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Abstract—This work proposes an analytical framework for
multi-reconfigurable intelligent surface (RIS) aided networks
with limited backhaul capacity, where a simple symmetric
structure is considered to explore the characteristics of multi-
RIS systems with coherent transmissions. By using the Gamma
distribution to model the composite RIS-aided channels, closed-
form expressions in terms of the outage probability and the
ergodic rate are derived. The theoretical results provide two
design guidelines: 1) the minimum outage can be achieved by
deploying the assisted RISs at certain locations; 2) the rate
performance is bounded, and an optimal number of assisted RISs
exists for rate maximization. Simulations verify our analysis and
demonstrate the backhaul capacity is the bottleneck for multi-RIS
systems. Compared with single-RIS systems, multi-RIS systems
require a minimal backhaul capacity to ensure the performance
gain.

Index Terms—Ergodic rate, limited backhaul, multi-RIS, op-
timal deployment, outage probability

I. INTRODUCTION

The reconfigurable intelligent surface (RIS) is an emerging
technology to realize the smart radio environment in next
generation wireless networks [1]. Motivated by the capabil-
ity of smartly steering the signal propagation, one potential
application of RISs is to create additional line-of-sight (LoS)
links between the base station (BS) and user equipment (UE)
for improved achievable data rates.

For RIS-enabled communications, most existing perfor-
mance analysis contributions focused on single-RIS aided
systems. Since the RIS-aided link includes multiple channels,
it is difficult to characterize its composite channel gain in exact
expressions, and hence the central limit theorem (CLT) was
leveraged to derive closed-form performance approximations
[2, 3]. Recently, multi-RIS aided setups, which are more prac-
tical use cases for RIS-aided networks, were investigated to
further boost the system capacity [4–6]. Similar to the idea
of the cell-free massive MIMO [7], by tuning the phases
of signals from different elements of distributedly deployed
RISs according to channel state information (CSI), coherent
transmissions can be realized to maximize the received power.
In [4], the authors assumed that path losses of different
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RIS-aided links are the same. This work demonstrated that
the theoretical outage performance derived relying on KG

distributions is more accurate than adopting CLT in the case
of RISs with only several elements. In [5], the channels
of different RISs were assumed to be independent but not
identically distributed. In [6], the authors also investigated
the RIS deployment strategy and concluded that equivalent
performance is achieved when a RIS is located either near
the BS or the UE. Although various accurate approximations
of both the ergodic capacity as well as some interesting
insights have been obtained for multi-RIS-aided networks in
previous works, most of them consider ideal backhaul capacity
links. In contrast to single-RIS aided systems, control signals
for the synchronization among all assisted RISs are required
for coherent transmissions in multi-RIS aided patterns. In
networks with limited backhaul capacity, part of the backhaul
capacity is for the control purpose, and hence the system
capacity for data transmissions is degraded. Moreover, a more
specific RIS deployment guideline is helpful to improve the
received signal power.

In this letter, our goal is to analyse the outage and the
rate performance of a multi-RIS aided system with limited
backhaul capacity, where the control signal for coherent trans-
missions is considered. The main contributions of this work
are: 1) considering multiple RISs distributed symmetrically
around the BS, we derive a tight approximation of the outage
probability, based on which we prove that for the minimum
outage, one of the RISs needs to be deployed as close to the
line between the BS and the UE as possible; 2) the closed-form
expression of the ergodic rate is deduced. Theoretical results
demonstrate the bounded rate performance and the existence
of an optimal number of RISs due to the backhaul limitation;
3) numerical results show that the multi-RIS aided pattern
improves the rate performance compared with the single-RIS
counterpart under large backhaul capacity, but the conclusion
is the opposite for extremely low backhaul capacity cases.

