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Cryptic transmission of SARS-CoV-2 and the 
first COVID-19 wave

Jessica T. Davis1,11, Matteo Chinazzi1,11, Nicola Perra1,2,11, Kunpeng Mu1, Ana Pastore y Piontti1, 
Marco Ajelli3, Natalie E. Dean4, Corrado Gioannini5, Maria Litvinova3, Stefano Merler6, 
Luca Rossi5, Kaiyuan Sun7, Xinyue Xiong1, Ira M. Longini Jr8, M. Elizabeth Halloran9,10, 
Cécile Viboud7 & Alessandro Vespignani1 ✉

Considerable uncertainty surrounds the timeline of introductions and onsets of local 
transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
globally1–7. Although a limited number of SARS-CoV-2 introductions were reported in 
January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, 
combined with a slow growth in testing capacity and porous travel screening10, left 
many countries vulnerable to unmitigated, cryptic transmission. Here we use a global 
metapopulation epidemic model to provide a mechanistic understanding of the early 
dispersal of infections and the temporal windows of the introduction of 
SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that 
community transmission of SARS-CoV-2 was likely to have been present in several 
areas of Europe and the USA by January 2020, and estimate that by early March, only 1 
to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The 
modelling results highlight international travel as the key driver of the introduction of 
SARS-CoV-2, with possible introductions and transmission events as early as 
December 2019 to January 2020. We find a heterogeneous geographic distribution of 
cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across 
US states and 0.19% to 13.2% in European countries. Our approach complements 
phylogenetic analyses and other surveillance approaches and provides insights that 
can be used to design innovative, model-driven surveillance systems that guide 
enhanced testing and response strategies.

A few weeks after the initial announcement of a cluster of atypical pneu-
monia cases in Wuhan, China, the first confirmed cases of coronavirus 
disease 2019 (COVID-19) in the USA and Europe were detected (on 21 
January 2020 in WA, USA1 and on 24 January 2020 in France2). Although 
many more states and countries began to report initial introductions 
in the following weeks, only a few cases were detected daily during this 
time period (Fig. 1a), and most countries adopted a testing policy that 
targeted symptomatic individuals with a travel history linked to China. 
Several reports suggest that the introduction of SARS-CoV-2 occurred 
earlier than initially recognized3–8, raising questions about the effec-
tiveness of the initial testing policies and travel-related restrictions, as 
well as the extent to which the SARS-CoV-2 virus spread through cryptic 
transmission in January and February 2020. To address these questions, 
we use the global epidemic and mobility (GLEAM) model, a data-driven, 
stochastic, spatial, age-structured metapopulation epidemic model11,12, 
to study the global dynamic underlying the evolution of the COVID-19 
pandemic in Europe and the USA. Our model maps the plausible path-
ways of the pandemic using information available at the early stages of 

the outbreak and provides a global picture of the cryptic phase as well 
as the ensuing first wave of the COVID-19 pandemic.

We consider data concerning the continental USA and 30 European 
countries (the full list is reported in Extended Data Table 1). The model 
integrates real-time human mobility and population data with a mech-
anistic epidemic model at a global scale, incorporating changes in 
contact patterns and mobility according to the non-pharmaceutical 
interventions (NPIs) implemented in each region. It is calibrated on 
international case introductions out of mainland China at the early 
stage of the pandemic using an approximate Bayesian computation 
(ABC) methodology13. The model returns an ensemble of stochastic 
realizations of the global epidemic spread including international and 
domestic infection importations, incidence of infections and deaths 
at a daily resolution (see Methods). In the following text, we provide a 
detailed discussion of the analyses and results concerning European 
countries and the US states; however, to further test and validate our 
approach, in the Supplementary Information, we report the modelling 
results for 24 additional countries that are globally representative, 
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including countries of world regions such as Latin America, the Middle 
East, Africa, East Asia and Oceania.

