
The University of Manchester Research

Optimising a Machine Learning Model for Reynolds
Averaged Turbulence Modelling of Internal Flows

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Man, A., Jadidi, M., Keshmiri, A., Yin, H., & Mahmoudi Larimi, Y. (Accepted/In press). Optimising a Machine
Learning Model for Reynolds Averaged Turbulence Modelling of Internal Flows. In 16TH INTERNATIONAL
CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS AND EDITORIAL
BOARD OF APPLIED THERMAL ENGINEERING
Published in:
16TH INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS
AND EDITORIAL BOARD OF APPLIED THERMAL ENGINEERING

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:12. Nov. 2022

https://www.research.manchester.ac.uk/portal/en/publications/optimising-a-machine-learning-model-for-reynolds-averaged-turbulence-modelling-of-internal-flows(8d022073-eb52-4629-a107-024083043718).html


  

  

 

OPTIMISING A MACHINE LEARNING MODEL FOR REYNOLDS AVERAGED 

TURBULENCE MODELLING OF INTERNAL FLOWS 

 

 
Man A.1*, Jadidi M.1, Keshmiri A.1, Yin H.2 and Mahmoudi Y.1 

*Author for correspondence 
1Department of Mechanical, Aerospace and Civil Engineering, 

2Department of Electrical and Electronic Engineering, 

University of Manchester, 

Manchester, M13 9PL 

United Kingdom 

E-mail: anthony.man@manchester.ac.uk 

 

 
ABSTRACT 

Various machine learning models in recent years have 

demonstrated capability in improving the accuracy of Reynolds-

averaged Navier-Stokes (RANS) simulations. One such example 

is the tensor-basis neural network (TBNN), which has been 

shown to introduce improvements that would be challenging or 

impossible for RANS approaches to model, such as anisotropic 

normal Reynolds stresses. This paper reports on a hyper-

parameter tuning exercise, to find optimal parameter settings for 

TBNNs predicting Reynolds stress anisotropy in channel flow, 

and these are also used in TBNNs deployed on internal flow over 

a forward-backward facing step. The accuracy of ensemble 

TBNN predictions is investigated, and it is shown that further 

improvements to Reynolds stress anisotropy predictions can be 

made when an ensemble size of 25 or more is used. 

NOMENCLATURE 
 

𝑏𝑖𝑗 [-] Reynolds stress anisotropy tensor 

𝑔𝑛 [-] General effective viscosity hypothesis coefficients 

𝑘 [m2/s2] Turbulent kinetic energy 

𝑅𝑒𝜏 [-] Channel flow Reynolds number 

𝑺 [-] Dimensionless mean strain rate tensor 

𝑻(𝑛) [-] General effective viscosity hypothesis tensors 

𝑢𝜏 [m/s] Friction velocity 

 

Special characters 

𝛿 [m] Channel half height 

휀 [m2/s3] Turbulent kinetic energy dissipation rate 

𝜈𝑡 [m2/s] Eddy viscosity 

𝜴 [-] Dimensionless mean rotation rate tensor 

 

Subscripts 

𝑖𝑗  Free indexes in Reynolds stress anisotropy tensor 

𝑘  Dummy index for number of location points 

𝑛  Dummy index for terms in general effective viscosity 
hypothesis 

 

INTRODUCTION 
Reynolds-averaged Navier-Stokes (RANS) approaches are 

widely used for simulating turbulent flows due to their 

computational efficiency and tractability. Most RANS models, 

including popular two-equation ones such as k-ω shear stress 

transport (SST), use Boussinesq Hypothesis (BH) for Reynolds 

stress closure. However, due to several assumptions that BH is 

based on, it is well-known that these RANS models do not give 

satisfactory accuracy in predicting certain flow features, 

including flow stagnation, recirculation, and separation [1]. 

Furthermore, BH cannot model anisotropic normal Reynolds 

stresses, which exist in boundary layers and secondary flows [2]. 