Notations: (·)T and (·)H denote the the transpose opera-
tion and the Hermitian transpose operation, respectively. |x|
denotes the amplitude of x. E[·] is the expectation operator.
j =

√
−1 is the imaginary unit. N (µ, σ2) is the Gaussian

distribution. CN (µ, σ2) is the complex Gaussian distribution.
Nakagami(m,Ω) represents the Nakagami distribution and
Gamma(k, θ) stands for the Gamma distribution. f ′(x) is the
first derivative of f(x). Γ(·) is the Gamma function. γ(α, x)
is the lower incomplete Gamma function [8, eq. (8.350.1)].
pFq(ap; bq;x) is the generalized hypergeometric function [8,



2

r

L

M

Fig. 1: Illustration of the spatial model for the considered
multi-RIS aided transmission.

eq. (9.14.1)]. Gm,np,q

(
(·)

∣∣∣∣∣(ap)(bq)

)
is the Meijer G-function [8,

eq. (9.301)].

II. SYSTEM MODEL

As shown in Fig. 1, we consider a downlink single-cell
system, where the transmission between the BS and the UE
is assisted by multiple RISs1. The distance between the BS
and the UE is L. We fix the BS at the origin, and M RISs,
i.e., {1, 2, ...,M}, are distributed symmetrically on a circle
centered at the BS with radius r 2. A central processing unit
(CPU) is employed for the control purpose, to which the BS
connects via a capacity-limited backhaul link. The maximum
backhaul capacity is CmaxB . The coherent transmission is
considered among M RISs and hence full CSI is required.
The synchronization among RISs is controlled by the CPU
and the control signal is delivered through wired RIS control
links with ideal capacity. The rate of the control signal for
each RIS is Rc.

We denote the angle of RIS 1-BS-UE as ψ1, where ψ1 =
ψ ∈ [0, 2π

M ). For ∀i ∈ {1, 2, ...,M}, the angle of RIS i-BS-UE
is ψi = ψ+ 2π(i−1)

M . Therefore, the distance between the RIS
i and the UE can be expressed as

di(ψ) =

√
r2 + L2 − 2rL cos

(
ψ +

2π(i− 1)

M

)
. (1)

A. Channel Model

We assume that both the UE and the BS are equipped
with a single antenna, and each RIS consists of N reflecting
elements. We denote the phase-shifting matrix of the RIS i by
Θi = diag

(
ejφi,1 , ..., ejφi,N

)
∈ CN×N , where φi,n ∈ [0, 2π)

for n ∈ {1, 2, ..., N}. Let HI,i , [hI,i,1, ..., hI,i,N ]
T ∈ CN×1

and HR,i , [hR,i,1, ..., hR,i,N ]
T ∈ CN×1 denote the small-

scale fading vectors of the BS-RIS link and the RIS-UE
link, respectively. The |hI,i,n| and |hR,i,n| follow independent
Nakagami-m fading3, i.e., |hI,i,n| ∼ Nakagami(m1, 1) and
|hR,i,n| ∼ Nakagami(m2, 1). Noticed the potential mobility
of the UE, CSI of the RIS-UE link and the direct BS-UE link

1To simplify the analysis, we consider the one-hop reflection model [4] in
this work. The scattered signal among RISs is ignored.

2Studying this simple network structure aims to find useful design guide-
lines. These guidelines are validated in the simulation part by a general
network structure based on randomly distributed RISs.

3The proposed analytical method in this letter is suitable for other fading
channel models such as Rician fading.

has the probability to be outdated. In this work, we consider
a practical CSI model as in [6]. For the RIS-UE link, the
received outdated channel vector ĤR,i = κrHR,i + κ̄rΩR,i,
where 0 ≤ κr ≤ 1 is the correlation coefficient between the
outdated channel ĤR,i and the actual channel HR,i. When
κr = 1 the CSI is perfect. κ̄r =

√
1− κr2 and ΩR,i

is independently distributed from HR,i with zero-mean and
σhr

2-variance complex Gaussian entries. Then the channel
response of the cascaded RIS-aided link for the RIS i is
expressed as

