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DIFFRACTION BY A RIGHT-ANGLED NO-CONTRAST
PENETRABLE WEDGE REVISITED: A DOUBLE WIENER-HOPF
APPROACH*

VALENTIN D. KUNZ ' AND RAPHAEL C. ASSIER

Abstract. In this paper, we revisit Radlow’s innovative approach to diffraction by a penetrable
wedge by means of a double Wiener-Hopf technique. We provide a constructive way of obtaining
his ansatz and give yet another reason for why his ansatz cannot be the true solution to the dif-
fraction problem at hand. The two-complex-variable Wiener-Hopf equation is reduced to a system
of two equations, one of which contains Radlow’s ansatz plus some correction term consisting of an
explicitly known integral operator applied to a yet unknown function, whereas the other equation,
the compatibility equation, governs the behaviour of this unknown function.

Key words. wave diffraction, penetrable wedge, Wiener-Hopf

AMS subject classifications. 30E20, 32A99, 41A21, 45E10, 76Q05, 78 A45

1. Introduction. Although diffraction is a well-known phenomenon with a
rigorous mathematical theory that emerged in the late 19th century (Sommerfeld,
Poincaré), many canonical problems still remain unsolved in the sense that no clear
analytical solution has been found for them. Here ‘canonical’ refers to problems where
the scatterer’s geometry is simple but possibly exhibits some singularities making
the seemingly easy scattering problem challenging to solve. One of these unsolved
problems is the diffraction by a penetrable wedge, that is by a wedge-shaped scatterer
made of a material with acoustic (or electromagnetic) properties different from
those of the ambient medium. Wedge diffraction problems are of great importance
to mathematical, physical, and engineering sciences as they represent one of the
building blocks of the geometrical theory of diffraction (GTD, [19]). For example,
gaining a better understanding of penetrable wedge diffraction is expected to improve
numerical methods for high frequency penetrable convex polygon diffraction, see
[16, 17], and has applications in the scattering of light by atmospheric particles such
as ice crystals [9] which directly feeds into climate change models [34].

Wedge diffraction problems: an overview. Soon after providing his solution to the
half-plane problem [35, 37], Sommerfeld managed to solve the more general problem
of diffraction by a non-penetrable wedge with opening angle ¢m, ¢ € Q in 1901 (c.f.
[36] end of Chapter 5) using the method of Sommerfeld surfaces (see also [4] for an
overview and more recent applications of this method). Unfortunately, it has thus
far not been possible to generalise this technique to the penetrable wedge and during
the past century, new methods have been developed, not only for penetrable wedges
but for diffraction problems in general. In particular, many methods including the
Sommerfeld-Malyuzhinets method (c.f. [6], [25]), the Wiener-Hopf technique (c.f. [10],
[23], [29]), and the Kontorovich-Lebedev transform approach (c.f. [21]) have been
developed for non-penetrable wedge diffraction; we refer to [27] for a review of these
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2 VALENTIN KUNZ AND RAPHAEL ASSIER

and other methods. Moreover, some of these methods have been helpful in gaining
a better understanding of penetrable wedge diffraction. Indeed, in 2011, Daniele and
Lombardi [14] employed the Wiener-Hopf technique for the isotropic penetrable wedge
problem to obtain a system of four Fredholm integral equations which is then solved
numerically using quadrature schemes.

Other innovative approaches suitable for high contrast penetrable wedge problems
were given by Lyalinov [24] and, more recently, by Nethercote et al. [28]. In [24]
Lyalinov uses the Sommerfeld-Malyuzhinets technique to obtain a system of two
coupled Malyuzhinets equations which were solved approximately, giving the leading
order far-field behaviour, whereas in [28] Nethercote et al. combine the Wiener-
Hopf and Sommerfeld-Malyuzhinets method. In [28] a solution to the penetrable
wedge is given as an infinite series of impenetrable wedge problems. Each of these
impenetrable wedge problems is solved exactly, and the resulting infinite series for
the penetrable wedge can be evaluated rapidly and efficiently using asymptotic and
numerical methods.

It is important to note that there have been many other approaches as well (this
list is, however, by no means exhaustive): In 1998, Budaev and Bogy looked at find-
ing the pressure field of acoustic wave diffraction by two penetrable wedges using the
Sommerfeld-Malyuzhinets technique, resulting in a system of eight singular integral
equations of Fredholm type (see [11]) which is solved in [12] by Neumann series as-
suming the contrast is close to unity and the wedge’s opening angle is small. The
following year, Rawlins considered the case of similar wave numbers k; ~ ko in the
electromagnetic setting (dielectric wedge) and used the Kontorovich-Lebedev trans-
form to create a system of Fredholm integral equations which were solved iteratively
to obtain a first order approximations of the diffracted field [33].

There have also been some approaches using simple layer potential theory, as
discussed in [13], which were employed in 2008 by Babich and Mokeeva. In [7] they
showed that the problem of diffraction by a penetrable wedge has a unique solution
and later, in 2012, developed a numerical solution of those simple layer potentials [8].

Complezr analysis in several variables: a new ansatz. Whenever any of the pre-
viously mentioned methods employed complex analysis, these were one dimensional
techniques. Surprisingly, using two dimensional complex analysis, there seems to
be a rather straight-forward method of getting a Wiener-Hopf equation. As in his
work for the 3D diffraction by a quarter-plane [30], Radlow obtained a Wiener-Hopf
equation in two complex variables for the 2D right-angled no-contrast penetrable
wedge [31]. His simple yet innovative idea was to use two dimensional Laplace
transforms to integrate over the scatterer and thus ‘capture’ the scatterer’s geometry
as was already done for the half-plane problem using the one dimensional Laplace
transform [29]. These functional equations are perfectly valid, however, the closed
form solutions thus found by Radlow for the quarter-plane and penetrable wedge
diffraction problems turned out to be erroneous as they led to the wrong type of
near-field behaviour [26, 22]. Nonetheless, solving these functional equations in
several complex variables would be a tremendous achievement in diffraction theory.
Unfortunately, the solutions in [30] and [31] were not given constructively making it
difficult to understand the reasoning behind Radlow’s work and pinpoint where he
went wrong. Recently, Assier and Abrahams [2] revisited Radlow’s approach, giving
a constructive procedure to obtain his quarter-plane ansatz plus some correction
term, while Assier and Shanin studied the analyticity properties of the unknowns
of Radlow’s quarter-plane Wiener-Hopf equation [3]. Although the Wiener-Hopf
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RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 3

equation remains unsolved, the simpler problem of diffraction by a quarter-plane
without incident wave (i.e. a source located at the quarter-plane’s tip) has been
solved using these novel complex analysis methods [5], confirming their usefulness.
In the present work we will show that the method of [2] can also be applied to the
right-angled no-contrast penetrable wedge problem.

Aim and plan of the article. In the present work we revisit Radlow’s approach
[31] in the spirit of [2]. In particular, we provide a constructive procedure of obtain-
ing Radlow’s solution plus some correction term. This provides yet another way of
showing that Radlow’s solution was erroneous. However, the extra term contains a
complicated integral operator applied to a yet unknown function. Fortunately, we also
obtain a compatibility equation involving only the extra term’s unknown function and
although it has thus far not been possible to solve this equation exactly (which would
then provide a closed form solution to the diffraction problem), we strongly believe
that it can be employed to accurately test approximations, c.f. [1], which will be the
subject of future work. We will focus on the special case of a right-angled no-contrast
penetrable wedge.

