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Abstract: To meet the sustainable development goals in rocky desertified regions like Guizhou 
Province in China, we should maximize the crop yield with minimal environmental costs. In this 
study, we first calculated the yield gap for 6 main crop species in Guizhou Province and evaluated 
the quantitative relationships between crop yield and influencing variables utilizing ensembled ar-
tificial neural networks. We also tested the influence of adjusting the quantity of local fertilization 
and irrigation on crop production in Guizhou Province. Results showed that the total yield of the 
selected crops had, on average, reached over 72.5% of the theoretical maximum yield. Increasing 
irrigation tended to be more consistently effective at increasing crop yield than additional fertiliza-
tion. Conversely, appropriate reduction of fertilization may even benefit crop yield in some regions, 
simultaneously resulting in significantly higher fertilization efficiency with lower residuals in the 
environment. The total positive impact of continuous intensification of irrigation and fertilization 
on most crop species was limited. Therefore, local stakeholders are advised to consider other agri-
cultural management measures to improve  crop yield in this region. 
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1. Introduction 
In 2015, the UN Sustainable Development Goals (SDGs) provided a shared blueprint 

for peace and prosperity for people and the planet [1]. The second, sixth and fifteenth 
themes of this blueprint set specific goals for food security, clean water supply and halting 
land degradation [2]; requiring balancing of agricultural development and the environ-
ment [3]. Over the past decades, the intensification of irrigation and fertilization has 
greatly improved food production globally, but at the cost of environmental pollutions 
like soil salination and eutrophicated water resources [4,5]. The difficulty of achieving 
these SDGs is spatially unbalanced. This is especially evident for some underdeveloped 
areas due to their environmental and economical limitations [6]. For example, in karst 
regions, rocky desertification, a process of land degradation involving serious soil erosion, 
results in extensive exposure of basement rocks, a drastic decrease in soil productivity, 
and the appearance of a desert-like landscape [7–9]. The poor fertility of the edaphic en-
vironment, along withwater and soil losses, induces low crop productivity [10,11]. Nitro-
gen and other nutrition loss from the karst system also lead to lower nutrient use effi-
ciency of vegetation and contaminates water quality, further impacting the long-term soil 
security and sustainability in karst regions [12]. 
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Guizhou province, located in southwest China, contains large karst regions with their 
highly sensitive and vulnerable ecosystem and is one of the world's largest exposed car-
bonate rock areas [13]. Guizhou has been a hotspot for research on karst geology, natural 
vegetation and agriculture for many years [14]. Due to the thinness, infertility of such soils 
and wide distribution of fragmented, sloping farmland in this region, the grain crop 
productivity per capita is only 337 kg for Guizhou Province, approximately 25% below 
the average value for the whole of China in 2016 [15]. In recent years, Guizhou has 
achieved rapid economic growth [16], partly through the intensification of agricultural 
practices involving the overuse of farmland and fertilization investment, exacerbating en-
vironmental degradation [17]. Meeting food demand is vitally important in Guizhou 
Province, where the birth rate has remained one of the highest in China. To achieve this 
goal, three approaches were widely applied previously in this area. First, the area of farm-
land was expanded by sacrificing the natural forest and other green lands [18,19]. How-
ever, this strategy was suspended in this region, under projects like the “Grain for Green” 
released in the 1990s to protect and restore natural vegetation [20], as local people and 
government began to realize the importance of natural vegetation in maintaining the local 
environment [21,22]. This program has generally been economically positive for most ar-
eas involved and also has addressed the environmental problems it set out to deal with, 
including reducing soil erosion and flooding [23]. Second, new crop species (e.g., hybrid 
rice) and planting/management patterns were imported into some areas of Guizhou Prov-
ince to improve crop yield [24], but the spread and application were greatly constrained 
by the knowledge background and economic condition of each household in the local 
area. Third, improvement of crop yield is optimized by the investment of fertilization and 
irrigation, which is the most accessible intervention for each household. However, over-
use of these two resources may lead to soil degradation, excessive fertilization and water 
wastage [25,26]. Therefore, appropriate irrigation and fertilization practices can reduce 
nutrient (e.g., N and P) loss, enhance crop growth and increase yields [27]. 

Despite changes in agricultural management strategies in Guizhou Province since 
the 1960s [28], the yield improvement of some staple crops like wheat and rice has stag-
nated by comparing yield data from 1985 and 2005 [29]. Therefore, agricultural manage-
ment based on scientific evidence is key to realizing sustainable development, balancing 
environmental impact and food demand. Utilizing decision support tools (DST) can be 
integrated into political decision-making and the public realm, which will significantly 
benefit stakeholders in optimizing crop yield [30,31]. To evaluate the impact of different 
agricultural management strategies on crop yield, the concept of yield gap should be con-
sidered. The yield gap can be classified as either the difference in crop yield between the 
optimal experimental environment (without growth limitations) and the natural environ-
ment, or the yield potential in farmland over a specified spatial and temporal scale of 
interest [32]. Understanding the yield gap can help us to identify the potential scope for 
raising average yields via management changes [33,34]. 