Nonlinear eddy viscosity models have been proposed as 

alternatives to BH [3]. These models use higher-order products 

of mean strain and rotation rate tensors to predict Reynolds 

stress, which have been shown to simulate stagnation and 

streamline curvature effects more accurately and can model 

anisotropic normal Reynolds stresses. However, nonlinear 

models have not seen widespread usage, as their coefficients 

must be tuned through a long and tedious process for every flow 

problem to give consistent accuracy improvements over BH [4]. 

To address the deficiencies in RANS approaches and 

improve their prediction accuracy, there has been gathering 

interest over recent years in using machine learning (ML) for 

modelling Reynolds stress. Neural networks (NNs) have 

commonly been the ML model of choice in these applications 

for their flexibility in approximating complex functions, such as 

Reynolds stress closure [5, 6]. In particular, the tensor-basis 

neural network (TBNN) developed by Ling et al. [7] has seen 

popularity, due to its high generalisation performance and 

prediction accuracy resulting from embedding physical laws in 

the model. Ling et al. showed that TBNN could reduce root mean 

squared errors in Reynolds stress anisotropy predictions from 

RANS by 44% for square duct flow and 56% for flow over 

periodic hills. Furthermore, the prediction of anisotropic normal 

Reynolds stresses and secondary flows were also reported [7]. 

Despite the proven capabilities of TBNN, numerous open 

questions remain regarding its parameters and best practices for 

model deployment. The best choices for TBNN hyperparameters 

that can consistently yield high prediction accuracy are not well-

defined in the literature, including the learning rate and number 

of hidden layers and nodes. These are vital considerations for 

optimising the predictive performance of any NN. Although 

some TBNN studies have recorded attempts at tuning these 

parameters, their investigations have been limited in parameter 

space and detail. Due to randomness in weight initialization, 

NNs often converge to different local minima during training, 

instead of the global minimum. Therefore, an ensemble of 

mailto:jaco.dirker@up.ac.za


  

  

TBNN instances can be trained to provide multiple predictions 

that can be averaged to give a mean result when testing. The 

optimal number of these TBNN ensembles for prediction 

averaging has also not been studied properly in the literature. 

This work focuses on addressing these considerations for 

TBNNs trained, validated, and tested on channel flow shown in 

Figure 1(a). The optimal TBNN hyperparameters were used 

afterwards to predict anisotropy in flow over a confined forward-

backward facing step (F-BFS) – a canonical internal flow 

problem, shown in Figure 1(b). 

 

 

 

(a) 

 

 
 

 

(b) 

 

 
Figure 1 (a) Channel flow, (b) Flow over F-BFS 

TENSOR BASIS NEURAL NETWORK 
The mathematical foundation of TBNN is based on the 

general effective viscosity hypothesis (GEVH) – a generalised 

expansion of the Reynolds stress anisotropy tensor bij [8]: 

𝑏𝑖𝑗 = ∑ 𝑔𝑛𝑻(𝑛)

10

𝑛

 (1) 

Coefficients 𝑔1 to 𝑔10 are unknown scalars but are functions 

of the following five invariants of non-dimensional mean strain 

rate 𝑺 and mean rotation rate 𝛀: 

𝑔𝑛 = 𝑓(𝑇𝑟(𝑺2), 𝑇𝑟(𝛀2), 𝑇𝑟(𝑺3), 𝑇𝑟(𝛀2𝑺), 𝑇𝑟(𝛀2𝑺2)) (2) 

where 𝑺 and 𝛀 have been non-dimensionalised by turbulent 

kinetic energy (TKE) 𝑘 and turbulent dissipation rate 휀. Tensors 

𝑻(1) to 𝑻(10) are known functions of 𝑺 and 𝛀, with terms 

consisting of their tensor products. Note that BH and nonlinear 

eddy viscosity models are truncated versions of the GEVH and 

hence Equation (1) gives their full expression. The goal of the 

TBNN is to approximate coefficients 𝑔1 to 𝑔10, which can then 

be used in Equation (1) to solve for anisotropy tensor. 