In Section 2, the diffraction problem is formulated in physical space and thereafter
transformed into (two complex dimensional) Fourier space resulting in the problem’s
Wiener-Hopf equation. In Section 3, the machinery required to work with this equa-
tion is introduced and the functional equation’s kernel is factorised; we will employ
the method of phase portraits (see [38]) to visualise functions of complex variables,
which often provides a visually convincing method of verifying results that are tedious
to prove otherwise. In Section 4 we apply the factorisation techniques developed by
Assier and Abrahams in [2] to derive a set of equations linking the unknowns of the
functional problem. The first equation involves Radlow’s solution plus some addi-
tional correction term while the second equation, the compatibility equation, may
provide a way of finding/approximating this unknown correction term. Finally, we
compare our results with the ones found for the quarter-plane problem.

2. Wiener Hopf equation for the penetrable wedge.

2.1. Problem formulation. We are considering the problem of diffraction of a
plane wave ¢;, incident on an infinite, right-angled, penetrable wedge (PW) given by

PW = {(z1,22) € R?| 21 > 0,22 > 0},

see figure 1. We assume transparency of the wedge and thus expect a scattered field
$sc in R?2\ PW and a transmitted field ¢ in PW (c.f. figure 1, left). As usual in
scattering problems we assume time-harmonicity with the e ~** convention, where w
is the (angular) frequency. The time dependence is henceforth suppressed and the
wave-fields’ dynamics are therefore described by two Helmholtz equations. Moreover,
suppressing time harmonicity, the incident plane wave (only supported within R? \
PW) is given by
¢in(w) = eikllma

where ki€ R? is the wave vector and & = (z1,72)€ R? (this notation will be used
throughout the article). Let us focus on the acoustic setting of sound propagation
through a fluid or gas (the electromagnetic setting is briefly discussed in Remark 2.1).
Then the field ¢(x) given by

¢($) = ¢sc(m) + ¢in(m)

This manuscript is for review purposes only.



159
160
161

162
163
164

165

4 VALENTIN KUNZ AND RAPHAEL ASSIER

Fic. 1. Left: Illustration of the problem described by equations (2.1)—(2.6). The scatterer
i.e the penetrable wedge is shown in blue with edges in magenta. Right: Polar coordinate
system and incident angle Yo of Pin.

represents the total pressure field in R? \ PW, 1) represents the total pressure field in
PW, and the wave vector ki satisfies |k1| = k; for the wave number k; = w/cq, where
c1 is the speed of sound relative to the medium in R? \ PW.

Crucial to the present work is that we are describing a no-contrast penetrable
wedge meaning that the density p; of the medium in R? \ PW (at rest) is the same
as density po of the medium in PW (at rest). In particular, the contrast parameter A
which is given by

A=
P2

satisfies
A=1.

However, the wave numbers k1 = w/c; and ke = w/cs inside and outside PW respec-
tively are different even though p; = po, since the other media properties, the bulk
moduli (c.f. [20]), defining the speeds of sound ¢; and ¢y are assumed to be different.

The boundary value problem at hand is then described by equations (2.1)—(2.6)
below.

(2.1) A¢+kip=0in R*\ PW,

(2.2) Atp 4+ k2¢p = 0 in PW,

(2.3) #0729 >0) =(0", 25 >0),
(2.4) ¢(z1 >0,07)  =(xg >0,07),
(2.5) 0, 0(07 w9 > 0) = 0, (07, 29 > 0),
(2.6) Oy d(1 > 0,07) = Opytb(z1 > 0,0T).

Equations (2.1) and (2.2) are the problem’s governing equations, describing the fields’
dynamics, whereas the boundary conditions (2.3)—(2.6) impose continuity of the fields
and their normal derivatives at the wedge’s boundary.

Remark 2.1 (The electromagnetic setting). Equations (2.3)—(2.6) also model the
diffraction of an E-polarised (resp. H-polarised) electromagnetic wave incident on a
right-angled no-contrast penetrable wedge, where E is the electric field (resp. H is
the magnetic field). Here ¢ corresponds to the total E (resp. H) field in R? \ PW

This manuscript is for review purposes only.
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whereas 1 corresponds to the total E (resp. H) field in PW (c.f. [22], [28], and
[31]). Here, when describing the diffraction of the polarised electric (resp. magnetic)
field, the assumption that the contrast parameter \ satisfies A = 1 means that the
magnetic permeabilities p; and po (resp. electric permittivities e; and e3) of the
medium in R? \ PW and PW respectively satisfy p; = o (resp. €1 = €z). Since in the
electromagnetic setting, the wave numbers are given by k; = w,/fij€; we must have
€1 # € (resp. uy # po) for the wave numbers k; and ko to be different.

Now, introducing polar coordinates (r,d) (c.f. figure 1, right) we can rewrite the
incident wave vector k1 = —kj(cos(d), sin(ddg)) where ¢y is the incident angle. The
incident wave can then be rewritten as

(27) Gin = e—i(0111+a2z2)
with
(2.8) a; = k1 cos(¥o) and az = Ky sin(dy).

Henceforth, we assume Im(ky1) > 0 and Im(ks) > 0. Later on, this condition may be
waived by considering the limits Im(kq 2) — 0 (see Section 5). Moreover, we restrict
Yo € (m,2F) and Re(ki12) > 0, so Im(a; ») < 0 and Re(a;2) < 0. Since, as mentioned
in the beginning of Section 2.1, we have assumed time harmonicity with the e~%*
convention, this corresponds to the damping/absorption of waves.

Remark 2.2 (the general case). The situation is more complicated if we allow
other incident angles ¥y since then the sign of Im(a;) and/or Im(az) changes. This
technical difficulty can be dealt with by viewing a; 2 as independent parameters and
impose —Im(ay 2) > 0, i.e. give a; 2 an artificial negative imaginary part irrespective
of incident angle and wave number. Again, once the solution has been obtained, we
may take the limit Im(ay 2) — 0.

Finally, it is necessary to impose Meixner conditions on the field, ensuring bound-
edness of energy near the wedge’s tip « = (0,0). That is, for arbitrarily small € > 0,
the following energy integrals need to be finite:

/2 pe
(2.9) /0 /O r IV + [¢2) drdd < oo,

2m £
(2.10) //2/0 r(IVo> +|¢[%) drdd < oo.

Now, approximating the Helmholtz equation by Laplace’s equation near the tip and
proposing a separation of variables ansatz yields a power series expression ¢s. =
S0 (Ay, sin(v,9) + By, cos(v,d)) ¥ for ¢s and similarly for ¢ near the tip. Then,

using (2.9)—(2.10) and the boundary conditions (2.3)—(2.6) we find
(2.11) #(r,9) = B+ (Ay sin(9) + By cos(9)) r + O(r?), asr — 0,
(2.12) Y(r,9) = B+ (A} sin(9) + B cos(9)) r + O(r?), as r — 0,

where the constants B, A, A}, By and Bj are unknown. We refer to [6] and [18] for
a more detailed discussion of this procedure. Equations (2.11) and (2.12) are the
sought edge conditions. It should be noted that these particular expressions (2.11)
and (2.12) are only valid since we have chosen A = 1.

This manuscript is for review purposes only.
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6 VALENTIN KUNZ AND RAPHAEL ASSIER

The case of general A has, for instance, been considered in [7], [28], and [32]. In
[7] and [32] the behaviour is given up to second order ¢ = B + O(r#) (similarly for
1) where the exact value of p > 0 is not specified, whereas in [28], the behaviour is
given up to fourth order and an explicit dispersion relation is given for determining
w (which depends on the contrast parameter \).

