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Abstract

Motivation: Several computational and statistical meth-
ods have been developed to analyse data generated through
the 3C-based methods, especially the Hi-C. Most of the ex-
isting methods do not account for dependency in Hi-C data.
Results: Here, we present ZipHiC, a novel statistical
method to explore Hi-C data focusing on the detection of
enriched contacts. ZipHiC implements a Bayesian method
based on a hidden Markov random field (HMRF) model and
the Approximate Bayesian Computation (ABC) to detect
interactions in two-dimensional space based on a Hi-C con-
tact frequency matrix. ZipHiC uses data on the sources of
biases related to the contact frequency matrix, allows bor-
rowing information from neighbours using the Potts model
and improves computation speed by using the ABC model.
In addition to outperforming existing tools on both simu-
lated and real data, our model also provides insights into dif-
ferent sources of biases that affects Hi-C data. We show that
some datasets display higher biases from DNA accessibility
or Transposable Elements content. Furthermore, our anal-
ysis in D. melanogaster showed that approximately half of
the detected significant interactions connect promoters with
other parts of the genome indicating a functional biological
role. Finally, we found that the micro-C datasets display
higher biases from DNA accessibility compared to a similar
Hi-C experiment, but this can be corrected by ZipHiC.

1 Introduction

Distant regulatory elements and their target genes are of-
ten separated by large genomic distances. In order for the
regulatory element to activate a target gene, they need to
come in 3D proximity (Bonev and Cavalli, 2016; Hua et al.,
2021). This indicates that the spatial organisation of the
genome is intimately related to genome regulation and a
better understanding of the 3D organisation of the genome
is important in disentangling the contribution of different
factors to gene regulation. One of the recently developed
genome-wide proximity ligation assay is the Hi-C technique
(Lieberman-Aiden et al., 2009), which is a chromosome con-

formation capture (3C)-based method. Hi-C is able to de-
tect interactions (short-range and long-range) within and
between chromosomes at high resolutions. While in mam-
malian systems, resolutions of 5 Kb have been achieved
(Rao et al., 2014), in smaller genomes, such as Drosophila,
sub-kilobase pair resolutions were obtained from Hi-C ex-
periments (Eagen et al., 2017; Cubenãs-Potts et al., 2017;
Chathoth and Zabet, 2019). In addition, datasets generated
by Hi-C are highly reproducible between replicates and often
highly conserved between tissues (Ghavi-Helm et al., 2014).
Recent technological advances have pushed the resolution
of conformation capture methods to base pair resolution in
mammalian systems (Hua et al., 2021).

The data generated by a Hi-C experiment can be repre-
sented as a matrix of contact frequencies between pairs of
regions along the genome. These matrices are associated
with biases (Yaffe and Tanay, 2011), such as the restriction
fragment length, GC content of trimmed ligation junctions
and mappability, but many additional factors may also con-
tribute to the contact counts. Correcting for these biases is
important and there have been several methods being pro-
posed that take these biases into account (Yaffe and Tanay,
2011; Imakaev et al., 2012; Hu et al., 2013; Servant et al.,
2015).

The Iterative Correction and Eigenvector decomposition
(ICE) has been the most widely used method to account
for biases associated with the Hi-C data, due to its simplic-
ity and being parameter-free by assuming equal visibility
across all regions of the genome (Imakaev et al., 2012). This
equal visibility assumption considers that all regions can be
probed by the method with same probability. However this
assumption is not always true, because the visibility of ar-
eas could vary (Imakaev et al., 2012; Servant et al., 2015).
In addition, ICE is computationally intensive because the
Hi-C interaction matrix is of size O(N2), where N is the
number of genomic regions.

The study of (Rao et al., 2014) generated one of the high-
est resolution maps of the 3D organisation of the human
genome by using a in situ Hi-C to probe the 3D architecture
of genomes for DNA-DNA proximity ligation in intact nu-
clei. This has revealed that the human genome is organized
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into sub-compartments globally and contains about 10, 000
chromatin loops (Rao et al., 2014). To account for biases in
Hi-C data, (Rao et al., 2014) adopts the matrix-balancing
proposed in (Knight and Ruiz, 2013). In particular, peaks
are called only when a pair of regions of the genome shows
elevated contact frequency relative to the local background;
i.e., peaks are called when the peak pixel is enriched as com-
pared to other pixels in its neighborhood.

Other methods take into account potential dependence
among pairs of regions of the genome (Jin et al., 2013). In
order to accurately identify the chromatin interactions and
loops with high sensitivity and resolution, they used data
filtering techniques based on the strand orientation of Hi-C
paired-end reads. This also allows detection of short ge-
nomic distance interactions between restriction fragments
and their analysis shows the effects of GC content and map-
pability on the observed contact frequency. Interestingly,
there seems to be a linear relationship between average
trans-contact frequency and mappability (Jin et al., 2013).

Loci that are in close 1D proximity to each other often
interact with the same distal regions. This suggests that
these loci are part of a region that make a 3D contact with
the distal region. Some of the existing methods are based
on one-dimensional calling approaches, which do not con-
sider useful information that can be gained using the two-
dimensional approach. The first method to take into account
the spatial dependency of Hi-C is the HMRFBayesHiC al-
gorithm (Xu et al., 2016b). In particular, HMRFBayesHiC
models the neighbouring regions in the context of a two-
dimensional contact matrix generated from Hi-C. This algo-
rithm assumes that not all peaks will have similar strength
and clustering patterns. Nevertheless, it also involves hav-
ing prior information about the expected count frequency
distribution to account for biases, which is often unknown.
One of the biggest shortcomings of this approach is that it
is computationally intensive and chromosome wide compu-
tations, even in smaller genomes, are not feasible.

FastHiC is a novel hidden Markov random field (HMRF)-
based peak caller to detect long-range chromosomal inter-
actions from Hi-C data (Xu et al., 2016a). The FastHiC
method is based on the HMRFBayesHiC (Xu et al., 2016b)
and uses simulated field approximation, which approximates
the joint distribution of the hidden peak status by a set
of independent random variables. In particular, FastHiC
approximates the Ising distribution by a set of indepen-
dent random variables, enabling tractable computation of
the normalising constant in the Ising model. Despite this
improvement in computation time, FastHiC is still compu-
tationally intensive and chromosome wide calculations are
still computationally challenging.

FitHiC2 is an extended and improved version of the
Fit-Hi-C (Ay et al., 2014) which incorporates various new
computational modules and pre/post-processing utilities
(Kaul et al., 2020). The FitHiC2 is designed to compute
statistical confidence estimates to Hi-C counts by fitting a
cubic smoothing spline to the average genomic distance and
contact probabilities in Hi-C datasets to learn a continuous
function that relates the average genomic distance and con-
tact probabilities (Kaul et al., 2020). Despite the simplicity

of FitHiC2, it fails to take into consideration the possibility
of spatial dependency in the Hi-C data.

Another recently developed method for the detection of
chromatin interactions from Hi-C data is the HiC-ACT
which uses the Cauchy test (Lagler et al., 2021). HiC-ACT
addresses the possible spatial dependency ignored in the
FitHiC2 method, but it is more computationally intensive
compared to the FitHiC2, (Lagler et al., 2021). However,
one of the limitations of the HiC-ACT method is that it is
a post-processing method, that only requires bin identifiers
and probabilities generated from other methods rather than
the raw Hi-C data.

Finally, all these previous methods often classify the
observations into only two classes: non-random contacts
(peaks) and random contacts (noise). Nevertheless, it is pos-
sible to have more than two classes due to the nature of the
Hi-C approach. For example, a non-random contact may
have similar bias information to a random contact, which
may lead to a misclassification of this pair of regions by the
existing methods.

In this paper, we present ZipHiC, a hidden Markov ran-
dom field based Bayesian approach to identify significant
interactions in Hi-C data. This new model addresses several
issues with current models. First, we improve on existing
methods by introducing the dependency of neighbouring re-
gions in the two-dimensional space and adopt the Approxi-
mate Bayesian Approach (ABC) to deal with the intractable
normalizing constant in the Potts model, a Markov random
field-based model (Wu, 1982). Second, our model is compu-
tationally tractable and can be applied chromosome wide.
Third, the number of classes under consideration can be nat-
urally extended to more than two. We focus our analysis on
intra-chromosomal interactions due to the fact that about
95% of non-random interactions are found within chromo-
somes (Jin et al., 2013; Xu et al., 2016b). Most importantly,
we use ZipHiC to model Hi-C contact maps in Drosophila
cells and human cells and explore biases introduced by GC
content, transposable elements (TEs) and DNA accessibil-
ity. Finally, we also model micro-C data in human ES cells
and compare it to a similar Hi-C dataset in terms of the
identified significant contacts and biases.

