which is caused by the propagation of the distorted director field. The director field
in a bend is schematically illustrated in fig. 6.23 and indicates that there is a thin layer ∆w,
where elastic effects govern director orientation and n aligns with the axial flow. The size of
the layer depends on the relative importance of elastic contribution, so for low Er flows,∆w
is significant, and the director angle at the bend exit is small; in contrast,∆w is small at high
Er , so the director/velocity misalignment is larger.

pipe axis

w

Figure 6.23. Schematic visualisation of a director (red rods) layer∆w with a uniform director orientation.
The layer size increases as the Ericksen number decreases.
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6.3.6 Pressure drop

Compared to a straight pipe flow, the geometry curvature affects both velocity and di-
rector field; their distribution is not axisymmetric anymore, and the combination of normal
stresses and flow curvature produces a secondary motion. These effects affect the pressure
drop, which, as indicated in fig. 6.24 can be up to 3% higher than in a straight pipe of the
same length. The similarity of fig. 6.24 and 6.9 suggests that the excess pressure drop is
predominantly caused by the secondary motion; hence the increase is more severe for fluids
2 and 3, which produce stronger secondary flows.
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Figure 6.24. Additional pressure gradient relative to the straight pipe solution δ = 0.2.

6.4 Summary

The flow of Leslie-Ericksen fluids through a 90o pipe is qualitatively similar to both fi-
nite Ericksen number, straight pipe flows and infinite Ericksen number curved pipe flows.
The bend curvature induces a shift of velocity and director field towards the bend axis, while
elastic effects govern the director orientation near the wall. Similarly to the infinite Erick-
sen number flows, the magnitude of the secondary flow is governed by curvature and stress
imbalance effects; however, their relative importance depends on the Ericksen number and
anchoring type. A flow reversal is possible for materials where curvature and stress imbalance
effects oppose each other. On the other hand, when these effects are additive (fluid 2 and 3),
the magnitude of the secondary motion increases in the case of homeotropic anchoring due
to the increased director/velocity misalignment; conversely, an improved alignment caused
by homeotropic anchoring decreases the strength of the secondary flow.

151



Wefind that the transition between fully developed straight and curved pipe flows produces
additional stresses responsible for spikes in the transverse velocity. The spike need not be
of the same size on the inlet and outlet and depends on the direction and strength of the
secondary flow in a fully developed curved pipe. Finally, we have examined director variation
downstream the bend exit and find that the development length depends on γ1Er, which can
be understood as a measure of the relative strength of convection to elasticity.
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Chapter 7

Flow of liquid crystals through a 4:1

planar contraction

This chapter investigates the behaviour of nematic liquid crystals flowing through a planar
contraction (fig. 7.1). The flow evolves from the fully developed state in a large (inlet) channel
through a transition phase near the contraction walls (where lip vortices and secondary flows
occur) and returns to a fully developed state in the smaller (outlet) channel. Contraction flows
are of industrial relevance for several reasons:

• Extensional flow generates an additional pressure drop [173].

• A large corner vortex is created upstream of the contraction entrance [174].

• The presence of a contraction introduces a flow distortion; the development length for
the flow to reach a fully developed state is of practical importance in pipework design
[175, 176].

• Flow near the contraction is dominated by the extensional component, so the effective
viscosity need not be the same as in shear flows [177].

• Extensional flows in viscoelasticmaterialsmay generate instabilities even at lowReynolds
numbers [20, 177].

The flow of the Leslie-Ericksen fluid with the wall-parallel boundary condition was analysed
by Cruz et al. [151], who found that the velocity field (size of the corner vortex) and director
orientation are strongly affected by the Ericksen number. This chapter aims to extend these
analyses by considering the flow of Leslie-Ericksen and Beris-Edwards models subject to
both wall-parallel and homeotropic boundary conditions. The polar nature of the director
field is taken into account, and we examine the effect of variable director anchoring on the
flow and microstructure distribution.

7.1 Geometry

We consider flows in a 4:1 contraction geometry (fig. 7.1), which is frequently used as a
benchmark case for examining the performance of viscoelastic constitutive equations [178,
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179]. The dimension of the outlet channel 2h = 10−3m is a typical length-scale used in the
industrial equipment [39]. The length of the inlet channel is chosen to allow the flow to reach
a fully developed state before being deformed by corner effects. Similarly, the length of the
outlet channel allows the flow and microstructure to reach a fully developed state. The centre
of the coordinate system is located on the symmetry line at the contraction (fig. 7.1).
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wall1
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wall4

wall5
wall6

inlet outlet

Figure 7.1. Schematic illustration of the contraction geometry considered in this chapter.

7.2 Methodology

7.2.1 Governing equations

Simulations are conducted in OpenFOAM, using the solver rheoFoam2, which was intro-
duced in chapter 3. The linear momentum balance is supplemented with a model-dependent
viscoelastic stress

τLE = α1nnnn : D + α2nN + α3Nn+ α4D + α5nn ·D + α6D · nn

− ∂fd
∂∇n

· (∇n)T ,
(2.52)

τBE = µD − ξ

[
(Q+

I

3
) ·H +H · (Q+

I

3
)− 2(Q+

I

3
)(H : Q)

]
+H ·Q−Q ·H − ∂fLdG

∂Qij,α

Qij,β,

(2.69)

where τLE and τBE are the stress contributions in the Leslie-Ericksen and Beris-Edwards
models respectively. αi are Leslie viscosities in the Leslie-Ericksen theory; µ in eq. (2.69)
can be understood as a Newtonian viscosity and ξ is the tumbling parameter that controls
the flow/director alignment [126, 142]. Computation of the stress tensor requires knowledge
of the distribution of microstructure configuration, which is calculated from the angular mo-
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mentum balance

h− nn · h
γ1

− γ2
γ1

(n ·D − nnn : D)−N = 0, (2.53)

DQ

Dt
= S + ΓH , (2.71)

where the molecular field h in the LE model (= − δfd
δn
) or H in the BE model = − δfLdG

δQ
+

1
3
tr δfLdG

δQ
measures the deviation of the microstructure from the minimum Helmholtz free

energy; the underlined term in the definition of H ensures that Q remains traceless. The
Helmholtz free energy in the Leslie-Ericksen framework has only an elastic component that
depends on the distortion of the director field; for simplicity we use the one-constant approx-
imation [43]

fd =
1

2
K(∇n) : (∇n)T , (2.44)

whereK is the Frank constant that quantifies the resistance to director distortions. In theQ-
tensor models, the elastic energy is supplemented with an order parameter-dependent bulk
free-energy density

fLdG = fQd + fnematic

=
1

2
KQQik,jQik,j︸ ︷︷ ︸

elastic

+
a

2
tr(Q ·Q)− b

3
tr(Q ·Q ·Q) +

c

4
tr2(Q ·Q)︸ ︷︷ ︸

bulk free-energy

, (2.68)

where KQ is the Frank constant in the tensorial framework. The tensor S in eq. (2.71)
expresses the action of hydrodynamic effects acting on theQ-tensor field

S = (ξD −Ω)(Q+
δ

3
) + (Q+

δ

3
)(ξD +Ω)− 2ξ(Q+

δ

3
) tr(Q ·∇u), (2.72)

where the underlined term ensures thatQ remains traceless.

We consider the same set of parameters as in chapter 4, similar to material properties
measured for pentylcyanobiphenyl (5CB) [155]:

• In the BE model: KQ = 40pN , ξ = 1.02, Γ = 7.29(Pa · s)−1, µ = 0.2Pa · s, a =

−2 · 10−3MJ
m3 , b = 4 · 10−2MJ

m3 , c = 4 · 10−2MJ
m3 ; the equilibrium order parameter is then

given by eq. (2.67b): Seq = 0.6208.

• The Leslie-Ericksen parameters are obtained by assuming a uniaxial director field with
a fixed order parameter (S = 0.6208); the mapping provided by equation (2.75) gives:
α1 = −0.1446Pa · s, α2 = −0.1288Pa · s, α3 = −0.023Pa · s, α4 = 0.2091Pa · s,
α5 = 0.1757Pa · s, α6 = 0.0239Pa · s. The Frank constant in the Leslie-Ericksen theory
is mapped via eq. (2.61) and yields K = 2S2

eqK
Q = 30.8 pN.
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7.2.2 Boundary conditions

Weprescribe a parabolic velocity profile [45] at the inlet corresponding to a fully-developed,
Newtonian flow

u(y) = umax

(
1−

( y
4h

)2)
, (7.1)

where umax is the peak velocity. The channel outlet is expected to be located far enough
downstream to enable flow to fully develop; therefore we employ a zero-gradient boundary
condition for velocity, director and Q-tensor. The zero-gradient boundary condition for the
pressure in the wall-normal direction is employed at all walls. Flows with both wall-parallel
and homeotropic anchoring are considered. In the tensorial framework, the microstructure
configuration can be unambiguously described through Q, whose boundary conditions are
specified in table 7.1 (wall-parallel) and 7.2 (homeotropic).

The vectorial description of the microstructure suffers from the non-orientability issue.
The problem in the context of a pressure-driven channel flow was discussed by Anderson
[169], who found that the energy-minimising director configuration depends on the Ericksen
number; at low Er, the director points in the same direction on both boundaries, while as
Er increases, the configuration with opposing director field is preferred, as shown in fig.
7.2. Denniston [142] has shown that the issue does not occur in the Beris-Edwards model,
where a horizontal-vertical transition occurs at a sufficiently large Ericksen number. Results
of Batista et al. [180] show that the horizontal-vertical transition depends on the strength
of wall anchoring, and decreasing the strength of wall anchoring promotes the horizontal
director orientation at lower Ericksen numbers. The orientability problem is also present in
more complex geometries, where director distribution with minimum energy may be different
in vectorial and tensorial frameworks [132]. In the case of a contraction geometry, the sign
of n cannot be unambiguously defined due to the discontinuity at the corners. The problem
is mitigated byQ-tensor models, which are invariant upon n → −n transformation and the
presence of geometry discontinuity results only in a local decrease in the order parameter
[181].

Although the director field is invariant upon n → −n transformation on the walls [35], n
must change the sign across the whole domain for the set of boundary conditions to produce
an identical result. Hence, in a planar contraction consisting of six walls, there are 32 different
ways in which a fixed boundary orientation (wall-parallel or homeotropic) can be prescribed.
In the case of the wall-parallel anchoring, we analyse boundary configurations schematically
visualised in fig. 7.3; configuration A was employed in a similar study by Cruz et al. [151],
and we also examine configuration B in order to investigate the sensitivity of flow behaviour
to the choice of boundary condition. Components of the director field are given in table 7.1.
There is no literature, which investigates the flow of liquid crystals in a planar contraction with
homeotropic anchoring, so we consider four different configurations, schematically depicted
in fig. 7.4 with components of the director field listed in table 7.2.
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Table 7.1. Boundary conditions for the velocity, pressure,Q-tensor and director fields in the wall-parallel
anchoring configuration. Superscripts A, B refer to configurations shown in fig. 7.3. The off-diagonal compo-
nents ofQ on the boundaries are zero.

location u p Q = [Qxx, Qyy, Qzz] nA = [nx, ny] nB = [nx, ny]

inlet eq. (7.1) ∂p
∂x = 0 ∂Q

∂x = 0 ∂n
∂x = 0 ∂n

∂x = 0

outlet ∂u
∂x = 0 p = 0 ∂Q

∂x = 0 ∂n
∂x = 0 ∂n

∂x = 0

wall 1 u = 0 ∂p
∂y = 0

[
2
3 ,−

1
3 ,−

1
3

]
[1, 0] [−1, 0]

wall 2 u = 0 ∂p
∂x = 0

[
− 1

3 ,
2
3 ,−

1
3

]
[0,−1] [0,−1]

wall 3 u = 0 ∂p
∂y = 0

[
2
3 ,−

1
3 ,−

1
3

]
[1, 0] [−1, 0]

wall 4 u = 0 ∂p
∂y = 0

[
2
3 ,−

1
3 ,−

1
3

]
[1, 0] [−1, 0]

wall 5 u = 0 ∂p
∂x = 0

[
− 1

3 ,
2
3 ,−

1
3

]
[0, 1] [0, 1]

wall 6 u = 0 ∂p
∂y = 0

[
2
3 ,−

1
3 ,−

1
3

]
[1, 0] [−1, 0]

Table 7.2. Boundary conditions for the velocity, pressure,Q-tensor and director fields in the homeotropic
configuration. The off-diagonal components ofQ on the boundaries are zero. Superscripts A-D refer to con-
figurations shown in fig. 7.4.

location u p Q nA nB nC nD

inlet eq. (7.1) ∂p
∂x = 0 ∂Q

∂x = 0 ∂n
∂x = 0 ∂n

∂x = 0 ∂n
∂x = 0 ∂n

∂x = 0

outlet ∂u
∂x = 0 p = 0 ∂Q

∂x = 0 ∂n
∂x = 0 ∂n

∂x = 0 ∂n
∂x = 0 ∂n

∂x = 0

wall 1 u = 0 ∂p
∂y = 0

[
− 1

3 ,
2
3 ,−

1
3

]
[0,−1] [0,−1] [0,−1] [0,−1]

wall 2 u = 0 ∂p
∂x = 0

[
2
3 ,−

1
3 ,−

1
3

]
[1, 0] [−1, 0] [1, 0] [1, 0]

wall 3 u = 0 ∂p
∂y = 0

[
− 1

3 ,
2
3 ,−

1
3

]
[0,−1] [0,−1] [0, 1] [0, 1]

wall 4 u = 0 ∂p
∂y = 0

[
− 1

3 ,
2
3 ,−

1
3

]
[0, 1] [0, 1] [0, 1] [0, 1]

wall 5 u = 0 ∂p
∂x = 0

[
2
3 ,−

1
3 ,−

1
3

]
[1, 0] [−1, 0] [1, 0] [1, 0]

wall 6 u = 0 ∂p
∂y = 0

[
− 1

3 ,
2
3 ,−

1
3

]
[0, 1] [0, 1] [0, 1] [0, 1]
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Figure 7.2. Director orientation in a channel flow when a) n points in the same direction on both boundaries;
b) n points in the opposite direction on both boundaries. Anderson [169] found that at low Er configuration
a) is preferred and configuration b) is favourable at higher Er.

A B

Figure 7.3. Some examples of wall-parallel boundary conditions in the vectorial framework, each representing
notionally the same physical state.
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A B

C D

Figure 7.4. Some examples of homeotropic anchoring in the vectorial framework, each representing the same
notional physical state.

The Ericksen number is defined based on the inlet conditions:

Er =
4hu0α4

K
, (7.2)

where u0 = 2
3
umax is the mean velocity at the inlet and 4h is half of the inlet channel width.

The Ericksen number in the Beris-Edwards model is defined as

ErBE =

[
µ+

4

9
(1− S2)2ξ2

1

Γ

]
4hu0

2KQS2
eq

, (7.3)

to ensure that in the uniaxial, constant order parameter limit, equal Ericksen numbers in both
frameworks represent an identical partitioning of hydrodynamic and elastic effects,

Finally, the relative importance of hydrodynamic and bulk effects acting on the order-
parameter tensor is quantified through the Deborah number

De =
3uout0

(a+ b+ c)hΓ
, (7.4)

where uout0 = 4u0 is the mean flow velocity in the outlet pipe and a, b, c are material param-
eters in the Beris-Edwards model.

7.2.3 Computational domain and solution details

We use a two-dimensional structured mesh with square elements, as shown in fig. 7.5. The
mesh is refined enough to resolve the smallest length-scales that appear in the constitutive
equation: 1) the flow-elastic length-scale

(
H√
Er

)
, which quantifies the distance over which
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the director transitions between wall-induced and flow-induced orientations [21] and; 2) the
defect size

(
ξN ≈

√
3K

a+b+c

)
that provides the length-scale over which the order parameter

varies significantly [140].

We use three different meshes with different refinement, each of them consists of square
elements with a side length∆x = ∆y. The mesh density is controlled through the blockMesh
utility [107] to produce grids of the following densities:

• M1: h
∆x

= h
∆y

= 10; the mesh has 28 000 cells in total.

• M2: h
∆x

= h
∆y

= 20; the mesh has 112 000 cells in total.

• M3: h
∆x

= h
∆y

= 40; the mesh has 448 000 cells in total.

The code used to generate the refined meshM3 is given in appendix D, while other meshes
can be reproduced by changing the cell density.

Figure 7.5. MeshM1 used in this study. The figure shows a coarsened (by a factor of 2) version of theM1

grid for presentation purposes. Only a part of the inlet and outlet channel is included.

We consider a creeping flow limit, which enables us to neglect the convective term u ·
∇u from the momentum balance equation (2.8). Spatial gradients are discretised through
the second-order central differencing scheme with absolute tolerances for pressure, velocity
and director/Q tensor set to 10−8. The SIMPLEC scheme is used for the pressure-velocity
coupling.