Figure 2 shows that the TBNN architecture is specially 

designed to imitate the GEVH in Equation (1). The tensor input 

layer accepts 𝑻(1) to 𝑻(10) tensors as inputs and hence contains 

ten nodes. Similarly, the invariant input layer accepts the 

invariants in Equation (2) as inputs and therefore has five nodes. 

These invariants are propagated through a series of hidden 

layers, aiming to collectively approximate the complex function 

of Equation (2). The final hidden layer contains ten nodes, 

corresponding to approximations of coefficients 𝑔1 to 𝑔10. 

Finally at the merge output layer and to replicate Equation (1), 

element-wise products of the tensor input layer and final hidden 

layer are calculated and these terms are summed to give an 

approximation for anisotropy tensor. This architecture 

guarantees Galilean invariance in its anisotropy predictions. 

The ML workflow for TBNN typically consists of model 

training, validating, and testing, with all three tasks requiring 

their own datasets. Fitting the TBNN to the training dataset 

allows coefficients 𝑔1 to 𝑔10 to converge to an approximation. 

Stopping of the training process can be invoked after a certain 

number of epochs by testing the TBNN on the validation set. 

Model parameters can also be tuned by evaluating the validation 

performance after trying different parameter settings. Once fully 

trained, the TBNN may be tested on the test set to assess its 

predictive performance and readiness for real-world deployment. 

In these three tasks, RANS data is supplied to the two input 

layers and anisotropy values predicted by the TBNN are 

compared with those from a high-fidelity method, such as LES, 

which act as ground-truth values for evaluating the accuracy of 

TBNN predictions. Therefore, data from computational fluid 

dynamics (CFD) cases simulated with both RANS and a high-

fidelity method must be gathered to create a dataset for each task. 

More specifically, these datasets must include 𝑻(1) to 𝑻(10) 

tensors and Equation (2) invariants calculated from RANS, as 

well as anisotropy results from the high-fidelity method. 

 

Figure 2 Typical TBNN architecture 

CHANNEL FLOW DATASETS 
 

Channel Flow Domain and Boundary Conditions 

TBNNs were firstly trained, validated, and tested on 

turbulent channel flow problems. Seven channel flow cases with 

Reynolds numbers of 180, 290, 395, 490, 590, 760 and 945 based 

on friction velocity and channel half-height were simulated with 

both RANS and LES to create the datasets. Their corresponding 

bulk velocities were 2.2, 3.8, 5.4, 7.0, 8.6, 11.7 and 14.7 m/s. A 

truncated channel domain was used for all cases, with channel 

half-height δ = 0.04m, length and width 8δ, and kinematic 

viscosity of 1.57×10-5 m²/s. Periodic boundary conditions (BCs) 

were enforced in the streamwise and spanwise directions for all 

simulations, while no-slip and non-permeable BCs were 

assigned to the walls. At the walls of the RANS cases, a 

Neumann BC for pressure was used and specific TKE dissipation 

rate 𝜔 was set to a fixed value given by the equation proposed 

by Menter for SST in [9]. Eddy viscosity νt was set to calculated 

to allow transport equations to be integrated down to the wall. 

For the LES cases, Neumann BCs were applied for pressure and 

Flow 

𝑦𝑓 

x 

y 

z 

Flow ℎ𝑠 



  

  

eddy viscosity at the walls as wall-resolved LES was performed. 

Constant bulk flow velocity was maintained in all cases by an 

external force that was added into the momentum equation using 

the fvOptions utility in OpenFOAM, as the BCs used do not 

allow flow momentum to enter the domain. Grid independence 

studies were conducted for the RANS and LES simulations – the 

results for the LES one are shown in Figure 3(a). These studies 

led to 3.64×106 and 9.90×106 elements being used in the RANS 

and LES simulations respectively, with their grid resolutions 

shown in Table 1. 

