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Abstract.

We derive a theory-independent version of the momentum constraint equation

for use in cosmology, as a part of the Parameterised Post-Newtonian Cosmology

(PPNC) framework. Our equations are constructed by adapting the corresponding

quantities from formalisms constructed for testing and constraining gravity in

isolated astrophysical systems, thereby extending the domain of applicability of these

approaches up to cosmological scales. Our parameterised equations include both

scalar and divergenceless-vector gravitational potentials, and can be applied to both

conservative and non-conservative theories of gravity. They can also be used to describe

the gravitational fields of both non-linear structures and super-horizon perturbations.

We apply the parameterised equations we propose to quintessence models of dark

energy, as well as scalar-tensor and vector-tensor theories of gravity. We find them

to work well in each case. Our equations are highly compact, and are intended to be

useful for constraining gravity in a theory-independent fashion in cosmology.

1. Introduction

General Relativity (GR) is being tested to ever higher precision in a variety of

astrophysical and cosmological settings. Cosmological surveys allow gravity to be tested

on large scales in the universe [1], gravitational wave observations are directly probing

the strong-field [2], and Solar System observations are probing the gravitational field

within our own vicinity [3, 4]. Motivation for this work comes from specific perceived

shortcomings of GR, such as its apparent need for Dark Energy in order to account for

cosmological observations, and the ultimate need to construct a viable quantum theory

of gravity, as well as from the scientific requirement for us to experimentally test our

hypotheses.

One can, of course, pick specific theories of gravity and calculate predictions for

the gravitational phenomena that should result. These can then be compared to

observations, and inferences made regarding the viability (or otherwise) of the particular

theory in question. While straightforward, this approach to model testing can only ever

tell us about the goodness-of-fit of the predictions of any specific theory to the data, and

may not always allow us to explore the infinite-dimensional theory space of possibilities.
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A more useful approach in this regard is to construct theory-independent frameworks

that can be used to interpret observational data. The idea behind such approaches is to

explore all (or at least some) of the possible deviations from Einstein’s theory, without

having to specify a particular alternative theory in mind.

Theory-independent approaches serve as a useful halfway house between

observational data and specific theories. They provide observers with a set of parameters

that can be constrained by their data, and they provide theorists with a set of constraints

on possible deviations from GR. This allows the viability of newly proposed theories to

be readily evaluated, and indeed provides theoretical physicists with a set of guidelines as

to the types of generalisations of Einstein’s theory that might profitably be considered.

It also gives all of us some concrete idea about the phenomenological consequences

of particular types of deviations from Einstein’s theory, by establishing which sets of

observations can probe which specific types of deviations from GR.

The Parameterised Post-Newtonian (PPN) formalism is the most successful of these

theory-independent frameworks [5]. Within the Solar System, and in extrasolar systems,

this formalism has been used to interpret a wide array of gravitational phenomena [6–9],

and has been used to placed strong constraints on possible deviations from GR. Some

of the reasons for this success are the simplicity of the PPN formalism, as well as

its relative insensitivity to the finer details of the gravitational theories: it expresses

the entire phenomenology of relativistic gravity in terms of a small set of measurable

parameters, constraints on which apply to a wide array of possible deviations from GR.

It assumes only basic properties of gravity in order to do this, in particular the Einstein

equivalence principle and the conservation of stress-energy.

In this paper, we continue the development of a framework which imports this highly

successful approach to understanding gravitational phenomena into a cosmological

context. We call the resulting formalism “Parameterised Post-Newtonian Cosmology”

(PPNC) [10–12]. This is a bottom-up approach to cosmology that explicitly allows

for the presence of non-linear, inhomogeneously distributed matter, while carefully

discarding the assumptions of asymptotically flat spacetime and negligible time-variation

of the cosmological background that exist within the classical PPN formalism [3].

Our approach generalises the concept of the “slip” and “effective Newton’s constant”

from previous attempts at creating a parameterized post-Friedmannian framework for

testing gravity in cosmology [13–18], and links these quantities, together with the

background and time-dependendent parts of the linear-order gravitational field, to

parameters familiar from the classical PPN approach. Here we develop this formalism

by constructing a parameterised momentum constraint equation.

To begin our study of a theory-independent momentum constraint equation, let us

consider a congruence of timelike curves with tangent vector uµ. We can now project

the Ricci identities, 2∇[µ∇ν]u
ρ = Rρ

µνσu
σ, and manipulate the result to obtain [19]

Dνσµν −
2

3
DµΘ + gµση

σνρ [Dνωρ + 2aνωρ] = Gνρu
νhρµ, (1)

where hµν = gµν + uµuν projects in the directions orthogonal to uµ, ησνρ is the
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volume form on the orthogonal hypersurfaces, D is the spatial projection of ∇, and

Gµν = Rµν − 1
2
gµνR is the Einstein tensor. The kinematic quatities Θ, σµν , ωµν and

aµ are respectively the expansion, shear, vorticity and acceleration associated with uµ,

which can be seen to be related to the momentum density in Eq. (1) through the term

involving Gµν , once a set of field equations has been specified [19]. This constraint must

be satisfied in order for the theory to have a complete set of initial data, and is the

relativistic generalization of the Newtonian requirement that the curl of the gradient of

3-velocities must vanish.

Equation (1) is the momentum constraint written in a theory-independent form,

for any metric theory of gravity, and requires only a relationship between Gµν and the

stress-energy tensor Tµν in order to be fully specified. In the context of Friedmann

cosmology, we can choose coordinates such that uµ = (u0, 0, 0, 0), in which case Eq. (1)

takes the more familiar form

−1

a

[
2
(
H′ −H2

)
B̂i +

1

2
∇̂2B̂i + 2

(
Ψ̂′ +HΦ̂

)
,i

]
= G0ρu

0hρi , (2)

where we have chosen to write this equation in conformal time, and in longitudinal

gauge. We have also assumed that the Robertson-Walker geometry is spatially flat.

The scalars Φ̂ and Ψ̂ are respectively the perturbations to the time-time and spatial

parts of the metric, and B̂i is the divergenceless vector perturbation to the time-space

components (see below for proper definitions of these quantities). The quantityH = a′/a

is the conformal Hubble rate. Our goal in this paper is to find versions of the scalar and

divergenceless vector parts of this equation that can be written in terms of the PPNC

parameters (to be explained in more detail below).

The plan of the paper is as follows: In Section 2 we present a review of the required

approximation schemes used in gravitational theory, as well as the PPN and PPNC

constructions. The PPNC framework is then extended to include vector perturbations

in Section 3, and the small-scale (. 100h−1 Mpc) limit of the parameterised momentum

constraint equation is derived. In Section 4, we consider very large scales in cosmology,

and consider what this means for the parameterised momentum constraint. Our

equations are then exemplified with a variety of test theories in Section 5, before we

conclude in Section 6.

We use Greek letters to denote spacetime indices, and Latin letters for spatial

indices. We set c = G = 1 throughout. Commas represent partial derivatives,

semicolons represent covariant derivatives, and dots and primes denote partial

derivatives with respect to time and conformal time respectively. We will also use

the convention that spatial indices on perturbed quantities are raised and lowered with

a Kronecker delta, such that e.g. Bi,i = B i
i, = δijBi,j.

2. Parameterised Post-Newtonian Cosmology

In this section we will introduce the formalism in which our framework is constructed,

which is a combination of post-Newtonian gravitational physics and cosmological
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perturbation theory. We will start by considering the essential features of both of these

expansions, before moving on to describe the PPN formalism. We will then describe how

the PPN formalism has been extended for use in cosmology, and recap some relevant

results from previous papers.