We initialise the simulation with a horizontal director field and zero velocity throughout
the whole domain. Simulations on the coarse mesh are run first until the calculation reaches
a steady state. The coarse solution is then mapped onto the fine mesh as an initial condition
in order to reduce the calculation time. The procedure is repeated on the refined mesh. The
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calculation requires about 200 · 1012 floating point operations on the coarse grid; the comple-
tion time (2 hours) is about five times longer than the analogous simulation of a Newtonian,
creeping flow on the same mesh.

7.3 Results

7.3.1 Wall-parallel anchoring

Director orientation

Numerical predictions of the director fields obtained with different forms of the wall-
parallel boundary condition are shown in fig. 7.6 (Er = 1.73) and 7.7 (Er = 173). The
LE theory with configuration A better agrees with the benchmark BE model result than con-
figuration B, irrespective of the Ericksen number. The disagreement is particularly significant
at low Ericksen numbers (where elastic effects are stronger) (fig. 7.6), as configuration B pre-
dicts considerably larger microstructure distortions in the corner. The orientability issue of
the vectorial framework is also clear in the outlet pipe, where the director rotates by 180o

between the horizontal outlet wall and the centerline (fig. 7.6c and 7.7c). The rotation is
unphysical, since n and −n are equivalent. As the Ericksen number increases, the near-wall
region of a sudden director transition shrinks and predictions made by configurations A and
B become more similar (fig. 7.7).
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a)

b)

c)

Figure 7.6. Director field with wall-parallel boundary conditions at Er = 1.73 a) Beris-Edwards model, b)
Leslie-Ericksen model, configuration A, c) Leslie-Ericksen model, configuration B.
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a)

b)

c)

Figure 7.7. Director field with wall-parallel boundary conditions at Er = 173 a) Beris-Edwards model, b)
Leslie-Ericksen model, configuration A, c) Leslie-Ericksen model, configuration B.

Velocity and stress profiles

A comparison of velocity and stress profiles at a distance 2h upstream of the contraction
at Er = 1.73 is shown in fig. 7.8 and 7.9 and indicates the key effect of wall anchoring
on the velocity and stress distribution. Results obtained in configuration A with the Leslie-
Ericksen theory match well the BE result (table 7.3); variations in the order parameter affect
only the stress distribution in the near-wall region and have little effect on the flow field. In
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contrast, results from the configuration B suggest that a different choice of director orientation
produces additional (and spurious) normal and shear stresses, which can be of opposite sign
and different magnitudes than the benchmark result from the BE model. The difference in the
stress distribution is manifested in the pressure drop (discussed later in the chapter), which ul-
timately governs the selection of the pipework equipment. As the Ericksen number increases,
the director orientation is more dominated by hydrodynamic effects, so the orientability issue
has less effect on the director field. The prediction of velocity and stress distribution in the
BE model is still better matched by configuration A in the LE theory (fig. 7.10 and 7.11);
however, the difference is significantly smaller than in the low Ericksen number regime (table
7.3). We thus conclude that the Leslie-Ericksen theory can match the prediction of the BE
model provided that the boundary conditions are chosen appropriately. Therefore, we find
that the velocity and stress profiles of the BE model are best matched with the LE model
when the director fields are similar, which happens when the director points in the flow di-
rection on horizontal walls and towards the symmetry line on vertical walls. That produces a
bending director distortion near the corners, also observed in the Beris-Edwards model.
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Figure 7.8. Comparison of the velocity fields predicted by BE and LE models at a distance 2h upstream of the
contraction for the wall-parallel anchoring at Er = 1.73.
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Figure 7.9. Distribution of N1 and τyx predicted by BE and LE models at at a distance 2h upstream of the
contraction for the wall-parallel anchoring at Er = 1.73. All stresses are normalised by the stress scale α4u0
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Figure 7.10. Comparison of the velocity fields predicted by BE and LE models at a distance 2h upstream of
the contraction for the wall-parallel anchoring at Er = 173.
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Figure 7.11. Distribution of N1 and τyx predicted by BE and LE models at at a distance 2h upstream of the
contraction for the wall-parallel anchoring at Er = 173. All stresses are normalised by the stress scale α4u0
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Table 7.3. Normalised 2-norm of the LE prediction with respect to the BE result |NLE−NBE ||2
||NBE ||2 for flows with

the wall-parallel anchoring. N represents either the velocity or stress component.

Er = 1.73, A Er = 1.73, B Er = 173, A Er = 173, B

ux 1.3 · 10−2 10−1 5.1 · 10−3 7.2 · 10−2

uy 5.8 · 10−3 4.7 · 10−1 2.9 · 10−2 5.4 · 10−2

N1 1.8 · 10−2 1.8 · 100 8.2 · 10−2 8.7 · 10−2

τyx 1.2 · 10−2 1.5 · 100 6.7 · 10−2 1.2 · 10−1

Director development

Figure 7.12 compares the director development around the contraction predicted by dif-
ferent models at high and low Ericksen numbers and confirms an agreement between LE
and BE theories. The agreement is particularly good for configuration A when Er = 1.73,
De = 0.006; the order parameter is nearly constant and equal to Seq (fig. 7.6). On the other
hand, at higher Ericksen and Deborah numbers (Er = 173, De = 0.6), flow effects are
strong enough to introduce significant variations in the order parameter, which in turn affects
the Leslie angle [142]

θL =
1

2
cos−1

(
3S

ξ(2 + S)

)
. (7.5)
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The material constants in the Leslie-Ericksen model are calculated based on the equilibrium
order parameter Seq (eq. (2.75)), and since S = const in the LE theory, the Leslie angle is
independent of the strength of flow effects. In contrast, as the flow effects become stronger,
the order parameter in the BEmodel increases, leading to larger discrepancies between the BE
and LEmodels in the prediction of the Leslie angle. The sensitivity of order parameter to flow
effects is governed by the Deborah number, whose value (for a fixed Ericksen number) can be
controlled by adjusting material parameters a, b, c in eq. (2.68). In the limit |a|, |b|, |c| → ∞,
De = 0, which recovers the constant order parameter limit of the Leslie-Ericksen theory.
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Figure 7.12. Variation of the director angle at y = 0.4h, wall-parallel anchoring. At Er = 1.73, the predic-
tion of the LE theory (config. A) nearly coincides with the prediction of the BE model.

7.3.2 Homeotropic anchoring

Low Ericksen number

The Beris-Edwards model predicts that there is an orientational transition in the director
orientation from the horizontal state at the centerline upstream of the contraction to the verti-
cal state downstream the contraction (fig. 7.13a). Vertical walls induce a bending distortion
in the corner; at low Ericksen numbers, the elastic boundary layer is large enough so that the
wall anchoring significantly affects the director distribution at the centerline. As a result, n
is parallel to the flow direction at y = 0, x < 0. Downstream the contraction, the director
behaviour is also governed by elasticity since the viscous torques are not strong enough to
introduce director distortion. In the fully developed state, the director orientation in the outlet
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channel is such that the Helmholtz free energy is minimised, which happens when the direc-
tor is parallel to the velocity gradient direction [142, 169]. The horizontal and vertical states
are separated by a low order-parameter region (defect), which appears on the centerline at a
distance h downstream the contraction (fig 7.13a). An additional simulation conducted for
the Beris-Edwards model with a vertical director state as an initial condition produces and
identical director distribution as the simulation with a horizontal director field (fig. 7.13a).
Therefore, we conclude that the appearance of the defect is independent of initial director
orientation.

The complex director behaviour at low Ericksen numbers predicted by the BE model can-
not be replicated by the Leslie-Ericksen theory, as shown in fig. 7.13b-d. Configuration C
(fig. 7.13d) reproduces the horizontal-vertical transition, however, the asymmetry of the di-
rector field about y = 0 results in an uneven (and unphysical) distribution of velocity (fig.
7.14) and stress (fig. 7.15) in the upper and lower part of the contraction. On the other hand,
configuration B (fig. 7.13c) incorrectly predicts a splay mode of director distortion in the
corner. This results in a differently distributed stress field (fig. 7.15) and a noticeably smaller
vortex size (fig. 7.16). Finally, the distribution of the first normal stress difference in the BE
model is best replicated by configuration A (table 7.4). Configuration B fails as there is a
large director gradient in the vertical direction near the contraction because n rotates by 180o

to accommodate the sharply changing boundary conditions (fig. 7.13c). In the case of con-
figuration C (fig. 7.13d), there is a significant director gradient in the flow direction due to
the horizontal-vertical transition. The transition in the BE model occurs further downstream
than predicted by configuration C, which is the reason for the lower stress magnitude in the
Beris-Edwards model prediction.
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a)

b)

c)

d)

Figure 7.13. Director field with homeotropic boundary conditions at Er = 1.73 a) Beris-Edwards model, b)
Leslie-Ericksen model, configuration A, c) Leslie-Ericksen model, configuration B, d) Leslie-Ericksen model,
configuration D (due to the asymmetry of the director field, a whole contraction is shown).
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Figure 7.14. Comparison of the velocity fields predicted by BE and LE models at a distance 2h upstream of
the contraction with the homeotropic anchoring at Er = 1.73. Note that the velocity distribution for configu-
ration C is not symmetric about the centreline.
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Figure 7.15. Distribution of N1 and τyx predicted by BE and LE models at at a distance 2h upstream of the
contraction with the homeotropic anchoring at Er = 1.73. Note that the stress distribution for configuration C
is not symmetric about the centreline. All stresses are normalised by the stress scale α4u0
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former is hardly visible.
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con g. A

con g. B

Figure 7.16. Comparison of vortex sizes obtained with configurations A and B (Er = 1.73).

Table 7.4. Normalised 2-norm of the LE prediction with respect to the BE result |NLE−NBE ||2
||NBE ||2 for flows with

the homeotropic anchoring. N represents either the velocity or stress component.

Er = 1.73, A Er = 1.73, B Er = 1.73, C Er = 173, A Er = 173, B Er = 173, C

ux 1.8 · 10−3 6 · 10−2 1.6 · 10−2 3.5 · 10−3 4.5 · 10−3 3.8 · 10−3

uy 5.9 · 10−3 7.4 · 10−2 2.4 · 10−1 1.7 · 10−2 7 · 10−3 1.5 · 10−2

N1 3 · 10−2 6.9 · 10−1 6.4 · 10−1 9.2 · 10−2 8.1 · 10−2 8.2 · 10−2

τyx 1.6 · 10−2 1.19 · 100 1.2 · 10−2 6.6 · 10−2 5.3 · 10−2 5.5 · 10−2

Intermediate and high Ericksen numbers

The director distribution predicted by the Beris-Edwards model changes significantly at
higher Ericksen numbers. Hydrodynamic torques are strong enough to align the director
parallel to the flow direction in the outlet channel, as shown in fig. 7.17a. The Beris-Edwards
result is best matched with the configuration A (fig. 7.17b) of the Leslie-Ericksen model;
configuration B fails due to the splay distortion mode in the corner (fig. 7.17c). Configuration
C is not symmetric, and due to the incorrectly prescribed director orientation at the upper wall
of the outlet channel, there is a region of rapid orientational transition (fig. 7.17d).

Similarly to the wall-parallel anchoring at high Ericksen number, the distribution of ve-
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locity and stresses at x = 2h upstream of the contraction is similar irrespective of the model
considered (fig. 7.18 and 7.19). The difference between LE and BE models appears only in
the near-wall region, where a significant change in the order parameter results in additional
stress.
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a)

b)

c)

d)

Figure 7.17. Director field with homeotropic boundary conditions at Er = 173 a) Beris-Edwards model, b)
Leslie-Ericksen model, configuration A, c) Leslie-Ericksen model, configuration B, d) Leslie-Ericksen model,
configuration D (due to the asymmetry of the director field, a whole contraction is shown).
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Figure 7.18. Comparison of the velocity fields predicted by BE and LE models at a distance 2h upstream of
the contraction (Er = 173).
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Figure 7.19. Distribution of N1 and τyx predicted by BE and LE models at at a distance 2h upstream of the
contraction (Er = 173). All stresses are normalised by the stress scale α4u0
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Director development

Fig. 7.20 compares the director development profiles obtained from different configura-
tions at Er = 1.73 and Er = 173. Similarly to the wall-parallel anchoring, the development
length increases with the Ericksen number, and the flow reaches a fully developed state at
a distance of 5h downstream the contraction. Unusual behaviour is predicted for (an un-
physical) configuration C at high Ericksen numbers, where the corner distortion propagates
in the outlet pipe (fig. 7.21) and reaches the fully developed state at a distance around 20h

downstream the contraction.
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Figure 7.20. Variation of the director angle at y = 0.4h, homeotropic anchoring.

Figure 7.21. Director development at Er = 173 for configuration C.

7.3.3 Pressure losses

In order to quantify the effect of contraction on the pressure losseswe introduce the Couette
correction factor [182]

cc =
∆p−∆pFD

2τw
, (7.6)
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where τw is the wall shear stress in the fully developed flow in the outlet channel, ∆p is the
pressure drop between inlet and outlet locations with fully developed flow, and

∆pFD =

(
∂p

∂x

)inlet
Li +

(
∂p

∂x

)outlet
Lo, (7.7)

measures the pressure drop over the same distance due to the fully developed flow only (fig.
7.22). Therefore, we can understand ∆p −∆pFD as the excess pressure drop caused by the
presence of contraction.

fully developed 

inlet ow

fully developed

outlet ow

p

Li Lo

dp
dx( )inlet dp

dx( )outlet

Figure 7.22. Pressure drop across a contraction.

Figure 7.23 compares the Couette correction factor obtained with different configurations
considered in the previous sections and suggests the following conclusions on the choice of
boundary conditions in the vectorial framework:

• For flows with the wall-parallel anchoring, configuration A provides not only the best
agreement in terms of the director field but also matches the prediction of Couette cor-
rection factor in the BE model better than configuration B. The choice of boundary
condition is particularly significant at low Ericksen numbers, where cc can be signifi-
cantly overestimated (cc predicted for configuration B with the wall-parallel anchoring
is larger than the BE model prediction by a factor of two). As Er increases, the director
orientation is governed by the flow effects, and the discrepancy between configurations
A and B decreases.

• For flows with the homeotropic anchoring, the director distribution predicted by the BE
model is best matched by configuration C at low Ericksen numbers and configuration A
at higher Ericksen numbers. This preference is also replicated in the estimation of cc as
configurations C and A replicate the BE prediction at low and high Ericksen numbers,
respectively.

• In the case of flows with homeotropic anchoring, the ’correct’ director configuration in
the LE model minimises the value of cc (config. C at low Er and config. A at higher).
A similar result was presented by Anderson [169] in the context of channel flow, where
at low Er, the distortion energy is minimised with the director pointing in the vertical
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direction at the centerline (fig. 7.2a). In contrast, at higher Er, the director prefers the
flow-aligned orientation at the centerline (fig. 7.2b).
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Figure 7.23. Couette criterion for the BE and LE models with homeotropic and wall-parallel boundary condi-
tions.

Figure 7.23 indicates that cc is larger in flows with wall-parallel boundary conditions, so
the presence of contraction has a more profound effect there. Two factors contribute to this
effect:

• The dissipation near the contraction entrance (at a distance h upstream) is higher in
flows with the wall-parallel anchoring, as shown in fig. 7.24. The budget of dissipation
in the case of wall-parallel (fig. 7.25) and homeotropic (fig. 7.26) boundary conditions
suggests that the excess dissipation is predominantly caused by the extensional flow near
the centerline and shearing close to the re-entrant corner (y ≈ h). The former of which
is absent in a fully developed channel flow.

• τw is larger in configurations with homeotropic anchoring, so a fixed excess pressure
drop∆p−∆pFD increases cc by less than in flows with wall-parallel anchoring (smaller
τw).
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Interpretation of the Couette correction

In the outlet channel, the x− component of momentum balance (eq. (2.8)) in a fully
developed flow is given by

∂p

∂x
=
∂τyx
∂y

, (7.8)

where τyx and ∂p
∂x

are the shear stress and the pressure gradient respectively. The pressure
gradient is constant and independent of y, so by manipulating eq. (7.8) we obtain the solution
for τyx:

τyx =
∂p

∂x
y + C, (7.9)

where the integration constant C = 0 because the flow is symmetric about y = 0. Therefore,
the wall shear stress is given by

τw = τyx(y = h) =
∂p

∂x
h. (7.10)
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Substituting above into the definition of the Couette correction factor (eq. (7.6)) and rear-
ranging gives

∆p−∆pFD = 2cch
∂p

∂x
, (7.11)

which shows that the presence of contraction effectively increases the length of the outlet
channel by 2cch; the result is schematically illustrated in fig. 7.27. The relative importance
of the pressure loss due to the contraction is predicated on length of the outlet channel. Based
on the results shown in fig. 7.23, 0.1 < cc < 0.5, so the contraction effectively increases
the length of the outlet channel by O(h). For an outlet channel with a length of 5h (fig.
7.12 and 7.20 suggest that the flow reaches a fully developed state up to 5h downstream the
contraction), the presence of contraction increases the total pressure drop by up to 20%.

h

+ +

2cch

inlet channel outlet channel

Figure 7.27. Graphical interpretation of the Couette correction.

