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Abstract—During the past decade, Industry 4.0 has greatly
promoted the improvement of industrial productivity by intro-
ducing advanced communication and network technologies in the
manufacturing process. With the continuous emergence of new
communication technologies and networking facilities, especially
the rapid evolution of cellular networks for 5G and beyond,
the requirements for smarter, more reliable, and more efficient
cellular network services have been raised from the Industry 5.0
blueprint. To meet these increasingly challenging requirements,
proactive and effective allocation of cellular network resources
becomes essential. As an integral part of the cellular network
resource management system, cellular traffic prediction faces
severe challenges with stringent requirements for accuracy and
reliability. One of the most critical problems is how to improve
the prediction performance by jointly exploring the spatial and
temporal information within the cellular traffic data. A promising
solution to this problem is provided by Graph Neural Networks
(GNNs), which can jointly leverage the cellular traffic in the
temporal domain and the physical or logical topology of cellular
networks in the spatial domain to make accurate predictions. In
this paper, we present the spatial-temporal analysis of a real-
world cellular network traffic dataset and review the state-of-
the-art researches in this field. Based on this, we further propose
a time-series similarity-based graph attention network, TSGAN,
for the spatial-temporal cellular traffic prediction. The simulation
results show that our proposed TSGAN outperforms three classic
prediction models based on GNNs or GRU on a real-world
cellular network dataset in short-term, mid-term, and long-term
prediction scenarios.

Index Terms—Cellular Network Traffic Prediction, Graph
Neural Networks, 5G/6G, Industry 5.0.

I. INTRODUCTION

RECENTLY, based on the successful advancement of In-
dustry 4.0 during the past decade, the European Commis-

sion proposes Industry 5.0 to further improve the cooperation
between humans and smart devices. Industry 5.0 has its roots
in the concept of Industry 4.0 which focuses on exploiting
new technologies to improve the efficiency and flexibility of
production [1]. With the emergence of the fifth-generation
networks (5G), the provisioning of such a remarkable cellular
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network system is essential for the evolution to Industry 5.0.
According to the latest investigation, 5G connections will grow
over 100-fold from about 13 million in 2019 to 1.4 billion
by 2023 [2]. This spectacular growing trend will continue in
the future sixth-generation networks (6G) and Industry 5.0
era with the vision of the Internet of Everything. Based on
these massive and reliable communication facilities and the
ultra-low-latency services they support, the advanced cellular
network can improve the data and system interoperability
which is one of the major enabling technologies in Industry 5.0
[3]. The sources of cellular traffic consist of various devices
from daily life and industry, especially mobile devices in
these scenarios. Many novel and advanced researches that
exploit such large amount of cellular traffic from massive
devices have emerged in recent years, including mobile traffic
classification [4], mobile traffic prediction and characterisation
[5], etc. In order to proactively prepare resources to provide
consumers or industrial devices with high-quality services, an
accurate cellular traffic prediction becomes more and more
important to help the network management system cope with
unprecedented challenges. As illustrated in the conceptual
framework in Fig.1, many devices in various cellular network
applications are connected to the base stations at cellular edge
to acquire the fast and reliable network services. Their cellular
traffic usage data are collected by base stations at the edge. By
analysing the real-world traffic usage requirements, the cellular
management centre can utilise the pre-processed cellular traffic
data to predict the future traffic trends of consumers and
industrial devices. Based on accurate and reliable prediction
results, the cellular management centre is able to proactively
allocate the cellular resources, which can be deployed at the
edge in advance to meet the traffic demands of various services
under different conditions and time spans.

Artificial intelligence has been introduced as a promising
solution to improve the cellular traffic prediction performance.
In recent years, deep learning methods such as long short-
term memory (LSTM) [6] and convolutional neural network
(CNN) [7] have been demonstrated to be effective in time-
series prediction. For cellular traffic, all traffic usage data is
recorded in the form of time-series in the temporal domain.
Compared with the conventional statistic-based models, exten-
sive researches using deep learning models have significantly
improved the cellular traffic prediction performance. However,
due to the limitations of neural network functionalities, most
of the existing work can only process cellular traffic data in
the temporal domain. Recently, some researches (e.g. [8]–[11])
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Fig. 1. The illustration of the intelligent cellular network framework for 5G and beyond.

have made attempts to integrate the variants of convolution and
recurrent operation to deal with the cellular traffic data in both
temporal and spatial domain. Nevertheless, they proceed the
spatial-temporal analysis by using coarse-grained grid-based
Euclidean structure data of cellular base stations to extract the
spatial information. Considering the real-world topology or
spatial information within traffic of base stations at the edge is
the non-Euclidean structure data [12], those researches cannot
comprehensively capture spatial-temporal characteristics of
cellular traffic data across all base stations in the network.

