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DIFFRACTION BY A RIGHT-ANGLED NO-CONTRAST1

PENETRABLE WEDGE REVISITED: A DOUBLE WIENER-HOPF2

APPROACH∗3

VALENTIN D. KUNZ † AND RAPHAEL C. ASSIER †4

Abstract. In this paper, we revisit Radlow’s innovative approach to diffraction by a penetrable5
wedge by means of a double Wiener-Hopf technique. We provide a constructive way of obtaining6
his ansatz and give yet another reason for why his ansatz cannot be the true solution to the dif-7
fraction problem at hand. The two-complex-variable Wiener-Hopf equation is reduced to a system8
of two equations, one of which contains Radlow’s ansatz plus some correction term consisting of an9
explicitly known integral operator applied to a yet unknown function, whereas the other equation,10
the compatibility equation, governs the behaviour of this unknown function.11

Key words. wave diffraction, penetrable wedge, Wiener-Hopf12

AMS subject classifications. 30E20, 32A99, 41A21, 45E10, 76Q05, 78A4513

1. Introduction. Although diffraction is a well-known phenomenon with a14

rigorous mathematical theory that emerged in the late 19th century (Sommerfeld,15

Poincaré), many canonical problems still remain unsolved in the sense that no clear16

analytical solution has been found for them. Here ‘canonical’ refers to problems where17

the scatterer’s geometry is simple but possibly exhibits some singularities making18

the seemingly easy scattering problem challenging to solve. One of these unsolved19

problems is the diffraction by a penetrable wedge, that is by a wedge-shaped scatterer20

made of a material with acoustic (or electromagnetic) properties different from21

those of the ambient medium. Wedge diffraction problems are of great importance22

to mathematical, physical, and engineering sciences as they represent one of the23

building blocks of the geometrical theory of diffraction (GTD, [19]). For example,24

gaining a better understanding of penetrable wedge diffraction is expected to improve25

numerical methods for high frequency penetrable convex polygon diffraction, see26

[16, 17], and has applications in the scattering of light by atmospheric particles such27

as ice crystals [9] which directly feeds into climate change models [34].28

29

Wedge diffraction problems: an overview. Soon after providing his solution to the30

half-plane problem [35, 37], Sommerfeld managed to solve the more general problem31

of diffraction by a non-penetrable wedge with opening angle qπ, q ∈ Q in 1901 (c.f.32

[36] end of Chapter 5) using the method of Sommerfeld surfaces (see also [4] for an33

overview and more recent applications of this method). Unfortunately, it has thus34

far not been possible to generalise this technique to the penetrable wedge and during35

the past century, new methods have been developed, not only for penetrable wedges36

but for diffraction problems in general. In particular, many methods including the37

Sommerfeld-Malyuzhinets method (c.f. [6], [25]), the Wiener-Hopf technique (c.f. [10],38

[23], [29]), and the Kontorovich-Lebedev transform approach (c.f. [21]) have been39

developed for non-penetrable wedge diffraction; we refer to [27] for a review of these40
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2 VALENTIN KUNZ AND RAPHAEL ASSIER

and other methods. Moreover, some of these methods have been helpful in gaining41

a better understanding of penetrable wedge diffraction. Indeed, in 2011, Daniele and42

Lombardi [14] employed the Wiener-Hopf technique for the isotropic penetrable wedge43

problem to obtain a system of four Fredholm integral equations which is then solved44

numerically using quadrature schemes.45

Other innovative approaches suitable for high contrast penetrable wedge problems46

were given by Lyalinov [24] and, more recently, by Nethercote et al. [28]. In [24]47

Lyalinov uses the Sommerfeld–Malyuzhinets technique to obtain a system of two48

coupled Malyuzhinets equations which were solved approximately, giving the leading49

order far-field behaviour, whereas in [28] Nethercote et al. combine the Wiener-50

Hopf and Sommerfeld-Malyuzhinets method. In [28] a solution to the penetrable51

wedge is given as an infinite series of impenetrable wedge problems. Each of these52

impenetrable wedge problems is solved exactly, and the resulting infinite series for53

the penetrable wedge can be evaluated rapidly and efficiently using asymptotic and54

numerical methods.55

It is important to note that there have been many other approaches as well (this56

list is, however, by no means exhaustive): In 1998, Budaev and Bogy looked at find-57

ing the pressure field of acoustic wave diffraction by two penetrable wedges using the58

Sommerfeld-Malyuzhinets technique, resulting in a system of eight singular integral59

equations of Fredholm type (see [11]) which is solved in [12] by Neumann series as-60

suming the contrast is close to unity and the wedge’s opening angle is small. The61

following year, Rawlins considered the case of similar wave numbers k1 ≈ k2 in the62

electromagnetic setting (dielectric wedge) and used the Kontorovich-Lebedev trans-63

form to create a system of Fredholm integral equations which were solved iteratively64

to obtain a first order approximations of the diffracted field [33].65

There have also been some approaches using simple layer potential theory, as66

discussed in [13], which were employed in 2008 by Babich and Mokeeva. In [7] they67

showed that the problem of diffraction by a penetrable wedge has a unique solution68

and later, in 2012, developed a numerical solution of those simple layer potentials [8].69

70

Complex analysis in several variables: a new ansatz. Whenever any of the pre-71

viously mentioned methods employed complex analysis, these were one dimensional72

techniques. Surprisingly, using two dimensional complex analysis, there seems to73

be a rather straight-forward method of getting a Wiener-Hopf equation. As in his74

work for the 3D diffraction by a quarter-plane [30], Radlow obtained a Wiener-Hopf75

equation in two complex variables for the 2D right-angled no-contrast penetrable76

wedge [31]. His simple yet innovative idea was to use two dimensional Laplace77

transforms to integrate over the scatterer and thus ‘capture’ the scatterer’s geometry78

as was already done for the half-plane problem using the one dimensional Laplace79

transform [29]. These functional equations are perfectly valid, however, the closed80

form solutions thus found by Radlow for the quarter-plane and penetrable wedge81

diffraction problems turned out to be erroneous as they led to the wrong type of82

near-field behaviour [26, 22]. Nonetheless, solving these functional equations in83

several complex variables would be a tremendous achievement in diffraction theory.84

Unfortunately, the solutions in [30] and [31] were not given constructively making it85

difficult to understand the reasoning behind Radlow’s work and pinpoint where he86

went wrong. Recently, Assier and Abrahams [2] revisited Radlow’s approach, giving87

a constructive procedure to obtain his quarter-plane ansatz plus some correction88

term, while Assier and Shanin studied the analyticity properties of the unknowns89

of Radlow’s quarter-plane Wiener-Hopf equation [3]. Although the Wiener-Hopf90
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RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 3

equation remains unsolved, the simpler problem of diffraction by a quarter-plane91

without incident wave (i.e. a source located at the quarter-plane’s tip) has been92

solved using these novel complex analysis methods [5], confirming their usefulness.93

In the present work we will show that the method of [2] can also be applied to the94

right-angled no-contrast penetrable wedge problem.95

96

Aim and plan of the article. In the present work we revisit Radlow’s approach97

[31] in the spirit of [2]. In particular, we provide a constructive procedure of obtain-98

ing Radlow’s solution plus some correction term. This provides yet another way of99

showing that Radlow’s solution was erroneous. However, the extra term contains a100

complicated integral operator applied to a yet unknown function. Fortunately, we also101

obtain a compatibility equation involving only the extra term’s unknown function and102

although it has thus far not been possible to solve this equation exactly (which would103

then provide a closed form solution to the diffraction problem), we strongly believe104

that it can be employed to accurately test approximations, c.f. [1], which will be the105

subject of future work. We will focus on the special case of a right-angled no-contrast106

penetrable wedge.107

In Section 2, the diffraction problem is formulated in physical space and thereafter108

transformed into (two complex dimensional) Fourier space resulting in the problem’s109

Wiener-Hopf equation. In Section 3, the machinery required to work with this equa-110

tion is introduced and the functional equation’s kernel is factorised; we will employ111

the method of phase portraits (see [38]) to visualise functions of complex variables,112

which often provides a visually convincing method of verifying results that are tedious113

to prove otherwise. In Section 4 we apply the factorisation techniques developed by114