7.4 Summary

This chapter compared the predictions of vectorial and tensorial frameworks ofmicrostruc-
ture representation. Due to the orientational ambiguity in the former approach, a director field
with the same physical meaning can be represented in several different ways; each of them
produces distinct director and flow distributions. The choice of boundary conditions is sim-
pler in flows with the wall-parallel anchoring, as the same configuration can well match the
Beris-Edwards model’s prediction irrespective of the Ericksen number. In contrast, results
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from the BEmodel in flowswith homeotropic anchoring are best matched either by configura-
tion C (low Er) or A (high Er). At low Ericksen number, the Beris-Edwards model predicts
an appearance of a defect, which is likely to increase the additional pressure drop due to an
increased director/velocity misalignment; that is qualitatively confirmed in fig. 7.23, where
for similar director fields, the BE model predicts a higher Couette criterion.

Due to a varying director orientation, the velocity and stress distribution near the contrac-
tion may vary and are particularly sensitive to the selection of configuration at low Ericksen
numbers. The choice of boundary conditions also has implications on the pressure drop;
we find that configurations whose director distribution is similar to the BE prediction also
give the best agreement in the prediction of the Couette factor. The difference is particularly
significant at low Ericksen numbers, where the selection of boundary conditions results in
an over-prediction of cc by a factor of two. As the Ericksen number increases, the director
orientation is governed by hydrodynamic effects, so the choice of boundary condition has a
smaller effect on the pressure drop.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This thesis has investigated the predictions of constitutive equations dedicated to liquid
crystals in complex geometries relevant to the FMCG industry: bends and contractions. For
that reason, we have developed an OpenFOAM solver dedicated to solving linear and angular
momentum equations supplemented with a non-Newtonian stress tensor. All results indicate
a key role of wall anchoring and director orientation in controlling flow and microstructure
behaviour.

The main conclusions drawn from the studies presented in the previous chapters are out-
lined below.

8.1.1 Flow of liquid crystals in curved pipes

Firstly, we have considered flows of Leslie-Ericksen fluids at an infinite Ericksen num-
ber. In this limit, the motion of liquid crystals can be described by the transversely isotropic
fluid model, and the wall anchoring does not affect the director distribution. Analytical so-
lutions are obtained by perturbing the linear and angular momentum equation in the limit of
small geometry curvature δ → 0. We find that the non-Newtonian behaviour in the trans-
versely isotropic fluid model (normal stresses, orientation-dependent viscosity) arises due
to the flow/director misalignment. These effects influence the distribution of axial and sec-
ondary flows. The latter is driven by two different mechanisms 1) a combination of normal
stresses and geometry curvature 2) asymmetry of the stress distribution. In the case of nematic
liquid crystals (5CB, PAA, MBBA), these effects oppose each other with the latter dominant.
For materials, where the tumbling parameter λ → 1, the strength of the secondary flow de-
pends on the director/velocity misalignment. The pipe curvature also affects the stream-wise
velocity profile, which is shifted towards the bend axis, similarly to a Newtonian, creeping
flow. The distorted velocity field influences the director distribution; the effect is most sig-
nificant near the pipe axis (where the O(1) flow contribution vanishes), and as a result, the
director field moves towards the bend axis.

Perturbation analysis was extended with numerical simulations to investigate the effect
of wall anchoring at finite Ericksen numbers. Results show that the flow and director dis-
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tributions are similar to those at infinite Er. The exception is the near-wall region, where
elastic effects rotate the director towards the wall-imposed orientation. We find that the di-
rector boundary conditions significantly affect the distribution of normal stresses. That can
lead to the reversal of the secondary motion in materials where χ < 0 (the ratio of curva-
ture and stress imbalance effects) with homeotropic wall anchoring. In contrast, in materials
with positive χ, a decrease in Ericksen number in configurations with homeotropic anchoring
increases the magnitude of the secondary motion. On the other hand, the wall-parallel an-
choring improves director/velocity alignment, reducing stresses and weakening the strength
of the secondary motion.

Numerical simulations also enabled to explore of the flow behaviour as the fluid enter-
s/leaves the bend and reveal spikes in the transverse velocity field. These are predominantly
caused by the stream-wise variation in the shear stress as the flow transforms between fully
developed states in straight and curved pipes. In the case of liquid crystals, the spike magni-
tude depends on material properties and scales with α2 + α4 + α5. The flow curvature also
affects the development of the director field. Analytical considerations show that the devel-
opment length is a function of γ1Er, which expresses the relative importance of convective
to elastic effects governing the director orientation.

8.1.2 Flow of liquid crystals through a planar contraction

We have used the planar contraction as a benchmark geometry to compare the flow and
director predictions obtained from tensorial and vectorial frameworks. Due to the ambiguity
in the vectorial description, a boundary condition with the same physical meaning can be
defined in several distinct ways. The discrepancy in the flow and director fields is reflected
in the prediction of the Couette factor, which quantifies an excess pressure drop caused by
the presence of contraction. As a result, selecting appropriate boundary conditions that can
match predictions of the BE model is not trivial; for flows with the wall-parallel anchoring,
the same set of boundary conditions matches the tensorial predictions at both low and high
Ericksen numbers. In contrast, the choice of director orientation in flows with homeotropic
anchoring depends on the Ericksen number. Therefore, to eliminate ambiguity in the selection
of director orientation in complex geometries (mixers), it is recommended to use a tensorial
framework.

8.2 Future work

In this thesis, we have analysed the behaviour of non-Newtonian, viscoelastic fluids, which
are suitable to describe the liquid crystal properties in the lower viscosity, regions II and III of
the Asada flow curve. One of the major problems in soap extrusion is the presence of the yield
stress, whose physics in the context of soap flow is not fully understood [41]. Therefore, as a
part of future work, we consider exploring different approaches to account for the solid-like
behaviour.
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8.2.1 Addition of yield stress term

In the original derivation of the TIF model [110], the stress tensor contains a yield-stress
component µYnn, which is usually omitted, as the majority of liquid nematics do not experi-
ence a solid-like behaviour [15]. The orientation-dependent yield stress depends on the mode
of material deformation (shearing/extension), which controls director alignment. As a result,
the yield stresses in shearing and extensional flows need not be of the same value, which qual-
itatively agrees with experimental measurements [5]. This feature is advantageous over the
Bingham or Herschel-Bulkley models and can improve in-silico predictions of the pressure
drop in geometries, where both shearing and elongation are present, e.g. contractions.

8.2.2 Defect dynamics

In the case of nematic liquid crystals, the solid-like behaviour in the region I of the Onogi-
Asada curve is explained by the presence of defects [27]. Hence, we could account for the
yield stress by modelling the evolution and transport of defect structures. Their presence
controls the relaxation behaviour at low shear rates [183, 184]. Defects are destroyed at
higher shear rates [185] when the hydrodynamic effects are strong enough to induce a uniform
director orientation in the whole domain.

8.2.3 Smectic liquid crystals

Micellar systems at moderate concentrations form nematic-like structures. As the micelle
concentration increases, the system arrives at a more ordered, smectic phase, consisting of
layers of nematic liquid crystals. The layered structure is more resistant to material distortion,
and this concept can help to explain the existence of the yield stress. Numerous constitutive
equations were proposed [62, 63, 186, 187]; the simplest relations only focus on modelling
the layer deformation.
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Appendix A

Source codes

The fundamental features of the new solver and constitutive equations are outlined below

1. The solution procedure is contained by the file rheoFoam2.C listed in the appendix A.
The code starts by initialising the relevant variables, e.g. velocity, pressure, director or
order parameter tensor through the createFields.H file. Based on that, momentum
and continuity equations are solved, then followed by the angular momentum balance.
Details of the selected nematodynamic model with the relevant parameters are stored
in the object constEq2 belonging to the class constitutiveModel2. If required, the trans-
port equation of a passive scalar is solved. The stress tensor field is updated, and the
procedure repeats until the solution converges.

2. All the models are stored in the constitutiveEqs directory, each having its sub-folder
where the differential form of the governing equation, variables, constants and stress
definitions are specified. Nematodynamic relations are similar to log-conformation ten-
sor models: the transport equation for the conformation tensor (director) is solved and
then used to compute the stress tensor via an algebraic expression. Thus, the directory
containing the log-conformation Oldroyd-B model was copied and appropriately mod-
ified to solve the director equation, later used to compute the stress tensor. The stress
tensor in the Leslie-Ericksen and Beris-Edwards models (eq. (2.52) and (2.69)) is not
symmetric, so rheoFoam is not appropriate for nematodynamic simulations. The new
solver rheoFoam2 allows for a non-symmetric stress tensor through the modified class
constitutiveEq2, which defines the operations that can be performed on τ , such as stress
divergence divTau(), velocity gradient decomposition decomposeGradU or the calcula-
tion of eigenvalues calcEig(). Member functions of constitutiveEq2 are defined in the
file constitutiveEq2.C.

A.1 Solver codes
A.1.1 rheoFoam2.C

1 # i n c l u d e ”fvCFD .H”
2 # i n c l u d e ” dynamicFvMesh .H”
3 # i n c l u d e ” s imp l eCon t r o l .H”
4 # i n c l u d e ” Co r r e c t P h i .H”
5 # i n c l u d e ” f vOp t i o n s .H”
6
7 # i n c l u d e ” a d j u s t C o r r P h i .H”
8 # i n c l u d e ” p pU t i l I n t e r f a c e .H”
9 # i n c l u d e ” c o n s t i t u t i v eMod e l 2 .H”
10
11 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
12 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )
13 {
14 # i n c l u d e ” p o s t P r o c e s s .H”
15
16 # i n c l u d e ” s e t R o o tC a s eL i s t s .H”
17 # i n c l u d e ” c r e a t eT ime .H”
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18 # i n c l u d e ” createDynamicFvMesh .H”
19 # i n c l u d e ” i n i t C o n t i n u i t y E r r s .H”
20 # i n c l u d e ” c r e a t e F i e l d s .H”
21 # i n c l u d e ” c r e a t e C o n t r o l s .H”
22 # i n c l u d e ” c r e a t e P P u t i l .H”
23 # i n c l u d e ” c r e a t e U f I f P r e s e n t .H”
24 # i n c l u d e ” CourantNo .H”
25 # i n c l u d e ” s e t I n i t i a l D e l t a T .H”
26
27 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
28
29 In fo << ” \ n S t a r t i n g t ime loop \ n” << end l ;
30
31 wh i l e ( s imp l e . l oop ( runTime ) )
32 {
33 # i n c l u d e ” readDyMControls .H”
34 # i n c l u d e ” CourantNo .H”
35 # i n c l u d e ” s e tD e l t a T .H”
36
37 In fo << ”Time = ” << runTime . timeName ( ) << n l << end l ;
38
39 / / −−− I n n e r loop i t e r a t i o n s −−−
40 f o r ( i n t i =0 ; i < n I n I t e r ; i ++)
41 {
42 I n f o << ” I n n e r i t e r a t i o n : ” << i << n l << end l ;
43
44 i f ( i ==0 | | moveMeshOute rCor rec to r s )
45 {
46 mesh . upda t e ( ) ;
47
48 i f ( mesh . chang ing ( ) )
49 {
50 MRF. upda t e ( ) ;
51
52 i f ( c o r r e c t P h i )
53 {
54 / / C a l c u l a t e a b s o l u t e f l u x
55 / / from t h e mapped s u r f a c e v e l o c i t y
56 ph i = mesh . Sf ( ) & Uf ( ) ;
57
58 # i n c l u d e ” c o r r e c t P h i .H”
59
60 / / Make t h e f l u x r e l a t i v e t o t h e mesh mot ion
61 fvc : : makeRe l a t i v e ( phi , U ) ;
62 }
63
64 i f ( checkMeshCourantNo )
65 {
66 # i n c l u d e ”meshCourantNo .H”
67 }
68 }
69 }
70
71 / / −−− P r e s s u r e − v e l o c i t y SIMPLEC c o r r e c t o r
72 {
73 / / −−−− So lve U and p −−−−
74 # i n c l u d e ”UEqn .H”
75 # i n c l u d e ”pEqn .H”
76 }
77
78 / / −−−− So lve c o n s t i t u t i v e e q u a t i o n −−−−
79 cons tEq2 . c o r r e c t ( ) ;
80
81 / / −−− P a s s i v e S c a l a r t r a n s p o r t
82 i f ( sPS )
83 {
84 # i n c l u d e ”CEqn .H”
85 }
86 }
87
88 po s t P r o c . upda t e ( ) ;
89 runTime . w r i t e ( ) ;
90
91 In fo << ” Execu t ionTime = ” << runTime . e lapsedCpuTime ( ) << ” s ”
92 << ” ClockTime = ” << runTime . e l apsedClockTime ( ) << ” s ”
93 << n l << end l ;
94 }
95
96 In fo << ”End \ n” << end l ;
97
98 r e t u r n 0 ;
99 }
100
101
102 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

A.1.2 createFields.H
1 In fo << ” Reading f i e l d p \ n” << end l ;
2 v o l S c a l a r F i e l d p
3 (
4 IOob j e c t
5 (
6 ”p ” ,
7 runTime . timeName ( ) ,
8 mesh ,
9 IOob j e c t : :MUST_READ,
10 IOob j e c t : : AUTO_WRITE
11 ) ,
12 mesh
13 ) ;
14
15 In fo << ” Reading f i e l d U\ n” << end l ;
16 v o lV e c t o r F i e l d U
17 (
18 IOob j e c t
19 (
20 ”U” ,
21 runTime . timeName ( ) ,
22 mesh ,
23 IOob j e c t : :MUST_READ,
24 IOob j e c t : : AUTO_WRITE
25 ) ,
26 mesh
27 ) ;
28
29 # i n c l u d e ” c r e a t e P h i .H”
30
31
32 l a b e l pRe fCe l l = 0 ;
33 s c a l a r pRefValue = 0 . 0 ;
34 s e t R e f C e l l ( p , mesh . s o l u t i o nD i c t ( ) . s ubD i c t ( ” SIMPLE ” ) , pRefCe l l , pRefValue ) ;
35 mesh . s e t F l u xRequ i r e d ( p . name ( ) ) ;
36
37
38 # i n c l u d e ” createMRF .H”
39 # i n c l u d e ” c r e a t e F vOp t i o n s .H”
40
41 / / C r e a t e c o n s t i t u t i v e e q u a t i o n
42 c o n s t i t u t i v eMod e l 2 cons tEq2 (U, ph i ) ;
43
44 IO d i c t i o n a r y c t t P r o p e r t i e s
45 (
46 IOob j e c t
47 (
48 ” c o n s t i t u t i v e P r o p e r t i e s ” ,
49 runTime . c o n s t a n t ( ) ,
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50 mesh ,
51 IOob j e c t : : MUST_READ_IF_MODIFIED ,
52 IOob j e c t : : NO_WRITE,
53 f a l s e
54 )
55 ) ;
56
57 boo l sPS = c t t P r o p e r t i e s . s ubD i c t ( ” p a s s i v e S c a l a r P r o p e r t i e s ” ) .
58 lookupOrDefau l t <Switch >(” s o l v e P a s s i v e S c a l a r ” , f a l s e ) ;
59
60 a u t oP t r < v o l S c a l a r F i e l d > C
61 (
62 sPS != t r u e
63 ?
64 NULL
65 :
66 new v o l S c a l a r F i e l d
67 (
68 IOob j e c t
69 (
70 ”C” ,
71 runTime . timeName ( ) ,
72 mesh ,
73 IOob j e c t : :MUST_READ,
74 IOob j e c t : : AUTO_WRITE
75 ) ,
76 mesh
77 )
78 ) ;