Remark 2.3. Following Radlow’s ansatz we would also get ¢,1 ~ C as r — 0 for
some suitable constant C, see [31]. However, as pointed out by Kraut and Lehmann in
[22], Radlow’s ansatz leads to the wrong value i.e. C # B. Moreover, in [32] Rawlins
explicitly computed the value of B up to second order in k% — k3 when k; is close to
ks, thereby extending Kraut and Lehmann’s work.

In general, in order for the problem to be well posed, the field also needs to satisfy
a radiation condition: The scattered field should be outgoing in the far-field. That is,
there are no sources other than the incident wave at infinity. Due to the wavenumbers’
positive imaginary part, this is automatically satisfied and by the limiting absorption
principle, the radiation condition also holds in the limit Im(k; 2) — 0. See [7], [2§]
for more information on the radiation condition for penetrable wedges.

To conclude this section, we note that specifying the behaviour of the fields near
the wedge’s tip and at infinity is required to guarantee uniqueness of the solution to
the problem described by equations (2.1)—(2.6), see [7].

2.2. Transformation in Fourier space. In this section, the boundary value
problem described by (2.1)-(2.6) is transformed into Fourier space and the corre-
sponding functional equation is found. Let @, n = 1,2, 3,4 denote the nth quadrant
of the (x1,x2) plane given by

PW =Q; = {x € R*|z1 > 0, 22 > 0}, Q2 = {x € R*|z; <0, x5 >0},
QB = {33 S RQ‘xl < 07 To < 0}, Q4 = {33 S RQ\xl > 07 Tr9 < 0}
To derive the problem’s functional equation and to keep consistency with recent work

on several complex variable methods applied to diffraction problems (c.f. [2, 3]) we
define:

DEFINITION 2.4 (One-quarter Fourier Transform).  The one-quarter Fourier
transform of a function u is given by

(2.13) Uija(a) = Fijglul(a) = // u(x)e'*®dz.

DEFINITION 2.5 (Three-quarter Fourier Transform). The three-quarter Fourier
transform of a function u is given by

(2.14) Usja(e) = Fzpalul(a) = //u4 N u(x)e'*®dz.

Here, we have a = (a1, a0) € C? and we write dz for dzidzs. More details as to
where a is permitted to go in C? will be given in Section 2.3. Recall the definitions
of a; and a, given in (2.7)—(2.8). Now, apply Fi,4 to (2.1) and F3,4 to (2.2). Using
the boundary conditions (2.3)—(2.6) and setting

(2.15) 3/4() = Fz/a[dsc); V1 a(e) = Frpald],
1 k3 —a?—a3

(a1 —ap)(az —az)’ K{e) = 5’

(2.16) P(a) =
k¥ —a? — a2

This manuscript is for review purposes only.



RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 7

we find the following Wiener-Hopf equation (see Appendix A for the calculation):
(2.17) —K(a)¥y)4(a) = @3/4(a) + Pax).

Remark 2.6 (comparison with quarter-plane). Note that (2.17) is almost iden-
tical to the Wiener-Hopf equation for the quarter-plane given in [2]. In fact, setting
U,y =~V we can rewrite (2.17) as

(2.18) K(a)¥4(a) = 34 + P(a)

which, formally, is the same Wiener-Hopf equation as for the quarter-plane (that is,
(2.18) and the Wiener-Hopf equation in [2] only differ by the definition of the kernel
K, which for the quarter-plane is given by K(a) = 1/\/k? — a2 — a2, where k is the
(only) wavenumber of the quarter-plane problem).

2.3. Domains of analyticity. Whilst we have, formally, found a functional
equation for the diffraction problem at hand, the domain in C? where this equation
is valid has not yet been discussed. This is the aim of the present section.

2.3.1. Set notations. Before we begin discussing equation (2.17)’s validity, let
us introduce some notation which will be used extensively throughout the remainder
of this article. For any k; < k2 € R we define (see figure 2)

UHP(k;) = {#z € ClIm(2) > k,}, j =1,2; LHP(x;) = {z € C|lm(z) < k;}, j=1,2;
S(k1,k2) = {z € Clrk1 <Im(z) < Ka}.

Visually speaking, the upper half plane UHP(k;) (resp. lower half plane LHP(x;))
consists of all points z € C lying above (resp. below) the line given by {Im(z) = x;}
whereas the strip S(k2, k1) consists of all points between the lines {Im(z) = k2} and
{Im(z) = k1}. In particular, S(k2,x1) = UHP(k2) N LHP(x1). Moreover, for any

K1 K1 K1

(
Im(z)
Tm(z)

Im(z)

Ko k2 )

Re(z) Y Re(z) O Re(z) Y
F1G. 2. Half planes UHP(k2) (left), LHP (k1) (middle), and strip S(k2, k1) (right).

k1,2 € R (i.e. we now also allow k1 > k2) we define:

D++(I{1, 1{2) = UHP(KJl) X UHP(/‘EQ)7 D_+(/€1, KZQ) = LHP(FEl) X UHP(FEQ),
D__(H,hlig) = LHP(K/l) X LHP(/{Q), D+_(I€1,K,2) = UHP(Hl) X LHP(HQ)

In particular, Dy (k1,k2), D4 (k1,K2), D—_(Kk1,k2), and D;_(k1, k) are (open)

subsets of C% ie. if (a1,a2) € Dy (K1, kK2), say, then a; € UHP(k1) and ay €
UHP(HQ)

This manuscript is for review purposes only.
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8 VALENTIN KUNZ AND RAPHAEL ASSIER

2.3.2. Function notations. Using the sets defined above, we now introduce
the following notation for functions:

DEFINITION 2.7. Let U : D — C, D C C?. We then call U a ++,+—, ——,
or —+ function if, and only if, there are some K12 € R such that U is analytic in
Dyt (k1,k2), Di_(k1,k2), D__(k1,k2), or D_4(k1,ke). In these respective cases,
we also write

U= U++7 U+—7 U__, U—+'
Moreover, if U is analytic in S(k}, k5) X UHP(k2) for some k| < f we write
U=Us,,

and say that U is a o+ function. Analogously, the concepts of o—, +o and —o functions
are defined and in these respective cases we write

U=U,—, U=Uso, and U =U_,.
2.3.3. Domains of analyticity. Recall that for half-range Fourier transforms,

we have:

THEOREM 2.8. Let f : R — C satisfy |f(z)| < Aeb® as 2 — oo for some con-
stants bg € R, A € [0,00). Then the function Fi(«) defined by

Fi(a)= /000 f(z)e*®dx

is analytic for all o € UHP(by). If, on the other hand, we have |f(x)| < Ae®® as
x — —oo for some (maybe different) constants by € R, A € [0,00) then the function
F_(«) defined by

F= [ @

is analytic for all « € LHP(by). Note that the specific value of the constant A is
irrelevant for the analyticity behaviour of Fy(a) and F_(a) respectively.

