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1 Introduction

At first glance, scattering amplitudes and classical general relativity seem to have little
in common. Amplitudes are quantum-mechanical objects, most directly relevant to phe-
nomenology at particle colliders. Nevertheless recent years have seen an explosion of work
studying applications of amplitudes to gravity, and (conversely) the implications of deep
results in gravity for scattering amplitudes, see, for example the very recent references [1–29].

Much of this work has been motivated by the advent of gravitational-wave astrophysics [3,
30–64]. Like collider phenomenology, gravitational-wave physics will develop into a precision
science — and precision is a core success of the wider amplitudes programme. Scattering
amplitudes have applications to gravitational waves because they can be used to compute
interaction potentials [3, 30, 31], or more general effective Lagrangians [32–35], which are
relevant to compact binary coalescences. In scattering systems, amplitudes can be used
rather directly to evaluate observables of interest [1, 2, 45–47, 65], and at least some of
these observables may then be analytically continued to the bound regime [5, 53–55].

An additional motivation exists, however, for studying scattering amplitudes in classical
gravity. This motivation is founded on the existence of the double copy in amplitudes.

The double copy, first discovered in string theory by Kawai, Lewellen and Tye [66] and
more recently invigorated and deepened by Bern, Carrasco and Johansson [67, 68], is an
algorithm for computing scattering amplitudes in gravity given amplitudes in Yang-Mills
(YM) theory [67].1 From the perspective of the double copy, gravity looks to some extent
like the “square” of YM theory. The double copy then provides an entirely new perspective
on classical gravity, very different to the Einstein equation and the usual geometric approach
to general relativity. Since this new perspective should make some things clear which were
previously opaque, it is very interesting to study what the double copy really means for
classical spacetimes. Indeed, this has been an important topic in the recent literature, for
instance, [70–118].

In this article, our interest is in a systematic exploration of the double copy at its
simplest: the statement that, up to a constant factor, the three point amplitude in gravity is
the square of the three point amplitude in YM theory. This statement holds (famously) for
the three-point amplitude involving three gravitons, which is the square of the three-gluon
amplitude. It also holds for the three-point amplitude describing the interaction between a
massive particle and a graviton, which is the square of the three-point amplitude describing
the interaction between a charge and a gluon. In fact, we may equally well say that the
gravitational three-point amplitude is the square of the amplitude for a photon interacting
with a point charge, because at the level of these three-point amplitudes the non-linearity
of the YM field is irrelevant.

The study of amplitudes applied to classical gravity has now given us a rather direct
link between amplitudes and solutions of the Einstein equation. This link proceeds by
viewing the Riemann curvature tensor far from the source as an operator in the quantum
theory, whose expectation value can be computed perturbatively from amplitudes. This
is particularly simple at linearised level, where the Riemann tensor is gauge invariant. In

1The double copy was reviewed comprehensively in reference [69].
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the correspondence regime where quantum effects are negligible, this expectation value
must be the classical value of the curvature. This idea is an application of the “KMOC”
formalism [45, 46], which was originally developed with gravitational waves in mind. From
our perspective, however, the link allows us to directly determine what the double copy
means at the level of classical solutions.

In previous work [119], four of the authors studied the simplest example of this link.
The photon/charge three-point amplitude computes the Coulomb field, and maps under
the double copy to the gravitational massive three-point amplitude, which computes the
(linearised) Riemann curvature of the Schwarzschild solution. Thus, we see that the double
copy induces a map between Coulomb and Schwarzschild. As phrased, the map applies to
linearised gravity; but since Schwarzschild is a Kerr-Schild spacetime, this map extends from
the linearised solution to the exact solution with appropriate coordinates. This relation
between Coulomb and Schwarzschild is an example of the “classical double copy”, previously
proposed by two of the authors and White in [70]. Thus, the KMOC formalism allowed us
to show (at least in this example) that the classical double copy is the double copy.

Yet the classical double copy has been applied to solutions far more general than
Coulomb and Schwarzschild. Indeed, it can be phrased more precisely at the level of curvature
spinors [120–123]: the Weyl spinor in gravity and the Maxwell spinor in electrodynamics
(i.e. linearised YM). In that context, the classical double copy becomes the statement that the
Weyl spinor is a symmetrised square of the Maxwell spinor, up to an overall scalar factor [84].
In this Weyl form, the classical double copy was applied to all vacuum Petrov type D solutions
of the Einstein equation and has been explored also for vacuum type N solutions [124]. A
twistorial interpretation of the Weyl double copy is being developed in [125–131].

In this article, our main goal is to connect the Weyl double copy to scattering amplitudes
beyond the example in [119]. To do so, we must consider more general amplitudes than
the simple Coulomb (charge/photon) amplitude and its double copy to a Schwarzschild
(mass/graviton) amplitude. Luckily, more general amplitudes are indeed available. In gauge
theory, two non-trivial deformations of the Coulomb amplitude exist. The first of these
introduces a complex phase eiηθ in the amplitude, where η is the helicity of the photon [132].
This deformation has the interpretation of an electric/magnetic duality rotation, allowing us
to introduce magnetic charges. The second deformation is slightly more complicated. For a
photon with momentum k, it introduces a factor e−ηk·a in the amplitude, where a is a four-
vector parameter. Rather remarkably, this deformation leads to an amplitude describing
a particle with large classical spin aµ interacting with a photon. It may be derived [133]
by studying the large spin limit of the “minimally coupled” amplitudes of Arkani-Hamed,
Huang and Huang [134], and is known to be a form of the Newman-Janis shift [135].

Indeed, in previous work [20], these amplitudes, and their gravitational double copies,
were explored in the context of the classical double copy. The double copies were understood
as describing the Kerr-Taub-NUT family of spacetimes. However, in this work, it was
not yet understood how to compute the curvature directly from amplitudes, and so the
evidence in favour of the double copy was gathered by scattering a particle off the source,
and checking that the results agree when the scattering is computed with amplitudes or the
geodesic equation. Now, we are equipped to compute the curvature directly.

– 2 –
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Furthermore, our greater control over the relation between the amplitudes double copy
and the classical double copy now allows us to explore more general double copies, where
we allow dilatons and axions to propagate in addition to gravitons. These extra degrees of
freedom arise in a very simple manner. Given amplitudes A± for a photon of helicity ±, we
may construct the double copies A+A+ and A−A−. These amplitudes describe gravitons,
since the helicities add up. We can also construct, if we wish, two more amplitudes: A+A−
and A−A+. These amplitudes source a complex scalar, interpreted as a scalar dilaton
and a pseudoscalar axion. If we include these scalar amplitudes in our definition of the
gravitational theory, then the full non-linear solutions will involve an interplay between the
purely gravitational and scalar degrees of freedom.

The more general double copy at three-point level in fact connects Yang-Mills theory
to the universal massless sector of supergravity, sometimes known as NS-NS gravity. It is
also known as N = 0 supergravity, although of course this is a purely bosonic theory with
no supersymmetry in sight. Nevertheless, its significant role in string theory makes this
system particularly interesting.

There is an immediate obstacle in the way of a direct application of amplitudes to
solutions of NS-NS gravity. The KMOC formalism connects curvatures to amplitudes. What
kind of curvature should we use for NS-NS gravity? We find that the right object to use is a
generalisation of the Riemann curvature associated with a torsionful, but metric-compatible,
connection. The spinorial form of this curvature decomposes, at linearised level, into a fully
symmetric (therefore spin two) object recovering the Weyl spinor, and additional objects
describing the field strengths of the scalars. As we will see, the family of solutions we
encounter are of type Kerr-Taub-NUT-axion-dilaton.

It is further possible to generalise the double copy by considering asymmetric products
of gauge theories: that is, to multiply two different gauge theories in the construction of the
gravitational theory. The simplest example of this idea is to multiply pure YM theory by a
Yang-Mills-scalar theory. At the level of amplitudes, this means that we may also construct
amplitudes of the type A±A0, where A0 describes the source interacting with a massless
scalar particle. The resulting double copy theory is Einstein-Yang-Mills-axion-dilaton.
These heterotic double copies are considered here for the first time in the context of the
Weyl double copy, although some solutions in this theory have been studied using a double-
field-theory extension of the Kerr-Schild double copy [136] as well as in the convolutional
approach in supersymmetric theories [85, 137]. Interestingly, the Kerr-Newman solution has
also been associated to scattering amplitudes [138], but not as a double copy. The natural
double copy theory is heterotic gravity.

Now, we turn to a crucial issue facing any application of three-point amplitudes. This
issue is that, for real kinematics in Lorentzian signature, the on-shell constraints on the
three particles force the energy of the massless particle (photon, graviton or scalar) to vanish.
This fact forces us to consider an analytic continuation away from Lorentzian signature,
as is familiar from the BCFW recursion relations [139]. In our case, we could consider a
complex contour of integration, but as in [119] we choose instead to work in “split” metric
signature2 (+,+,−,−). We may analytically continue from this signature back to the

2For related works on split signature and its application, see also [130, 140–144].
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physically-relevant Lorentzian case. However, it may be worth remarking that split signature
spacetimes have their own significance in general relativity: for example, real double-Kerr-
Schild coordinates are available in split signature for certain spacetimes [145, 146].3

Finally, we will also consider the relation of our formalism for the classical double
copy, based on scattering amplitudes in momentum space, to position-space prescriptions.
In particular, we will see that it provides an on-shell momentum space version of the
convolutional prescription of [91, 93, 147–150]. Another natural question is why some
solutions admit an equivalent double copy interpretation that is local in position space
(i.e. not written as a convolution), as in the Kerr-Schild double copy [70] and in the original
application of the Weyl double copy [84]. For various examples, we will identify the property
of the solutions that allows for this simplicity.

The structure of our paper is as follows. We will begin with a short overview which
aims to give the reader a bird’s eye view of the main ideas in our paper. In section 3,
we explain the geometric construction of the generalised curvature relevant when axions
and dilatons are included in the double copy, thereby introducing a key tool which we will
use in the remainder of the article. We move on, in section 4, to review point charges in
split signature and the determination of curvatures using amplitudes in that signature. In
section 5, we describe the family of gauge solutions of interest to us. The double copy of
these solutions is the content of section 6. We work in the context of NS-NS gravity for
generality. In section 7, we study the asymmetric double copy case of heterotic gravity.
Section 8 deals with the Fourier transform from momentum to position space. We conclude
with a discussion of our work and its implications.

2 Overview

The basic idea of our paper is that classical solutions can be summarised by three-point
scattering amplitudes which generate them in the classical limit. These are amplitudes for
the emission by a massive particle (the source) of a massless boson associated to the classical
field. The amplitudes have support in Lorentzian signature with complex momenta or in
split signature with real momenta. Much of the paper consists of the detailed construction
of solutions from the amplitudes, i.e. making the statements in this section explicit.

Let us start with the amplitudes in gauge theory, using Lorentzian signature for now:

Gauge theory: Aη eη (−k·a+iθ) , η = ±1 . (2.1)

Here, η denotes the helicity of the gauge boson, and kµ denotes its momentum. The case
η = 1 generates a self-dual field, and η = −1 an anti-self-dual field. The correspondence is

|k〉A|k〉B A+ e
−k·a+iθ oFT−→ φAB(x) , (2.2)

[k|Ȧ[k|Ḃ A− e
k·a−iθ oFT−→ φ̃ȦḂ(x) , (2.3)

3This requires the existence of two null vector fields that are mutually orthogonal, which is impossible in
Lorentzian signature.
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where the null momentum of the gauge boson is kAḂ = |k〉A[k|Ḃ, and oFT stands for
on-shell Fourier transform (from k to x). The Maxwell field strength is, as usual,

FAȦBḂ = φAB εȦḂ + φ̃ȦḂ εAB . (2.4)

Both the self-dual part and the anti-self-dual part obtained from the amplitudes are solutions
to the equations of motion in their own right, but only their combination (when φ̃ȦḂ is the
complex conjugate of φAB) yields a real Maxwell field in Lorentzian signature. Meanwhile,
the parameters aµ and θ in equation (2.1) characterise the massive particle. When both
vanish, the contributions from η = 1 and η = −1 combine to generate the Coulomb solution,
as described in [119]. The timelike vector aµ parametrises the spin, and means that the
classical ‘particle’ is actually an extended object of size a =

√
|aµaµ| sourcing a dyonic

gauge field. In the case θ = 0, this gauge field has been dubbed
√
Kerr, as it is the ‘single

copy’ of Kerr [70, 133]. The dyonic parameter θ represents an electric-magnetic duality
transformation [132], where the cases θ = 0 mod π and θ = π/2 mod π describe pure
electric charge and pure magnetic charge, respectively.

We may generate linearised gravity solutions from the amplitudes obtained via the
double copy, using ‘left’ and ‘right’ copies of (2.1):

Gravity: AηL eηL (−k·aL+iθL) ×AηR e
ηR (−k·aR+iθR) . (2.5)

As the gravitational analogue of the gauge field strength, we will introduce a generalised
curvature tensor that incorporates all the gravity fields. In a spinorial decomposition,
we have

RAȦBḂCĊDḊ = XABCD εȦḂ εĊḊ + X̃ȦḂĊḊ εAB εCD

+ ΦABĊḊ εȦḂ εCD + Φ̃ȦḂCD εAB εĊḊ .
(2.6)

At linearised level, the first line on the right-hand side becomes the Weyl tensor, while
the second line is built from double-derivatives of a complex scalar whose real components
are the dilaton and the axion. In terms of the amplitudes (2.5), the cases (ηL, ηR) = (1, 1)
and (ηL, ηR) = (−1,−1) correspond to self-dual and anti-self gravitons, respectively. The
correspondence is

|k〉A|k〉B|k〉C |k〉D (A+)2 e−k·(aL+aR)+i(θL+θR) oFT−→ XABCD(x) , (2.7)

[k|Ȧ[k|Ḃ[k|Ċ [k|Ḋ (A−)2 ek·(aL+aR)−i(θL+θR) oFT−→ X̃ȦḂĊḊ(x) . (2.8)

These self-dual and anti-self-dual parts combine to form the linearised Weyl tensor of the
Kerr-Taub-NUT solution with rotation parameter aL + aR and dyonic parameter θL + θR.
But we also have the cases of (ηL, ηR) = (1,−1) and (ηL, ηR) = (−1, 1), corresponding to

|k〉A|k〉B[k|Ċ [k|Ḋ A+A− e−k·(aL−aR)+i(θL−θR) oFT−→ ΦABĊḊ(x) , (2.9)

[k|Ȧ[k|Ḃ|k〉C |k〉D A+A− ek·(aL−aR)−i(θL−θR) oFT−→ Φ̃ȦḂCD(x) . (2.10)

It is important to realise that including these extra objects is a choice: we have to decide in ad-
vance if we want our source to couple to axions and dilatons when performing the double copy.