To address these issues, utilising the non-Euclidean graph
structure has attracted more and more research attention in
spatial-temporal cellular traffic prediction. This is because the
real-world cellular network includes a set of base stations and
their physical or logical connections can be denoted as nodes
and edges in a graph (e.g., cellular edge in Fig. 1) which
can present more comprehensive spatial information than grid-
based structure. As an emerging deep learning method, graph
neural network (GNN) [13] was introduced for the graph
processing in the spatial domain. It is widely used in many
research areas involving graph data such as physical and
biological analysis. Therefore, researchers start to put effort in
using GNNs to improve the cellular traffic prediction accuracy
by exploiting the spatial-temporal characteristics of cellular
networks.

In this regards, we propose a novel time-series similarity-
based graph attention network, TSGAN, for the GNNs-
empowered spatial-temporal cellular traffic prediction in this
paper. TSGAN combines dynamic time warping (DTW) and
graph attention networks, which can extract and utilise the
spatial-temporal dependencies and characteristics of cellular
traffic data and consider the differentiated influence between
adjacent cells and core cells.

The main contributions of this paper are summarised as
follows:

• We propose a novel time-series similarity-based graph
attention network (TSGAN) for accurate and reliable
spatial-temporal cellular traffic prediction. This model
can extract and utilise the spatial-temporal dependencies

and characteristics of cellular traffic and consider the dif-
ferentiated influence among cells to perform the accurate
and reliable prediction.

• We analyse the spatial-temporal dependencies and char-
acteristics of a real-world cellular traffic dataset and re-
view the state-of-the-art researches on GNNs-empowered
spatial-temporal cellular traffic prediction.

• We evaluate our proposed TSGAN by comparing it with
three classic prediction models based on GNNs or GRU
on a real-world cellular network dataset in short-term,
mid-term, and long-term prediction scenarios. We also
discuss several exciting research opportunities for using
GNN-empowered cellular traffic prediction in future 6G
and Industry 5.0 scenarios.

The remainder of this paper is organised as follows. Section
II analyses a real-world citywide cellular traffic dataset and
introduces the fundamental evolution of graph neural networks
for using GNNs-empowered models in cellular traffic pre-
diction. Section III reviews the state-of-the-art researches in
GNNs-empowered spatial-temporal cellular traffic prediction.
Section IV describes our proposed time-series similarity-based
graph attention network (TSGAN) for the spatial-temporal cel-
lular traffic prediction. Section V presents the evaluation and
result analysis among TSGAN and three referencing models
on the real-world citywide cellular traffic dataset in short-term,
mid-term, and long-term prediction scenarios. Finally, Section
VI concludes this paper and provides and discusses several
exciting research opportunities in future work. The acronyms
shown throughout the paper are summarised in Table I.

II. PRELIMINARIES

A. Analysis of Spatial-Temporal Characteristics of Real-world
Cellular Network Traffic

A large European communication services operator, Tele-
com Italia, published a real-world cellular traffic dataset of
the city of Milan [14] which can be used to analyse and study
the spatial-temporal characteristics in the cellular traffic data.
Specifically, Table II shows examples including 8 features
(SquareID, Datetime, SmsIn, SmsOut, CallIn, CallOut, and
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TABLE I
ACRONYMS

5G The fifth-generation networks UAVs Unmanned aerial vehicles
6G The sixth-generation networks GRUs Gated recurrent units
GNNs Graph neural networks MSE Mean square error
LSTM Long short-term memory MAE Mean absolute error
CNN Convolutional neural network MAPE Mean absolute percentage error
CDRs Call Detail Records RMSE Root mean square error
BS Base station GCGRN Graphic convolution gated recurrent unit network
ChebNet Chebyshev spectral convolutional neural networks DTW Dynamic time warping
GCN Graph convolutional networks TSGAN Time-series Similarity-based Graph Attention Network
GAT Graph attention networks GDPR General Data Protection Regulation
GCLSTM Graph convolutional LSTM FL Federated learning
ITW Idle time windows STACN Spatial-temporal attention convolution network
TGCN Temporal graph convolutional networks STGCN-HO Spatio-temporal graph convolutional networks
STHGCN Spatio-temporal hybrid graph convolutional network incorporating handover information
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Fig. 2. Temporal distributions of internet activities at different cells in Milan.
An Internet CDR is generated each time a user starts or ends an Internet
connection.