In Fig. 1b we show the model estimates of the median daily incidence 
of new infections up to 21 February 2020, for both the USA and Europe. 
These values are much larger than the number of officially reported 
cases (see Fig. 1a), highlighting the substantial number of potential 
transmission events that may have already occurred before many 
states and countries had implemented testing strategies independ-
ent of travel history. As validation we compare our model’s estimates 
of the number of infections during the week of 8 March 2020 to the 
number of cases reported during that week within each US state and 
European country with at least one reported case (shown in Fig. 1b 
inset). While we see a strong correlation between the reported cases 
and our model’s estimated number of infections (Pearson’s correlation 
coefficient on log values, USA: 0.79, P < 0.001; Europe: 0.80, P < 0.001), 
far fewer cases had actually been reported by that time. If we assume 
that the number of reported cases and simulated infections are related 
through a simple binomial sampling process, we find that on average 
9 in 1,000 infections (90% confidence interval (CI) 1–35 per 1,000) 
and 35 in 1,000 infections (90% CI 4–90 per 1,000) were detected by 

8 March 2020 in the USA and Europe, respectively. As testing capacity 
increased, the ascertainment rate grows and our estimates increase to 
detecting 17 in 1,000 infections (90% CI 2–55 per 1,000) by 14 March 
2020 in the USA and 77 in 1,000 infections (90% CI 5–166 per 1,000) 
in Europe. The estimated ascertainment rates are in agreement with 
independent results based on different statistical methodologies14–16. 
In Fig. 1c we show the probability that a city in the USA or Europe had 
generated at least 100 infections by 21 February 2020. We see that 
the progression of the virus through the USA and Europe was both 
temporally and spatially heterogeneous. While many cities had not yet 
experienced much community transmission by late February, a few 
areas such as New York City and London are very likely to have already 
had local outbreaks.

Onset of local transmission
The model’s ensemble of realizations provides a statistical description 
of all the potential pandemic histories compatible with the initial evolu-
tion of the pandemic in China. Rather than describing a specific, causal 
chain of events, we can estimate possible time windows pertaining to 
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Fig. 1 | Early picture of the COVID-19 outbreak in Europe and the USA.  
a, Timelines of the daily reported and confirmed cases of COVID-19 in Europe 
(left) and the USA (right). BEL, Belgium; ESP, Spain; EU, European Union; FIN, 
Finland; FRA, France; GER, Germany; ITA, Italy; SWE; Sweden. b, Model-based 
estimates for the daily number of new infections in Europe (left) and the USA 
(right). The model estimates reported are the median values with the IQR 
obtained with an ABC calibration method using n = 200,000 independent 
model realizations. The inset plots compare the weekly incidence of reported 
cases with the median, weekly incidence of infections estimated by the model 

for the week of 8–14 March 2020 for the contiguous US states and European 
countries that reported at least one case (Europe, n = 30; USA, n = 48). Circle 
size corresponds to the population size of each state and country. The 
correlations were calculated using the Pearson correlation coefficient with a 
two-sided P value (Europe: ρ = 0.80, P < 0.001; USA: ρ = 0.79, P < 0.001). c, The 
probability that a city in Europe (left) and the USA (right) had generated at least 
100 cumulative infections by 21 February 2020. Colour and circle size are 
proportional to the probability.
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the initial chains of transmission in different geographical regions. 
We define the onset of local transmission for a country or state as the 
earliest date when at least 10 new infections are generated per day. This 
number is chosen because at this threshold the likelihood of stochastic 
extinction is extremely small17,18. As detailed in the Supplementary Infor-
mation, further calibration on the US states and European countries 
suggests posterior values of R0 ranging from 2.4 to 2.8. These values are 
consistent with many other (country-dependent) estimates19–24. At the 
same time, given the doubling time of the number of COVID-19 cases 
before the implementation of public health measures, any variation of 
a factor 2 around the 10 infections per day threshold corresponds to a 
small adjustment of 3−5 days to the presented timelines.

In Fig. 2, we show the posterior probability distribution, p(t), of the 
week, t, of the onset of local transmission for 15 US states (Fig. 2a) and 
European countries (Fig. 2b) (see Supplementary Information for all 
states and countries). We also calculate, for each country or state, the 
median date, T, that identifies the first week in which the cumulative 
distribution function is larger than 50%. Among the US states, CA and 
NY have the earliest dates, T, by the week of 19 January (CA) and 2 Feb-
ruary (NY) 2020. In Europe, Italy, the UK, Germany and France are the 
first countries with T close to the end of January 2020. However, it is 
worth noting that each distribution, p(t), has a support spanning several 
weeks. In Italy, the 5th and 95th percentiles of the p(t) distribution are 
the week of 6 January and the week of 30 January 2020, respectively. 
These dates also suggest that it is not possible to rule out introductions 
and transmission events as early as December 2019, although the prob-
ability of this is very small.

