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ABSTRACT
We examined marathon performance of the same group of runners in relation to small changes in dry 
bulb temperature (Tdb) and wet bulb temperature (Twb) across 3 consecutive y, and investigated whether 
performance was poorer during an evening marathon compared with morning marathons. Marathon 
results were obtained from the 2017, 2018, and 2019 Standard Chartered Singapore Marathons. Tdb, Twb, 
Td, relative humidity, and absolute humidity were gathered for each marathon. K-means clustering and 
linear regressions were performed on 610 runners who participated in all three marathons. Analysis of 
the 610 runners’ marathon performance was contrasted with Tdb and Twb. Linear regressions were also 
performed on 190 runners filtered by percentile, yielding similar results. For clusters with similar Tdb from 
all runners K-means clustering, an increase in mean Twb by 1.5°C coincided with an increase in finishing 
time by 559 s (9.3 min) (p < 0.033). Twb hinders marathon performance more than Tdb, with each 
percentage rise in Tdb and Twb resulting in an increase in net time by 7.6% and 39.1%, respectively 
(p < 0.025). Male and female runners’ response to Tdb and Twb changes were similar (overlap in 95% 
confidence intervals for the respective regression coefficients). In conclusion, small variations in environ-
mental parameters affected marathon performance, with Twb impairing marathon performance more 
than Tdb. Marathon performance was likely better in the morning than evening, possibly due to time 
of day differences, along with unfavorable Tdb that superseded training effects and the effects of lower 
Twb.
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Introduction

Runner’s demographics, environmental conditions 
[1–3], training status [4,5], time of day [6], sun-
light exposure [7,8], wind [9], and perceptual com-
fort [10] are some of the myriad of factors that 
could influence marathon performance. In parti-
cular, marathon performance suffers as tempera-
ture rises, especially if held in hot and humid 
climates [1,2,11]. Furthermore, the physiological 
challenge of running a marathon is vastly different 
than running shorter distance races [12]. In addi-
tion, running an actual marathon is different from 
completing one under laboratory settings [13–15], 
requiring runners to alter their pace to compensate 
for increased physiological demands [3,15]. Thus, 

studies attempting to quantify the impact of envir-
onmental conditions on marathon performance 
should therefore adopt a multifactorial approach.

Climatic conditions can influence marathon 
performance [1–3]. The impact of temperature 
on marathon runners can be ascertained through 
measurements of dry bulb temperature (Tdb), wet 
bulb temperature (Twb), dewpoint temperature 
(Td), and wet bulb globe temperature (WBGT). 
Tdb is the ambient temperature of the air [16] 
and is often used as a measure to assess the 
impacts of environmental heat in both sporting 
or occupational activities [17,18]. Twb and Td are 
similar in the sense that both measurements relate 
to humidity [19,20], and are viable indicators of 
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marathon performance capability [11,21]. A more 
commonly used measurement is WBGT, which is 
influenced by multiple factors and is utilized for 
both sports planning and as performance indica-
tors [17,22,23]. Such measurements are hence 
paramount when attempting to evaluate the multi-
faceted effects of the environment on runners. 
Although the effects of different environmental 
conditions on marathon performance are well 
documented by prior studies, no previous research 
investigated the impact of small variations in 
environmental conditions on marathon 
performance.

In addition, previous analyses related to the 
impact of environmental conditions on marathon 
performance were based on the extraction of race 
results across the years for specific marathons [1– 
3]. Previous studies mostly examined the mara-
thon performance of runners across the years 
based on placing [2,3], or the total number of 
finishers [1]. As such, the manner that studies 
analyzed marathon performance affects how the 
impact of environmental conditions are quanti-
fied and must be considered to ensure that an 
extensive range of runners’ performance are cov-
ered. To our knowledge, no prior studies exam-
ined the impact of small variations in 
environmental conditions on the same cohort of 
runners’ marathon performance across multiple 
years. Moreover, it is likely that the cohort of 
runners in our study would have been better 
heat acclimatized to running in the heat due to 
Singapore’s persistent tropical climate, as com-
pared to runners in studies that feature temperate 
or cooler conditions. This, alongside the under-
representation of literature related to marathon 
performance in the tropics, showcases the novelty 
of our study.