Until now, the existing crop yield estimation models mainly contained statistical ap-
proaches and process-based models (including large-scale global gridded crop models) 
[35,36]. For statistical approaches, multiple linear regression [37,38] or piecewise linear 
regression [39] were widely utilized to build the mathematical relationship between crop 
yield and influencing factors to simulate the changes under different scenarios. Normally, 
statistical approaches use a few key inputs, such as meteorological variables, excluding 
other parameters (e.g., soil properties). However, the underground environment of the 
critical zone in karst region is complex, with multiple elements (such as limestone fissures) 
having a large impact on natural vegetation growth [40,41], as well as crop production, so 
this compromise may cause uncertainties in the models during practice [42]. In contrast, 
process-based models require different procedures for parameterization and calibration. 
However, the karst environment’s highly heterogeneous nature and the prevalence of 
small-scale subsistence farming in Guizhou impede the applicability of existing process-
based models used for large-scale applications [43,44]. In recent years, the rise of deep 
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learning methods, such as artificial neural networks (ANN), provides a new solution to 
identify the relationship of different factors and crop yield with nonlinear regressions [45]. 
Based on ANN training, higher accuracy in the simulation of crop yield could be achieved 
[46,47]. 

In this paper, we identified the current yield gap in Guizhou Province and investigate 
strategies to close this gap. We first calculated the yield gap for 6 dominant crop species 
grown in Guizhou Province. We subsequently employed ensembled back propagation 
(BP) networks to simulate the crop yield and fertilizer balance (defined as the difference 
of fertilization investment and demand for crop growth) in the study region by inputting 
different influencing variables inside the networks. Lastly, we forecast the variation in 
crop yield and fertilization efficiency under different agricultural management scenarios. 
The results of this work are useful as a DST for policymakers and other stakeholders to 
optimize food demand and environmental impact in agriculture development. 

2. Data and Method 
2.1. Study Region 

Guizhou Province is located in southwest China, at the heart of the East Asia Karst, 
one of the three largest areas of almost unbroken karst globally [48] (Figure 1). There are 
9 prefectures spatially distributed inside Guizhou. However, due to historical reasons and 
its geological environment, which causes difficulties with transportation and communi-
cation with outsiders, Guizhou is still one of the less developed provinces in China [49–
51]. In this study, we chose 6 crops grown extensively in the 9 prefectures of Guizhou 
Province for the simulation of yield, which are maize, potato, rice, soybean and wheat 
(food crops), along with groundnut (cash crop). 

 
Figure 1. Location of Guizhou Province and spatial distribution of karst regions in China. 

2.2. Dataset 
To simulate crop yield (per unit area), 14 variables were selected as input factors (Ta-

ble 1, excluding crop yield, crop area, N and P balance), of which annual total rainfall, soil 
bulk density, irrigation, nitrogen (N) fertilizer rate, phosphorus (P) fertilizer rate and slope 
were chosen to simulate the Nor P balance. Specifically, we extracted all the data from 
(circa) year 2000 and unified their spatial resolution into 5′ by aggregation (overlaying 
meteorological data with a spatial resolution of 5° on 5′ data and extracted meteorological 
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data values for each pixel of 5′). The dataset of crop yield was created by merging a de-
tailed library of global census data (from the national, state and county level for over 
20,000 political units) with three different, detailed satellite datasets of global landcover 
conditions, and this is by far the most complete dataset of agriculture [52]. 

Table 1. Introduction of data resources (* crop-specific data). 

Data Dataset Temporal Coverage Spatial 
Resolution References 

Annual average temperature 

WFDEI 1981–2016 0.5° [53,54] 
Annual average shortwave ra-

diation 
Annual total rainfall 

Slope 
GMTED2010 
Global Grids - 5′ [55,56] 

Soil organic carbon 

HWSD 1995 5′ [57–59] 
Soil bulk density 

Soil cation exchange capacity 
pH 

Carbonate content 
Soil moisture NCEP CPC 1948–present 0.5° [60,61] 

Irrigation MIRCA2000 * Circa 2000 5′ [62] 
Crop area * 

EarthStat Circa 2000 5′ [63,64] 
Crop yield * 

N fertilizer rate * 
P fertilizer rate * 
K fertilizer rate * 

N balance 
EarthStat Circa 2000 5′ [65] 