Ĥi(ψ) = κr
√
Li(ψ)HI,i

TΘiHR,i + κ̄rωr, (2)

where ωr =
√
Li(ψ)HI,i

TΘiΩR,i and Li(ψ) = (rdi(ψ))
−αr

is the path loss. The αr is the path loss exponent.
Let hr,i = HI,i

TΘiHR,i denote the equivalent overall
small-scale fading for the RIS-aided link which includes N
channels. To maximize the received signal power from the
RIS i, the phase shift on each element is adjusted so that
signals from all channels are of the same phase at the UE [9].
Therefore, we have

hr,i = ejφr,i
N∑
n=1

|hI,i,n||hR,i,n|. (3)

Let µr and σr2 denote the mean and variance of |hr,i,n| ,
|hI,i,n||hR,i,n|, respectively. According to [10], the kth order
moment of the double-Nakagami random variable is given

by E
[
|hr,i,n|k

]
=
∏2
i=1

Γ(mi+k/2)
Γ(mi)

(
1
mi

)k/2
. We calculate

the mean by µr = E [|hr,i,n|] and the variance by σr
2 =

E
[
|hr,i,n|2

]
− µr

2. Since N different channels of the RIS-
aided link are independent and identically distributed, the
CLT can be employed when N is large. The amplitude
of the composite channel gain obeys Gaussian distribution
|hr,i| ∼ N

(
Nµr, Nσr

2
)
. Using the method of moments, the

distribution of the composite small-scale fading power gain of
the RIS aided link can be fitted by a Gamma distribution [3]

|hr,i|2 ∼ Gamma

(
Mr

2

Vr
,
Vr
Mr

)
, Gamma (kr, θr) , (4)

where Mr = µr
2N2+σr

2N and Vr = 4µr
2σr

2N3+2σr
4N2.

Similarly, for the direct BS-UE link, the channel gain can
be expressed as

Ĥ0 = κ0

√
L−αdhd + κ̄0

√
L−αdωd, (5)

where 0 ≤ κ0 ≤ 1, κ̄0 =
√

1− κ0
2, and ωd ∼ CN

(
0, σhd

2
)
.

αd is the path loss exponent. hd denotes the small-scale fading
variable, which obeys Nakagami(md, 1).

B. Performance Metrics
In this letter, we focus on the outage probability and the

ergodic rate of the multi-RIS aided transmission. Both of the
above metrics are related to the received SNR at the UE.

To maximize the overall received power, the coherent trans-
mission is employed. Thus, the received SNR at the UE is
given by

SNR(ψ) =
PB

∣∣∣κ0

√
L−αdhd + κr

∑M
i=1

√
Li(ψ)hr,i

∣∣∣2
σ0

2 + σCSI2
,

(6)



3

where PB represents the transmit power of the
BS. σ0

2 denotes the additive white Gaussian
noise power. σCSI

2 = κ̄2
0PBL

−αd
(
1− E[hd]

2
)

+

κ̄2
rNPB

∑M
i=1 Li(ψ)

(
1− E[hr,i]

2
)

is the noise due to
the outdated CSI, [6]. Then the outage probability is defined
as

Pout = Pr (SNR(ψ) < τ) , (7)

where τ is the SNR threshold for the UE to successfully
decode its message.

When ψ is fixed, the ergodic rate averaged over the fading
distribution is given by

R(ψ) = E [log2 (1 + SNR(ψ))] . (8)

Finally, we denote R̄ = E [R(ψ)] as the average ergodic
rate which is averaged over the RIS deployment angle ψ.

III. OUTAGE PROBABILITY

When the UE is near the BS, the transmission between
the UE and the BS has a high probability of being LoS. In
this case, it is not necessary to further improve the channel
condition by employing the multi-RIS assisted transmission.
Therefore, this work mainly focuses on the scenario where the
UE locates far from the BS. In this section, we first provide
the outage probability of the UE.