The time of day also influences endurance per-
formance [6,24], with previous literature on the 
topic reporting conflicting results. Hobson et al. 
[6] demonstrated in a laboratory setting that 
endurance performance in warm conditions was 
superior in the morning than the evening, while 
other laboratory studies conducted in cool condi-
tions reported that endurance performance was 
better in the evening than the morning [24,25] or 
were the same for both the morning and evening 
[26,27]. As far as we know, no previous research 

examined the small variations in environmental 
conditions at different times of day using the 
same cohort of runners.

The purpose of this study was to examine the 
marathon performance of the same large cohort of 
runners in relation to the small changes in Tdb and 
Twb across 3 y to (1) quantify the impact of Tdb 
and Twb on marathon performance and (2) inves-
tigate whether marathon performance was poorer 
during an evening marathon compared to morn-
ing marathons due to differing environmental 
conditions. We hypothesized that marathon per-
formance would be affected by the small changes 
in Tdb and Twb and that marathon performance 
would be poorer in the evening marathon than in 
morning marathons.

Materials and methods

Participants

A total of 610 runners comprising 547 male run-
ners and 63 female runners were subsequently 
identified by name, gender, and age category. 
Runners must have participated in at least two of 
the three Standard Chartered Singapore 
Marathons from 2014 to 2016, and in all three of 
the 2017, 2018, and 2019 marathons to be included 
in the study. Prior marathon experience was 
observed to affect runners’ consecutive marathon 
performance [28], and Deaner et al. [29] showed 
that marathon pacing was more detrimentally 
affected amongst runners with < or = 3 y of 
marathon experience. Due to the lack of literature 
on the influence of training among the same 
cohort of runners for consecutive (similar) mara-
thons, we choose to assume that the inclusion 
criteria would minimize the effect of training on 
average. This is because included runners would 
have some level of experience in running the 
Standard Chartered Singapore Marathon prior to 
2017, and more highly trained runners experi-
enced minimal performance improvements with 
training compared to less trained runners [4]. 
However, due to constraints in sample size if the 
inclusion criteria were narrowed to runners who 
participated in all six of the 2014 to 2019 mara-
thons, the current inclusion criteria were used 
instead. Hence, runners who did not participate 
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in at least two of the three 2014, 2015, and 2016 
marathons and all three of the 2017, 2018, and 
2019 marathons were excluded. Marathon race 
results of the identified runners were extracted 
from the race results of each year. These data are 
in the public domain, therefore written and 
informed consent were not required from indivi-
dual athletes.

Procedure

To examine the differences in the year-to-year 
marathon performance of each runner, each run-
ner’s net time was analyzed. The 2017, 2018, and 
2019 Standard Chartered Singapore Marathons 
had similar routes consisting of urban and park 
areas alongside relatively flat terrain, with the 2017 
marathon starting at a different location as com-
pared to the 2018 and 2019 marathons, which 
shared the same starting location. Likewise, the 
2017 marathon had a different finishing location 
in comparison to the same finishing location 
shared by the 2018 and 2019 marathons. 
Marathon distance and topography were the 
same throughout all three marathons, and all 
these marathons were certified as IAAF Gold 
Label Road Races. Starting times for each mara-
thon were 0400 hr on both December 3, 2017and 
December 9, 2018, and 1800 hr on December 30, 
2019.