P balance 

2.3. Calculation of Yield Gap 
To calculate the yield gap for the selected species, we referred to the approaches 

raised in the papers of Foley’s group [66]. First, we conducted an unsupervised spatial 
classification method (self-organizing feature mapping, or SOFM) to define different 
zones of “natural environment” (natural zones hereinafter) based on temperature, rainfall, 
shortwave radiation and slope, which human behaviors cannot change over a short pe-
riod. This idea allowed us to control the same basic environmental conditions for crop 
growth. Inside each natural zone, we assumed that there is the same theoretical value of 
maximum crop yield, which is calculated based on the true yield distribution. Lastly, by 
comparing the true (observed) value with the theoretically maximum value, we finally 
calculated the yield gap in each prefecture. 

2.3.1. SOFM 
The SOFM network (Figure 2) consists of a fully interconnected array of neurons with 

a topology input layer and the competition layer [67]. The inputs are connected to each 
node on the network grid, and each grid node is only connected to adjacent nodes. They 
use a neighborhood function to preserve the input space's topological properties and re-
alize unsupervised classification by different data resources. The training process is com-
pleted to adjust the weight between each node in the output layer until it meets the fixed 
terminal condition. The whole process of this work is to reflect the input variables into 
lower dimensional space to realize the classification. The specific steps are as follows [68]: 
(1) Initializing each weight with a group of random numbers at the beginning; 
(2) Selecting the best matching unit. This step is also regarded as a competing process. 

The weight vector, which has the minimum Euclidean distance (calculated as below), 
with sample x (randomly selected), is the winning unit: 
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c i ix W min x W− = −  (1)

where c represents the winning unit, and i is the sequence number for x and the weight 
vector; 
(3) Updating the weight until it meets the terminal conditions: 

2
i c

2

p p
F(i) exp( )

2σ
− −

=  (2)

where pi and pc indicate the positions of the output units of i and c, respectively, while σ 
is the width of the neighborhood function. 

 
Figure 2. Process of classification of natural zones. 

2.3.2. Calculation of Yield Gap 
The yield gap was calculated using three steps: 

(1) For each natural zone, the grid cells were sorted by their yield value, ranked from 
lowest to highest; 

(2) The grid cells’ respective harvested areas were accumulated into a histogram, then 
the percentile of 5th and 95th were extracted (Figure 3). The corresponding yield data 
from these two points were defined as theoretical minimum and maximum yield, 
indicating the potential yield for crops growing under purely natural conditions and 
under optimal agricultural management inside each zone. Extraction from the histo-
gram of harvested area, instead of yield, can exclude the grid cells with too large or 
small cultivated areas that could skew the distribution of yield histogram; 

(3) For each grid cell, the crop yield gap was the difference between actual yield per area 
(AYPA) and potential yield per area (PYPA—referring to the theoretical yield under 
optimal growth conditions for each crop per area). Additionally, the yield gap of total 
production (AYPA/PYPA multiplied by corresponding cultivated area) was also cal-
culated (shortened as AY and PA). To provide a better reference for policymakers and 
other stakeholders, we integrated each cell's gap into the yield gap for each prefecture 
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in Guizhou Province. 
The theoretical maximum and minimum value also acted as the limiting threshold 

for further simulation of crop yield under different management scenarios. 

 
Figure 3. Extraction of theoretical maximum/minimum yield. 

2.4. Ensembled BP (Back Propagation) Artificial Neural Networks 
2.4.1. Single BP Network 

BP network is widely applied in classification, simulation and forecast across differ-
ent research disciplines, and in our previous work it offered the best balance between ac-
curacy in predicting crop yield in Guizhou Province and time cost [69,70]. This supervised 
learning is conducted using the mean square error and gradient descent algorithm to 
achieve the correction of the network connection weights, to minimize the difference be-
tween the mean square error of the actual output to achieve prediction accuracy. The com-
mon BP network structure consists of an input layer, (single or multiple) hidden layer (s) 
and an output layer. The BP process integrates the value of each node (or neuron) by 
weights, bias and activation function, then transfers this into the output layer, while the 
error signal is transmitted back along the original connection path, through the network, 
to modify the weights of neurons until the desired target is reached [71,72]. The training 
process can be characterized by numbers of iteration, and each run of them is called an 
epoch. Before commencing a BP network, several hyper-parameters, which may indirectly 
influence the accuracy and training efficiency of the model, need to be set, such as the 
numbers of hidden layers and nodes, as well as learning rate, etc. In this study, we im-
ported one hidden layer with 10 nodes and used a tan-sigmoid (Equation (3)) function 
and linear function to transfer values between the different layers. Meanwhile, after test-
ing different groups of hyper-parameters, the learning rate of the network and maximum 
epoch number was ultimately assigned as 0.01 and 5000, respectively. 