Theorem 1. Considering the backhaul limitation, when (τ ≤
γd) the outage probability of the UE is

Pout(τ, ψ) ≈ Papprox(τ, ψ) =
γ
(
Mkr,

τ
g(ψ)θr

)
Γ (Mkr)

, (9)

and when (τ > γd) the outage probability of the UE is

Pout(τ, ψ) = Papprox(τ, ψ) = 1, (10)

where γd = 2C
max
d − 1, g(ψ) = κr

2PBA(ψ)
σ0

2+q1PB+κ̄2
rq2PBA(ψ) ,

q1 = κ̄2
0L
−αd

(
1− E[hd]

2
)
, q2 = N

(
1− E[hr,i]

2
)
, A(ψ) =

r−αr
∑M
i=1 di(ψ)−α, and Cmaxd = CmaxB −MRc.

Proof: See Appendix A.
The deployment of RISs also makes a difference to the

performance of the UE. The ideal deployment strategy in terms
of the outage probability is shown as follows.

Corollary 1. When ψ = 0 and τ ≤ γd, the outage probability
of the UE is minimized and its value is

P ∗out(τ) ≈
γ
(
Mkr,

τ
g(0)θr

)
Γ (Mkr)

. (11)

Proof: According to the monotonicity of the lower in-
complete Gamma function, we have arg min

ψ
Pout(τ, ψ) ≡

arg max
ψ

g(ψ). To obtain the optimal ψ, we take the derivative

of g(ψ) and we have

g′(ψ) =
κr

2PB(σ0
2 + q1PB)A′(ψ)

(σ0
2 + q1PB + κ̄2

rq2PBA(ψ))2
. (12)

Note that A′(ψ) = 0 holds when RISs are distributed symmet-
rically about the line between the BS and the UE, we calculate

that ψ = 0 and ψ = π
M are the solutions of g′(ψ) = 0.

Besides, g′(ψ) < 0 when ψ → 0+. Combining the property
that g(ψ) and g′(ψ) have a period of 2π

M , the outage probability
can be minimized when ψ = 0. Similarly, we can find that the
outage performance is the worst when ψ = π

M .

Remark 1. Under symmetrically distributed RISs, the ideal
deployment strategy is to keep the UE, one of the RISs, and
the BS in a line. Considering the distribution of RISs is unlikely
symmetrical and the ideal location of RIS is not always
accessible in practical scenarios, we extend our conclusion
for a general case: to reduce the outage, at least one RIS
should be deployed as close as possible to the BS-UE line.

IV. RATE ANALYSIS

Then we are able to derive the ergodic rate with fixed ψ.

Theorem 2. Based on the results in Theorem 1, the ergodic
rate can be expressed as a closed form

R(ψ) = Cmaxd − γd
Γ(Keq) ln 2

∞∑
k=0

(−1)k(γd/θeq)
Keq+k

k!(Keq + k)(Keq + k + 1)

× 2F1 (Keq + k + 1, 1;Keq + k + 2;−γd) , (13)

where Keq = Mkr and θeq = g(ψ)θr.

Proof: When the backhaul capacity is limited, (8) can be
rewritten as follows

R(ψ) = Cmaxd − 1

ln 2

∫ γd

0

Papprox(z, ψ)

1 + z
dz

(a)
= Cmaxd − 1

ln 2

∫ γd

0

∞∑
k=0

(−1)k(z/θeq)
Keq+kdz

k!(Keq + k)Γ(Keq)(1 + z)
, (14)

where (a) is from some polynomial expansion manipulations
of the lower incomplete Gamma function. Based on [8, eq.
(3.194.1)], we calculate the integral and obtain (13).

Remark 2. Since R(ψ) can be expressed as the integral of
the outage, we find that if τ ≤ γd holds, the ergodic rate can
also be maximized when the UE, one of the RISs, and the BS
located in a line.

Remark 3. When the transmit power PB → ∞, g(ψ) →
κr

2A(ψ)
q1+κ̄2

rq2A(ψ) , C0(ψ). Thus R(ψ) is bounded by a determin-

istic value Cupper = Cmaxd − 1
ln 2

∫ γd
0

γ
(
Mkr,

z
C0(ψ)θr

)
1+z dz ≤

Cmaxd . Particularly, if CSI is perfect, i.e., when κr = κ0 = 1,
we have C0(ψ)→∞ and Cupper = Cmaxd .