For each state in the USA and each country in Europe, we compared 
the order in which they surpassed 100 cumulative infections in the 
model and in the surveillance data (gathered from the John Hopkins 
University Coronavirus Resource Center25). In Extended Data Fig. 1a 
we plot the ordering for states and compute the Kendall rank correla-
tion coefficient τ (see Supplementary Information). The correlation 
is positive (τEU= 0.71, P < 0.001 and τUS = 0.68, P < 0.001) indicating that, 
despite the detection and testing issues, the expected patterns of epi-
demic diffusion are largely described by the model in both regions.

SARS-CoV-2 introductions
As the model allows the recording of the origin and destination of travel-
lers carrying SARS-CoV-2 at the global scale, we can study the possible 
sources of SARS-CoV-2 introductions for each US state and European 
country. More specifically, we record the cumulative number of intro-
ductions in each stochastic realization of the model until 30 April 2020. 
In Fig. 3 we visualize the origin of the introductions considering some 
key geographical regions (for example, Europe and Asia) while keeping 
the USA and China separate and aggregating all of the other countries 
(Others). For both the USA and Europe, the contribution from mainland 
China is barely visible and the local share (that is, sources within Europe 
and the USA) becomes significantly higher across the board. Hence, 
while introduction events in the early phases of the outbreak were key 
to start local spreading (see details in the Supplementary Information), 
the cryptic transmission phase was sustained largely by internal flows. 
Domestic SARS-CoV-2 introductions to 30 April 2020 account for 69% 
(interquartile range (IQR) 60%−81%) of the introductions in CA, 78% 
(IQR 71%−87%) in TX and 69% (IQR 60%−80%) in MA, which is supported 
by phylogenetic analysis26. European origins account for 69% (IQR 
60%−80%), 84% (IQR 79%−91%) and 58% (IQR 48%−68%) of the intro-
ductions in Italy, Spain and the UK, respectively. In the Supplementary 
Information, we report the full breakdown for all states and countries.

It is also necessary to distinguish between the full volume of 
SARS-CoV-2 introductions and the introduction events that could be 
relevant to the early onset of local transmission in each stochastic reali-
zation of the model. To this point, it is worth stressing that seeding 
introductions are different from the actual number of times the virus 
has been introduced to each location with subsequent onward transmis-
sion. Even after a local outbreak has started, future importation events 
may give rise to additional onward transmission forming independently 
introduced transmission lineages of the virus27. In the model, we can 
investigate seeding events by recording introduction events before the 
local transmission chains were established. We report the results of this 
analysis in the Supplementary Information, showing that importations 
from mainland China may be relevant in seeding the epidemic in January, 
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Fig. 2 | Timing of the onset of local transmission. a, b, Posterior distributions 
of the week in which each US state (a) or European country (b) first reached 10 
locally generated SARS-CoV-2 transmission events per day. 

Countries and states are ordered by the median date of their posterior 
distribution. The week of this date corresponds to the dates reported on the 
vertical axis.
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but then play a comparatively small role in the expansion in the number 
of COVID-19 cases in the USA and Europe owing to the travel restrictions 
imposed to/from mainland China after 23 January 2020.

The early timing of the initial introductions and diffusion pattern of 
SARS-CoV-2 were driven by air travel. We find a positive correlation 
(τEU = 0.66, P < 0.001 and τUS = 0.66, P < 0.001) comparing the ordering 
of states according to when they surpassed 100 cumulative, reported 
cases (referred to as the epidemic order) and their domestic and inter-
national air travel volume rank (Extended Data Fig. 1B). Similar obser-
vations have been reported in China, where the initial spreading of the 
virus outside Hubei was strongly correlated with the traffic to/from 
the province28. Other factors such as population size are also correlated 
with both the travel flows (τEU = 0.59, P < 0.001 and τUS = 0.7, P < 0.001) 
and the epidemic order (τEU = 0.46, P < 0.001 and τUS = 0.68, P < 0.001), 
which are discussed in detail in the Supplementary Information. In our 
model, it is not possible to exclude increased contacts in highly popu-
lated places before social distancing interventions and disentangle 
this effect from increased seeding due to the correlation between travel 
volume and population size.