2.1. Weak-field expansions in cosmology

All of the expansions that we will use in this paper are “weak field”, in the sense that

there exist coordinate systems in which the metric can be written as

gµν = g(0)
µν + hµν , where g(0)

µν ∼ 1 and hµν � 1. (3)

The components g
(0)
µν will be referred to as the metric of the “background”, which will

be taken to correspond to either a Minkowski or Robertson-Walker geometry, and hµν ,

which we will refer to as a “perturbation”

The weak-field treatment is common to both cosmological perturbation theory and

post-Newtonian expansions, and is justified by the leading-order part of the gravitational

fields of all astrophysical objects except black holes and neutron stars being U � 1 (in

geometrised units). On the other hand, cosmological perturbation theory and post-

Newtonian expansions differ in the geometry of the assumed background, and in their

treatment of the size of 3-velocities, v, of matter fields. In the former case the background

is taken to be a Robertson-Walker geomety, and 3-velocities are taken to be of similar

size in the perturbative expansion to gravitational potentials U ∼ v. However, in the

latter case the background is most commonly taken to be Minkowski space, and the

leading-order part of the gravitational field is taken to be of the size U ∼ v2. These

subtle differences have profound consequences, as we will now discuss.

Cosmological Perturbation Theory

On large scales in the universe, the simplest and most useful approach to model weak

gravitational fields is to use cosmological perturbation theory [20–22]. In this approach

the metric can be written

ds2 = a(τ̂)2
[
−(1− 2Φ̂)dτ̂ 2 +

(
(1 + 2Ψ̂)δij + ĥij

)
dx̂idx̂j + 2B̂idτ̂dx̂

i
]
, (4)

where a(τ̂) is the scale factor, and where Φ̂, Ψ̂, B̂i and ĥij are all perturbations. This

line-element is written in conformal time τ̂ , and we are free to choose a gauge such that

B̂i is divergenceless and ĥij is transverse and tracefree.

The perturbative order-of-smallness of all fields in this approach are taken to be

similar, including the fluctuations in the density contrast, δ, and the 3-velocities of

matter fields, vi, such that

Φ̂ ∼ Ψ̂ ∼ B̂i ∼ ĥij ∼ δ ∼ vi � 1 . (5)

The field equations of any theory of gravity can then be used to find the equations for

the constraint and evolution equations for the background quantities, and subsequently

those of all first and higher-order perturbations. This approach is highly flexible, and
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results in equations that are easy to solve and valid on a wide range of spatial and

temporal scales. It does, however, have some drawbacks.

The principal among these is the fact the density constrast is required to be

perturbatively small, and that the 3-velocity of matter fields is expected to remain

as small as the amplitude of gravitational potentials. Neither of these things is true

when we consider scales . 100 Mpc in the real Universe, where we can observe density

contrasts δ ∼ 1 or greater on scales . 10 Mpc, and where we typically have v2 ∼ Φ̂.

This failure means that we cannot use cosmological perturbation theory to reliably

model the gravitational interaction on scales . 10 Mpc, and that we consequently face

a challenge if we wish to try and use it to relate any parameterised framework for

gravity in cosmology to results that we might obtain, for example, from experiments

in the Solar System. This, together with the reliance on a set of field equations in

which to perform the required perturbation theory, makes it very hard to conceive of a

theory-independent parameterised framework for constraining gravity on all scales using

cosmological perturbation theory alone.

Post-Newtonian Theory

In contrast to cosmological perturbation theory, post-Newtonian expansions do not

assume that fluctuations in the mass density are small. This extra freedom is allowed as

post-Newtonian theory assumes that gravity is not only weak-field, but also changing

slowly with time, such that the time derivative of any quantity associated with matter

or gravitational fields is small compared to the corresponding spatial derivatives of that

quantity, i.e. such that
∂
∂t
∂
∂x

∼ |v| � 1. (6)

The slow-motion requirement is problematic for cosmology, as the Hubble flow increases

in proportion to distance, and approaches ∼ 1 on the scale of the horizon. It is probably

for this reason that post-Newtonian expansions are usually specified using perturbations

of Minkowski space:

ds2 = −(1− 2Φ)dt2 + (1 + 2Ψ)δijdx
idxj + 2Bidtdx

i , (7)

where in this expression we have Φ ∼ Ψ ∼ v2 and |Bi| ∼ v3, such that the vector

gravitational potentials are smaller in magnitude than their scalar counterparts (the

transverse and tracefree tensor perturbations are smaller still, so have been neglected).

While the line-element given in Eq. (7) cannot be used to directly describe an

entire cosmology, it can be safely applied within a region of space-time that is small

compared to the cosmological horizon, so long as the Hubble flow velocity within that

region is of order v � 1 (if this is not the case, then the slow motion requirement

is violated). By considering many such regions next to each other, one can then

construct a viable cosmological model [10, 11]. This requires applying appropriate

boundary conditions between each of the regions, which themselves allow the large-

scale cosmological dynamics to emerge from the post-Newtonian-expanded gravitational



The Momentum Constraint Equation in PPNC 6

fields. This is a construction known as “post-Newtonian cosmology”, and has been

investigated thoroughly in the context of Einstein’s equations [10,23].

Post-Newtonian Cosmology

The link between the cosmological space-time that emerges in post-Newtonian

cosmological modelling, and the perturbed Minkowski space in Eq. (7), can be made

explicit by the following coordinate transformations:

t = t̂+
a2H

2
r̂2 + T (t̂, x̂) +O(v5) (8)

xi = a x̂i
[
1 +

a2H2

4
r̂2

]
+O(v4) , (9)

where T is an as-yet-unspecified gauge function of order v3, H ≡ ȧ/a is the Hubble

parameter of the scale factor a(t̂), and r̂2 ≡ δijx̂
ix̂j. Under such a transformation, the

line-element (7) can be directly transformed into the form of the perturbed Robertson-

Walker geometry (4), as long as we take

Φ = Φ̂ +
ä a

2
r̂2 (10)

Ψ = Ψ̂− ȧ2

4
r̂2 (11)

Bi = B̂i − 2ȧ x̂jδij

(
Φ̂ + Ψ̂

)
− a ȧ ä r̂2x̂jδij +

1

a
T,i , (12)

and ĥij = 0, and subsequently transform to conformal time.

This demonstrates a direct isometry between the perturbed Minkowski space in

which post-Newtonian gravity is usually formulated, and the perturbed Robertson-

Walker geometries that are better suited to cosmology. As long as the coordinate

patches of neighbouring regions overlap, which can be arranged by a suitable choice

of a(t̂), we can then consider this coordinate system to span the entire cosmology, and

therefore to act as our ‘background’. This formulation of post-Newtonian gravity allows

the gravitational fields of highly non-linear density contrasts to be consistently modelled,

and simultaneously allows the Friedmann equations of the “background” to be extracted

from them. It is therefore ideal for creating a unified framework for testing gravity in

both isolated astrophysical systems, and in cosmology on the very largest scales.

2.2. Parameterised post-Newtonian formalism

The parameterised post-Newtonian (PPN) formalism is a method of constraining gravity

using experimental and observational data without specifying a particular set of field

equations or fundamental action for the underlying theory. This approach is based on

the post-Newtonian expansion outlined above, and has proven itself to be extremely

successful at providing a framework within which to understand gravity in a theory-

independent fashion. Here we will spell out some of the crucial features of this approach,

as relevant for our study.
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The crucial first step in the classic PPN approach is to specify the perturbations

to the metric (7) in terms of matter fields and coupling parameters. This is typically

done as follows [3]:

∇2Φ = − 4πα ρ , ∇2Ψ = −4πγ ρ (13)

and

∇2Bi = 8π

[
α + γ +

1

4
α1

]
ρ vi −

[
α + α2 − ζ1 + 2ξ

]
U̇,i +∇2ϕPF

i (14)

where the Newtonian gravitational potential is defined implicitly by ∇2U ≡ −4π ρ, and

where the ‘preferred frame potential’ is such that

∇2ϕPF
i = 2πα1wi ρ+ 2α2w

jU,ij , (15)

where wj is the velocity of the PPN system with respect to the preferred frame of the

theory, if one exists (to be explained in more detail later). There are six parameters

appearing in these expressions: {α, γ, α1, α2, ζ1, ξ}. The value of each of these should

be understood to vary from theory to theory, but they can also be understood simply

as coupling parameters for the gravitational potentials.