Table 1 Channel flow grid resolution 

Cell dimensions RANS LES 

Δ𝑥+ 76 48 

Δ𝑦+ (min) 2 0.95 

Δ𝑦+ (max) 12 12 

Δ𝑧+ 38 24 

 

Channel Flow Numerical Method 

To demonstrate the applicability of TBNN to modern CFD 

practices, SST was the chosen turbulence model in the RANS 

simulations as it is well-validated and widely used in industry. 

The SimpleFoam solver in OpenFOAM was used to run the 

steady state RANS cases with the SIMPLEC setting to provide a 

more robust solution and the simulations were run until the initial 

residuals converged to less than 1×10-6. Gauss linear was used as 

the gradient, interpolation and all divergence discretisation 

schemes for its second order accuracy. 

The LES cases were run using the Wall-Adapting Local Eddy 

Viscosity (WALE) turbulence model. Gauss linear was used for 

the interpolation, gradient and divergence schemes to avoid 

introducing numerical dissipation, and PisoFoam was chosen as 

the solver. To carry out time integration, backward Euler was 

used for its second order accuracy and the maximum Courant 

number was kept below 0.7. The initial condition was provided 

by the converged RANS results of corresponding Reynolds 

number and the flow was perturbed using the perturbU utility in 

OpenFOAM before running the simulations. 

 

Channel Flow Data Pre-processing 

The noise of turbulent fluctuations in LES results can make 

accurate mapping of RANS quantities to anisotropy from LES 

challenging when training TBNNs. Therefore, time-averaged 

values of Reynolds stress were gathered by performing statistical 

time-averaging during the LES simulations for 50 δ/uτ seconds 

after ten through-flow times. As channel flow is homogeneous 

in the streamwise and spanwise directions, the RANS and LES 

data were also spatially-averaged in these dimensions, giving 

their averaged results through the wall-normal direction. DNS 

results of channel flows at four Reynolds numbers (Reτ = 180, 

395, 590, 945) were used to validate these 1D results, with Figure 

3(b) showing validation for the Reτ = 590 case [10, 11]. Finally, 

the 1D LES results were interpolated at the RANS cell-centre 

wall-normal coordinate values in order for the RANS and LES 

results to have the same number of datapoints. 

Data from five cases were used for training: Reτ = 180, 290, 

490, 760 and 945. Experiments have demonstrated that multi-

layer perceptrons – which the TBNN is a type of – perform worse 

in extrapolation compared to interpolation, and especially when 

training data distribution is not sufficiently diverse [12, 13]. 

Therefore, Reτ = 395 was selected for validation and Reτ = 590 

was chosen for testing on the basis that the Reynolds numbers 

for these cases are enveloped by those in the training dataset. 

  
(a) (b) 

Figure 3 (a) Probe results of mean streamwise velocity Ux at 

y+ = 15 for Reτ = 945 case simulated with LES, showing grid 

independence and (b) Ux profiles for Reτ = 590 case 

simulated with DNS, LES and RANS 

RESULTS 
 

Hyperparameter Tuning 

Five hyperparameters that can have significant influence on 

the training of any NN are the number of hidden nodes and the 

number of hidden layers, learning rate, batch size and choice of 

activation functions. A grid search was performed to find 

optimal choices for these parameters to use in TBNN deployed 

on channel flow. The parameter space was discretised as shown 

in Table 2, resulting in 3240 different combinations 

experimented. For each combination, 25 instances of TBNN 

were separately trained, validated and tested, resulting in 25 

anisotropy predictions when validating or testing the TBNNs, 

which could be averaged afterwards to give a mean anisotropy 

result. An ensemble size of 25 was chosen to balance 

computational cost with accuracy of the mean anisotropy as 

ensemble size increases. 