Assier and Abrahams in [2] to derive a set of equations linking the unknowns of the115

functional problem. The first equation involves Radlow’s solution plus some addi-116

tional correction term while the second equation, the compatibility equation, may117

provide a way of finding/approximating this unknown correction term. Finally, we118

compare our results with the ones found for the quarter-plane problem.119

2. Wiener Hopf equation for the penetrable wedge.120

2.1. Problem formulation. We are considering the problem of diffraction of a121

plane wave φin incident on an infinite, right-angled, penetrable wedge (PW) given by122

PW = {(x1, x2) ∈ R2| x1 ≥ 0, x2 ≥ 0},123

see figure 1. We assume transparency of the wedge and thus expect a scattered field124

φsc in R2 \ PW and a transmitted field ψ in PW (c.f. figure 1, left). As usual in125

scattering problems we assume time-harmonicity with the e−iωt convention, where ω126

is the (angular) frequency. The time dependence is henceforth suppressed and the127

wave-fields’ dynamics are therefore described by two Helmholtz equations. Moreover,128

suppressing time harmonicity, the incident plane wave (only supported within R2 \129

PW) is given by130

φin(x) = eik1·x,131

where k1∈ R2 is the wave vector and x = (x1, x2)∈ R2 (this notation will be used132

throughout the article). Let us focus on the acoustic setting of sound propagation133

through a fluid or gas (the electromagnetic setting is briefly discussed in Remark 2.1).134

Then the field φ(x) given by135

φ(x) = φsc(x) + φin(x)136

This manuscript is for review purposes only.



4 VALENTIN KUNZ AND RAPHAEL ASSIER

Fig. 1. Left: Illustration of the problem described by equations (2.1)–(2.6). The scatterer
i.e the penetrable wedge is shown in blue with edges in magenta. Right: Polar coordinate
system and incident angle ϑ0 of φin.

represents the total pressure field in R2 \PW, ψ represents the total pressure field in137

PW, and the wave vector k1 satisfies |k1| = k1 for the wave number k1 = ω/c1, where138

c1 is the speed of sound relative to the medium in R2 \ PW.139

Crucial to the present work is that we are describing a no-contrast penetrable140

wedge meaning that the density ρ1 of the medium in R2 \ PW (at rest) is the same141

as density ρ2 of the medium in PW (at rest). In particular, the contrast parameter λ142

which is given by143

λ =
ρ1

ρ2
144

satisfies145

λ = 1.146

However, the wave numbers k1 = ω/c1 and k2 = ω/c2 inside and outside PW respec-147

tively are different even though ρ1 = ρ2, since the other media properties, the bulk148

moduli (c.f. [20]), defining the speeds of sound c1 and c2 are assumed to be different.149

The boundary value problem at hand is then described by equations (2.1)–(2.6)150

below.151

∆φ+ k2
1φ = 0 in R2 \ PW,(2.1)152

∆ψ + k2
2ψ = 0 in PW,(2.2)153

φ(0−, x2 > 0) = ψ(0+, x2 > 0),(2.3)154

φ(x1 > 0, 0−) = ψ(x1 > 0, 0+),(2.4)155

∂x1
φ(0−, x2 > 0) = ∂x1

ψ(0+, x2 > 0),(2.5)156

∂x2
φ(x1 > 0, 0−) = ∂x2

ψ(x1 > 0, 0+).(2.6)157158

Equations (2.1) and (2.2) are the problem’s governing equations, describing the fields’159

dynamics, whereas the boundary conditions (2.3)–(2.6) impose continuity of the fields160

and their normal derivatives at the wedge’s boundary.161

Remark 2.1 (The electromagnetic setting). Equations (2.3)–(2.6) also model the162

diffraction of an E-polarised (resp. H-polarised) electromagnetic wave incident on a163

right-angled no-contrast penetrable wedge, where E is the electric field (resp. H is164

the magnetic field). Here φ corresponds to the total E (resp. H) field in R2 \ PW165

This manuscript is for review purposes only.



RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 5

whereas ψ corresponds to the total E (resp. H) field in PW (c.f. [22], [28], and166

[31]). Here, when describing the diffraction of the polarised electric (resp. magnetic)167

field, the assumption that the contrast parameter λ satisfies λ = 1 means that the168

magnetic permeabilities µ1 and µ2 (resp. electric permittivities ε1 and ε2) of the169

medium in R2 \PW and PW respectively satisfy µ1 = µ2 (resp. ε1 = ε2). Since in the170

electromagnetic setting, the wave numbers are given by kj = ω
√
µjεj we must have171

ε1 6= ε2 (resp. µ1 6= µ2) for the wave numbers k1 and k2 to be different.172

Now, introducing polar coordinates (r, ϑ) (c.f. figure 1, right) we can rewrite the173

incident wave vector k1 = −k1(cos(ϑ0), sin(ϑ0)) where ϑ0 is the incident angle. The174

incident wave can then be rewritten as175

φin = e−i(a1x1+a2x2)(2.7)176177

with178

a1 = k1 cos(ϑ0) and a2 = k1 sin(ϑ0).(2.8)179180

Henceforth, we assume Im(k1) > 0 and Im(k2) > 0. Later on, this condition may be181

waived by considering the limits Im(k1,2) → 0 (see Section 5). Moreover, we restrict182

ϑ0 ∈ (π, 3π
2 ) and Re(k1,2) > 0, so Im(a1,2) < 0 and Re(a1,2) < 0. Since, as mentioned183

in the beginning of Section 2.1, we have assumed time harmonicity with the e−iωt184

convention, this corresponds to the damping/absorption of waves.185

Remark 2.2 (the general case). The situation is more complicated if we allow186

other incident angles ϑ0 since then the sign of Im(a1) and/or Im(a2) changes. This187

technical difficulty can be dealt with by viewing a1,2 as independent parameters and188

impose −Im(a1,2) > 0, i.e. give a1,2 an artificial negative imaginary part irrespective189

of incident angle and wave number. Again, once the solution has been obtained, we190

may take the limit Im(a1,2)→ 0.191

Finally, it is necessary to impose Meixner conditions on the field, ensuring bound-192

edness of energy near the wedge’s tip x = (0, 0). That is, for arbitrarily small ε > 0,193

the following energy integrals need to be finite:194 ∫ π/2

0

∫ ε

0

r
(
|∇ψ|2 + |ψ|2

)
drdϑ <∞,(2.9)195 ∫ 2π

π/2

∫ ε

0

r
(
|∇φ|2 + |φ|2

)
drdϑ <∞.(2.10)196

197

Now, approximating the Helmholtz equation by Laplace’s equation near the tip and198

proposing a separation of variables ansatz yields a power series expression φsc =199 ∑∞
n=1 (Aνn sin(νnϑ) +Bνn cos(νnϑ)) rνn for φsc and similarly for ψ near the tip. Then,200

using (2.9)–(2.10) and the boundary conditions (2.3)–(2.6) we find201

φ(r, ϑ) = B + (A1 sin(ϑ) +B1 cos(ϑ)) r +O(r2), as r → 0,(2.11)202

ψ(r, ϑ) = B + (A′1 sin(ϑ) +B′1 cos(ϑ)) r +O(r2), as r → 0,(2.12)203204

where the constants B,A1, A
′
1, B1 and B′1 are unknown. We refer to [6] and [18] for205

a more detailed discussion of this procedure. Equations (2.11) and (2.12) are the206

sought edge conditions. It should be noted that these particular expressions (2.11)207

and (2.12) are only valid since we have chosen λ = 1.208
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6 VALENTIN KUNZ AND RAPHAEL ASSIER

The case of general λ has, for instance, been considered in [7], [28], and [32]. In209

[7] and [32] the behaviour is given up to second order φ = B + O(rµ) (similarly for210

ψ) where the exact value of µ > 0 is not specified, whereas in [28], the behaviour is211

given up to fourth order and an explicit dispersion relation is given for determining212

µ (which depends on the contrast parameter λ).213

Remark 2.3. Following Radlow’s ansatz we would also get φ, ψ ∼ C as r → 0 for214

some suitable constant C, see [31]. However, as pointed out by Kraut and Lehmann in215