– 5 –
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Even if we do include the dilaton and the axion, they do not backreact on the metric
at linearised level.4 In fact, notice that each of the four choices of (ηL, ηR) generates a
linearised solution to the N = 0 supergravity equations of motion in its own right, because
the equations for the four curvature spinors decouple at linearised level. We obtain a
solution from any linear superposition of the contributions from the four distinct scattering
amplitudes. For instance, a solution where the only non-vanishing curvature component
is XABCD is a self-dual vacuum metric. Any linearised solution can be corrected order by
order in perturbation theory, leading to a fully non-linear solution. A particular solution is
characterised by a particular coupling of the massive ‘particle’ to the gravity fields. Clearly,
only some linear combinations of the four (ηL, ηR)-solutions have a generalised curvature
tensor in Lorentzian signature that is real, namely those for which XABCD and X̃ȦḂĊḊ are
complex conjugate, and ΦABĊḊ and Φ̃ȦḂCD are also complex conjugate. Equivalently, we
can say that the real solutions are those where (ηL, ηR) = (±1,±1) contribute equally, so
that the metric is real, and (ηL, ηR) = (±1,∓1) contribute equally, so that the dilaton and
the axion are real.

The non-uniqueness of the double copy of classical solutions is obvious in this framework.
In previous work [151–153], it was argued that the most general real spacetime that can
be interpreted as a double copy of the Coulomb solution is the solution discovered by
Janis, Newman and Winicour (JNW) [154]. The JNW solution has two parameters: mass
(‘graviton parameter’) and dilaton parameter; Schwarzschild is the case with vanishing
dilaton parameter. In the framework we present here, the two parameters arise from the
linear combination of the real graviton field, such that (ηL, ηR) = (±1,±1), and the real
dilaton field with vanishing axion, (ηL, ηR) = (±1,∓1).

Notice that there is an intricate interplay of parameters in the double copy. Let us
define ā = aL + aR and ∆a = aL − aR, and likewise θ̄ = θL + θR and ∆θ = θL − θR. Of
these four parameters appearing in the linearised gravity solution, only the parameters
ā and θ̄ appear in the graviton components, whereas only the parameters ∆a and ∆θ
appear in the complex scalar and its conjugate. Due to the fact that A+A− is a constant
(i.e. k-independent), as we will review later, the complex scalar is generated by e−k·∆a+i∆θ,
and its conjugate by ek·∆a−i∆θ. Focusing on the duality parameters θ, the effect of θ̄ is
to perform a gravitational Ehlers-type ‘electric-magnetic’ duality transformation of the
metric [132, 155, 156], whereas the effect of ∆θ is to perform an axion-dilaton duality
transformation, well known from supergravity.

In fact, the double copy (2.5) is not yet fully general. That is because there is a
(bi-adjoint) scalar field that is often implicit.5 It is useful to recall the form of the standard
KLT relations for scattering amplitudes [66]: schematically,

Agrav ∼ AYM ×A−1
scalar ×AYM .

Let us focus on three point scattering. In the original context of KLT, the three-point
4In the usual language of supergravity, we are defining these fields in the Einstein frame, where the

propagator unambiguously separates the dilaton and axion from the gravitons.
5We will be working at linearised level, which is the starting point in the perturbative construction of the

solution. Hence, just like we consider an Abelian gauge field, we consider a bi-Abelian bi-adjoint scalar.
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amplitudes involve massless states: three scalars, or three gluons, or three gravity states.
Moreover, at three points, Ascalar is just a constant that is usually implicit. However, the
relevant three-point amplitude for a linearised classical solution is that for a massive particle
to emit one massless particle. So we have to characterise this massive particle in gravity,
gauge theory and scalar theory (in fact, only in two of them since the double copy fixes the
third one). This is the origin of further non-uniqueness in the classical double copy, which
we will now illustrate. For simplicity, we will consider rotation but not a dyonic parameter,
and we will restrict ourselves to real Lorentzian vacuum solutions in gravity. Hence, for
gravity, we will be interested in the Kerr solution. In terms of amplitudes, the solution is
generated by combining the self-dual and anti-self-dual parts,

(A+)2 e− k·a ⊕ (A−)2 e k·a : Kerr(a) , (2.11)

where Kerr(a = 0) = Schwarzschild. We can define the gauge theory ‘single copy’ as

A+ e
−k·a ⊕A− ek·a :

√
Kerr(a) , (2.12)

where
√
Kerr(a = 0) = Coulomb. For the (bi-adjoint) scalar, it is natural to write

e−k·a ⊕ ek·a : scalar(a) . (2.13)

The case scalar(0) = 1/r was described in [119]: it corresponds to the scalar sourced
by a static point particle. As we will see in this paper, the case with rotation scalar(a)
corresponds to the ‘zeroth copy’ appearing as φ in the Kerr-Schild double copy for the Kerr
solution [70]. The ‘particle’ source for scalar(a) is not exactly a point particle, but has size
a =

√
|aµaµ|, which is the precise counterpart to the sources for Kerr(a) and for

√
Kerr(a).6

In the choice made here, of taking the ‘particle’ source to be naturally related in all three
cases (gravity, gauge theory, scalar), the three-point KLT-like relation associated to (2.11) is

(A+ e
−k·a)2

e−k·a
⊕ (A− ek·a)2

ek·a
: Kerr(a) . (2.14)

The point we want to make about the non-uniqueness arising from the bi-adjoint
scalar is that (2.14) is not the only possible double-copy interpretation of the Kerr solution.
Another obvious possibility is

(A+ e
− k·a/2)2

1 ⊕ (A− e k·a/2)2

1 : Kerr(a) . (2.15)

Here, the single copy is

A+ e
−k·a/2 ⊕A− ek·a/2 :

√
Kerr(a/2) , (2.16)

6It may be surprising that, in the case of scalar(a), the rotating source leads to chiral amplitudes e∓k·a for
scalar field emission. These ‘self-dual’ and ‘anti-self-dual’ parts of the scalar are precisely, and respectively,
the complex parts appearing as S and S̄ in the Weyl double copy for the self-dual and anti-self-dual parts
of the Weyl spinor [84]. So this picture is consistent with both the Kerr-Schild double copy and the Weyl
double copy.
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and the zeroth copy is

1⊕ 1 : scalar(0) = 1
r
, (2.17)

which is sourced by a point particle. So the difference between the two double-copy
interpretations of the Kerr solution seen here, (2.14) versus (2.15), is the definition of the
scalar solution, that is, of the precise nature of the massive ‘particle’ in the three-point
amplitude for the scalar. There is clearly a continuum of choices, and we have neglected
above the dyonic parameter, which introduces another degree of freedom. As in the examples
above, however, this freedom in the scalar just leads to different double-copy interpretations
of the gravity solution, not to a new range of gravity solutions. In order to ensure the
finiteness of this paper, we will not discuss all the possibilities, but hopefully the examples
discussed here are clear.

Above, we wrote down the Lorentzian three-point amplitudes. However, these are only
supported on-shell for complex momenta. This means that the contour of integration for the
on-shell Fourier transform (oFT) is complex. Alternatively, the amplitudes have support
on real momenta in split signature. We will choose the latter option to define the oFT,
and then analytically continue the solutions to Lorentzian signature. This option not only
makes the oFT more transparent because the integration contour is real, but also gives us
as a bonus the solutions in split signature, where, as already explored in [119], there are
causality features of interest in their own right. Regarding the amplitudes above, the most
important feature of the analytic continuation to split signature is the dependence on the
rotation and dyonic parameters:

Lorentzian sign. eη (−k·a+iθ) ↔ Split sign. eη (ik·a+θ) , (2.18)

where we take aµ and θ to be real on both sides. We will discuss the justification in section 5.
In the remainder of the paper, we will present the details of the construction of solutions

that is summarised in this section, illustrated by a variety of examples. We will, in addition
(but not summarised here for brevity), discuss the case of heterotic gravity as a double
copy, and the connection of our formalism to previous position-space prescriptions for the
classical double copy.

3 Generalised curvature and NS-NS fields

As we have seen, the double copy of Yang-Mills theory is not only pure Einstein gravity,
but more generally can be taken to be NS-NS gravity. Besides the graviton, this theory
includes a scalar field φ, the dilaton, and a two-form field Bµν known as the B-field or the
Kalb-Ramond field. A complete classical double copy map should include all three fields on
its gravitational side. Examples of such maps have been found using double field theory,
both for certain exact solutions [104–107, 152] and for perturbative solutions [157, 158]. In
all these studies, the map is written in terms of fields, in contrast to the Weyl double copy,
where the map relates curvatures, which are gauge invariant at the linearised level. In this
section, we will address this challenge by defining a generalised curvature that packages all

– 8 –
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the NS-NS fields in geometric degrees of freedom. We will show later that this generalised
curvature tensor is the appropriate object obtained from a double copy of field strengths.

The standard notion of geometry in general relativity, a (pseudo-)Riemanian manifold
(M, g) endowed with the Levi-Civita connection ∇, can be generalised by relaxing the
requirements on the connection. If we allow the connection to have torsion, while insisting
on metric-compatibility, the result is called Riemann-Cartan geometry.

Consider a d-dimensional manifold M equipped with a metric gµν and an affine connec-
tion D. In a coordinate basis, the covariant derivative acts on a vector V as

DνV
µ = ∂νV

µ + Γµνρ V ρ . (3.1)

In general, the affine symbols Γµνρ do not have to be symmetric. Their anti-symmetric part
is the torsion tensor,7 Tµνρ ≡ 1

2(Γµνρ − Γµρν) = 1
2 Γµ[νρ]. We will take (M, g,D) to be a

Riemann-Cartan manifold by requiring that the connection is metric-compatible,

Dλ gµν = 0 .

This condition constrains the affine symbols to take the form

Γµνρ =
{
µ
νρ

}
+Kµ

νρ , (3.2)

where the first term denotes the standard Christoffel symbols of the Levi-Civita connection
and the second, a tensor called contorsion, must satisfy Kµνρ = −Kρνµ. It can be written
uniquely in terms of the torsion as

Kµ
νρ = 1

2 g
µλ
(
gντ T

τ
λρ + gρτ T

τ
λν + gλτ T

τ
νρ

)
. (3.3)

This generalised connection defines a generalised Riemann tensor, which in our conventions
we write as

Rµνρ
λ = DνΓλµρ −DµΓλνρ + ΓλντΓτ µρ − ΓλµτΓτ νρ . (3.4)

It is important to note that this tensor does not have the symmetries of the usual Riemann
tensor. It satisfies Rµνρσ = 1

2 R[µν]ρσ = 1
2 Rµν[ρσ], but Rµνρσ 6= Rρσµν due to the lack of

symmetry in the last two indices of the contorsion. Using (3.2), it can be shown that

Rµνρ
λ = Rµνρ

λ +∇νKλ
µρ −∇µKλ

νρ +Kλ
ντK

τ
µρ −Kλ

µτK
τ
νρ , (3.5)

where ∇ denotes the Levi-Civita connection and Rµνσλ its Riemann tensor. In general, R
will denote curvatures with torsion, whereas R is reserved for the standard Riemannian
curvatures of the metric.

Riemann-Cartan manifolds have extra geometrical degrees of freedom in the contorsion.
These degrees of freedom can be used to accommodate the NS-NS fields, giving them a
geometric status similar to the metric. The dilaton is assigned to the trace of the contorsion
while the B-field is related to its fully antisymmetric component

Kµ
νρ = κ

2
√

3
e−

4κφ
d−2 Hµ

νρ −
2κ

(d− 2)
√
d− 1

( δµν ∂ρφ − gνρ g
µσ ∂σφ) , (3.6)

7See (A.5) for our (anti-)symmetrisation conventions, chosen for later convenience.
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where H = dB is the curvature of the B-field and κ is the gravitational coupling constant.
The contorsion (3.6) was chosen such that the Ricci scalar is

R = R− 4κ2

d− 2∇µφ∇
µφ− κ2

12e
− 8κφ
d−2 HµνρH

µνρ + 4κ
√
d− 1

d− 2 ∇µ∇µφ , (3.7)

the motivation being that
√
|g|R is equivalent to the usual NS-NS Lagrangian density in

the Einstein frame, up to a boundary term:

S = 1
2κ2

∫
ddx

√
|g|
(
R− 4κ2

d− 2∇µφ∇
µφ− κ2

12e
− 8κφ
d−2 HµνρH

µνρ

)
, (3.8)

= 1
2κ2

∫
ddx

√
|g| R . (3.9)

Similar constructions have been proposed since the discovery of the NS-NS action [159].
Although the originally proposed connection was not metric compatible, it assigned con-
nection degrees of freedom to the dilaton and B-fields. This motivated a series of works
trying to recast higher-order terms of the bosonic string Lagrangian exclusively in terms of
generalised curvature invariants [160–163]. A similar connection is also used in the context
of double field theory [164]. A metric-compatible connection was introduced in [165], wich
together with a non-parallel volume element reproduces the NS-NS Lagrangian in the string
frame. Other generalised connections, also metric-compatible, have been used to endow
Einstein-dilaton gravity with a geometric interpretation [166, 167]. A drawback of these
geometric formulations of NS-NS gravity is that, in order to obtain the correct equations of
motion, one needs to impose constraints on the torsion [168]. For example, the totally anti-
symmetric component, which we set proportional to Hµνρ, is not completely free, since H is
exact. Hence, the geometric interpretation of the massless modes is not entirely clear [169].