2 Materials and Methods

2.1 ZipHiC

2.1.1 Notations

ZipHiC uses the contact matrix between pairs of bins gener-
ated from Hi-C experiments. Let yij , 0 ≤ i < j ≤ N denote
the observed contact frequency between bin i and bin j in N

total bins and Dij represent the genomic distance between
bin i and bin j. Let GCij represent the average percent-
age of Guanine and Cytosine, TEij represent the average
number of transposable elements (TEs) and ACCij repre-
sent the average DNA accessibility score in bins i and j. For
simplicity, we use s = {i, j} to denote the interaction pair
of bins i and j and use Ds, GCs, ACCs and TEs to denote
the observation value for interaction s.

2



2.1.2 Mixture model for data

We use the K-component mixture density to model our
data yij , where the first component is a zero-inflated Pois-
son (ZIP) distribution for noise (see below), while the other
components follow Poisson distributions:

f(yij) = α1ZIP(τ, λ
(1)
ij ) +

K
∑

k=2

αkPois(λ
(k)
ij ) (1)

where τ is the probability of extra zeros, λ
(k)
ij is the mean

of the kth component. αk is unknown percentage of kth
component subject to the constraint

∑K

k=1 αk = 1.
The above mixture model can be interpreted via a latent

variable framework. We introduce the latent variable zij =
k, k = 1, 2, · · · , K, where zij = k means that yij follows the

distribution of component k. Furthermore, λ
(k)
ij represents

the mean interaction of bins i and j if it is from the kth
component. The unknown number of mixture components
K makes the framework more flexible for different scenarios.
Our model accommodates increasing from 2 components to
any number of components. Nevertheless, in this paper, we
found that K=3 is sufficient to model the data and, thus,
we did not use more than 3 components in our analysis.

Due to the fact that the Hi-C contact map displays ex-
cess zero-counts and that the mean and variance are not the
same, we assume that the noise follows a ZIP distribution
rather than a Poisson distribution. In particular, a ZIP dis-
tribution has the mean (1−τ)λ and variance λ(1−τ)(1+τλ).
Furthermore we assume that the sources of biases can be cor-
rected by modeling λ

(k)
s with s = {i, j}, k = 1, 2, · · · , K as

log(λ(k)
s ) = β

(k)
0 + β

(k)
1 log(Ds) + β

(k)
2 log(GCs) + β

(k)
3 log(TEs)

+β
(k)
4 log(Accs)

(2)

2.1.3 Potts Model

To introduce the spatial dependency, our method utilizes
the HMRF for the hidden components. The HMRF is
a generalization of the hidden Markov model (HMM).
The HMRF has been widely used in areas such as image
analysis (Zhang et al., 2001), gene expression data anal-
ysis (Wei et al., 2008) and a population genetics study
(François et al., 2006). We adopt the Potts model (Wu,
1982) based on a Markov random field which provides a
flexible way to model spatially dependent data as our prior
for the latent variable zs. The latent variable z adopting
the Potts model is written as

p(z|γ) =
1

C(γ)
exp

(

γ
∑

(s∼t)

δzszt

)

(3)

where δzszt
is the Kronecker symbol which takes the value

1 when zs = zt and 0 otherwise. Label t defines the neigh-
boring bin pairs of s, i.e. s ∼ t means s and t are neigh-
bours in the Hi-C matrix. The set of latent variables zij are
modelled as a 2-dimensional HMRF, so the latent variable

zs depends on the status of the neighbours of s = {i, j},
Ns = {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)}. The neigh-
bouring

∑

(s,t) δzszt
can be interpreted as the sum of the

influence of neighbours of s. Here γ is a non-negative in-
teraction parameter, with value 0 resulting in an indepen-
dent uniform distribution on zij . Larger values of γ, such
as γ = 1, corresponds to a high level of spatial interaction,
and the probability of pairs of neighbours being in the same
component is very high. C(γ) is the normalizing constant,
also known as the partition function, which is written as

C(γ) =
∑

z

exp

(

γ
∑

(s∼t)

δzszt

)

(4)

where
∑

z indicates the summation over zs at all inter-
actions s and it depends on the interaction parameter γ.
The normalizing constant is computationally intractable
in higher order. To overcome this complication, methods
such as the likelihood-free approach can be used. Here we
use the Approximate Bayesian Computation model (ABC)
(Beaumont et al., 2002).

2.1.4 Approximate Bayesian Computation model
(ABC)

With a given dataset Y = (y1, y2, ..., yn) that is associated
with the models in equations (1), (2) and (3), the ABC al-
gorithm (Beaumont et al., 2002) used here can be described
as follows.

1. Simulate an initial value γ0 from the prior distribution
π0(γ);

2. Generate a parameter value from the posterior distri-
bution π(γ|Y ) ∝ π0(γ)p(z|γ);

3. A new value of γ∗ and y∗ is simulated jointly from (1),
(2) and (3);

4. Compute the absolute genomic distance or euclidean
distance d between the simulated data and the observed
data;

5. Fix a tolerance ǫ or use an empirical quantile
of d(y∗, y) which often corresponds to 1% quantile
(Beaumont et al., 2002)

6. Accept γ∗ if the absolute genomic distance is less than
ǫ, otherwise reject and start from step 1 again.

2.1.5 Bayesian Inference

In order to infer parameters, we adopt the Bayesian ap-
proach which is based on the posterior distribution. The
posterior distribution is proportional to the product of the
prior and likelihood. We make use of the Empirical Bayes
approach, which uses a hierarchical structure to determine
the prior, where the prior is determined by a distribution
with parameters called hyper-priors. The hyper-priors are
estimated from the dataset which means that it is less af-
fected by mis-specification of priors.

3



We also use the conventional Bayesian approach. For the
conventional Bayesian approach, we set the priors of our βs
to follow the normal distribution. For example, we set the

prior of β
(1)
0 ∼ N(β

(1)
0 ; 2, 1), γ ∼ β(γ; 10, 5) and set π0 = 0.6.

See Results and Supplementary Material for more analysis
on the sensitivity of using different priors.

The noise and signal components are allocated based on
the prior information introduced into our prior distributions.
For the two-component model, we considered that the small-
est mean represents the noise component and the largest
mean represents the mean signal. For the three-component
model, we considered that the smallest mean represents the
noise component, the intermediate mean represents the true
signal and the largest mean represents the false signal. Thus,
we labelled the first component as noise, the second compo-
nent as true signal and the third component as false signal.

2.2 Datasets and preprocessing

2.2.1 Drosophila dataset

To test the performance of the model, we used a high res-
olution Hi-C map of Kc167 cell lines in Drosophila from
(Eagen et al., 2017). The raw data was downloaded and pre-
processed with HiCExplorer following the set of parameters
from (Chathoth and Zabet, 2019; Chathoth et al., 2022).
Briefly, we aligned each pair of the PE reads to Drosophila
melanogaster (dm6) genome (dos Santos et al., 2015) us-
ing BWA-mem (Li and Durbin, 2010) (with options -t 20
-A1 -B4 -E50 -L0). HiCExplorer was used to build and
correct the contact matrices and detect enriched contacts
(Ramirez et al., 2018). The contact matrices were built us-
ing 2 Kb bins and then exported in text format to be loaded
into R.

For DNA accessibility in Drosophila Kc167 cells data
we used DNaseI-seq data from (Kharchenko et al., 2010),
while, for TE annotation in Drosophila, we used FlyBase
(dos Santos et al., 2015).

We detected TADs using HiCExplorer at 2Kb reso-
lution, similarly as done in (Chathoth and Zabet, 2019;
Chathoth et al., 2022). Briefly, TADs had at least 20 Kb

width, a P-value threshold of 0.01, a minimum thresh-
old of the difference between the TAD-separation score of
0.04, and FDR correction for multiple testing (–step 2000 –
minBoundaryDistance 20000 –pvalue 0.01 –delta 0.04 – cor-
rectForMultipleTesting fdr).