COVID-19 burden
Starting in March 2020, the establishment and timing of NPIs as well 
as other epidemiological drivers (that is, population size and density, 
age structure and so on) determined the disease burden in the USA and 
Europe29–32. We account for these features by calibrating the model 
results, individually, for each US state and European country. More 
precisely, we estimate the posterior distribution of the infection fatal-
ity ratio (IFR) and infection attack rate in each US state and European 
country. To this end, we adopt the ABC approach using as evidence the 
number of new deaths reported from 22 March 2020 to 27 June 2020. 
We consider a uniform prior for the average IFR in the range from 0.4% 
to 2% that is age stratified proportional to the IFR values reported in  

ref. 33. We also consider a uniform prior for reporting delays between the 
date of death and reporting ranging from 2 to 22 days in both Europe 
and the USA34. Details are provided in the Supplementary Information.

In Fig. 4a–d, f–i, we report the model fit of the estimated weekly 
deaths of the first wave for selected states and countries. Additional 
model results for all investigated regions including a sensitivity analy-
sis of different calibration methods can be found in the Supplemen-
tary Information. We find a strong correlation between the weekly 
model-estimated deaths and the reported values with a Pearson cor-
relation coefficient of 0.99 (P < 0.001) for both Europe and the USA (see 
Supplementary Fig. 6). As the data suggest, many European countries 
and US states saw peaks in April and May with various decreasing trajec-
tories that depend on the mitigation strategies in place. Additionally, 
we report the estimated posteriors for the cumulative infection attack 
rates and IFRs as of 4 July 2020 in European countries experiencing 
more than 100 total deaths and the top 20 states ranked by infection 
attack rate in the USA.

Within Europe, Belgium has the highest estimated infection attack 
rate of 13.2% (90% CI [8.5%−28.3%]) by 4 July 2020, in agreement with the 
results in ref. 14. Furthermore, by that time Belgium reported the high-
est COVID-19 mortality rate out of the European countries investigated 
with 8.5 deaths per 10,000 individuals. However, Italy is estimated to 
have the highest median IFR of 1.4% (90% CI [0.6%–1.8%]), which aligns 
with other ranges reported in the literature35,36. The US states with the 
highest infection attack rates are located within the northeast and 
experienced a significant first wave during March–April 2020. NY and 
NJ are the top two states with infection attack rates of 13.4% (90% CI 
[9.1%−26.7%]) and 15.2% (90% CI [10.2%−31.3%]), respectively. These 
numbers are aligned with estimates from New York City reported in 
ref. 37. In the Supplementary Information, we report summary tables 
with estimated IFRs, infection attack rates and the reproductive num-
ber in the absence of mitigation measures for all calibrated US states 
and European countries. Additionally, we compare our attack rate 
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considering the total in-flow for each state so that the sum of importation 
flows, for each state, is 1. In the Supplementary Information, we report the 
complete list of countries contributing as importation sources in each 
geographical region.
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estimates to the prevalence of individuals with SARS-CoV-2 antibodies 
from serological studies across the USA and Europe (Extended Data 
Fig. 1D). The seroprevalence estimates are compared to the model 
estimates during the same time window the studies were performed 
(details on the seroprevalence data from this figure can be found in 
Supplementary Table 8 and Supplementary Section 9.3).

Discussion
The model presented here captures the spatial and temporal heterogeneity 
of the early stage of the pandemic, going beyond the single-country-level 
reconstruction. It provides a mechanistic understanding of the underly-
ing dynamics of the pandemic’s interconnected evolution. Furthermore, 
rather than showing specific evidence for early infection in a few locations, 
our study aims at providing a statistical characterization and quantifica-
tion of the initial transmission pathways at a global scale. Our results can 
be compared to and complement analyses based on gene sequencing 
and travel volumes. We find that 72% of the early introductions to Italy, 
before the local outbreak, are linked to China, which is in agreement with 
ref. 38 highlighting the key role of importations between these regions 
at the beginning of the pandemic. Additionally, similar to our findings, 
ref. 27 estimates that the majority of importation events to April 2020, 
associated with onward transmission in the UK, came from Europe. The 
contributions from China are quantified below 1% and limited to the very 
early phase. Furthermore, seeding events from the USA are estimated to 
be below 3%, which aligns with our estimate (8%; IQR 3%−9%). However, 
their results point to a larger share from Europe (∼90%) compared to ours 
(58%; IQR 48%−68%), and conversely, we estimate a larger contribution 
from Asia (27%; IQR 19%−35%). As our analysis is a statistical description 
of the possible introduction pathways, differences could arise due to our 
model design, and also from genomic sampling biases39.

