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Abstract 

There is increasing interest in computer applications, using artificial intelligence (AI) methodologies, to perform 

healthcare tasks previously performed by humans, particularly in medical imaging for diagnosis. In stroke, there 

are now commercial AI software for use with CT or MR imaging to identify acute ischemic brain tissue 

pathology, arterial obstruction on CT angiography or as hyperattenuated arteries on CT, brain hemorrhage, or size 

of perfusion defects.  A rapid, accurate diagnosis may aid treatment decisions for individual patients and could 

improve outcome if it leads to effective and safe treatment; or conversely, to disaster if 

a delayed or incorrect diagnosis results in inappropriate treatment. Despite this potential clinical impact, 

diagnostic tools including AI methods are not subjected to the same clinical evaluation standards as are 

mandatory for drugs. Here, we provide an evidence-based review of the pros and cons of automated methods for 

medical imaging diagnosis, including those based on artificial intelligence (AI), to diagnose acute brain pathology 

on CT or MRI in patients with stroke.  

 

  



4 
 

Introduction 

Stroke is common, hospitals are busy, delays=lost brain; diagnosis of the cause should be rapid so that 

appropriate treatment can start and give the patient the best chance of independent survival. Brain imaging is 

essential to differentiate ischemic from hemorrhagic stroke and stroke mimics. Furthermore, with advances in 

treatment options for specific patient subgroups, it is not enough just to identify ischemia or hemorrhage, since 

the size of the acute lesion, presence of other features (obstructed arteries, mass effect), and pre-stroke changes 

(leukoaraiosis, old infarcts, brain atrophy) also influence management.  Most acute general hospitals assess 

several patients with suspected stroke each day, meaning that all steps in the process, including diagnosis, should 

be rapid, timely, efficient and accurate.   

 

It takes many years to train a neuroradiologist, they are scarce in many countries, and serve many disease areas 

in addition to stroke. Vascular neurologists and stroke physicians learn to recognize early features of ischemic 

brain on scanning and major contraindications to reperfusion treatment. However, early ischemic changes on 

non-contrast CT can be subtle and complex, with serious implications hanging on their correct identification, 

fueling interest in ways to improve their recognition and quantification

. Methods such as perfusion CT require post-processing to generate a diagnostic image, highlighting 

abnormalities such as thresholded tissue blood flow. Such ‘cleaned’ images may appear more user friendly and 

may facilitate rapid interpretation.  

 

Alongside these longstanding pressures to reduce time and increase diagnostic accuracy, there have been 

substantial advances in computer vision and artificial intelligence (AI) technologies across all walks of life. At its 

most general, AI refers to use of computers to solve problems in ways that mimic human behavior; machine 

learning (ML) is of the key technology behind  AI where computer algorithms learn from examples (‘ground truth’) 

without explicit programming which properties of the data are relevant for a given problem (‘feature selection’); 

and deep learning (DL) is a subset of ML that uses biologically inspired neural networks to learn abstract high-

order features in any type of data without requiring predetermined inputs.1 

 

Medical imaging has been an obvious target for these developments.2-4 Several commercial CT and 

MR scan diagnostic software for stroke are now in use in many hospitals. Nonetheless, the major demand 

for accelerated diagnosis in acute stroke, the fascination with the latest imaging tools, and huge potential 

financial gains for industry,5 should not cloud the essential need to demonstrate that AI tools are accurate, are 

improving not impeding healthcare, and that the benefits outweigh the potential harms for patients.6  

 

We assess the current evidence for AI diagnostic imaging tools in stroke, commercially available or in clinical use, 

the motivations, expectations and work needed to underpin their implementation into clinical practice. 
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Review of Evidence 

1. What could automated AI imaging technologies   achieve in acute stroke diagnosis?  

AI technologies could improve accuracy, speed and standardization of stroke diagnosis,7-11 particularly in low 

throughput Centres,12 and improve prognostication using quantitative measures of acute and chronic brain injury. 

AI tools could also improve workflows and communication along thrombectomy referral pathways, reduce time 

to treatment, improve clinical outcomes and save clinicians and radiologists time.2  

AI software could be most useful to assess the cause of stroke and its likely pathology: 

1. Brain focal ischemia vs. intracranial hemorrhage  vs. “stroke mimics” (migraine, seizure), the latter two 

requiring different management to ischemic stroke. Intracranial hemorrhages (brain hemorrhage, 

subarachnoid hemorrhage (SAH), subdural hematoma) can be visualized on CT and MRI with high 

accuracy. “Stroke mimic” is a clinical diagnosis based on the exclusion of brain ischemia and hemorrhage, 

noting that in patients with ischemic stroke symptoms, CT and MRI may appear normal, or show various 

degrees of reduced attenuation/altered signal intensity and/or swelling in the affected tissue.  