A.1.3 Libraries

A.1.4 constitutiveModel2.C
1 # i n c l u d e ” c o n s t i t u t i v eMod e l 2 .H”
2
3 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
4
5 namespace Foam
6 {
7
8 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
9
10 defineTypeNameAndDebug ( c o n s t i t u t i v eMod e l 2 , 0 ) ;
11
12
13 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Co n s t r u c t o r s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
14
15 c o n s t i t u t i v eMod e l 2 : : c o n s t i t u t i v eMod e l 2
16 (
17 c o n s t v o lV e c t o r F i e l d& U,
18 c o n s t s u r f a c e S c a l a r F i e l d& ph i
19 )
20 :
21 IO d i c t i o n a r y
22 (
23 IOob j e c t
24 (
25 ” c o n s t i t u t i v e P r o p e r t i e s ” ,
26 U. t ime ( ) . c o n s t a n t ( ) ,
27 U. db ( ) ,
28 IOob j e c t : :MUST_READ,
29 IOob j e c t : : NO_WRITE
30 )
31 ) ,
32 eqP t r _ ( c o n s t i t u t i v e E q 2 : : New( word : : n u l l , U, phi , s ubD i c t ( ” p a r ame t e r s ” ) ) )
33 {}
34
35
36 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Member Fun c t i o n s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
37
38 tmp< vo lT en s o rF i e l d > c o n s t i t u t i v eMod e l 2 : : t a u ( ) c o n s t
39 {
40 r e t u r n eqP t r_ −> t a u ( ) ;
41 }
42
43 tmp< vo lT en s o rF i e l d > c o n s t i t u t i v eMod e l 2 : : t a u T o t a l ( ) c o n s t
44 {
45 r e t u r n eqP t r_ −> t a u T o t a l ( ) ;
46 }
47
48 c o n s t d imen s i o n edSc a l a r c o n s t i t u t i v eMod e l 2 : : rho ( ) c o n s t
49 {
50 r e t u r n eqP t r_ −> rho ( ) ;
51 }
52
53 tmp< fvVec t o rMa t r i x > c o n s t i t u t i v eMod e l 2 : : d ivTau ( v o lV e c t o r F i e l d& U) c o n s t
54 {
55 r e t u r n eqP t r_ −>divTau (U) ;
56 }
57
58 boo l c o n s t i t u t i v eMod e l 2 : : isGNF ( ) c o n s t
59 {
60 r e t u r n eqP t r_ −>isGNF ( ) ;
61 }
62
63 vo id c o n s t i t u t i v eMod e l 2 : : c o r r e c t ( )
64 {
65 eqP t r_ −> c o r r e c t ( ) ;
66 }
67
68
69 boo l c o n s t i t u t i v eMod e l 2 : : r e ad ( )
70 {
71 i f ( r e g IOob j e c t : : r e ad ( ) )
72 {
73 r e t u r n t r u e ;
74 }
75 e l s e
76 {
77 r e t u r n f a l s e ;
78 }
79 }
80
81
82 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
83
84 } / / End namespace Foam
85
86 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

A.1.5 constitutiveModel2.H
1 # i f n d e f c on s t i t u t i v eMode l 2 _H
2 # d e f i n e c on s t i t u t i v eMode l 2 _H
3
4 # i n c l u d e ” c o n s t i t u t i v e E q 2 .H”
5 # i n c l u d e ” a u t o P t r .H”
6
7 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
8
9 namespace Foam
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10 {
11
12 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
13 C l a s s c o n s t i t u t i v eMod e l 2 D e c l a r a t i o n
14 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
15
16 c l a s s c o n s t i t u t i v eMod e l 2
17 :
18 p u b l i c IO d i c t i o n a r y
19 {
20 p r i v a t e :
21
22 / / P r i v a t e d a t a
23
24 / / − C o n s t i t u t i v e Eq
25 a u t oP t r < c o n s t i t u t i v e E q 2 > eqP t r _ ;
26
27
28 / / P r i v a t e Member Fun c t i o n s
29
30 / / − D i s a l l ow d e f a u l t b i t w i s e copy c o n s t r u c t
31 c o n s t i t u t i v eMod e l 2 ( c o n s t c o n s t i t u t i v eMod e l 2 &);
32
33 / / − D i s a l l ow d e f a u l t b i t w i s e a s s i gnmen t
34 vo id o p e r a t o r =( c o n s t c o n s t i t u t i v eMod e l 2 &);
35
36
37 p u b l i c :
38
39 / / − Runtime t ype i n f o rm a t i o n
40 TypeName ( ” c o n s t i t u t i v eMod e l 2 ” ) ;
41
42
43 / / C o n s t r u c t o r s
44
45
46 / / − Con s t r u c t from components
47 c o n s t i t u t i v eMod e l 2
48 (
49 c o n s t v o lV e c t o r F i e l d& U,
50 c o n s t s u r f a c e S c a l a r F i e l d& ph i
51 ) ;
52
53 / / D e s t r u c t o r
54
55 v i r t u a l ~ c o n s t i t u t i v eMod e l 2 ( )
56 {}
57
58
59 / / Member Fun c t i o n s
60
61 / / − Re tu rn t h e v i s c o e l a s t i c s t r e s s t e n s o r
62 v i r t u a l tmp< vo lT en s o rF i e l d > t a u ( ) c o n s t ;
63
64 / / − Re tu rn t h e t o t a l s t r e s s t e n s o r ( s o l v e n t + po l yme r i c )
65 v i r t u a l tmp< vo lT en s o rF i e l d > t a u T o t a l ( ) c o n s t ;
66
67 / / − Re tu rn t h e d e n s i t y
68 v i r t u a l c o n s t d imen s i o n edSc a l a r rho ( ) c o n s t ;
69
70 / / − Re tu rn t h e c oup l i n g te rm f o r t h e momentum equ a t i o n
71 v i r t u a l tmp< fvVec t o rMa t r i x > divTau ( v o lV e c t o r F i e l d& U) c o n s t ;
72
73 / / − I s GNF or VE
74 v i r t u a l boo l isGNF ( ) c o n s t ;
75
76 / / − Co r r e c t t h e v i s c o e l a s t i c s t r e s s
77 v i r t u a l vo id c o r r e c t ( ) ;
78
79 / / − Read c o n s t i t u t i v e P r o p e r t i e s d i c t i o n a r y
80 v i r t u a l boo l r e ad ( ) ;
81
82
83 } ;
84
85
86 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
87
88 } / / End namespace Foam
89
90 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
91
92 # e n d i f
93
94 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

A.1.6 LE_1constant.C
1 # i n c l u d e ” LE_1cons t an t .H”
2 # i n c l u d e ” addToRunTimeSe lec t ionTab le .H”
3
4 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S t a t i c Data Members ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
5
6 namespace Foam
7 {
8 namespace c o n s t i t u t i v e E q s
9 {
10 defineTypeNameAndDebug ( LE_1cons tan t , 0 ) ;
11 addToRunTimeSe lec t ionTab le ( c o n s t i t u t i v e E q 2 , LE_1cons tan t , d i c t i o n a r y ) ;
12 }
13 }
14
15 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Co n s t r u c t o r s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
16
17 Foam : : c o n s t i t u t i v e E q s : : LE_1cons t an t : : LE_1cons t an t
18 (
19 c o n s t word& name ,
20 c o n s t v o lV e c t o r F i e l d& U,
21 c o n s t s u r f a c e S c a l a r F i e l d& phi ,
22 c o n s t d i c t i o n a r y& d i c t
23 )
24 :
25 c o n s t i t u t i v e E q 2 ( name , U, ph i ) ,
26 t au_
27 (
28 IOob j e c t
29 (
30 ” t a u ” + name ,
31 U. t ime ( ) . timeName ( ) ,
32 U. mesh ( ) ,
33 IOob j e c t : :MUST_READ,
34 IOob j e c t : : AUTO_WRITE
35 ) ,
36 U. mesh ( )
37 ) ,
38
39 n_
40 (
41 IOob j e c t
42 (
43 ”n” + name ,
44 U. t ime ( ) . timeName ( ) ,
45 U. mesh ( ) ,
46 IOob j e c t : :MUST_READ,
47 IOob j e c t : : AUTO_WRITE
48 ) ,
49 U. mesh ( )
50 ) ,
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51
52
53 t a uT o t a l _
54 (
55 IOob j e c t
56 (
57 ” t a u T o t a l ” + name ,
58 U. t ime ( ) . timeName ( ) ,
59 U. mesh ( ) ,
60 IOob j e c t : :MUST_READ,
61 IOob j e c t : : AUTO_WRITE
62 ) ,
63 U. mesh ( )
64 ) ,
65
66 / / e t aS=a lpha4 , e t a 1 =a lpha1 , e t a 2 =a lpha2 , e t a 3 =a lpha3 , e t a 5 =a lpha5 , e t a 6 = a l pha6
67 rho_ ( d i c t . lookup ( ” rho ” ) ) ,
68 e t aS_ ( d i c t . lookup ( ” e t aS ” ) ) ,
69 e t a 1_ ( d i c t . lookup ( ” e t a 1 ” ) ) ,
70 e t a 2_ ( d i c t . lookup ( ” e t a 2 ” ) ) ,
71 e t a 3_ ( d i c t . lookup ( ” e t a 3 ” ) ) ,
72 e t a 5_ ( d i c t . lookup ( ” e t a 5 ” ) ) ,
73 e t a 6_ ( d i c t . lookup ( ” e t a 6 ” ) ) ,
74 K_( d i c t . lookup ( ”K” ) )
75
76
77 {
78 checkFo rS t ab ( d i c t ) ;
79 }
80
81
82 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Member Fun c t i o n s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
83
84 vo id Foam : : c o n s t i t u t i v e E q s : : LE_1cons t an t : : c o r r e c t ( )
85 {
86 / / V e l o c i t y g r a d i e n t t e n s o r
87 v o l T e n s o r F i e l d L = fvc : : g r ad (U ( ) ) ;
88
89 / / Symmetr ic v e l o c i t y g r a d i e n t t e n s o r
90 v o l T e n s o r F i e l d D = ( L+T(L) ) / 2 ;
91
92 / / An t i symme t r i c v e l o c i t y g r a d i e n t t e n s o r
93 v o l T e n s o r F i e l d omega = skew (L ) ;
94
95
96 / / d i r e c t o r e q u a t i o n
97 f vVec t o rMa t r i x nEqn
98 (
99 ( e t a 3_ − e t a 2_ ) ∗ ( fvm : : dd t ( n_ ) + fvm : : d i v ( ph i ( ) , n_ ) − ( n_ & omega ) )
100
101
102 − K_∗ fvc : : l a p l a c i a n ( n_ )
103
104 + ( ( n_ ∗n_ ) & K_∗ fvc : : l a p l a c i a n ( n_ ) )
105 ==
106 −( e t a 6_ − e t a 5_ ) ∗ ( ( n_ & D) − n_∗ t r ( n_∗n_ & D) )
107
108
109
110 ) ;
111
112
113 nEqn . r e l a x ( ) ;
114 nEqn . s o l v e ( ) ;
115 n_=n_ / mag ( n_ ) ;
116
117
118 v o lV e c t o r F i e l d N=( fvc : : dd t ( n_ ) + fvc : : d i v ( ph i ( ) , n_ ) − ( n_ & omega ) ) ;
119
120
121 / / s t r e s s t e n s o r i n t h e L e s l i e −E r i c k s e n model
122 t au_ = (
123 e t a 1_ ∗ t r (D & n_ ∗ n_ ) ∗ ( n_∗n_ )
124 + e t a 2_ ∗ ( n_ ∗N )
125 + e t a 3_ ∗ ( N ∗n_ )
126 + e t a 5_ ∗ ( ( n_∗n_ ) & D )
127 + e t a 6_ ∗ (D & ( n_∗n_ ) )
128 − K_ ∗ ( fvc : : g r ad ( n_ ) & T( fvc : : g r ad ( n_ ) ) )
129 ) ;
130
131 / / t o t a l s t r e s s t e n s o r
132 t a uT o t a l _ = t au_ +2∗ e t aS_ ∗D;
133
134 t au_ . c o r r e c tBound a r yCond i t i o n s ( ) ;
135
136 }
137
138
139 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

A.1.7 LE_1constant.H
1 # i f n d e f LE_1cons tant_H
2 # d e f i n e LE_1constant_H
3
4 # i n c l u d e ” c o n s t i t u t i v e E q 2 .H”
5
6 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
7
8 namespace Foam
9 {
10 namespace c o n s t i t u t i v e E q s
11 {
12
13 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
14 C l a s s LE_1cons t an t D e c l a r a t i o n
15 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
16
17 c l a s s LE_1cons t an t
18 :
19 p u b l i c c o n s t i t u t i v e E q 2
20 {
21 / / P r i v a t e d a t a
22
23
24 / / − T r a n s p o r t e d nema t i c s t r e s s
25 v o l T e n s o r F i e l d t a u_ ;
26 / / − d i r e c t o r f i e l d
27 v o lV e c t o r F i e l d n_ ;
28 / / − T r a n s p o r t e d nema t i c s t r e s s
29 v o l T e n s o r F i e l d t a uT o t a l _ ;
30
31
32 / / Model c o n s t a n t s
33
34 / / − Den s i t y
35 d imen s i o n edSc a l a r rho_ ;
36
37 / / − Newtonian v i s c o s i t y a l pha4 / 2
38 d imen s i o n edSc a l a r e t aS_ ;
39 / / − e t a 1
40 d imen s i o n edSc a l a r e t a 1_ ;
41 / / − e t a 2
42 d imen s i o n edSc a l a r e t a 2_ ;
43 / / − e t a 3
44 d imen s i o n edSc a l a r e t a 3_ ;
45 / / − e t a 5
46 d imen s i o n edSc a l a r e t a 5_ ;
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47 / / − e t a 6
48 d imen s i o n edSc a l a r e t a 6_ ;
49 / / − t umb l i ng p a r ame t e r
50 / / d imen s i o n edSc a l a r lambda_ ;
51
52 / / − K
53 d imen s i o n edSc a l a r K_ ;
54
55 / / P r i v a t e Member Fun c t i o n s
56 / / − D i s a l l ow d e f a u l t b i t w i s e copy c o n s t r u c t
57 LE_1cons t an t ( c o n s t LE_1cons t an t &);
58 / / − D i s a l l ow d e f a u l t b i t w i s e a s s i gnmen t
59 vo id o p e r a t o r =( c o n s t LE_1cons t an t &);
60
61 p r o t e c t e d :
62
63 / / − Re tu rn t h e s o l v e n t v i s c o s i t y
64 v i r t u a l c o n s t d imen s i o n edSc a l a r e t aS ( ) c o n s t
65 {
66 r e t u r n e t aS_ ;
67 }
68 / / − Re tu rn e t a 1
69 v i r t u a l c o n s t d imen s i o n edSc a l a r e t a 1 ( ) c o n s t
70 {
71 r e t u r n e t a 1_ ;
72 }
73 / / − Re tu rn e t a 2
74 v i r t u a l c o n s t d imen s i o n edSc a l a r e t a 2 ( ) c o n s t
75 {
76 r e t u r n e t a 2_ ;
77 }
78 / / − Re tu rn e t a 3
79 v i r t u a l c o n s t d imen s i o n edSc a l a r e t a 3 ( ) c o n s t
80 {
81 r e t u r n e t a 3_ ;
82 }
83 / / − Re tu rn e t a 5
84 v i r t u a l c o n s t d imen s i o n edSc a l a r e t a 5 ( ) c o n s t
85 {
86 r e t u r n e t a 5_ ;
87 }
88 / / − Re tu rn e t a 6
89 v i r t u a l c o n s t d imen s i o n edSc a l a r e t a 6 ( ) c o n s t
90 {
91 r e t u r n e t a 6_ ;
92 }
93
94 p u b l i c :
95
96 / / − Runtime t ype i n f o rm a t i o n
97 TypeName ( ” LE_1cons t an t ” ) ;
98
99 / / C o n s t r u c t o r s
100
101 / / − Con s t r u c t from components
102 LE_1cons t an t
103 (
104 c o n s t word& name ,
105 c o n s t v o lV e c t o r F i e l d& U,
106 c o n s t s u r f a c e S c a l a r F i e l d& phi ,
107 c o n s t d i c t i o n a r y& d i c t
108 ) ;
109
110
111 / / D e s t r u c t o r
112
113 v i r t u a l ~LE_1cons t an t ( )
114 {}
115
116
117 / / Member Fun c t i o n s
118
119 / / − Re tu rn t h e v i s c o e l a s t i c s t r e s s t e n s o r
120 v i r t u a l tmp< vo lT en s o rF i e l d > t a u ( ) c o n s t
121 {
122 r e t u r n t a u_ ;
123 }
124
125 / / − Re tu rn t h e d e n s i t y
126 v i r t u a l c o n s t d imen s i o n e dSc a l a r rho ( ) c o n s t
127 {
128 r e t u r n rho_ ;
129 }
130
131 / / − Re tu rn t r u e i f GNF ( non− e l a s t i c )
132 v i r t u a l boo l isGNF ( ) c o n s t
133 {
134 r e t u r n f a l s e ;
135 } ;
136
137 / / − Co r r e c t t h e v i s c o e l a s t i c s t r e s s
138 v i r t u a l vo id c o r r e c t ( ) ;
139 } ;
140
141
142 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
143
144 } / / End namespace c o n s t i t u t i v e E q s
145 } / / End namespace Foam
146
147 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
148
149 # e n d i f
150
151 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