Table 2 Hyperparameter space discretisation 

Hyperparameter Discretisation 

No. of hidden layers 2, 5, 10, 20, 30 

No. of hidden nodes 5, 10, 25, 50, 75, 100 

Activation function 

for hidden nodes 

sigmoid, Exponential linear unit (ELU), 

softplus, rectified linear unit (ReLU), 

leaky ReLU (leakiness = 0.01, 0.33) 

Learning rate 10-1, 10-2, 10-3, 10-4, 10-5, 10-6 

Batch size 5, 10, 20 

Aggregate mean squared error (AMSE) was used as the loss 

function and can represent the accuracy of a TBNN instance: 

𝐴𝑀𝑆𝐸 =
1

9𝑁𝑑𝑎𝑡𝑎
∑ ∑ ∑(𝑏𝑖𝑗,𝑘,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑏𝑖𝑗,𝑘,𝐿𝐸𝑆)

2
3

𝑗=1

3

𝑖=1

𝑁𝑑𝑎𝑡𝑎

𝑘=1

 (3) 



  

  

𝑁𝑑𝑎𝑡𝑎 is the number of location points where anisotropy is 

predicted by the TBNN. After every 10 training epochs, each 

TBNN instance was tested on the validation set and subsequently 

produced an AMSE. Early stopping in training each TBNN 

instance was invoked if the average of the three most recent 

AMSE values were greater than the average of the three before 

them. The following averaged root mean squared error 

(ARMSE) was used to evaluate the average error for TBNN 

instances of a specific parameter combination: 

𝐴𝑅𝑀𝑆𝐸 =
1

𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

∑ √𝐴𝑀𝑆𝐸

𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑚=1

 (4) 

where 𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 is the number of TBNN instances in an 

ensemble. Performance of the parameter combinations was 

assessed using three metrics: total run time required to train, 

validate and test 25 TBNN instances, final ARMSE in predicting 

the validation set which invoked early stopping and ARMSE in 

predicting the test set. 

The top five combinations which returned the lowest final 

validation ARMSE are shown in Table 3. Although ReLU and 

its variants have been preferred activation functions in recent 

years to avoid the vanishing gradient problem (VGP), sigmoid 

and tanh have been reported to perform better than the ReLU 

family for simple regression problems [14]. This may be why 

three combinations that used sigmoid are featured in Table 3. 

These models likely only experienced small effects of VGP due 

to their shallow architectures of two hidden layers. Their run 

time were 2.4 to 3 times faster than the Softplus combination and 

3.4 to 4.5 times faster than the ELU one, which can be attributed 

to their low number of hidden nodes and higher learning rate of 

0.01, compared to 0.001 for the other two combinations. 

Table 3 Lowest final validation ARMSE combinations 

No. 

hidden 

layers 

No. 

hidden 

nodes 

Activation 

functions 

for hidden 

nodes 

Total 

run 

time 

(s) 

Final 

validation 

ARMSE 

Testing 

ARMSE 

5 50 ELU 379 5.82E-02 5.09E-02 

2 10 Sigmoid 113 5.84E-02 5.19E-02 

2 10 Sigmoid 85 5.84E-02 5.22E-02 

2 75 Softplus 272 5.86E-02 5.25E-02 

2 5 Sigmoid 100 5.87E-02 5.30E-02 

Table 4 shows the top five combinations that returned the 

lowest testing ARMSE. It is clear that some ELU combinations 

performed significantly better in testing, while sigmoid ones do 

not feature at all. This is likely because ELUs have been shown 

to possess higher training and testing accuracy compared to 

ReLU and sigmoid in deep NNs, and the test set may have been 

better represented in the training data compared to the validation 

set, given that testing ARMSE is consistently lower than the final 

validation ARMSE in both tables [15]. Moreover, these larger 

architectures in Table 4 with more nodes are known to have 

better memorisation, meaning they can predict more accurately 

on test samples similar to those in the training set. As ReLU and 

ELU do not cause VGP, deeper architectures with 5 or 10 layers 

as shown can be trained, which are known to have better 

accuracy and generalisation performance too. The learning rates 

of the top three ELU combinations and remaining two were 

0.001 and 0.0001 respectively. Combinations in both tables used 

batch size of 5 or 10. 