( )
2tan sig(x) 1

1 exp( 2x)
= −

+ −
 (3)
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2.4.2. Evaluating Accuracy of Simulation 
The dataset was first randomly grouped into training data (75% of all data) and val-

idation data (the remaining 25%). Three indices of validation data were selected to evalu-
ate the accuracy of training performance of the BP network, including the correlation co-
efficient (between the true (observed) value and forecasted (simulated) value of the vali-
dation group), root-mean-square error (RMSE) and relative mean error (RME), the latter 
two, of which indicate absolute and relative deviation of the simulation results, respec-
tively (defined in Equations (4) and (5)). 

n 2
i ii 1

(T F)
RMSE

n
=

−
= 

 (4)

n
i ii 1

T F
RME= 100%

n
=

−
×  (5)

where T and F represent true value and forecasted value, and n indicates the total number 
of validation samples. 

2.4.3. Ensemble Approach 
The ensemble approach for ANN is to integrate a finite number of ANNs that are 

trained for the same purpose whose predictions are combined to generate a unique output 
(Figure 4). The relationship between a group of ensembled ANNs and a single ANN is 
similar to a random forest and each tree inside. These ensembles have several advantages 
over a single ANN as they have the potential for improved generalization and increased 
stability, although at the cost of a longer training time, enabling better convergence and 
accuracy [73]. The commonly used idea of an ensemble approach to gain a final result 
from a group of ANNs can be categorized into “bagging” and “boosting”. They both build 
a robust classification or regression network based on a single ANN but with different 
specific algorithms [74]. Herein, for each process of simulation, we utilized the idea of 
“bagging”. Namely, we created several networks (the number of which was set following 
performance testing of the simulation—detailed in Section 2.4.4) and subsequently calcu-
lated the average value for each as the final result of the simulation, and this is the com-
monly used nonlinear regression model ensemble algorithm. 

 
Figure 4. Process of ensembled ANNs. 
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2.4.4. Scenario Settings and Convergence Test of Ensembled ANNs 
To evaluate different future scenarios of agricultural management, we changed the 

input of N&P fertilizer (by ±10%) and irrigation rates (only by +10%, as the study region 
was proven to be lacking water resources for crops in previous studies) to explore the 
variation in crop yield in the 9 different prefectures of Guizhou Province. Moreover, we 
calculated the fertilization efficiency (FE) defined in Equation (6) to evaluate the compre-
hensive impact on both crop growth and the environment. 

6

i i
i=1

Y A
FE=

N(P) balance

×
 (6)

Here, Y is the yield per area for each selected crop species (6 in total), A represents 
the corresponding cultivated area. In a specific region, FE was calculated as total crop 
production divided by total N or P balance. A higher FE indicates the strategy of fertiliza-
tion is more effective and reasonable, with the significant promotion of crop growth and 
low environmental cost. 

The convergence test determines the final number (n) of BP networks brought into 
the ensemble method. The indicator for testing the convergence was set as the percentage 
of pixels with a 5–10% increase of yield after increasing N&P fertilizer and irrigation rates. 
The specific process of this method can be divided into four steps: 
(1) The number (n) of BP ANN was set from 1 to 40, respectively; 
(2) For each number of n, we built ensembled ANNs and ran the simulation 10 times; 
(3) After 10 simulations, we evaluated the performance of the ensemble by calculating 

the value of the defined indicator, correlation coefficient and time cost; 
(4) We compared the performance of ensembled ANNs to determine the final n for fur-

ther simulations. 
The optimization of n in the ensembled group can help us balance simulation stabil-

ity with the time cost. 

3. Results 
3.1. Simulation of Single BP Network 

To build the ensemble model, we first examined the simulation of crop yield per area 
and N, P balance by a single BP network with the yield influencing parameters detailed 
in Methods. The simulation for N, P balance is better than that for crop yield, with corre-
lation coefficients (between the true value and fitted value) larger than 0.99 (Figure A1). 
In contrast, the crop yield simulation accuracy varied among different species. For exam-
ple, groundnut simulation had the best performance, indicated by the largest R (0.87) and 
least RME (11.67%), compared with the worst performance for potato (with R of 0.68 and 
RME of 15.38%). In terms of the time cost, the process of simulation of N or P balance is 
less than that of crop yield, about 2–3 (s) for training each network, while the time cost for 
simulation of crop yield ranges from 11.1 (s) to 19.7 (s) (Figure A1). 