2.  Arterial pathology: site of acute embolic or thrombotic arterial occlusion, secondary features (e.g. 

collateral blood flow), and underlying pathologies (atherosclerosis, dissection, inflammation, vasospasm). 

This is, perhaps, the most important determinant of acute therapy decisions and related prognosis 

assessment. Thin slice non-enhanced CT, angiography  (CTA, MRA, DSA) and arterial wall imaging may 

differentiate between embolic or local arterial disease and have an impact on secondary stroke 

prophylaxis. 

3. Early ischemic brain tissue alterations: isolated tissue swelling due to autoregulatory vasodilation,13 tissue 

swelling with reduced attenuation (indicating early focal net water uptake or ionic edema triggered by 

critically low CBF <15 ml/100g/min, which cannot be tolerated by brain tissue for more than about 30 

min), ion pump failure triggered by a CBF < 30 ml/100g/min with consequent neuronal dysfunction and 

cellular edema indicated by ADC decrease/increase of DWI signal intensity. The still limited understanding 

of ischemia-effected brain tissue alterations makes it a potential mistake that algorithms are trained to 

detect “brain infarction” on non-enhanced CT or DWI within 6 hours of symptom onset,14,15 since focal 

brain ischemia of up to 6-hour duration does not induce coagulation necrosis.1617 

4. Pre-stroke changes: leukoaraiosis (or white matter hyperintensities), prior infarcts or hemorrhages, and 

brain atrophy are all associated with worse short-term (haemorrhagic transformation, dependency, 

death)18,19 and long term (dependency, recurrent stroke, death, cognitive impairment, dementia) 

outcomes.19 

Commonly used approaches for developing AI tools in stroke start with identifying attenuation or signal change 

that indicates ischemic tissue and its extent, adapted from visual rating tools. Tvisual rating tools, such as the 

Alberta Stroke Programme Early CT Score (ASPECTS) is a widely used visual rating tool, used to help diagnose 

acute ischemic stroke and select patients for thrombolysis and thrombectomy.  Table 1 lists eighteen  19  vendors 

that currently provide 31 32 different commercially available AI software packages for ischemic stroke to assess a 
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range of features including: ischemic tissue change (CT or MRI); hyperattenuated arteries (a surrogate for arterial 

thrombus); hemorrhage on CT;  large artery occlusion on CTA; and ‘salvageable tissue’ from CT or MR perfusion 

imaging. Despite several drawbacks of the ASPECTS (not an independent outcome predictor,18  variable ASPECTS 

cut points, validity,20  etc), ASPECTS is used by seven of eighteen companies currently offering commercial stroke 

AI software,.7, 21 despite several drawbacks of ASPECTS (not an independent outcome predictor,18  variable cut 

points, validity20). Four companies provide comprehensive packages for handling non-enhanced, angiographic and 

perfusion imaging in one workflow (Brainomix, NICO.Lab, RapidAI and Viz.AI), while three companies combine 

assessment of non-enhanced and angiographic imaging only (Aidoc, Avicenna, Circle Neurovascular Imaging).  

Other companies assess different combinations or individual components of ischemic stroke or haemorrhagic 

stroke (Table 1). 

 

2. What drives the increasing use of automated analysis technologies?  

There is undoubtedly a real need to aid busy doctors at the hospital front door, and radiologists are also 

increasingly pressured. However, two decades after early thrombolysis trials, clinical awareness of acute stroke 

imaging features is much more established. Therefore, any AI diagnostic tools have to be exceptionally fast, easy 

to use, and accurate on ‘real world’ data (see Section 6) in order to add value. AI tools also require users to be 

trained in their proper use and interpretation.

     

 

Commercially, data and AI offer massive financial gains for successful 

products.5 Worldwide spending on AI was estimated at US$38 billion in 2019 and is predicted to rise to $98 billion 

by 2023.22 Investments in AI-based medical imaging companies in the USA reached US$1.17 billion between 

January 2014 and January 2019, doubling since 2012-2017, while the number of companies in the AI market had 

trebled,5 including new industries devoted to image classification (section 7). Major medical imaging 

manufacturers are incorporating AI tools into consoles to retain a marketing edge

. AI requires data storage capacity and computing power: between Jan 

2014 and Jan 2019, there were over US$435 billion-worth of cloud-based medical imaging transactions, indicating 

massive investments in these areas.5  

 

3. What clinically relevant testing should automated analysis undergo in acute stroke? 

Currently, AI software for radiology can only be marketed in the European Economic Area (EEA) after achieving a 