[22], Radlow’s ansatz leads to the wrong value i.e. C 6= B. Moreover, in [32] Rawlins216

explicitly computed the value of B up to second order in k2
1 − k2

2 when k1 is close to217

k2, thereby extending Kraut and Lehmann’s work.218

In general, in order for the problem to be well posed, the field also needs to satisfy219

a radiation condition: The scattered field should be outgoing in the far-field. That is,220

there are no sources other than the incident wave at infinity. Due to the wavenumbers’221

positive imaginary part, this is automatically satisfied and by the limiting absorption222

principle, the radiation condition also holds in the limit Im(k1,2) → 0. See [7], [28]223

for more information on the radiation condition for penetrable wedges.224

To conclude this section, we note that specifying the behaviour of the fields near225

the wedge’s tip and at infinity is required to guarantee uniqueness of the solution to226

the problem described by equations (2.1)–(2.6), see [7].227

2.2. Transformation in Fourier space. In this section, the boundary value228

problem described by (2.1)–(2.6) is transformed into Fourier space and the corre-229

sponding functional equation is found. Let Qn, n = 1, 2, 3, 4 denote the nth quadrant230

of the (x1, x2) plane given by231

PW =Q1 = {x ∈ R2|x1 ≥ 0, x2 ≥ 0}, Q2 = {x ∈ R2|x1 ≤ 0, x2 ≥ 0},232

Q3 = {x ∈ R2|x1 ≤ 0, x2 ≤ 0}, Q4 = {x ∈ R2|x1 ≥ 0, x2 ≤ 0}.233234

To derive the problem’s functional equation and to keep consistency with recent work235

on several complex variable methods applied to diffraction problems (c.f. [2, 3]) we236

define:237

Definition 2.4 (One-quarter Fourier Transform). The one-quarter Fourier238

transform of a function u is given by239

U1/4(α) = F1/4[u](α) =

∫∫
Q1

u(x)eiα·xdx.(2.13)240

241

Definition 2.5 (Three-quarter Fourier Transform). The three-quarter Fourier242

transform of a function u is given by243

U3/4(α) = F3/4[u](α) =

∫∫
∪4
i=2Qi

u(x)eiα·xdx.(2.14)244

245

Here, we have α = (α1, α2) ∈ C2 and we write dx for dx1dx2. More details as to246

where α is permitted to go in C2 will be given in Section 2.3. Recall the definitions247

of a1 and a2 given in (2.7)–(2.8). Now, apply F1/4 to (2.1) and F3/4 to (2.2). Using248

the boundary conditions (2.3)–(2.6) and setting249

Φ3/4(α) = F3/4[φsc], Ψ1/4(α) = F1/4[ψ],(2.15)250

P (α) =
1

(α1 − a1)(α2 − a2)
, K(α) =

k2
2 − α2

1 − α2
2

k2
1 − α2

1 − α2
2

,(2.16)251
252
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RIGHT-ANGLED PENETRABLE WEDGE DIFFRACTION 7

we find the following Wiener-Hopf equation (see Appendix A for the calculation):253

−K(α)Ψ1/4(α) = Φ3/4(α) + P (α).(2.17)254255

Remark 2.6 (comparison with quarter-plane). Note that (2.17) is almost iden-256

tical to the Wiener-Hopf equation for the quarter-plane given in [2]. In fact, setting257

Ψ̃1/4 = −Ψ1/4 we can rewrite (2.17) as258

K(α)Ψ̃1/4(α) = Φ3/4 + P (α)(2.18)259260

which, formally, is the same Wiener-Hopf equation as for the quarter-plane (that is,261

(2.18) and the Wiener-Hopf equation in [2] only differ by the definition of the kernel262

K, which for the quarter-plane is given by K(α) = 1/
√
k2 − α2

1 − α2
2, where k is the263

(only) wavenumber of the quarter-plane problem).264

2.3. Domains of analyticity. Whilst we have, formally, found a functional265

equation for the diffraction problem at hand, the domain in C2 where this equation266

is valid has not yet been discussed. This is the aim of the present section.267

2.3.1. Set notations. Before we begin discussing equation (2.17)’s validity, let268

us introduce some notation which will be used extensively throughout the remainder269

of this article. For any κ1 < κ2 ∈ R we define (see figure 2)270

UHP(κj) = {z ∈ C|Im(z) > κj}, j = 1, 2; LHP(κj) = {z ∈ C|Im(z) < κj}, j = 1, 2;271

S(κ1, κ2) = {z ∈ C|κ1 < Im(z) < κ2}.272273

Visually speaking, the upper half plane UHP(κj) (resp. lower half plane LHP(κj))274

consists of all points z ∈ C lying above (resp. below) the line given by {Im(z) = κj}275

whereas the strip S(κ2, κ1) consists of all points between the lines {Im(z) = κ2} and276

{Im(z) = κ1}. In particular, S(κ2, κ1) = UHP(κ2) ∩ LHP(κ1). Moreover, for any

Fig. 2. Half planes UHP(κ2) (left), LHP(κ1) (middle), and strip S(κ2, κ1) (right).

277
κ1,2 ∈ R (i.e. we now also allow κ1 ≥ κ2) we define:278

D++(κ1, κ2) = UHP(κ1)×UHP(κ2), D−+(κ1, κ2) = LHP(κ1)×UHP(κ2),279

D−−(κ1, κ2) = LHP(κ1)× LHP(κ2), D+−(κ1, κ2) = UHP(κ1)× LHP(κ2).280281

In particular, D++(κ1, κ2),D−+(κ1, κ2),D−−(κ1, κ2), and D+−(κ1, κ2) are (open)282

subsets of C2 i.e. if (α1, α2) ∈ D++(κ1, κ2), say, then α1 ∈ UHP(κ1) and α2 ∈283

UHP(κ2).284
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8 VALENTIN KUNZ AND RAPHAEL ASSIER

2.3.2. Function notations. Using the sets defined above, we now introduce285

the following notation for functions:286

Definition 2.7. Let U : D → C, D ⊂ C2. We then call U a ++,+−,−−,287

or −+ function if, and only if, there are some κ1,2 ∈ R such that U is analytic in288

D++(κ1, κ2), D+−(κ1, κ2), D−−(κ1, κ2), or D−+(κ1, κ2). In these respective cases,289

we also write290

U = U++, U+−, U−−, U−+.291292

Moreover, if U is analytic in S(κ′1, κ
′
2)×UHP(κ2) for some κ′1 < κ′2 we write293

U = U◦+294295

and say that U is a ◦+ function. Analogously, the concepts of ◦−,+◦ and −◦ functions296

are defined and in these respective cases we write297

U = U◦−, U = U+◦, and U = U−◦.298299

2.3.3. Domains of analyticity. Recall that for half-range Fourier transforms,300

we have:301

Theorem 2.8. Let f : R → C satisfy |f(x)| < Aeb0x as x → ∞ for some con-302

stants b0 ∈ R, A ∈ [0,∞). Then the function F+(α) defined by303

F+(α) =

∫ ∞
0

f(x)eiαxdx304
305

is analytic for all α ∈ UHP(b0). If, on the other hand, we have |f(x)| < Aeb0x as306

x → −∞ for some (maybe different) constants b0 ∈ R, A ∈ [0,∞) then the function307

F−(α) defined by308

F−(α) =

∫ 0

−∞
f(x)eiαxdx309

310

is analytic for all α ∈ LHP(b0). Note that the specific value of the constant A is311

irrelevant for the analyticity behaviour of F+(α) and F−(α) respectively.312

These are well-known results and we refer to [29] for a more detailed discussion.313

Now, using geometrical optics and writing u = ugo + udiff for u = φsc + φin or314

u = ψ, we know that in the far field the wave ugo, consisting of the incident, reflected,315

and transmitted plane waves in their respective domains, will always dominate the316

diffracted field (since udiff is an exponentially decaying cylindrical wave). Recall that317