There are a number of comments that one could make about the parameterisation

described above. Of most immediate relevance for our study is that the appearance

of these parameters as coupling strengths for the graviational potentials is due to the

structure of the post-Newtonian expansion itself, which means that the equations we

will need to solve in any theory of gravity will take the form of Poisson-like equations.

The simple form of the operators in such equations makes a specification in terms of a

limited number of source terms possible, with the unknown parameters simply inserted

as constants of proportionality. It is these equations that replace and remove the need

for field equations of a particular gravitational theory, and that therefore allow a theory-

independent interpretation of gravitational phenomena.

The appearance of {α, γ, α1, α2, ζ1, ξ} in the particular combinations in which they

appear in Eqs. (14) is so that they appear in global conservation laws in a simple way [3],

and hence so that they can be associated with particular degrees of freedom in the space

of theories of gravity (as outlined in Table 1). We note that in “fully conservative”

theories of gravity, in which there are no violations of momentum or angular momentum

conservation, and no preferred frame effects, we should have α1 = α2 = ζ1 = 0. Finally,

we note that Eqs. (14) are written in “post-Newtonian gauge”, which at the level

of perturbations we are considering corresponds to a choice of gauge in which hij is

diagonal.

2.3. Parameterised post-Newtonian cosmology

Let us now discuss how the PPN approach must be modified for application in cosmology,

and what it looks like after the transformations (8) and (9).

To begin this, let us first note that the pressure of matter fields need not be neglected

at leading order when considering the cosmological context, but that on the spatial
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scales on which post-Newtonian expansions can be applied (i.e. . 100 Mpc) it must

be effectively spatially constant [24]. This is of particular importance for the inclusion

of dark energy. Furthermore, we also note that the coupling parameters in Eq. (14)

must be taken to be functions of cosmological time, in order to produce a consistent

parameterized cosmological model [11], i.e.

{α, γ, α1, α2, ζ1, ξ} → {α(t̂), γ(t̂), α1(t̂), α2(t̂), ζ1(t̂), ξ(t̂)} . (16)

The reason for this is that gravitational couplings in alternative theories of gravity, in

general, are allowed to be functions of additional background degrees of freedom, which

themselves can change over cosmological time scales.

Taking these points properly into account, and performing the transformations (8)

and (9) so that our space-time metric takes the form of a perturbed FRW metric, one

finds that the appropriate Friedmann equations are given by the following set [23]:

H2 =
8πγ

3
ρ̄a2 − 2γca

2

3
(17)

H′ = −4πα

3
ρ̄a2 +

αca
2

3
, (18)

where H = a′/a, ρ̄ is the average energy density of matter in the Universe, and

where primes denote differentiation with respect to conformal time, τ̂ . The reader

will note two extra parameters in these equations that do not appear in the classic PPN

parameterisation: αc and γc. These two terms must be added linearly to the right-hand

side of the two equations in (14) in order to be able to consistently include dark energy

and the gravitational effects of the time variation of any extra degrees of freedom in a

theory. They must satisfy the integrability condition

4π ρ̄

(
α− γ +

dγ

d ln a

)
=

(
αc + 2γc +

dγc
d ln a

)
, (19)

and must in general also be functions of cosmological time, such that αc = αc(t̂)

and γc = γc(t̂). Eqs. (17) and (18) constitute the background contributions to the

Hamiltonian constraint and Raychuadhuri equations, respectively.

The leading-order perturbations to these equations have been investigated in Ref.

[12], where it was shown that they could be written as

1

3
∇̂2Ψ̂−H2Φ̂−HΨ̂′ = −4π

3
µ δρ a2 (20)

1

3
∇̂2Φ̂ + 2H′Φ̂ +HΦ̂′ + Ψ̂′′ +HΨ̂′ = −4π

3
ν δρ a2 , (21)

where δρ = ρ − ρ̄ is the perturbation to the energy density, and where µ and ν are in

general functions of cosmological time and spatial scale. By comparing to the direct

transformation of the classic PPN equations under Eqs. (8) and (9), we find that on

scales . 100 Mpc we should expect [12]

lim
k→∞

µ = γ and lim
k→∞

ν = α . (22)

These equations are required for the theory to be correctly described by the classic PPN

approach on small spatial scales. On the other hand, by employing the separate universe
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Physical effect Observational constraint Constraint on derivative

Effective Newton’s constant α 1 0± 0.01 [25]

Spatial curvature parameter γ 1 + (2.1± 2.3)× 10−5 [6] 0± 0.1 [26]

Preferred location parameter ξ 0± 3.9× 10−9 [27] –

Conservation of momentum ζ1 0± 2× 10−2 [5] –

Preferred frame parameters α1

α2

(−0.7± 1.8) × 10−4 [28]

(1.8± 5.0)× 10−5 [28]

–

–

Cosmological parameters αc
γc

(2.07± 0.03)H2
0 [29]

(−1.04± 0.02)H2
0 [29]

(0.12± 0.25)H2
0 [29]

(−0.06± 0.12)H2
0 [29]

Table 1. The coupling parameters that appear at leading-order in the PPNC test

metric, adapted for cosmology. An observational constraint on the derivative of a

parameter p refers to the constraint on dp/d ln a.

approach [22], we find that the super-horizon limit of adiabatic perturbations should be

described by [12]

lim
k→0

µ = γ − 1

3

dγ

d ln a
+

1

12πρ̄

dγc
d ln a

(23)

lim
k→0

ν = α− 1

3

dα

d ln a
+

1

12πρ̄

dαc
d ln a

. (24)

This behaviour is required for consistency with the effective Friedmann equations (17)-

(18). The limiting behaviour given in Eqs. (22)-(24) shows that the parameters µ and ν

must approach a predictable scale-invariant form on both small and large spatial scales,

and that in general we should expect the values of these to be different in these two

limits. In all cases, however, the limiting behaviour of µ and ν must be a function of

the set of extended-PPN parameters {α, γ, αc, γc}.
It is the purpose of the present paper to extend the set of equations outlined above,

to include not only the Hamiltonian constraint and the Raychaudhuri equation, but

also the momentum constraint equation. The momentum constraint in cosmology is

usually throught of as being comprised of two parts; a scalar equation that adds a

constraint to the set described above, and a divergenceless vector equation that contains

the “frame-dragging” potential B̂i. We will investigate both parts of the momentum

constraint equation, on both small spatial scales (where a post-Newtonian expansion can

be performed), and on very large scales (where the parameterised Friedmann equations

can be applied).
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3. The Momentum Constraint Equation on Small Scales

In this section we will use the transformations from Eqs. (8) and (9) to derive the

momentum constraint equation for parameterised post-Newtonian perturbations around

a Friedmann background, as they occur in the metric (4). As the post-Newtonian

expansion on which these equations are based is expected to be valid on scales .
100 Mpc, this will give us the “small scale” limit of the general parameterised momentum

constraint equation. We will start by considering this equation in conservative theories of

gravity. These are theories in which global energy, momentum and angular momentum

are conserved to post-Newtonian order in asymptotically flat spacetime [3]. In terms

of PPN parameters, they correspond to the values α1 = α2 = ζ1 = 0. We will then

generalise to non-conservative theories.