Remark 4. Note that R(ψ) ≡ 0 when the number of assisted
RISs M ≥ CmaxB /Rc while for the case M < CmaxB /Rc the
Cmaxd decreases monotonically with an increasing M , it can
be concluded that with the increase of M , R(ψ) increases to
a maximum value first and then decreases to zero. Therefore,
there exists an optimal M ∈ N+ to maximize the ergodic rate
R(ψ).

Proposition 1. When CmaxB → ∞, i.e. considering ideal
backhaul, the ergodic rate can be given by

Rideal(ψ) =
θeq
ln 2

3F1 (MKr + 1, 1, 1; 2;−θeq) . (15)

Proof: See Appendix B.
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Fig. 2: Validating of the outage approximation. (a) Left: outage
probability versus the threshold τ with ψ = 0; (b) Right:
outage probability versus the angle ψ with κ0 = κr = 1.

-10 0 10 20 30 40

Transmit Power (dBm),  P
B

10

15

20

25

30

35

E
rg

o
d

ic
 R

at
e 

(B
P

C
U

)

LB:  C
B

max
 = 300, Ana.

LB:  C
B

max
 = 300, Sim.

LB:  C
B

max
 = 250, Ana.

LB:  C
B

max
 = 250, Sim.

IB: Ana.

IB: Sim.

outdated CSI C
upper

perfect CSI
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Fig. 4: Ergodic rate versus the number of RISs M , where
“AP” refers to the average performance. “ID” means the ideal
deployment. “UD” means that RISs are uniformly deployed
on the circle with radius r, “IR” represents that one RIS is
ideally deployed in UD. “CT” and “NCT” represent coherent
transmission and non-coherent transmission, respectively.

V. NUMERICAL RESULT

In this section, the theoretical performance of the considered
backhaul-limited multi-RIS aided network is verified by Monte
Carlo simulations. We consider both the perfect CSI and
outdated CSI. The parameter setting is listed as follows:
r = 20 m, L = 150 m, αr = 2.2, αd = 4, N = 36,
PB = 0 dBm, m1 = m2 = 4, md = 1, Nf = 10 dB.
For the outdated CSI, κ0 = κr = 0.95. The noise power
σ0

2 = −170 + 10 log10W + Nf . The system bandwidth

is W = 10 MHz and the maximum backhaul capacity is
CmaxB = 300 Mbps. 1% of the overall rate is for control
purposes of each RIS, i.e., Cmaxd = CmaxB − 0.01MCmaxB .

Fig. 2 (a) plots the outage probability versus the threshold
τ and validates the approximated expression of the outage
probability in Theorem 1. Fig. 2 (b) shows the impact of RIS
deployment angle ψ. As discussed in Corollary 1, the outage
can be minimized when ψ = 0 while the maximum value
occurs when ψ = π

M . Meanwhile, we can observe that the
gap between the minimum outage and the maximum value
is closed with the increase of the number of RISs M . It
demonstrates that the multi-RIS aided pattern is able to help
the UE located at a random azimuth of the BS to achieve
similar performance while the UE only receives strong signals
in limited regions under the single-RIS aided setup.

Fig. 3 compares the ergodic rate in bit per channel use
(BPCU) versus transmit power PB between systems with
perfect CSI and outdated CSI. The average performance is
considered. Both Theorem 2 and Proposition 1 are validated.
As discussed in Remark 3, the ergodic rate in limited backhaul
scenarios is bounded by Cupper for two categories of CSI.
However, when the backhaul is ideal, the rate performance
keeps increasing with the perfect CSI but is also bounded by
a constant for outdated CSI cases. It can be explained that the
noise from the outdated CSI seriously degrades the system
performance.