Internet) of the CDR which records the call details produced
by cellular network users. In this paper, 3 features (SquareID,
Datetime, and Internet) are directly related to the cellular net-
work traffic prediction. This public dataset contains millions
of Call Detail Records (CDRs) of internet activities during
62 days at a 10-minute sampling interval, which provides
sufficient time-series samples for temporal analysis. As for
the spatial analysis, the map of the city of Milan is divided
into 100 × 100 areas and each area is 0.05 km2 The CDRs
for each area in the city are spatially aggregated by calculating
the coverage area of the processing base station.

TABLE II
CDR FEATURES OF DATASET

SquareID Datetime CountryCode SmsIn SmsOut CallIn CallOut Internet
1 1383260400000 39 0.141864 0.156787 0.160938 0.052275 11.028366
1 1383261000000 39 0.278452 0.119926 0.188777 0.133637 11.100963
. . . . . . . . . . . . . . . . . . . . . . . .
9999 1383864600000 39 0.184105 0.144481 0.319243 0.085995 21.650467
. . . . . . . . . . . . . . . . . . . . . . . .

For the ease of observation, we pick up a fragment of the
whole records to present the temporal and spatial distributions
of the cellular traffic of Milan city. Fig. 2 presents the temporal
distribution of internet connection services at certain areas
in Milan for 7 days. In the record of cellular traffic, during
the same connection, a CDR is generated if the connection
lasts for more than 15 mins or the user transferred more than

5 MB [14]. It is clear that internet activities present strong
daily-periodic and weekly-periodic characteristics from the
temporal domain. Besides, different areas show diverse usage
patterns according to their different functionalities in the city.
For example, compared with the place with ID 4456 which is
active at night, the place with ID 5060 is more active during
the day.
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(b) 15:00 - 16:00 network activities

Fig. 3. The one-hour heat map for spatial distributions of internet activities
in Milan.(Black: 0 CDR, White: 5000 CDRs)

As for the observation of spatial characteristics, we illustrate
two one-hour heat maps of internet activities of the whole city
of Milan in Fig. 3. We can clearly see from this figure that the
cellular traffic is distributed unevenly and dynamically among
the whole city. It indicates that the cellular traffic demands
are obviously strong at daytime than the demands at night.
Although both of the heat maps show that the cellular traffic
demands are mainly concentrated in the city centre, there are
still signs of widespread cellular traffic usage in the suburban
areas in the daytime.

In this regard, cellular traffic prediction can rely on the
spatial-temporal characteristics of cellular traffic data to im-
prove prediction accuracy and reliability. The efficiency of
proactive cellular resources allocation can be further enhanced
to meet the dynamic demands in different periods, which will
bring outstanding benefits to greatly improve cellular network
management for 5G and beyond.

B. Graph Neural Networks

With the accumulation of massive cellular traffic data and
the advances in deep learning techniques, deep learning-based
cellular traffic prediction methods have established themselves
as strong competitors to conventional statistic-based models
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[8]. Since various important machine learning problems in-
volve tasks on graph structure data, researchers have developed
a family of deep learning models called graph neural networks
(GNNs) that naturally handle non-Euclidean graph structure
data.

Chebyshev Spectral Convolutional Neural Networks (Cheb-
Net) [15] was proposed to consider that the value of the
convolution kernel in the spectral domain is a function related
to the eigenvalue and then approximate the filter by Chebyshev
polynomials of the diagonal matrix of eigenvalues. Formally,
the graph convolution ⋆G of ChebNet can be formulated by

x ⋆G gθ = UgθU
Tx =

K∑
k=0

βkTk(L̂)x (1)

where x is the input signal and βk is the parameter to be
learned and Tk(L̂) is the Chebyshev polynomial of order k
evaluated at the scaled Laplacian matrix L̂.

Following the ChebNet, the most popular graph neural
network model, Graph Convolutional Networks (GCN) [16]
was proposed, which improved the ChebNet by limiting the
Chebyshev expansion to only the first order and simplifying
the convolution kernel with a reduced number of parameters.
Formally, the graph convolution ⋆G of GCN can be formulated
by

x ⋆G gθ = θ(D̃−1/2ÃD̃−1/2)x

D̃ij =
∑
i

Ãij

Ã = A+ In

(2)

where x is the input signal, gθ is the convolution kernel, θ
is the learned parameter, A is the adjacency matrix, D is the
node degree matrix, and In is an n-order identity matrix. By
focusing on the first-order approximation of spectral graph
convolutions, this model significantly reduces the number of
parameters. However, the reduction of the model complexity
may limit its ability to handle complex tasks.