3.2. Convergence Test for Ensembled Networks 
As introduced in Section 2.4.4, we used the change of crop yield (with an interval of 

increase of 5–10%) after changing the investment of N&P fertilizer and irrigation as an 
indicator to test the stability and convergence of ensembled BP networks. The number of 
networks in each ensembled group ranged from 1 to 40, and each group was conducted 
10 times to analyze the distribution of the simulation results (detailed in Methods). Con-
sidering the efficiency of the process, we set the epoch number to 5000 for each time. In 
Figures A2 and A3 we can see that when the number of networks is less than 10, the sim-
ulation results fluctuated greatly in terms of the indicator percentage. For example, when 
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there is only one network in the ensemble (under the scenario of increasing N&P ferti-
lizer), the indicator would range from 0.047 to 0.133, and with the increase of networks in 
the group (mostly > 30), the indicator reached a relatively stable value. The correlation 
coefficient (R; of the true and fitted value) followed a similar trend as the indicator. How-
ever, the convergence of R was achieved earlier than the indicator when networks ex-
ceeded 20. Lastly, the time cost of training the ensembled networks rose linearly or expo-
nentially with the increasing number of networks. Balancing the time cost with the ro-
bustness of the simulation, we ultimately chose the group with 40 independent single BP 
networks and averaged the results for each as the final result of simulation and prediction 
of crop yield under different scenarios. 

3.3. Yield Gap in Guizhou Province 
The extent of yield gap (or potential yield) varied among the different pairs of crop 

and prefecture, with some crop species having relatively more potential for yield im-
provement in some of the prefectures compared with others. For example, the total yield 
gap of potato in Bijie and Guiyang is 365,666.0 (t) and 17,665.9 (t), respectively (Figure 5). 
Meanwhile, the ratio of actual yield and theoretical yield represents the proportion of local 
crop production that has achieved its maximum value. It can be seen that rice had the 
greatest ratio among the different crops, achieving more than 60% of the theoretical max-
imum yield per area and 72% for total yield in all the prefectures. By contrast, the yield 
per area of groundnut in Liupanshui and Qiandongnan only reached 47% and 52% of the 
theoretical maximum value. Lastly, the spatial difference of the ratio of maize is large, 
shown by the value of 88% in Bijie, but only 53% in Qiandongnan for the total production. 
This average percentage of achieved total production is all over 60% for each crop species 
in Guizhou , with a total mean value of 72.5% for all the selected crops. 
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Figure 5. Distribution of actual yield and potential in each prefecture in Guizhou, the ratio of actual yield to potential yield 
was marked (GYPA: gap of yield per area; AYPA: actual yield per area; GY: gap of yield; AY: actual yield). 

3.4. Crop Yield and Fertilization Efficiency under Different Scenarios 
After training the ensembled networks, we first increased the input variables of N&P 

and irrigation by 10% and predicted the variation of crop yield and fertilizer balance. On 
the whole, the change in yield was both crop- and prefecture-specific. Increasing fertilizer 
application benefited the yield (per area) of potato in most prefectures, except for Anshun, 
where potato yield decreased (Figure 6a). In particular, potato yield in Zunyi increased 
the greatest by 2.59 (t/ha). By contrast, other crops like maize in Zunyi, Bijie and Tongren 
decreased under the same scenario, although the degree of change was less than that of 
the increase in potato yield. The intensification of fertilization also caused the increase of 
N, P balance in all prefectures, with an average total increase in N of 8045.8 (kg/grid) and 
P of 1614.6 (kg/grid) in Guizhou. The increase in N and P balance was highly correlated 
in all prefectures (Figure A7). Moreover, even though some crop yields increased in this 
scenario, the total FE in all prefectures decreased, except for Bijie (Figure 6c). On the other 
hand, implementing an increase in irrigation by 10% could favor the growth of crops in 
most cases (Figure 6b). The average rise of yield per area is 0.54 (t/ha) and 0.47 (t/ha) for 
potato and rice. Spatially, however, the impacts are highly heterogeneous, as shown by 
the significant yield increase in Qianxinan, Qiandongnan and Qiangnan, with an average 
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increase of 0.064 (t/ha), 0.031 (t/ha) and 0.027 (t/ha) for all crops, whereas the yield increase 
in Guiyang, Anshun and Tongren is negligible (detailed distribution of yield change in 
each prefecture illustrated in Figures A4 and A5). 

 
Figure 6. Predicted yield change in all 9 prefectures following a 10% increase of N&P fertilizer (a) and irrigation (b). (c) 
Arrows indicate the direction and magnitude of the change in N, P fertilization efficiency (unit: (t/ha)/(kg), gray/colored 
dashed line representing average FE before/after the change of fertilization) in all 9 prefectures. 