2.2.2 Human datasets

We also used Hi-C and micro-C datasets in H1-hES
cells from (Krietenstein et al., 2020). We used the
same preprocessing pipeline as for the Drosophila dataset.
Briefly, we aligned each pair to the human genome hg38
(Schneider et al., 2017) using BWA-mem (Li and Durbin,
2010). HiCExplorer was used to build and correct the con-
tact matrices at 10 Kb resolution and detect enriched con-
tacts (Ramirez et al., 2018).

Furthermore, we used DNaseI-seq for DNA acces-
sibility from ENCODE consortium (Thurman et al.,

2012) and TE annotation from RepeatMasker
http://www.repeatmasker.org.

2.3 Comparison to other tools

In this paper, we compare our new method ZipHiC to three
other tools: (i) FastHiC (Xu et al., 2016a), (ii) HiCExplorer
(Ramirez et al., 2018) and (iii) Juicer (Durand et al., 2017).
First, we generate the enriched interactions using a JAVA
implementation of FastHiC which uses expected counts and,
for that, we used the values estimated by the HiCExplorer
(Ramirez et al., 2018).

Second, we used the HiCExplorer generated matrices and
corrected them using the following values: (i) [−1.8, 5.0]
for Hi-C in Kc167 cells, (ii) [−2.4, 5.0] for Hi-C in H1-
hES cells, (iii) [−2.0, 5.0] for micro-C in H1-hES cells, (iv)
[−1.7, 5.0] for Hi-C biological replicate 1 in Kc167 cells and
(v) [−1.7, 5.0] for Hi-C biological replicate 2 in Kc167 cells;
see Supplementary Figure S1 (Ramirez et al., 2018). Then,
we generated the enriched contacts from the corrected ma-
trix using hicFindEnrichedContacts tool with observed
over expected method (--method obs/exp) (Ramirez et al.,
2018).

Third, we used Juicer to generate enriched contacts by
calling dump tool from Juicer tools. In particular, we used
the observed over expected method (oe) and Knight-Ruiz
normalisation (KR) at 2 Kb resolution for the Hi-C data in
Kc167 cells and at at 10 Kb resolution for the Hi-C and
micro-C data in H1-hES cells (Durand et al., 2017).

Note that, to capture TE biases, we recommend not to
use masking of the genome or to remove reads with multiple
alignments (using –non-deterministic option if available).

The R scripts used to perform
the analysis can be downloaded from
https://github.com/igosungithub/HMRFHiC.git.

3 Results

3.1 Using the two-component model on

simulated data

First, we considered the case of a two-component model
(signal and noise) and evaluated whether this model can
correctly estimate the sources of biases associated with Hi-
C contact matrix using simulated data. We simulated a
dataset of n = 2, 500 observations from the mixture model
(1), with K = 2. The simulation studies are based on out-
puts of MCMC algorithms with 20, 000 iterations and 10, 000
burn-in steps. We considered using either informative prior
or Empirical Bayes method, which has been used previously
to analyse missing data (Carlin and Louis, 2000). Further-
more, there are three cases under different component pro-
portions: (i) when the proportion of the noise is greater
than the signal, (ii) when the proportion of the noise and
the signal is the same, (iii) when the proportion of noise is
less than the signal. Finally, we also used different starting
values to justify the convergence of MCMC algorithms.

We studied the sensitivity of our model to different sets
of prior parameters values using the traditional informative
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prior and Empirical Bayes method. The latter, the prior of
the Empirical Bayes method, is based on the hyper-prior
determined by the dataset. Table S1 shows that the
two-component model is able to estimate the true value
accurately when using either the informative(fixed) or the
Empirical Bayes method for the prior distribution. In order
to illustrate the effect of using one of the priors (fixed prior
or Empirical Bayes), we included only one covariate, Dij

(genomic distance) from equation 2 . Our results show
that the estimates of the posterior means of the parameters
are accurate for both approaches of inferring the prior
distribution. For our downstream analysis, we used the
Empirical Bayes method.

Next, we evaluated the estimated posterior means of
the parameters for our regression model (see equation
2). We used a fixed informative prior and the component
percentages (αs) in equation 1 are set as α1 = 0.7 and
α2 = 0.3, showing a higher percentage of noise to signal.
Table S2 shows that our method was able to estimate the
true parameters accurately despite the higher noise. We
also check our estimated posterior means with respect to
their credible intervals, which are usually used in Bayesian
analysis and have similar interpretation to confidence inter-
vals. The main differences between our estimated posterior
means and the true values we selected for our parameters
fall within ±0.02, and our estimated posterior means are all
significant as they fall within the 95% credible intervals. In
addition, when evaluating Tables S1 and S2 and analysing
the trace plots of all our simulations, we did not observe
label switching; i.e., we are able to identify each components
parameters distinctly without any unidentifiability issues.
Furthermore, in Tables S3 and S4, we show that our method
is also robust to different proportions of noise and signal
(see Supplementary Material).

3.2 Hi-C Data analysis with a two-

component model

Following the validation of our model on simulated data, we
next used the two-component ZipHiC model on real Hi-C
data. In particular, we used a dataset from (Eagen et al.,
2017) in a Kc167 cell line in Drosophila at 2 Kb resolution
and focussed our analysis on chromosome 2L. As mentioned
earlier, the aim of our proposed method is to detect signifi-
cant interactions, which we called true signal, by taking into
consideration the biases associated with Hi-C dataset.

First, we considered the 31, 375 observations from a
500 Kb region (2L:1-500,000), resulting in 250 unique pair
of bins in order to compare our method to existing statis-
tical methods. FastHic (Xu et al., 2016a) is an updated
version of the HMRFBayesHiC (Xu et al., 2016b) as both
methods use a hidden Markov random field (HMRF) based
Bayesian method and Ising model (Ising, 1925), which ac-
counts for the spatial dependence in peak calling. Note
that, we only used 31, 375 observations, because of the high
computation time of the FastHic (Xu et al., 2016a). In
contrast to ZipHiC, FastHic (Xu et al., 2016a) method in-

volves calculating the expected frequencies, which is com-
putationally intensive and can be done using the approach
in (Lieberman-Aiden et al., 2009).

Based on the Monte Carlo draws from the posterior dis-
tribution of our ZipHiC model, we computed whether the
estimated values of our parameters are significant or not (see
posterior means values in Tables S5 and S6 in Supplementary
Material). Figure 1 shows the Venn diagram of the biologi-
cally significant interacting pairs of bins using ZipHiC two-
component model compared to FastHic (Xu et al., 2016a).
ZipHiC recovers 87% (21, 061) of the interactions detected
by FastHic (Xu et al., 2016a); see Figure 1. We noticed that
the FastHic (Xu et al., 2016a) method discovered an addi-
tional 3, 106 interactions as being biologically significant,
suggesting that our model is slightly more conservative in
detecting significant interactions. Interestingly, both meth-
ods detected 7, 134 interactions as noise (random collision).
A further investigation of the additional significant inter-
actions detected by the FastHic (Xu et al., 2016a) and not
by our method, showed that the FastHic (Xu et al., 2016a)
has a higher false discovery rate than our method by falsely
classifying the interactions with 0 frequency as being signif-
icant.

Figure 1: Comparison between ZipHiC and FastHiC Venn
Diagram showing true signal comparison between our pro-
posed method (ZipHiC) and FastHiC on sub region of chro-
mosome 2L in Drosophila Kc167 cells. We considered that
two interactions detected by the different tools are common
if both anchors overlap fully, that is, the start and end of an
anchor in one pair matches the start and end of correspond-
ing anchor in the other pair. The parameters for detecting
the significant interactions can be found in the Materials
and Methods section.

3.3 Hi-C Data analysis with a three-

component model

One limitation of previous studies was the restriction to two
components (noise and signal). Here, we further increased
the number of components from K = 2 to K = 3 by adding
a new component and we applied this model to the same
500 Kb region of chromosome 2L (2L:1-500,000). This new
component accounts for interactions that ZipHiC has mis-
classified as signal due to conflicting information both in the
contact frequencies and sources of bias and, thus, we call this
new component false signal. For example, if a pair of inter-
acting bins have high contact frequency (i.e., Hi-C retrieves
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a high number of interactions between the two regions of the
genome), but their sources of bias closely exhibit that of the
noise component, this pair of bins can be classified to the
false signal component.