Tdb, Twb, Td, and relative humidity (RH) mea-
surements throughout the duration of each mara-
thon were provided by the Meteorological Service 
Singapore. Because RH contained information on 
both Tdb and Twb which complicates the analysis 
(high RH could be caused by low Tdb and/or high 
Twb), Twb was used as a proxy for moisture rather 
than RH (higher Twb corresponds to higher moist-
ure in the environment), and only Tdb and Twb 
were included subsequent analyses. Mean values of 
the environmental parameters (Tdb and Twb) 
experienced by each runner were calculated across 
the runner’s marathon duration and across loca-
tions. Since the mean environmental parameters 
experienced by each runner were based on the 
runner’s net time, and the environmental para-
meter measurements at locations throughout the 
duration of the marathon, different runners would 
hence experience different mean environmental 

parameter values. As absolute humidity is often 
the main factor that influences marathon perfor-
mance [30,31], mean values of absolute humidity 
experienced by each runner were also calculated to 
better elucidate the environmental parameters’ 
influence on marathon performance. Specific 
humidity values for each minute were first derived 
from the Td values for each minute via the MetPy 
Version 1.0 Python package and used to calculate 
the absolute humidity values for each minute 
based on the Ideal Gas Law, with the Individual 
Gas Constant of Air being 287.05 J/kg/K. 
Subsequently, the absolute humidity experienced 
by each runner was then averaged based on each 
runner’s net time.

Statistical analyses

Data were analyzed using open-source packages in 
Python Programming Version 3.7.6 and statistical 
significance was accepted as p < 0.05 (before 
Bonferroni correction). Descriptive data are pre-
sented as mean ± SD. Pairwise t-tests were used to 
compare net time across the years (2017 and 2018, 
2017, and 2019, and 2018 and 2019, respectively) 
for all identified runners, male runners alone, and 
female runners alone. Two-sample z tests were 
used to examine the statistical significance of the 
differences in mean for net time, and the environ-
mental parameters across all identified runners, 
male runners alone, and female runners alone. 
Standard deviations of the runners’ net time were 
calculated by multiplying coefficient of variation 
(CV) and mean net times (for all runners, male 
runners and female runners, respectively). The CV 
value used in our analysis was 2.5%, as it was 
reported that CV ≤2.5% should be employed 
when examining the smallest worthwhile changes 
in running performance for full marathons [32]. 
These standard deviations in net time were then 
used as proxies for the smallest effect size of inter-
est (SESOI) for marathon performance. 
Equivalence tests (ET) via two-one sided test 
(TOST) with the SESOI set as 2.5% were then 
carried out for comparisons of marathon net 
time, and statistical equivalence was accepted as 
p < 0.05 (before Bonferroni correction).

The runner distribution of net time was not 
normal according to the Shapiro–Wilk test, 
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Kolmogorov–Smirnov (KS) test and KS test with 
Lilliefors correction. However, it was found that 
this was due to extreme data points (very small or 
very large runners’ net times) deviating from nor-
mality and causing the overall distribution to be 
not normal. Furthermore, this violation of the 
normality assumption would not have affected 
the parametric procedures used in this study as 
the sample size was large enough [33], and para-
metric tests should still be used for non-parametric 
or heavily skewed data [34].

Cluster analysis using K-means was imple-
mented to separate runner characteristics into 
groups or clusters to better elucidate any possible 
relationship between the runners’ marathon net 
timings and environmental parameters. K-means 
is a clustering technique, which separates 
a dataset into K number of clusters such that 
the characteristics of members within each clus-
ter are similar, while the characteristics of mem-
bers across clusters are different. The similarity 
of members’ characteristics within a cluster is 
measured by the within-cluster sum of square 
distance, which is the total sum-of-square dis-
tance (Euclidean distance) between members of 
the cluster and the clusters’ centroid (mean of 
members in a cluster). K-means would iteratively 
select centroids with the lower within-cluster 
sum of square distance. K-means clustering was 
performed on 1830 data points (610*3 data 
points), with each runner’s data row for 
each year being an individual entry, for all run-
ners, male runners alone, and female runners 
alone.

Pertaining to the K-means clustering algorithm, 
clusters were first initialized by randomly choosing 
samples within the dataset to be represented as its 
centroid, meaning that the starting value of cen-
troids bears the value of the chosen sample. 
Subsequently, all samples within the dataset were 
allocated to the cluster with the nearest centroid 
based on Euclidean distance between the samples 
and the centroid. For each cluster, a new centroid 
was then created by taking the mean values of its 
members and the difference between the new and 
starting value centroid of each cluster was calcu-
lated. This generation of new centroids and differ-
ences was then repeated until the difference 
between the new and previous centroid of the 

clusters was below a threshold or the number of 
iterations has exceeded a defined maximum 
number.