The sources of introduction of SARS-CoV-2 infections in Europe and 
the USA changed substantially and rapidly through time. This caused 
reactive response strategies, such as issuing travel restrictions target-
ing countries only after local transmission is confirmed, ineffective 
at preventing local outbreaks. Our results suggest that many regions 
in the USA and Europe experienced an onset of local transmission in 
January and February 2020, during the time when testing capacity 
was limited. If testing had been more widespread and not restricted 
to individuals with a travel history from China, there would have been 
more opportunities for earlier detection and interventions. In the Sup-
plementary Information, we report a counterfactual scenario where 
we assume broader testing specifications not based on the individual 
travel history and find that the epidemic progression is considerably 
delayed (see Supplementary Section 8).

As testing capacity increased and more cases were detected, many 
governments began to issue social distancing guidelines to mitigate the 
spread of SARS-CoV-2. The first European country to implement a cordon 
sanitaire was Italy on 23 February 2020, for a few northern cities40. Many 
other countries followed suit and implemented national lockdowns in 
March 2020 (refs.30,41); however, this was weeks after our model estimates 
that SARS-CoV-2 was introduced and locally spreading. We find a strong 
correlation between the number of cases reported by the date of a lock-
down/social distancing measure and the cumulative infections projected 
by 4 July 2020 (Extended Data Fig. 1C), indicating that the earlier NPIs had 
been issued, the smaller the COVID-19 burden experienced during the first 
wave. This is in agreement with other analyses showing that the timing 
of NPIs is crucial in limiting the burden of COVID-19 (refs.19,29,42–48). Over-
all, our results strengthen the case for preparedness plans with broader 
indication for testing that are able to detect local transmission earlier.

As with all modelling analyses, results are subject to biases from the 
limitations and assumptions within the model as well as the data used in its 
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Fig. 4 | The burden of the first wave in Europe and the USA. a–d, Model fit of 
the estimated weekly deaths for selected countries in Europe (France, a; Italy, 
b; Sweden, c; UK, d). e, Posterior distributions of the infection attack rates and 
IFRs by 4 July 2020, for European countries where there were at least 100 
reported deaths. f–i, Model fit of the estimated weekly deaths for selected 
states in the USA (CA, f; IL, g; MA, h; NY, i). j, Posterior distributions of the 

estimated infection attack rates and IFRs by 4 July 2020 for the top 20 US states 
(ranked according to their infection attack rates). The curves in a–d and f–i 
show the median values and 90% CIs. For e and j, the outer, lighter boxes 
represent the 90% CI, the darker, inner boxes represent the IQR, and the 
vertical lines represent the median value. Posterior distributions in e and j are 
the result of the ABC analysis of 200,000 independent model realizations.



132  |  Nature  |  Vol 600  |  2 December 2021

Article
calibration. The model’s parameters, such as generation time, incubation 
period and the proportion of asymptomatic infections, are chosen accord-
ing to the current knowledge of SARS-CoV-2. Although the model is robust 
to variations in these parameters (see the Supplementary Information for 
the sensitivity analysis), more information on the key characteristics of 
the disease would considerably reduce uncertainties. The model calibra-
tion does not consider correlations among importations (that is, family 
travel) and assumes that travel probabilities are age specific across all 
individuals in the catchment area of each transportation hub.

In light of the assumptions and limitations inherent to this model-
ling approach, the results are able to complement the SARS-CoV-2 
genome sequencing analyses used to reconstruct the early epidemic 
history of the COVID-19 pandemic38. The methods used in this analysis 
offer a blueprint to identify the most likely early spreading dynamics of 
emerging viruses, and they can be used as a real-time risk assessment 
tool. Anticipating the locations where a virus is most likely to spread 
to next could be instrumental in guiding enhanced testing and surveil-
lance activities. The estimated SARS-CoV-2 importation patterns and 
the cryptic transmission phase dynamics are of potential use when plan-
ning and developing public health policies in relation to international 
travelling, and they could provide important insights into assessing the 
potential risk and impact of emerging SARS-CoV-2 variants in regions 
of the world with limited testing and genomic surveillance resources.