We will be interested in the curvature at linear order in the fields. Starting from
gµν = ηµν + κhµν , and expanding to linearised order, we obtain

Rµν
ρσ = −κ2∂[µ∂

[ρhν]
σ] + κ

(d− 2)
√
d− 1

δ[µ
[ρ∂ν]∂

σ]φ+ κ

2
√

3
∂[µ∂

[ρBν]
σ] . (3.10)

In d = 4, the field redefinitions

φ→
√

3
2 φ , B →

√
3B , (3.11)

simplify the factors to reduce the linearised Riemann tensor to

Rµν
ρσ = −κ2

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]φ− ∂[µ∂

[ρBν]
σ]
)
. (3.12)

This expression highlights the fact that the generalised Riemann packages all the NS-NS
fields. At this order, the packaging can be taken one step further by using the ‘fat graviton’
defined in [151]8

Hµν = hµν −Bµν − P qµν (2φ+ h) , (3.13)
8Some factors differ from [151] due to different normalisation conventions.
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where hµν is the trace-reversed graviton and P qµν is a projector

hµν = hµν −
1
2 h ηµν , P qµν = 1

2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
. (3.14)

The constant auxiliary null vector qµ is related to gauge choices. In fact, the terms involving
qµ drop out of the gauge-invariant curvature, which can be written as the compact expression

Rµν
ρσ = −κ2 ∂[µ∂

[ρHν]
σ] . (3.15)

In this sense, our generalised curvature is the ‘fat Riemann’ associated to the ‘fat graviton’.
There is yet another way to rewrite (3.12). In four dimensions, the two-form Bµν can

be traded for a pseudoscalar axion σ, defined by

Hµνρ = −e2
√

3φ εµνρσ∂
σσ . (3.16)

At linearised order, the exponential in the expression above equals 1, and the fat Riemann is

Rµν
ρσ = −κ2

(
∂[µ∂

[ρhν]
σ] − δ[µ

[ρ∂ν]∂
σ]φ+ ερσλ[µ∂ν]∂λσ

)
. (3.17)

Later in the paper, we will see how the different products of gauge theory amplitudes
are associated to the different components of the generalised curvature. We will work in
d = 4, where it is convenient to use the spinor-helicity formalism for the amplitudes. The
relation between the amplitudes and the generalised curvature is, therefore, much clearer if
we also express the latter spinorially. As described in appendix D, the generalised Riemann
tensor can be decomposed into spinors as

RAȦBḂCĊDḊ = XABCD εȦḂ εĊḊ + X̃ȦḂĊḊ εAB εCD

+ ΦABĊḊ εȦḂ εCD + Φ̃ȦḂCD εAB εĊḊ ,
(3.18)

where we use the bold typeface in order to distinguish the spinors from those of R. The
spinors XABCD, ΦABĊḊ and their duals are symmetric in their first and second pairs of
indices. Recall that, generically, Rµνρσ 6= Rρσµν . This asymmetry implies that XABCD 6=
XCDAB and ΦABĊḊ 6= Φ̃ĊḊAB. The spinor XABCD is not completely symmetric and can
be reduced further as

XABCD = ΨABCD −
(
ΣA(C εD)B + ΣB(C εD)A

)
+ Λ(εAC εBD + εAD εBC) , (3.19)

where ΨABCD and ΣAB are completely symmetric. A similar decomposition holds for
X̃ȦḂĊḊ. Restricting to linearised level, we can compare the right-hand side of (3.18)
to the right-hand side of (3.12): the first line of the former corresponds to the graviton
contribution, whereas the second line corresponds to contributions from combinations of
the dilaton and the axion (which is the single degree of freedom of the B-field in d = 4).
We will make this more explicit in a later section.
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4 Static point charge in split signature

In this section, we will review how to extract the classical field configurations sourced by a
static particle using scattering amplitudes in split signature [119]. The choice of signature
is motivated by the fact that the three-point amplitude does not vanish for real kinematics
in split signature. Alternatively, the same calculations could be carried out in Lorentzian
signature, provided that momenta are complexified. We will address this point more directly
at the end of the section.

4.1 Review

Let us consider a static particle source in split signature. We will use coordinates (t1, t2, x, y),
with signature (+,+,−,−).9 Since we have two time directions, we should specify the
worldline of the particle, which we choose to be the t2 axis with tangent vector uµ = (0, 1, 0, 0).
This trajectory also corresponds to a static massive particle in Minkowski space, provided
that one chooses to analytically continue along the t1 axis; for a more in-depth discussion,
see [119]. We will model this massive particle as a non-dynamical scalar wave packet,
following the prescription in [45]. The expectation value of the momentum of the wave
packet should be 〈pµ〉 = muµ. We define the state as

|ψ〉 =
∫

dΦ(p)ϕ(p) |p〉, dΦ(p) = d̂4p δ̂(p2 −m2)Θ(E2) , (4.1)

where the wave function ϕ(p) is sharply-peaked around the classical momentum muµ. The
notation d̂ and δ̂ packages factors of 2π, as explained in appendix A. Notice that the theta
function inside dΦ(p) enforces positive energy along t2, the worldline direction of the particle.
The existence of the other time direction t1 implies that there is another energy, E1.10

Now, we want to obtain the electromagnetic field sourced by the particle. The existence
of two time dimensions implies that we need to specify boundary conditions for the fields.
We choose to impose that the “messenger” fields (photons and gravitons) must be in a
vacuum state for t1 → −∞. This endows the (t1, x, y) codimension-1 space with a sense
of causality in which fields are sourced at t1 = 0 by the instantaneous appearance of the
particle. Consequently, we use the mode expansion for the gauge field operator

Aµ(x) =
∑
η=±

∫
dΦ(k) ~−

1
2
(
aη(k)εµη (k)e−i

k·x
~ + a†η(k)εµη (k)ei

k·x
~
)
. (4.2)

This time the measure is
dΦ(k) = d̂4k δ̂(k2)Θ(E1) . (4.3)

Note that the theta function implies that E1 must be positive. We will assume from now
on that dΦ(k) carries a Θ(E1) for the gauge field while dΦ(p) carries Θ(E2) for the massive
particle. The associated field strength tensor is

Fµν(x) = −i
∑
η=±

∫
dΦ(k)~−

3
2
(
aη(k)k[µεν]

η e
−i k·x~ − a†η(k)k[µεν]

η e
i k·x~

)
. (4.4)

9We will also denote two dimensional space-like vectors in bold, e.g. x = (x, y).
10Note that, in the KMOC formalism, the momentum carried by messengers is of order ~, so in the

classical limit our massive particle is indeed static.

– 12 –



J
H
E
P
0
6
(
2
0
2
2
)
0
2
1

The powers of ~ will be absent in the classical limit, so from now we will set ~ = 1. We
want to obtain the field sourced by our particle when it is coupled to the electromagnetic
field with a charge Q. For t1 < 0, we impose that there must be no messengers, so the field
vanishes,

〈ψ|Fµν |ψ〉 = 0 . (4.5)

For positive t1, the state evolves with

|ψout〉 = lim
t1→∞

U(−t1, t1)|ψ〉 = S|ψ〉, (4.6)

and the goal is to compute the expectation value of the field

〈Fµν〉 ≡ 〈ψ|S†FµνS|ψ〉 . (4.7)

Similarly, we can obtain the spinorial counterpart of the field strength tensor

φAB(x) = σµνABFµν(x) . (4.8)

The σµν matrices are symmetric on their spinor indices A and B. These matrices project
two-forms onto their self-dual parts,11 and are proportional to the generators of SL(2,R).

It was shown in [119] that, under the classical limit, the final state of the electromagnetic
field is coherent:

S|ψ〉 = 1
N

∫
dΦ(p)ϕ(p) exp

[∑
η

∫
dΦ(k) δ̂(2p · k) iA−η(k) a†η(k)

]
|p〉 , (4.9)

where N is a normalisation factor ensuring that 〈ψ|S†S|ψ〉 = 1. For our static electric
charge, the amplitude is the three-point scalar QED vertex,

Aη(k) = −2Qp · εη(k). (4.10)

The expression (4.9) drastically simplifies the evaluation of expectation values. This is
because the annihilation operator acts as a derivative on the state,

aη(k)S|ψ〉 = δ̂(2p · k) iA−η(k)S|ψ〉

= δ

δa†η(k)
S|ψ〉 ,

(4.11)

and annihilation operators can be replaced by amplitudes. The field strength is therefore

〈ψ|S† Fµν(x)S|ψ〉 = −2 Re i
∑
η

∫
dΦ(k) 〈ψ|S† aη(k)S|ψ〉 k[µεν]

η e
−ik·x

= 1
m

Re
∑
η

∫
dΦ(k) δ̂(u · k)A−η(k) k[µεν]

η e
−ik·x .

(4.12)

11In our nomenclature, a two-form F is self-dual if F ∗ = F , and anti-self-dual if F ∗ = −F . The Hodge
dual has been defined as F ∗µν = 1

2 εµνρσF
ρσ ..
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As shown in [119], this can be expressed as a differential operator acting on a scalar potential
S(x),

〈Fµν(x)〉 = Qu[µ∂ν]S(x) , (4.13)

with

S(x) = 2 Re i
∫

dΦ(k)δ̂(k · u)e−ik·x . (4.14)

= i

∫
d̂4k δ̂(k2

1 − k2)Θ(k1)δ̂(k · u)
(
e−ik·x − eik·x

)
. (4.15)

Similarly, the Maxwell spinor is

〈ψ|S† φAB(x)S|ψ〉 = −
√

2
m

Re
∫

dΦ(k) δ̂(u · k) |k〉A|k〉B e−ik·xA+(k), (4.16)

while the conjugate one reads

〈ψ|S†φ̃ȦḂ(x)S|ψ〉 =
√

2
m

Re
∫

dΦ(k) δ̂(u · k) [k|Ȧ[k|Ḃ e
−ik·xA−(k) . (4.17)

Thus, the two helicity amplitudes correspond directly to the two different chiralities of
Maxwell spinor.

4.2 Split signature vs Lorentzian signature

All the classical fields we have obtained are written as integrals of three-point amplitudes
over on-shell momentum space. Therefore, these integrals have no support in Lorentzian
signature for real kinematics. We have avoided this problem by using split signature.
Alternatively, we could have proceeded in Lorentzian signature provided that we integrate
over complex momenta. To illustrate these two alternatives, consider the scalar potential
introduced in (4.14). It can be shown that the scalar potential is related to the retarded
and advanced Green’s functions,

S(x) = Gret(x)−Gadv(x) , (4.18)

where

Gret(x) = −
∫

d̂4k
e−i k·xδ̂(k · u)

(k1 + iε)2 − k2 = Θ(t1)Θ(t21 − r2)

2π
√
t21 − r2

,

Gadv(x) = −
∫

d̂4k
e−i k·xδ̂(k · u)

(k1 − iε)2 − k2 = Θ(−t1)Θ(t21 − r2)

2π
√
t21 − r2

.

(4.19)

The existence of different Green’s functions is linked to the freedom to choose boundary
conditions. Our choice is that the field should vanish for t1 < 0, which selects the retarded
propagator. Hence, under these boundary conditions, we can write

S(x) = 0 for t1 < 0 , S(x) = Gret(x) for t1 > 0 . (4.20)
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Figure 1. Analytical continuation of the split signature contour to Minkowski signature.

In Lorentzian signature, the time coordinate t1 is replaced by another space coordinate,
z, dual to k1. Now, all three coordinates orthogonal to t2 have the same signature and no
iε prescription is needed. Consequently, the only Green’s function is

G(x) = −
∫

d̂4k δ̂(k · u) e
−ik·x

k2 = 1
4π
√
r2 + z2

. (4.21)

Analogously to the split signature case, we can recast this Green’s function into an integral
of the form (4.14). However, the Lorentzian delta function δ̂(k2

1 + k2) has no roots on the
real line of k1. As a result, the integration contour on k1 must be deformed in the complex
plane. The appropriate contour is

S(x) = −Θ(z) Re i
∫ 0

−i∞
d̂k1

∫
d̂2k δ̂(k2

1 + k2)e−ik·x

−Θ(−z) Re i
∫ i∞

0
d̂k1

∫
d̂2k δ̂(k2

1 + k2)e−ik·x .
(4.22)

The prescription to analytically continue the retarded term in (4.14) to Lorentzian signature
is summarised in figure 1. The splitting or doubling of the contour might seem surprising.
Ultimately, it is a reminder that the correct split signature propagator to analytically
continue to Lorentzian signature is the Feynman propagator,

GF = −
∫

d̂4k
e−i k·x δ̂(k · u)
k2

1 − k2 + iε
, (4.23)

which is time-symmetric. This is shown graphically in figure 2, where only the Feynman
propagator contour can be deformed into the Lorentzian contour without crossing the poles.
In position space, the correct analytic continuation of the scalar potential is12

Θ(t1)Θ(t21 − r2)

2π
√
t21 − r2

→ 1
4π
√
r2 + z2

. (4.24)

Another difference in Lorentzian and split signature appears in the electromagnetic du-
ality. In (1,3) signature, we define the self-dual and anti-self-dual electromagnetic tensors as

F+
µν = 1

2
(
Fµν − iF ∗µν

)
,

F−µν = 1
2
(
Fµν + iF ∗µν

)
,

(4.25)

12This statement is explained more extensively in section 5 of [119].