CE mark (Conformitè Europëenne), indicating that the technology conforms with European health, safety, and 

environmental protection standards, and in the USA with FDA (Food and Drug Administration) approval. However, 

the clinical standards for achieving these certifications are low as compared with licensing a new drug.  Both CE 

and FDA systems have different classes of approval depending on the perceived risk to the patient and to 

software users. Since radiology software have so far been designed to support rather than replace physicians, 
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they require usually only Class I or II approval denoting low to medium risk. The ‘decision support’ labelling raises 

important questions about what happens when the clinician disagrees with the AI diagnoses, and who is to blame 

when one or other gets it wrong. Nonetheless, iIn both territories, Class I approval is awarded without external 

scrutiny and companies self-declare these products as compliant. While Class II approval usually includes the 

submission of evidence assessed by an independent body, companies can provide this evidence from their own 

internal testing without peer-review or publication. Indeed, a recent independent review of all CE-marked AI 

software for radiology in Europe found that 64 of 100 products had no published peer-reviewed evidence of 

efficacy.3   

 

It is beyond the scope of this article to assess the depth of peer-reviewed evidence for every available software, 

so we focus on commercial products with the most citations according to recent reviews (Brainomix, RapidAI, and 

Viz.ai).8-11 

 

Reporting guidelines and methodological standards for developing AI in medical imaging are available23 including 

SPIRIT-AI,24 CONSORT-AI,25 and checklists.26 Several societies have released their own guidelines and position 

statements.26,27  The FDA https://www.fda.gov/media/145022/download, and British Standards Institute (BSI) and 

Medicines and Healthcare Regulatory Agency (MHRA) 

https://standardsdevelopment.bsigroup.com/committees/50299208 (pending public consultation) provide 

standards. 

 

There is little evidence thatFew if any evaluations of AI software are meeting these standards, generally or in 

stroke.6,8,9,23,24,28,29   A recent systematic review of reporting quality of studies of ML in medical diagnosis found 28 

includable studies but none mentioned a reporting guideline, few mentioned the distribution of disease severity 

or alternative diagnoses, most studies had a long delay between the reference standard and ML diagnoses, and in 

half of studies the population was of uncertain relevance to the clinical setting.28 Five of the 28 included studies 

concerned brain imaging (addressing multiple sclerosis, attention deficit hyperactivity disorder, distinguishing 

minimal consciousness from unconsciousness, and Alzheimer’s disease), but none of which addressed stroke.28  

  

4. Accuracy of AI in stroke:  

i) How accurate is AI software for differentiating acute ischemic from haemorrhagic stroke and stroke mimics, and 

on which imaging modalities?  

Recent systematic reviews,8,9  narrative reviews,7,10-12,14 a review protocol30 and a pending combined analysis of 

nine large stroke trials31 show that most studies of AI have focused on ischemic not haemorrhagic stroke, and CT 

not MRI. The systematic reviews identified 20 (tissue and arterial changes8) and 68 (non-contrast CT only9) 

includable studies, but most studies were small, provided little documentation of the patient characteristics, 

recruitment or CT characteristics, and focused on comparing AI against feature detection by humans, not on 

https://www.fda.gov/media/145022/download
https://standardsdevelopment.bsigroup.com/committees/50299208
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clinical outcomes. Rates of failed scan processing were often omitted. Many methodological differences between 

studies precluded formal meta-analyses. All published studies and reviews focused on AI detection of ischemic 

stroke features including arterial obstruction,7-9,12 with only one pending study31 assessing if an AI software can 

differentiate ischemic from haemorrhagic stroke or mimics, which are just as important in clinical practice.  

 

The extent to which AI software may be affected by patient-related (background brain changes or alternative 

brain pathology, movement and position during scanning, heart failure, metallic artefacts32-35) and imaging-

related (scanner manufacturer, acquisition parameters such as slice thickness, or CT gantry position34, 36) factors is 

beginning to emerge. These affect the likelihood of successful image processing, agreement with a reference 

standard, and strength of associations with clinical outcome. However, most published evidence excluded difficult 

cases before analysis, while results of studies that retained difficult cases were often less positive.32,37,38 

 

ii) How good are these technologies for identifying key features of acute ischemic stroke that are of prognostic 

importance?  

Few studies assessed AI software-based diagnoses and clinical outcomes. Amongst commercially available AI 

tools, we reviewed the published literature for the three most established providers offering comprehensive 

imaging packages: Brainomix, RapidAI, and Viz.ai, (Table 2). We used published reviews7-9,21 updated by searching 

Pubmed for company and software names, and the vendor’s websites. We focus on studies with the largest test 

datasets (ideally >100 patients), and report diagnostic accuracy statistics for stroke feature 

detection.  