Table 4 Lowest testing ARMSE combinations 

No. 

hidden 

layers 

No. 

hidden 

nodes 

Activation 

functions 

for hidden 

nodes 

Total 

run 

time 

(s) 

Final 

validation 

ARMSE 

Testing 

ARMSE 

5 100 ELU 819 5.92E-02 5.09E-02 

5 50 ELU 379 5.82E-02 5.09E-02 

5 75 ELU 358 5.92E-02 5.13E-02 

10 100 ELU 1942 5.92E-02 5.14E-02 

10 75 Leaky 

ReLU 

1049 5.93E-02 5.15E-02 

Differences between Tables 3 and 4 suggest that the choice 

of CFD cases for the validation and test sets influences optimal 

parameter values. Therefore, experimenting with different cases 

for validating and testing will be explored in a future study. The 

only model to feature in both tables is the top combination in 

Table 3. Therefore, this one was considered to possess optimal 

parameter settings in the grid search. 

 

Ensemble Averaging 

To assess how the ensemble size of TBNN instances 

influences the accuracy of mean anisotropy, 200 instances of the 

optimal combination from hyperparameter tuning were trained, 

validated, and tested. The average anisotropy result for x number 

of instances was defined as the average anisotropy result from 

the first x number of instances. The accuracy of individual 

component predictions in the mean anisotropy was assessed 

using component mean squared error (CMSEij): 

𝐶𝑀𝑆𝐸𝑖𝑗 =
1

𝑁𝑑𝑎𝑡𝑎

∑ (𝑏𝑖𝑗,𝑘,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑏𝑖𝑗,𝑘,𝐿𝐸𝑆)
2

𝑁𝑑𝑎𝑡𝑎

𝑘=1

 (5) 

Table 5 shows CMSE results for the main shear component 

b12 and normal components of the mean anisotropy for different 

ensemble sizes of TBNN instances deployed on the test set. For 

comparison, CMSEs for the RANS data is also shown, whereby 

𝑏𝑖𝑗,𝑘,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 in Equation (5) was replaced with 𝑏𝑖𝑗,𝑘 from RANS 

data. Note that CMSEs for off-diagonal components are equal to 

their symmetric counterparts i.e., CMSE12 = CMSE21. Results for 

CMSE13 and CMSE23 have been omitted from Table 5 because 

very low values were calculated, due to negligible values of b13 

and b23 predicted by RANS, LES and TBNN. However, it is 

worth noting that 3.61×10-7 and 3.78×10-8 for CMSE13 and 

CMSE23 respectively were calculated for all ensemble sizes and 

RANS. This shows that TBNN training is almost only sensitive 

to the other components. 

As the ensemble size increases from 5 to 25, CMSE reduces 

by 5% across the components in Table 5. Although all 

components of CMSE converge to non-zero values for an 

ensemble size of 25 or more, these results show that ensemble 

TBNNs can improve RANS results significantly, reducing 

CMSE11, CMSE22 and CMSE33 by 80% and CMSE12 by 57%. 



  

  

Table 5 CMSE results for ensemble averages 

No. TBNN 

instances 
CMSE11 CMSE12 CMSE22 CMSE33 

5 1.32E-02 7.99E-04 5.52E-03 1.83E-03 

10 1.29E-02 7.66E-04 5.39E-03 1.77E-03 

25 1.26E-02 7.56E-04 5.26E-03 1.74E-03 

50 1.26E-02 7.53E-04 5.26E-03 1.73E-03 

100 1.26E-02 7.60E-04 5.28E-03 1.74E-03 

200 1.25E-02 7.59E-04 5.24E-03 1.74E-03 

RANS 6.34E-02 1.76E-03 2.53E-02 9.02E-03 
 

The remaining small discrepancies in these components may 

be explained with Figure 4, which shows their mean profiles 

predicted by the ensemble of 200 TBNN instances, along with 

those obtained from LES and RANS for comparison. y is the 

wall-normal distance from the bottom channel wall, which has 

been non-dimensionalised by the full channel height yf. The left 

and right edges of these plots correspond to the bottom and top 

walls of the channel respectively. Values of zero were predicted 

for the normal components at the walls, in contrast to 0.44 for 

b11, -0.33 for b22 and -0.11 for b33 by LES. This is because 𝑺 and 

𝛀 used in the input layers were non-dimensionalised by TKE, 

and the no-slip condition dictates that TKE at the wall must be 

zero. Hence values of zero for 𝑺 and 𝛀 were given to the tensor 

input layer and Equation (1) returned zero for all bij components. 