First, we compared the detected significant interactions
in the three-component ZipHiC model with the ones in the
two-component one and from FastHic. Figure 2 shows that
by adding an additional component, we detect less than 1%
of additional interactions (231) overlapping with the FastHic
(Xu et al., 2016a) method.

Figure 2: Venn Diagram showing comparison between the
HMRF (Xu et al., 2016b), ZipHiC-2 (our true signal) and
ZipHiC-3 (our false signal) of the sub region of Chromosome
2L of Drosophila Melanogaster . We considered that two
interactions detected by the different tools are common if
both anchors overlap fully.

To evaluate whether the new component in our method
(false signal) results in better performance of our method, we
conducted model selection analysis using the Deviance In-
formation Criterion (Spiegelhalter et al., 2002) and in par-
ticular, we used a modified DIC method (Li et al., 2020)
for latent variable models. The value of the DIC for the
two-component model is −331, 344, 746 and for the three-
component model is −401, 662, 547. These results show that
the best model to analyse this particular Hi-C dataset is the
three-component model (thus, including the false signal).

To better understand the contributions of the different
components, we investigated the posterior means of our es-
timated βs for the noise, signal and false signal components
(see Table 1). The values of βs correspond to the coefficients
of the intercept and the log of genomic distance, GC content,
TEs content and DNA accessibility. The posterior means of
noise levels of the interaction for all components, except GC
content, had β values with negative signs, indicating that
the noise and signal were negatively correlated. The nega-
tive sign of β1 parameter (genomic distance) indicates that
when genomic distance between two bins increases, then the
average of their interaction noise decreases. Similarly, for β3

(TEs) and β4 (DNA accessibility), our results indicate that
the higher the TEs content or the level of DNA accessibility
is, then the lower the interaction noise will be, but only for
DNA accessibility the effect is large. In other words, noise
levels in the Hi-C signals are higher in dense chromatin and
will have a higher impact on the observed enriched inter-
actions, unless correctly accounted for. Nevertheless, for β2

(GC content), we found that higher GC content corresponds

to a higher interaction noise. While this is significant, the
contribution of GC content is relatively small to the noise
levels in Hi-C data. Interestingly, we noticed in Table S5
and Table 1 that our estimated posterior means for the noise
components are similar if we use a two-component or a three-
component model. This can be explained by the fact that
most of the third component (false signal) in our model is
influenced by the second component (true signal).

Table 1: Posterior means of our estimated βs as shown in
equation 2 for noise, signal and false signal components. The
95% credible intervals are shown inside the brackets. The
first component (k = 1) represents the noise component, the
second component (k = 2) represents the signal component
while the third component (k = 3) represents the false signal
component.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2 Posterior mean (false signal), k=3
β0 (intercept) -84.00 (-84.90, -83.64) 13.06 (12.80, 13.35) 499.34 (498.39, 500.21)
β1 (genomic distance) -10.05 (-10.16, -10.03) -0.90 (-0.92, -0.89) -64.16 (-64.45, -63.97)
β2 (GC content) 0.34 (0.34, 0.35) 0.36 (0.35, 0.37) 0.30 (0.09, 0.57)
β3 (TEs) -0.76 (-0.79, -0.68) -0.10 (-0.16, -0.03) 0.54 (-0.40, 1.03)
β4 (Accessibility) -3.54 (-3.57, -3.44) 0.15 (0.11, 0.20) -0.70 (-1.04, -0.15)

For the false signal component, we noticed that the pos-
terior mean and credible intervals for the genomic distance
(β1) parameter of the false signal component is significant.
Furthermore, the negative value indicates that the increase
in genomic distance of two bins results in a decrease in the
false signal interaction. The effect size of genomic distance
on false signal is higher than compared to noise and was
previously unaccounted for. For DNA accessibility (β4), the
negative value of the posterior mean and the credible inter-
vals means that an increase in DNA accessibility leads to a
decrease in the false signal interaction, but this is relatively
small. Similarly for the posterior mean of the GC content
(β2), the value is positive and indicates that higher GC con-
tent corresponds to an increase in the false signal. However
for TEs (β3) the credible intervals of false signal component
covers 0, which means the result is not significant.

Furthermore, we noticed that the posterior mean of true
signal for GC content (β2) decreased when the third com-
ponent (false signal) was added (compare from Tables 1 and
S5). This means that the influence of GC content was re-
duced when taking into account false signal. In addition,
we noticed that the estimated posterior mean of (TEs) β3

for the signal component is significant and the false signal
component is insignificant when the third component was
added. This indicates that in order to properly estimate
the true signal over TEs a three-component model might be
required and previous models that did not include a false sig-
nal might have obtained inaccurate enriched contacts over
TEs.

When we removed all the sources of bias (modelled as co-
variates in the regression model, equation 2), our method
failed to detect any significant interactions in all possible
31, 375 interactions from a 500 Kb region of the 2L chro-
mosome (2L:1-500,000). The result clearly shows that the
biases in the Hi-C data does affect the detection of signifi-
cant interactions.
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3.4 Whole chromosome analysis using the

three-component ZipHiC model

Given that our model performs best with three components
on this particular Hi-C dataset in Drosophila Kc167 cells, we
analysed the whole chromosome 2L (2L:1-23,513,700) using
the three-component ZipHiC model and identified 12.82M
significant interactions (see Table S7 for the posterior means
of the model). We observe that most of the detected signif-
icant interactions are found closer to the diagonal and that
the significant interactions formed triangular shapes along
the diagonal which sometimes overlap each others; see Fig-
ure 3.

Figure 3: Significant interactions on chromosome 2L in
Drosophila Kc167 cells. Heatmap showing significant in-
teractions on chromosome 2L of Drosophila Kc167 cell line
using ZipHiC three-component model. The intensity of the
colour indicates the probability, with darker colours repre-
senting higher probability.

These triangular shapes resemble Topologically Associ-
ated Domains (TADs) (Nora et al., 2012; Dixon et al., 2012;
Sexton et al., 2012; Hansen et al., 2018) and are one of the
main features of Hi-C data. However, we found that the
majority of significant interactions connect regions of the
genome that are very far apart (between 1 Mb and 10 Mb)
(see Figure 4A), which are genomic distances larger than
the usual size of TADs in Drosophila (Ramirez et al., 2018;
Chathoth and Zabet, 2019; Chathoth et al., 2022) and sug-
gests that they connect bins located in different TADs. In-
deed, this is the case and approximately 98% of significant
interactions are outside TADs (see Figure 4B). Interestingly,
we found that almost half of the significant interactions con-
nect promoters with other parts of the genome or with other
promoters, which indicates they have a functional role (see
Figure 4C). The majority of the significant interactions con-
nect genes with either themselves or other genes, promoters

or other regions of the genome (potentially enhancers). Note
that we also performed a genome wide analysis and these re-
sults are true for all chromosomes (see Figure S2).

Figure 4: Characterisation of significant interactions on
chromosome 2L in Drosophila Kc167 cells. (A) Distribu-
tion of the genomic distance between the two bins for all
significant interactions. (B) classification of significant in-
teractions as either outside TADs when the two bins are
located in different TADs or inside TADs when the two bins
are located in the same TAD. (C) Percentage of significant
interactions that have promoters at one of the bins. We
consider the cases of: (P) promoters (200 bp upstream and
50 bp downstream of TSS), (G) genes (including exons, in-
trons, 5’UTRs and 3’ UTRs and excluding promoters) and
(O) other regions (excluding promoters and genes).

Finally, we compared the significant interaction detected
by ZipHiC with significant interactions detected by two pop-
ular tools: HiCExplorer (Ramirez et al., 2018) and Juicer
(Durand et al., 2017). Figure 5A shows that high propor-
tions of significant interactions detected by ZipHiC are com-
mon with both HiCExplorer and Juicer (12.1M). In addi-
tion, ZipHiC detects 625K interactions detected only by
HiCExplorer and missed by Juicer and 41K significant in-
teractions detected only by Juicer and missed by HiCEx-
plorer. ZipHiC uniquely identifies 58K significant interac-
tions, which are missed by the other tools. Overall, we found
that ZipHiC recovers almost all HiCExplorer (12.75M) sig-
nificant interactions (99.2% overlap), but also an additional
99K significant interactions missed by HiCExplorer. Signif-
icant interactions detected by Juicer have a smaller over-
lap with the ones identified by ZipHiC (94.6%), but Juicer
also retrieves approximately 723K unique significant inter-
actions. Also in Figure 5A, we noticed that 15 significant
interactions detected both by Juicer and HiCExplorer were
missed by the ZipHiC.