In our analysis, K-means was implemented 
using sci-kit-learn library with a maximum itera-
tion of 500 and a threshold of 1� 10� 4. 
Variables used for K-means were the runners’ 
marathon net timings and the Tdb and Twb 
experienced by the runners. Since K-means 
depends on Euclidean distance to perform clus-
tering, it is critical that variables are of the same 
order of magnitude to ensure that clustering 
does not rely on variables with larger orders of 
magnitude. As the runners’ marathon net tim-
ings are a few orders of magnitude larger than 
Tdb and Twb, all variables were standardized to 
range from 0 and 1 using the Min-Max Scaler 
prior to K-means algorithm implementation as 
follows (Equation 1):

Z ¼
X � min Xð Þ

max Xð Þ � min Xð Þ
(1) 

where Z is the scaled value based on the Min-Max 
Scaler and X is the original value of the variable.

An issue with implementing K-means is deter-
mining the appropriate K number of clusters to 
partition the dataset. This can be circumvented by 
iteratively implementing K-means with different 
K values and inspecting the changes in the within- 
cluster sum of squares as K increases. For our 
analysis, K value ranged from 2 to 14, and though 
using more clusters (higher K values) to partition 
the dataset will reduce the within-cluster sum of 
square distance (more coherent clusters), the large 
number of clusters would make cluster analysis 
and interpretation complex. This need to balance 
the choice of K value and the within-cluster sum 
of square distance can be addressed by using the 
“Elbow Method” [35]. The “Elbow Method” iden-
tifies the largest K value after which the decrease in 
within-cluster sum of square distance is signifi-
cantly reduced, while disregarding subsequent 
K values that lead to marginal decreases in the 
within-cluster sum of square distance [35]. The 
result of K-means is clusters of runners with simi-
lar net time who experienced similar environmen-
tal parameters, and since a runner’s marathon year 
was not a variable for K-means, the same runner’s 
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data rows (i.e. 2017 and 2018 data rows) might 
appear within the same cluster.

The by-product of our cluster analysis is the 
observation of two distinct groups with different 
marathon performance levels (non-overlapping 
interquartile ranges in net time between both 
groups) across the clusters determined by 
K-means: High Marathon Performance level 
(HMP) and Low Marathon Performance level 
(LMP). Additionally, to account for the effect of 
training across the years, analysis of runners who 
were consistently in HMP and LMP respectively 
across the 3 y was performed.

The benefits of K-means clustering are twofold in 
our analysis. Firstly, naturally occurring groups within 
the data could be discovered and their characteristics 
summarized, so that the preliminary inspection of 
possible relationships between runners’ net time and 
the environmental parameters could be performed. 
This is accomplished by comparing the distribution 
of these variables across the derived clusters. 
Moreover, the allocations of runners in the HMP 
and LMP could be done in an objective manner via 
K-means. Secondly, the environmental parameters’ 
data was generated in a way that causes it to be 
dependent on runner timings since mean environ-
mental parameters were calculated according to run-
ners’ net times. However, by performing K-means 
clustering that utilizes all variables (environmental 
parameters and net time), groups of runners with 
similar timings were segregated as seen in the separa-
tion of HMP and LMP. Thus, any variation in timing 
within HMP and LMP would then be likely due to the 
variations in environmental parameters.

Additionally, to further supplement the 
K-means clustering analysis, runners who were 
consistently below the 25th percentile or above 
the 75th percentile of each year’s marathon, from 
2017 to 2019, within the selected sample were also 
filtered to obtain another set of data pertaining to 
HMP and LMP, respectively. This method yielded 
570 data points (190*3 data points). This is 
because despite the delineation of HMP and LMP 
via percentiles being clearer than that of K-means 
clustering, using percentiles to delineate HMP and 
LMP drastically limited the sample size and is 
more subjective than K-means clustering due to 
the arbitrariness of selecting percentile values.