This issue may be resolved by using a time-scale that does not 

include TKE for the non-dimensionalisation. A similar issue 

exists at the channel centre, whereby the TBNN profiles are 

‘pulled’ to zero. The only non-zero velocity gradient component 

in channel flow is dU/dy, which becomes zero at the channel 

centre due to changing sign in the wall-normal direction. 

Therefore, values of zero were calculated here for all 

components of 𝑺 and 𝛀, and also resulted in zero anisotropy 

predicted. This issue intrinsic to the GEVH has been reported in 

the literature and would require a modification to the GEVH and 

representative TBNN architecture to remedy it [16].  

The authors believe the training of these TBNNs has been 

driven by the zero value constraints discussed above and loss 

reduction at the abundant number of datapoints between the 

buffer layer and channel centre (y/yf = 0.1 to 0.4 and 0.6 to 0.9). 

TBNN weights and biases optimised for these regions have 

resulted in subpar accuracy in buffer layer predictions as a 

compromise. This may be resolved by training a separate TBNN 

model for the near-wall flow. Other issues pertaining to NNs are 

the outliers, such as at y/yf = 0.8 and slight asymmetry in 

prediction between the top and bottom halves of the channel. 

These issues motivated the displaying of results for the full 

channel height in Figure 4. The asymmetry may be remedied by 

incorporating differences in anisotropy between location-

symmetric data point pairs in the loss function. 

 

 

 

 

Figure 4 Channel flow anisotropy profile results 

 

Flow over Forward-Backward Facing Step 

To assess the performance on a more complex internal flow 

problem, an ensemble of 200 TBNNs with the top parameter 

combination from the channel flow study were separately 

trained, validated and tested to predict anisotropy in flow over a 

forward-backward facing step (F-BFS). Simulations of Reynolds 

number = 1800, 3600 and 7200 based on inlet velocities 1, 2 and 

4 m/s and step height hs = 18 mm were run with RANS and LES. 

As symmetric BCs were used in the spanwise direction in all 

simulations, results at the centreplane were extracted for TBNN 

workflow. The TBNNs were trained on centreplane data from 

the Re = 1800 case and validated on Re = 7200, before being 

tested on the Re = 3600 case. These were chosen so that the 

trained TBNNs would have some bias on two cases of Reynolds 

numbers that envelop the test case one.  

b11 was found to have the highest magnitude out of all the 

components for the LES results and Figure 5 shows the contour 

results for b11 across the entire domain. It is clear that the TBNNs 

capture b11 more accurately in the regions of interest compared 

to RANS, e.g. on top and downstream of the block, and most 

crucially in the adverse pressure gradient region on the block 

leading edge. However, the TBNN prediction is inaccurate in the 

region upstream of the block as this flow is laminar and the 

physics in the downstream regions were represented more in the 

training data, with 74% of data for each case being downstream 

flow results. Therefore, improvements may be obtained in the 

upstream region predictions by providing more upstream flow 

data in the training dataset. 

Lastly, Figure 6 shows the normal and main shear anisotropy 

profiles at x/hs = 5. It is clear that TBNN predicts the normal 

components more accurately and follows the LES trend more 

closely than RANS. However, there is room for improvement in 



  

  

the b12 component and the near-wall region for the normal 

components. The latter is due to the zero anisotropy constraint at 

the walls as discussed in the channel flow study, thereby showing 

this issue is present in more complex internal flows too. 