III. RELATED WORK

In this section, we will analyse the state-of-the-art re-
searches using the GNNs-empowered models to improve the
cellular traffic prediction performance.

A. Spatial-Temporal Cellular Traffic Prediction On Undi-
rected Graph

Different from researches that focused on all grid-divided
base stations of the cellular network, Fang et al. [17] focused
on the per-cell demand forecasting because the irregular spatial
distribution of cells in the real-world setting limits the appli-
cations to future cellular network management that requires
variable spatial granularity. They first used a dependency
graph to model the spatial relevancy among base stations so
retained the spatial granularity without any data aggregation.
Their proposed model graph convolutional LSTM (GCLSTM)
mainly replaced the matrix multiplication in LSTMs with the
graph convolution in each gates, which can utilise the spatial
and temporal information and reduce the number of trainable
parameters.

Moreover, Fang et al. [18] also studied from the network
subscribers’ demand and mobility behaviours observed by
network operators to predict the idle time windows (ITW)
for cellular networks in the energy aspect. Moreover, their
proposed temporal graph convolutional networks (TGCN),
a graph-sequence representation network model, combined
the temporal convolutional networks and graph convolutional
networks to learn high-level spatial-temporal patterns for the
ITW prediction.

Zhao et al. [19] modelled the traffic network as an undi-
rected graph. Dut to the lack of geographic topology of
BSs in the dataset, they explored the spatial information
based on the correlation between time-series of cellular traffic
by using the Anseline local Moran’s I statistic measure,
which is proved to be an effective solution in this work.
Besides, they also considered the impact of external factors
on prediction performance. Therefore, their proposed model,
spatial-temporal attention convolution network (STACN), can
adaptively aggregate the external factors and output the hourly,
daily and weekly temporal components of cellular traffic.

B. Spatial-Temporal Cellular Traffic Prediction On Directed
Graph

Wang et al. [20] decomposed cellular traffic into in-tower
and inter-tower traffic to characterise the spatial dependency
among cell towers. As they jointly considered temporal and
spatial dependencies among cell towers, their proposed GNN
model achieved fine-grained traffic prediction in a metropoli-
tan range.

To further exploit the spatial information, Kalander et al.
[21] identified three categories of spatial dependencies: spatial
proximity, functional similarity, and recent trend similarity.
Based on these categories, they proposed a hybrid GCN
called Spatio-Temporal Hybrid Graph Convolutional Network
(STHGCN) to explore the spatial information. The STHGCN
used the ChebyNet to obtain the spatial dependency and
then consecutively obtained the temporal dependency by con-
necting with gated recurrent units (GRUs). In the evaluation
datasets, their model can present a more consistent prediction
compared with six baselines. They also claimed that their
model was highly suitable for traffic prediction on 5G net-
works.

In order to guarantee the service continuity for users, the
cellular network is also required to consider the effect of
handover on the spatial characteristics of the traffic. Most of
researches lacked of solving problems under this circumstance,
therefore, Zhao et al. [22] built a directed, weighted handover
graph for base stations based on the handover frequencies
presented by the transition probability matrix to improve the
prediction accuracy. Their proposed spatio-temporal graph
convolutional networks incorporating handover information
(STGCN-HO) model used a stacked residual neural network
structure incorporating graph convolutions and gated linear
units to capture both spatial and temporal information of the
cellular traffic.

In some cases, researchers may model the network traffic
patterns as probabilistic distributions or stochastic processes.
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Fig. 4. The system model of TSGAN consists of time-series similarity-based spatial information integration and graph attention networks-based spatial-
temporal cellular traffic prediction.

This makes assumptions in their work not in line with prac-
tices. Yu et al. [23] conducted massive in-field experiments
with the help of 10 volunteers who contributed their cellular
usage data on daily routines. Their proposed spatial-temporal
fine-granular user traffic prediction model, graphic convolution
gated recurrent unit network (GCGRN), was developed by
a combination of the graph convolution network and gated
recurrent units. Different from the [21], their model can
provide two outputs that are the user’s future data rate for
each of online apps and the set of base stations that the user
is going to visit, respectively.