Figure 5B shows the overlap between the interactions clas-
sified as false signal by ZipHiC and the significant inter-
actions detected by the other methods (HiCExplorer and
Juicer). ZipHiC detected 1,263 significant interactions on
chromosome 2L as false signal. 885 of these were detected
as significant interactions by both Juicer and HiCExplorer,
further supporting the fact that these tools are affected by
false signal. Nevertheless, 375 interactions that were de-
tected as false signal by ZipHiC were correctly not identified
by HiCExplorer and Juicer as significant interactions, indi-
cating that these tools can correctly remove some artefacts
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Figure 5: Comparison with other tools. (A) Venn Diagram
showing the comparison between significant interactions de-
tected by ZipHiC, HiCExplorer and Juicer. We analysed
chromosome 2L in Drosophila Kc167 cells. We considered
that two interactions detected by the different tools are com-
mon if both anchors overlap fully. (B) The number of false
signals identified by ZipHiC detected as true signals by HiC-
Explorer and Juicer

from the Hi-C data.

Finally, we evaluated the robustness of the identified sig-
nificant interactions by running ZipHiC on chromosome 2L
for two independent biological replicates. We identified ap-
proximately 8.3M significant interactions and observed an
overlap between the two biological replicates of approxi-
mately 47% (see Figure S3). We further investigated the
posterior means of the models of the two replicates and
found that there are negligible differences between the two
replicates except for two components (Table S8). In par-
ticular, replicate 1 shows a high posterior mean for false
signal for the TEs component (4.4), which indicates that
higher TE content results in higher false signal interactions.
In addition, we also found that replicate 1 displays a high
negative posterior mean for false signal for the accessibility
component (-5.1) indicating that dense chromatin leads to
higher false signal interactions. Altogether, our results in-
dicate that replicate 1 might be affected by a higher level
of false positive significant interactions at regions with high
TE content and dense chromatin.

This overlap between the two biological replicates is con-
sistent with the overlap of significant interactions between
the two replicates when using HiCExplorer and Juicer (see
Figure S3) and can be explained by the lower library sizes.
After pre-processing, replicate 1 had 239M valid interac-
tions and replicate 2 had 247M valid interactions. That is
approximately half of the merged library, which had 474M
valid interactions. Lower library sizes result in more ze-
ros in the interaction matrix and lead to less reliable detec-
tion of significant interactions. Instead of merging biological
replicates, one alternative approach consists of selecting the
overlap of significant interactions between biological repli-
cates, similar to ENCODE recommendations for ChIP-seq
data analysis (Landt et al., 2012). This will ensure selec-
tion of a high confidence set of significant interactions, but
at the same time would result in missing some significant
interactions.

3.5 Analysis of micro-C data in human ES

cells

Micro-C is a new and improved variation of Hi-C that can
generate sub-kilobasepair 3D contacts map in mammalian
systems (Hsieh et al., 2015; Krietenstein et al., 2020). To
evaluate the capacity of ZipHiC to analyse micro-C data,
we consider a small region on human chromosome 8 (60-
70Mb) for which both micro-C and Hi-C data is available
in human ES cells (Krietenstein et al., 2020). As we did
previously, we consider both a two-component and a three-
component model (K = 2 and K = 3) and use the DIC
to select the best performing model (for the 3 components
models of Hi-C and micro-C data see Table S9 and Table S10
respectively). Interestingly, in the case of this specific region
on the human chromosome 8, the two-component model has
the lowest DIC (DIC2 = 194, 721.1 and DIC3 = 469, 950.5)
and, thus, was selected for the analysis. This indicates that
the human ES cell Hi-C and micro-C data in this region
of the genome is not affected by false positive signals as it
was the case with the Drosophila whole genome analysis in
Kc167 cells.

Figure 6 shows that 96% (18, 498) of significant interac-
tions identified by ZipHiC in the Hi-C dataset are recovered
as significant interactions in the micro-C dataset for this
particular region of the human genome (60-70Mb) and only
a negligible number of interactions are missed (4%). Sim-
ilarly, only 3% of the micro-C interactions are novel and
previously missed by Hi-C. Our results confirm that micro-
C can reproduce accurately the results of Hi-C despite a
significantly lower library size.

Figure 6: Venn Diagram showing significant interactions
(signal) comparison identified by ZipHiC on micro-C and
Hi-C data in human ES cells within 60-70Mb region of hu-
man chromosome 8. We considered that two interactions
detected by the different tools are common if both anchors
overlap fully. The parameters for detecting the significant
interactions can be found in the Materials and Methods sec-
tion.

We also investigated the overlap between the significant
interactions identified by ZipHiC, Juicer and HiCExplorer
and found that the three methods agree well (see Figure
S3). Nevertheless, ZipHiC was also able to analyse the
models and extract the sources of bias in the Hi-C and
micro-C datasets. In micro-C, the chromatin is fragmented
to mononucleosomes using micrococcal nuclease (MNase),
which increases fragment density. The digestion with MNase
raises the possibility that micro-C data is affected by DNA
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accessibility biases, which would not be the case with Hi-C
data.

Table 2 shows the model parameters for the two-
component model for both micro-C and Hi-C data. Inter-
estingly, we observe that the effect of DNA accessibility on
the mean signal is higher even compared to the effect of the
genomic distance between the bins on the mean signal. A
similar effect in the mean signal was also observed in the
case of Hi-C data, but that was approximately half com-
pared to the level observed in the micro-C data. In the case
of the whole genome Hi-C analysis in Drosophila, we iden-
tified limited effects of accessibility on the mean signal but
strong effects on the noise component. For this particular re-
gion in the human genome, we observed the opposite, strong
biases introduced by accessibility in the mean signal (espe-
cially in the micro-C data), but significantly reduced biases
on the noise component. The beta values have a positive
sign indicating that more accessible regions of the genome
display a higher signal, but only modest biases in the noise
levels.

Table 2: Posterior means of our estimated βs as shown in
equation 2 for noise and signal components of human Chro-
mosome 8, region 60, 000, 000 : 70, 000, 000 for data gener-
ated using the Hi-C and micro-C method. The 95% credible
intervals are shown inside the brackets. The first compo-
nent (k = 1) represents the noise component, the second
component (k = 2) represents the signal component.

Parameters (Hi-C) Posterior mean (noise), k=1 Posterior mean (signal), k=2
β0 (intercept) 0.88 (0.53, 1.36) 11.13 (10.92, 11.36)
β1 (genomic distance) 0.13 (-0.02, 0.25) -0.79 (-0.81, -0.77)
β2 (GC content) 0.33 (0.32, 0.33) 0.32 (0.32, 0.34)
β3 (TEs) 1.01 (0.99, 1.15) 0.02 (0.01, 0.03)
β4 (Accessibility) 0.50 (0.43, 0.59) 1.00 (0.99, 1.03)
Parameters (micro-C) Posterior mean (noise), k=1 Posterior mean (signal), k=2
β0 (intercept) 1.05 (0.81, 1.30) 8.08 (7.65, 8.39)
β1 (genomic distance) 0.14 (0.12, 0.17) -1.41 (-1.42, -1.38)
β2 (GC content) 0.33 (0.32, 0.34) 1.02 (0.12, 1.80)
β3 (TEs) 10.00 (9.99, 10.02) -0.37 (-0.41, -0.33)
β4 (Accessibility) 0.40 (0.35, 0.41) 1.83 (1.70, 1.92)

Furthermore, we also identified a strong contribution to
the noise of the signal from the TE content. This was partic-
ularly in the micro-C dataset, but also present in the Hi-C
data despite being ten times lower. This means that a higher
TE content leads to a higher noise, specifically in the micro-
C data. In addition, micro-C data also display low bias of
TE content in the mean signal, indicating that higher TE
content leads to a slightly lower signal in micro-C, but not
in Hi-C. Note that in the case of whole genome analysis in
Drosophila, there was only a relatively medium bias from
TE content in the noise and false signal components, but
not in the true signal component.