3.1. Conservative theories

Let us first use the relationships between perturbations to Minkowski and Robertson-

Walker geometries, specified by Eqs. (10)-(12), to derive the constraint equation

satisfied by the cosmological vector perturbation B̂i. Assuming we want our cosmological

perturbations to be in longitudinal gauge [30], we must have that B̂i,i = 0, where the

derivative is taken with respect to the x̂i coordinates. Using Eq. (12), we find that this

condition is satisfied if and only if the gauge function in Eq. (8) satisfies

∇̂2T = a2Bi,i + 6aȧ
(

Φ̂ + Ψ̂
)

+ 2aȧ
(

Φ̂ + Ψ̂
)
,i
x̂i + 5a2ȧä r̂2 . (25)

In this equation, and henceforth, we will use the convention that spatial derivatives on

a quantity are with respect to the set of coordinates with which that quantity is defined

(i.e. so derivatives of hatted quantities are taken with respect to x̂i, and unhatted

quantities are differentiated with respect to xi).

We now wish to operate on Eq. (12) with the Laplacian ∇̂2, and substitute in the

expression above for T , in order to find the following expression for the left-hand side

of the momentum constraint on small scales:
1

2a
∇̂2B̂i + 2

(
˙̂
Ψ +HΦ̂

)
,i

(26)

=
1

2
a
(
∇2Bi −Bj,ji

)
+Hx̂i∇̂2

(
Φ̂ + Ψ̂

)
−Hx̂j

(
Φ̂ + Ψ̂

)
,ij

+ 2
˙̂
Ψ,i − 2HΨ̂,i .

To go further we now need an expression for Bi, which we take from solving Eq. (14)

with α1 = α2 = ζ1 = 0 to obtain

Bi = −2(α + γ)Vi +

(
1

2
α + ξ

)
χ̇,i +Bextra

i , (27)

where ∇2V i ≡ −4πρvi and ∇2χ ≡ −2U implicitly define the vector potential V i and

the super-potential χ, and where we have added the extra term Bextra
i to account for

any extra contributions that may need to be added to the right-hand side of Eq. (14)

in order to make it suitable for use in cosmology.
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Taking the required derivatives of Bi, and substituting back into Eq. (26), gives us

1

2a
∇̂2B̂i + 2

(
˙̂
Ψ +HΦ̂

)
,i

(28)

= 4πa(α + γ)ρvi + a(α + γ)Vj,ji +Hx̂i∇̂2(Φ̂ + Ψ̂)

−Hx̂j(Φ̂ + Ψ̂),ij + 2
˙̂
Ψ,i − 2HΨ̂,i +

1

2
a
(
∇2Bextra

i −Bextra
j,ji

)
.

To proceed further it is useful to re-write the term containing the factor Vj,ji. We do

this by splitting the velocity vi into a background part (due to the Hubble flow) and

a peculiar velocity, such that vi = Hxi + δvi. This then allows us to split V i into

components due to the background and peculiar velocities, such that Vi = V̄i + δVi,

where

∇2V̄i ≡ −4πρHxi and ∇2δVi ≡ −4πρ δvi . (29)

The former of these implicit definitions allows for the solution V̄ i = HxiU+Hχ,i, where

the derivative should be understood to be with respect to the xi coordinates.

Making a similar split of the Newtonian potential U into contributions from the

cosmological background and perturbation, i.e. taking ρ = ρ̄+ δρ, allows us to write

∇2U = −4πρ = −4πρ̄− 4πδρ ≡ ∇2Ū +∇2δU , (30)

where the last equality provides implicit definitions for Ū and δU . We note that these

allow us to write down the solution for the background part of the Newtonian potential as

Ū = −2πρ̄r2/3, and the cosmological perturbations to the Robertson-Walker geometry

as Φ̂ = αδU and Ψ̂ = γδU . These expressions, together with the continuity equation

ρ̇+ (ρvi),i = 0, allow us to derive the useful identities

α
∂

∂xi
δVi = − ˙̂

Φ−HΦ̂ +
α̇

α
Φ̂ and γ

∂

∂xi
δVi = − ˙̂

Ψ−HΨ̂ +
γ̇

γ
Ψ̂ ,

which can be compared with the identity Vi,i = −U̇ that frequently occurs in the classic

approach to post-Newtonian gravity [3].

Using all of these results in Eq. (28), it follows that we can write the momentum

constraint in the cosmological geometry as

1

2a
∇̂2B̂i + 2

(
˙̂
Ψ +HΦ̂

)
,i

(31)

= 4π (α + γ) ρ δvi a−
[(

˙̂
Φ− ˙̂

Ψ
)
−H

(
Φ̂− Ψ̂

)
− α̇

α
Φ̂− γ̇

γ
Ψ̂
]
,i

+
1

2
a
[
∇2Bextra

i −Bextra
j,ji

]
.

This can be straightforwardly split into a scalar part

2Ψ̂′,i + 2HΦ̂,i = 4π (α + γ) [ρv̂i]
S a2 −

[(
Φ̂− Ψ̂

)′
−H

(
Φ̂− Ψ̂

)
− α′

α
Φ̂− γ′

γ
Ψ̂
]
,i
, (32)

and a divergenceless vector part

∇̂2B̂i = 8π (α + γ) [ρv̂i]
V a2 + ∇̂2B̂extra

i , (33)

where ∇̂2B̂extra
i ≡ a2(∇2Bextra

i −Bextra
j,ji ) is manifestly a divergence-free vector, and where

v̂i = dx̂i/dτ̂ = δvi. In each of these two expressions we have used the superscipts S
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and V on parentheses to indicate that the we intend this to correspond to the scalar

or divergenceless-vector part of the object within. We have also converted all time

derivatives in these expressions into conformal time, so that they appear in the most

familiar form for use in cosmology. The reader may note that although the PPN

parameter ξ is allowed to be non-zero in this class of theories, it appears in neither

the scalar nor the vector part of our parameterised momentum constraint equation.

This is our first step towards the momentum constraint on small cosmological scales.

Let us now consider how these expressions are generalised in non-conservative theories

of gravity, which can exhibit violation of global conservation laws at post-Newtonian

order, and which can display preferred-frame effects.

3.2. Non-conservative theories

In non-conservative theories of gravity the PPN parameters {α1, α2, ζ1} are allowed to

be non-zero. This can be accounted for by using Eq. (14) without setting any of the

PPN parameters to zero. Following a similar process to the one used above, this results

in

∇̂2B̂i = 8π
(
α + γ +

α1

4

)
[ρv̂i]

V a2 + 2πα1a
2H
[
ρ x̂i
]V

+ ∇̂2B̂extra
i , (34)

where we have again allowed for extra terms to be added by including ∇̂2B̂extra
i , and

where we have assumed that we are in the preferred frame (if one exists), such that

ϕPF
i = 0. The reader may note that only α1 is retained in the cosmological version

of this equation, with α2 and ζ1 both being removed by the imposition that B̂i is

divergenceless.