In the scenario of decreasing N&P fertilizer, the change in crop yield varied both 
spatially and for the species distribution (Figure 7a). Similarly to the former scenario, po-
tato yield was the most impacted by changing the quantity of fertilization. Except for Qi-
anxinan and Qiannan, the absolute yield decrease ranged from 1.94 t/ha (Tongren) to 0.28 
t/ha (Zunyi) across Guizhou Province. By contrast, maize yield even showed a small in-
crease following decreasing fertilizer investment, which is significant in mid-eastern pre-
fectures like Zunyi, Tongren and Qiandongnan. Spatially, the greatest reduction in crop 
yield following fertilization reduction was shown in some southwestern prefectures (e.g., 
Anshun and Liupanshui). The decrease of all crop yields in Anshun ranged from 0.10 t/ha 
(groundnut) to 0.34 t/ha (potato). Moreover, the N, P balance also showed a synchronous 
shift after decreasing fertilization. The decline of N balance ranged from 13,605.0 kg/grid 
(Guiyang) to 4736.7 kg/grid (Qiandongnan), while P balance decreased much less (from 
2894.3 kg/grid in Guiyang to 948.8 kg/grid in Qiandongnan). This phenomenon was fol-
lowing the former scenario. Moreover, it is worth noting that there is an evident spatial 
coherency for the change in N, P balance in Guizhou Province (R > 0.99), which implied 
that these shifts were mainly determined by the local environmental conditions, under the 
same change of fertilization. Lastly, this strategy demonstrated strong optimization on FE, 
shown by an increased value for all prefectures, except for Liupanshui, which had no sig-
nificant variation in this scenario (Figure 7b; detailed distribution of yield change in each 
prefecture was illustrated in Figure A6). 
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Figure 7. Predicted yield change (a) and N, P fertilization efficiency change (b). Arrows indicate the direction and magni-
tude of change in FE, unit: (t/ha)/(kg), gray/colored dashed line representing average FE before/after the change of N&P 
fertilization) in all 9 prefectures following a 10% decrease of N&P. 

3.5. Yield Gap Closing 
Finally we calculated the ratio of (total) crop yield variation and (total) yield gap ob-

tained from the ensemble networks and investigated the influence of intensifying man-
agement strategies (N&P fertilizer and irrigation combined) on closing the existing local 
yield gap. The impacts on the yield gap were both species and spatially heterogeneous 
(Figure 8). From a species perspective, potato and soybean gained the most crop yield, 
reducing the yield gap by an average of 33.9% and 16.6%, respectively. However, the 
yields of groundnut and maize decreased following additional agricultural investment, 
with an average reduction of −7.6% and −7.4%. From a spatial perspective, most crops in 
southern parts of Guizhou Province in Qiangdongnan, Qianxinan and Qiannan benefited 
from closing the yield gap by increasing N&P fertilizer and irrigation, where the averaged 
ratio value is 17.2%, 15.0% and 4.0%, respectively. At the same time, other prefectures had 
more heterogeneity in their yield gap variation. 

 
Figure 8. Percent of yield gap closing by increasing N&P fertilizer and irrigation by 10%. 
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4. Discussion 
Establishing the quantitative relationship between crop yield and the environment is 

essential for understanding each factor's interaction and predicting future crop yield un-
der different climate or agricultural scenarios. Previously, these demands were mainly 
met by conducting different regression models or process-based models [37,38,75]. Nev-
ertheless, these approaches have three issues. First, the performance of traditional models 
relied on the characteristics of the data distribution. For example, higher accuracy can be 
obtained when the crop yield variation is large [76]. Second, the large differences occurred 
between existing model outputs for simulating crop yield, and the relative error in some 
cases surpassed 50% [35]. Third, the reported accuracy for traditional regression and pro-
cess-based models could only explain 51% and 42% of observed yield variability, respec-
tively [77]. The technology of machine learning, including ANN, can counter these defi-
ciencies to some extent. However, in previous studies, researchers have been cautious 
about predictions of crop yield under different scenarios by trained networks [31,37,45]. 
Most of these studies were constrained to fitting the existing crop yield; thus the work of 
prediction was mainly finished by existing traditional models [78–80]. Utilizing the char-
acteristics of convergence of ensemble networks, we found that the usage of a single net-
work may generate issues in terms of the stability of the result, revealed by the fluctuation 
of correlation coefficient of actual yield and fitted value. Namely, the correlation coeffi-
cient for each simulation can be high, but the distribution of the fitted value may vary 
dramatically, which was demonstrated by the indicator value fluctuating (Figures A2 and 
A3). This issue could be prominent, especially when we conducted the prediction by a 
single network. Clustering of multiple networks (forming ensembled networks) can re-
solve these issues, providing a more reliable forecast of crop yield under future scenarios, 
but the time cost should also be fully considered. 