4 Discussion

In this manuscript, we introduce a new method called
ZipHiC to analyse Hi-C and micro-C data. ZipHiC mod-
els the contact frequencies as a Zero-Inflated Poisson dis-
tribution due to the fact that this enables modelling the
presence of the overdispersion which affects Hi-C data
(Varoquaux et al., 2021). In addition, ZipHiC also uses

a hidden Markov Random Field (HMRF) based Bayesian
method, the Potts model, to help account for dependency in
Hi-C dataset. Most importantly, the Potts model allows an
increase in the number of components (k = 2, 3, ...K) and,
thus, to account for additional components such as false sig-
nal. Finally, our method uses a likelihood free approach,
ABC, to account for the limitation in the normalizing con-
stant in the Potts model. Through our extensive simulations
on simulated and real data, we show that our method out-
performs existing methods in distinguishing between noise
and signal.

First, we found that a three-component model (specif-
ically considering the false signal) performed better on
a very high resolution dataset in Drosophila Kc167 cells
(Eagen et al., 2017). However, a two-component model
(considering only the noise and the signal) performed best
for the Hi-C and micro-C datasets in human ES cells
(Krietenstein et al., 2020) on a region on chromosome 8.
This indicates that the choice of whether to use a two-
component or a three-component model needs to be driven
by the data, since not all datasets will be affected by a false
signal(s) component. In addition, we identified different bi-
ases between different organisms (Drosophila and humans)
that are affected by different TE composition or DNA acces-
sibility, but also between different techniques on the same
material. This indicates that there are sample specific biases
that can affect the identification of significant interactions.

In Drosophila, we found that the genomic distance be-
tween bins has the highest contribution to both the noise
and the false signal, where interactions further from the di-
agonal display less noise and fewer false signals compared to
interactions closer to the diagonal. DNA accessibility con-
tributed strongly to the noise component and partially to
the false signal in Drosophila. In particular, less accessible
regions of the genome displayed higher noise and more false
signals. We also observed a moderate effect of TEs on the
noise component and false signal in Drosophila, where re-
gions with higher content of TEs displayed lower noise, but
higher false signals.

The majority of these significant interactions connect re-
gions of the genome that are located in different TADs and
this is explained by the larger genomic distance between the
two bins detected by ZipHiC in this dataset. The genomic
distance between bins is larger than previously reported in
Drosophila cells (Chathoth and Zabet, 2019), due to the fact
that in this study we used a 2 Kb resolution and in the pre-
vious study a higher resolution was used (DpnII restriction
sites, on average every 529 bp).

Most importantly, we identified that approximately half
of these significant interactions in Drosophila connect pro-
moters with either other promoters, genes or other regions
of the genome. This raises the possibility that these sig-
nificant interactions connect promoters with regulatory re-
gions. Nevertheless, the large number of detected signif-
icant interactions and the number of enhancers identified
in Drosophila cells (Arnold et al., 2013; Yanez-Cuna et al.,
2014; Wolfe et al., 2021), indicate that most of them would
not connect promoters with enhancers. This is likely the
case and one possibility is that a large part of the signifi-
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cant interactions account for gene domains being formed at
actively transcribed genes, where the promoter of the gene
makes 3D contacts with different parts of the gene (exons,
introns or 3’UTRs) (Rowley et al., 2019). Indeed, we found
that the majority of significant interactions involve genes,
further supporting this model.

Furthermore, we found that micro-C data reproduces the
majority of the significant interactions (96%) detected on a
much larger Hi-C library. However, the micro-C data dis-
plays a higher bias in the signal to DNA accessibility (more
accessible regions of the genome will display higher signals)
even compared to genomic distance between the bins and
this needs to be accounted for. Interestingly, in this partic-
ular region, the noise component was particularly affected
by the TE content, where more TEs lead to a higher noise
in the micro-C data. The stronger effect of TEs on micro-
C data in human cells is not surprising given the fact that
human genome has a higher percentage of TEs compared to
Drosophila.

Our model uses the DNA accessibility, TE content and GC
content as external inputs to compute the biases introduced
by these factors when detecting significant interactions from
HiC data. One question that arises is whether accessibility,
TE content and GC content are truly experimental biases
or factors contributing to the 3D genome organisation. One
would expect that if these factors (TE content, accessibility
and GC content) would impact the 3D genome architecture
and are not introducing biases in the experiments, then their
relative contribution would be the same in different experi-
ments on the same material. For example, when performing
the Hi-C and micro-C on the same material, we expect that
accessibility has the same posterior mean of the true signal
for both experiments. However, what our results show is
that in the case of micro-C the value is almost double as in
the case of Hi-C. This suggests that it is not the underlying
biology driving this, but, most likely, these are experimental
biases. Nevertheless, our work cannot exclude that accessi-
bility, TE content and GC content have some contribution
to the 3D genome organisation. For example, TEs have
the possibility to move binding sites for architectural pro-
teins throughout the genome (Schmidt et al., 2012) and, in
this scenario, presence of TEs would contribute to the ob-
served 3D chromatin organisation. However, aligning reads
from genomics libraries (including Hi-C) to regions of the
genome containing TEs is often challenging and, thus, high
TE content would correspond to higher biases in the HiC
data (Taylor et al., 2022).

A limitation of ZipHiC compared to tools such as HiCEx-
plorer and Juicer is the computation time when analysing
whole genomes. In the case of a standard computer with
4 cores, ZipHiC takes approximately 72 hours to analyse
a whole genome dataset in Drosophila at 2 Kb resolution.
This is slower compared to HiCExplorer and Juicer, which
can detect the significant interactions for the same dataset in
approximately 4 hours on a similar computer system. Note
however that, ZipHiC models additional features compared
to HiCExplorer and Juicer, namely it models spatial in-
formation and allows multiple components. Compared to
another tool that models spatial information and only two

components (FastHiC), ZipHiC is faster; i.e., we were not
able to run FastHiC on whole chromosome 2L in Drosophila
at 2 Kb resolution within a feasible time.
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Supplementary Material to ZipHiC: a novel Bayesian

framework to identify enriched interactions and

experimental biases in Hi-C data

S1 Supplementary Figures

Figure S1: Diagnostic plots for correction of Hi-C plots from HiCExplorer. Histograms of the sum

of contacts per bin. The vertical black line represents the lower threshold for removing bins with

lower number of reads. We plotted the histograms for the three datasets used in this study: (A)

Hi-C in Kc167, (B) Hi-C in H1-hES cells, (C) micro-C in H1-hES cells, (D) Hi-C replicate 1 in

Kc167 and (E) Hi-C replicate 1 in Kc167.
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S2 Model for Data

The complete likelihood function of the unknown parameters (β, α, τ ) given the data y given z

can then be written as

l(~β, ~α, τ |y, z)

∝
n
∏

i=1

n
∏

j=1







[

α1



τ + (1− τ)e−λ
(1)
ij + (1− τ)

(

λ
(1)
ij

)yij

e−λ
(1)
ij

yij!





]I(zij=1)

K
∏

k=2

[

(αk)

(

λ
(k)
ij

)yij

exp
(

−λ
(k)
ij

)

yij !

]I(zij=k)







(S1)

The full posterior of z, ~β and γ given yij is

Pr(z, ~β, γ|y) ∝ l(~β, ~α, τ |y, z)l(z|γ)π0(γ)τ0(~β) (S2)

where l(z|γ) = eγ
∑

s∼t δzszt
∑

zs
eγ

∑
s∼t δzszt

is the Potts model, s is bin pair i and j, and t is the neighbours set

of s; (i− 1, i+ 1, j − 1, j + 1).

In order to analyse our data and estimate our parameters, we make use of the Metropolis-within-

Gibbs sampler and the Approximate Bayesian Computation (ABC), so the conditional posterior

densities are needed.