A.1.8 BerisEdwards.C
1 # i n c l u d e ” Ber i sEdwards .H”
2 # i n c l u d e ” addToRunTimeSe lec t ionTab le .H”
3
4 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S t a t i c Data Members ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
5
6 namespace Foam
7 {
8 namespace c o n s t i t u t i v e E q s
9 {
10 defineTypeNameAndDebug ( Ber i sEdwards , 0 ) ;
11 addToRunTimeSe lec t ionTab le ( c o n s t i t u t i v e E q 2 , Ber i sEdwards , d i c t i o n a r y ) ;
12 }
13 }
14
15 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Co n s t r u c t o r s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
16
17 Foam : : c o n s t i t u t i v e E q s : : Be r i sEdwards : : Be r i sEdwards
18 (
19 c o n s t word& name ,
20 c o n s t v o lV e c t o r F i e l d& U,
21 c o n s t s u r f a c e S c a l a r F i e l d& phi ,
22 c o n s t d i c t i o n a r y& d i c t
23 )
24 :
25 c o n s t i t u t i v e E q 2 ( name , U, ph i ) ,
26 t au_
27 (
28 IOob j e c t
29 (
30 ” t a u ” + name ,
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31 U. t ime ( ) . timeName ( ) ,
32 U. mesh ( ) ,
33 IOob j e c t : :MUST_READ,
34 IOob j e c t : : AUTO_WRITE
35 ) ,
36 U. mesh ( )
37 ) ,
38
39 Q_
40 (
41 IOob j e c t
42 (
43 ”Q” + name ,
44 U. t ime ( ) . timeName ( ) ,
45 U. mesh ( ) ,
46 IOob j e c t : :MUST_READ,
47 IOob j e c t : : AUTO_WRITE
48 ) ,
49 U. mesh ( )
50 ) ,
51
52 sigma2_
53 (
54 IOob j e c t
55 (
56 ” sigma2 ” + name ,
57 U. t ime ( ) . timeName ( ) ,
58 U. mesh ( ) ,
59 IOob j e c t : :MUST_READ,
60 IOob j e c t : : AUTO_WRITE
61 ) ,
62 U. mesh ( )
63 ) ,
64
65
66 t a uT o t a l _
67 (
68 IOob j e c t
69 (
70 ” t a u T o t a l ” + name ,
71 U. t ime ( ) . timeName ( ) ,
72 U. mesh ( ) ,
73 IOob j e c t : :MUST_READ,
74 IOob j e c t : : AUTO_WRITE
75 ) ,
76 U. mesh ( )
77 ) ,
78
79
80 rho_ ( d i c t . lookup ( ” rho ” ) ) ,
81 e t aS_ ( d i c t . lookup ( ” e t aS ” ) ) ,
82 a_ ( d i c t . lookup ( ” a ” ) ) ,
83 b_ ( d i c t . lookup ( ” b ” ) ) ,
84 c_ ( d i c t . lookup ( ” c ” ) ) ,
85 L_ ( d i c t . lookup ( ”L ” ) ) ,
86 x i_ ( d i c t . lookup ( ” x i ” ) ) ,
87 gamma_ ( d i c t . lookup ( ” gamma ” ) )
88
89 {
90 checkFo rS t ab ( d i c t ) ;
91 }
92
93
94 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Member Fun c t i o n s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
95
96 vo id Foam : : c o n s t i t u t i v e E q s : : Be r i sEdwards : : c o r r e c t ( )
97 {
98 / / V e l o c i t y g r a d i e n t t e n s o r
99 v o l T e n s o r F i e l d gradU = fvc : : g r ad (U ( ) ) ;
100
101 / / Symmetr ic v e l o c i t y g r a d i e n t t e n s o r
102 v o l T e n s o r F i e l d D = ( gradU+T( gradU ) ) / 2 ;
103
104 / / An t i symme t r i c v e l o c i t y g r a d i e n t t e n s o r
105 v o l T e n s o r F i e l d omega = skew ( gradU ) ;
106
107 t e n s o r I ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ) ;
108
109 v o l T e n s o r F i e l d S=( ( x i _ ∗D − omega ) & (Q_ + I / 3 ) )
110 + ( (Q_ + I / 3 ) & ( x i_ ∗D + omega ) )
111 − ( 2∗ x i_ ∗ (Q_ + I / 3 )∗ t r (Q_ & gradU ) ) ;
112
113
114 v o l T e n s o r F i e l d H= fvc : : l a p l a c i a n ( L_ , Q_) − a_∗Q_
115 + b_ ∗( (Q_ & Q_) − ( t r (Q_ & Q_ ) )∗ I / 3 ) − c_ ∗ Q_ ∗ ( t r (Q_ & Q_) ) ;
116
117
118
119 / / Q− t e n s o r t r a n s p o r t e q u a t i o n
120 f vTen so rMa t r i x QEqn
121 (
122 fvm : : dd t (Q_)
123 + fvm : : d i v ( ph i ( ) , Q_)
124 ==
125
126 S + gamma_ ∗ H
127
128 ) ;
129
130 QEqn . r e l a x ( ) ;
131 QEqn . s o l v e ( ) ;
132
133
134 Q_=( Q_ + T(Q_) ) / 2 ;
135
136 f o rA l l (Q_ , c e l l I )
137 {
138 Q_[ c e l l I ] [8 ]= −Q_[ c e l l I ] [ 0 ] −Q_[ c e l l I ] [ 4 ] ;
139 }
140
141
142 / / c a l c u l a t e g r a d i e n t s o f Q
143
144
145 v o l S c a l a r F i e l d Q11=Q_ . component ( 0 ) ;
146 v o l S c a l a r F i e l d Q12=Q_ . component ( 1 ) ;
147 v o l S c a l a r F i e l d Q13=Q_ . component ( 2 ) ;
148 v o l S c a l a r F i e l d Q21=Q_ . component ( 3 ) ;
149 v o l S c a l a r F i e l d Q22=Q_ . component ( 4 ) ;
150 v o l S c a l a r F i e l d Q23=Q_ . component ( 5 ) ;
151 v o l S c a l a r F i e l d Q31=Q_ . component ( 6 ) ;
152 v o l S c a l a r F i e l d Q32=Q_ . component ( 7 ) ;
153 v o l S c a l a r F i e l d Q33=Q_ . component ( 8 ) ;
154
155
156
157 v o lV e c t o r F i e l d gradQ11= fvc : : g r ad (Q11 ) ;
158 v o lV e c t o r F i e l d gradQ12= fvc : : g r ad (Q12 ) ;
159 v o lV e c t o r F i e l d gradQ13= fvc : : g r ad (Q13 ) ;
160 v o lV e c t o r F i e l d gradQ21= fvc : : g r ad (Q21 ) ;
161 v o lV e c t o r F i e l d gradQ22= fvc : : g r ad (Q22 ) ;
162 v o lV e c t o r F i e l d gradQ23= fvc : : g r ad (Q23 ) ;
163 v o lV e c t o r F i e l d gradQ31= fvc : : g r ad (Q31 ) ;
164 v o lV e c t o r F i e l d gradQ32= fvc : : g r ad (Q32 ) ;
165 v o lV e c t o r F i e l d gradQ33= fvc : : g r ad (Q33 ) ;
166
167
168
169 t e n s o r Ixx ( 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
170 t e n s o r Ixy ( 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
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171 t e n s o r I xz ( 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ) ;
172 t e n s o r Iyx ( 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ) ;
173 t e n s o r Iyy ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ) ;
174 t e n s o r I yz ( 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ) ;
175 t e n s o r I zx ( 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ) ;
176 t e n s o r I zy ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ) ;
177 t e n s o r I z z ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ;
178
179 / / e l a s t i c s t r e s s t e n s o r
180
181 v o l S c a l a r F i e l d sigmaExx=
182 gradQ11 . component ( 0 ) ∗ gradQ11 . component ( 0 )
183 +gradQ12 . component ( 0 ) ∗ gradQ12 . component ( 0 )
184 +gradQ13 . component ( 0 ) ∗ gradQ13 . component ( 0 )
185 +gradQ21 . component ( 0 ) ∗ gradQ21 . component ( 0 )
186 +gradQ22 . component ( 0 ) ∗ gradQ22 . component ( 0 )
187 +gradQ23 . component ( 0 ) ∗ gradQ23 . component ( 0 )
188 +gradQ31 . component ( 0 ) ∗ gradQ31 . component ( 0 )
189 +gradQ32 . component ( 0 ) ∗ gradQ32 . component ( 0 )
190 +gradQ33 . component ( 0 ) ∗ gradQ33 . component ( 0 ) ;
191
192 v o l S c a l a r F i e l d sigmaExy=
193 gradQ11 . component ( 0 ) ∗ gradQ11 . component ( 1 )
194 +gradQ12 . component ( 0 ) ∗ gradQ12 . component ( 1 )
195 +gradQ13 . component ( 0 ) ∗ gradQ13 . component ( 1 )
196 +gradQ21 . component ( 0 ) ∗ gradQ21 . component ( 1 )
197 +gradQ22 . component ( 0 ) ∗ gradQ22 . component ( 1 )
198 +gradQ23 . component ( 0 ) ∗ gradQ23 . component ( 1 )
199 +gradQ31 . component ( 0 ) ∗ gradQ31 . component ( 1 )
200 +gradQ32 . component ( 0 ) ∗ gradQ32 . component ( 1 )
201 +gradQ33 . component ( 0 ) ∗ gradQ33 . component ( 1 ) ;
202
203 v o l S c a l a r F i e l d sigmaExz=
204 gradQ11 . component ( 0 ) ∗ gradQ11 . component ( 2 )
205 +gradQ12 . component ( 0 ) ∗ gradQ12 . component ( 2 )
206 +gradQ13 . component ( 0 ) ∗ gradQ13 . component ( 2 )
207 +gradQ21 . component ( 0 ) ∗ gradQ21 . component ( 2 )
208 +gradQ22 . component ( 0 ) ∗ gradQ22 . component ( 2 )
209 +gradQ23 . component ( 0 ) ∗ gradQ23 . component ( 2 )
210 +gradQ31 . component ( 0 ) ∗ gradQ31 . component ( 2 )
211 +gradQ32 . component ( 0 ) ∗ gradQ32 . component ( 2 )
212 +gradQ33 . component ( 0 ) ∗ gradQ33 . component ( 2 ) ;
213
214 v o l S c a l a r F i e l d sigmaEyx=
215 gradQ11 . component ( 1 ) ∗ gradQ11 . component ( 0 )
216 +gradQ12 . component ( 1 ) ∗ gradQ12 . component ( 0 )
217 +gradQ13 . component ( 1 ) ∗ gradQ13 . component ( 0 )
218 +gradQ21 . component ( 1 ) ∗ gradQ21 . component ( 0 )
219 +gradQ22 . component ( 1 ) ∗ gradQ22 . component ( 0 )
220 +gradQ23 . component ( 1 ) ∗ gradQ23 . component ( 0 )
221 +gradQ31 . component ( 1 ) ∗ gradQ31 . component ( 0 )
222 +gradQ32 . component ( 1 ) ∗ gradQ32 . component ( 0 )
223 +gradQ33 . component ( 1 ) ∗ gradQ33 . component ( 0 ) ;
224
225
226 v o l S c a l a r F i e l d sigmaEyy=
227 gradQ11 . component ( 1 ) ∗ gradQ11 . component ( 1 )
228 +gradQ12 . component ( 1 ) ∗ gradQ12 . component ( 1 )
229 +gradQ13 . component ( 1 ) ∗ gradQ13 . component ( 1 )
230 +gradQ21 . component ( 1 ) ∗ gradQ21 . component ( 1 )
231 +gradQ22 . component ( 1 ) ∗ gradQ22 . component ( 1 )
232 +gradQ23 . component ( 1 ) ∗ gradQ23 . component ( 1 )
233 +gradQ31 . component ( 1 ) ∗ gradQ31 . component ( 1 )
234 +gradQ32 . component ( 1 ) ∗ gradQ32 . component ( 1 )
235 +gradQ33 . component ( 1 ) ∗ gradQ33 . component ( 1 ) ;
236
237 v o l S c a l a r F i e l d sigmaEyz=
238 gradQ11 . component ( 1 ) ∗ gradQ11 . component ( 2 )
239 +gradQ12 . component ( 1 ) ∗ gradQ12 . component ( 2 )
240 +gradQ13 . component ( 1 ) ∗ gradQ13 . component ( 2 )
241 +gradQ21 . component ( 1 ) ∗ gradQ21 . component ( 2 )
242 +gradQ22 . component ( 1 ) ∗ gradQ22 . component ( 2 )
243 +gradQ23 . component ( 1 ) ∗ gradQ23 . component ( 2 )
244 +gradQ31 . component ( 1 ) ∗ gradQ31 . component ( 2 )
245 +gradQ32 . component ( 1 ) ∗ gradQ32 . component ( 2 )
246 +gradQ33 . component ( 1 ) ∗ gradQ33 . component ( 2 ) ;
247
248 v o l S c a l a r F i e l d sigmaEzx=
249 gradQ11 . component ( 2 ) ∗ gradQ11 . component ( 0 )
250 +gradQ12 . component ( 2 ) ∗ gradQ12 . component ( 0 )
251 +gradQ13 . component ( 2 ) ∗ gradQ13 . component ( 0 )
252 +gradQ21 . component ( 2 ) ∗ gradQ21 . component ( 0 )
253 +gradQ22 . component ( 2 ) ∗ gradQ22 . component ( 0 )
254 +gradQ23 . component ( 2 ) ∗ gradQ23 . component ( 0 )
255 +gradQ31 . component ( 2 ) ∗ gradQ31 . component ( 0 )
256 +gradQ32 . component ( 2 ) ∗ gradQ32 . component ( 0 )
257 +gradQ33 . component ( 2 ) ∗ gradQ33 . component ( 0 ) ;
258
259 v o l S c a l a r F i e l d sigmaEzy=
260 gradQ11 . component ( 2 ) ∗ gradQ11 . component ( 1 )
261 +gradQ12 . component ( 2 ) ∗ gradQ12 . component ( 1 )
262 +gradQ13 . component ( 2 ) ∗ gradQ13 . component ( 1 )
263 +gradQ21 . component ( 2 ) ∗ gradQ21 . component ( 1 )
264 +gradQ22 . component ( 2 ) ∗ gradQ22 . component ( 1 )
265 +gradQ23 . component ( 2 ) ∗ gradQ23 . component ( 1 )
266 +gradQ31 . component ( 2 ) ∗ gradQ31 . component ( 1 )
267 +gradQ32 . component ( 2 ) ∗ gradQ32 . component ( 1 )
268 +gradQ33 . component ( 2 ) ∗ gradQ33 . component ( 1 ) ;
269
270
271 v o l S c a l a r F i e l d sigmaEzz=
272 gradQ11 . component ( 2 ) ∗ gradQ11 . component ( 2 )
273 +gradQ12 . component ( 2 ) ∗ gradQ12 . component ( 2 )
274 +gradQ13 . component ( 2 ) ∗ gradQ13 . component ( 2 )
275 +gradQ21 . component ( 2 ) ∗ gradQ21 . component ( 2 )
276 +gradQ22 . component ( 2 ) ∗ gradQ22 . component ( 2 )
277 +gradQ23 . component ( 2 ) ∗ gradQ23 . component ( 2 )
278 +gradQ31 . component ( 2 ) ∗ gradQ31 . component ( 2 )
279 +gradQ32 . component ( 2 ) ∗ gradQ32 . component ( 2 )
280 +gradQ33 . component ( 2 ) ∗ gradQ33 . component ( 2 ) ;
281
282
283 sigma2_= Ixx ∗sigmaExx + Ixy ∗sigmaExy + Ixz ∗ sigmaExz +
284 Iyx ∗sigmaEyx + Iyy ∗sigmaEyy + Iyz ∗ sigmaEyz +
285 I zx ∗ sigmaEzx + Izy ∗ sigmaEzy + I z z ∗ sigmaEzz ;
286
287 / / v i s c o u s s t r e s s t e n s o r
288 v o l T e n s o r F i e l d sigma_= (H & Q_) − (Q_ & H)
289 − x i_ ∗ ( (Q_ + I / 3 ) & H ) − x i_ ∗ ( H & (Q_ + I / 3 ) )
290 + 2 ∗ x i_ ∗ ( (Q_ + I / 3 ) ∗ (Q_ && H ) ) ;
291
292 / / e l a s t i c + v i s c o u s non−Newtonian s t r e s s e s
293
294 t au_ = ( −L_∗ sigma2_ + sigma_ ) ;
295
296
297 / / t o t a l s t r e s s
298 t a uT o t a l _ = t au_ +2∗ e t aS_ ∗D;
299
300 t au_ . c o r r e c tBound a r yCond i t i o n s ( ) ;
301
302 }
303
304
305 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
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A.1.9 BerisEdwards.H
1
2
3 # i f n d e f Ber isEdwards_H
4 # d e f i n e Ber isEdwards_H
5
6 # i n c l u d e ” c o n s t i t u t i v e E q 2 .H”
7
8 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
9
10 namespace Foam
11 {
12 namespace c o n s t i t u t i v e E q s
13 {
14
15 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
16 C l a s s Ber i sEdwards D e c l a r a t i o n
17 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
18
19 c l a s s Ber i sEdwards
20 :
21 p u b l i c c o n s t i t u t i v e E q 2
22 {
23 / / P r i v a t e d a t a
24
25
26 / / − T r a n s p o r t e d nema t i c s t r e s s
27 v o l T e n s o r F i e l d t a u_ ;
28 v o l T e n s o r F i e l d Q_ ;
29 v o l T e n s o r F i e l d sigma2_ ;
30 / / − T r a n s p o r t e d nema t i c s t r e s s
31 v o l T e n s o r F i e l d t a uT o t a l _ ;
32
33 / / Model c o n s t a n t s
34 / / − Den s i t y
35 d imen s i o n edSc a l a r rho_ ;
36 / / − Newtnoian v i s c o s i t y
37 d imen s i o n edSc a l a r e t aS_ ;
38
39 d imen s i o n edSc a l a r a_ ;
40
41 d imen s i o n edSc a l a r b_ ;
42
43 d imen s i o n edSc a l a r c_ ;
44
45 d imen s i o n edSc a l a r L_ ;
46
47 d imen s i o n edSc a l a r x i _ ;
48
49 d imen s i o n edSc a l a r gamma_ ;
50
51 / / P r i v a t e Member Fun c t i o n s
52
53 / / − D i s a l l ow d e f a u l t b i t w i s e copy c o n s t r u c t
54 Ber i sEdwards ( c o n s t Be r i sEdwards &);
55
56 / / − D i s a l l ow d e f a u l t b i t w i s e a s s i gnmen t
57 vo id o p e r a t o r =( c o n s t Be r i sEdwards &);
58
59 p r o t e c t e d :
60
61 / / − Re tu rn t h e s o l v e n t v i s c o s i t y
62 v i r t u a l c o n s t d imen s i o n edSc a l a r e t aS ( ) c o n s t
63 {
64 r e t u r n e t aS_ ;
65 }
66
67
68
69 p u b l i c :
70
71 / / − Runtime t ype i n f o rm a t i o n
72 TypeName ( ” Ber i sEdwards ” ) ;
73
74 / / C o n s t r u c t o r s
75
76 / / − Con s t r u c t from components
77 Ber i sEdwards
78 (
79 c o n s t word& name ,
80 c o n s t v o lV e c t o r F i e l d& U,
81 c o n s t s u r f a c e S c a l a r F i e l d& phi ,
82 c o n s t d i c t i o n a r y& d i c t
83 ) ;
84
85
86 / / D e s t r u c t o r
87
88 v i r t u a l ~Ber i sEdwards ( )
89 {}
90
91
92 / / Member Fun c t i o n s
93
94 / / − Re tu rn t h e v i s c o e l a s t i c s t r e s s t e n s o r
95 v i r t u a l tmp< vo lT en s o rF i e l d > t a u ( ) c o n s t
96 {
97 r e t u r n t au_ ;
98 }
99
100 / / − Re tu rn t h e d e n s i t y
101 v i r t u a l c o n s t d imen s i o n e dSc a l a r rho ( ) c o n s t
102 {
103 r e t u r n rho_ ;
104 }
105
106 / / − Re tu rn t r u e i f GNF ( non− e l a s t i c )
107 v i r t u a l boo l isGNF ( ) c o n s t
108 {
109 r e t u r n f a l s e ;
110 } ;
111
112 / / − Co r r e c t t h e v i s c o e l a s t i c s t r e s s
113 v i r t u a l vo id c o r r e c t ( ) ;
114 } ;
115
116
117 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
118
119 } / / End namespace c o n s t i t u t i v e E q s
120 } / / End namespace Foam
121
122 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
123
124 # e n d i f
125
126 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
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A.2 Analytical solution of nematic flow in a capillary