Im(a1) = Im(k1) cos(ϑ0) and Im(a2) = Im(k2) sin(ϑ0), so setting318

δ = min{Im(k1)| cos(ϑ0)|, Im(k2)| sin(ϑ0)|}(2.19)319320

we have Im(a1,2) ≤ −δ < 0, and we therefore obtain321

|ugo| ≤ Ae−δ|x1|−δ|x2| as x1, x2 → ±∞ in R2(2.20)322323

for some constant A∈ [0,∞) (again, the exact value of A does not matter). Moreover,324

it can be shown that K(α) is analytic in S(−ε, ε) × S(−ε, ε) for a suitable constant325
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ε ∈ (0, δ], see Lemma 3.1. For simplicity, let us henceforth omit a function’s argument326

unless it is not α, and let us set327

D++ = D++(−ε,−ε), D+− = D+−(−ε,−ε),328

D−− = D−−(−ε,−ε), D−+ = D−+(−ε,−ε),329

S = S(−ε, ε), LHP = LHP(ε), UHP = UHP(−ε).330331

Then, applying Theorem 2.8 twice and using (2.20) we find:332

Ψ++ = Ψ1/4, analytic on D++,333

Φ−+ =

∫∫
Q2

φsc(x)eiαxdx, analytic on D−+,334

Φ−− =

∫∫
Q3

φsc(x)eiαxdx, analytic on D−−,335

Φ+− =

∫∫
Q4

φsc(x)eiαxdx, analytic on D+−,336

P++ = P =
1

(α1 − a1)(α2 − a2)
, analytic on D++.337

338

Note that P = P++ is analytic in D++ since a1 and a2 are in LHP. Now, since by339

definition of Φ3/4 (see (2.15)) we have340

Φ3/4 = Φ+− + Φ−− + Φ−+,(2.21)341342

we find:343

Corollary 2.9. The spectral function Ψ++ is analytic in the region D++344

whereas Φ3/4 is analytic in the region S × S.345

Thus, since K is analytic on S × S and P++ is analytic on D++ we find that346

(2.17) is valid in S × S. To summarise:347

Corollary 2.10. The Wiener-Hopf equation (2.17) can be rewritten as348

−Ψ++K = Φ+− + Φ−− + Φ−+ + P++,(2.22)349350

and is valid on S × S.351

Equation (2.22) represents a generalization of the classical (one complex-variable)352

Wiener-Hopf equation that appears, for instance, in the diffraction by a half-plane,353

see [29].354

3. Factorisation of K.355

3.1. Some useful functions. As usual in complex analysis, functions defined356

on the real numbers might exhibit branch points when analytically continued onto357

the complex plane (c.f. [38]). This leads to the function being defined not on C but on358

some Riemann surface instead. However, for the purpose of the present work, we do359

not need this generality and the interested reader is referred to [38] for a more detailed360

discussion of the process of analytical continuation. When instead of working on the361

function’s Riemann surface one wants to work on C, branch cuts have to be introduced362

that is, we have to introduce lines of discontinuity of our function, but there is some363

arbitrariness involved in the specific choice of branch cuts. In this section, we will364
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10 VALENTIN KUNZ AND RAPHAEL ASSIER

specify some choice of branch cut for the complex square root function as well as the365

complex logarithm. These specific choices are the same as in [2] (for the logarithm)366

and [3] (for the square root function). All of the following functions play a crucial role367

in the factorisation of K. Throughout the remainder of the article, we will extensively368

employ the method of phase portraits to visualise a complex function’s properties in369

the spirit of [38].370

Let log(z) and
√
z denote the standard complex logarithm and square root used371

by most mathematical software (Matlab, for instance). These functions correspond372

to the usual real logarithm and square root respectively when restricted onto R+ and373

have a branch cut along the negative real axis (i.e. arg(z) ∈ (−π, π]).374

We define
↙
log(z) as the logarithm with a branch cut diagonally down the third375

quadrant, see figure 3. Practically,
↙
log(z) is obtained via the relation

↙
log(z) =376

log(e−iπ/4z) + iπ/4.

Fig. 3. Phase portrait of the functions f(z) = z (left), log(z) (centre), and
↙
log(z) (right).

377
Next, we specify the choice of branch cut for the square root. Denote by →

√
z the378

square root function with branch cut along the positive real axis and branch subject379

to →
√
−1 = i, see figure 4. This choice of square root guarantees its imaginary part380

to be strictly positive everywhere except on the positive real axis (which is mapped381

onto the real line). Practically, →
√
z can be defined by →

√
z = i

√
−z. Finally, for k

Fig. 4. Phase portraits of the functions
√
z (left), →

√
z (centre), and κ(k, z) (right) for k = 3 + i.

382
with Im(k) > 0 and Re(k) > 0 we define383

κ(k, z) =
→
√
k2 − z2(3.1)384385

which is visualised in figure 4. Due to the choice of square root, the sheet of κ(k, ·)’s386

Riemann surface is chosen such that κ(k, 0) = +k. The function κ(k, z) has two387
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branch cuts, starting at z = k and z = −k respectively, see figure 4. Moreover,388

since →
√
z has strictly positive imaginary part everywhere except on its branch cut389

(where its imaginary part vanishes), κ(k, z) also has strictly positive imaginary part390

everywhere except on its branch cuts (c.f. figure 4), which are mapped onto the real391

axis (see [3] for a more detailed discussion).392

3.2. Factorisation in the α1 plane. Recall the notation introduced in subsec-393

tion 2.3.2. Using κ, we can write394

K(α) =
(κ(k2, α2) + α1) (κ(k2, α2)− α1)

(κ(k1, α2) + α1) (κ(k1, α2)− α1)
.(3.2)395

396

Upon defining397

K+◦ =
κ(k2, α2) + α1

κ(k1, α2) + α1
, K−◦ =

κ(k2, α2)− α1

κ(k1, α2)− α1
,(3.3)398

399

and using (3.2), we have400

K = K+◦K−◦.(3.4)401402

The following lemma justifies the notation.403

Lemma 3.1. There exists an ε > 0 such that K+◦ and K−◦ are analytic in404

UHP(−ε)×S(−ε, ε) and LHP(ε)×S(−ε, ε) respectively. Note that this implies ana-405

lyticity of K in S(−ε, ε)×S(−ε, ε). Moreover, K−◦ → 1 and K+◦ → 1 as |α1,2| → ∞406

within these function’s respective domains of analyticity.407

The domains of analyticity and the limiting behaviour of K−◦ and K+◦ will be408

crucial not only when factorising K+◦ and K−◦ in the α2 plane in Section 3.3.2 but409

also when applying Liouville’s theorem in Section 4.410

We only prove the lemma for K−◦ as the proof for K+◦ is analogous. See also411

figures 5 and 6 for a visualisation, which will be explained in more detail below, after412

the proof.413

Proof of Lemma 3.1. Let us begin by examining the behaviour in the α2 plane,414

and let δ be as in (2.19). Since for j = 1, 2, the function α1 7→ κ(kj , α1) is analytic415

in S(−δ, δ) we only need to account for the polar singularities given by α2sing such416

that κ(k1, α2sing) = α1. But due to the properties of κ, we know Im(κ(k1, α2sing)) ≥ 0417

with equality only possible if Im(α2sing) ≥ Im(k1) ≥ δ. Therefore, if we restrict418

α2 ∈ S(−δ/2, δ/2), say, we obtain δ1 := minα2sing
{Im(κ(k1, α2sing))} > 0. Choose419

ε = min{δ/2, δ1}. The limiting behaviour at ∞ is directly obtained from the defining420

formula (3.3).421

Recall the notation S = S(−ε, ε), UHP = UHP(−ε), and LHP = LHP(ε). Addi-422

tionally, we define423

D+◦ = UHP× S, D−◦ = LHP× S, D◦+ = S ×UHP, D◦− = S × LHP(3.5)424425

so K−◦ is analytic on D−◦ and K+◦ is analytic on D+◦.426

Figure 5 visualises the properties ofK−◦: We see that for fixed α∗2 ∈ S the function427

K−◦(α1, α
∗
2) is analytic in the lower half plane, as the polar singularity corresponding428

to α1 = →
√
k2

1 − α∗22 = κ(k1, α
∗
2) lies in the upper half plane. For fixed α∗1 ∈ LHP on429

the other hand, we see that the function K−◦(α
∗
1, α2) is analytic in some strip between430

its branch and polar singularities (located at α2 = ± →
√
k2

1 − α∗21 = ±κ(k1, α
∗
1) and431
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12 VALENTIN KUNZ AND RAPHAEL ASSIER

Fig. 5. Phase portraits of K−◦ for k1 = 1 + i, k2 = 2 + i. On the left, the phase portrait is
taken in the α1 plane with fixed α∗2 = 2 + 1

5
i. On the right, it is taken in the α2 plane with fixed

α∗1 = 2 + 1
5
i.

Fig. 6. Phase portraits of K+◦ for k1 = 1 + i, k2 = 2 + i. On the left, the phase portrait is
taken in the α1 plane with fixed α∗2 = 2 − 1

5
i. On the right, it is taken in the α2 plane with fixed

α∗1 = 2− 1
5
i.