S2.1 Conditional Posterior Density

The conditional posterior of τ is given as

Pr(τ |~β1, y, z) ∝
n
∏

i=1

n
∏

j=1

[f (1)(yij;β
(1))]I[zij=1] · π0(τ) (S3)

The conditional posterior of β is given by

Pr(~β(k)|y, z) ∝
n
∏

i=1

n
∏

j=1

K
∏

k

[f (k)(yij ;β
(k))]I[zij=k]π0(β

(k)) (S4)

Based on the definitions of f (k)(yij) and equation S4, the conditional posterior of β(1) for the noise

component can be rewritten as

Pr(~β(1)|y, z) ∝
n
∏

i=1

n
∏

j=1

[



τ + (1− τ)e−λ
(1)
ij + (1− τ)

(

λ
(1)
ij

)yij

e−λ
(1)
ij

yij !





]I(zij=1)

exp

{

−
(β(1) −m(1))2

2(σ2)(1)

}

(S5)
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For the signal component, the conditional posterior of β(k) based on definition of f (k)(yij) and

equation S4 can be rewritten as

Pr(~β(k)|y, z) ∝
n
∏

i=1

n
∏

j=1

[

(

λ
(k)
ij

)yij

exp
(

−λ
(k)
ij

)

yij !

]I(zij=k)

exp

{

−
(β(k) −m(k))2

2(σ2)(k)

}

(S6)

where m(k) is the mean and
(

σ(k)
)2

is the variance for component k.

To update the latent variable, the probability of an observation belonging to each component is

calculated

Pr(zs|γ, zt,y, ~β
(k)) ∝ eγ

∑
s∼t δzsztf(yi,j;β

(k)) (S7)

where s is bin pair i and j, and t is the neighbours set of s; (i − 1, i + 1, j − 1, j + 1) and

f (k)(yij; ~β
(k)) is the likelihood of component k.

When the normalizing constant is introduced, equation S7 can be rewritten as

Pr(z|γ, zt,y, ~β
(k)
) =

eγ
∑

s∼t δzszt

∑

zs
eγ

∑
s∼t δzszt

f(yi,j;β
(k))

f(yi,j;β
(k))

(S8)

where s is bin pair i and j, and t is the neighbour(s).

The conditional probability of γ in the Potts model is given as

Pr(γ|y, z, ~β) =
exp{γ

∑

s∼t δ(zszt)}π0(γ)
∑

zs
exp{γ

∑

s∼t δ(zszt)}π0(γ)
(S9)

Algorithm S1 ABC

procedure

repeat

Select the initial value of γ0;

m = 0
for i = 1 : N do

Compute a new y∗ based on the Potts model and updated ~β from Algorithm (5.2)

Compute the distance d(S(y∗), S(y))
Select ǫ using 1% empirical quantile of d(S(y∗), S(y))
if d(S(y∗), S(y)) < ǫ then

γm+1 = (γm)
∗

end if
end for

until enough MCMC steps have been simulated;
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Algorithm S2 Metropolis-within-Gibbs sampler

procedure

Initialization, select initial value,z0, γ0, τ 0, ~β
0
;

repeat

for i = 1 to n, j = 1 to n do

Update zij using (5.13)
end for

Update ~β from posterior in (5.10)

Update γ using Algorithm (S1)

Update τ using (5.8)

until enough MCMC steps have been simulated;

The equations for ~β’s and z as given above in equations S3, S4 and S7, is computationally easier

to simulate using the Metropolis-Hastings-within-Gibbs sampler. Equation S9 is computationally

intractable as the interaction parameter γ involves the evaluation of the partition function and

cannot be simulated directly using the Gibbs sampler or the Metropolis-Hastings sampler.

Algorithm S1 shows the Approximate Bayesian Computation (ABC) approximate steps and Al-

gorithm S2 shows the Metropolis-within-Gibbs steps used in this paper to update our parameters.

S2.2 Analysis

Table S1: Simulation results for normal priors. β
(1)
0 and β

(1)
1 are the Intercept and genomic

Distance parameters of the noise component, while β
(2)
0 and β

(2)
1 are the Intercept and genomic

Distance parameters of the signal components. In brackets we presented the 95% credible

intervals. For the fixed prior, we used β
(1)
0 ∼ N(1, 1), β

(2)
0 ∼ N(150, 10), β

(1)
1 ∼ N(0.5, 0.5) and

β
(2)
1 ∼ N(1, 0.5).

Parameters True value Posterior mean (fixed prior) Posterior mean (empirical bayes method)

β
(1)
0 0.05 0.04 (0.01, 0.05) 0.04 (0.01, 0.07)

β
(1)
1 0.2 0.21 (0.24, 0.29) 0.22 (0.2, 0.27)

β
(2)
0 5.00 4.99 (4.99, 5.00) 5.00 (4.98, 5.01 )

β
(2)
1 2 1.98 (1.99, 2.04) 2.02 (1.93, 2.08)
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Table S2: Simulation results for normal priors. β
(1)
0 , β

(1)
1 , β

(1)
2 ,β

(1)
3 and β

(1)
4 are the Intercept,

genomic Distance, GC content, TEs and Accessibility parameters of the noise component, while

β
(2)
0 , β

(2)
1 , β

(2)
2 and β

(2)
3 are the Intercept, genomic Distance, GC content, TEs and Accessibility

parameters of the signal components. In bracket are the 95% credible intervals.

Parameters True value Posterior mean

β
(1)
0 (intercept) 0.05 0.04 (0.05, 0.14)

β
(1)
1 (genomic distance) 0.2 0.18 (0.13, 0.24)

β
(1)
2 (GC content) 0.3 0.30 (0.24, 0.35)

β
(1)
3 (TEs) 0.2 0.19 (0.14, 0.25)

β
(1)
4 (Accessibility) 0.1 0.08 (0.02, 0.13)

β
(2)
0 (intercept) 5 5.01 (4.96, 5.06)

β
(2)
1 (genomic distance) 2 2.01 (1.96, 2.05)

β
(2)
2 (GC content) 0.8 0.80 (0.75, 0.84)

β
(2)
3 (TEs) 0.7 0.69 (0.65, 0.74)

β
(2)
4 (Accessibility) 0.6 0.60 (0.55, 0.65)

Table S3: Simulation results for normal priors when the proportion of signal = noise. β
(1)
0 and β

(1)
1

are the Intercept and genomic Distance parameters of the noise component, while β
(2)
0 and β

(2)
1

are the Intercept and genomic Distance parameters of the signal components. In bracket are the

95% credible intervals.

Parameters True value Posterior mean (empirical Bayes method)

β
(1)
0 0.05 0.06 (0.02, 0.11)

β
(1)
1 0.2 0.20 (0.15, 0.24)

β
(2)
0 5 5.00 (4.97, 5.03)

β
(2)
1 2 2.02 (1.83, 2.21)

As mentioned in the main text, we simulated only one source of bias (genomic distance) to see

how our method performed to different proportions of noise and signal due to the computation

time. Table S3 shows the result of the simulation study when the proportion of noise and signal

are the same. In Table S3, when the proportion of noise and signal in the simulated data are the

same, we can see that our method using the empirical Bayes method adequately estimated the true

value of the parameters in our simulated data. Table S4 shows the result of the simulation study

when the proportion of noise is less than that of signal proportion. We can see that our method

using the empirical Bayes method as shown in Table S4 adequately estimated the true value of

the parameters in our simulated data. The 95% credible intervals in both Tables S3 and S4 are all

significant.
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Table S4: Simulation results for normal priors when the proportion of noise = 0.3 and the

proportion of signal = 0.7. β
(1)
0 and β

(1)
1 are the Intercept and genomic Distance parameters of the

noise component, while β
(2)
0 and β

(2)
1 are the Intercept and genomic Distance parameters of the

signal components. The 95% credible intervals are in the brackets.

Parameters True value Posterior mean (empirical Bayes method)

β
(1)
0 0.05 0.09 (0.03, 0.19)

β
(1)
1 0.2 0.16 (0.11, 0.20)

β
(2)
0 5 5.00 (4.98, 5.02)

β
(2)
1 2 1.96 (1.74, 2.21)

S2.3 Hi-C Data analysis with a two-component model

Table S5: Posterior means of our estimated βs for both noise and signal components. The 95%

credible intervals are shown inside the brackets.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2

β0 (intercept) -84.26 (-85.26, -83.29) 12.24 (11.26, 13.22)

β1 (genomic distance) -10.10 (-11.08, -9.12) -0.92 (-1.90, -0.06)

β2 (GC content) 0.35 (-0.64, 1.34) 4.38 (3.40, 5.37)

β3 (TEs) -0.73 (-1.73, 0.23) -0.02 (-1.00, 0.96)

β4 (Accessibility) -3.51 (-4.49, -2.52) 0.07 (-0.91, 1.05)

From Table S5, we can see that the credible intervals for β2 and β3 (GC content and TEs) are

not significant at 95% credible intervals for the noise component. For the signal component, β3

and β4 (TEs and Accessibility) are not significant. Due to about half of our covariates not being

significant, when we set our credible interval as 95%, we instead use 90% for our analysis.