The fluid motion is described by the linear momentum equation (2.8), whose dimensional
form in cylindrical coordinates reads [18]

∂p∗

∂r∗
=
∂τ ∗rr
∂r∗

+
1

r∗
∂τr∗φ
∂φ

+
1

r∗
N∗

2 , (A.1a)

1

r∗
∂p∗

∂φ
=
∂τr∗φ
∂r∗

+
1

r∗
∂τ ∗φφ
∂φ

+
2

r∗
τrφ, (A.1b)

∂p∗

∂s∗
=
∂τ ∗rs
∂r∗

+
1

r∗
∂τ ∗φs
∂φ

+
1

r∗
τ ∗rs, (A.1c)

where N∗
i are normal stress differences and τ ∗ij are components of the stress tensor

τ ∗ = α∗
1nnnn : D∗ + α∗

2nN
∗ + α∗

3N
∗n+ α4D

∗ + α∗
5nn ·D∗ + α∗

6D · nn− 1
Er
∇∗n · (∇∗n)T . (2.81)

Let us introduce the following scaling

r =
r∗

R∗ , vs = v∗s/v
∗
0, τ =

r∗0
α4

2
v∗0

τ ∗ αi =
α∗
i

α∗
4

2

, (A.2)

where starred variables refer to dimensional quantities, v∗0 is the peak velocity. We are in-
terested only in the s−component of the momentum equation, as there is no motion in the
r − φ plane due to the steady-state, fully developed flow assumption. Hence, eq. (A.2) into
the s-component of the momentum equation (A.1c) yields

2R∗2

v∗0α
∗
4

∂p∗

∂s∗
=
∂τrs
∂r

+
1

r
τrs. (A.3)

The r − s component of the stress tensor is given by

τrs =
(2α1n

2
s − α2 + α5)n

2
r + (α3 + α6)n

2
s + 2

2

∂vs
∂r

. (A.4)

In order to obtain the analytical solution, τrs is simplified further by assuming that α1 = α3 =

0, α5 = −α2, which gives α6 = 0 [125]. The simplification is based on the inspection of
liquid crystal viscosities, which shows that [21, 43]

|α1| ≈ |α3| ≈ |α6| << |α2| ≈ |α5| = O(1). (A.5)

Hence, the r − s component of the stress tensor simplifies to

τrs =
1 + r4 + (2− 4α2)r

2

(r2 + 1)2
∂vs
∂r

, (A.6)

which upon substitution into eq. (A.3) and implementation of the no-slip boundary condition
(vs(r = 1) = 0) yields the velocity solution
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v∗s

2∂p
∗

∂s∗
(r∗0)

2

α∗
4

=
1− r2

4
− 1

2
α2 ln

(
1 + r4 + (−4α2 + 2)r2

)
+ tanh−1

(
r2 − 2α2 + 1

2
√
α2(α2 − 1)

)
α2
2 − 1

2
α2√

α2(α2 − 1)

+ tanh−1

(
α2 − 1√
α2(α2 − 1)

)
α2
2 − 1

2
α2√

α2(α2 − 1)
+
α2[2 ln(2) + ln(−α2 + 1)]

2
(A.7)

Hence, the viscous component of the normal stress can be calculated from eq. (2.81) and is
given by

N1 = −α2nrns
∂vs
∂r

. (A.8)
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Appendix B

Supplementary material of chapter 5

B.1 Components of the velocity gradient tensor

Components of the velocity gradient tensor∇u = ∂vi
∂xj

ejei are given by

[∇u]r,r =
∂u

∂r
, [∇u]r,φ =

1

r

∂u

∂φ
− u

r
[∇u]r,s = − δ

B
w cosφ,

[∇u]φ,r =
∂v

∂r
, [∇u]φ,φ =

1

r

∂v

∂φ
+
u

r
, [∇u]φ,s =

δ

B
w sinφ,

[∇u]s,r =
∂w

∂r
, [∇u]s,φ =

1

r

∂w

∂φ
, [∇u]s,s =

δ

B
(u cosφ− v sinφ).

(B.1)

B.2 Leading order solution

Neglecting terms O(δ) and higher from the angular momentum equation (2.29) reduces
the problem to a fully developed, axisymmetric straight pipe flow with r−, φ− and s− com-
ponents given by

(
2λ(n(0)

r )2 − λ+ 1
) ∂w(0)

∂r
= 0, (5.20a)

n(0)
r n(0)

p n(0)
s

∂w(0)

∂r
= 0, (5.20b)(

2λ(n(0)
s )2 − λ− 1

) ∂w(0)

∂r
= 0. (5.20c)

while the O(1) component of the linear momentum balance in the axial direction (5.17) has
the same form as in the cylindrical coordinate system

0 = 4
(
1 + 2µ1

(
n(0)
r n(0)

s

)2
+
µ2

2

)
︸ ︷︷ ︸

pressure gradient

+
∂τ

(0)
rs

∂r
+

1

r
τ (0)rs . (5.19)

In a straight pipe the axial symmetry prevents the appearance of a steady state flow and the
momentum balance in the r − φ plane (5.18) reads

(∇×∇p(0))s = 0. (5.19b)
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The non-zero components the of τ 0 are given by

τ (0)rs =
µ2 + 4µ1(n

(0)
r )2(n

(0)
s )2 + 2

2

∂w(0)

∂r
, (B.3a)

τ (0)rr =
∂w(0)

∂r
n(0)
r n(0)

s

(
2µ1(n

(0)
r )2 + µ2

)
, (B.3b)

τ (0)ss = n(0)
r n(0)

r [2µ1(n
(0)
s )2 + µ2]

∂w(0)

∂r
, (B.3c)

Substituting eq. (B.3a) into the axial momentum balance (5.19) gives the second order dif-
ferential equation for w(0):

∂2w(0)

∂r2
+

1

r

∂w(0)

∂r
= −4. (B.4)

Imposing the no-slip boundary condition gives the solution

w(0)(r, φ) = 1− r2. (5.22)

B.3 First order O(δ) solution

The O(δ) components of the linear momentum equations (5.17) and (5.18) are given by

0 =
∂p

∂s
r cosφ+

∂τ
(1)
rs

∂r
+

1

r

∂τ
(1)
φs

∂φ
+

1

r
τ (1)rs + 2

[
τ (0)rs cosφ− τ

(0)
φs sinφ

]
, (5.25)

0 = −1

r

∂2N
(1)
2

∂r∂φ
− 1

r2
∂N

(1)
2

∂φ
+
∂2τ

(1)
rφ

∂r2
+

3

r

∂

∂r
τ
(1)
rφ − 1

r2
∂2τ

(1)
rφ

∂φ2

+sinφ

(
1

r

∂τ
(0)
φr

∂φ
+

1

r
(N

(0)
2 ) +

∂τ
(0)
ss

∂r
+
∂τ

(0)
φφ

∂r

)
+cosφ

(
1

r

∂N
(0)
1

∂φ
+

2

r
∂τ

(0)
rφ +

∂τ
(0)
rφ

∂r

)
,

(5.26)

where τ (1) denotes the first order stress tensor and its components read

τ (1)rr =
(
6n(0)

s

[
µ1(n

(0)
r )2 +

µ2

6

]
n(1)
r + 2n(1)

s

[
µ1(n

(0)
r )2 +

µ2

2

]
n(0)
r

) ∂w(0)

∂r︸ ︷︷ ︸
non-axisymmetric distortion of the director field

+ n(0)
s n(0)

r

(
2µ1(n

(0)
r )2 + µ2

)(
−w(0) cosφ+

∂w(1)

∂r

)
︸ ︷︷ ︸

axial velocity shift

+ 2
(
µ1(n

(0)
r )4 + µ2(n

(0)
r )2 + 1

) ∂u(1)
∂r︸ ︷︷ ︸

homogeneous viscous contribution

(B.5a)
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τ
(1)
rφ = 2n(0)

s n
(1)
φ (µ1(n

(0)
r )2 +

µ2

4
)
∂w(0)

∂r︸ ︷︷ ︸
director reorientation

+2n(0)
s

µ2n
(0)
r sinφ
4

w(0)
µ2n

(0)
r n

(0)
s

∂w(1)

∂φ

2r︸ ︷︷ ︸
axial velocity shift

+
µ2(n

(0)
r )2 + 2

2r

(
∂u(1)

∂φ
+
∂v(1)

∂r
r − v(1)

)
︸ ︷︷ ︸

inhomogeneous viscous contribution

= −

[(
(n(0)

r )2µ1 +
(n

(0)
r )2µ2

2
+
µ2

4
+ 1

)
λ− (n(0)

r )2µ1 −
µ2

2

]
∂2ψ(1)

∂φ2
+(

(µ1 +
µ2
2
)(n

(0)
r )2 + µ2

4

)
λ− (n

(0)
r )2µ1 − µ2

4

n
(0)
r λ

w(0)n(0)
s sinφ+(

(n
(0)
r )2µ1 +

(n
(0)
r )2µ2
2

+ µ2
4
+ 1
)
λ+ (n

(0)
r )2µ1 +

µ2
4

λ

(
∂v(1)

∂r
− v(1)

r

)
, (B.5b)

τ (1)rs = 2 cosφ((µ1(n
(0)
s )2 + µ2/4)(n

(0)
r )2 + µ2(n

(0)
s )2/4 + 1/2)r2

+ (−8n(0)
r (µ1(n

(0)
s )2 + µ2/4)n

(1)
r − 8n(0)

s (µ1(n
(0)
r )2 + µ2/4)n

(1)
s )r

+ 2((µ1(n
(0)
s )2 + µ2/4)(n

(0)
r )2 + µ2(n

(0)
s )2/4 + 1/2)

∂w(1)

∂r

− 2 cosφ((µ1(n
(0)
s )2 + µ2/4)(n

(0)
r )2 + µ2(n

(0)
s )2/4 + 1/2)

+ 2n(0)
r n(0)

s (µ1(n
(0)
r )2 +

µ2

2
)

(
1

r2
∂ψ(1)

∂φ
− 1

r

∂2ψ(1)

∂r∂φ

)
, (B.5c)

τ
(1)
φs = − sinφ(µ2(n

(0)
s )2+2)r2/2−4n(0)

r (µ1(n
(0)
s )2+µ2/4)rn

(1)
p +

µ2

2
n(0)
r n(0)

s

∂2ψ(1)

∂r2
+

1

2
sinφ(µ2(n

(0)
s )2+2)−

(−µ2(n
(0)
s )2 − 2)∂w

(1)

∂φ
+ µ2n

(0)
r n

(0)
s

∂ψ(1)

∂r

2r
−
µ2

∂2ψ(1)

∂φ2
n
(0)
r n

(0)
s

2r2
,

(B.5d)

τ (1)ss = 2n(0)
r n(0)

s cosφ(µ1(n
(0)
s )2 +

µ2

2
)r2 + (−4n(0)

s (µ1(n
(0)
s )2 +

µ2

2
)n(1)

r

− 12n(0)
r (µ1(n

(0)
s )2 +

µ2

6
)n(1)

s )r + 2n(0)
r n(0)

s (µ1(n
(0)
s )2 +

µ2

2
)
∂w(1)

∂r

− 2n(0)
r n(0)

s cosφ(µ1(n
(0)
s )2 +

µ2

2
) + 2µ1(n

(0)
r )2(n(0)

s )2
(

1

r2
∂ψ(1)

∂φ
− 1

r

∂2ψ(1)

∂r∂φ

)
,

(B.5e)

τ
(1)
φφ = −2

(
1

r2
∂ψ(1)

∂φ
− 1

r

∂2ψ(1)

∂r∂φ

)
. (B.5f)

The first-order director evolution equation is found by collecting O(δ) terms from eq.
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(2.27)

0 = −4
∂w(0)

∂r
n(1)
r

√
λ(λ+ 1) +

√
2
∂u(1)

∂r
(λ+ 1), (5.27a)

0 = −2n(1)
p

√
λ2 + λ

∂w(0)

∂r

+
√
2
√
λ2 − λ

[
(λ− 1)∂u

(1)

∂φ
+ (λ+ 1)

(
∂v(1)

∂r
r − v(1)

)]
− (λ− 1)

√
λ2 + λ

(
w(0)r sinφ+ ∂w(1)

∂φ

)
,

(5.27b)

0 = 4n(1)
s

∂w(0)

∂r

√
λ(λ− 1)−

√
2
∂u(1)

∂r
(λ− 1). (5.27c)

Substituting the relevant components of stress (eq. (B.5)) and director field (eq. (5.27)) into
momentum balance equations (5.25) and (5.26) provides a pair of differential equations in
terms of w(1) and ψ(1):

√
λ+ 1

[
−6 cos(φ)r3 + r2 ∂

2w(1)(r,φ)
∂r2

+ r ∂w
(1)(r,φ)
∂r

+ ∂2w(1)(r,φ)
∂φ2

] (
(µ1 + µ2 + 2)λ2 − µ1

)
r

+
√
λ− 1

[(
(µ1 + µ2)λ

2 − µ1

)∂3ψ(1)

∂φ3
+
(
(µ1 + µ2)λ+ µ1

)
(λ+ 1)

∂ψ(1)

∂φ

]
= 0,

(B.7)

{[
(µ1+µ2+2)λ2−(2µ1+µ2)λ+µ1

]∂4ψ(1)(r, φ)

∂φ4
+
[
(µ1+µ2+2)λ2−µ1

]
r4
∂4ψ(1)(r, φ)

∂r4

+ r2(4λ2 + λµ1 − µ1)
∂2

∂φ2

(
∂2ψ(1)(r, φ)

∂r2

)
+ 2
[
(µ1 + µ2 + 2)λ2 − µ1

]
r3
∂3ψ(1)(r, φ)

∂r3

− r(4λ2 + λµ1 − µ1)
∂

∂r

(
∂2ψ(1)(r, φ)

∂φ2

)
+
[
(2µ1 + 2µ2 + 8)λ2 − (µ1 + µ2)λ− µ1

]∂2ψ(1)(r, φ)

∂φ2

−
(
∂2ψ(1)(r, φ)

∂r2
r − ∂ψ(1)(r, φ)