The reader may also note that there is a highly anomolous term on the right-

hand side of this equations: 2πα1a
2Hρ x̂i. This term appears problematic as it depends

linearly on the distance from the origin of coordinates. As we have not specified a

particular configuration of matter, or any symmetries beyond those of the background,

it is hard to see how such a term could possibly be permitted, even in theories with

preferred frames. We will therefore remove it by altering Eq. (14) so that it takes the

new form

∇2Bi = 8π(α + γ)ρ vi + 2πα1ρ δvi − (α + α2 − ζ1 + 2ξ)U̇,i +∇2Bextra
i ,

where δvi = vi − Hxi, and where we are again temporarily taking ϕPF
i = 0. This

adjustment corresponds to allowing only the peculiar component of the 3-velocity vi to

source the part of the equation that couples with α1, and results in

∇̂2B̂i = 8π
(
α + γ +

α1

4

)
[ρv̂i]

V a2 + ∇̂2B̂extra
i . (35)

It is conceivable that similar changes may need to be made for the term that couples

with α2, as this is also a preferred-frame parameter, but as this parameter does not

appear in the cosmological equations at the order we are studying we will not concern

ourselves with it here.
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L

E

L

E

Non-expanding coordinates

Preferred frame

Expanding coordinates

General frame

Figure 1. A schematic of the transformations between perturbed Minkowski and

perturbed Robertson-Walker geometries, and tranformations between the preferred

frame and general frames. Lorentz transformations are labelled L, and E denotes

transformations between non-expanding and expanding backgrounds.

We will now turn our attention to the form this equation takes if we transform

away from the preferred frame, so that our coordinate system is in motion with respect

to it. We will generate the new form of this equation by performing a Lorentz boost in

the perturbed Minkowski description of the space-time. The corresponding perturbed

Robertson-Walker descriptions, before and after the boost, can then be determined by

using the transformations from Eqs. (8) and (9). This process is displayed schematically

in Fig. 1, where the transformation from perturbed Robertson-Walker geometry in the

preferred frame to the general frame is indicated by the black arrow from the top-right

corner to the bottom-right corner, and which is equivalent to the three transformations

around the other sides of the square, collectively denoted by the blue arrow.

We have already discussed the transformations between expanding and static

backgrounds, corresponding to the top and bottom of the square in Fig. 1, in

previous sections. The Lorentz boost between two different coordinate systems covering

Minkowski space, corresponding to the left side of the square, are given by the standard

expressions:

t → t

(
1 +

1

2
w2 +

3

8
w4

)
+

(
1 +

1

2
w2

)
xiwi +O(v5)× t (36)

xi → xi +

(
1 +

1

2
w2

)
t wi +

1

2
xjwjw

i +O(v4)× xi . (37)

The effects of these on the perturbations to Minkowski space are

Φ→ Φ , Ψ→ Ψ , and Bi → Bi − 2wi(Φ + Ψ) . (38)

Transforming back to expanding coordinates after performing this boost, and ensuring
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the gauge function T is chosen to maintain longitudinal gauge, we find that

∇̂2B̂i = 8π (α + γ) [ρv̂i]
V a2 + 2πα1 [ρ (v̂i + ŵi)]

V a2 + ∇̂2B̂extra
i , (39)

where ŵi is the coordinate velocity relative to the preferred frame in the perturbed

Robertson-Walker description of the space-time. This is the general form of the vector

part of the parameterised momentum constraint equation, written in a form suitable

for cosmology. The reader may note that ŵi does not enter into the terms that couple

with α and γ, which is a direct consequence of these terms having no preferred frame,

as per their usual interpretation in the classic PPN formalism. They may also note that

in order to avoid the presence of another problematic term, which would be linear in x̂i,

we have had to adjust the preferred frame potential ϕPF
i so that it too depends only on

the velocity relative to the Hubble flow, δwi = wi −Hxi.

4. The Momentum Constraint on the Largest Scales

We now focus on extending our parameterised equations up to super-horizon scales.

Much of this will rely on a separate universe approach, as pioneered in a theory-

independent way by Bertschinger [22]. This approach has allowed the Raychaudhuri

and Hamiltonian constraint equations for super-horizon perturbations to be obtained

within the PPNC formalism [12], and we now consider how it can be applied to the

momentum constraint equation on those scales.

4.1. Boosts, and the scalar momentum constraint equation

Let us start by considering the effect of a boost in the coordinates of the expanding

Robertson-Walker space, such that we transform to new coordinates

τ̂ ∗ = γ(v̂) [τ̂ − v̂x̂] = τ̂ − v̂x̂+
v̂2

2
τ̂ + ... (40)

x̂∗ = γ(v̂) [x̂− v̂τ̂ ] = x̂− v̂τ̂ +
v̂2

2
x̂+ ... , (41)

and ŷ∗ = ŷ and ẑ∗ = ẑ, where v̂ is the velocity of the boost in the x̂-direction. The

conformal part of the metric is unchanged by this transformation, while the scale factor

becomes

a2(τ̂ ∗) ' a2(τ̂) [1− 2v̂Hx̂] . (42)

Hence, the line-element for our geometry becomes

ds2 = a2(τ̂)
[
− (1− 2Hθ) dτ̂ 2 + (1− 2Hθ)

{
dx̂2 + dŷ2 + dẑ2

}]
, (43)

where θ = v̂x̂ is the scalar velocity potential. This is equivalent to the following pair of

scalar perturbations:

Φ̂ = Hθ and Ψ̂ = −Hθ . (44)
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Constructing the left-hand side of the momentum constraint equation therefore gives

that on super-horizon scales we must have

2Ψ̂′ + 2HΦ̂ = 2
(
H2 −H′

)
θ , (45)

which can equivalently be expressed as

2Ψ̂′,i + 2HΦ̂,i =
8π

3
(α + 2γ)ρ̄v̂S

i a
2 − 2

3
(αc + 2γc)v̂

S
i a

2 , (46)

where we have used the parameterised Friedmann equations (17) and (18), and

generalised this expression to an arbitrary direction by taking θ,i = v̂S
i , where v̂S

i

is the scalar part of the matter peculiar velocity field v̂i. This result can be seen

to be consistent with the scalar Hamiltonian constraint and Raychaudhuri equations,

derived using Bertschinger’s separate universe treatment, and the large-scale momentum

conservation equation, which we take as evidence of the validity of our approach.

We find that Eq. (46) and the results from Section 3 can be written together in a

single equation as

Ψ̂′,i +HΦ̂,i = 4πµ [ρv̂i]
S a2 + GHΨ̂,i , (47)

where G = G (τ̂ , k) is assumed to be a smooth function with limits

lim
k→∞
G =

d ln γ

d ln a
+
α− γ
γ

and lim
k→0
G = 0 , (48)

and where µ is given by Eqs. (23) and (24). In order to derive this result, we have made

use of Eq. (32) and the post-Newtonian-expanded matter continuity equation (valid

on small scales), as well as Eqs. (17), (19) and (45) for the super-horizon limit. It is

intended that in the super-horizon limit the combination ρv̂i should be understood as

approaching ρ̄v̂i, as in this limit the density contrast is assumed to be perturbatively

small. We note that the function G vanishes on all scales for the case of GR with a

cosmological constant, in which case α = γ = 1. This will not be the case in general

though, and for modified theories of gravity it is expected that G 6= 0 on small scales.

4.2. Rotations, and the vector momentum constraint equation

In order to construct a divergenceless vector version of the momentum constraint

equation for super-horizon scales, let us now consider the case where we rotate our

spatial coordinates, rather than boosting them. This will produce an apparent vortical

motion in the fluid that fills the space-time, as illustrated in Figure 2.

In order to induce this perturbation we rotate coordinates by the angle Ω = Ω(τ̂),

such that

x̂∗ = x̂ cos Ω + ŷ sin Ω (49)

ŷ∗ = ŷ cos Ω− x̂ sin Ω , (50)

with ẑ∗ = ẑ and τ̂ ∗ = τ̂ . Putting this into the line-element of a spatially flat Robertson-

Walker geometry gives us

ds2 = a2(τ̂)
[
−dτ̂ 2 + dx̂2 + dŷ2 + dẑ2

]
+ 2a2(τ̂)

dΩ

dτ̂
(ŷdx̂− x̂dŷ) dτ̂ , (51)
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Figure 2. Rotating coordinates by a time-dependent angle Ω induces the

divergenceless vector perturbation vi in the fluid. Depicted here are space-like

hypersurfaces of constant τ̂ .

where we have taken Ω = Ω(τ̂) and expanded to leading order in dΩ/dτ̂ . Comparing

this to a linearly-perturbed Robertson-Walker geometry allows us to identify that

the rotating coordinates are in longitudinal gauge, and that we have induced a

divergenceless-vector perturbation

B̂i =
dΩ

dτ̂
(ŷ,−x̂, 0) = −v̂i , (52)

where v̂i is the divergenceless vector part of the fluid’s 3-velocity in the rotating

coordinates. Clearly there is nothing special about the direction of the axis of rotation

in this example, so we expect the result B̂i = −v̂i to be valid in general.