– 15 –



J
H
E
P
0
6
(
2
0
2
2
)
0
2
1

Figure 2. Contour of the different Green’s functions. From left to right: retarded, advanced,
Feynman and the last one corresponds to Lorentzian signature.

such that F±∗µν = ±iF±µν . The electromagnetic stress-energy tensor can be expressed as

Tµ
ν = F+

µρ F
−ρν + F−µρ F

+ρν . (4.26)

Under electromagnetic duality with parameter θ,

Fµν → cos θ Fµν + sin θ F ∗µν ,
F ∗µν → cos θ F ∗µν − sin θ Fµν .

(4.27)

The self-dual and anti-self-dual tensors pick up a phase, F±µν → e±iθF±µν , implying that the
stress-energy tensor is preserved.

In split signature however, the self-dual and anti-self-dual field strength tensors are

F+
µν = 1

2
(
Fµν + F ∗µν

)
,

F−µν = 1
2
(
Fµν − F ∗µν

)
,

(4.28)

such that F±µν∗ = ±F±µν . The stress-energy tensor is still (4.26). In this occasion, to keep it
invariant we need to have

Fµν → cosh θ Fµν + sinh θ F ∗µν ,
F ∗µν → cosh θ F ∗µν + sinh θ Fµν ,

(4.29)

such that F±µν → e±θF±µν . This difference in duality transformations (4.27) and (4.29) can
be interpreted as θ → −iθ under analytic continuation.

5 Gauge fields from amplitudes

In section 4.1, we only considered the most basic amplitude in QED for a static point
particle. Now, we will generalise this amplitude to allow for magnetic charge and classical
spin. The magnetic charge will be achieved by an electromagnetic duality rotation, which
transforms the amplitudes as [20, 132]

Aη(k)→ Aη(k) eθ η . (5.1)
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Transformation Gauge theory Pure gravity

None Coulomb Schwarzschild

EM rotation dyon Taub-NUT

Newman-Janis shift
√
Kerr Kerr

EM rotation + NJ shift spinning dyon Kerr-Taub-NUT

Table 1. Effect of the transformations (5.1) and (5.2).

Notice that the rotation parameter has been continued from Lorentzian space θ → −iθ, as
previously motivated. Angular momentum can be induced by a Newman-Janis shift [133,
170]. It acts on the amplitudes as

Aη(k)→ Aη(k) ei η k·a . (5.2)

The vector aµ is related to the classical angular momentum. It will be taken to lie along
the Wick rotated coordinate: aµ = (a, 0, 0, 0). Consequently, the Lorentzian exponent
−η k · a has been analytically continued to split signature as i η k · a. Neither of these
transformations obstructs the exponentiation leading to the coherent state reviewed in
section 4.1. The same arguments hold, just changing the amplitudes as in (5.1) and (5.2).

The next subsections are devoted to the effects of these deformations on the field
strength tensor and spinors. Later on, these transformations will be carried over to gravity
via the double copy. The duality angle will be associated to the NUT charge whereas a will
be the Kerr angular momentum parameter. The effect of the transformations is summarised
in table 1.

5.1 General amplitude

Both transformations can be applied simultaneously to the same amplitude,

Aη → Aηe η (ik·a+θ) . (5.3)

Performing this replacement in (4.16) yields the transformed Maxwell spinor

〈φAB(x)〉 = −Re
∫

dΦ(k) δ̂(2p · k) 2
√

2 |k〉A|k〉B A+(k) eik·a+θ e−ik·x . (5.4)

It is immediately clear that

〈φAB(x)〉 = eθ〈φCoul.
AB (x− a)〉 , (5.5)

where 〈φCoul.
AB (x)〉 is the Maxwell spinor of the Coulomb solution. A similar expression can

be obtained for the conjugate spinor,

〈φ̃ȦḂ(x)〉 = e−θ〈φ̃Coul.
ȦḂ

(x+ a)〉 (5.6)

The interpretation of this transformation in terms of the Newman-Janis shift and of electro-
magnetic duality is manifest. In the following sections, we will explore these transformations
in the tensorial formalism. The advantage of the spinorial formalism will be obvious.
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5.1.1 Scalar potential

As a preliminary step, we will study the combined effect of the transformations on the
scalar potential

Sa,θ(x) := 2 Re i
∫

dΦ(k)δ̂(k · u) e−i k·(x−a)eθ

= eθ

2π
Θ((t1 − a)2 − r2)√

(t1 − a)2 − r2 = eθS0,0(x− a)
(5.7)

where r is defined as the 2d radius
√
x2 + y2. The first line implies that the effect of the

spin vector aµ is merely a shift in the spacetime coordinates xµ along t1. The last line was
obtained by introducing an iε prescription for convergence, details for which can be found
in appendix B of [119].

5.1.2 Field strength tensor

The classical field strength tensor can be obtained as the expectation value

〈Fµν(x)〉 ≡ 〈ψ|S† Fµν(x)S|ψ〉

= −2QRe
∑
η

∫
dΦ(k) δ̂(k · u) e−ik·(x+η a) k[µεν]

η e
−θ η ε−η · u .

(5.8)

In the second line, we have substituted the amplitude into (4.12). The integrand can be
expanded as

〈Fµν(x)〉 = −2QRe
∫

dΦ(k) δ̂(k · u) e−ik·x

×
(
k[µε

ν]
+ e
−θ−i k·a ε− · u+ k[µε

ν]
− e

θ+i k·a ε+ · u
)
. (5.9)

Using the null tetrad
ηµν = k(µnν) − ε(µ

+ ε
ν)
− , k · n = 1 , (5.10)

the tangent vector can be decomposed into

uµ = (u · n) kµ − ε− · u εµ+ − ε+ · u εµ− , (5.11)

which implies that the above expression can be rearranged as

〈Fµν(x)〉= 2QRe
∫

dΦ(k) δ̂(k ·u)e−ik·x

×
(
cos(k ·a− iθ)k[µuν] + i sin(k ·a− iθ)

(
k[µε

ν]
+ ε− ·u−k[µε

ν]
− ε+ ·u

))
.

(5.12)

This can be further simplified to

〈Fµν(x)〉 = 2QRe
∫

dΦ(k) δ̂(k · u) e−ik·x

×
(

cos(k · a− iθ) k[µuν] − i sin(k · a− iθ)
2 εµνρσk[ρuσ]

)
,

(5.13)
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using the result of the equation (B.5). Expanding the sine and cosine and making use of
the previously defined Sa,θ(x), we obtain

〈Fµν(x)〉=Q∂[µuν]
[
Sa,θ(x)+S−a,−θ(x)

2

]
−Q2 ε

µνρσ∂[ρuσ]

[
Sa,θ(x)−S−a,−θ(x)

2

]
. (5.14)

In this expression, the derivatives act on the terms in brackets, since uµ has constant
components. We have obtained the fields for generic a and θ. In the next subsections, we
will focus on each transformation individually and interpret their effects.

5.2 Newman-Janis shift

A pure Newman-Janis shift has θ = 0,

Sa,0(x) = 1
2π

Θ
(
(t1 − a)2 − r2)√
(t1 − a)2 − r2 . (5.15)

It is worth remarking on some features of this field. First of all, it encodes the complex
zeroth copy of Kerr. This can be checked by rotating back to (1,3) signature as t1 → i z

(t1 − a)2 − r2 → (i z − a)2 − r2 = −(z + ia)2 − r2 = −
(
R̃+ i a cosϑ

)2
. (5.16)

The “Kerr radius” R̃ and polar angle ϑ are implicitly defined by

r2

R̃2 + a2 + z2

R̃2 = 1 , cosϑ = z

R̃
. (5.17)

Thus,
1√

(t1 − a)2 − r2 → i

R̃+ i a cosϑ
(5.18)

which is proportional to the scalar (3.32) in [84]. The fact that we recover the complex
scalar supports the idea of associating the double copy for amplitudes in (2,2) signature to
the Weyl double copy. Secondly, notice that the spin a appears only in the combination
(t1 − a) in equation (5.15). This is the Newman-Janis shift at work: in (2,2) signature, the
shift is a real translation, in the t1 direction, at the level of the field strength. (The shift
acts in a more subtle way on the potential. At the level of the effective action, the shift can
be interpreted as replacing the usual worldline action with a worldsheet structure [170].)

Setting θ = 0 in the field strength tensor yields

〈Fµν(x)〉 = Q∂[µuν]
[
Sa,0(x) + S−a,0(x)

2

]
− Q

2 ε
µνρσ∂[ρuσ]

[
Sa,0(x)− S−a,0(x)

2

]
. (5.19)

Note that in Minkowski signature the first bracket corresponds to the real part of S while
the second corresponds to the imaginary part. In this formulation, the interpretation of
the sign of the Newman-Janis translation looks somewhat complicated, compared to the
Maxwell spinors seen above.

The field (5.19) is the split signature equivalent of the
√
Kerr solution [70, 133]. Instead

of checking this claim by direct comparison, which would be tedious due to coordinate
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transformations, we can derive (5.13) with θ = 0 in a purely classical way. To do so, we
solve the Maxwell equations in the presence of a

√
Kerr source,

∂µF
µν(x) =Q

∫
dτ exp(a∗∂)νρu

ρδ(4)(x−uτ)≡ jν√Kerr(x), (a∗b)µν = εµνρσa
ρbσ. (5.20)

Note that the source for
√
Kerr is formally the one for Coulomb (see for instance [171]

or [170]) but acted upon by the differential operator exp(a ∗ ∂)νρ. We observe that the
exponential exp(a∗∂) remains invariant under analytic continuation to split signature. This
is because the derivative picks up a factor of −i, which is cancelled out by the i picked up
by the volume form.

We solve (5.20) by Fourier transform with the boundary conditions outlined in 4.1.
We get

Aµ(x) = 2QRe i
∫

dΦ(k) δ̂(k · u)e−ik·xexp(−ia ∗ k)µρu
ρ. (5.21)

The action of the exponential matrix can be further simplified. In fact, on the support of
the on-shell measure, it can be shown that

exp(−ia ∗ k)µρu
ρ = uµ cos a · k − iεµ(a, k, u)sin a · k

a · k
, (5.22)

where we defined εµ(a, b, c) := εµαβγaαbβcγ . We obtain finally

Aµ(x) = 2QRe i
∫

dΦ(k) δ̂(k · u)e−ik·x
(
uµ cos a · k − iεµ(a, k, u)sin a · k

a · k

)
. (5.23)

The Maxwell tensor is then easily computed,

Fµν(x) = 2QRe
∫

dΦ(k) δ̂(k · u)e−ik·x
(
k[µuν] cos a · k − i

2ε
µνρσk[ρuσ] sin a · k

)
, (5.24)

which is equal to the Fµν we had in the purely spinning case with θ = 0.
Furthermore, starting from (5.24) we can also confirm the expressions (5.5) and (5.6)

in the θ = 0 case. Projecting on a spinor basis, these are found to be

φ
√

Kerr
AB (x) = σµνABFµν(x)

= 2
√

2QRe
∫

dΦ(k)δ̂(k · u)e−ik·(x−a)ε+ · u |k〉A|k〉B

= φCoul.
AB (x− a),

(5.25)

we report the negative-helicity spinor too

φ̃
√

Kerr
ȦḂ

(x) = σ̃µν
ȦḂ
Fµν(x)

= −2
√

2QRe
∫

dΦ(k)δ̂(k · u)e−ik·(x+a)ε− · u [k|Ȧ[k|Ḃ

= φ̃Coul.
ȦḂ

(x+ a),

(5.26)

matching the expressions first obtained in [170].
Notice again that the action of the Newman-Janis translation on the Maxwell spinors

is beautifully simple: φ
√

Kerr
AB is a translation of φCoul.

AB in one direction, while φ̃
√

Kerr
ȦḂ

is a
translation of φ̃Coul.

ȦḂ
in the opposite direction. This is in contrast to the more complicated

structure at the level of the field strength (5.19). We see that the notion of chirality is
intimately related to the structure of the Newman-Janis shift.
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5.3 Duality rotation

To investigate the effect of the EM rotation on the fields, we take a to zero,

〈Fµν(x)〉 = Q∂[µuν]
[
S0,θ(x) + S0,−θ(x)

2

]
− Q

2 ε
µνρσ∂[ρuσ]

[
S0,θ(x)− S0,−θ(x)

2

]
. (5.27)

Substituting the value of the scalar integrals,

〈Fµν(x)〉 = cosh θ Q∂[µuν]
[

Θ(ρ2)
2π ρ

]
− sinh θ Q2 ε

µνρσ∂[ρuσ]

[
Θ(ρ2)
2πρ

]
, (5.28)

where ρ2 ≡ x2−(x·u)2. In the region ρ2 > 0, we canWick rotate back to Lorentzian signature.
The duality angle transforms as θ → iθ and so cosh θ → cos θ and sinh θ → −i sin θ. This
factor of i is absorbed by the continuation of the volume form to Lorentzian signature,
yielding

〈Fµν〉 = cos θ FµνCoul. + sin θ F ∗µνCoul. , (5.29)

where, again, the star denotes Hodge conjugation. We conclude that the transformation (5.1)
generates a dyon by a duality rotation of the field.

6 NS-NS fields from amplitudes

Motivated by the double copy of amplitudes, we will consider the map

MηLηR = − κ

4Q2 cηLηR A
(L)
ηL
A(R)
ηR

, (6.1)

where there are four choices for (ηL, ηR):

(+,+) , (−,−) , (+,−) , (−,+) . (6.2)

These correspond, respectively, to the gravity field being: positive-helicity graviton, negative-
helicity graviton, complex scalar (dilaton and axion), and conjugate complex scalar. In
general, we allow for four distinct couplings cηLηR of our massive particle to these gravity
fields. Any choice of these couplings will lead to a linearised gravity solution. In practice, we
will be most interested in the case where the particle couples equally to the two chiralities,
in which case we take c++ = c−− and c+− = c−+.