∂r

)(
(µ1 + µ2 + 2)λ2 − µ1

)
r

}√
λ(λ− 1)

+ 10(λ− 1)r

[(
(µ1 + µ2)λ− µ1

10

)
∂3w(1)(r, φ)

∂φ3
+

(
(µ1 + µ2)λ− µ1

10

)
∂w(1)(r, φ)

∂φ

+ r3
[
(µ1 + µ2)λ − 3µ1

5

]
sin(φ)

]√
λ(λ+ 1) = 0 (B.8)

Inspection of eq. (B.7) and (B.8) suggests the most general forms ofw(1)(r, φ) and ψ(1)(r, φ):

w(1)(r, φ) = w(1)(r) cosφ, ψ(1)(r, φ) = ψ(1)(r) sinφ, (B.9)

hence, by substituting eq. (B.9) into eq. (B.8) we obtain a differential equation with a single
variable ψ(1)(r):
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[(
(µ1 + µ2 + 2)λ2 − µ1

)
r4
∂4ψ(1)(r)

∂r4
+ 2
(
(µ1 + µ2 + 2)λ2 − µ1

)
r3
∂3ψ(1)(r)

∂r3

−
(
r2
∂2ψ(1)(r)

∂r2
− r

∂ψ(1)(r)

∂r
+ ψ(1)(r)

)(
(µ1+µ2+6)λ2+λµ1−2µ1

)]√
λ(λ− 1)

+ 10
(
(µ1 + µ2)λ − 3µ1

5

)√
λ(λ+ 1)(λ − 1)r4 = 0 (B.10)

Equation (B.10) is solved with the mathematical manipulation software Maple 2020 [166];
imposing the no-slip boundary condition (eq. (5.16)) gives the solution

ψ(1)(r, φ) =

(
r4 +

4− b

b− 1
r − 3

b− 1
rb
)
a sinφ, (5.29)

where a = a(µi, λ) and b = b(µi, λ) are material-dependent constants

a = − 2
√
λ2 + λ

√
λ2 − λ(5λµ1 + 5λµ2 − 3µ1)

9λ(7λ2µ1 + 7λ2µ2 + 10λ2 − λµ1 − 6µ1)
, (B.11a)

b =
λ2µ1+λ2µ2+2λ2+

√
(λ2µ1+λ2µ2+2λ2−µ1)(2λ2µ1+2λ2µ2+8λ2+λµ1−3µ1)−µ1

λ2µ1+λ2µ2+2λ2−µ1 . (B.11b)

We can then substitute ψ(1) solution (eq. (5.29)) into eq. (B.7) and by enforcing the no-slip
boundary condition (eq. (5.16)), the solution becomes

w(1)(r, φ) = (k1r
3 + k2r + k3 + k4r

b−1) cosφ, (5.28)

where ki = ki(µi, λ) are material-dependent constants

k1 = −2
(−3

√
λ(λ+1)((µ1+µ2+2)λ2−µ1)

√
λ(λ−1)+((µ1+

µ2
2
)λ+µ1)λ(λ−1)a)

(
√
λ(λ−1)

√
λ(λ+1)((8µ1+8µ2+16)λ2−8µ1))

, (B.12a)

k2 = −3
(b((µ1+µ2+2)λ2−µ1)(b−2)

√
λ(λ+1)

√
λ(λ−1)−3(b− 2

3
)((µ1+

µ2
2
)λ+µ1)a(λ−1)λ(b−4))

(4b((µ1+µ2+2)λ2−µ1)(b−2)
√
λ(λ+1)

√
λ(λ−1))

, (B.12b)

k3 = −
2((µ1 +

µ2
2
)λ+ µ1)a(λ− 1)λ(b− 4)

(
√
λ(λ− 1)

√
λ(λ+ 1)((µ1 + µ2 + 2)λ2 − µ1)(b− 1))

, (B.12c)

k4 =

6a

(
(µ1 +

µ2
2
)λ+ µ1

)
λ(λ− 1)

(
√
λ(λ+ 1)

√
λ(λ− 1)(b− 1)((µ1 + µ2 + 2)λ2 − µ1)b(b− 2))

. (B.12d)

Finally, by substituting solutions for w(1) (eq. 5.29) and ψ(1) (eq. (5.28)) into the director
evolution equations, we can solve for the components of n(1):

n(1)
r (r, φ) = −3

√
2(rb − r4)a

√
λ+ 1

8r3
√
λ

cosφ, (5.33a)
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n
(1)
φ (r, φ) =

−

[
9aλ+ 7a+

√
λ− 1(k1 + 1)

√
λ+ 1

]√
2

4
√
λ+ 1

√
λ

r

−

√
2

[
− 3a

[
(b− 1)2λ+ b2 − 2b− 1

]
+ k4

√
λ2 − 1(b− 1)

]
√
λ(λ+ 1)(4b− 4)

rb−3

−
√
2(k2 − 1)

√
λ− 1

4
√
λ

1

r
+

√
2
[
2a(b− 4) + (b− 1)k3

√
λ2 − 1

]
4
√
λ(λ+ 1)(b− 1)

1

r2

 sinφ

(5.33b)

n(1)
s (r, φ) = −3

√
2(rb − r4)a

√
λ− 1

8r3
√
λ

cosφ. (5.33c)

B.4 Second order O(δ2) solution

In order to obtain the second order solutions, we consider a special case with

µ1 = − 2λ2µ2

2λ2 − λ− 1
, λ = −5 +

√
17

4
. (5.37)

In the most general forms, the second-order contributions of velocity and stream-function
(w(2)(r, φ) and ψ(2)(r, φ)) are given by:

w(2)(r, φ) = w
(2)
1 (r) + w

(2)
2 (r) cos(2φ), ψ(2)(r, φ) = ψ(2)(r) sin(2φ). (B.14)

Expressing τ (2) and n(2) in terms of w(2)(r, φ) and ψ(2)(r, φ) gives the momentum balance
in the general form

f1(w
(2)
1 (r, φ)) + f2(w

(2)
2 (r, φ), ψ(2)(r, φ)) cos(2φ) = 0. (B.15)

We are only interested in the solution for w(2)
1 (r), so we focus on f1, which is given by
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)r5 +

171µ2
2r

4

11816
+ (−135

422
µ2
2 −

90

211
µ2 +

270

211
)r3 − µ2

2r
2

211
− µ2

2

1688

]
rλ8

+ 2800512

[
(µ3

2 + 1110/187µ2
2 − 4500/221µ2 + 1800/221)r5 + 907(µ2 + 6615/907)µ2

2r
4/19448

+ (−1579/4862µ3
2 − 4725/2431µ2

2 + 15750/2431µ2 − 6300/2431)r3

− (71µ2
2(µ2 + 435/71)r2)/4862− (35µ2

2(µ2 + 5))/19448

]
rλ7

+

[
(−171320µ4

2 − 3990080µ3
2 + 12623040µ2

2 + 5702400µ2 − 25660800)r6

+ (−17130µ4
2 − 574704µ3

2 + 1739880µ2
2)r

5
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+ (57068µ4
2 + 1372320µ3

2 − 4082400µ2
2 − 1814400µ2 + 8164800)r4

+ (5296µ4
2 + 149152µ3

2 − 803520µ2
2)r

3 + (658µ4
2 + 15120µ3

2 − 128520µ2
2)r − 32µ3

2(µ2 + 4)

]
λ6

+

[
(314544µ4

2 + 67712µ3
2 − 6946560µ2

2 + 22809600µ2 − 17107200)r6

+(84417µ4
2−746316µ3

2−1462860µ2
2)r

5+(−115528µ4
2+43776µ3

2+2721600µ2
2−7257600µ2+5443200)r4

+ (−22260µ4
2 + 333152µ3

2 + 66960µ2
2)r

3 + (−2345µ4
2 + 56700µ3

2 − 8820µ2
2)r + 192µ4

2 + 896µ3
2

]
λ5

+

[
(−177152µ4

2 + 329024µ3
2 − 4052160µ2

2 + 5702400µ2 − 2851200)r6

+ (66570µ4
2 +1527012µ3

2 − 1404540µ2
2)r

5 + (51032µ4
2 − 609408µ3

2 +1360800µ2
2 − 1814400µ2 +907200)r4

+ (−33296µ4
2 − 230224µ3

2 + 619920µ2
2)r

3 + (−6482µ4
2 − 23940µ3

2 + 97020µ2
2)r + 328µ4

2 + 416µ3
2

]
λ4

+

[
(173504µ4

2 − 363648µ3
2 − 915840µ2

2)r
6 + (−279957µ4

2 + 1167804µ3
2 + 218700µ2

2)r
5

+ (32192µ4
2 − 285984µ3

2)r
4 + (54620µ4

2 − 253200µ3
2 + 261360µ2

2)r
3

+ (7525µ4
2 − 36540µ3

2 + 49140µ2
2)r − 1744µ4

2 − 7392µ3
2

]
λ3

+ 33552µ2
2

[
(µ2

2 − 440/699µ2 − 2200/233)r6 + (−34799/11184µ2
2 + 8335/932µ2 + 5625/932)r5

+ (2141/4194µ2
2 − 990/233µ2)r

4 + (2519/2796µ2
2 − 875/699µ2 + 175/233)r3

+ (5957/33552µ2
2 − 175/932µ2 + 175/932)r − (22µ2

2)/233− (110µ2)/699

]
λ2

+

[
(23680µ4

2 − 51200µ3
2)r

6 + (−29880µ4
2 + 75600µ3

2)r
5

+ (−1680µ4
2 − 21600µ3

2)r
4 + (7720µ4

2 − 2000µ3
2)r

3 + 1680µ4
2r

− 1520µ4
2 − 800µ3

2

]
λ− 200(r − 1)2µ4

2(r
4 − 17/8r3 + 5/4r2 + 9/8r + 1) = 0. (B.16)

Solving for w(2)
1 (r) and enforcing the no-slip boundary condition gives the solution of the

form

w
(2)
1 (r) = p1r

4 + p2r
3 + p3r

2 + p4r + p5, (5.38)

where coefficients pi = pi(µ2) are are given by

p1 =
(2748µ52+34037µ42+72460µ32−179740µ22+237600µ2−158400)

√
17−13727µ52−187109µ42−561368µ32+627020µ22+554400µ2−475200

7200(µ22+6µ2−8)2(3+
√
17+µ2)

,

(B.17a)

p2 = −µ22(1783
√
17µ32+23832

√
17µ22−7257µ32+68540

√
17µ2−97624µ22−75120

√
17−284388µ2+310800)

2700(µ22+6µ2−8)2(3+
√
17+µ2)

,

(B.17b)

p3 =
(448µ52+8007µ42+41780µ32+31500µ22−151200µ2+100800)

√
17−297µ52−2839µ42−6168µ32−56700µ22−352800µ2+302400

3600(µ22+6µ2−8)2(3+
√
17+µ2)

,

(B.17c)

p4 =
(37

√
17µ2 + 250

√
17− 139µ2 − 1046)µ2

2

180(3 +
√
17 + µ2)(µ2

2 + 6µ2 − 8)
, (B.17d)
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p5 =
(−1108µ52−16137µ42−64220µ32−10740µ22+194400µ2−129600)

√
17+1587µ52+22969µ42+65688µ32−58620µ22+453600µ2−388800

21600(µ22+6µ2−8)2(3+
√
17+µ2)

.

(B.17e)

B.4.1 Streamfunction solution in the absence of non-Newtonian O(δ) stress

Neglecting the non-Newtonian contribution to τ (1), the contribution of stress imbalance
effects vanishes and momentum balance in the r − φ plane (eq. (5.17)) becomes

0 = −1

r

∂2τ
(1)
rr

∂r∂φ
− 1

r2
∂τ

(1)
rr

∂φ
+

1

r

∂2τ
(1)
φφ

∂r∂φ
+

1

r2
∂2τ

(1)
φφ

∂φ
+
∂2τ

(1)
rφ

∂r2
+

3

r

∂

∂r
τ
(1)
rφ

− 1

r2
∂2τ

(1)
rφ

∂φ2
+ (Ψ

(0)
1 + 2Ψ

(0)
2 ) sinφ, (B.18)

where the relevant components of Newtonian stress tensor expressed in terms of the stream
function are given by

τ
(1)
rφ =

1

r

∂u(1)

∂φ
− u(1)

r
+
∂v(1)

∂r
=
∂2ψ(1)

∂r2
− 1

r

∂ψ(1)

∂r
− 1

r2
∂2ψ(1)

∂φ2
, (B.19a)

τ (1)rr = 2
∂u(1)

∂r
= −2

∂

∂r

(
1

r

∂ψ(1)

∂r

)
, (B.19b)

τ
(1)
φφ =

1

r

∂v(1)

∂φ
+
u(1)

r
= 2

∂

∂r

(
1

r

∂ψ(1)

∂r

)
. (B.19c)

Substituting eq. (B.19) into eq. (B.18) gives

(Ψ
(0)
1 +2Ψ

(0)
2 ) sin(φ)r4 +

∂4ψ(1)(r, φ)

∂r4
r4 +2

∂3ψ(1)(r, φ)

∂r3
r3 +2

∂2

∂r2

(
∂2ψ(1)(r, φ)

∂φ2

)
r2

−∂
2ψ(1)(r, φ)

∂r2
r2−2

∂

∂r

(
∂2ψ(1)(r, φ)

∂φ2

)
r+

∂ψ(1)(r, φ)

∂r
r+4

∂2ψ(1)(r, φ)

∂φ2
+
∂4ψ(1)(r, φ)

∂φ4
= 0.

(B.20)

Above equation indicates that the stream function can be written in the form

ψ(1)(r, φ) = ψ(1)(r) sinφ, (B.21)

which then provides an equation for ψ(1)(r):

(Ψ
(0)
1 +2Ψ

(0)
2 ) sin(φ)r4+

∂4ψ(1)(r)

∂r4
r4+2

∂3ψ(1)(r)

∂r3
r3−3

∂2ψ(1)(r)

∂r2
r2 = 0.+3

∂ψ(1)(r)

∂r
r−3ψ(1)(r)

(B.22)

Using Maple [166] to solve the above equation with imposed no-slip boundary condition (eq.
(5.16) gives the final solution

ψ(1)(r, φ) = −
r(r + 1

2
)(1− r)2

45
(Ψ1 + 2Ψ2) sinφ. (B.23)
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Appendix C