Recently, attention mechanism [24] becomes an outstand-
ing development in deep learning that has had success in
challenging tasks such as machine translation and image
processing. The attention mechanism could reflect the different
impacts on neighbours around a single node. Unlike the graph
convolution that uses the same weight for neighbouring nodes,
the attention mechanism sets different and appropriate weights
for each node. Graph Attention Networks (GAT) [25] were the
first model to incorporate the attention mechanism in GNNs.
Motivated by the outstanding performance of the attention
mechanism and the topological defects of the real-world
cellular network datasets, we propose to combine the time-
series similarity-based spatial information integration method
and graph attention networks to conduct the spatial-temporal
cellular traffic prediction.

IV. TIME-SERIES SIMILARITY-BASED GRAPH ATTENTION
NETWORK

In this section, we propose a time-series similarity-based
graph attention network, TSGAN, for spatial-temporal cellular
traffic prediction, which includes a time-series similarity-based
spatial information integration and graph attention networks
for cellular traffic prediction.

The cellular traffic usage information can be measured
by each base station and then the amount of cellular traffic
consumption will be recorded as time-series in a feature vector.
Traditional deep learning models such as LSTM lose the
important spatial information because of learning from time-
series only for traffic prediction. Taking full advantage of the
spatial and temporal dependencies and characteristics within
the cellular network data will explore more potential benefits
of cellular traffic. To this end, we propose TSGAN, a deep
graph neural network to conduct the spatial-temporal cellular
traffic prediction.

As shown in Fig. 4, the proposed model consists of two sub-
modules, the time-series similarity-based spatial information
integration and GANs-based Spatial-Temporal Cellular Traffic
Prediction. Different from the traditional statistical or deep
learning methods that only analyse and learn from the temporal
domain of cellular traffic, TSGAN solves the traffic prediction
problem by utilising the features of the cellular traffic usage
from both spatial and temporal domains among all base
stations. TSGAN first extracts the spatial topology of the target
cellular networks from the time-series of the cellular traffic
usage and integrates the most relevant connection informa-
tion in spatial domain with the time-series cellular traffic in
temporal domain as a graph. Then, the cellular traffic usage
data with spatial information integration can be regarded as
the continuous slices containing completed spatial-temporal
information of cellular network traffic. Next, the cellular traffic
usage slices will become the input of the graph attention
networks for spatial-temporal cellular traffic prediction. The
following subsections will explain the proposed model in
details.
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A. Time-series Similarity-based Spatial Information Integra-
tion

For the GNNs-empowered model, the adjacency matrix is
required to indicate the non-Euclidean spatial information of
cellular traffic among cellular cells. In the TSGAN, we adopt
the DTW [26] to calculate the time-series similarity between
the network traffic of every two cells to present the spatial
information. Specifically, the DTW distance DTW (i, j) be-
tween time-series of two cells can be calculated by

DTW (i, j) = D(i, j) +min{DTW (i− 1, j),

DTW (i, j − 1),

DTW (i− 1, j − 1)}
(3)

where i and j are two time instances’ index from the time-
series of two cells, and D(i, j) presents the distance between
the matched pair of indices i and j based on the absolute
differences between their values. By iterating all cells in the
cellular network, we obtain the adjacency matrix MA of the
network by filtering top-N neighbours of each cell to indicate
the most relevant spatial connection of each cell. We define
G = {(V,MA)} as a directed graph set of cellular traffic usage
slices where V is the set of all time-series cellular traffic of the
network. During a time period of T , G = {G1, G2, ..., GT }
where Gt = (Vt,MA) is a directed graph of cellular traffic
usage slice at time t.

B. Graph Attention Networks for Spatial-Temporal Cellular
Traffic Prediction

Inspired by the GCN, the graph attention neural network
uses the first-order neighbours to make coefficients across
nodes, which significantly reduces the number of parameters
of the network and improves the efficiency [25]. Moreover, the
attention mechanism can be regarded as implicitly assigning
different convolution kernel parameters to each node, avoiding
the limitation of the learning ability of the prediction model
if all adjacent nodes share the same convolution kernel pa-
rameters like GCN. Therefore, TSGAN performs the spatial-
temporal prediction for the traffic data based on the graph
attention neural network considering that the targeted cell has
different similarities to its cells in adjacency in the cellular
network.