These are well-known results and we refer to [29] for a more detailed discussion.
Now, using geometrical optics and writing v = ugo + Uaig for u = ¢gc + din or
u = 1), we know that in the far field the wave ug,, consisting of the incident, reflected,
and transmitted plane waves in their respective domains, will always dominate the
diffracted field (since ugig is an exponentially decaying cylindrical wave). Recall that
Im(ay) = Im(ky) cos(dp) and Im(az) = Im(ks) sin(y), so setting

(2.19) 0 = min{Im(ky)| cos(do)|, Im(k2)| sin(dy)|}
we have Im(a; 2) < —6 < 0, and we therefore obtain
(2.20) lugo| < Ae~01E1I=0172] g 21 20 — +00 in R?

for some constant A€ [0, 00) (again, the exact value of A does not matter). Moreover,
it can be shown that K («) is analytic in S(—¢,¢) x S(—¢,¢) for a suitable constant

This manuscript is for review purposes only.
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326 ¢ € (0,0], see Lemma 3.1. For simplicity, let us henceforth omit a function’s argument
327 unless it is not a, and let us set

328 Dy =Diy(—¢,—¢), Dy— =Dy_(—¢,—¢),
329 D__=D__(-¢,—¢), D_y =D_,(-¢,—¢),
330 S = S(—¢,¢), LHP = LHP(¢), UHP = UHP(—¢).

332 Then, applying Theorem 2.8 twice and using (2.20) we find:

333 U,y ="y, analytic on Dy 4,

334 o, = // bse(x)e'*®da, analytic on D_,,
2

335 d__ = / bse(x)e'“®dex, analytic on D__,
Q3

336 o, = / bse(x)e'*®da, analytic on Dy _,
Qa

1
337 P..=P= ,
:;:a;z A (1 —a1)(ag — ag)

analytic on D4 .

339 Note that P = P, is analytic in Dy, since a; and ap are in LHP. Now, since by
340 definition of ®3,4 (see (2.15)) we have

.éié (221) @3/4 == (bJr, + (b,, + (I),Jr,

343 we find:

344 COROLLARY 2.9. The spectral function ¥, is analytic in the region Dy
345 whereas ®3,4 is analytic in the region S X S.

346 Thus, since K is analytic on & x § and Py is analytic on Dy we find that
347 (2.17) is valid in § x S. To summarise:

348 COROLLARY 2.10. The Wiener-Hopf equation (2.17) can be rewritten as

i%g (222) —\I/++K = (I)Jrf + d__ + (I)er + P++,

351 and is valid on S X S.

52 Equation (2.22) represents a generalization of the classical (one complex-variable)
53  Wiener-Hopf equation that appears, for instance, in the diffraction by a half-plane,
54

see [29].
355 3. Factorisation of K.
356 3.1. Some useful functions. As usual in complex analysis, functions defined
5

7 on the real numbers might exhibit branch points when analytically continued onto
358 the complex plane (c.f. [38]). This leads to the function being defined not on C but on
359 some Riemann surface instead. However, for the purpose of the present work, we do
360 not need this generality and the interested reader is referred to [38] for a more detailed
361 discussion of the process of analytical continuation. When instead of working on the
362 function’s Riemann surface one wants to work on C, branch cuts have to be introduced
363 that is, we have to introduce lines of discontinuity of our function, but there is some
364 arbitrariness involved in the specific choice of branch cuts. In this section, we will
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specify some choice of branch cut for the complex square root function as well as the
complex logarithm. These specific choices are the same as in [2] (for the logarithm)
and [3] (for the square root function). All of the following functions play a crucial role
in the factorisation of K. Throughout the remainder of the article, we will extensively
employ the method of phase portraits to visualise a complex function’s properties in
the spirit of [38].

Let log(z) and 1/z denote the standard complex logarithm and square root used
by most mathematical software (Matlab, for instance). These functions correspond
to the usual real logarithm and square root respectively when restricted onto Rt and
have a branch cut along the negative real axis (i.e. arg(z) € (—m, ).

e
We define log(z) as the logarithm with a branch cut diagonally down the third

v v
quadrant, see figure 3. Practically, log(z) is obtained via the relation log(z) =
log(e™""/42) + in /4.

Im(z)

=5 Re(z) 0 5 =5 Re(z) * 5
e
F1G. 3. Phase portrait of the functions f(z) = z (left), log(z) (centre), and log(z) (right).

Next, we specify the choice of branch cut for the square root. Denote by 3/z the
square root function with branch cut along the positive real axis and branch subject
to 3/—1 = i, see figure 4. This choice of square root guarantees its imaginary part
to be strictly positive everywhere except on the positive real axis (which is mapped
onto the real line). Practically, 3/z can be defined by 3/z = iy/—z. Finally, for k

Im(z)
Im(z)
Im(z)

=5 Re(z) 0 5

FI1G. 4. Phase portraits of the functions /z (left), 3/z (centre), and k(k,z) (right) for k = 3 + 1.
with Im(k) > 0 and Re(k) > 0 we define
(3.1) k(k,2) = k2 — 22

which is visualised in figure 4. Due to the choice of square root, the sheet of x(k,-)’s
Riemann surface is chosen such that x(k,0) = +k. The function x(k,z) has two
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RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 11

branch cuts, starting at z = k and z = —k respectively, see figure 4. Moreover,
since 7/z has strictly positive imaginary part everywhere except on its branch cut
(where its imaginary part vanishes), k(k, z) also has strictly positive imaginary part
everywhere except on its branch cuts (c.f. figure 4), which are mapped onto the real
axis (see [3] for a more detailed discussion).

3.2. Factorisation in the «; plane. Recall the notation introduced in subsec-
tion 2.3.2. Using k, we can write

(K(k27 OZQ) + al) (H(kg, CYQ) — 041)
(k(k1, a2) + a1) (k(k1,a2) — a)’

(3.2) K(a) =

Upon defining

flkg,00) ton o hlk2,02) — 01

3.3 K [e) = b) K?O - b)
(3.3) + k(k1, a0) + k(k1,a2) — a1
and using (3.2), we have
(3.4) K =K. K_,.

The following lemma justifies the notation.

LeEmMMA 3.1. There exists an € > 0 such that Ky, and K_, are analytic in
UHP(—¢) x S(—¢,¢) and LHP(¢) x S(—¢,€) respectively. Note that this implies ana-
lyticity of K in S(—¢,e) x S(—¢,¢). Moreover, K_o — 1 and K10 — 1 as|ai 2] — o0
within these function’s respective domains of analyticity.

The domains of analyticity and the limiting behaviour of K_, and K, will be
crucial not only when factorising K, and K_, in the ay plane in Section 3.3.2 but
also when applying Liouville’s theorem in Section 4.

We only prove the lemma for K_, as the proof for K, is analogous. See also
figures 5 and 6 for a visualisation, which will be explained in more detail below, after
the proof.

Proof of Lemma 3.1. Let us begin by examining the behaviour in the ay plane,
and let § be as in (2.19). Since for j = 1,2, the function oy — r(k;, 1) is analytic
in §(—46,9) we only need to account for the polar singularities given by aaging such
that k(k1, aosing) = 1. But due to the properties of x, we know Im(k(k1, casing)) > 0
with equality only possible if Im(aaging) > Im(ki) > §. Therefore, if we restrict
ay € §(—0/2,8/2), say, we obtain 0; :=ming,,,,, {Im(x(k1, asing))} > 0. Choose
e = min{d/2, 1 }. The limiting behaviour at oo is directly obtained from the defining
formula (3.3). |

Recall the notation S = S(—¢,¢), UHP = UHP(—¢), and LHP = LHP(¢). Addi-
tionally, we define

(35) Dio=UHP xS, D_, =LHP x S, Doy =S x UHP, D,_ = S x LHP

so K_, is analytic on D_, and K, is analytic on D,,.