 

Three studies assessed detection of tissue ischemia (all Brainomix, all retrospective, two independent of the 

company,32,39 total patients n=367),32,39,40  with sensitivities of 44-83% and specificities of 57-93% (Table 2). Six 

studies assessed detection of large vessel occlusion (LVO) (three vendors, all retrospective, one independent of 

the vendor,41 total n=2635)38,41-45  with sensitivities of 80-96% and specificities of 90-98%. Only one study each 

assessed hemorrhage detection46 and MRI diffusion or perfusion imaging.47 Compared with optimal 

circumstances, the agreement between each of these software and experts was poorer in patients with 

leukoaraiosis, old infarcts, or other parenchymal defects.7 This underscores the importance of evaluating AI tools 

in realistic and common clinical settings where patients are often older, have multiple conditions or delayed 

presentations,48 and not relying on results when tested in the simplified training scenarios common in public 

datasets.5,49   

 

iii). On a population level, how many false positives or negatives might arise per 100 typical suspected strokes and 

what are the implications for patient outcomes?  

Given the range of published sensitivity and specificity results for stroke feature detection by AI software above, 

we translate the results as follows, Figure 1. For every 100 patients assessed using these software: 
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• With ischemic stroke, ischemia will be correctly detected in 44-83 but missed in 17-56.  

• Without ischemic stroke, ischemia will be incorrectly detected in 7-43. 

• With LVO, occlusion will be correctly detected in 80-96 but missed in 4-20.  

• Without LVO, occlusion will be incorrectly detected in 2-10. 

 

iv). Have (any) automated, including AI, technologies that are proposed for use in stroke, undergone proper 

prospective randomised blinded outcome clinical trial assessment to determine impact on clinical outcomes or 

health economics?  

Randomised controlled trials of AI technologies are scarce and mostly ongoing: a recent survey of trials’ registries 

and the literature identified only one RCT comparing DL with clinicians in medical imaging (on breast ultrasound).6,29 

We identified one ongoing multicenter RCT testing the impact of Viz LVO on stroke workflow and 90 day clinical 

outcome in 500 participants admitted with stroke and suspected LVO in the USA (Automated Detection and Triage 

of Large Vessel Occlusions Using Artificial Intelligence for Early and Rapid Treatment, ALERT, NCT04142879). 

Diagnostic accuracy is not a primary or specified secondary outcome in ALERT. Another ongoing multicenter RCT in 

China (GOLDEN BRIDGE II, NCT04524624) is testing AI identification of stroke on diffusion imaging plus decision 

support versus usual care in 21689 patients requiring secondary stroke prevention.  

 

Three studies compared times to thrombectomy before and after introduction of RAPID41,50 or Viz LVO,51 reporting 

average reductions of 30 minutes to groin puncture; however, all were retrospective, two only report the small 

numbers of patients who all received thrombectomy, and before-after comparisons are unable to address many 

sources of bias.   

 

5. How do stroke AI technologies compare with other medical AI technologies, particularly medical imaging AI, 

in terms of stage of development and quality and thoroughness of assessment?  

Stroke AI is similar to other medical imaging AI – great hopes but important challenges for delivery into clinical 

practice. These challenges reflect data curation, model development, relevance to clinical practice, potential to 

introduce and amplify biases, the AI tool’s transparency, and evidence of accuracy, impact on outcomes and cost 

effectiveness meeting RCT evidence standards.  

 

The quality, quantity, diversity, and provenance of the data used to train a ML model are critical to its utility in 

clinical practice. Many current papers describe ML models trained on one small dataset from one hospital,52,53 

insufficient to be useful on the variety seen in clinical practice.53 Commercial ML models 

have similar issues, particularly “black box” models where the training is not described.  

 

Datasets created as part of international challenges, e.g. the RSNA 2019 Brain CT Hemorrhage Challenge54 

(874035 images, multiple institutions) have limitations, including ofare limited in diversity, accuracy and 
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reproducibility.55 Over Over-tuning of the software to particular datasets (overfitting) results in poorimpedes 

generalization. There is a risk thatSometimes AI models identify confounders rather than target disease, e.g. hip 

fracture detection, where scanner model (emergency department) and “priority request” marker predicted 

fracture better than the imaging findings themselves.56 ‘Explainable AI models’ may help to show the underlying 

features identified by a DL model to avoid ‘black box’ problems. Even so, it is an open question as to how much 

such explanations are valid, interpretable by a clinician, or even what ‘explainability’ should mean in a clinical 

setting. 