 
 

 
Figure 5 F-BFS b11 contour results, from top to bottom: RANS, 

LES and TBNN 

  

  

Figure 6 F-BFS anisotropy bij profile results at x/hs = 5 

CONCLUSION  
An in-depth hyperparameter tuning study on TBNN 

predictions for anisotropy in channel flow has shown that the 

choice of CFD cases for validation and testing can have a 

significant influence on the optimal parameter set. Despite this, 

a TBNN architecture that used ELU activations predicted well in 

both validation and testing, outperforming ReLU. Running an 

ensemble of 25 TBNNs or more was shown to improve TBNN 

prediction accuracy of anisotropy components by 5%, thereby 

improving RANS results by 80% in the normal components and 

57% in the b12 component. Some areas for improvement which 

are especially important in internal flows are predictions in 

regions of no velocity gradient and at the wall, where the typical 

TBNN predicts zero anisotropy, and the buffer layer where 

TBNN shows some discrepancy. The latter two issues were also 

reported in TBNN predictions for flow over a F-BFS. 

ACKNOWLEDGEMENTS 
This work was supported by the UK Engineering and 

Physical Sciences Research Council (EPSRC) [grant numbers 

EP/T012242/1 and EP/T012242/2]. Data supporting this 

publication can be obtained on request. The authors would like 

to acknowledge the assistance given by Research IT and the use 

of the Computational Shared Facility at The University of 

Manchester. 

REFERENCES 
[1] Wilcox D., Turbulence Modeling for CFD, DCW Industries, 2006. 

[2] Versteeg H. and Malalasekera W., An Introduction to Computational 

Fluid Dynamics, 2nd ed., Pearson, 2007. 

[3] Craft T., Launder B. and Suga, K., Development and application of 

a cubic eddy-viscosity model of turbulence, International Journal of 

Heat and Fluid Flow, 17(2), 1996, pp. 108-115.  

[4] Leschziner M., Statistical Turbulence Modelling For Fluid 

Dynamics - Demystified: An Introductory Text For Graduate 

Engineering Students, 1st ed, Imperial College Press, 2016. 

[5] Zhu L., Zhang W. and Kou J., Machine learning methods for 

turbulence modeling in subsonic flows around airfoils, Phys. of 

Fluids, Volume 31, 2019. 

[6] Maulik R. et al., A turbulent eddy-viscosity surrogate modeling 

framework for Reynolds-averaged Navier-Stokes simulations, 

Computers and Fluids, vol. 227, 2021. 

[7] Ling J., Kurzawski A. and Templeton J., Reynolds averaged 

turbulence modelling using deep neural networks with embedded 

invariance, J. of Fluid Mech., vol. 807, pp. 155-166, 2016. 

[8] Pope S., A more general effective-viscosity hypothesis, J. of Fluid 

Mech., vol. 72, pp. 331-340, 1975. 

[9] Menter F., Zonal Two Equation k-ω Turbulence Models For 

Aerodynamic Flows. Orlando, FL, 24th Fluid Dynamics Conference, 

AIAA 93-2906, 1993. 

[10] Moser R., Kim J. and Mansour N., Direct numerical simulation of 

turbulent channel flow up to Re=590, Phys. of fluids, 11(4), pp. 943-

945, 1999. 

[11] Hoyas, S. and Jiménez, J., Reynolds number effects on the 

Reynolds-stress budgets in turbulent channels, Phys. of Fluids, vol. 

20, 2008. 

[12] Barnard E. and Wessels L.F.A., Extrapolation and interpolation in 

neural network classifiers, IEEE Control Systems, vol. 12, Issue 5, 

1992. 

[13] Xu K. et al., How Neural Networks Extrapolate: From Feedforward 

to Graph Neural Networks, arXiv:2009.11848, 2021.  

[14] Szandała T., Review and Comparison of Commonly Used 

Activation Functions for Deep Neural Networks, Bio-inspired 

Neurocomputing, vol. 903, 2021. 

[15] Clevert D-A., Unterthiner T. and Hochreiter S., Fast and Accurate 

Deep Network Learning by Exponential Linear Units (ELUs), 

arXiv:1511.07289, 2016. 

[16] Fang et al., Deep learning for turbulent channel flow, 

arXiv:1812.02241, 2018. 