Figure 5 visualises the properties of K_,: We see that for fixed a5 € S the function
K_o(aq,a3) is analytic in the lower half plane, as the polar singularity corresponding
to a1 = /k? —ai? = k(ky, a3) lies in the upper half plane. For fixed o € LHP on
the other hand, we see that the function K_,(af, ap) is analytic in some strip between
its branch and polar singularities (located at as = + 3/k? — ai? = +k(k1,af) and
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Oy = Iﬂ(kl,az) o = K(kg,a;)
® ay = tk(k1,0f) ag = +r(ks, O(T) g = 1k, @ ag = ko
: S ) |

-3 0 3 _313 R 0 3
Re(aq) e(az)

Fic. 5. Phase portraits of K_o for k1 = 1+1, ko = 2+ 1. On the left, the phase portrait is
taken in the ay plane with fized a3 = 2 + %1 On the right, it is taken in the oz plane with fized

1-
oc’f:?—i-gz.

Oay = /-c(kl,a;) ® o = H(k‘z,a;)
Oy = :Eli(kl,af) Qo = :tl‘é(kg,af) ay =tk @ g = tko
3 3 -

Tm(a)

-3 _3 -
-3 Re(a1) 0 3 -3 Re(as) 0 3

Fic. 6. Phase portraits of Kyo for k1 = 1+14, ko = 2+ 14. On the left, the phase portrait is
taken in the ay plane with fized a3 = 2 — %z On the right, it is taken in the aa plane with fized
1.
=1

* __
a1—2—5.

ay = +kyo respectively) and that there are no polar singularities inside S. An
analogous visualisation of K, can be found in figure 6. In figures 5 and 6 respectively,
the yellow points correspond to polar singularities in the as plane, the white dot
corresponds to the polar singularity in the o plane, whereas the cyan and black dots
correspond to the function’s branch points, and the green and magenta dots are simple
zeros of the function.

3.3. Factorisation in the o, plane.

3.3.1. Cauchy’s formulae and bracket operators. Throughout the remain-
der of this article, we will employ the following elementary yet essential theorems.
These are classic results however, so we will omit the corresponding proofs. We refer
to [29] for a more detailed discussion. Moreover, all of this section’s results also hold
when the contour R which we use in the formulation of the following theorems and
definition is replaced by a curved contour I'; such as the contour I" mentioned in Sec-
tion 5, as long as the real part of " starts at —oo and ends at +oo, see [2] and [29],
but we do not need this generality for the context of the present article.
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RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 13

DEFINITION 3.2. We define the contours R —ie and R + i€ as
R—ie={z€Clz=a—1ic, xR} and R+ic ={z€C| z=x +1ic, z € R}

oriented from left to right for € as in Lemma 3.1.

THEOREM 3.3 (Cauchy’s Formula; Sum-split). Let ® be a function analytic on
S, where S = S(—¢,¢€) is as defined in Section 2.3.5. Then, provided ®(a) — 0 as
la] = oo within S we have ®(a) = &4 (a) + P_(a) on S with &4 analytic on the
upper half plane UHP and ®_ analytic on the lower half plane LHP. Specifically, for
a € S we have

b, (a) = ! /R_‘ %dz and <I),(c»z)—_—1/]R (2) dz,

2im z—a AT Jryje 2 —

and these formulae can be used to analytically continue ® (resp. ®_) onto UHP
(resp. LHP ).

Following [2], using Cauchy’s sum split we can define the following bracket oper-
ators:

DEFINITION 3.4 (Bracket Operators). For any function F : S x S — C satis-
fying the conditions of Theorem 3.3 in the oy plane, say, we define [F|io and [F]_o
(analytic in Dy, and D_, respectively) as

1 F -1 F
[Flio = 7/ Mdz and [Fl_o = — Mdz
27 Jr_ge 7 — O 21 Jrize 22— 01

and in particular, we have F = [F|io + [F]—o on S X §. Similarly, we define [F)oy
and [Flo— if F satisfies the conditions of Theorem 3.3 in the ag plane, and we have
F = [Flyo + [F]-o on 8 x S. Note that F can be defined on a domain larger than
SxS.

THEOREM 3.5 (Cauchy’s Formula; Factorisation). Let ¥ be a function analytic
on S such that ¥ has no zeros in S and ¥ — 1 as |a| — oo within S. Upon choosing
the principal branch of the log, this implies that log® — 0 as |a| — oo within S.
Then we have U(a) = U4 (a)P_(a) on S with U analytic on UHP and Y_ analytic
on LHP. Specifically, for « € S we have

U, (a) = exp (1 /R, bg(Wdz) and U_(a) = exp <1 /R+ l"g(‘l’(z))cu«)

um zZ—« 2 Z—«

and these formulae can be used to analytically continue ¥, onto UHP and W_ onto
LHP.

3.3.2. Factorisation of K, and K_, in the ay plane. We wish to factorise
K., and K_, in the a3 plane. Thus we need to verify the conditions of Theorem 3.5.
First, note that for fixed af we have

(3.6) Kio(af,as) =1, as |ag] > 00 in S.

e
Thus, we just have to verify that that K., does not cross log’s branch cut, i.e. that

v

log(K1o(af, a2)) is analytic for all as € S. Tt is possible to prove this rigorously, but
this is rather technical. Therefore, in the spirit of [2], we instead provide a visual proof
of analyticity, which illustrates the validity of the statement. Indeed, from figure 7
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(top) we see that lo/g(K _o) has no singularities for &« € LHP x S and is therefore,
in particular, well-defined on S(—¢,¢) in the ay plane (where € is as in Lemma 3.1).
Similarly, we see that K, satisfies the conditions of Theorem 3.5 in figure 7 (bottom).
Therefore, we may apply Theorem 3.5 to K1, and K_, and obtain

oay = k(k1,as) ea; = rk(ke,a3)

Oy = :tn(kl,a’{) g = :tl*i(kg,af) ay = tk| @ ag = ko

e
F1G. 7. Phase portrait of log(K_o) (top) with parameters as in figure 5, and phase portrait of

log(K4o) (bottom) with parameters as in figure 6. The contours R + ie in the ag plane are shown

in white

(3.7)

where

(3.10)

(3.11)

Ko=K K 4, Kio=Ky Ky,

K__(a) =exp

271 JRoyie z— g

K_y(a) =exp

211 Z— Qg

Ky (a) =exp

271 Z— Qo

Kyy(a) =exp

211 Z— Qs

e e

v
1 5 (K_o(a1,2))

1 [ log(Ko(an,2))
/]R—ie

1 5 (Ko, 2))

—1 [ log(Kyo(a1,2)
/1R+i6

e
L/ log(K4o(0n1,2))
R—ie

y
y
)
)

dz
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By construction, we hence have
(312) K = K++K+_K__K_+ onS xS

and we can verify the multiplicative structure (3.7) in figures 8 and 9 respectively.
Here, we chose to visualise the functions in the as plane but, as previously, it is of
course also possible to visualise them in the «; plane.

Remark 3.6. We may equally well choose to first factorise the kernel K in the
ag plane and thereafter in the a; plane. The procedure for doing this is exactly the
same as the procedure discussed in Sections 3.2-3.3, and will lead to a factorisation
K=K, K, K__K_,. By an application of Liouville’s theorem, it can be shown
K., = K., etc., and therefore the resulting factorisation of K given in (3.12) does
not depend on whether we first factorise in the oy or as plane.

®ay = :t:‘i(k‘l,a’f) Qg = :tlﬁ(kiz,a’f) Qo = :tkl ® vy = ikQ
3

Im(a2)

| |
=3 Re(a) * 3 “3 Re(as) © 3 =3 Re(a) * 3

Fia. 8. Visualisation of K_o = K__K_ in the as plane with parameters as in figure 5. K_ _
is shown in the middle and K_4 is shown on the right.

® oy = tk(ki,af)  as = tr(ks,af) 0 g = k) @ ay = ko
3 J s 3

.\

Tm(as)

X
Tm(as)

Fic. 9. Visualisation of K40 = K4 _ K4 in the o plane with parameters as in figure 6. K4 _
is shown in the middle and K44 is shown on the right.