 

Bias emerging during the development of any automated system is common in AI studies,57 and can reflect 

issues with the underlying datasets or model development techniques. Numerous examples of biases have 

emerged, including those related to sex,58 race,59 and geography,60 which could inadvertently 

exacerbate underlying healthcare inequalities.61  

 

There are increasing suggestions that AI can ‘perform better than humans’ in medical tasks

. A recent systematic review found 10 RCTs testing DL versus clinicians (2 completed, 8 

ongoing), only one of which was in medical imaging (breast ultrasound, ongoing).6 In contrast, they found 81 non-

randomised comparisons (nine prospective, six relevant clinical environment). The AI was said to be better than 

or comparable to the clinician in 47% of the 81 studies. However, development and testing often used 

the same dataset, had small numbers of human comparators (e.g. five), most studies had high risk of bias, and 

few adhered to reporting standards.6  

 

Another comparison of the diagnostic accuracy of DL versus clinicians identified 82 studies in which it was 

possible to calculate accuracy in 69. Mean sensitivity was 79.1% (range 9.7–100%), specificity was 88.3% (range 

38.9–100%),29 but many studies did not compare the DL and clinicians on the same data, did not externally 

validate their results, or report their methods adequately. Amongst the 14 studies with external validation that 

tested DL and clinicians on the same sample, the pooled sensitivity was 87.0% (95% CI 83.0–90.2%) versus 86.4% 

(79.9–91.0%), and pooled specificity was 92.5% (85.1–96.4%) versus 90.5% (80.6–95.7%) for DL versus clinicians 

respectively.29 Of note, there were no studies of AI in stroke amongst the 82 studies, and only two studies 

concerned brain imaging (one MRI in dementia, one CT in head trauma).  

 

6. What evidence is there that AI technologies will meet the needs of users, including community practitioner, 

neurologist, radiologist, and the patient?  

Do AI tools reduce ‘door to needle’ time? Or do might AI tools increase worsen ‘analysis paralysis’, treatment 

delays, or deny some patients effective treatments?29 There are no completed prospective randomised trials of 

the impact of stroke AI tools on workflows or clinical outcomes, only before-after evaluations (see 4iv 

above).41,50,51 ItUnfortunately, it is  common in hospitals for new digital systems to slow, not accelerate, 
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workflows.:62 it should not be assumed that AI imaging tools will accelerate treatment. Attention of AI should 

focus on improving routine medical workflows including image management and electronic case records to 

reduce time wasted, improve information content and diagnostic utility.2,63 Some AI tools perform tasks that are 

not that helpful,64 provide clinically irrelevant measures, or operate slower than a seasoned user of existing 

medical computing systems, delaying uptake of AI into general radiology.5 

 

Different algorithms may give different results. Comparison of three AI tools for 

ASPECTS scoring7,21 showed the highest correlation between the expert read and Brainomix (ICC=0.871 (0.818, 

0.909), p <0.001) but comparable area-under-curve between the AI applications and expert consensus (Brainomix: 

AUC  0.759 (0.670–0.848), p <0.001; Frontier V2: AUC  0.752 (0.660–0.843), p <0.001; RAPID: AUC  0.734 (0.634–

0.831), p <0.001). AI software may help less experienced doctors interpret acute stroke CT scans, e.g. use of 

Syngo.via Frontier ASPECT Score Prototype improved the correlation between junior radiologists and the 

reference standard from good (r=0.680) to excellent (r =0.852) in one small study.65 

Apparently good performance at 

group level may mask important variation at the individual level. Amongst 12 ML  and seven 

statistical models to predict cardiovascular disease risk using data from 3.6 million patients, the models 

had similar population level performance (C statistics of about 0.87), but varied widely in their prediction of 

individual risks particularly at higher risks,49 and compared with the risk predicted by a reference 

model, about 60% of patients would have been classed as lower risk by another model.49  

 

AI tool evaluation is usually restricted to single technical measures in controlled settings that only indirectly relate 

to the intended clinical tool use. However, the clinical need is rarely ‘raw classification’ but rather diagnostic 

or therapeutic decision support.66 DL tools are notoriously sensitive to changes in input characteristics, and not 

customarily stress-tested across different scanners, parameters, clinics, patient groups, pre-processing tools, etc., 

further hindered by the black-box nature of DL methods and commercial confidentiality.67 The benefits and 

challenges of introducing computational innovations into existing clinical ecosystems62 remains sparsely assessed; 

AI software may require specific tailoring to suit different settings and institutions.68  

 

What about patients? There is little participant involvement in development of AI software69 despite concerns.70 

Few people want to receive a terminal diagnosis from a robot,71  or want major treatment decisions for a life-

threatening disease (like stroke) to be based primarily on AI-determined green, yellow or red areas on a scan 

characteristics, particularly when these differ between AI software.7,72 Increasing availability of AI diagnostic tools 

and their potentialincluding front line use by less experienced doctors, risks subverting medical judgement 

through inflexible application of easy-to-derive threshold values - e.g. treat if ≤70ml core, not if >70 ml. What 

about 75 ml, or 85 ml? Treatment decisions with the very powerful reperfusion therapies now available for stroke 

must consider the whole patient and not place inappropriate weight on perfusion maps that only represent brief 
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snapshots in time of a highly dynamic disorder, particularly when use of a different software is very likely to give 

different results.7  

 

7. What could improve translation of AI technologies into benefits for 

patients and health care systems? 