To date, two main approaches are commonly used for estimating crop yield gaps in 
specific locations. The first is to apply crop models to set optimal environmental parame-
ters to calculate the potential yield and gain the difference between the result with actual 
yield [81,82]. This method requires comprehensive environmental parameters throughout 
the growing season for each crop (often with daily temporal resolution), relying on the 
availability of historical data records. In contrast, the second method, which we employed 
in this study, calculates the yield gap by statistical data. This method is simple to conduct 
and fully considers the actual yield to obtain the locally exploitable yield gap. However, 
previous studies utilizing this method only imported variables of temperature elements 
to classify natural zones [52]. To strengthen our analysis, we added shortwave radiation, 
rainfall and slope as well in this study. Particularly, slope (representing topography and, 
therefore, areas of severe soil degradation in the region) has been proven to be the main 
factor for limiting the absorption of water and nutrient resources belowground for vege-
tation (including crop) growth in the karst region [9,83]. Therefore, this approach enables 
our subsequent analyses and conclusions for agricultural management to be more reliable. 

In the past, large-scale yield gap studies have demonstrated a big difference between 
the yield gap in developed and developing countries, which means that some countries 
like European countries have achieved a high percentage of maximum yield in the local 
environment, while others have more scope to further increase local crop production [34]. 
This phenomenon was mainly caused by the imbalance of economic development and the 
spread of new agricultural techniques among different countries. For example, in Ne-
braska, USA, the production of maize has reached nearly 90% of the theoretical maximum, 
while in some African countries, this value is even less than 50% [84,85]. By contrast, the 
yield (per area) gap of maize in Guizhou was roughly ranked in between these two 
groups, ranging from 46% in Qiandongnan to 89% in Bijie. Meanwhile, the growth in crop 
yield in some areas has slowed in recent years, like maize in African countries and rice in 
the southern part of China [29]. Therefore, closing the yield gap by different approaches 
in these regions requires further investigation, especially in less developed areas [85]. 



Remote Sens. 2021, 13, 1614 14 of 24 
 

For most crop species (excepting potato) in Guizhou Province, we found that the ef-
fect of fertilization has reached a tipping point, whereby increasing inputs of fertilizer 
alone will not achieve a significant rise in yield. Indeed, for some crops, additional ferti-
lizer investment could even cause a reduction in crop yield (Figure 6a). Three reasons can 
explain this. First, the absorption of nutrient elements for crops like wheat has reached 
“saturation” in the soil, resulting in a low additional increase of absorption being detected 
after the fertilization tipping point is reached [86]. Second, the facilitation of crop growth 
via fertilization requires reasonable consideration of the ratios of different fertilizers (N, P 
and K) specific to the local area’s nutrient limitations and the crop species physiology, 
rather than a prescribed addition of each [87]. Third, the overuse of inorganic fertilizers 
can lead to negative environmental consequences, indicated by hardening of the soil, de-
creasing fertility, strengthening pesticides, polluting air and water resources, which fur-
ther influences crop growth and production [88]. Therefore, more fertilization on crops in 
Guizhou Province could only cause more fertilizer balance left in the environment and 
less fertilization efficiency, further resulting in more environmental problems, which is 
illustrated by Figure 6c. According to statistics, average chemical fertilizer (N, P, and K) 
and pesticide use per hectare of cropland in China are between double and three times 
that of other countries/regions in the world [89]. Field surplus nitrogen (N) and farm dis-
posal N are major sources of water pollution in farming systems, which contaminates the 
water supply for livelihood [90]. Hence, it is very important to manage the investment of 
different agricultural chemicals more precisely and more rationally. Our results also 
demonstrated that an appropriate reduction in fertilizer use might benefit the crop yield 
in some regions, as well as causing an evident increase in fertilization efficiency. For ex-
ample, higher maize production in some mid-eastern prefectures existed with a distinct 
decrease in the N, P balance in Guizhou Province. However, the implementation of this 
strategy should fully consider the spatial heterogeneity. Among all the prefectures, Qi-
anxinan was highly recommended to reduce fertilization, resulting in slightly higher crop 
yield, reduced fertilizer balance and agricultural management cost savings. 