Spatial-temporal cellular traffic prediction can be viewed as
the problem of extending the GNN model to the temporal
domain. By receiving the G as the input for the spatial-
temporal cellular traffic prediction, TSGAN aims to predict
the cellular traffic usage in the next ∆t period, VT+∆t =
FTSGAN ({VT ,MA}). To achieve this, TSGAN applies the
stacked graph attention neural networks which work for the
cellular traffic usage slices in G. TSGAN concatenates from
each output of graph attention neural networks as the final
output of the model.

Specifically, in each graph attention neural network of
TSGAN, the graph attention layer, the attention mechanism,

and attention coefficients can be formulated by

v′i = f(
∑
j

αijWvj)

αij = sotfmaxj(eij) =
exp(eij)∑
k exp(eik)

eij = α(Wv′i,Wv′j) = αT [Wv′i||Wv′j ]MA

(4)

where f is a non-linearity which is LeakyReLU in TSGAN,
vi, vj ∈ V are the traffic flows of ith and jth cells in a graph
slice, W is learned weight matrix, and || is the concatenation
operation. Since zero in the result of the attention coefficient
means that there is no relationship between nodes, TSGAN
performs the masked operation by replacing those zeros with
negative infinity for the next softmax function.

The TSGAN also incorporates the multi-head attention
mechanism, which has the important advantage of captur-
ing more features with efficient computation of the node-
neighbour pairs in parallel. Specifically, for H heads of inde-
pendent attention mechanism described in equation 4, the final
output of each graph attention neural network is formulated
by

v′i = ||Hh=1f(
∑
j

αh
ijW

hvj) (5)

where || is the concatenation operation.

C. Loss Function

For training the TSGAN, the model aims to minimise the
differences between the raw cellular traffic and the prediction
results. Therefore, mean square error (MSE) is utilised as
the loss function in the TSGAN training. Specifically, let yt
represent the target time-series observation and ŷt denote the
prediction result of TSGAN. The loss value can be obtained
by the following equation:

LossMSE =
1

N

1

W

1

T

N∑
i=1

W∑
w=1

T∑
t=1

(ŷw,i
t − yw,i

t )2 (6)

where N,W and T denote the number of nodes, time windows
and time steps respectively.

V. EVALUATION

In this section, the evaluation experiments are conducted
within 100 cells of the cellular traffic dataset in Milan that
we analysed in section II-A. The evaluations aim to present
1) the validation and the effectiveness of TSGAN in spatial-
temporal cellular traffic prediction and 2) the performance
improvement compared with the models used in existing
mainstream researches.

A. Experiment Settings

We choose a 10*10 cell range in the centre of Milan city
and extract continuous 30 days cellular traffic CDRs as time-
series for evaluation. The cellular traffic data from the first
24 days are used as the training set and the rest 6 days are
used as the test set. The length of the time window is set as 7
time instances and we use slicing-window method to expand
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the training samples. For the TSGAN, the adjacency matrix
is generated by filtering top-5 neighbours of cells to indicate
the spatial information in DTW-based spatial information
integration. TSGAN sets six dimensions for the input layer,
six dimensions for the hidden layer and one dimension for
the output layer. The number of multi-head attention is set as
two. In the training phase, we set 32 samples as batch size and
choose Adam [27] as the optimisers for the loss convergence.
The early stop mechanism is applied from the J.COp DL open-
source library.

B. Compared References

We compare the performance between the TSGAN and the
following three classic prediction models based on GNNs or
GRU:

• ST-GCN: A GNN-based model use GCN described in
section II-B as the core module for spatial-temporal traffic
prediction, as in [19], [21], [23].

• ST-ChebNetGNN: A spatial-temporal Chebyshev graph
neural network model proposed by Yan et al. [28] for
intelligent transportation traffic prediction.

• GRU: A conventional deep learning model, which is a
recurrent neural network variant, achieves higher learning
efficiency with fewer parameters [29].

C. Evaluation Metrics

According to the state-of-the-art researches, the root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are common metrics to
represent the performance of prediction.

Specifically, we define the N is the time steps, ŷ is the set
of prediction values, and y is the set of target values.

• RMSE indicates the differences between the predicted
value and the real value:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (7)

• MAE indicates the average of absolute differences be-
tween prediction value and real value.

MAE =
1

N

N∑
i=1

|ŷi − yi| (8)

• MAPE is an average for absolute percentage errors. The
smaller the MAPE, the closer the model is to perfect.