Consider the following mode expansion of the fat Riemann operator

Rµνρσ = κ Re
∫

dΦ(k)
[∑
ηLηR

aηLηR ε
[µ
ηL

(k)kν]ε[ρ
ηR

(k)kσ]
]
e−ik·x . (6.3)

The operator version of the linearised spinor coefficients are computed by contracting with
the sigma matrices [122]

XABCD = σµνABσ
ρσ
CDRµνρσ , X̃ȦḂĊḊ = σ̃µν

ȦḂ
σ̃ρσ

ĊḊ
Rµνρσ , (6.4)

ΦABĊḊ = σµνABσ̃
ρσ

ĊḊ
Rµνρσ , Φ̃ȦḂCD = σ̃µν

ȦḂ
σρσCDRµνρσ . (6.5)
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These contractions are easily computed applying

σµν
AB k[µε

ν]
− = −

√
2 〈k|A〈k|B ,

σ̃ ȦḂ
µν k[µε

ν]
− = 0 ,

(6.6)

σµν
AB k[µε

ν]
+ = 0 ,

σ̃ ȦḂ
µν k[µε

ν]
+ =

√
2 |k]Ȧ|k]Ḃ .

(6.7)

The resulting spinors are

XABCD = κ Re 2
∫

dΦ(k) a−−|k〉A|k〉B|k〉C |k〉D e−ik·x , (6.8)

X̃ȦḂĊḊ = κ Re 2
∫

dΦ(k) a++[k|Ȧ[k|Ḃ[k|Ċ [k|Ḋ e
−ik·x , (6.9)

ΦABĊḊ = −κ Re 2
∫

dΦ(k) a−+ |k〉A|k〉B[k|Ċ [k|Ḋ e
−ik·x , (6.10)

Φ̃ȦḂCD = −κ Re 2
∫

dΦ(k) a+− [k|Ȧ[k|Ḃ|k〉C |k〉D e
−ik·x . (6.11)

In order to link these objects to the amplitudes (6.1), we would like to use the equivalent
of (4.11) for the NS-NS fields. Appendix C shows that the gravitational final state is also
coherent, so

S|ψ〉 = 1
N

∫
dΦ(p)ϕ(p)

exp
[∫

dΦ(k) i δ̂(2p · k)
(∑
ηLηR

M−ηL,−ηR(k) a†ηLηR(k)
)]
|p〉 ,

(6.12)

which is analogous to (4.9). Hence, we conclude that

aηLηR(k)S|ψ〉 = δ̂(2p · k) iM−ηL,−ηR(k)S|ψ〉

= δ

δa†ηLηR(k)
S|ψ〉 .

(6.13)

Equation (6.13) implies that we can easily exchange annihilation operators for ampli-
tudes inside expectation values, so that we find

〈Rµνρσ〉 = κ Re i
∫

dΦ(k)δ̂(2k · p)
[∑

η

M−ηL,−ηR ε
[µ
ηL

(k)kν]ε[ρ
ηR

(k)kσ]
]
e−ik·x . (6.14)

The same can be done in the spinor coefficients. The application of the map (6.1) results in

〈XABCD〉 = −κ
2c++
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A
(R)
+ |k〉A|k〉B|k〉C |k〉D e−ik·x , (6.15)

〈X̃ȦḂĊḊ〉 = −κ
2c−−
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A
(R)
− [k|Ȧ[k|Ḃ[k|Ċ [k|Ḋ e

−ik·x , (6.16)

〈ΦABĊḊ〉 = +κ2c+−
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A
(R)
− |k〉A|k〉B[k|Ċ [k|Ḋ e

−ik·x , (6.17)

〈Φ̃ȦḂCD〉 = +κ2c−+
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A
(R)
+ [k|Ȧ[k|Ḃ|k〉C |k〉D e

−ik·x . (6.18)
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The above expressions make it clear that every quadratic term in the amplitudes sources a
different component of the spinorial curvature. The double copy structure is remarkably
explicit when comparing with the gauge field spinors (4.16) and (4.17). Moreover, we can
obtain the equivalent of (5.5) and (5.6) by considering the gauge amplitudes

A(L)
η = −2Q(p · εη)eη(θL+ik·aL),

A(R)
η = −2Q(p · εη)eη(θR+ik·aR),

(6.19)

which under the double copy map imply that

〈XABCD(x)〉 = eθ̄〈XJNW
ABCD(x− ā)〉 ,

〈X̃ȦḂĊḊ(x)〉 = e−θ̄〈X̃JNW
ȦḂĊḊ

(x+ ā)〉 ,

〈ΦABĊḊ(x)〉 = e∆θ〈ΦJNW
ABĊḊ

(x−∆a)〉 ,

〈Φ̃ȦḂCD(x)〉 = e−∆θ〈Φ̃JNW
ȦḂCD

(x+ ∆a)〉 ,

(6.20)

where we have defined

θ̄ := θL + θR , ∆θ := θL − θR , (6.21)
ā := aL + aR, ∆a := aL − aR . (6.22)

The superscript JNW refers to the solution where both single copies are Coulomb. Notice
that, at linearised level, the first two spinors in (6.20) match those of the Schwarzschild
solution. The various parameters are elegantly distributed over the different spinors. The
parameter ā corresponds to the spin of Kerr, and appears as expected via the Newman-Janis
shift, while θ̄ corresponds to the split-signature version of the rotation between the mass
and the NUT parameter; together, these two parameters correspond to the Kerr-Taub-NUT
solution. The parameters ∆a and ∆θ correspond, respectively, to a novel type of Newman-
Janis shift for the axion and dilaton, and to the standard axion-dilaton supergravity duality
transformation. While this draft was in preparation, the Kerr and Kerr-Taub-NUT solutions
were discussed, also in split signature, in [130, 144].

The spinorial language is better fitted for displaying the double copy, but it is instructive
to think about the dilaton and axion. We can map (6.14) to the field degrees of freedom
using (3.12), together with the mode expansions of the fields

hµν = 2 Re
∑
η

∫
dΦ(k)aηη(k)εµη (k)ενη(k) e−ik·x , (6.23)

φ = 2 Re
∫

dΦ(k) aφ(k) e−ik·x , (6.24)

Bµν = 2 Re
∫

dΦ(k) aB(k)
(
εµ+(k)εν−(k)− εµ−(k)εν+(k)

)
e−ik·x . (6.25)

Substituting in (3.12) implies that (6.14) can be re-expressed as

Rµνρσ = κ Re
∫

dΦ(k)
[∑

η

aηε
[µ
η (k)kν]ε[ρ

η (k)kσ]

+ aφ k
[µην][ρkσ] + aB k

[µ(εν]
+ε

[ρ
− − ε

ν]
−ε

[ρ
+)kσ]

]
e−ik·x . (6.26)
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The first term in the second line of (6.26) needs simplification. This is achieved by expanding
the flat metric in terms of the null tetrad

k[µην][ρkσ] = −k[µε
ν]
+ε

[ρ
−k

σ] − k[µε
ν]
−ε

[ρ
+k

σ] . (6.27)

Comparison to (6.3) then implies the following relations between annihilation operators

a++ = a+ , a−+ = aφ + aB ,

a−− = a− , a−+ = aφ − aB ,
(6.28)

and hence the corresponding relation for amplitudes

Mηη = − κ

4Q2 cηηA
(L)
η A(R)

η ,

Mφ = − κ

4Q2
1
2
(
c+−A(L)

+ A
(R)
− + c−+A(L)

− A
(R)
+

)
,

MB = − κ

4Q2
1
2
(
c+−A(L)

+ A
(R)
− − c−+A(L)

− A
(R)
+

)
.

(6.29)

In the next sections this prescription will be put into practice to compute the classical fields
obtained by double copying the amplitudes discussed in section 5. In the following we will
restrict to the case c++ = c−− and c+− = c−+ since these solutions naturally continue to
real solutions in Minkowski signature.

6.1 Duality rotation

We will now turn to a concrete example. Consider left and right amplitudes that differ in
their EM duality angle,

A(L)
η = −2Q(p · εη)eθLη,

A(R)
η = −2Q(p · εη)eθRη,

(6.30)

the effect of this difference will be the existence of a rotation between dilaton and axion.
The double copied amplitudes are obtained by applying the map (6.29),

Mη = −c++κm
2(u · εη)2 eθ̄η ,

Mφ = κ c+−
2 p2 cosh ∆θ = c̃ m

2 cosh ∆θ ,

MB = κ c+−
2 p2 sinh ∆θ = c̃ m

2 sinh ∆θ ,

(6.31)

where we have defined c̃ = κ c+−m. To test the effect of the rotation on the metric, let us
compute the transformed Weyl tensor,

〈Wµνρσ(x)〉 = −Re iκ2 c++m
2
∫

dΦ(k) δ̂(2k · p) e−ik·x

×
[
(ε+ · u)2k[µε

ν]
−k

[ρε
σ]
− e

θ̄ + (ε− · u)2k[µε
ν]
+k

[ρε
σ]
+ e−θ̄

]
.
(6.32)
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A little algebra shows that this can be rewritten as

〈Wµνρσ(x)〉=−Re iκ2 c++m
2
∫

dΦ(k) δ̂(2k ·p)e−ik·x

×
[
cosh θ̄

(
k[µuν]k[ρuσ]+ 1

2k
[µην][ρkσ]

)
−1

2 sinh θ̄ εµντλ
(
k[τuλ]k

[ρuσ]+ 1
2k[τδ

[ρ
λ]k

σ]
)]

.

(6.33)

The first term, with the hyperbolic cosine, corresponds to the Schwarzschild solution,
expression (3.26) of [119], which we will denote Wµνρσ

Schw.. Making use of this notation leads
to the compact result

〈Wµνρσ〉 = cosh θ̄ Wµνρσ
Schw. − sinh θ̄ 1

2ε
µντλ W Schw. ρσ

τλ . (6.34)

The second term represents the dual of WSchw., in analogy with the result of section 5.3.
We conclude that the angle θ̄ indeed rotates the mass and the NUT charge of the solu-
tion [132, 155].

The Weyl tensor we have computed represents the graviton degrees of freedom in Rµνρσ.
The next step is to obtain the classical expectation value of the dilaton and axion degrees
of freedom. Instead of computing the corresponding components of Rµνρσ, we will obtain
the field profiles 〈φ〉 and 〈σ〉 directly.

Let us start with the classical expectation value of the dilaton field, 〈φ〉 = 〈ψ|S†φS|ψ〉.
We use the field operator (6.24), exponentiation of the coherent state (6.12) with the
amplitude given in (6.31). The result is

〈φ(x)〉 = c̃ m cosh ∆θ Re i
∫

dΦ(k) δ̂(2p · k)e−ik·x . (6.35)

Performing the integration as in (5.7), we obtain

〈φ(x)〉 = c̃ cosh ∆θ Θ(ρ2)
8π

1
ρ
. (6.36)

We will now tackle the axion field. Recalling (6.25) and taking a derivative, we quickly
find

〈Hµνρ(x)〉 = 〈12∂[µBνρ](x)〉 = c̃

2 sinh ∆θRe
∫

dΦ(k)δ̂(u · k)k[µε
+
ν ε
−
ρ] e
−ik·x . (6.37)

At this stage, it is very helpful to note that

εµνρσk[νε
+
ρ ε
−
σ] = k[µnνερ+ε

σ]
−k[νε

+
ρ ε
−
σ] = −3! kµ . (6.38)

Hence,
⇒ 〈εµνρσHνρσ(x)〉 = −3 c̃ sinh ∆θ Re

∫
dΦ(k) δ̂(k · u) kµ e−ik·x

= −3 c̃ sinh ∆θ ∂µ
(

Θ(ρ2)
4π

1
ρ

)
.

(6.39)
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This expression provides direct information on the axion σ. To see how, note from equa-
tion (3.16), expanded to leading order, that the relation between H and σ is simply

Hµνρ = −εµνρσ ∂σσ ⇒ εµνρσHνρσ = −3! ∂µσ . (6.40)

Comparing with the previous expression, we find

〈σ(x)〉 = c̃ sinh ∆θ Θ(ρ2)
8π

1
ρ
. (6.41)

6.2 Newman-Janis shift

Now we turn our attention to the spin parameter. Just as we did in the previous section, we
can use the prescription (6.1) to source an axion and a dilaton. However, we now consider
products of gauge theory amplitudes with different spins

A(L)
η = −2Q(p · εη)ei η aL·k,

A(R)
η = −2Q(p · εη)ei η aR·k.

(6.42)

These yield the following gravity amplitudes

Mη = −κ c++m
2(u · εη)2 ei η ā·k ,

Mφ = c̃ m

2 cos(∆a · k) ,

MB = c̃ m

2 sin(∆a · k) .