There is a gulf between AI software developers and the intended 

clinical uses of the software, and a need for consensus-based, interdisciplinary and comprehensive scoping of 

user needs and constraints to guide effective development of AI tools.24,25,63  The accuracy of an AI tool depends 

on its data input. AI developers highlight the need for ‘ground truth’ for training the software, meaning images 

where relevant features have been demarcated, often by hand, and in large datasets.54,55 While large collections 

of medical imaging data are increasingly available, manual 

annotation is a massive, time consuming task and must be done by humans, therefore not many large annotated 

datasets exist. Some companies are outsourcing the work to low paid workers in low income countries.22 The 

market for data-labelling services may triple to US$5billion by 2023, with companies like ‘Mechanical Turk’ 

(owned by Amazon) providing freelancers ready to perform ‘micro-tasks’ like tagging images, or ‘Hive’ which runs 

online data labelling ‘games’ where operators earn money for labelling features,22  which questions 

the reliability of the ground truth thereby derived.  

 

Can we accelerate reliable, representative and diverse dataset availability, and, is ‘ground truth’ really 

essential, or could correlated variables like clinical outcomes be used instead? AI tools could be even more 

valuable if they could discover novel features or markers of  

severity, or predict clinically-relevant outcomes and treatment response, and thus improve clinical management. 

Table 3 lists important factors,  including more accessible large-scale data, standardization of pre-

processing pipelines, sharing open source codes, adoption of guidelines for reporting of AI development, closer 

working between ML/DL developers and clinicians, and better standards for evaluating AI tools against relevant 

clinical outcomes, control of confounders, correlates and colliders that impede AI performance

.  

 

Discussion and Conclusions 

While AI tools hold great promise in stroke, a very large amount ofmuch more work is required to demonstrate 

their clinical value and cost-effectiveness to patients, doctors, and health-care providers.  AI development 

requires more focus on multidisciplinary teams including AI experts, IT experts, radiologists and strokologists63 

that listening to each other carefully, to gain from the undoubted huge potential of AI. Currently, without a more 

cohesive multidisciplinary and less commercially motivated effort, it seems that the stroke-AI is at risk of 

Verschlimmbesserung, meaning an ‘attempted advance without improvement, or even with worsening’. We 

should not treat green, yellow and magenta regions on scans, but the specific pathology within individual 

Formatted: Font: Italic
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patients.  Imaging and AI image analysis should  demonstrate clearly through objective, relevant and reliable 

evidence that improvehelp patient management and improve clinical outcomes, not hinder care or worsen 

outcomes. Tools should work for, not control, us. 

 

 

‘Digital’ methods complement but cannot replace the human touch in medicine.70 Patients should be actively 

‘Digital’ methods complement but cannot replace the human touch in medicine.70 Patients should be actively 

‘Digital’ methods complement but cannot replace the human touch in medicine.70 Patients should be actively 

‘Digital’ methods complement but cannot replace the human touch in medicine.70 Patients should be actively 

‘Digital’ methods complement but cannot replace the human touch in medicine.70 Patients should be actively 

involved in the design and evaluation of AI tools usage, since patient groups are clearly very wary of nobody 

wants to have too much unregulated use of computers in clinical decision-makingtheir fate decided by a robot 

using an arbitrary, variable threshold.71,72   

 

Not all measurement has value. Rather, consider what features would be treatment relevant to detect 

and quantify. Imaging findings in stroke patients help us chose the most effective treatment. 

Spontaneous brain hemorrhage requires angiography to find and treat a vascular malformation or aneurysm. 

Exclusion of hemorrhage but thrombus within the MCA requires immediate thrombectomy. Stroke imaging is 

complex, not a ‘single feature’ process, and perhaps a more difficult place to initiate AI tool development than it 

might seem superficially. Low ASPECTS is an independent predictor of poor outcome, but patients may still 

benefit from treatment, therefore reducing information to a single binary variable such as 

ASPECTS score would seem to be a retrograde step. 

 

 

 

Can costs of AI tools be realistic? Currently one typical commercial AI software costs around 

US$47,868 for one hospital for one year in the UK, equivalent to about a third of a hospital consultant’s salary, 

and seems an unreasonable amount of money for something which only identifies a few features in one 

disease, should only be used by an experienced medic, and thus does not replace anything or 

anyone, and has a limited evidence base.  