α2 = ±k1,2 respectively) and that there are no polar singularities inside S. An432

analogous visualisation of K+◦ can be found in figure 6. In figures 5 and 6 respectively,433

the yellow points correspond to polar singularities in the α2 plane, the white dot434

corresponds to the polar singularity in the α1 plane, whereas the cyan and black dots435

correspond to the function’s branch points, and the green and magenta dots are simple436

zeros of the function.437

3.3. Factorisation in the α2 plane.438

3.3.1. Cauchy’s formulae and bracket operators. Throughout the remain-439

der of this article, we will employ the following elementary yet essential theorems.440

These are classic results however, so we will omit the corresponding proofs. We refer441

to [29] for a more detailed discussion. Moreover, all of this section’s results also hold442

when the contour R which we use in the formulation of the following theorems and443

definition is replaced by a curved contour Γ, such as the contour Γ mentioned in Sec-444

tion 5, as long as the real part of Γ starts at −∞ and ends at +∞, see [2] and [29],445

but we do not need this generality for the context of the present article.446
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Definition 3.2. We define the contours R− iε and R + iε as447

R− iε = {z ∈ C| z = x− iε, x ∈ R} and R + iε = {z ∈ C| z = x+ iε, x ∈ R}448449

oriented from left to right for ε as in Lemma 3.1.450

Theorem 3.3 (Cauchy’s Formula; Sum-split). Let Φ be a function analytic on451

S, where S = S(−ε, ε) is as defined in Section 2.3.3. Then, provided Φ(α) → 0 as452

|α| → ∞ within S we have Φ(α) = Φ+(α) + Φ−(α) on S with Φ+ analytic on the453

upper half plane UHP and Φ− analytic on the lower half plane LHP. Specifically, for454

α ∈ S we have455

Φ+(α) =
1

2iπ

∫
R−iε

Φ(z)

z − α
dz and Φ−(α) =

−1

2iπ

∫
R+iε

Φ(z)

z − α
dz,456

457

and these formulae can be used to analytically continue Φ+ (resp. Φ−) onto UHP458

(resp. LHP).459

Following [2], using Cauchy’s sum split we can define the following bracket oper-460

ators:461

Definition 3.4 (Bracket Operators). For any function F : S × S → C satis-462

fying the conditions of Theorem 3.3 in the α1 plane, say, we define [F ]+◦ and [F ]−◦463

(analytic in D+◦ and D−◦ respectively) as464

[F ]+◦ =
1

2πi

∫
R−iε

F (z, α2)

z − α1
dz and [F ]−◦ =

−1

2πi

∫
R+iε

F (z, α2)

z − α1
dz465

466

and in particular, we have F = [F ]+◦ + [F ]−◦ on S × S. Similarly, we define [F ]◦+467

and [F ]◦− if F satisfies the conditions of Theorem 3.3 in the α2 plane, and we have468

F = [F ]+◦ + [F ]−◦ on S × S. Note that F can be defined on a domain larger than469

S × S.470

Theorem 3.5 (Cauchy’s Formula; Factorisation). Let Ψ be a function analytic471

on S such that Ψ has no zeros in S and Ψ→ 1 as |α| → ∞ within S. Upon choosing472

the principal branch of the log, this implies that log Ψ → 0 as |α| → ∞ within S.473

Then we have Ψ(α) = Ψ+(α)Ψ−(α) on S with Ψ+ analytic on UHP and Ψ− analytic474

on LHP. Specifically, for α ∈ S we have475

Ψ+(α) = exp

(
1

2iπ

∫
R−iε

log(Ψ(z))

z − α
dz

)
and Ψ−(α) = exp

(
−1

2iπ

∫
R+iε

log(Ψ(z))

z − α
dz

)
476
477

and these formulae can be used to analytically continue Ψ+ onto UHP and Ψ− onto478

LHP.479

3.3.2. Factorisation of K+◦ and K−◦ in the α2 plane. We wish to factorise480

K+◦ and K−◦ in the α2 plane. Thus we need to verify the conditions of Theorem 3.5.481

First, note that for fixed α∗1 we have482

K±◦(α
∗
1, α2)→ 1, as |α2| → ∞ in S.(3.6)483484

Thus, we just have to verify that that K±◦ does not cross
↙
log’s branch cut, i.e. that485

↙
log(K±◦(α

∗
1, α2)) is analytic for all α2 ∈ S. It is possible to prove this rigorously, but486

this is rather technical. Therefore, in the spirit of [2], we instead provide a visual proof487

of analyticity, which illustrates the validity of the statement. Indeed, from figure 7488

This manuscript is for review purposes only.



14 VALENTIN KUNZ AND RAPHAEL ASSIER

(top) we see that
↙
log(K−◦) has no singularities for α ∈ LHP × S and is therefore,489

in particular, well-defined on S(−ε, ε) in the α2 plane (where ε is as in Lemma 3.1).490

Similarly, we see that K+◦ satisfies the conditions of Theorem 3.5 in figure 7 (bottom).491

Therefore, we may apply Theorem 3.5 to K+◦ and K−◦ and obtain

Fig. 7. Phase portrait of
↙
log(K−◦) (top) with parameters as in figure 5, and phase portrait of

↙
log(K+◦) (bottom) with parameters as in figure 6. The contours R ± iε in the α2 plane are shown
in white

492

K−◦ = K−−K−+, K+◦ = K++K+−,(3.7)493494

where495

K−−(α) = exp

−1

2πi

∫
R+iε

↙
log(K−◦(α1, z))

z − α2
dz

 ,(3.8)496

497
498

K−+(α) = exp

 1

2πi

∫
R−iε

↙
log(K−◦(α1, z))

z − α2
dz

 ,(3.9)499

500
501

K+−(α) = exp

−1

2πi

∫
R+iε

↙
log(K+◦(α1, z))

z − α2
dz

 ,(3.10)502

503
504

K++(α) = exp

 1

2πi

∫
R−iε

↙
log(K+◦(α1, z))

z − α2
dz

 .(3.11)505

506
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By construction, we hence have507

K = K++K+−K−−K−+ on S × S(3.12)508509

and we can verify the multiplicative structure (3.7) in figures 8 and 9 respectively.510

Here, we chose to visualise the functions in the α2 plane but, as previously, it is of511

course also possible to visualise them in the α1 plane.512

Remark 3.6. We may equally well choose to first factorise the kernel K in the513

α2 plane and thereafter in the α1 plane. The procedure for doing this is exactly the514

same as the procedure discussed in Sections 3.2–3.3, and will lead to a factorisation515

K = K̃++K̃+−K̃−−K̃−+. By an application of Liouville’s theorem, it can be shown516

K̃++ = K++ etc., and therefore the resulting factorisation of K given in (3.12) does517

not depend on whether we first factorise in the α1 or α2 plane.518

Fig. 8. Visualisation of K−◦ = K−−K−+ in the α2 plane with parameters as in figure 5. K−−
is shown in the middle and K−+ is shown on the right.

Fig. 9. Visualisation of K+◦ = K+−K++ in the α2 plane with parameters as in figure 6. K+−
is shown in the middle and K++ is shown on the right.

4. The Wiener-Hopf system in C2. Recall the notions of ++ functions, +−519

functions, etc. (c.f. Definition 2.7) and recall that by Corollary 2.10, using these520

notations, the Wiener-Hopf equation (2.17) can be rewritten as521

−Ψ++K = Φ+− + Φ−− + Φ−+ + P++.(4.1)522523

In the following two subsections, we will show how (4.1) can be reduced to two coupled524

equations involving the unknowns Ψ++ and Φ+−. This heavily relies on the kernel’s525

factorisation and the bracket operators (c.f. Definition 3.4). Recall that we omit a526

function’s argument unless it is not α.527
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4.1. Split in the α1 plane. We begin by writing (4.1) as528

−K+◦Ψ++ =
Φ−◦
K−◦

+
Φ+−

K−◦
+
P++

K−◦
.(4.2)529

530

where we have set Φ−+ + Φ−− = Φ−◦ and used the representation K = K+◦K−◦531

given in (3.4). For now, we just assume that Cauchy’s formulas 3.3 and 3.5 may be532

applied as we do below. This is possible due to the edge conditions (2.11) and (2.12)533

and the duality of near field behaviour in physical space and far field behaviour in534

Fourier space. We postpone the technical details to Appendix B. Now, applying the535

Cauchy sum-split to Φ+−/K−◦ in the α1 plane we obtain536

−K+◦Ψ++ −
[

Φ+−

K−◦

]
+◦
− P++

K−◦
=

Φ−◦
K−◦

+

[
Φ+−

K−◦

]
−◦
.(4.3)537

538

Recall the notations a1 = k1 cos(ϑ0) ∈ LHP and a2 = k1 sin(ϑ0) ∈ LHP, introduced539

in (2.7), and recall P++ = 1
(α1−a1)(α2−a2) (see (2.16)). Now, by pole removal in the540