4. The Wiener-Hopf system in C2. Recall the notions of ++ functions, +—
functions, etc. (c.f. Definition 2.7) and recall that by Corollary 2.10, using these
notations, the Wiener-Hopf equation (2.17) can be rewritten as

(41) —\I/J’__;,_K == ¢+_ + (I’__ + (b—"‘ + P++

In the following two subsections, we will show how (4.1) can be reduced to two coupled
equations involving the unknowns ¥, and ®,_. This heavily relies on the kernel’s
factorisation and the bracket operators (c.f. Definition 3.4). Recall that we omit a
function’s argument unless it is not c.
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16 VALENTIN KUNZ AND RAPHAEL ASSIER

4.1. Split in the a; plane. We begin by writing (4.1) as

_ P b Py
(4.2) K.V, , = - + i + .

where we have set ®_, + &__ = &_, and used the representation K = K, K_,
given in (3.4). For now, we just assume that Cauchy’s formulas 3.3 and 3.5 may be
applied as we do below. This is possible due to the edge conditions (2.11) and (2.12)
and the duality of near field behaviour in physical space and far field behaviour in
Fourier space. We postpone the technical details to Appendix B. Now, applying the
Cauchy sum-split to &, _/K_, in the a; plane we obtain

‘I’+—] _P++_‘I’—o+[‘1)+—} .
+o °©

4, KL U, — _
(4.3) +o Uiy |:Ko K. K. K.
Recall the notations a; = ky cos(¥y) € LHP and as = kg sin(¥y) € LHP, introduced
in (2.7), and recall Py = see (2.16)). Now, by pole removal in the
aq plane

(1 —a1)(az—az) (

K—o B K—o(alaa2) A K—o K—o(a17a2) '

analytic in Dy, analytic in D_go

Analyticity of the first term in D, is simple: the denominator does not depend on oy
and the numerator is analytic. For the second term the polar singularity is effectively
removed since

( I 1 ) N k(k1,an) — Kk(ka, az)
K ., K _.(a,az) (k(k2, a2) — a1)?

(Oél — Cll) as a; — ap,

which proves analyticity in D_,. Therefore (4.3) is equivalent to

(4.4)

b, Py d_, D, 1 1
CKpoW, — _ - P - ,
- A |:K*°:|+o K*O(a17a2) K_, * K_, —fo i K_. K*O(alvoﬂ)

and the LHS of (4.4) is analytic in D4, whereas the RHS is analytic in D_,. Thus,
we can use this equality to obtain a function F; analytic on C x S by

Dy P. .
_K+O\II++ — [ﬁ}+ — m, if S D+o,

Er(ar, az) = .
=+ 7]t P (s — wosteran ) - @€ Do

It can be shown that we can apply Liouville’s theorem in the a; plane (see Lemma
C.2) and we find E; =0 for ap € S. Therefore

D,y Py
45 K O\II - 07 S D <X}
(4.5) +o¥ g + [Kokﬂf K_o(o1,a2) (o} +

o, [®,_ 1 1
4. P - = D—o.
(4.6) K_, - [K_o]_o+ A (K—o K—o(al,%)) b ae
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560 4.2. Split in the as plane. Multiplying (4.5) by K_, (a1, a2)/K,_ and using
561 (3.7) we obtain
Py K_i(a1,00) [P
562 (4.7 -V, K K =
;63 (4.7) ++ K Koy (a1, az) K (a1, 00)K1_ + K K|,

564 which is valid in Di,. Applying the Cauchy sum-split in the as plane to

565 % [%}H} we obtain

(4.8)
6 K_4(a1,a2) |:‘I)+—:| _ |:K+(a170‘2) [(I)Jr*} ] +|:K+(a1,0z2) {©+7] :| )
567 K- Ko, K- Keolio], Ko Kool ot
5

68  Similarly

Py { Py } { Py }
569 (4.9 = +
( ) K,,(al,ag)K+, K,,(al,ag)KJr, o K,,(al,ag)KJr, ot

571 and by pole removal in the ay plane:

SR S - —
o K__(a,00)K— |, TP\K__(a1,a0)Ks-  K__(a1,00)K4_(1,00) )’
[ Py ] _ Py

K__(a,o0)Ky |, K__(a1,a2) Ky (a1,a2)

575 Similarly to the pole removal performed in Section 4.1, the analyticity of
576 Ppi/K__(aj,a2) in Do_ is verified, and the analyticity of

~ p ( 1 1 )

‘ A K,,(al,ag)KJr, K,,(a17a2)K+,(a1,a2)

578 in Doy can be proved by writing 1/K__(a;,as)K;_ as its Taylor series (in the s
579 plane) at as. Therefore, we can use (4.7) to obtain a function Fs analytic on UHP x C
580 by

Py K_ i (aj,ap) [®4_
W K Koy (an, 00) — K__(an.00)Kg_(a1,02) [ Ky_ g I B a€Dyy
581 Ep = °
ole 2 P < ) _ 1 >+ K_(ag,a2) [<I>+,] acD
582 ++ K__(aj,ag)Ky_ K__(aj,a2)K_(aj,a3) K _ K_oly, oi R

583  Similar to Section 4.1, it can be shown that we can apply Liouville’s theorem in the
584 g plane to Ey and obtain F = 0 (see Lemma C.3). Therefore we find the main
585 result of the present work:

586 THEOREM 4.1. The unknowns ¥, ®,_ of the Wiener Hopf equation (4.1) sat-
587 isfy
Py
588 (4.10) =¥, =
(4.10) TR K (an,a0) K (ar, a2) K4 (aq, a2)
1 K_+(a1,a2) |:(I>+_]
589 + for oo € Doy,
K++K,+(a1,a2) [ KJF, K,O T o ++
590 (4.11) 0=P ( ! ! )
h ' TTAE (a1, 00)K K _(a1,00) Ky (a1, 02)
K_ D,
591 + [ }(al’%) {KJF } ] fora e Dy_.
592 - oA de o
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4.3. Significance of Theorem 4.1. First, note that the expression for ¥,
in (4.10) only differs from Radlow’s ansatz given in [31] by the second term on the
equation’s RHS. Moreover, it is remarkable that formally (4.10) and (4.11) are al-
most the same set of equations one obtains for the quarter-plane problem (c.f [2]
eq. 5.12 & 5.13). That is, these equations only differ by the value of the kernel
K=K; K, K _K_ 4 and the sign in front of U, (the latter can be viewed as
a notational difference, as discussed in remark 2.6). Additionally, if it was somehow
possible to invert (4.11) and thus obtain ®,_ we would obtain ¥ by (4.10), which
by the Wiener-Hopf equation (2.17) gives @3/, and therefore solves the diffraction
problem at hand (by inverse Fourier transform).