Combining our result with the relevant prefactor allows us to write down

a straightforward equation for the divergenceless vector part of the super-horizon

momentum constraint equation:

2
(
H′ −H2

)
B̂i = −2

(
H′ −H2

)
v̂i , (53)

or, equivalently, using Eqs. (17) and (18), as

2
(
H′ −H2

)
B̂i =

8π

3
(α + 2γ)ρ̄ v̂i a

2 − 2

3
(αc + 2γc)v̂i a

2 . (54)

This is of exactly the same form as the scalar part of the super-horizon momentum

constraint equation (46), which gives us confidence in its validity.

We can now see that it is possible to write Eq. (54) together with the divergenceless

vector equation from Section 3 in the unified form

2
(
H′ −H2

)
B̂i +

1

2
∇̂2B̂i = 8π(µ+Q) [ρv̂i]

V a2 + α1 π [ρŵi]
V a2 , (55)
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where µ is again given by Eqs. (23) and (24), and the coupling function Q has the limits

lim
k→∞
Q =

α− γ
2

+
α1

8
and lim

k→0
Q = 0 . (56)

In deriving these equations we have made use of Eqs. (39) and (53), as well the

background equations (17) and (18), and the integrability condition (19). Again, the

quantities ρv̂i should be understood to reduce to ρ̄v̂i on large scales, when the density

contrast becomes perturbatively small. The new function Q vanishes identically in GR,

when α = γ = 1 and α1 = 0, but is not expected to be zero on small scales in generic

modified theories of gravity. The reader may also note that we have set B̂extra
i = 0, as

we find it not to be required for the theories of gravity below.

Equations (47) and (55) are the central results of this paper. In what follows, we

will demonstrate their applicability using some specific example theories.

5. Example Theories

Having derived our parameterised momentum constraint equations, we will now show

how they work for some example theories of modified gravity and dark energy. This

requires determining the PPNC parameters for each theory, and then demonstrating

that inputting these into our equations results in the correct small and large-scale limits

of their weak-field theory.

Before we proceed with the worked examples, it will prove useful to collect together

some general results. For this, we note that for adiabatic perturbations the gauge-

invariant entropy perturbation SXY between two scalars X and Y vanishes:

SXY := H
(
δX

X̄ ′
− δY

Ȳ ′

)
= 0. (57)

We also note that the conservation equation ∇νT
0ν = 0 implies that on super-horizon

scales we have

ρ̄′ + 3Hρ̄ = 0 and δρ′ + 3Hδρ+ 3ρ̄Ψ̂′ = 0 , (58)

which imply that

δρ

ρ̄′
=

Ψ̂

H
, and therefore

δX

X̄ ′
=

Ψ̂

H
, (59)

for scalars X that appear in the theory. It will also be useful to note the scalar part of

∇νT
iν = 0 on large scales:

θ′ +Hθ − Φ̂ = 0 , which implies Ψ̂ = −Hθ . (60)

Let us now consider our example theories, in increasing order of mathematical

complexity.
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5.1. Quintessence

Let us start with quintessence, which is a scalar field, φ, that minimally couples to

gravity. The full action of these theories is

I =
1

16π

∫
d4x
√
−g
[
R− 1

2
gαβ∇αφ∇βφ− V (φ)

]
+ Im (ψ, gµν) , (61)

where ψ denotes matter fields. The field equations are

Gµν = 8πTµν + 8π

(
gµν

[
−1

2
gαβ∇αφ∇βφ− V (φ)

]
+∇µφ∇νφ

)
, (62)

and �φ = dV/dφ. Performing a post-Newtonian expansion about Minkowski space

gives the following PPNC parameters:

α = γ = 1, γc = −4π

((
φ̄′
)2

2a2
+ V (φ̄)

)
, αc = −8π

((
φ̄′
)2

a2
− V (φ̄)

)
, (63)

where φ̄ is the time-dependent background value of φ, and α1 = α2 = ξ = ζ1 = 0. Let

us now investigate the form of the perturbation equations in these theories.

Small scales: Applying these parameter values above to Eqs. (47) and (55), we find

1

2
∇̂2B̂i + 2

[
Ψ̂ +HΦ̂

]
,i

= 8πρv̂ia
2 . (64)

It now remains to show that this is the same equation one would obtain from performing

a direct post-Newtonian expansion of Eq. (62). For this, we can note that �φ = dV/dφ

can be expanded to give

1

a2

(
φ̄′′ + 3Hφ̄′

)
= −dV (φ̄)

dφ
and ∇̂2δφ = 0 , (65)

where we have separated out the leading-order part of this equation into its background

and inhomogeneous parts, using φ = φ̄+ δφ and taking δφ ∼ v2. As the inhomogeneous

equation has no source terms, this implies that the leading-order part of the quintessence

field in the post-Newtonian expansion must be homogeneous, which in turn means that

all contributions to leading-order part of the 0i-field equation from the scalar field must

vanish on small scales ‡. We are therefore led to an equation that is identical to (64),

from our direct analysis of the field equations (62), which verifies our parameterised

equation for this example.

Large scales: For super-horizon scales, the parameterised scalar equation (47) becomes

Ψ̂′ +HΦ̂ = 4πρ̄a2θ + 4πφ̄′2θ , (66)

where v̂i = θ,i. This can be compared to the equation for scalar super-horizon

perturbations, derived directly from the field equations (62):

Ψ̂′ +HΦ̂ = 4πρ̄a2θ − 4πφ̄′δφ. (67)

‡ See Ref. [24] for a more detailed discussion of this phenomenon.



The Momentum Constraint Equation in PPNC 19

It can be seen that these two equations are identical provided that δφ = −θφ̄′, which

can be obtained from the adiabatic condition (59) and the Euler equation (60). The

parameterised scalar momentum constraint on super-horizon scales is therefore identical

to what is obtained from directly expanding the field equations (62) .

The divergenceless vector part is even simpler: the super-horizon limit of our general

result (55) follows immediately from the field equations. We therefore have that our

parameterised momentum constraint equations correctly reproduces all of the results

that one would obtain from directly dealing with the quintessence model of dark energy,

in both the scalar and divergenceless vector sectors of the theory, and on both large and

small limits. We therefore have our first explicit verification of its validity.

5.2. Brans-Dicke theory

Let us now consider Brans-Dicke theory, which is a scalar-tensor theory specified by the

action

I =
1

16π

∫
d4x
√
−g
[
ϕR− ω

ϕ
∇µϕ∇µϕ

]
+ Im (ψ, gµν) . (68)

The field equations of this theory are

Gµν +
gµν
ϕ

[
�ϕ+

ω

2ϕ
∇αϕ∇αϕ

]
− 1

ϕ
∇µ∇νϕ−

ω

ϕ2
∇µϕ∇νϕ =

8π

ϕ
Tµν , (69)

and

�ϕ =
8π

3 + 2ω
T . (70)

The PPN parameters of this theory are

α =
4 + 2ω

3 + 2ω

1

ϕ̄
, γ =

2 + 2ω

3 + 2ω

1

ϕ̄
, and α1 = α2 = ξ = ζ1 = 0 , (71)

with cosmological parameters

αc =
1

a2

[
− ϕ̄

′′

ϕ̄
+H ϕ̄

′

ϕ̄
− ω

(
ϕ̄′

ϕ̄

)2
]
, γc = − 1

2a2

[
ϕ̄

′′

ϕ̄
−H ϕ̄

′

ϕ̄
+
ω

2

(
ϕ̄′

ϕ̄

)2
]
. (72)

Here we have expanded the scalar field as ϕ (τ̂ , x̂) = ϕ̄ (τ̂) + δϕ (τ̂ , x̂). The FRW

equations can be obtained by applying these PPNC parameter values to Eqs. (17) and

(18). Let us now consider the momentum constraint for this theory.