Fig. 4 plots the ergodic rate versus the number of assisted
RISs M . The curves for the ideal deployment are from
Remark 2. Under “IR” one RIS is ideally deployed on the
line BS-UE. The non-coherent transmission with perfect CSI
is plotted for comparison. To observe the trend clearly, we set
PB = −10 dBm and CmaxB = {100, 150}Mbps. It is observed
that the rate performance is enhanced when one RIS of mutiple
RISs is deployed on the line between the UE and the BS, and
hence the deign guideline in Remark 1 is verified. Besides,
the existence of optimal M in backhaul-limited scenarios
is validated as stated in Remark 4. Although the coherent
transmission of multiple RISs significantly improves the signal
power, it brings high signaling overheads which guarantee
strict synchronization among different RISs. Since these over-
heads occupy part of the backhaul capacity, the available rate
for data transmissions is reduced with the increase of M . As
shown in the figure, the single-RIS aided transmission even
outperforms the multi-RIS aided counterpart in some cases.
Therefore, an appropriate number of assisted RISs should be
selected for the practical system design according to channel
conditions and the backhaul limitation.

VI. CONCLUSION

This letter has studied the outage performance and the
ergodic rate of the multi-RIS aided single-cell network with
limited backhaul capacity, where the control signal for co-
herent transmissions is considered. The analysis of this work
has shown that: 1) the increase of assisted RISs finally leads
to the degradation of rate performance due to the backhaul
limitation; 2) the capacity is improved when one of RISs is
deployed as close to the line between the BS and the UE as
possible.
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APPENDIX A: PROOF OF LEMMA 1

Based on the backhaul limitation, the maximum capacity
for data transmission is Cmaxd = CmaxB −MRc. Thus, if τ >
2C

max
d − 1, Pout = 1.
Then let us focus on the expression of the received SNR

SNR(ψ). When the number of elements N is sufficiently large,
the received SNR can be expressed as

SNR(ψ) =
PBr

−αr

σ0
2 + σCSI2

(
H̃0 + κr

M∑
i=1

√
di(ψ)−α|hr,i|

)2

(a)
≈ κr

2PBr
−αr

σ0
2 + σCSI2

|hM |2
M∑
i=1

di(ψ)−α, (A.1)

where H̃0 = κ0hd
√
L−αd/

√
r−αr and |hM |2 ∼

Gamma (Mkr, θr). (a) follows from the Cauchy inequality
and the fact that the term H̃0 is negligible.

We denote g(ψ) = κr
2PBr

−αr

σ0
2+σCSI2

∑M
i=1 di(ψ)−α for simplic-

ity. By leveraging the property of the Gamma variable, we
have

SNR(ψ) ∼ Gamma (Mkr, g(ψ)θr) . (A.2)

According to the cumulative distribution function of the
Gamma distribution, we obtain (9). The proof is completed.

APPENDIX B: PROOF OF COROLLARY 1

When the ideal backhaul is considered, the ergodic rate can
be derived as

Rideal(ψ) =

∫ ∞
0

log2 (1 + x) Pr (SNR(ψ) = x) dx

(a)
=

1

ln 2

∫ ∞
0

ln (1 + x)
xKeq−1e

− x
θeq

Γ(Keq)θeq
Keq

dx, (B.1)

where (a) is from the approximation fapprox(τ, ψ) in Lemma
1 and the probability distribution function of the Gamma
random variable SNR(ψ).

Based on [11, eq. (8.4.6.5)], ln (1 + x) can be expressed as
the Meijer G-function, and (B.1) can be further expressed as

Rideal(ψ) =
B0

ln 2

∫ ∞
0

G1,2
2,2

(
x

∣∣∣∣∣1, 1

1, 0

)
xKeq−1e−ωxdx

(b)
=
B0ω

−Keq

ln 2
G3,0

1,3

(
1

ω

∣∣∣∣∣1−Keq, 1, 1

1, 0

)
, (B.2)

where ω = 1
θeq

and B0 = 1
Γ(Keq)θeq

Keq
. (b) follows from the

Laplace transform of the Meijer G-function. By utilizing the
relationship between the Meijer G-function and the hyperge-
ometric function the corollary is proved.
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