 

The essential next steps are first, to be aware of the limitations where commercial AI tools are in use, and second, 

to obtainprovide reliable evidence of benefits versus harms of imaging AI tools’ performance. This would best be 

tested in large scale randomised trials, to minimize bias, and in the clinical settings in which they will be used to 

ensure applicability to real world clinical practice. It is no longer appropriate to show only diagnostic accuracy on 

selected retrospective datasets, without reporting the failures. We need to see how AI tools work in clinical 
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practice, how they integrate into patient care, and if and how much they are beneficial, through providing 

evidence that they changeing management for the better, improving outcomes, and being are cost effective.  
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Table 1. Current commercially available AI-based software for stroke. 

Company 
(Country) 

Product 
Automated functions  
(imaging modality) 

CE Approval 
(Class) for EU 
Marketing 

FDA Approval 
(Class) for US 
Marketing 

Aidoc (Israel) 
Briefcase Detect hemorrhage (CT) Yes (I) Yes (II) 

Aidoc LVO Detect LVO (CTA) Yes (I) Yes (II) 

Avicenna.AI 
(France) 

Cina-ASPECTS Provide ASPECTS (CT) Yes (I) No 

Cina-ICH Detect hemorrhage (CT) Yes (I) Yes (II) 

Cina-LVO Detect LVO (CTA) Yes (I) Yes (II) 

Brainomix (UK) 

e-ASPECTS 
Provide ASPECTS, detect dense MCA, detect 
hemorrhage (CT) 

Yes (IIa) No 

e-CTA Detect LVO, provide collateral scoring (CTA) Yes (IIa) Yes (II) 

e-CTP Process perfusion data (CTP) Yes (IIa) No 

Cercare Medical 
(Denmark) 

Cercare Stroke 
Process perfusion data (CTP, MRP), detect 
ischemic lesions (MRI) 

Yes (IIa) No 

Circle 
Neurovascular 
Imaging (Canada) 

StrokeSENS 
Provide ASPECTS (CT), provide collateral 
assessment, detect LVO (CTA)  

Yes (II), does not 
include collaterals 

Yes (I)* 

Deep01 (Taiwan) DeepCT Detect hemorrhage (CT) Yes (I) Yes (II) 

General Electric 
(USA) 

Stroke VCAR Detect hemorrhage (CT) Yes (not declared) Yes (II) 

CT Perfusion 4D Process perfusion data (CTP) Yes (not declared) Yes (II) 

Icometrix (Belgium) Icobrain CVA Process perfusion data (CTP) Yes (I) Yes (II) 

Infervision Med 
Tech (China) 

InferRead CT 
Stroke.AI 

Provide ASPECTS, detect hemorrhage (CT) Yes (IIa) Yes (II) 

JLK Inc. (South 
Korea) 

JBS-01K 
Detect ischemic lesions (MRI), provide stroke 
classification 

Yes (I) No 

JBS-04K Detect hemorrhage (CT) Yes (I) No 

Keya Medical 
(China) 

CuraRad-ICH Detect hemorrhage (CT) 
No Yes (II) 
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MaxQ.ai (Israel) Accipio IX Detect hemorrhage (CT) Yes (not declared) Yes (II) 

NICO.Lab 
(Netherlands) 

StrokeViewer 
Provide ASPECTS, detect hemorrhage (CT), 
LVO detection, provide collateral assessment 
(CTA), process perfusion data (CTP) 

Yes (I) Yes (II) 

Olea Medical 
(France) 

Olea Sphere Process perfusion data (CTP)  Yes (IIa) Yes (II) 

Qure.ai (India) qER Detect hemorrhage (CT) Yes (IIa) Yes (II) 

RapidAI (USA) 

Rapid 
Process perfusion data and provide flow 
dynamics (CTA, CTP), detect DWI lesions (MRI)  

Yes (I) Yes (II) 

Rapid ASPECTS Provide ASPECTS (CT) Yes (I) Yes (II) 

Rapid ICH Detect hemorrhage (CT) Yes (I) Yes (II) 

Rapid LVO Detect LVO (CTA) Yes (I) Yes (II) 

Siemens (Germany) 
syngo.CT ASPECTS Provide ASPECTS (CT) Yes (not declared) No 

syngo.CT Neuro 
Perfusion 

Process perfusion data (CTP) Yes (not declared) Yes (II) 

Viz.ai (USA) 

Viz ICH Detect hemorrhage (CT) Yes (not declared) Yes (II) 

Viz LVO (ContaCT) Detect LVO (CTA) Yes (not declared) Yes (II) 

Viz CTP Process perfusion data (CTP) Yes (not declared) Yes (II) 

Zebra Medical 
Vision (Israel) 

HealthICH Detect hemorrhage (CT) Yes (not declared) Yes (II) 

 
Notes: Both CE and FDA classification use 3 classes depending on risk to the patient and/or user according to the intended use of the device: I=low risk, II=medium risk, 
III=high risk. Both classification systems have a more stringent process for classifying higher risk devices. For CE, I can be self-certified by manufacturer, II&III require 
audit of validation results by a notified body.  For FDA, I&II require 501k (prove equivalence to device already approved for marketing, or de novo assessment if novel) 
while III requires premarket approval (PMA) including software validation results. 
* Approved for data transfer only, not automated processing.  
 