Online content
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods

The GLEAM model
The GLEAM model is a stochastic, spatial, age-structured metapopula-
tion model. Previously this model was used to characterize the early 
stage of the COVID-19 epidemic in mainland China to estimate the effec-
tiveness of travel bans and restrictions49. The GLEAM model divides the 
global population into more than 3,200 subpopulations in roughly 200 
different countries and territories interconnected by realistic air-travel 
and commuting mobility networks. A subpopulation is defined as the 
catchment area around major transportation hubs. The airline trans-
portation data encompass daily travel data in the origin–destination 
format from the Official Aviation Guide database50 reflecting actual 
traffic changes that occurred during the pandemic. Ground mobility 
and commuting flows are derived from the analysis and modelling of 
data collected from the statistics offices of 30 countries on 5 conti-
nents11,12. The international travel data account for travel restrictions 
and government-issued policies. Furthermore, the model accounts for 
the reduction of internal, country-wide mobility and changes in contact 
patterns in each country and state in 2020. Specific model details are 
reported in the Supplementary Information.

SARS-CoV-2 transmission dynamics
The transmission dynamics take place within each subpopulation and 
assume a classic compartmentalization scheme for disease progression 
similar to those used in several large-scale models of SARS-CoV-2 trans-
mission15,51–55. Each individual, at any given point in time, is assigned to 
a compartment corresponding to their particular disease-related state 
(specifically, one could be susceptible, latent, infectious or removed)49. 
This state also controls the individual’s ability to travel (details in the Sup-
plementary Information). Individuals transition between compartments 
through stochastic chain binomial processes. Susceptible individuals 
can acquire the virus through contact with individuals in the infectious 
category and can subsequently become latent (that is, infected but not 
yet able to transmit the infection). The process of infection is modelled 
using age-stratified contact patterns at the state and country level56,57. 
Latent individuals progress to the infectious stage at a rate inversely pro-
portional to the latent period, and infectious individuals progress to the 
removed stage at a rate inversely proportional to the infectious period. 
The sum of the mean latent and infectious periods defines the generation 
time. Removed individuals are those who can no longer infect others. To 
estimate the number of deaths, we consider a uniformly distributed prior 
of the IFRs (ranging from 0.4% to 2%) that is age stratified proportional 
to the values estimated by ref. 33 and incorporates reporting delays. The 
transmission model does not assume heterogeneities due to age differ-
ences in susceptibility to the SARS-CoV-2 infection for younger children 
(1–10 years old). This is an intense area of discussion58,59,60. The transmis-
sion dynamic and the offspring distribution of infectious individuals in 
the model will depend on the specific details of each population, local 
and global mobility, NPIs and so on. While overdispersion in transmission 
varies by location in our model, we find that overall, it is consistent with 
25% of primary infections causing 75% of transmission in our simulations 
(Supplementary Fig. 9). Additional simulations considering a fixed level 
of dispersion, informed by past studies, result in differences of less than 
3 days in onset times (Supplementary Fig. 10; see also the Supplementary 
Information for further discussion).

Model calibration
We assume a start date of the epidemic in Wuhan, China, that falls 
between 15 November 2019 and 1 December 2019, with 20 initial infec-
tions49,51,61,62,63. This considers that our model has a posterior distri-
bution for the emergence of the outbreak in China that includes the 
possibility of transmission starting in October, 2019 (refs. 64,65). The 
model generates an ensemble of possible epidemic realizations and is 
initially calibrated using an approximate Bayesian computation (ABC) 