MAPE =
100%

N

N∑
i=1

| ŷi − yi
yi

| (9)

D. Evaluation Results

The evaluation results include the numerical comparisons in
MAE, MAPE, and RMSE and performance displays among
TSGAN and other three prediction models based on the
cellular traffic dataset of Milan. We compare the predic-
tion in three scenarios: short-term, mid-term, and long-term
predictions with 10 minutes, 30 minutes, and 60 minutes
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((a)) Shor-term Prediction: 10 minutes sampling interval
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((b)) Mid-term Prediction: 30 minutes sampling interval
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((c)) Long-term Prediction: 60 minutes sampling interval

Fig. 5. Prediction performance display on cell No.50 for different sampling
interval

sampling intervals. To illustrate the prediction performance of
TSGAN over different sampling intervals of cellular traffic, we
randomly choose a cell (ID:50) to display the prediction results
on the test dataset. Fig. 5 intuitively illustrates the prediction
comparisons of last 144 time points which stand for short-term
(1 day), mid-term (3 days), and long-term (6 days) prediction
in the chosen cell. Moreover, the numerical comparison results
of the above prediction performance are shown in Table III.

According to the Fig. 5 and Table III, the TSGAN achieves
more accurate cellular traffic prediction performance than the
ST-GCN, ST-ChebNetGNN, and GRU models in the Milan
dataset from the perspectives of lower RMSE, MAE, and
MAPE. Specifically, performance improvements of TSGAN
for each scenario and metric are calculated and described
below.

In the short-term prediction scenario, compared with the
ST-GCN, ST-ChebNet, and GRU, the TSGAN presents per-
formance improvements around 4.17%, 1.71%, and 24.13% in
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TABLE III
NUMERICAL COMPARISONS OF PREDICTION PERFORMANCE.

Model TSGAN (ours) ST-GCN ST-ChebNet GRU

Sampling Interval

Metrics
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

10-min 25.75 0.13 35.94 26.87 0.15 37.09 26.2 0.16 32.81 33.94 0.18 40.75

30-min 66.16 0.12 98.67 78.59 0.16 100.19 85.89 0.17 107.58 102.69 0.21 124.78

60-min 141.18 0.13 185.71 161.42 0.15 214.09 188.73 0.2 229.19 229.28 0.24 272.09

MAE; 13.33%, 18.75%, and 27.78% in MAPE; 3.1%, 1.72%,
and 11.8% in RMSE, respectively.

In the mid-term prediction scenario, TSGAN improves
prediction performance around 15.81%, 22.97%, and 35.57%
in MAE; 25%, 29.41%, and 42.86% in MAPE; 1.52%, 8.28%,
and 20.92% in RMSE, compared with ST-GCN, ST-ChebNet,
and GRU, respectively.

In the long-term prediction scenario, TSGAN achieves
around 12.54%, 25.19%, and 38.42% in MAE; 13.33%, 35%,
and 45.83% in MAPE; 13.26%, 18.97%, and 31.75% in RMSE
for the performance improvements, compared with ST-GCN,
ST-ChebNet, and GRU, respectively.

The effectiveness of TSGAN in spatial-temporal cellular
traffic prediction is demonstrated through the analysis of nu-
merical comparisons among these four models. The attention
mechanism brings the advantage of focusing on the important
nodes with less focus on others, which can help the model to
explore the practical spatial-temporal information of cellular
traffic and to improve the prediction performance. Moreover,
the comparisons further indicate that this kind of advantage
presents different degrees in different scenarios. The TSGAN
has the better expressive ability with the increase of sampling
interval, which means the more temporal information that the
cellular traffic has (e.g. periodical patterns), the more accurate
result the model predicts.

E. Ablation Studies

To further investigate the effectiveness of modules in TS-
GAN, we conduct evaluations for three TSGAN variants: (a)
TSGAN w/o DTW w/ Multi-heads, (b) TSGAN w DTW w/o
Multi-heads, and (c) TSGAN w/o DTW w/o Multi-heads.
We replace the adjacency matrix provided by DTW with the
adjacency matrix of the ordinary one-hop geographic distance
between cells of the cellular network to evaluate the effective-
ness of time-series similarity-based spatial information integra-
tion. We remove the multi-head mechanism of GANs-based
spatial-temporal prediction to evaluate the effectiveness of
capturing more features with efficient computation in parallel.
The evaluations is conducted within all cells in the selected
network area. The results are calculated on average, and
the prediction performance comparisons of TSGAN variants
are shown in Table IV. We can observed that compared
with the prediction performance of complete TSGAN, the