Small scales: We can immediately write down the scalar part of the momentum

constraint (47) on small scales as

2
[
Ψ̂ +HΦ̂

]
,i

=
8π

ϕ̄
[ρv̂i]

S a2 −
Ψ̂′,i

1 + ω
+
HΨ̂,i

1 + ω
− ϕ̄′

ϕ̄
Φ̂,i −

ϕ̄′

ϕ̄
Ψ̂,i, (73)

and the divergenceless vector part (55) as

∇̂2B̂i =
16πa2

ϕ̄
[ρv̂i]

V . (74)



The Momentum Constraint Equation in PPNC 20

Let us now show that a direct post-Newtonian expansion of the 0i-field equation (69)

generates the same results.

Focusing on the scalar part of equation (69) gives

2
[
Ψ̂′ +HΦ̂

]
,i

=
8π

ϕ̄
[ρv̂i]

S a2 +
1

ϕ̄

[
Hδϕ− Φ̂ϕ̄′ − δϕ′

]
,i
− ωϕ̄′

ϕ̄2
δϕ,i. (75)

To deal with the terms involving δϕ, let us note that a post-Newtonian expansion of

the scalar field equation (70) tells us that

∇̂2δϕ = − 8π

3 + 2ω
δρ a2 , which implies δϕ =

ϕ̄

1 + ω
Ψ̂ . (76)

Using this result, it can be seen that Eq. (75) readily reduces to Eq. (73), which

verifies our parameterised equation (47) in this case. We have also verified that

the divergenceless vector part of Eq. (69) correctly reproduces (74), which follows

straightforwardly as there are no direct contributions from the scalar field to the

divergenceless vector part of the 0i-field equation: it enters only through the combination

α + γ = 2/ϕ̄.

Large scales: On super-horizon scales, the parameterised scalar equation (47) can be

written

2
[
Ψ̂′ +HΦ̂

]
=

8πρ̄a2

ϕ̄
θ +

[
−2H ϕ̄

′

ϕ̄
+
ϕ̄

′′

ϕ̄
+ ω

(
ϕ̄′

ϕ̄

)2
]
θ , (77)

where we have made use of the background equation for the scalar field (70), which

reads

ϕ̄
′′

+ 2Hϕ̄ =
8πρ̄a2

3 + 2ω
. (78)

For adiabatic perturbations, Eqs. (59) and (60) give

δϕ

ϕ̄′
= −θ , and

ϕ̄
′′

ϕ̄
θ = −δϕ

′

ϕ̄
. (79)

Substituting these results into Eq. (77), we get

2
[
Ψ̂′ +HΦ̂

]
=

8πρ̄a2

ϕ̄
θ +

1

ϕ̄

[
Hδϕ− Φ̂ϕ̄′ − δϕ′

]
− ωϕ̄′

ϕ̄2
δϕ , (80)

which is precisely what is obtained by directly expanding the scalar part of the 0i-field

equation (69). The divergenceless vector part again agrees immediately with Eq. (55),

which verifies that our parameterised equations reproduce the results of Brans-Dicke

theory exactly on both small and large scales, and in both the scalar and divergenceless-

vector sectors of the theory.
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5.3. Vector-tensor theory

Let us now show our parameterised momentum constraint also works in theories that

contain a time-like vector field, Aµ, as well as the metric. The gravitational action for

such theories may be written as [3]

I =

∫
d4x

√
−g

16π
[(1 + ωAµA

µ)R− 2ωAµAνRµν + τAµ;νA
µ;ν ] , (81)

where ω and τ are the coupling constants, and we have chosen to consider a simplified

subclass of vector-tensor theories that nevertheless displays all the gravitational effects

of interest in this paper. The field equations for these theories are

Gµν + τΘ(τ)
µν + ωΘ(ω)

µν − 2ωΘ(η)
µν = 8πTµν , (82)

where

Θ(τ)
µν = Aµ;σA

;σ
ν + Aσ;µA

σ
;ν −

gµν
2
Aσ;ρA

σ;ρ +
[
AσA(µ;ν) − Aσ;(µAν) − A(µA

;σ
ν)

]
;σ

(83)

Θ(ω)
µν = RAµAν + AρA

ρGµν − (AρA
ρ);µν + gµν� (AρA

ρ) (84)

Θ(η)
µν = 2AρA(µRν)ρ −

gµν
2
AρAσRρσ −

[
AρA(µ

]
;ν)ρ

+
1

2
� (AµAν) +

gµν
2

(AρAσ);ρσ ,(85)

with the corresponding field equation for the vector being given by

2ωAνGµν + τ�Aµ = 0. (86)

The PPN parameters for this theory are

α =
2
[
τ + ωĀ2 (8ω − τ)

]
τ
[
2 + Ā2 (τ − 4ω)− ωĀ4 (τ − 10ω)

] , γ =
2
(
1− ωĀ2

)
2 + Ā2 (τ − 4ω)− ωĀ4 (τ − 10ω)

, (87)

α1 =
16τ

2τ + Ā2
(
2τ (τ + ω)− (τ + 2ω)2) − 16τ − 2ωĀ2 (τ − 4ω)

2τ + τĀ2 (τ − 4ω)− ωτĀ4 (τ − 10ω)
, (88)

and ζ1 = ξ = 0, and the cosmological parameters are

αc =
1

a2

[(
α− 2

2− Ā2 (τ − 2ω)

)
τ
(
2− Ā2 (τ − 2ω)

) (
Ā

′′
+ 2HĀ′

)
Ā2 (τ − 2ω)

−
(
α +

6

2− Ā2 (τ − 2ω)

)
τĀ

′ 2

4
+

6HĀĀ′ (τ − 2ω)

2− (τ − 2ω) Ā2

]
, (89)

γc =
1

a2

[(
γ − 2

2− Ā2 (τ − 2ω)

)
τ
(
2− Ā2 (τ − 2ω)

) (
Ā

′′
+ 2HĀ′

)
4Ā2 (τ − 2ω)

− γτĀ
′ 2

4

]
, (90)

where Ā is the background value of A0, and where time derivatives are with respect to

the FRW conformal coordinate τ̂ .
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Small scales: Let us focus first on the post-Newtonian regime. In this case we can write

Aµ =
(
Ā+ δA

(2)
0 , δA

(1)
i + δA

(3)
i

)
,

where Ā ∼ O(1), and superscripts indicate the perturbative order in v. It can

immediately be noted that the vector field equation of motion gives ∇̂2δA
(1)
i = 0,

which with suitable boundary conditions implies δA
(1)
i = δA

(1)
i (τ̂). As δA

(1)
i is spatially

constant, it must necessarily be the derivative of a scalar, i.e. δA
(1)
i = δA

(1) S
i .

We can now recognise that these theories have a preferred frame, which is picked out

by the direction of the timelike vector field Aµ. To complete the full set of ingredients

required to compute the momentum constraint on small scales in the PPNC framework,

we need to add to the PPNC parameters the velocity ŵi of expansion-comoving observers

with respect to the preferred frame, and the cosmological divergenceless vector B̂extra
i .