rejection approach13 based on the observed international importations 
from mainland China up to 21 January 2020 (ref. 49). Only a fraction of 
imported cases is generally detected at the destination10,66. According 
to the estimates proposed in ref. 67, we stratify the detection capacity 
of countries into three groups: high, medium, and low surveillance 
capacity according to the Global Health Security Index68, and assume 
that asymptomatic infections are never detected. The model calibra-
tion does not consider correlated importations (for example, family 
travel) and assumes that travel probabilities are homogeneous across all 
individuals in each subpopulation. We further calibrate our model using 
the temporal ordering of the onset of local transmission (as defined in 
the section ‘Onset of local transmission’) of the countries investigated. 
If we consider the epidemiological evidence38,69,70, Italy was the first 
European country to experience substantial community transmission. 
Therefore, throughout the paper, we constrain the ensemble of simula-
tions focusing only on stochastic realizations in which Italy is the first 
country, in the group under examination, to experience sustained local 
transmission (see Supplementary Information for details and further 
analyses of unconstrained simulations). Furthermore, we perform 
for each state and country an additional ABC rejection analysis using 
as evidence the weekly reported deaths in the time window starting 
on 22 March 2020 and ending on 27 June 2020. A full description of 
the model calibration is provided in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Epidemic surveillance data were collected from the Johns Hopkins 
Coronavirus Resource Center (https://coronavirus.jhu.edu/). Propri-
etary airline data are commercially available from the Official Aviation 
Guide (https://www.oag.com/) and International Air Transport Associa-
tion (https://www.iata.org/) databases. Other model intervention data 
include data from Google’s COVID-19 Community Mobility Reports 
available at https://www.google.com/covid19/mobility/ and the Oxford 
COVID-19 Response Tracker available at https://github.com/OxCGRT/
covid-policy-tracker. Source data are provided with this paper.

Code availability
The GLEAM model is publicly available at http://www.gleamviz.org/. 
All data analyses of model results were performed using Python v3.8.
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Extended Data Fig. 1 | Correlation Analysis for European countries and US 
states. (a) The correlation between the ordering of each country/state to reach 
100 infections in the model-estimates and to reach 100 reported cases in the 
surveillance data (Europe: n = 23, US: n = 49). (b) The correlation between the 
ordering of each country/state considering the time needed to reach 100 
reported cases in the surveillance data and the ranking of the combined 
international and domestic air traffic (Europe n = 23, US n = 49). Correlations in 
(a, b) are computed considering the Kendall rank correlation coefficient 
reported with a two-sided p-value, we consider European countries that 
reached at least 100 reported deaths by July 4, 2020 and countries in 
Scandinavia (c) Left: the correlation between the number of cases reported by 
the date of lockdown for European countries (from Table 4 in Ref. 71) and the 
estimated total number of infections by July 4, 2020 (median values, n = 15). 
Right: the correlation between the number of cases reported by March 16, 2020 

(the date the “15 days to slow the spread” guidelines were released in the US  
Ref. 72) for each US state and the estimated total infections by July 4, 2020 
(median values, n = 36). We consider states that reached at least 100 reported 
deaths by July 4, 2020. The circle sizes in (a–c) correspond to the population 
sizes of each country/state. (d) The correlation between the model-estimated 
infection attack rate and the serological prevalence collected from studies, n = 
20. Estimated attack rates are the posterior distributions that are the result of 
the ABC analysis of 200,000 independent model realizations. Data points refer 
to different dates and the locations for which serological surveys were available 
(see table S8 in SI for study descriptions). The model-estimated attack rates use 
the median value, and the error bars represent the 90%CI. The correlations are 
calculated using the Pearson correlation coefficient in (c, d) reported with a 
two-sided p-value.
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Extended Data Table 1 | Regions under investigation

List of European countries and US states analyzed.
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Statistics
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n/a Confirmed
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis The GLEAM model is publicly available at http://www.gleamviz.org/. All data analyses of model results were performed using python v3.8

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Epidemic surveillance data were collected from the Johns Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/. Proprietary airline data are 
commercially available from OAG (https://www.oag.com/) and IATA (https://www.iata.org/) databases. Other model intervention data includes Google's COVID-19 
Community Mobility Reports available at https://www.google.com/covid19/mobility/ and the Oxford COVID-19 Response Tracker available at https://github.com/
OxCGRT/covid-policy-tracker.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We use all available data generated by model simulations. We do not generate primary biological or epidemiological data from field 
experiments. 

Data exclusions No data were excluded

Replication All data used are described in the data availability statement. Model generated data were generated synthetically using the GLEAM tool 
documented here: http://www.gleamviz.org/simulator/GLEAMviz_client_manual_v7.0.pdf

Randomization N/A. We did not perform/consider individual subject studies.We did not allocate any individuals to control or experimental groups. 

Blinding N/A. We did not perform/consider individual subject studies. We did not allocate any individuals to control or experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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