α1 plane541

P++

K−◦
=

P++

K−◦(a1, α2)︸ ︷︷ ︸
analytic in D+◦

+P++

(
1

K−◦
− 1

K−◦(a1, α2)

)
︸ ︷︷ ︸

analytic in D−◦

.542

543

Analyticity of the first term in D+◦ is simple: the denominator does not depend on α1544

and the numerator is analytic. For the second term the polar singularity is effectively545

removed since546 (
1

K−◦
− 1

K−◦(a1, α2)

)
∼ κ(k1, α2)− κ(k2, α2)

(κ(k2, α2)− a1)2
(α1 − a1) as α1 → a1,547

which proves analyticity in D−◦. Therefore (4.3) is equivalent to548

−K+◦Ψ++ −
[

Φ+−

K−◦

]
+◦
− P++

K−◦(a1, α2)
=

Φ−◦
K−◦

+

[
Φ+−

K−◦

]
−◦
+ P++

(
1

K−◦
− 1

K−◦(a1, α2)

)
,

(4.4)

549
550

and the LHS of (4.4) is analytic in D+◦ whereas the RHS is analytic in D−◦. Thus,551

we can use this equality to obtain a function E1 analytic on C× S by552

E1(α1, α2) =

−K+◦Ψ++ −
[

Φ+−
K−◦

]
+◦
− P++

K−◦(a1,α2) , if α ∈ D+◦,

Φ−◦
K−◦

+
[

Φ+−
K−◦

]
−◦

+ P++

(
1

K−◦
− 1

K−◦(a1,α2)

)
, if α ∈ D−◦.

553

554

It can be shown that we can apply Liouville’s theorem in the α1 plane (see Lemma555

C.2) and we find E1 ≡ 0 for α2 ∈ S. Therefore556

K+◦Ψ++ +

[
Φ+−

K−◦

]
+◦

+
P++

K−◦(a1, α2)
= 0, α ∈ D+◦,(4.5)557

Φ−◦
K−◦

+

[
Φ+−

K−◦

]
−◦

+ P++

(
1

K−◦
− 1

K−◦(a1, α2)

)
= 0, α ∈ D−◦.(4.6)558

559
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4.2. Split in the α2 plane. Multiplying (4.5) by K−+(a1, α2)/K+− and using560

(3.7) we obtain561

−Ψ++K++K−+(a1, α2) =
P++

K−−(a1, α2)K+−
+
K−+(a1, α2)

K+−

[
Φ+−

K−◦

]
+◦

(4.7)562

563

which is valid in D+◦. Applying the Cauchy sum-split in the α2 plane to564
K−+(a1,α2)

K+−

[
Φ+−
K−◦

]
+◦

we obtain565

K−+(a1, α2)

K+−

[
Φ+−

K−◦

]
+◦

=

[
K−+(a1, α2)

K+−

[
Φ+−

K−◦

]
+◦

]
◦−

+

[
K−+(a1, α2)

K+−

[
Φ+−

K−◦

]
+◦

]
◦+

.

(4.8)

566

567

Similarly568

P++

K−−(a1, α2)K+−
=

[
P++

K−−(a1, α2)K+−

]
◦−

+

[
P++

K−−(a1, α2)K+−

]
◦+

(4.9)569

570

and by pole removal in the α2 plane:571 [
P++

K−−(a1, α2)K+−

]
◦−

= P++

(
1

K−−(a1, α2)K+−
− 1

K−−(a1, a2)K+−(α1, a2)

)
,572 [

P++

K−−(a1, α2)K+−

]
◦+

=
P++

K−−(a1, a2)K+−(α1, a2)
.573

574

Similarly to the pole removal performed in Section 4.1, the analyticity of575

P++/K−−(a1, a2) in D◦− is verified, and the analyticity of576

P++

(
1

K−−(a1, α2)K+−
− 1

K−−(a1, a2)K+−(α1, a2)

)
577

in D◦+ can be proved by writing 1/K−−(a1, α2)K+− as its Taylor series (in the α2578

plane) at a2. Therefore, we can use (4.7) to obtain a function E2 analytic on UHP×C579

by580

E2 =


−Ψ++K++K−+(a1, α2)− P++

K−−(a1,a2)K+−(α1,a2)
−
[
K−+(a1,α2)

K+−

[
Φ+−
K−◦

]
+◦

]
◦+
, α ∈ D++

P++

(
1

K−−(a1,α2)K+−
− 1

K−−(a1,a2)K+−(α1,a2)

)
+

[
K−+(a1,α2)

K+−

[
Φ+−
K−◦

]
+◦

]
◦−
, α ∈ D+−.

581

582

Similar to Section 4.1, it can be shown that we can apply Liouville’s theorem in the583

α2 plane to E2 and obtain E2 ≡ 0 (see Lemma C.3). Therefore we find the main584

result of the present work:585

Theorem 4.1. The unknowns Ψ++,Φ+− of the Wiener Hopf equation (4.1) sat-586

isfy587

−Ψ++ =
P++

K++K−+(a1, α2)K−−(a1, a2)K+−(α1, a2)
(4.10)588

+
1

K++K−+(a1, α2)

[
K−+(a1, α2)

K+−

[
Φ+−

K−◦

]
+◦

]
◦+

for α ∈ D++,589

0 =P++

(
1

K−−(a1, α2)K+−
− 1

K−−(a1, a2)K+−(α1, a2)

)
(4.11)590

+

[
K−+(a1, α2)

K+−

[
Φ+−

K−◦

]
+◦

]
◦−

for α ∈ D+−.591

592
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4.3. Significance of Theorem 4.1. First, note that the expression for Ψ++593

in (4.10) only differs from Radlow’s ansatz given in [31] by the second term on the594

equation’s RHS. Moreover, it is remarkable that formally (4.10) and (4.11) are al-595

most the same set of equations one obtains for the quarter-plane problem (c.f [2]596

eq. 5.12 & 5.13). That is, these equations only differ by the value of the kernel597

K = K++K+−K−−K−+ and the sign in front of Ψ++ (the latter can be viewed as598

a notational difference, as discussed in remark 2.6). Additionally, if it was somehow599

possible to invert (4.11) and thus obtain Φ+− we would obtain Ψ++ by (4.10), which600

by the Wiener-Hopf equation (2.17) gives Φ3/4 and therefore solves the diffraction601

problem at hand (by inverse Fourier transform).602

There are several benefits to (4.10). First, it is clear that (4.10) indicates Rad-603

low’s error as the additional term is missing in his analysis. Second, the constructive604

procedure given in this article can be helpful in understanding how Radlow’s ansatz605

was obtained and to quantify his error. Indeed, Radlow only stated his solution in606

[31] making it difficult to pinpoint where exactly he went wrong. Additionally, Rad-607

low’s ansatz predicts the wrong corner asymptotics as was pointed out by Kraut and608

Lehmann in [22]. Therefore, just as in the quarter-plane case, the correct near field609

behaviour should be enforced by the additional term in (4.10). This additional term610

involves the unknown function Φ+−, which should satisfy the compatibility equation611

(4.11). This equation does not appear in Radlow’s work and to our knowledge not612

in any subsequent work. However, as already pointed out, it is remarkably similar613

to the compatibility equation found for the quarter-plane diffraction problem in [2].614

Therefore, we strongly believe it is possible to use (4.11) to test approximations for615

Φ+− and thus obtain an approximate solution to Ψ++. Indeed, in [1] Assier and616

Abrahams proposed a scheme to accurately approximate Φ+− for the quarter-plane617

diffraction problem and we plan to propose a similar method for the penetrable wedge618

diffraction problem as part of our future work. Moreover, we do believe that the spec-619

tral functions Ψ++ and Φ3/4 can be used to obtain far field contributions using the620

novel ‘Bridge and Arrow’ notation as introduced in [4], which will also be the basis of621

future work.622

5. Vanishing imaginary part of the wavenumbers. So far, everything that623

has been done was under the assumption that Im(k1,2) > 0. Let us discuss the624

limiting procedure Im(k1,2)→ 0. Then the domain of analyticity of Ψ++ as discussed625

in Section 2.3, would become UHP(0)× UHP(0). However, due to the incident wave626