There are several benefits to (4.10). First, it is clear that (4.10) indicates Rad-
low’s error as the additional term is missing in his analysis. Second, the constructive
procedure given in this article can be helpful in understanding how Radlow’s ansatz
was obtained and to quantify his error. Indeed, Radlow only stated his solution in
[31] making it difficult to pinpoint where exactly he went wrong. Additionally, Rad-
low’s ansatz predicts the wrong corner asymptotics as was pointed out by Kraut and
Lehmann in [22]. Therefore, just as in the quarter-plane case, the correct near field
behaviour should be enforced by the additional term in (4.10). This additional term
involves the unknown function ®_, which should satisfy the compatibility equation
(4.11). This equation does not appear in Radlow’s work and to our knowledge not
in any subsequent work. However, as already pointed out, it is remarkably similar
to the compatibility equation found for the quarter-plane diffraction problem in [2].
Therefore, we strongly believe it is possible to use (4.11) to test approximations for
&, _ and thus obtain an approximate solution to ¥, ;. Indeed, in [1] Assier and
Abrahams proposed a scheme to accurately approximate ®4_ for the quarter-plane
diffraction problem and we plan to propose a similar method for the penetrable wedge
diffraction problem as part of our future work. Moreover, we do believe that the spec-
tral functions W, and ®3,4 can be used to obtain far field contributions using the
novel ‘Bridge and Arrow’ notation as introduced in [4], which will also be the basis of
future work.

5. Vanishing imaginary part of the wavenumbers. So far, everything that
has been done was under the assumption that Im(k;2) > 0. Let us discuss the
limiting procedure Im(k; 2) — 0. Then the domain of analyticity of ¥ as discussed
in Section 2.3, would become UHP(0) x UHP(0). However, due to the incident wave
¢in, we expect ¥, to then have polar singularities on the real line at a; = a; and
ag = ag (c.f. [2, 3]). Moreover, due to the Kernel, we expect ¥ to also have branch
singularities at ay = —kj 2, e = —k1,2 and polar singularities at some parts of the
real circle @® = k3 (again, c.f. [2, 3]). Therefore, when evaluating the physical field

1 i
(5.1) v(@) = 33 [ Verl@re
we have to indent the ‘contour’ R? to I'xT', see figure 10 (these contours are thoroughly
discussed in [2]), in order to avoid these singularities' (note that in the figure the

relevant parts of the circle a® = ks are not shown; however, I' also avoids these
points). By Cauchy’s theorem, this does not change the value of ¥ and therefore

(5.2) viw) = g3 [ wes@)e e

1Here, the choice of incident angle is crucial as this contour is only valid for 9g € (7, 37/2).
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defines the correct physical field for Im(k; 2) = 0. Note that to find the singularities
of ¥, which have to be avoided and to make sense of ¥ in the lower half planes
(for vanishing imaginary part), we have to analytically continue ¥, into a larger
domain than that given in Section 2.3 and unveil its singularities therein.

r I
S S
= 0 = 0
E X
« P
7]62 *kz
° 4
Re(a) 0 Re(az) 0

Fi1G. 10. Contour I' x I' used in the integral (5.2).

Finally, we mention that ®3,4 can be dealt with similarly when evaluating ¢s. as
Im(ky 2) — 0. That is

1 .
. o= —= 0] Tl
(5 3) ¢bc A2 //1"><1" 3/4(0)6 do

6. Conclusion. In this article, we revisited Radlow’s double Wiener-Hopf ap-
proach to the penetrable wedge diffraction problem. We gave a constructive pro-
cedure to obtain his ansatz and hopefully add more clarity to his innovative work.
After transforming the physical boundary value problem to two complex dimensional
Fourier space, Radlow’s Wiener-Hopf equation was recovered, the solution to which
directly solves the diffraction problem at hand by inverse Fourier transform. Using the
factorisation techniques developed by Assier and Abrahams in [2], the Wiener-Hopf
equation (2.17) was reduced to a coupled system of two functional equations, (4.10)
and (4.11), involving two unknowns ¥, . and ®4_. The first equation involves Rad-
low’s exact ansatz, which gives yet another reason for why his ansatz cannot be the
Wiener-Hopf equation’s solution (and therefore not solve the diffraction problem at
hand). The second equation, the compatibility equation, involves solely the unknown
®, _. Solving this equation is key to find ¥, ., but failing this, we believe it can be
used efficiently to find novel approximation schemes for the physical fields.

Finally, it is remarkable how similar the penetrable wedge diffraction problem
is to the quarter-plane problem in Fourier space. That is, formally, all occurring
relations/equations are almost identical and only differ by K’s structure and ¥, ,’s
sign. Using the novel complex analysis methods developed in [3] and [5] we believe
that it is possible to obtain information on the physical field’s components by studying
the crossing of singularities of ¥, and ®3,4. To summarise, this leaves us with the
following questions, which we hope to answer in future articles:

e Applying the methods developed in [1], can we find a new accurate approxi-
mation scheme for the penetrable wedge diffraction problem?

e Using the analytical continuation techniques developed in [3], what more
information can we get on ¥, ,’s and ®3,4’s domain of analyticity especially
regarding their singularity structure?

e Can the novel Bride and Arrow notation (c.f. [5]) be used to obtain far-field
asymptotics for ¢ and ¢?
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675 Appendix A. On the derivation of the Wiener-Hopf equation.

676 Let us show how the Wiener-Hopf equation (2.17) for the diffraction problem at
677 hand is obtained. Recall the definition of the 1/4 and 3/4 Fourier transforms (c.f.
678 Definitions 2.4 and 2.5) i.e., letting Q,, denote the nth quadrant in the plane R?, we
679  have:

630 (A1) Fayalul // "’“mdas—I—// u(a:)em'mdz—i—// u(z)e'™**de,
2 Qs 4

681 (A2)  Fijalu] // el ®dx.
682 1

683 We apply the operator F3,4 (vesp. JFj/4) to (2.1) (vesp. (2.3)). By Green’s second
684 identity we have:

(A.3)
w ] (Bv@)e= e =~ (of + o} / [ v@e s

086 _/ (8$1w(0+7x2))eia2m2dx2_/ (aw2w<xl70+))eialrldxl
0 - 4 0 . |

687 + i0q / P01, z9)e' 2 2 dxy + iag/ P(x,01)e" M 1 d.

688 0 0

689 Similarly, using (A.1) and after a lengthy but straightforward calculation,we find
oo

690 (Ad4) Fapa[Adse] = — (af + a3)Faa(dsc) + / (O, fsc (07, 2) )€™ dix
0

691 +/ (Oxy Psc(21,07)) “‘”“dxl—wq/ $sc (07, w9)e" "2 dy

692 71042/ Osc(x1,0 emmdm

693

694 Now we can use the boundary conditions (2.4)—(2.6) to rewrite (A.3) as

(A.5)
605 FujalA¢] = = (af + a3)Fyyalv)]
696 - (/ (02, (07, ))ei”“da:g—k/ (6w2¢sc(x1,0))em1xldx1>
0

697 +za1/ ¢sc(07, w‘zxzdx2+za2/ bsc (1,07 )€™ diy

698 — (/ (O, din (0~ xg))eiaﬂzdxg—l—/ (amzqﬁin(xh0_))eia1”‘1dx1)
0

699 —|—wz1/ Gin (07, 22)e %2 day —|—wz2/ Gin(x1,07 )" %1 dy.
700
701 But ¢in = exp(—i(a1z1 + a222)) so, since —Im(a; 2) > 0, we calculate:
702 (A.6) / (0p, 01 (07, z2))e"*2 2 dxy = fial/ el(maataz)z2 gp
0 0

) ap
703 = .
704 Qo — a2
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Similarly, we compute the other terms in (A.5) involving ¢;,, and obtain

(A7) Fsja[Adsc] + FialAy] = — (af + 04%)]:3/4[¢sc] —(af + 043)]‘-1/4[1/1]

ap ag a1 (&)

Qg — a2 a1 — Qg — a2 ar—ap

Thus
(A.8)
0 :f3/4[A¢sc + kfgbsc] + -7'—1/4[A1/1 + kngb]

—( — 02— ad) (m &

(a1 — al)l(OZQ - Cl2)> + (3 — ot - a%)fl/dw'

which is equivalent to the Wiener-Hopf equation (2.17).