To better understand the contributions of the different components, we investigated the posterior

means of our estimated βs for both the noise and signal components (see Table S6).

For the signal component, we noticed that the posterior means of the coefficient of the genomic

distance and TEs (β1 and β3) are negative values. While the posterior means of the intercept,

GC content and DNA accessibility (β0, β2 and β4) are all positive values. In addition, the credible

intervals for the genomic distances for all the components (β1) are significant and the negative pos-

terior mean indicates that as the genomic distance of two bins increases, the average of their signal

interaction decreases as well. Similarly for the other significant parameters, β2 (GC content) and

β4 (DNA accessibility), their positive values for posterior means and credible intervals indicates

that as GC content and level of DNA accessibility increases the average of the signal interaction
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Table S6: Posterior means of our estimated ~βs for both noise and signal components. The 90%

credible intervals are shown inside the brackets.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2

β0 (intercept) -84.26 (-84.86, -83.73) 12.24 (11.86, 12.60)

β1 (genomic distance) -10.10 (-10.14, -10.06) -0.92 (-0.94, -0.90)

β2 (GC content) 0.35 (0.34, 0.35) 4.38 (3.71, 5.07)

β3 (TEs) -0.73 (-0.79, -0.70) -0.02 (-0.07, 0.03)

β4 (Accessibility) -3.51 (-3.55, -3.46) 0.07 (0.02, 0.10)

increases as well. In other words, our results indicate that there is a small impact of DNA acces-

sibility on the Hi-C results, where regions with higher DNA accessibility are retrieved more often

than regions in dense chromatin, but this bias is small. However for β3 of the signal component,

the credible intervals is not significant as it is having 0 in-between. Altogether, our results show

that genomic distance between pairs of loci and the GC content are the most significant sources of

bias in our Hi-C data (Table S6).

S2.4 Genome wide analysis of Drosophila Kc167 cells

Table S7: Posterior means of our estimated ~βs for noise, signal and false signal components for

the whole chromosome 2L. The 95% credible intervals are shown inside the brackets.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2 Posterior mean (false signal), k=3

β0 (intercept) -24.42 (-24.77, -23.92) 11.96 (11.68, 12.19) 498.82 (493.86, 503.73)

β1 (genomic distance) -2.63 (-2.68, -2.59) -0.74 (-0.76, -0.72) -59.05 (-61.84, -56.70)

β2 (GC content) 0.37 (0.36, 0.37) 0.38 (0.37, 0.39) 0.34 (-0.41, 1.27)

β3 (TEs) -0.14 (-0.18, -0.11) 0.04 (-0.02, 0.10) 4.76 (2.42, 7.61)

β4 (Accessibility) -1.13 (-1.17, -1.09) 0.11 (0.07, 0.15) -9.98 (-13.51, -5.57)

S2.5 Data analysis of Hi-C and micro-C in human ES cells
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Figure S2: Genome wide significant interactions in Drosophila Kc167 cells. (A) Distribution of

the genomic distance between the two bins for all significant interactions. (B) classification of

significant interactions as either outside TADs when the two bins are located in different TADs

or inside TADs when the two bins are located in the same TAD. (C) Percentage of significant

interactions that have promoters at one of the bins. We consider the cases of: (P-P) both bins

contain promoters, (P-O) only one bins contains promoters and (O-O) none of the bins contain any

promoter.

Table S8: Posterior means of our estimated ~βs for noise, signal and false signal components of

Replicate 1 and Replicate 2 of Chromosome 2L respectively. The 95% credible intervals are

shown inside the brackets.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2 Posterior mean (false signal), k=3

β0 (intercept) -17.34 (-17.66, -17.02) 6.82 (6.27, 7.45) 499.97 (499.02, 500.96)

β1 (genomic distance) -1.77 (-1.80, -1.74) -0.61 (-0.69, -0.56) -62.58 (-63.37, -61.70)

β2 (GC content) 0.33 (0.33, 0.34) 0.34 (0.33, 0.34) 0.34 (0.21, 0.45)

β3 (TEs) -0.17 (-0.21, -0.13) -0.49 (-0.72, -0.29) 4.40 (2.33, 6.75)

β4 (Accessibility) -0.53 (-0.56, -0.49) 0.79 (0.68, 0.94) -5.10 (-6.73, -3.44)

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2 Posterior mean (false signal), k=3

β0 (intercept) -17.33 (-17.69, -16.94) 7.03 (6.40, 7.69) 499.98 (499.04, 500.88)

β1 (genomic distance) -1.78 (-1.81, -1.74) -0.62 (-0.70, -0.56) -64.57 (-65.33, -63.77)

β2 (GC content) 0.34 (0.33, 0.34) 0.34 (0.33, 0.34) 0.33 (0.22, 0.44)

β3 (TEs) -0.18 (-0.21, -0.15) -0.51 (-0.71, -0.27) -0.40 (-3.77, 1.64)

β4 (Accessibility) -0.53 (-0.56, -0.49) 0.79 (0.64, 0.91) -0.37 (-1.58, 0.69)

Table S9: Posterior means of our estimated ~βs for noise, signal and false signal components of

human Chromosome 8, region 60M : 70M for data generated using the Hi-C method. The 95%

credible intervals are shown inside the brackets.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2 Posterior mean (false signal), k=3

β0 (intercept) 1.06 (0.79, 1.49) 5.84 (5.67, 5.99) 5.69 (5.53, 5.79)

β1 (genomic distance) 0.15 (0.14, 0.17) -0.99 (-1.00, -0.98) -0.99 (-1.01, -0.98)

β2 (GC content) 0.32 (0.32, 0.33) -0.58 (-0.84, -0.21) -0.07 (-0.29, 0.18)

β3 (TEs) 10.00 (9.97, 10.03) -0.09 (-0.10, -0.07) -0.1 (-0.13, -0.09)

β4 (Accessibility) 0.38 (0.35, 0.40) 0.95 (0.92, 0.98) 1.10 (0.97, 1.19)
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Figure S3: Comparisons of biological replicates in Drosophila Kc167 cells. We detected signif-

icant interactions in two biological replicates of Drosophila Kc167 cells, using: (A) ZipHiC, (B)

HiCExplorer and (C) Juicer. We considered that two interactions detected by the different tools are

common if both anchors overlap fully, that is, the start and end of an anchor in one pair matches the

start and end of corresponding anchor in the other pair. (D) The overlap of significant interactions

detected in both replicates for each method (ZipHiC, HiCExplorer and Juicer). More than 92% of

the significant interactions are detected by all three methods.
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Table S10: Posterior means of our estimated ~βs for noise, signal and false signal components of

human Chromosome 8, region 60M : 70M for data generated using the micro-C method. The 95%

credible intervals are shown inside the brackets.

Parameters Posterior mean (noise), k=1 Posterior mean (signal), k=2 Posterior mean (false signal), k=3

β0 (intercept) 0.98 (0.55, 1.58) 7.91 (7.73, 8.09) 8.33 (8.08, 8.53)

β1 (genomic distance) 0.15 (0.12, 0.17) -1.40 (-1.43, -1.38) -1.41 (-1.43, -1.38)

β2 (GC content) 0.32 (0.32, 0.33) 1.60 (1.14, 1.96) 0.30 (-0.36, 0.98)

β3 (TEs) 10.00 (9.97, 10.04) -0.37 (-0.41, -0.33) -0.37 (-0.40, -0.34)

β4 (Accessibility) 0.38 (0.35, 0.41) 1.77 (1.58, 1.94) 1.81 (1.71, 1.86)

Figure S4: Comparison between ZipHiC, HiCExplorer and Juicer on human data.. (A) We con-

sidered the region 60-70Mb of the human chromosome 8 and data from (A) micro-C and (B) Hi-C

in human ES cells. We considered that two interactions detected by the different tools are common

if both anchors overlap fully.
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