φin, we expect Ψ++ to then have polar singularities on the real line at α1 = a1 and627

α2 = a2 (c.f. [2, 3]). Moreover, due to the Kernel, we expect Ψ++ to also have branch628

singularities at α1 = −k1,2, α2 = −k1,2 and polar singularities at some parts of the629

real circle α2 = k2
2 (again, c.f. [2, 3]). Therefore, when evaluating the physical field630

ψ(x) =
1

4π2

∫∫
R2

Ψ++(α)e−iα·xdα(5.1)631
632

we have to indent the ‘contour’ R2 to Γ×Γ, see figure 10 (these contours are thoroughly633

discussed in [2]), in order to avoid these singularities1 (note that in the figure the634

relevant parts of the circle α2 = k2 are not shown; however, Γ also avoids these635

points). By Cauchy’s theorem, this does not change the value of ψ and therefore636

ψ(x) =
1

4π2

∫∫
Γ×Γ

Ψ++(α)e−iα·xdα(5.2)637
638

1Here, the choice of incident angle is crucial as this contour is only valid for ϑ0 ∈ (π, 3π/2).
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defines the correct physical field for Im(k1,2) = 0. Note that to find the singularities639

of Ψ++ which have to be avoided and to make sense of Ψ++ in the lower half planes640

(for vanishing imaginary part), we have to analytically continue Ψ++ into a larger641

domain than that given in Section 2.3 and unveil its singularities therein.642

Fig. 10. Contour Γ× Γ used in the integral (5.2).

Finally, we mention that Φ3/4 can be dealt with similarly when evaluating φsc as643

Im(k1,2)→ 0. That is644

φsc =
1

4π2

∫∫
Γ×Γ

Φ3/4(α)e−iα·xdα.(5.3)645
646

6. Conclusion. In this article, we revisited Radlow’s double Wiener-Hopf ap-647

proach to the penetrable wedge diffraction problem. We gave a constructive pro-648

cedure to obtain his ansatz and hopefully add more clarity to his innovative work.649

After transforming the physical boundary value problem to two complex dimensional650

Fourier space, Radlow’s Wiener-Hopf equation was recovered, the solution to which651

directly solves the diffraction problem at hand by inverse Fourier transform. Using the652

factorisation techniques developed by Assier and Abrahams in [2], the Wiener-Hopf653

equation (2.17) was reduced to a coupled system of two functional equations, (4.10)654

and (4.11), involving two unknowns Ψ++ and Φ+−. The first equation involves Rad-655

low’s exact ansatz, which gives yet another reason for why his ansatz cannot be the656

Wiener-Hopf equation’s solution (and therefore not solve the diffraction problem at657

hand). The second equation, the compatibility equation, involves solely the unknown658

Φ+−. Solving this equation is key to find Ψ++, but failing this, we believe it can be659

used efficiently to find novel approximation schemes for the physical fields.660

Finally, it is remarkable how similar the penetrable wedge diffraction problem661

is to the quarter-plane problem in Fourier space. That is, formally, all occurring662

relations/equations are almost identical and only differ by K’s structure and Ψ++’s663

sign. Using the novel complex analysis methods developed in [3] and [5] we believe664

that it is possible to obtain information on the physical field’s components by studying665

the crossing of singularities of Ψ++ and Φ3/4. To summarise, this leaves us with the666

following questions, which we hope to answer in future articles:667

• Applying the methods developed in [1], can we find a new accurate approxi-668

mation scheme for the penetrable wedge diffraction problem?669

• Using the analytical continuation techniques developed in [3], what more670

information can we get on Ψ++’s and Φ3/4’s domain of analyticity especially671

regarding their singularity structure?672

• Can the novel Bride and Arrow notation (c.f. [5]) be used to obtain far-field673

asymptotics for ψ and φ?674
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Appendix A. On the derivation of the Wiener-Hopf equation.675

Let us show how the Wiener-Hopf equation (2.17) for the diffraction problem at676

hand is obtained. Recall the definition of the 1/4 and 3/4 Fourier transforms (c.f.677

Definitions 2.4 and 2.5) i.e., letting Qn denote the nth quadrant in the plane R2, we678

have:679

F3/4[u](α) =

∫∫
Q2

u(x)eiα·xdx+

∫∫
Q3

u(x)eiα·xdx+

∫∫
Q4

u(x)eiα·xdx,(A.1)680

F1/4[u](α) =

∫∫
Q1

u(x)eiα·xdx.(A.2)681

682

We apply the operator F3/4 (resp. F1/4) to (2.1) (resp. (2.3)). By Green’s second683

identity we have:684

∫∫
Q1

(∆ψ(x))eiα·xdx =− (α2
1 + α2

2)

∫∫
Q1

ψ(x)eiα·xdx

(A.3)

685

−
∫ ∞

0

(∂x1
ψ(0+, x2))eiα2x2dx2 −

∫ ∞
0

(∂x2
ψ(x1, 0

+))eiα1x1dx1686

+ iα1

∫ ∞
0

ψ(0+, x2)eiα2x2dx2 + iα2

∫ ∞
0

ψ(x1, 0
+)eiα1x1dx1.687

688

Similarly, using (A.1) and after a lengthy but straightforward calculation,we find689

F3/4[∆φsc] =− (α2
1 + α2

2)F3/4(φsc) +

∫ ∞
0

(∂x1
φsc(0−, x2))eiα2x2dx2(A.4)690

+

∫ ∞
0

(∂x1
φsc(x1, 0

−))eiα1x1dx1 − iα1

∫ ∞
0

φsc(0−, x2)eiα2x2dx2691

− iα2

∫ ∞
0

φsc(x1, 0
−)eiα1x2dx1.692

693

Now we can use the boundary conditions (2.4)–(2.6) to rewrite (A.3) as694

F1/4[∆ψ] =− (α2
1 + α2

2)F1/4[ψ]

(A.5)

695

−
(∫ ∞

0

(∂x1φsc(0−, x2))eiα2x2dx2 +

∫ ∞
0

(∂x2φsc(x1, 0
−))eiα1x1dx1

)
696

+ iα1

∫ ∞
0

φsc(0−, x2)eiα2x2dx2 + iα2

∫ ∞
0

φsc(x1, 0
−)eiα1x1dx1697

−
(∫ ∞

0

(∂x1φin(0−, x2))eiα2x2dx2 +

∫ ∞
0

(∂x2φin(x1, 0
−))eiα1x1dx1

)
698

+ iα1

∫ ∞
0

φin(0−, x2)eiα2x2dx2 + iα2

∫ ∞
0

φin(x1, 0
−)eiα1x1dx1.699

700

But φin = exp(−i(a1x1 + a2x2)) so, since −Im(a1,2) > 0, we calculate:701 ∫ ∞
0

(∂x1φin(0−, x2))eiα2x2dx2 = −ia1

∫ ∞
0

ei(−a2+α2)x2dx2(A.6)702

=
a1

α2 − a2
.703

704
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Similarly, we compute the other terms in (A.5) involving φin, and obtain705

F3/4[∆φsc] + F1/4[∆ψ] =− (α2
1 + α2

2)F3/4[φsc]− (α2
1 + α2

2)F1/4[ψ](A.7)706

− a1

α2 − a2
− a2

α1 − a1
− α1

α2 − a2
− α2

α1 − a1
.707

708

Thus709

0 =F3/4[∆φsc + k2
1φsc] + F1/4[∆ψ + k2

2ψ]

(A.8)

710

=(k2
1 − α2

1 − α2
2)

(
F3/4[φsc] +

1

(α1 − a1)(α2 − a2)

)
+ (k2

2 − α2
1 − α2

2)F1/4[ψ].711
712

which is equivalent to the Wiener-Hopf equation (2.17).713

714

A.1. On the importance of λ = 1. Recall that throughout this article, we715

assume λ = 1 for the contrast parameter λ (c.f. Section 2.1). If this was not the case,716

i.e. for a general λ, the corresponding boundary conditions for the normal derivative717

would, instead of (2.5) and (2.6), read718

1

λ
∂x1

φ(0−, x2 > 0) = ∂x1
ψ(0+, x2 > 0)(A.9)719

1

λ
∂x2φ(x1 > 0, 0−) = ∂x2ψ(x1 > 0, 0+).(A.10)720

721

But using these boundary conditions, and repeating the preceding procedure, we722

would instead of (A.5) find723

F1/4[∆ψ] =− (α2
1 + α2

2)F1/4[ψ]