prediction performance of all variants drop. This demonstrates
that the complete architecture of TSGAN is effective in spatial-
temporal cellular traffic prediction. Moreover, the time-series
similarity-based spatial information can provide more features
in spatial domain to help improve the prediction performance
than the ordinary geographic information. Furthermore, the
multi-head mechanism employed in TSGAN can effectively
improve the learning ability and help to learn more plentiful
features and information from different representation sub-
spaces. Through the above evaluation, we can further confirm
the effectiveness of TSGAN and the importance of exploiting
both spatial and temporal characteristics of cellular traffic for
more accurate predictions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first presented the spatial-temporal analysis
of a real-world cellular network traffic dataset of the city
of Milan. Then, we reviewed the existing state-of-the-art
researches using GNN-empowered models to improve the ac-
curacy and reliability of the cellular network traffic prediction
by exploiting the practical spatial and temporal information
of the cellular network traffic data. Based on our analy-
sis and review, we proposed a time-series similarity-based
graph attention network (TSGAN) model, which includes a
time-series similarity-based spatial information integration and
graph attention networks for cellular traffic prediction. To
validate the effectiveness and the performance improvement
of TSGAN, comparison experiments were conducted and
the results were analysed based on the Milan dataset over
three classic prediction models based on GNNs or GRU. The
experiment results demonstrated that our proposed TSGAN
outperformed these referencing models on all metrics in short-
term, mid-term, and long-term prediction scenarios.

In the future, GNN-empowered spatial-temporal prediction
models not only can improve the prediction performance under
current 5G environments but also show the great potentials
in adapting emerging applications and scenarios such as the
era of 6G and Industry 5.0. For example, under the pressure
of strict data protection regulations such as General Data
Protection Regulation (GDPR) which become the core require-
ments in the design of 6G and Industry 5.0, service providers
may not be able to centrally store user data to train the
GNNs-empowered models for cellular traffic prediction in the
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TABLE IV
PREDICTION PERFORMANCE COMPARISONS OF ABLATION STUDIES OF TSGAN.

Sampling Interval 10-min 30-min 60-min

Model

Metrics
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

TSGAN 73.9 0.31 110.32 196.34 0.28 332.6 399.46 0.31 670.6

w/o DTW, w/ Multi-heads 185.8 0.67 217.49 278.61 0.37 382.73 524.07 0.33 751.04

w/ DTW, w/o Multi-heads 171.1 0.99 224.92 449.67 0.53 595.25 638.86 0.42 897.28

w/o DTW, w/o Multi-heads 208.75 0.77 237.34 639.24 1.06 812.59 888.81 0.54 1124.33

future. In this case, federated learning (FL) as an alternative
communication-efficient learning paradigm that pushes model
training to the devices where data generated [30] would be
a promising solution cooperated with the GNN-based models
using the attention mechanism to preserve the data privacy.
Moreover, in the vision of sixth generation networks (6G) and
Industry 5.0, emerging facilities such as unmanned aerial ve-
hicles (UAVs) and communication satellites will be deployed
and become essential kinds of service provision platforms
to offer fast and seamless communication and networking
services. According to time scales of service requirements and
changes of connections among these dynamic facilities, the
management of dynamic networking will take a non-negligible
part in this system. In this regard, there are potential research
opportunities for GNNs-empowered spatial-temporal cellular
traffic prediction under this promising scenario to be solved
before dynamic non-terrestrial platforms can be effectively
used in future 6G and Industry 5.0 scenarios.

ACKNOWLEDGEMENT

This work was partially supported by the EU Horizon
2020 INITIATE project under the Grant Agreement No.
101008297, the Royal Society International Exchanges project
- IEC\NSFC\211460, and the China Scholarship Council
(No. 201806070140). The European Union Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] E. Commission, D.-G. for Research, Innovation, M. Breque, L. De Nul,
and A. Petridis, Industry 5.0 : towards a sustainable, human-centric and
resilient European industry. Publications Office, 2021.

[2] Cisco, “Cisco annual internet report (2018–2023),” 2020,
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html,
Last accessed on March 9, 2020.

[3] J. Müller, “Enabling technologies for industry 5.0, results of a workshop
with europe’s technology leaders,” Directorate-General for Research
and Innovation, 2020.

[4] A. Rago, G. Piro, G. Boggia, and P. Dini, “Multi-task learning at the
mobile edge: An effective way to combine traffic classification and
prediction,” IEEE Transactions on Vehicular Technology, vol. 69, no. 9,
pp. 10 362–10 374, 2020.

[5] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico, and
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