(6.43)

Once more, the graviton components of the fat curvature tensor found in (6.14) reduce
to the Weyl tensor

Wµνρσ(x) = κ c++ Re i
∫

dΦ(k)δ̂(2k · p)e−ik·x
∑
η

Mηε
[µ
−ηk

ν]ε
[ρ
−ηk

σ]eiηk·ā. (6.44)

It is not difficult to see that this matches the classical computation with a spinning
source. The linearised EOMs are, writing gµν(x) = ηµν + κhµν(x)

∂2hµν(x) = −κPµναβTαβ(x), Pµναβ = 1
4δ

(µ
(αδ

ν)
β) −

1
2η

µνηαβ , (6.45)

with the following stress-energy tensor for Kerr [170, 171]

Tµν(x) = m

∫
dτ u(µexp(ā ∗ ∂)ν)

ρu
ρδ(4)(x− uτ) . (6.46)

Solving (6.45) with the usual boundary conditions, we find the linearised metric

hµν(x) = −κm2Re i
∫

dΦ(k)δ̂(p · k)e−ik·x Pµναβ u(αexp(−iā ∗ k)β)
ρu

ρ

= −κm2Re i
∫

dΦ(k)δ̂(p · k)e−ik·x
[(
uµuν − 1

2η
µν
)

cos(ā · k)

− i

2u
(µεν)(ā, k, u) sin(ā · k)

ā · k

]
,

(6.47)
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from which the curvature can be computed. After some tedious but straightforward algebra
one finds

Wµνρσ(x) = −κ2m2Re i
∑
η

∫
dΦ(k)δ̂(2p · k)e−ik·x(εη · u)2k[µε

ν]
−ηk

[ρε
σ]
−ηe

iηk·ā. (6.48)

The result matches the one we obtained from amplitudes upon setting c++ = 1.
For the dilaton and the axion, the calculations are formally analogous to the ones

outlined in 6.1, except that now we have momentum dependent trigonometric functions
which characterise the spin mixing. For this reason we omit the explicit computations and
report the final results. We find for the dilaton

〈φ(x)〉 = c̃

2 Re i
∫

dΦ(k) δ̂(u · k)e−ik·x cos(∆a · k)

= c̃

8
(
S∆a,0(x) + S−∆a,0(x)

)
,

(6.49)

referencing to the definition of the scalar potential (5.7). The axion is instead given by

〈εµνρσHνρσ(x)〉 = −3 c̃ ∂µ Re i
∫

dΦ(k) δ̂(k · u) e−ik·x sin(∆a · k), (6.50)

telling us that the scalar σ is at leading order

〈σ(x)〉 = c̃

2 Re i
∫

dΦ(k) δ̂(u · k)e−ik·x sin(∆a · k)

= c̃

8
(
S∆a,0(x)− S−∆a,0(x)

)
.

(6.51)

6.3 Comparison with known solutions

The linearised solution obtained in section 6.1 corresponds to an axi-dilaton Taub-NUT
black hole. This solution is known exactly; see (17), (19) in [172]. It is interesting to check
that our results agree with the linearisation of the known solution. There, dilaton and axion
are given as13

e−φ = (1 + ε2) Λδ

ε2Λ2δ + 1 , σ = ε(Λ2δ − 1)
ε2Λ2δ + 1 , (6.52)

where
Λ = 1− R0

R
,

δ R0 is the charge of the dilaton and ε is a duality rotation parameter between dilaton and
axion. Notice that R is the (3,1) signature equivalent of ρ. At linearised level, the fields
decouple and the metric is equivalent to Taub-NUT. Expanding at linear order the other
fields and defining ε = − tan ∆θ

2 , we find

φ = cos ∆θ δ R0
R

, σ = sin ∆θ δ R0
R

. (6.53)

13Ignoring factors of
√

3 that can be absorbed into δ at linear order.
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Our solution (6.36), (6.41) agrees with this up to an overall constant (c̃ = 16π δ R0).14

Then, ∆θ is just the parameter inside SL(2,R) that generates linear rotations between
dilaton and axion.

In the special case where θL = θR both single copies are identical, and we have no
mixing: ∆θ = 0. From (6.31), we see that this implies that the axion will vanish, leaving a
linearised solution that would be the equivalent to Taub-NUT plus the dilaton. In [172],
this corresponds to (17) and (18).

On the contrary, if θR = −θL, θ̄ vanishes and the resulting metric has vanishing NUT
charge. The result is a linearised Schwarzschild metric plus axion plus dilaton, corresponding
to the linearisation of (10) and (13) in [172].

When both rotation angles are zero, both the NUT charge and axion vanish. We are
left with a linearised JNW solution. This simplified solution will be used in section 8 to
check for the existence of a double copy relation in position space.

The solutions considered in section 6.2 involving spin are not so well understood in
the literature. There have been attempts to apply a Newman-Janis shift to the JNW
solution, with the prospects of obtaining a spinning generalisation. However, these claimed
generalisations fail to satisfy the Einstein-dilaton equations of motion [173]. Although linear,
our solution might help to find a satisfactory generalisation of the JNW metric with spin.

7 Heterotic double copy

It is straightforward to get an extra set of gauge fields in the double copy, by simply
supplementing one of the YM factors with a scalar X. For instance, let us assume that the
‘left gauge theory’ is coupled to a bi-adjoint scalar15 which transforms under the symmetry
groups G and Ĝ. The Lagrangians for our gauge theory factors are given by:

L(L) = −1
4Tr

[
F (L)
µν F

(L)µν
]

+ 1
2Tr

[
DµX

âDµXâ

]
− g2

4

(
fabcX

bb̂Xcĉ
) (
fab′c′X

b′

b̂
Xc′

ĉ

)
+ gg′

3! ifabcFâb̂ĉX
aâXbb̂Xcĉ ,

L(R) = −1
4Tr

[
F (R)
µν F

(R)µν
]
.

(7.1)

where fabc and Fâb̂ĉ are the structure constants of G and Ĝ, respectively, and g′ is a
dimensionful arbitrary constant. In the above, the trace is taken over the group G.
We can think of L(L) as coming from the dimensional reduction of a pure YM theory,
together with the gauging of (a subset of) the global symmetry, which introduces the cubic
interactions [174]. The double copy will then give an Einstein-Yang-Mills-dilaton-axion
theory. Upon linearisation, the interaction terms in (7.1) drop out. For our purposes of
studying the linearised solutions of heterotic gravity, it suffices to take our gauge groups to
be U(1), resulting in a single Maxwell field in the gravity theory.

14After rotating back to Minkowski signature, the hyperbolic trigonometric functions turn into standard
trigonometric functions. Additionally, one has to continue σ → iσ due to its pseudo-scalar nature, which
cancels the factor of i from the sine. The factor of 16 takes into account a factor of 2 generated by the
analytic continuation of the propagator (4.24).

15This should not be confused with the bi-adjoint scalar that appears in the denominator of various
formulations of the double copy.
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If we denote the amplitude for the 3-point interaction of the scalar X with the static
particle by AX , we can write schematically:

(
A(L)

+ +A(L)
− +AX

)
⊗
(
A(R)

+ +A(R)
−

)
=



A(L)
± ⊗A

(R)
± →M±

A(L)
(+ ⊗A

(R)
−) →Mφ

A(L)
[+ ⊗A

(R)
−] →MB

AX ⊗A(R)
± → A±

(7.2)

where A± is the 3-point amplitude for the gauge field in the heterotic theory. The amplitude
AX is a constant AX = QX . Then, the double copy for the graviton, dilaton and axion
amplitudes, already given in (6.29), is supplemented by

A± = cX
QX
AX A(R)

± , (7.3)

for some arbitrary constant cX . The dilaton and axion fields are still given by (6.36)
and (6.41), as they are unaffected by the addition of the gauge field in the linearised
approximation. The gauge field will have electric and magnetic charges given by

Qd.c.E = cX Q cosh(θR) ,
Qd.c.M = cX Q sinh(θR) .

(7.4)

7.1 Comparison with known solution

We now want to compare with [172]. Here, the general spherically symmetric, static and
asymptotically flat solution to the heterotic theory is obtained via a series of transformations.
Starting with the graviton-dilaton solution, characterised by parameters l and δ, one can
perform three SL(2,R) transformations, with parameters ω, ε and ρ,16 interspersed by a
discrete T-duality and an O(1, 1) transformation with parameter x to obtain the full family
of axion-dilaton-Taub-NUT metric coupled to a vector field. The axion and dilaton charges
are given by

Q̂D = 1−ρ2

1+ρ2 Q̄D − 2ρ
1+ρ2 Q̄A ,

Q̂A = 1−ρ2

1+ρ2 Q̄A + 2ρ
1+ρ2 Q̄D ,

(7.5)

with
Q̄D = l

2

[
(1 + x)1−ε2

1+ε2 δ + (1− x)1−ω2

1+ω2

√
1− δ2

]
,

Q̄A = l
2

[
(1 + x) 2ε

1+ε2 δ + (1− x) 2ω
1+ω2

√
1− δ2

]
.

(7.6)

Using the notation ρ = tan θρ
2 , ε = tan θε

2 and restricting to ε = ω, the charges can be shown
to reduce to

Q̂D = cos(θρ + θε) l2
[
(1 + x)δ + (1− x)

√
1− δ2

]
,

Q̂A = sin(θρ + θε) l2
[
(1 + x)δ + (1− x)

√
1− δ2

]
.

(7.7)

16For each SL(2,R), imposing the vanishing of the dilaton and the axion at infinity reduces the three
parameters of SL(2,R) to one.
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Then, comparison with (6.36) and (6.41) gives17

∆θ = θρ + θε ,

c̃

16π = l
2

[
(1 + x)δ + (1− x)

√
1− δ2

]
,

(7.8)

This reduces to the solution without the gauge field for θρ = 0 and x = 1 (note that x = 1
corresponds to the identity matrix in the O(1, 1) transformation used in [172]). The electric
and magnetic charges in [172], with the restriction ε = ω, reduce to

Q̂E =
√
x2 − 1l

(√
1− δ2 − δ

)
cos

(
θρ
2 + θε

)
,

Q̂M =
√
x2 − 1l

(√
1− δ2 − δ

)
sin
(
θρ
2 + θε

)
.

(7.9)

Then, comparing with (7.4), we get the identifications

θR = θρ
2 + θε ,

cX Q =
√
x2 − 1l

(√
1− δ2 − δ

)
.

(7.10)

Finally, we remark that the restriction we imposed on the parameters (i.e. setting ε = ω)
was only necessary in order to obtain a straightforward map. One can always write a
completely general (though more cumbersome) map via

c̃

16π =
√
Q̂2
D + Q̂2

A , ∆θ = tan−1
(
Q̂A

Q̂D

)
,

cXQ =
√
Q̂2
E + Q̂2

M , θR = tan−1
(
Q̂M

Q̂E

)
.

(7.11)

8 Double copy in position space

We have found expressions that exhibit clear double copy relations in on-shell momentum
space. In this section, we will discuss whether these straightforward double copy relations
can be carried over to position space. In particular, we will see how the position-space
Weyl double copy relations [84] emerge from amplitudes. In most of this section, we will set
aL,R = θL,R = 0, since this simple scenario is enough to illustrate our points. To simplify
the discussion, each term in the expectation value of (6.26) will be analysed individually.
We will omit the axion term, since it vanishes when aL,R = θL,R = 0.

First, we shall consider the terms associated to the graviton amplitude, which we
will denote by R(h)

µνρσ. This is precisely the Schwarzschild Riemann (and Weyl) tensor
considered in [119]. After some algebraic manipulations,

〈R(h)µνρσ〉 = −Re im2κ2
∫

dΦ(k)δ̂(2k · p)e−ik·x
(
k[µuν]k[ρuσ] + 1

2k
[µην][ρkσ]

)
. (8.1)

17As explained in subsection 6.3, the hyperbolic trigonometric functions will turn into standard trigono-
metric functions upon rotating back to Minkowski signature.
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The second term in the brackets makes the expression traceless. Alternatively, we can write

〈R(h)µνρσ〉 = −Pµνρστληω Re im2κ2
∫

dΦ(k)δ̂(2k · p)e−ik·xk[τuλ]k[ηuω] , (8.2)

where Pµνρστληω projects out the trace, as in the definition of the Weyl tensor18

Wµννρ = Pµνρστληω R
τληω ,

Pµνρστληω = δµτ δ
ν
λδ
ρ
ηδ
σ
ω + 1

2gτηδ
[µ
λ g

ν][ρδσ]
ω + 1

6 gτη gλω g
µ[ρ gσ]ν .

(8.3)

Next, we can take the factors of k outside the integral as derivatives

〈R(h)µνρσ〉 = Pµνρστληω ∂
[τuλ]∂[ηuω] Re im2κ2

∫
dΦ(k)δ̂(2k · p)e−ik·x

= Pµνρστληω ∂
[τuλ]∂[ηuω] mκ

2

2 Re i
∫

dΦ(k)δ̂(k · u)e−ik·x .
(8.4)

For positive t1, it can be checked that

Re i
∫

dΦ(k)δ̂(k · u)e−ik·x = −1
2

∫
d̂3k

e−ik·x

k2 . (8.5)

The integral on the right is performed over the three-dimensional subspace of momenta
orthogonal to the worldline k · u = 0, so kµ = (k1, 0, k3, k4). This prescription will be used
in the rest of this section. Additionally, the divergence is resolved by the iε prescription
(k)2 = (k1 + iε)2 − |k|2, which selects the retarded contour. Substituting in the Riemann
tensor and taking the derivatives inside the integral, we get

〈R(h)µνρσ〉 = Pµνρστληω

mκ2

4

∫
d̂3k

e−ik·x

k2 k[τuλ]k[ηuω] . (8.6)

This already looks like a double copy of the field strength tensor

Fµν(x) = −Q
∫

d̂3k
e−ik·x

k2 k[µuν] . (8.7)

To obtain a concrete double copy expression, we introduce a delta function

〈R(h)µνρσ〉 = Pµνρστληω

mκ2

4

∫
d̂3k d̂3q δ̂3(k − q)e

−ik·x

k2 k[τuλ]q[ηuω]

= Pµνρστληω

mκ2

4

∫
d̂3k d̂3q d3y e−iy·(q−k) e

−ik·x

k2 k[τuλ]q[ηuω]

= −Pµνρστληω

mκ2

4

∫
d3y

∫
d̂3k

e−ik·(x−y)

k2 k[τuλ]
∫

d̂3q e−iy·qq[ηuω] .