A.1. On the importance of A = 1. Recall that throughout this article, we
assume A = 1 for the contrast parameter A (c.f. Section 2.1). If this was not the case,
i.e. for a general A, the corresponding boundary conditions for the normal derivative
would, instead of (2.5) and (2.6), read

(A.9) %axlqs(o—,xz > 0) = 0., (0", 25 > 0)

1
S0, 6(x1 > 0,07) = duy (a1 > 0,07).

(A.10) S

But using these boundary conditions, and repeating the preceding procedure, we
would instead of (A.5) find

(A.11)

FryalAy] = )F1/al¥]

—(of + o3

1 . >0 .

A(/ Do, G0e (0 9)) 0% 2 day + / <ax2¢sc<x1,0)>emﬂldx1)
0

+ia1/ qﬁsc(ijQ)eiazmzde +ia2/ ¢Sc(x170*)eia1w1dxl
0 0
1 o0 ) 00 4
) </ (2, $in(07, w2))e™**2dp + / (am¢in($1,0_))6““”’1dx1)
0 0
+ ia1/ bin (0, 2)ei@2%2 dzy + ia2/ bin (21,07 )1 dy
0 0

whilst equation (A.4) obtained for Fj,4[A¢sc] remains the same. But then the
boundary terms on the RHS of (A.11) not including the field’s normal derivative
do not cancel with the corresponding boundary terms in (A.4) when considering
Fs3/4[A¢sc] + Fi/4[A¢] and therefore we would not obtain the Wiener-Hopf equation
(2.17).

Appendix B. Asymptotic behaviour of spectral functions.
Let us investigate the far-field behaviour of ¥ . For this, we need to invoke the
following essential theorem:
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THEOREM B.1 (Abelian Theorem). Suppose that two real-valued functions f(r),
g(r), defined for r > 0 are continuous in some interval 0 < r < R where g(r) # 0.
Assume that all following transformations are well defined. Then, if

f(r)~g(r), asr =0
we have
/ f(r)e=dr ~ / g(r)edr, as|z| — oo within UHP(0).
0 0

The proof can be found in [15] Theorem 33.1, for instance. Now, by the edge condition
(2.12), we know

P(x) ~ B as, |zg| =0

for a suitable constant B. Moreover, we can use the following trick used by Assier
and Abrahams in [1] and see that for any € > 0 we have

(B.1) P(x) ~ Be "¥1752 a3 || — 0.

Choose € = 20 80 a2 + ie has strictly positive imaginary part. Observe that (B.1)
implies

(B.2) ¥(0,z9) ~ Be "2 as x5 — 0
which, in particular, gives

(B.3) [1(0,22)| ~ |Ble™ %2, as xo — 0.
Finally, (B.1) yields

(B.4) P(x) ~ B (0,z2)e™ "1, as 1 — 0.
Then, invoking the Abelian theorem, we first obtain using (B.4)

(B.5)

e ; bl ; By (0
/O V(@) P day ~ B¢(O7x2)/o eilartie)zy gy %, as |ag| — oc.

Now, due to (B.3), invoking the Abelian theorem once again, we find

(B.6) / 106(0, 32727 sy ~ |B\/ gilostie)ra gy || as [aa| = oo,
0 0

oy + 1€

and therefore:
LEMMA B.2. For fized o (resp. fized o) in UHP we have

(B.7) Uit (a1, 03) =O(1/|a1|), as|ai| — oo in UHP
(B.8) Uy (af,az) = 0(1/|az]), as|az| — oo in UHP

and, if neither variable is fized,

(B.9) Uy (g, a2) =0(1/|a1]|az]) as |ai| — o0, |ag| — oo in UHP.
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Proof. We obtain (B.7) from (B.5) and (B.8) from (B.6). To get (B.9) combine
(B.5) and (B.6). d

Similarly, estimates for ®_,, ®__, and ®,_ are obtained:

LEMMA B.3. The functions ®_,®__, and ®,_ satisfy the decay estimates
(B.7)—(B.9) as |ay 2| — oo in these function’s respective domains.

Appendix C. On the application of Liouville’s theorem. In order to apply
the results of Lemma B.2 and B.3 to the functions F; and E, defined in Section 4,
we need to establish a link between the decay of a function f(z) and the functions
f-(z) and fi(z) defined by the sum split f(z) = fi(2) + f-(z) (c.f. Theorem 3.3).

THEOREM C.1 (Decay estimates for sum-split). Let f(z) be a function analytic
on some strip, and consider its sum-split f(z) = f(2) + f—(2).

L If f(z) = O (1/|2]*) as |z| = oo within the strip, with X > 1, then fi(z) are
decaying at least like 1/|z| as |z| — oo within their respective half-planes.

2. If f(z) = O(1/]z]) as |z| = oo within the strip, then fi(z) are decaying at
least like In |z|/|z| as |z| = oo within their respective half-planes.

3. If f(z) = O(1/]2]") as |z| = oo within the strip, with 0 < X < 1, then
f+(2) are decaying at least like 1/|z|* as |z| — oo within their respective
half-planes.

For the proof see [39]. However, Theorem C.1 is a summary of the results given in
[39], applicable to the problem at hand. The summary is taken from [2] (c.f. Lemma
B.1 therein).

C.1. Application in the a; plane.
LemMmA C.2. The function E; given by

[ P .
KooV — |%5] — altimy ifa €Dy,

D, L.

Ei(a1,a2) = _
K . + {K_O:|70+ P++ (%_O — 71(_0(%11,0‘2)) , ifaeD_,.

vanishes i.e 1 = 0.

Proof. Let us fix some ay = a3 € S. By Lemma 3.1 we know K, — 1, as
|an| = oo in UHP, and by definition of Py (c.f. (2.16)) it is clear that

P,y — 0, as |a;| — oo, in UHP.

But due to Lemmas B.2, B.3 and Theorem C.1 we know that [®_/K_,]+, decays at
least like In |aq /]| as |a1| — oo in UHP (resp. LHP). So we know that F — 0 as
|ar| — oo in UHP. Similarly, we find E — 0 as |a;| — oo in LHP and therefore, since
UHP NLHP = § is not empty (c.f. Section 2.3.1), by Liouville’s theorem applied in
the oy plane, E; = 0. 0

C.2. Application in the as plane.
LEMMA C.3. The function Eqo(aq, as) given by

Py K_(aj,ag) [®4_
Vi K Kot (a1, 02) — p—mra ey ag) [ Ky Kool | > @€ Dy
E2 = o+
1 _ 1 K_4(ay,az) [‘1’+_]
Pt <K77(011~'¥2)K+7 K*f(al,az)fﬁrf(al,uz)) + |: K, _ K_oly, Oi a €D,

vanishes i.e Fy = 0.
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Proof. Applying Theorem C.1 to lo/g(Kio), we find, after applying exp, that
K _, K ., K _, K;_allgotolas|az] — oo in UHP and LHP respectively.
Moreover, P, — 0 as |as| — co in UHP and LHP respectively. Therefore, applying
Theorem C.1 to U4y, &, &__, and ®_,; (using the estimates given in Lemmas
B.2 and B.3) we find that all terms except possibly the bracket terms in F5 vanish
as |ag| = oo. But we can use (4.7) to directly obtain estimates for the behaviour

of K=xlaror) [%} as |ag| — oo in S and thereafter apply Theorem C.1 (finding
+o

K- K o

that the bracket terms vanishes as |aa| — oo in UHP and LHP respectively). See [2]

for a more detailed discussion. O
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