Details extracted from publicly available EU and FDA data and vendor websites, correct to 31st Aug 2021. 
  

Commented [WJ1]: Now to 31 Jan 2022? 

http://www.aiforradiology.com/
https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/medical-device-databases
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Table 2. Accuracy of three commercially available AI-based software in stroke. 

Company Software 
Detection of ischemic brain injury 

Detection of LVO Detection of hemorrhage 
CT MRI/CTP 

Brainomix 

e-ASPECTS 

Retrospective, 132, 44-45%, 91-
93%, follow-up CT40  
Retrospective*, 119, 83%, 57%, 
follow-up CT32 
Retrospective*, 116, 75%, 73%, 
experts with all data including 
follow-up CT or MRI.39 

   

e-CTA 
  Retrospective, 301, 84%, 96%, experts 

with all data including follow-up 
imaging.42 

 

e-CTP     

Rapid 

Rapid 
 Retrospective, 63, 100%, 

91%, experts47 
  

Rapid 
ASPECTS 

    

Rapid ICH 
   Retrospective, 308, 96%, 95%, 

expert consensus46 

Rapid LVO 

  Retrospective*, 310, 80%, NS, experts41 

Retrospective, 217, 96%, 98%, experts43 
Retrospective, 477, 92-94%, 97-98%, 
experts44 

 

Viz.ai 

Viz ICH     

Viz LVO 
(ContaCT) 

  Retrospective, 1167, 81-82%, 90-96%, 
experts38 
Retrospective, 163, 96%, 94%, NS45 

 

Viz CTP     

SUMMARY 
367 patients, 1 software 
Sensitivity = 44-83% 
Specificity = 57-93% 

 2635 patients, 3 different software 
Sensitivity = 80-96% 
Specificity = 90-98% 

 

Note: Results are [study design, n, sensitivity, specificity, reference standard], unless otherwise stated. * Indicates study conducted independent of company. 
Blank boxes indicate no suitable papers were identified. Shaded boxes indicate no papers expected. NS = Not specified.  
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Table 3. Steps needed to accelerate AI software development 

Need Comment 

More accessible large-

scale data repositories: 

RSNA (Radiology Society of North America) Head CT Challenge:54  ICH detection (>800,000 scans);  

ASFNR (American Society of Functional Neuroradiology) Head CT Challenge: CT pathology at different ages 

(https://aichallenge.asfnr.org/);   

ISLES (Ischemic Stroke Lesion Segmentation) Challenge (n=75);73  

large trials e.g. Third International Stroke Trial (IST-3) (3035 pts, >10,000 scans)  

UK Biobank (ukbiobank.ac.uk); HDR UK (Health Data Research)  

Guidelines to standardize  

pre-processing pipelines74  

Preprocessing steps: reading DICOM data, converting DICOM to other formats, brain extraction from skull, defacing, registration, etc  

RSNA 2019 ICH detection challenge54 shows many common problems that can occur e.g., under-labelling data, human errors, 

imbalanced classes, inappropriate de-identification and anonymization across data sources.  

 Guidelines and standards 

for reporting of machine 

learning models6, 63  

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis - statement specific to Machine 

Learning (TRIPOD-ML), Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT)-AI and Consolidated Standards of 

Reporting Trials (CONSORT)-AI.25 

Collaboration between 

ML practitioners and all 

relevant disciplines  

Physicians and radiologists  benefit from becoming familiar with basic concepts in machine learning.63 Machine Learning methods must 

be developed by those familiar with details and context of the real clinical settings including decision triage, practicalities of the specific 

patient population, typical medical imaging, image interpretation, definition of treatment relevant imaging finding, and data 

preparation. 

Testing and validation 

protocols  

Should move beyond technical performance evaluation (e.g., ROC, accuracy, sensitivity /specificity) to determine the clinical value of a 

system, given limited annotator availability, experience, accuracy and interest. The limits of testing criteria used in international 

challenges are evident.75  

Attuned algorithmic 

development  

Move beyond classifiers: methods must control for confounders, correlates and colliders that introduce bias and produce non-robust 

methods that collapse with potentially dangerous consequences when deployed in different real settings76 
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Open-source AI code and 

data 

Proprietary code impedes replication, reproducibility, clinical validation: it is difficult and costly.63 Commercial development based on 

ill-established methods that the community cannot verify in clinical settings risks reputational damage. 
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Figure 1.  Potential clinical implications of AI software use for stroke feature detection per 100 patients assessed, derived from data in Table 2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Orange circles indicate the overlapping range of values provided by different studies. 

 
 
 
 