(8.8)

The last line is already a convolution of F τλ with the integral in q. To complete the
calculation we will need the scalar field and its formal inverse

S(x) = −
∫

d̂3k
e−ik·x

k2 , S−1(x) = −
∫

d̂3k e−ik·x k2 , (8.9)

18This projector is sufficient for our purposes but more general possibilities are available.
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satisfying19 (
S ◦ S−1

)
(x) = δ(t1)δ2(x) . (8.10)

We emphasise that the expression for S−1 is only formal, due to the divergence of the
integral. S−1 is really defined operationally, acting via the convolution. It will always
appear in convolutions where this divergence is cancelled, yielding a finite result. The
calculation can be carried out following a strategy similar to the previous one. Inserting a
delta function and a factor which equals 1 on its support, we have

〈R(h)µνρσ〉 = −Pµνρστληω

mκ2

4

∫
d3y

∫
d̂3k

e−ik·(x−y)

k2 k[τuλ]

×
∫

d̂3q d̂3l δ̂(l − q) l
2

q2 e
−iy·qq[ηuω]

= −Pµνρστληω

mκ2

4

∫
d3y d3z

∫
d̂3k

e−ik·(x−y)

k2 k[τuλ]

×
∫

d̂3q
1
q2 e

−iq·(y−z)q[ηuω]
∫

d̂3l l2 e−il·z .

(8.11)

Finally, we recognise another convolution,

〈R(h)µνρσ(x)〉 = − mκ2

4Q2 P
µνρσ
τληω

(
F τλ ◦ S−1 ◦ F ηω

)
(x) . (8.12)

We conclude that this contribution of the Riemann tensor is the convolution of two copies
of the field strength tensor with an inverse power of the scalar field. We remark that the
convolutions are performed over a 3-dimensional subspace of spacetime, reflecting the fact
that all our solutions are independent of t2.

The convolution we have obtained is the most natural operation from the point of
view of the double copy [91, 93, 147–150]. However, we know that for some cases (like
Schwarzschild) the relation must factorise in position space, turning convolutions into
ordinary products. In this factorisation, the projector plays an important role. On its own,
F ◦ S−1 ◦ F does not factorise, but the offending terms are pure traces that are projected
out by P, leaving a neat factorised expression. In order to gain a better understanding of
this, let us go back to (8.6) and take the derivatives out:

〈R(h)µνρσ〉 = −Pµνρστληω∂
[τuλ]∂[ηuω] mκ

2

4

∫
d̂3k

e−ik·x

k2

= mκ2

4 Pµνρστληω∂
[τuλ]∂[ηuω] S(x) .

(8.13)

The crucial point now is that the double derivative action on S(x) factorises into single
derivatives under the contraction of the projector P, in the sense to be described below.
This happens in the strict interior of the split signature light-cone, where the curvature
is non-vanishing and type D. It is simpler if we first perform an analytic continuation to

19The symbol ◦ denotes convolution: (f ◦ g)(x) =
∫

dyf(y)g(x− y).

– 32 –



J
H
E
P
0
6
(
2
0
2
2
)
0
2
1

(1,3) signature to prove the factorisation using the properties of Kerr-Schild vectors recently
reviewed in [38]. First, we note that the analytic continuation of the scalar S(x) is

S(x) = 1
4πR , (8.14)

where R can be interpreted as the retarded null distance between a point xµ and a static
worldline yµ(τ) tangent to uµ. Similarly, we can define a Kerr-Schild vector

Kµ = [xµ − yµ(τ)]ret
R

. (8.15)

It is not hard to prove

∂µR = uµ −Kµ , ∂µKν = 1
R

(ηµν +KµKν −Kµuν −Kνuµ) . (8.16)

These two identities imply

∂µS = −4π S2 (uµ −Kµ)
∂µ∂νS = 3(4π)2 S3 (uµ −Kµ)(uν −Kν) + (4π)2S3 (ηµν − uµuν) .

(8.17)

The last line can be rewritten as

∂µ∂νS = 3 ∂µS ∂νS
S

+ (4π)2 S3 (ηµν − uµuν) . (8.18)

Upon substitution in (8.13), the contribution from the last term on the right-hand side of
the expression above vanishes. Hence,

Pµνρστληω∂
[τuλ]∂[ηuω] S(x) = 3

S(x)P
µνρσ
τληω

(
∂[τuλ]S(x)

) (
∂[ηuω]S(x)

)
. (8.19)

This expression completes the argument, because the factors in parenthesis equal the field
strength tensor up to some constants,

〈R(h)µνρσ〉 = 3κ2m

4 Pµνρστληω

F τλF ηω

S
. (8.20)

This is the Weyl double copy relation for Schwarzschild, which is also valid in higher
dimensions for an appropriate constant factor.

Above, we have presented the proof for the simplest example, where the deformation
parameters θ̄ and ā are set to zero. Since the Kerr-Taub-NUT solution satisfies the Weyl
double copy, a similar factorisation must happen for generic θ̄ and ā. The proof is rather
straightforward. The key observation is that (8.19) holds also for Sā,θ̄, since the effects of ā
and θ̄ are a translation and a constant scaling respectively. Then, after some algebra, one
can prove that

〈R(h)µνρσ〉 = 3κ2m

4 Pµνρστληω

(
F τλ− F ηω−
Sā,θ̄

+
F τλ+ F ηω+
S−ā,−θ̄

)
, (8.21)

where F+ and F− are the self-dual and anti-self-dual parts of the field strength as defined
in (4.28). This result represents the Weyl double copy expressed in tensorial form, a map
that was also studied in [155, 175].
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It would be interesting to see whether these simple position-space double copy relations
can be extended to include the dilaton. We start from the linear dilaton contribution in
position space,

〈R(φ)µνρσ(x)〉 = c̃ mκ

2 Re i
∫

dΦ(k)δ̂(2k · p)e−ik·xk[µην][ρkσ] . (8.22)

On the support of the delta functions, we can write this as

〈R(φ)µνρσ(x)〉 = − c̃ mκ

2 Re i
∫

dΦ(k)δ̂(2k · p)e−ik·xfλ[µην][ρfσ]
λ , (8.23)

where fµν = k[µuν]. We can follow the same steps as before to obtain a position space
convolutional double copy

〈R(φ)µν
ρσ(x)〉 = − c̃ κ

8Q2

(
F λ[µ ◦ S−1 ◦ Fλ[ρ

)
(x) δν]

σ] . (8.24)

In contrast to what happened for the graviton contribution, these convolutions cannot be
turned into products. To see that, we could proceed as for the graviton and rewrite (8.23)
as a second order differential operator acting on the Lorentz continuation of S(x). Then,
we would like to use (8.18) to accomplish the factorisation. The result would be

〈R(φ)µν
ρσ(x)〉 = c̃ κ

8

3
F λ[µ δ

ν]
[ρ Fσ]λ

S
+ (4π)2S3

(
δ

[µ
[ρ δ

ν]
σ] − δ

[µ
[ρu

ν] uσ]
) . (8.25)

While the first term exhibits a local position-space double copy form, the others do not.
Thus, the double copy of the dilatonic contribution is natural only in terms of convolutions
and it is non-local in position space. Interestingly, the JNW solution admits an exact
double copy interpretation in position space, based on a Kerr-Schild-like construction in
double field theory [152]. However, unlike the Kerr-Schild double copy for Schwarzschild,
the dilatonic deformation makes the relation non-local in position space.

9 Discussion

Our understanding of the link from scattering amplitudes to classical solutions has matured.
It has become straightforward to construct the linearised solutions associated to massive
three-point amplitudes in four dimensions. The technical developments which have clarified
this link are the KMOC formalism [2, 45, 46], which constructs classical observables from
amplitudes, and the analytic continuation [119] to split signature metrics. This second step
allows us to use the methods of KMOC in the context of three-point amplitudes.

In this paper, we took advantage of these developments to perform a comprehensive
survey of the classical fields constructed by the double copy from gauge theory three-point
amplitudes. As anticipated by previous work on the classical double copy [20, 70, 84, 132,
176], we saw that magnetic charge in gauge theory indeed double copies to NUT charge in
gravity. Furthermore, our methods confirmed the three-point amplitudes associated by more
indirect arguments [20, 132] to Taub-NUT and its spinning generalisation, Kerr-Taub-NUT.
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Indeed a split-signature form of Kerr-Taub-NUT and its scattering amplitude also appeared
very recently in independent work [130, 144].

The most basic example of a classical double copy is that from Coulomb to
Schwarzschild [70]. However, the literature also contains a different double copy of Coulomb:
namely the JNW solution [40, 151]. The origin of this non-uniqueness was discussed in [152],
where a Kerr-Schild-type exact double copy interpretation of JNW was also presented,
and in [153], where an off-shell convolutional approach based on the BRST formulation
(including Fadeev-Popov ghosts) [149] was used. We are also able to understand the origin
of the non-uniqueness using the framework introduced in our paper. It arises directly from
choices inherent in the standard double copy of scattering amplitudes. At the level of
amplitudes, it is always possible to define the gravitational theory by declaring that its
three-point amplitudes are either the double copy of two same-helicity gluons (resulting in
Einstein gravity) or the double copy of two same-helicity gluons and two opposite-helicity
gluons (resulting in NS-NS gravity). Making the former choice, the double copy of Coulomb
is indeed Schwarzschild. The latter choice, by contrast, leads to the JNW solution. So we
are free to choose the couplings of the massive particle.

It is fascinating that the Kerr solution corresponds to a particularly simple three-point
amplitude [133]. Clearly, this fact is related to the Newman-Janis shift, which is an all-orders
property of Kerr [135]. The “single” copy of the Kerr solution,

√
Kerr, is a solution of the

Maxwell equations which is also endowed with a simple three-point amplitude. Turning on
a magnetic charge in addition to the spin leads to a spinning dyonic solution which is, to
date, the most general known three-point amplitude in pure gauge theory. The double copy
of this amplitude in pure gravity is the Kerr-Taub-NUT solution [20]. However, it is also
possible to perform the double copy of these amplitudes in NS-NS gravity where, as we
have seen, the resulting class of solutions is of the type Kerr-Taub-NUT-dilaton-axion. This
generalises the previous discussion of the double copy from Coulomb to the JNW solution
to the more general three-point amplitudes.

The double copy of gauge theory contains even more general possibilities. Including
scalar matter in the definition of the gauge theory introduces a new three-point amplitude:
this time between the pointlike source and the scalar field. The resulting “heterotic” double
copy is a gravitational theory including dilatons and axions as well as gauge fields. To date,
this is the most general class of theories in which we can explicitly relate the double copy
for three-point amplitudes to explicit classical fields.

Our work also dealt with another apparent mystery in the classical double copy. For
scattering amplitudes, the double copy is clearly a creature of momentum space: it is local
in that context. Yet the classical double copy is frequently presented in position space — the
question is then how does locality in position space somehow become locality in momentum
space? In section 8, we showed that this locality arises non-trivially only in specific cases
which include the Kerr-Taub-NUT solution.

In spite of this progress, there is still much to understand. The classical double copy
obviously applied to solutions which are not (yet) connected to scattering amplitudes. An
important example is the (A)dS-Schwarzschild metric, which is related by the Kerr-Schild
double copy to an electromagnetic solution with a point charge immersed in a background
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of constant charge density [176]. Given that the classical double copy connects to scattering
amplitudes as well as configurations with a cosmological constant, perhaps it can lead to
some insight on the double copy in the presence of a cosmological constant.

We focussed throughout on four-dimensional metrics. Of course this case is particularly
important, and (since gravitational wave phenomenology motivates much of the recent
interest in amplitudes and classical gravity) it is also true that particular attention has
been given to the relevant amplitudes in four dimensions. However, black holes in higher
dimensions have a number of fascinating properties which have received intense scrutiny
in the literature. It would be interesting to generalise our methods to this case. The
spinorial structure of the generalised curvature which was so helpful for us would need
to be understood; we expect that this should link to the higher-dimensional spinorial
decomposition of the curvature described in reference [177].

Finally, let us highlight an outstanding mystery facing the classical double copy. In
this article, we focused on linearised solutions of gravity. But in terms of the single copy,
our solutions are exact. In the case of Schwarzschild (and indeed Kerr-Taub-NUT), the
exact Weyl tensor, in an appropriate tetrad, is linear in mass (and NUT charge) and so
equals its linearised approximation. However, this is not the case in general. How should
we understand the curvature corrections in these cases from the perspective of amplitudes?
Perhaps we can turn to the beautiful computations of Mougiakakos and Vanhove [22] for
further insight. A related, but perhaps more difficult, question is what is the meaning of
the Kerr-Schild property of certain spacetime metrics in terms of scattering amplitudes?
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A Conventions

We work in a Minkowski spacetime with signature

ηµν = diag(+1,−1,−1,−1), (A.1)

which is then continued to the split signature one

ηµν = diag(+1,+1,−1,−1). (A.2)

Our Fourier transforms conventions are

f(x) =
∫

d̂4k e−ik·x f̃(k) ,

f̃(k) =
∫

d4x eik·x f(x) ,
(A.3)
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where to clean up factors of 2π we write

d̂nk = dnk
(2π)n , δ̂n(k) = (2π)nδn(k) . (A.4)

We also define (anti-)symmetrized brackets as

v(µwν) = vµwν + vνwµ, v[µwν] = vµwν − vνwµ. (A.5)

B Volume form and null tetrad

This appendix is devoted to relating the null tetrad to the volume form. In four-dimensional
spacetimes, any four-form must be proportional to the volume form. In particular,

k[µnνε+ ρε−σ] ∝ εµνρσ . (B.1)

The proportionality factor can be obtained as follows. First, note that

εµνρσεµνρσ = 4! . (B.2)

Next, we square the antisymmetrised tetrad,

k[µnνε+ ρε−σ]k
[µnνε+

ρε−
σ] = 4!(k · n)2(ε+ · ε−)2 = 4! . (B.3)

Comparing both equalities, we conclude that

εµνρσ = ±k[µnνε+ ρε−σ] . (B.4)

The sign on the right is not fixed, as it depends on the particular choice of tetrad. Right-
handed tetrads satisfy the relation with the plus sign. Left-handed tetrads can be turned
into right-handed ones by interchanging ε+ and ε−. Therefore, without loss of generality,
we can assume that the tetrad is right-handed.