We will now find those in turn.

To determine the preferred-frame 3-velocity ŵi that couples to α1, consider a local

Lorentz boost from the preferred frame, in which ŵi vanishes, to a generic frame, in

which it does not. The “preferred frame” refers in the case of these vector-tensor theory

to the frame picked out by a preferred time direction that is aligned with the timelike

vector field, i.e. a frame constructed using the coordinates (τ ∗,x∗) in which δA
(1)
i = 0.

We can now perform the Lorentz transformation to the generic frame (τ,x), which

for ease of calculation we present as the inverse transformation:

τ ∗ = γw
(
τ + ŵjx

j
)

; (91)

x∗ j = γw
(
xj + ŵjτ

)
. (92)

Computing the transformation of the vector field components in the usual way, we find

that δA
(1)
i = ŵiĀ, and so the preferred-frame velocity ŵi is directly related to the local

perturbation to the vector field by

ŵi =
δA

(1)
i

Ā
, (93)

which we recall from Section 3.2 has no divergenceless vector part.

To determine the “extra” cosmological contribution to the local vector perturbation,

as in Eq. (39), we expand the vector part of the 0i-field equation about Minkowski

spacetime, allowing for the time evolution of Ā (which is negligible in the classic PPN

formalism), and look for the relevant additional term. This gives

∇̂2B̂extra
i = − 2τ

1 + (τ + ω) Ā2

[
Ā

′′
+ 2HĀ′

]
δA

(1) V
i = 0, (94)

because δA
(1)
i has no divergenceless vector part. With all ingredients obtained, we can

substitute back into the momentum constraint Eqs. (32) and (39), which reconstitutes

the full momentum constraint for the small-scale metric perturbations in these theories.
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Large scales: On super-horizon scales, we know from our earlier analysis that the

parameterised momentum constraint must be given by

2
(

Ψ̂′ +HΦ̂
)
,i
− 2

(
H2 −H′

)
B̂i = 2

(
H2 −H′

)
v̂i. (95)

Using the parameter values from Eqs. (87)–(90), and simplifying them using the

equation of motion for the vector field, we have that the coefficient of v̂i on the right

hand side is

2
(
H2 −H′

)
=

8πρ̄a2 + τĀ′ 2 − 2HĀĀ′ (τ − 2ω)

1− Ā2

2
(τ − 2ω)

. (96)

This allows us to explicitly reconstruct the momentum constraint on large scales, which

the reader may note is a vast simplification compared to a direct perturbation theory

expansion of the field equations of these theories.

6. Conclusions

We have extended the PPNC formalism, introduced in Refs. [11, 12], by deriving a

parameterised momentum constraint equation. This study has included gravitational

potentials that result from theories with preferred frame effects, and has resulted in a

parameterised scalar equation (47) and a parameterised divergenceless-vector equation

(55).

Our parameterised equations are valid on scales where the density contrast is highly

non-linear, as well as on super-horizon scales where terms in the field equations with

time derivatives dominate. They require the introduction of only one new parameter:

α1(τ̂), which is expected to be non-zero in non-conservative theories of gravity only,

and which at the present time coincides with the PPN parameter of the same name.

We find that the additional PPN parameters α2, ζ1 and ξ, which are present in the

PPN equation for vector gravitational potentials, are not necessary for the cosmological

version of the momentum constraint equation.

Ultimately, we expect the principal utility of parameterised frameworks in

cosmology to come from their comparison to observational data. In this regard, the

parameter α is likely to best constrained by the leading-order behaviour of matter,

which in cosmology could include observations such as the growth rate of structure, and

the matter power spectrum. This parameter is required to be precisely equal to one at

the present time, by definition of units such that G = 1 at this time, but could have a

time dependence that will likely be best constrained using cosmological observations.

On the other hand, the parameter γ is likely to best constrained with observations

that depend on the paths of rays of light. In cosmology, this would include weak lensing

and CMB lensing. Beyond leading-order, the parameter α1 could potentially also be

constrained by such observations, as on scales where non-linear structures are present

the vector potential B̂i will appear in the next-to-leading order equations, at only one

order higher in v/c [31,32]. Both of these parameters are well constrained at the present
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time, but once again it will likely be cosmological observations that will provide the

tightest constraints on their time dependence.

Beyond cosmological observations, there is also the possibility of constraining the

time dependence of our parameters using observations of gravitational waves emitted

from compact binary inspirals. These events can be detected from systems at high

cosmological redshifts, which means they present (in principle) an environment in which

the time-variation of gravitational coupling constants could be constrained or detected.

Indeed, it is expected that gravitational wave signals should be sensitive to the preferred-

frame PPN parameters α1 and α2 [33]. It would be an exciting prospect to use these

newly detected systems to complement cosmological probes.

In future work we intend to complete the full system of equations required

to describe parametrized equations in cosmology. This will require developing an

understanding of the interpolation of the coupling functions µ, ν, G and Q between

small and large scales [34], as well as complementing the existing equations with a “slip

equation” (typically derived from the shear evolution equation, in most theories). We

hope it will also include developing equations from the transverse-tracefree tensor sector

of the parameterised frameworks, which are problematic to include in standard post-

Newtonian expansions as they only couple to matter at relatively high orders, as well

as higher-order scalar potentials.

Finally, we also intend to extend our formalism to incorporate theories that exhibit

non-perturbative screening mechanisms [35–38] and Yukawa potentials [36, 39]. Such

theories have more complicated post-Newtonian limits that cannot be written purely in

terms of the standard set of PPN parameters [40], and so to include them in our system

would require extending the original PPN formalism. This seems like a worthwhile

endeavour, however, as these theories have provoked a lot of interest in the cosmology

literature (indeed, they are often the only theories considered in many studies).
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Appendix A. Separate universe approach for spatially flat backgrounds

The approach used by Bertschinger [22] assumes that the initial Robertson-Walker

geometry has non-zero curvature, and that this can be written as a second Robertson-

Walker geometry with a spatial curvature that is equal to the first up to a factor that is

perturbatively close to unity. Here we present a similar derivation, but instead under the

assumption that the second geometry is spatially flat, as relevant for our presentation.



The Momentum Constraint Equation in PPNC 25

For this, consider a Robertson-Walker space-time:

ds2 = a2(τ̂)

[
−dτ̂ 2 +

dx̂2

1 + K
4
x̂2

]
. (A.1)

Now let us assume the spatial curvature is small such that K = δK � 1, and perturb

the coordinates such that τ −→ τ̂ = τ + A(τ) and xi −→ x̂i = xi (1 + β(τ)), where

A(τ)� 1 and β(τ)� 1. We then obtain

ds2 = a2(τ)

[
−
(

1 + 2A′ + 2HA+ 2
δK

a

∂a

∂K

)
dτ 2 (A.2)

+ 2β′xidτdxi +

(
1 + 2β + 2HA+ 2

δK

a

∂a

∂K
− 1

4
δK x2

)
dx2

]
+ ... .

Comparing this to a spatially flat geometry with spatially-homogeneous scalar

perturbations in longitudinal gauge,

ds2 = a2(τ)
[
−(1− 2Φ̂)dτ 2 + (1 + 2Ψ̂)dx2

]
, (A.3)

we see that we must require β′ = δK = 0 (i.e. β = constant), and

Φ̂ = −A′ −HA and Ψ̂ = β +HA . (A.4)

The metric in (A.2) can therefore be thought of as a Robertson-Walker metric with

the super-horizon scalar perturbations Φ̂ and Ψ̂ given above. These exactly reproduce

the expected equations presented in (23) and (24), when taking the k → 0 limit of the

relevant equations from Ref. [12].
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