Supplementary material of chapter 6

C.1 Implementation of boundary conditions
C.1.1 Wall-parallel boundary condition

1
2 / / wa l l c onnec t ed wi th t h e i n l e t
3 wa l l 1
4 {
5 t ype f i x e dVa l u e ;
6 v a l u e un i fo rm (1 0 0 ) ;
7 }
8
9 / / bend
10 wa l l 2
11 {
12 t ype codedMixed ;
13 r e fVa l u e un i fo rm (1 0 0 ) ;
14 r e f G r a d i e n t un i fo rm (0 0 0 ) ;
15 v a l u e F r a c t i o n un i fo rm 1 ;
16
17
18 r e d i r e c t T y p e homeo t rop i cAncho r ing2 ; / / name of g e n e r a t e d BC
19 code
20 #{
21 / / Get r ange and o r i e n t a t i o n
22 boundBox bb ( p a t c h ( ) . p a t c h ( ) . l o c a l P o i n t s ( ) , t r u e ) ;
23 c o n s t v e c t o r F i e l d& c = pa t c h ( ) . Cf ( ) ;
24
25 s c a l a r cx (1 e −2 ) ; / / x c o o r d i n a t e o f t h e bend a x i s
26 s c a l a r cy (5 e −3 ) ; / / y c o o r d i n a t e o f t h e bend a x i s
27
28 v e c t o r ux ( 1 , 0 , 0 ) ;
29 v e c t o r uy ( 0 , 1 , 0 ) ;
30 v e c t o r uz ( 0 , 0 , 1 ) ;
31
32 c o n s t v e c t o r F i e l d normal = pa t c h ( ) . n f ( ) ;
33
34 / / f u n c t i o n f o r t h e wa l l p a r a l l e l o r i e n t a t i o n i n t h e a x i s d i r e c t i o n
35 t h i s −> r e fVa l u e ()= − ux∗ ( ( c&uy ) − cy ) / s q r t ( pow ( ( c&uy ) − cy , 2 ) +
36 pow ( ( c&ux ) − cx , 2 ) ) + uy∗ ( ( c&ux ) − cx ) / s q r t ( pow ( ( c&uy ) − cy , 2 )
37 + pow ( ( c&ux ) − cx , 2 ) ) ;
38 #} ;
39 }
40 / / wa l l c onnec t ed t o t h e o u t l e t
41 wa l l 3
42 {
43 t ype f i x e dVa l u e ;
44 va l u e un i fo rm (0 1 0 ) ;
45 }
46
47 symmetry
48 {
49 t ype symmetry ;
50 }
51
52
53 }
54
55 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
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C.1.2 Homeotropic boundary condition
1
2 / / wa l l c onnec t ed t o t h e i n l e t
3 wa l l 1
4 {
5 t ype codedMixed ;
6 r e fVa l u e un i fo rm (1 0 0 ) ;
7 r e f G r a d i e n t un i fo rm (0 0 0 ) ;
8 v a l u e F r a c t i o n un i fo rm 1 ;
9
10
11 r e d i r e c t T y p e homeo t rop i cAncho r ing1 ; / / name of g e n e r a t e d BC
12 code
13 #{
14 / / Get r ange and o r i e n t a t i o n
15 boundBox bb ( p a t c h ( ) . p a t c h ( ) . l o c a l P o i n t s ( ) , t r u e ) ;
16
17 / / compute wal l −normal v e c t o r
18 c o n s t v e c t o r F i e l d n = pa t c h ( ) . n f ( ) ;
19
20 t h i s −> r e fVa l u e ()= −n ;
21
22 #} ;
23
24 / / wa l l o f t h e bend }
25 wa l l 2
26 {
27 t ype codedMixed ;
28 r e fVa l u e un i fo rm (1 0 0 ) ; / / r e fVa l u e and r e f G r a d i e n t DO NOT ma t t e r a t a l l
29 r e f G r a d i e n t un i fo rm (0 0 0 ) ;
30 v a l u e F r a c t i o n un i fo rm 1 ;
31
32
33 r e d i r e c t T y p e homeo t rop i cAncho r ing2 ; / / name of g e n e r a t e d BC
34 code
35 #{
36 / / Get r ange and o r i e n t a t i o n
37 boundBox bb ( p a t c h ( ) . p a t c h ( ) . l o c a l P o i n t s ( ) , t r u e ) ;
38
39 / / compute wal l −normal v e c t o r i n t h e bend
40 c o n s t v e c t o r F i e l d n = pa t c h ( ) . n f ( ) ;
41
42 t h i s −> r e fVa l u e ()= −n ;
43
44 #} ;
45 }
46
47 / / wa l l c onnec t ed t o t h e o u t l e t
48 wa l l 3
49 {
50 t ype codedMixed ;
51 r e fVa l u e un i fo rm (1 0 0 ) ;
52 r e f G r a d i e n t un i fo rm (0 0 0 ) ;
53 v a l u e F r a c t i o n un i fo rm 1 ;
54
55
56 r e d i r e c t T y p e homeo t rop i cAncho r ing3 ; / / name of g e n e r a t e d BC
57 code
58 #{
59 / / Get r ange and o r i e n t a t i o n
60 boundBox bb ( p a t c h ( ) . p a t c h ( ) . l o c a l P o i n t s ( ) , t r u e ) ;
61
62 / / compute wal l −normal v e c t o r
63 c o n s t v e c t o r F i e l d n = pa t c h ( ) . n f ( ) ;
64
65 t h i s −> r e fVa l u e ()= −n ;
66
67 #} ;
68 }

C.2 Equilibrium director distribution in a curved duct

Analytical solutions for the distribution of the director field in a curved pipe cannot be
obtained. However, the problem can be simplified to consider a straight duct in the absence
of flow with a homeotropic boundary condition as shown in fig. C.1. Conclusions made by
studying the director distribution in a duct are also applicable to a curved pipe.
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r

R0

r2=R0+r0

r1=R0-r0

2r0

φ θ

Figure C.1. Schematic illustration of a curved duct. The director is pointing in the opposite direction to mimic
the situation in a curved pipe.

In the set-up shown in fig. C.1 the director is constrained to the r − φ plane and does
not change in the φ direction. This allows n to be represented as a function of an arbitrary
variable θ(r):

n = [nr(r), nφ(r), ns(r)] = [− sin θ(r), cos θ(r), 0]. (C.1)

In the one-constant approximation the distortion energy is given by

fd =
1

2
K∇n : (∇n)T , (C.2)

where the non-zero components of∇n are

[∇n]r,r =
∂nr
∂r

, [∇n]r,φ = −nφ
r
, [∇n]φ,r =

∂nφ
∂r

, [∇n]φ,φ =
nr
r
. (C.3)

The Euler-Lagrange equilibrium equation is obtained by taking the functional derivative of
eq. (C.2) with respect to θ and yields the equilibrium equation

∂(r ∂θ(r))
∂r

)

∂r
= 0, (C.4)

with boundary conditions θ(r1) = −π
2
, θ(r2) = π

2
the solution is

θ(r) = π
ln
(
r
r1

)
+ ln

(
r
r2

)
ln
(
r2
r1

) , (C.5)

with radial and tangential components of the director shown in fig. C.2 and schematically
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illustrated in fig. C.3.
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Figure C.2. Comparison of curved and straight duct solutions. Negative x-axis is closer to the centre of curva-
ture.
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Figure C.3. Due to the geometry curvature, the director field at Er = 0 moves towards the bend axis to min-
imise the Helmholtz free energy.

The location of maximum tangential component of the director occurs where θ = 0, which
by solving eq. (C.5) gives

rmax =
√
r1r2, (C.6)

which is the geometric average of the limiting coordinates. Expressing ri in terms of R =
r1+r2

2
and h = r2−r1

2
gives

rmax =
√

(R− h)(R + h) =
√
R
√
(1− δ)(1 + δ), (C.7)

where δ = h
R
. Thus as the curvature becomes very small the straight duct limit is recovered

and the solution becomes symmetric about the centreline.
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C.3 Explanation of the sudden velocity perturbations

Newtonian flow

The dimensionless r− and φ− components of the Navier-Stokes equation in the toroidal
coordinates are given by

∂p

∂r
=
τrr − τφφ

r
+
∂τrr
∂r

+
1

r
τrφ +

1

B

∂τrs
∂s

+
δ

B
(τrr cosφ− τrφ sinφ− τss cosφ) ,

(C.8a)
1

r

∂p

∂φ
=

2τrφ
r

+
∂τrφ
∂r

+
1

r

∂τφφ
∂φ

+
1

B

∂τφs
∂s

+
δ

B
(τss sinφ+ τrφ cosφ− τφφ sinφ) .

(C.8b)

Note that eq. (C.8a) and (C.8b) contain stream-wise derivatives, which are absent in the fully
developed flow analysis presented in chapter 5. The stress is purely Newtonian

τ = 2µD, (C.9)

where D is the symmetric part of the velocity gradient tensor, whose full form in toroidal
coordinates reads

[∇u]r,r =
∂u

∂r
, [∇u]r,φ =

1

r

∂u

∂φ
− u

r
[∇u]r,s =

1

B

∂u

∂s
− δ

B
w cosφ,

[∇u]φ,r =
∂v

∂r
, [∇u]φ,φ =

1

r

∂v

∂φ
+
u

r
, [∇u]φ,s =

1

B

∂v

∂s
+
δ

B
w sinφ,

[∇u]s,r =
∂w

∂r
, [∇u]s,φ =

1

r

∂w

∂φ
, [∇u]s,s =

1

B

∂w

∂s
+
δ

B
(u cosφ− v sinφ).

(C.10)

Substituting combining eq. (C.8), (C.9) and (C.10) to calculate the leading order compo-
nent of (∇×∇p)s on the symmetry line (where v = 0) gives

∂2u

∂r2
r2B2 + 2

∂u

∂r
rB2 +B2∂

2u

∂φ2
+B

∂w

∂s
r +

∂2u

∂s2
r2 = 0. (C.11)

In a fully developed flows ∂w
∂s
r = 0, and eq. (C.11) is satisfied by u = 0. However, as the flow

changes direction (accelerates) due to the geometry curvature ∂w
∂s
r 6= 0, must be balanced by

a non-zero transverse velocity.

Non-Newtonian fluids

Let us first split the total stress tensor into Newtonian and non-Newtonian contributions:

τ = 2D + σ. (C.12)
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Following the same procedure as for a Newtonian fluid, the momentum balance in the r − φ

plane is given by

−∂2σrφ
∂r2

r3B2 − 2
∂σrφ
∂r
r2B2 + ∂2σrr

∂φ∂r
r2B2 + 2B2rσrφ +B2r ∂σrr

∂φ
−B2r

∂σφφ
∂φ

+B2r
∂2σrφ
∂φ2︸ ︷︷ ︸

components in the fully developed curved pipe flow

+
∂3u

∂φ∂r2
r2B2 + 2rB2 ∂

2u

∂r∂φ
+B2∂

3u

∂φ3
+

∂3u

∂φ∂s2︸ ︷︷ ︸
transverse velocity

+ r2B
∂2σsr
∂φ∂s

+Br
∂2w

∂s∂φ
− r3B

∂2σsφ
∂s∂r︸ ︷︷ ︸

streamwise gradient

. (C.13)

Equation above indicates that when the flow is fully developed ∂
∂s

= 0, and non-zero u is pro-
duced by the imbalance of non-Newtonian stresses (terms in the first underbrace). However,
eq. (C.13) suggests that the transverse velocity can be also generated not only when the fluid
accelerates ∂w

∂s
r 6= 0, but also when there are stream-wise gradients of the shear stress ∂σsr

∂s

and ∂σsφ
∂s

.

C.4 Stress coefficients in the LE model in a straight pipe

In the limit of a fully developed, straight pipe flow, all velocity gradients apart from
∇u]s,r =

∂w
∂r

vanish. The viscous stress is given by

α1nnnn : D + α2nN + α3Nn+ α4D + α5nn ·D + α6D · nn, (C.14)

and its non-zero components read

τrr =
1

2

[
2α1n

2
r + α2 + α3 + α5 + α6

]
nrns

∂w

∂r
, (C.15a)

τss =
1

2

[
2α1n

2
s − α2 − α3 + α5 + α6

]
nrns

∂w

∂r
, (C.15b)

τrs =
1

2

[
α4 + 2α1n

2
sn

2
r + (−α2 + α5)n

2
r + (α3 + α6)n

2
s

]∂w
∂r
, (C.15c)

τsr =
1

2

[
α4 + 2α1n

2
sn

2
r + (−α3 + α6)n

2
r + (α2 + α5)n

2
s

]∂w
∂r
. (C.15d)

(C.15e)

Note that τ is not symmetric. τrs is the actual shear stress that enters the Navier-Stokes
equation. When director is aligned in the flow direction (ns = 1), the effective viscosity is
α3+α4+α6

2
(first Miesowicz viscosity [43]) and when director aligns in the velocity gradient

direction (nr = 1), the effective viscosity is −α2+α4+α5

2
(second Miesowicz viscosity [43]).
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C.5 Director distortion on the centerline

The steady state distribution of the director angle in a curved channel at low Ericksen
numbers was calculated in appendix C.2 and is given by

θ(r) = π
ln
(
r
r1

)
+ ln

(
r

r1+δr

)
ln
(
r1+δr
r1

) , (C.16)

where r1 and r2 = r1 + δr are inner and outer radii of the curved channel respectively, δr is
a gap between channel walls. The solution is schematically visualised in fig. C.2. In order
to map between the curved and straight sections of a channel, let us consider an identically
distributed director field in a straight channel. For that purpose, we introduce a variable
−1 ≤ y ≤ 1

y =
2r − (r1 + r2)

r2 − r1
, (C.17)

So that the director angle is given by

θ(y) = π
ln
(

1
2
y δr
r1
+

r1+
1
2
δr

r1

)
+ ln

(
1
2
y δr
r1+δr

+
r1+

1
2
δr

r1+δr

)
ln
(
r1+δr
r1

)
= π

ln
(
1
2
yc1 + 1 + 1

2
c1
)
+ ln

(
1
2
y c1
1+c1

+
1+ 1

2
c1

1+c1

)
ln(1 + c1)

, (C.18)

where c1 = δr
r1
is a free parameter that controls the deviation from the straight channel so-

lution. We are interested in the relation between ∂2θ
∂y2

and θ at the channel centerline. In the
limit of δr → 0, the power series expansion of ∂2θ

∂y2
and θ at the centreline is given by

θ|y=0 ≈
π

8

δr
r1

+O(δ2r), (C.19a)

∂2θ

∂y2
|y=0 ≈ −π

4

δr
r1

+O(δ2r), (C.19b)

which shows that ∂2θ
∂y2

|y=0 ∝ −θ|y=0.
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Appendix D

Contraction mesh code

The code used to generate the M3 mesh of the contraction
1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 ========= |
3 \ \ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \ \ / O p e r a t i o n | Webs i t e : h t t p s : / / openfoam . org
5 \ \ / A nd | Ve r s i on : 6
6 \ \ / M a n i p u l a t i o n |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFi le
9 {
10 v e r s i o n 2 . 0 ;
11 fo rma t a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 o b j e c t b lockMeshDic t ;
14 }
15 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /
16
17 conve r tToMe t e r s 0 . 0 0 1 ;
18
19 v e r t i c e s
20 (
21 (0 0 −1) / / 0
22 ( 10 0 −1)
23 ( 40 0 −1)
24 (0 0 . 5 −1)
25 ( 10 0 . 5 −1) / / 4
26 ( 40 0 . 5 −1)
27 (0 2 −1)
28 ( 10 2 −1)
29
30 (0 0 1)
31 ( 10 0 1)
32 ( 40 0 1)
33 (0 0 . 5 1 )
34 ( 10 0 . 5 1 )
35 ( 40 0 . 5 1 )
36 (0 2 1)
37 ( 10 2 1)
38
39 (0 −0.5 −1) / / 1 6
40 ( 10 −0.5 −1)
41 ( 40 −0.5 −1)
42 (0 −2 −1)
43 ( 10 −2 −1) / / 2 0
44
45 (0 −0.5 1 ) / / 2 1
46 ( 10 −0.5 1 )
47 ( 40 −0.5 1 )
48 (0 −2 1)
49 ( 10 −2 1) / / 2 5
50
51
52
53 ) ;
54
55 x I n l 400 ; / / c e l l s i n t h e f r o n t i n t h e x d i r e c t i o n
56 y I n l 60 ; / / c e l l s a l ong t h e v e r t i c a l wa l l i n t h e c o n t r a c t i o n
57 yOut 2 0 ; / / c e l l s from t h e c e n t e r l i n e t o t h e h o r i z o n t a l wa l l o f t h e o u t l e t p i p e
58 xOut 1200 ; / / c e l l s i n t h e o u t l e t p i p e
59
60
61
62 b l o ck s
63 (
64 hex (0 1 4 3 8 9 12 11) ( $ x I n l $yOut 1 ) s imp l eGrad i ng (1 1 1)
65 hex (1 2 5 4 9 10 13 12) ( $xOut $yOut 1 ) s imp l eGrad i ng (1 1 1)
66 / / o u t l e t p i p e
67 hex (3 4 7 6 11 12 15 14) ( $ x I n l $ y I n l 1 ) s imp l eGrad i ng (1 1 1)
68 / / o u t s i d e i n l e t up
69
70 hex (16 17 1 0 21 22 9 8) ( $ x I n l $yOut 1 ) s imp l eGrad i ng (1 1 1)
71 hex (17 18 2 1 22 23 10 9) ( $xOut $yOut 1 ) s imp l eGrad i ng (1 1 1)
72 / / o u t l e t p i p e
73 hex (19 20 17 16 24 25 22 21) ( $ x I n l $ y I n l 1 ) s imp l eGrad i ng (1 1 1)
74 / / o u t s i d e i n l e t bo t
75
76 ) ;
77
78 edges
79 (
80 ) ;
81
82 boundary
83 (
84 i n l e t
85 {
86 t ype p a t c h ;
87 f a c e s
88 (
89 (0 3 11 8)
90 (3 6 14 11)
91 (16 0 8 21)
92 (19 16 21 24)
93 ) ;
94 }
95
96 wal l sHorTop
97 {
98 t ype wa l l ;
99 f a c e s
100 (
101
102 (4 5 13 12)
103 (6 7 15 14)
104
105
106 ) ;
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107 }
108
109 wa l l sHorBo t
110 {
111 t ype wa l l ;
112 f a c e s
113 (
114
115 (19 20 25 24)
116 (17 18 23 22)
117
118 ) ;
119 }
120
121 wa l l sVe r tBo t
122 {
123 t ype wa l l ;
124 f a c e s
125 (
126 (17 20 25 22)
127 ) ;
128 }
129
130 wa l l sVe r tTop
131 {
132 t ype wa l l ;
133 f a c e s
134 (
135 (7 4 12 15)
136 ) ;
137 }
138
139
140 o u t l e t
141 {
142 t ype p a t c h ;
143 f a c e s
144 (
145 (2 5 13 10)
146 (18 2 10 23)
147 ) ;
148 }
149
150
151 f ron tAndBack
152 {
153 t ype empty ;
154 f a c e s
155 (
156 (0 1 4 3)
157 (3 4 7 6)
158 (1 2 5 4)
159 (8 9 12 11)
160 (11 12 15 14)
161 (9 10 13 12)
162
163 (16 17 1 0)
164 (19 20 17 16)
165 (17 18 2 1)
166 (21 22 9 8)
167 (24 25 22 21)
168 (22 23 10 9)
169
170 ) ;
171 }
172 ) ;
173
174 /∗
175 me r g eP a t c hP a i r s
176 (
177 ) ;
178 ∗ /
179
180 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
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