(A.11)

724

− 1

λ

(∫ ∞
0

(∂x1
φsc(0−, x2))eiα2x2dx2 +

∫ ∞
0

(∂x2
φsc(x1, 0

−))eiα1x1dx1

)
725

+ iα1

∫ ∞
0

φsc(0−, x2)eiα2x2dx2 + iα2

∫ ∞
0

φsc(x1, 0
−)eiα1x1dx1726

− 1

λ

(∫ ∞
0

(∂x1
φin(0−, x2))eiα2x2dx2 +

∫ ∞
0

(∂x2
φin(x1, 0

−))eiα1x1dx1

)
727

+ iα1

∫ ∞
0

φin(0−, x2)eiα2x2dx2 + iα2

∫ ∞
0

φin(x1, 0
−)eiα1x1dx1728

729

whilst equation (A.4) obtained for F3/4[∆φsc] remains the same. But then the730

boundary terms on the RHS of (A.11) not including the field’s normal derivative731

do not cancel with the corresponding boundary terms in (A.4) when considering732

F3/4[∆φsc] +F1/4[∆ψ] and therefore we would not obtain the Wiener-Hopf equation733

(2.17).734

Appendix B. Asymptotic behaviour of spectral functions.735

Let us investigate the far-field behaviour of Ψ++. For this, we need to invoke the736

following essential theorem:737
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Theorem B.1 (Abelian Theorem). Suppose that two real-valued functions f(r),738

g(r), defined for r > 0 are continuous in some interval 0 < r < R where g(r) 6= 0.739

Assume that all following transformations are well defined. Then, if740

f(r) ∼ g(r), as r → 0741742

we have743 ∫ ∞
0

f(r)eirzdr ∼
∫ ∞

0

g(r)eirzdr, as |z| → ∞ within UHP(0).744
745

The proof can be found in [15] Theorem 33.1, for instance. Now, by the edge condition746

(2.12), we know747

ψ(x) ∼ B as, |x| → 0748749

for a suitable constant B. Moreover, we can use the following trick used by Assier750

and Abrahams in [1] and see that for any ε > 0 we have751

ψ(x) ∼ Be−εx1−εx2 as |x| → 0.(B.1)752753

Choose ε = 2δ so α1,2 + iε has strictly positive imaginary part. Observe that (B.1)754

implies755

ψ(0, x2) ∼ Be−εx2 , as x2 → 0(B.2)756757

which, in particular, gives758

|ψ(0, x2)| ∼ |B|e−εx2 , as x2 → 0.(B.3)759760

Finally, (B.1) yields761

ψ(x) ∼ Bψ(0, x2)e−εx1 , as x1 → 0.(B.4)762763

Then, invoking the Abelian theorem, we first obtain using (B.4)764

∫ ∞
0

ψ(x)eiα1x1dx1 ∼ Bψ(0, x2)

∫ ∞
0

ei(α1+iε)x1dx1 =
Bψ(0, x2)

α1 + iε
, as |α1| → ∞.

(B.5)

765
766

Now, due to (B.3), invoking the Abelian theorem once again, we find767 ∫ ∞
0

|ψ(0, x2)|eiα2x2dx2 ∼ |B|
∫ ∞

0

ei(α2+iε)x2dx2 = |B| 1

α2 + iε
, as |α2| → ∞,(B.6)768

769

and therefore:770

Lemma B.2. For fixed α∗2 (resp. fixed α∗1) in UHP we have771

Ψ++(α1, α
∗
2) = O(1/|α1|), as |α1| → ∞ in UHP(B.7)772

Ψ++(α∗1, α2) = O(1/|α2|), as |α2| → ∞ in UHP(B.8)773774

and, if neither variable is fixed,775

Ψ++(α1, α2) =O(1/|α1||α2|) as |α1| → ∞, |α2| → ∞ in UHP.(B.9)776777
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Proof. We obtain (B.7) from (B.5) and (B.8) from (B.6). To get (B.9) combine778

(B.5) and (B.6).779

Similarly, estimates for Φ−+, Φ−−, and Φ+− are obtained:780

Lemma B.3. The functions Φ−+,Φ−−, and Φ+− satisfy the decay estimates781

(B.7)–(B.9) as |α1,2| → ∞ in these function’s respective domains.782

Appendix C. On the application of Liouville’s theorem. In order to apply783

the results of Lemma B.2 and B.3 to the functions E1 and E2 defined in Section 4,784

we need to establish a link between the decay of a function f(z) and the functions785

f−(z) and f+(z) defined by the sum split f(z) = f+(z) + f−(z) (c.f. Theorem 3.3).786

Theorem C.1 (Decay estimates for sum-split). Let f(z) be a function analytic787

on some strip, and consider its sum-split f(z) = f+(z) + f−(z).788

1. If f(z) = O
(
1/|z|λ

)
as |z| → ∞ within the strip, with λ > 1, then f±(z) are789

decaying at least like 1/|z| as |z| → ∞ within their respective half-planes.790

2. If f(z) = O(1/|z|) as |z| → ∞ within the strip, then f±(z) are decaying at791

least like ln |z|/|z| as |z| → ∞ within their respective half-planes.792

3. If f(z) = O
(
1/|z|λ

)
as |z| → ∞ within the strip, with 0 < λ < 1, then793

f±(z) are decaying at least like 1/|z|λ as |z| → ∞ within their respective794

half-planes.795

For the proof see [39]. However, Theorem C.1 is a summary of the results given in796

[39], applicable to the problem at hand. The summary is taken from [2] (c.f. Lemma797

B.1 therein).798

C.1. Application in the α1 plane.799

Lemma C.2. The function E1 given by800

E1(α1, α2) =

−K+◦Ψ++ −
[

Φ+−
K−◦

]
+◦
− P++

K−◦(a1,α2) , if α ∈ D+◦,

Φ−◦
K−◦

+
[

Φ+−
K−◦

]
−◦

+ P++

(
1

K−◦
− 1

K−◦(a1,α2)

)
, if α ∈ D−◦.

801

802

vanishes i.e E1 ≡ 0.803

Proof. Let us fix some α2 = α∗2 ∈ S. By Lemma 3.1 we know K+◦ → 1, as804

|α1| → ∞ in UHP, and by definition of P++ (c.f. (2.16)) it is clear that805

P++ → 0, as |α1| → ∞, in UHP.806807

But due to Lemmas B.2, B.3 and Theorem C.1 we know that [Φ+−/K−◦]±◦ decays at808

least like ln |α1|/|α1| as |α1| → ∞ in UHP (resp. LHP). So we know that E → 0 as809

|α1| → ∞ in UHP. Similarly, we find E → 0 as |α1| → ∞ in LHP and therefore, since810

UHP ∩ LHP = S is not empty (c.f. Section 2.3.1), by Liouville’s theorem applied in811

the α1 plane, E1 ≡ 0.812

C.2. Application in the α2 plane.813

Lemma C.3. The function E2(α1, α2) given by814

E2 =


−Ψ++K++K−+(a1, α2)− P++

K−−(a1,a2)K+−(α1,a2)
−
[
K−+(a1,α2)

K+−

[
Φ+−
K−◦

]
+◦

]
◦+
, α ∈ D++

P++

(
1

K−−(a1,α2)K+−
− 1

K−−(a1,a2)K+−(α1,a2)

)
+

[
K−+(a1,α2)

K+−

[
Φ+−
K−◦

]
+◦

]
◦−
, α ∈ D+−.

815

816

vanishes i.e E2 ≡ 0.817
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Proof. Applying Theorem C.1 to
↙
log(K±◦), we find, after applying exp, that818

K−−, K−+, K−−, K+− all go to 1 as |α2| → ∞ in UHP and LHP respectively.819

Moreover, P++ → 0 as |α2| → ∞ in UHP and LHP respectively. Therefore, applying820

Theorem C.1 to Ψ++, Φ+−, Φ−−, and Φ−+ (using the estimates given in Lemmas821

B.2 and B.3) we find that all terms except possibly the bracket terms in E2 vanish822

as |α2| → ∞. But we can use (4.7) to directly obtain estimates for the behaviour823

of K−+(a1,α2)
K+−

[
Φ+−
K−◦

]
+◦

as |α2| → ∞ in S and thereafter apply Theorem C.1 (finding824

that the bracket terms vanishes as |α2| → ∞ in UHP and LHP respectively). See [2]825

for a more detailed discussion.826
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