Finally, we can obtain an useful relation by contracting the volume form with kρ and uσ,

εµνρσkρ uσ = −ε− · u εµνρσkρε+σ − ε+ · u εµνρσkρε−σ
= −k[µnνε+ ρε−σ] (ε− · u kρε+σ + ε+ · u kρε−σ)

= −
(
ε− · u k[µε

ν]
+ − ε+ · u k[µε

ν]
−

)
.

(B.5)

C Gravitational coherent state

This section describes the exponentiation of the coherent state in the presence of the
graviton, dilaton and axion fields. Given that our initial state contains only one creation
operator for the massive particle, the S-matrix can be expanded in multiplicities as

S|ψ〉 = 1
N

(1 + iT3 + iT4 + · · · )|ψ〉 , (C.1)
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where the Tn are defined by

Tn+2 = 1
n!

∑
η1,...,ηn

∫
dΦ(p′)dΦ(p)

n∏
i=1

dΦ(ki)
n∑

m=0

n!
l!m! (n− l −m)!

×M(l,m,n−m−l)
−η1,...,−ηm (p→ p′, k1, · · · , kn)× δ̂4

(
p− p′ −

∑
ki
)
a†(p′)a(p)

a†η1(k1) · · · a†ηl(km)a†φ(kl+1) · · · a†φ(kl+m) a†b(kl+m+1) . . . a†B(kn) .

(C.2)

M(l,m,n−m−l)
−η1,...,−ηm (p → p′, k1 · · · kn) denotes the amplitude with two external scalar legs, l

graviton external legs, m dilaton legs and n− l −m axion legs.
The simplifications of the amplitude in the classical limit are equivalent to those exposed

in [119]. First of all, loops are subleading in ~, so we should consider tree amplitudes
exclusively. Then, all the higher multiplicity vertices and graviton-dilaton/axion vertices
yield higher order terms in ~. Thus, only the 3-point vertices with two massive scalar legs
contribute. Finally, the fact that gravitons, dilatons and axions have momenta of order
~ implies that we can “cut” the three-point amplitudes, simplifying the leading classical
contribution to

iM(l,m,n−l−m) =

 l∏
i=1

iM−ηi(ki)
l+m∏
i=l+1

iMφ(ki)
n∏

i=l+m+1
iMB(ki)

 (C.3)

×
∑
π

i

2p·kπ(1)+iε
i

2p·(kπ(1)+kπ(2))+iε · · ·
i

2p·(kπ(1)+kπ(2)+· · ·kπ(n−1))+iε .

The second line will be simplified together with the total momentum conservation delta
function thanks to

δ̂

(
n∑
i=1

ωi

)∑
π

i

ωπ(1) + iε

i

ωπ(1) + ωπ(2) + iε
· · · i

ωπ(1) + ωπ(2) + · · ·ωπ(n−1) + iε

= δ̂(ω1)δ̂(ω2) · · · δ̂(ωn) .
(C.4)

Finally, we notice that the factors arrange themselves into a power of the sum of amplitudes

iTn+2|ψ〉 = 1
n!

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k) δ̂(2p · k) iM−η(k) a†η(k)

+
∫
dΦ(k)dΦ(k) δ̂(2p · k) iMφ(k) a†φ(k)

+
∫
dΦ(k)dΦ(k) δ̂(2p · k) iMB(k) a†B(k)

)n
|p〉 .

(C.5)

Consequently, summing over n reproduces the expansion of an exponential, yielding the
coherent state

S|ψ〉 = 1
N

∫
dΦ(p)ϕ(p) exp

[ ∫
dΦ(k) δ̂(2p · k) i

×
(∑

η

M−η(k) a†η(k) +Mφ(k) a†φ(k) +MB(k) a†B(k)
)]
|p〉 .

(C.6)
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D 2-spinors in Riemann-Cartan geometries

In this appendix, we will study the Riemann-Cartan objects defined in section 3 under the
light of the 2-spinor formalism. The generalisation of spinors to spacetimes with torsion
was also addressed in [122, 123].

The procedure to define the spinorial structure does not differ from the Riemannian
case. Tensors are mapped to spinors using the Pauli matrices (also called Infeld-van der
Waerden symbols) σµAȦ and σ̃ ȦA

µ . The metric on spinor space is the anti-symmetric two
by two matrix εAB (and εȦḂ). The conventions for raising and lowering spinors are

ξA = εABξB , ξA = ξBεBA , (D.1)
εACεCB = εAB = δAB , εCAεCB = εB

A = −δAB . (D.2)

Similar expressions hold for εȦḂ. For conciseness, the σ-matrices will be used implicitly
every time indices are translated from the spacetime tangent bundle to the spinorial bundles.
In this way, we write

Kµνρ → KAȦBḂCĊ . (D.3)

In going to spinorial space, we lengthen the list of indices, but we gain extra simplification
power. This is because tensorial symmetries imply that the spinorial counterparts must
decompose into lower rank symmetric spinors and epsilon matrices. Moreover, since every
pair of indices is the sum of their symmetrisation plus their antisymmetrisation, any spinor
can be expressed as a sum of totally symmetric spinors combined with epsilon matrices. The
most famous example is the reduction of the Riemann spinor to its irreducible components

RAȦBḂCĊDḊ = ΨABCDεȦḂεĊḊ + Ψ̃ȦḂĊḊεABεCD

+ ΦABĊḊεȦḂεCD + Φ̃ȦḂCDεABεĊḊ

+ 2Λ (εAC εBD εȦĊ εḂḊ − εAD εBC εȦḊ εḂĊ) .
(D.4)

The symmetry under the exchange of pairs of indices and the first Bianchi identity impose
Φ̃ȦḂCD = ΦCDȦḂ and Λ̃ = Λ respectively.

However, this result does not hold for Riemann-Cartan manifolds. One of our goals
is to see explicitly how the above expression changes in the presence of contorsion. As a
preliminary step, we have to study the contorsion itself from the point of view of spinors.

D.1 Contorsion spinors

The natural first step for decomposing the contorsion spinor is to exploit the antisymmetry
of Kµνρ in the first and third indices,

KAȦBḂCĊ = ΘABCḂεȦĊ + Θ̃ȦḂĊBεAC , (D.5)

where ΘABCḂ = 1
2Θ(A|B|C)Ḃ. The resulting spinor is still not totally symmetric, implying

that it can be separated into two irreducible parts

ΘABCḂ = ΞCḂ εAB + ΞAḂ εCB + ΩABCḂ , (D.6)
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Tensor components Spinor components d.o.f.

Antisymmetric K̆µνρ ΞAȦ − Ξ̃ȦA 4
Trace K̄µ ΞAȦ + Ξ̃ȦA 4
Traceless K̂µνρ ΩABCȦ , Ω̃ȦḂĊA 16

Table 2. d.o.f. in the different components of the contorsion.

where ΩABCḂ = 1
3!Ω(ABC)Ḃ. The spinors ΞAḂ and ΩABCḂ constitute the irreducible

spinorial decomposition of the contorsion.
Now that we have pinned down the spinorial degrees of freedom of the contorsion, we

can map them to the tensorial degrees of freedom. These tensorial degrees of freedom are
arranged into three components: a completely antisymmetric tensor K̆µνρ, a trace K̄µ and
a traceless tensor K̂µνρ

K̆µνρ = 1
3! K[µνρ] , (D.7a)

K̄µ = Kν
νµ , (D.7b)

K̂µνρ = 1
3(K(µν)ρ +Kµ(νρ))−

1
3 gµν K

σ
σρ + 1

3 gνρK
σ
σµ . (D.7c)

For completeness, the inverse relation is

Kµνρ = K̆µνρ + K̂µνρ + 1
3 gµν K̄ρ −

1
3 gνρ K̄µ . (D.8)

Upon applying the sigma matrices to the right hand side of (D.7), we obtain20

K̆µνρ → (εACεBF εȦḞ εḂĊ − εAF εBCεȦĊεḂḞ )(ΞFḞ − Ξ̃ḞF )

= −i εABCFȦḂĊḞ (ΞFḞ − Ξ̃ḞF )
, (D.9a)

K̄µ → 3(ΞAȦ + Ξ̃ȦA) , (D.9b)

K̂µνρ → εȦĊ ΩABCḂ + εAC Ω̃ȦḂĊB . (D.9c)

The factor of i in (D.9a) appears in Lorentzian signature only. The rest of this section is
signature agnostic. Table 2 summarises the share of degrees of freedom among the different
tensor and spinor components. Under the map (3.6), ΩABCĊ = Ω̃ȦḂĊB = 0, ΞAȦ + Ξ̃ȦA is
related to ∂µφ and ΞAȦ − Ξ̃ȦA to ∂µσ.

D.2 Riemann spinors

A similar process can be followed to decompose the spinorial equivalent of Rµνρσ. First, we
will exhaust the — now smaller — symmetry group of the tensor to identify its irreducible
spinor components. Then, by means of (3.5), we will relate the newly found spinors to the
contorsion spinors and the usual curvature spinors of Rµνρσ.

20The identity εA[BεCD] = 0 is needed to simplify the result of the calculation.
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Spinor component Rµνρσ Rµνρσ

Ψ, Ψ̃ 2× 5 2× 5
Σ, Σ̃ 2× 4 0
Λ, Λ̃ 2× 1 1
Φ, Φ̃ 2× 9 9

Total 36 20

Table 3. d.o.f. counting for the curvature spinors.

We begin the spinoral reduction of the generalised Riemann tensor by implementing its
only symmetries: the antisymmetry of both pairs of indices

RAȦBḂCĊDḊ = XABCDεȦḂεĊḊ + X̃ȦḂĊḊεABεCD

+ ΦABĊḊεȦḂεCD + Φ̃ȦḂCDεABεĊḊ .
(D.10)

The curvature spinors of R are printed in bold typeface in order to distinguish them
from those of R. Recall that Rµνρσ 6= Rρσµν . The lack of this symmetry implies that
XABCD 6= XCDAB and ΦABĊḊ 6= Φ̃ĊḊAB in general. The spinor XABCD is not completely
symmetric and must be further reduced

XABCD = ΨABCD −
(
ΣA(CεD)B + ΣB(CεD)A

)
+ Λ(εACεBD + εADεBC) , (D.11)

where ΨABCD and ΣAB are completely symmetric. Putting tildes and dots yields the
analogous expression for X̃ȦḂĊḊ. It might be worth remarking that Λ̃ 6= Λ, because
Rµ[νρσ] 6= 0. All the remaining spinors are completely symmetric and hence irreducible.
Table 3 shows how the degrees of freedom encoded in the irreducible spinors add up to 36,
the number of independent (real) components of Rµνρσ [122]. These degrees of freedom
also include the Ricci tensor and the Ricci scalar, which can be obtained from the same
spinor components

Rµρν
ρ → −ΦABȦḂ − Φ̃ȦḂAB + 4(ΣABεȦḂ + Σ̃ȦḂεAD) + 3(Λ + Λ̃)εABεȦḂ (D.12)

Rµν
µν = 12(Λ + Λ̃) . (D.13)

The inverse spinorial identities

ΦABĊḊ = 1
4RAȦB

Ȧ
CĊ

C
Ḋ , (D.14)

XABCD = 1
4RAȦB

Ȧ
CĊD

Ċ , (D.15)

ΨABCD = 1
4!X(ABCD) , (D.16)

ΣAB = 1
8X(A|C|B)

C , (D.17)

Λ = 1
6XAB

AB , (D.18)

are better suited expressions for computing the spinors of a given solution.
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So far, we have identified the irreducible parts that make up the contorsion and the
Riemann tensor. However, the Riemann tensor and the contorsion are not independent.
Their relation is made explicit in equation (3.5). Hence, the bold curvature spinors must
be functions of the contorsion spinors and the usual curvature spinors. The procedure to
establish these relations is straightforward. First, the spinorial equivalent of the right hand
side of (3.5) must be obtained. Then, applying (D.14)–(D.18) yields the desired expressions:

ΦABĊḊ = ΦABĊḊ + 1
8 ∇(A|ȦΘ̃Ċ

Ȧ
Ḋ|B) −

1
8Θ̃Ċ

ȦĖ
(A| Θ̃ḊȦĖ|B)

= ΦABĊḊ + 1
2

(
∇(A|ȦΩ̃Ċ

Ȧ
Ḋ|B) +∇A(ĊΞ̃Ḋ)B +∇B(ĊΞ̃Ḋ)A

− 4 Ξ̃Ċ(A|Ξ̃Ḋ|B) − 2 Ξ̃Ȧ(A|Ω̃ĊḊȦ|B) − Ω̃Ċ
ȦĖ

(A|Ω̃ḊȦĖ|B)

)
,

(D.19)

ΨABCD = ΨABCD + 1
4!

(
∇Ȧ(AΘBCD)

Ȧ −Θ(AB
EȦΘCD)EȦ

)
= ΨABCD + 1

4!

(
∇Ȧ(AΩBCD)

Ȧ + 2 Ξ(A
Ȧ ΩBCD)Ȧ − Ω(AB

EȦ ΩCD)EȦ

)
(D.20)

ΣAB = −1
4∇Ȧ(AΞB)

Ȧ + 1
8∇CȦ ΩAB

CȦ + 3
4 Ξ CȦ ΩABCȦ , (D.21)

Λ = Λ + 1
6 ∇BȦΘA

A
BȦ + 1

12 ΘABCȦ ΘABCȦ + 1
12 ΘA

A
BȦ ΘB

E
EȦ

= Λ− 1
2∇

AȦΞAȦ − ΞAȦ ΞAȦ + 1
12 ΩABCȦ ΩABCȦ . (D.22)
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