Furthermore, an appropriate increase of irrigation is able to favor crop yield in Gui-
zhou Province, aside from the economic and natural resources costs involved (Figure 6b). 
The lack of water resources for crops in Guizhou karst farmland was also shown by the 
high crop water stress index for irrigation due to seasonal rainfall shortage and aggra-
vated by the thin soil layer and poor water holding capacity in this area [91]. Although 
the impact of changing irrigation was less significant than that of fertilization (e.g., the 
increase of yield for potato by increasing irrigation is less than that from increasing ferti-
lization), it has a more stable and positive consequence for most species in most regions. 
Compared with irrigation rates in the North China Plain and other northern farming ar-
eas, rainfed farmland accounted for a high percentage in southwest China. This region 
may also encounter additional water scarcity under global warming [92]. Therefore, con-
sidering the local topography, fragmentation of cropland, and other environmental char-
acteristics, the combination of both “soft-path” (capturing water resources in small and 
check dams) and “hard-path” (with large, centralized, capital intensive irrigation projects 
and water storage infrastructure) may be necessary to enable sufficient irrigation water to 
meet the demand for crop growth in the future [93]. Moreover, it is notable that the im-
plementation of these development patterns is often limited by “economic water scarcity” 
resulting from the cost of building irrigation infrastructure under local financial condi-
tions [94]. 

Together, the continuous increase of fertilization and irrigation have a relatively lim-
ited effect on improving crop yield in Guizhou Province, except for potato and soybean. 
These indications can be used as a DST to target agricultural management to the areas 
where it will be most effective, and the stakeholders should consider other strategies to 
meet the local food demand. For example, optimizing plant developmental features, 
cross-breeding and hybridization, new genetic techniques and ecological engineering 
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strategies, such as increasing biodiversity and soil fertility in farmland to harmonize agri-
cultural development and the environment [95–97]. 

Other than the scale effect and errors brought by different spatiotemporal remote 
sensing datasets, this study's uncertainty was also caused by the “extrapolation” effect of 
ANNs. Indeed, just like traditional regression models, the simulation accuracy of a neural 
network also relies on the distribution of training and input data for simulation. Where 
there is limited training data (e.g., the input data for prediction is beyond the range of 
training), the corresponding trained network tends to have an arbitrary prediction or clas-
sification [98], which can reduce the accuracy of the predictions. Different from the tradi-
tional classification of computer graphics or remotely sensed images [99,100], we often set 
future scenarios for environmental parameters (like increasing fertilization and irrigation 
in this study or higher global temperature) beyond that found in historical records, which 
may put the data out of the range of the available training data in the region and further 
impact the accuracy of the predictions. This error may also be expanded if there are large 
differences between the data utilized for prediction and the available training data [101]. 
Therefore, we only set the absolute rate of change at 10% for fertilization and irrigation. 

5. Conclusions 
In this paper, we calculated the yield gap for 6 crop species grown in Guizhou Prov-

ince and used ensembled ANNs to predict the change in crop yield in Guizhou under 
different management scenarios of increasing/decreasing fertilization and irrigation. The 
conclusions are as follows: 
1) The ensemble of ANNs can improve the robustness of simulation of crop yield by 

multiple input factors, which is especially beneficial for predictions under different 
future scenarios; 

2) The selected crops' total yield has already realized over 60% for each of the theoretical 
maximum, with an average value of 72.5% in all cases. The yield gap in the study 
area is still larger than that in most developed countries; 

3) An appropriate increase in irrigation can benefit the crop yield for most Guizhou 
species, compared with increasing fertilization. Moderate reduction of fertilizer in 
this region may increase some crop production and enhance local fertilization effi-
ciency. Combing the management strategies of increasing fertilization and irrigation 
was beneficial for increasing the yield of potato and soybean, but this approach has 
a limited effect on the existing yield gap for most other crops in Guizhou Province. 
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Appendix A 

 
Figure A1. Simulation results of crop yield and fertilizer balance. 

 
Figure A2. Exploration of the management scenario of increasing N&P by 10%; where the parameters of the indicator (as 
percentage; green, left panel), time cost (purple dashed line, left panel), R (correlation coefficient of true value and fitted 
value; yellow, right panel) and their variations under the scenarios of increasing N&P fertilizer (red). 
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Figure A3. Exploration of the management scenario of increasing irrigation by 10%; where the parameters of the indicator 
(as a percentage; green, left panel), time cost (purple dashed line, left panel), R (correlation coefficient of true value and 
fitted value; yellow, right panel) and their variations under the scenarios of increasing irrigation (red). 
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Figure A4. Distribution of change of yield (t/ha) under the scenario of increasing fertilizer. 
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Figure A5. Distribution of change of yield (t/ha) under the scenario of increasing irrigation. 
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Figure A6. Distribution of change of yield (t/ha) under the scenario of decreasing fertilizer. 
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Figure A7. Impact on N, P balance in the prefectures by increasing (a) and decreasing (b) N&P 
fertilization. 
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