Linear regressions were subsequently per-
formed, using data from the 2017 and 2018 
Standard Chartered Singapore Marathons, on all 
identified runners across HMP and LMP groups of 
runners to quantify the effects of environmental 
parameters on runners’ marathon net time. This 
was done for both the K-means clustering derived 
HMP and LMP, and for the percentile derived 
HMP and LMP. Data from 2019 were excluded 
in the linear regression analysis to minimize con-
founding by time-of-day effects and differences 
between day (2017–2018) and night (2019) 
Standard Chartered Singapore Marathons.

Regression was performed using percentage 
changes in net time as the dependent variable 
and percentage changes in Tdb and Twb as the 
independent variables. Percentage changes in net 
time were calculated for each runner, using 
the year 2017 as the baseline for percentage change 
calculation as follows (Equation 2):

Δtime2018 %ð Þ¼ðtime2018 � time2017Þ

� ðtime2017Þ � 100
(2) 

where time2018 was the runner’s net time during the 
2018 marathon, and time2017 was the runner’s net time 
during the 2017 marathon. The same calculations 
were done for Tdb and Twb to derive the percentage 
change for the respective environmental parameters.

As multi-collinearity affects regression, the 
regression analysis was performed individually on 
the percentage changes in Tdb and Twb rather than 
on both variables in a multiple linear regression 
analysis. This is due to the strong correlation 
observed between Td and Twb, and between Tdb 
and Twb. This is because Twb is the temperature of 
air that could be cooled to through evaporation, 
but given a fixed extent of evaporation, Tdb and 
Twb would likely move in tandem to one another 
(a strong correlation was observed). Furthermore, 
Twb and Td are both highly similar, as higher Twb 
affects cooling temperature while higher Td affects 
the extent that sweat evaporation can occur which 
affects cooling temperature.

The regression formulas relating the percentage 
change in net time with the percentage changes in 
Tdb and Twb respectively are as follows 
(Equations 3 and 4):
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Δ time %ð Þ¼ α TdbΔ Tdb %ð Þþ intercept (3)  

Δ time %ð Þ¼ α TwbΔ Twb %ð Þþ intercept (4) 

where αTdb and αTwb are the coefficients of regres-
sion for Tdb and Twb, respectively; ∆time(%) is 
the percentage change in net time; ∆Tdb(%) is 
the percentage change in Tdb; and ∆Twb(%) is the 
percentage change in Twb.

For regression on data samples segregated by 
HMP and LMP groups, runners that were consis-
tently in the same group for HMP and LMP 
every year were selected.

Results

Age distribution of runners

Figure 1 illustrates the age and sex distribution of 
runners in 2017. As of 2017 for female runners, 7 
were aged 20–29, 14 were aged 30–39, 32 were 
aged 40–49 and 10 were aged 50–59. Likewise for 
male runners, 30 were aged 20–29, 138 were aged 
30–39, 208 were aged 40–49, 152 were aged 50–59 
and 19 were aged 60–69. The 2018 and 2019 dis-
tributions also consisted of the same 63 female 
runners and 547 male runners.

The age and sex distribution of the 190 runners 
consistently within the 25th and above the 75th 

percentile each year was similar to that of Figure 1, 
with 23 female runners and 167 male runners.

Clustering results for all runners

Mean marathon performance between 2017 and 2018 
was similar (mean difference = 65 ± 2181 s, ET 
p < 0.017). Mean marathon performance was slower 
in 2019 than in 2017 (mean difference = 320 ± 2306 s, 
p < 0.017) and 2018 (mean difference = 385 ± 2207 s, 
p < 0.017). Marathon performance for all runners in 
2018 was the fastest of the 3 y (mean net 
time = 19,733 ± 3748 s). For male runners alone, 
mean marathon performance between 2017 and 
2018 was similar (mean difference = 73 ± 2148 s, ET 
p < 0.017), but mean marathon performance was 
slower in 2019 than in 2017 (mean differ-
ence = 323 ± 2266 s, p < 0.017) and 2018 (mean 
difference = 396 ± 2158 s, p < 0.017). For female 
runners alone, mean marathon performance were 
similar between 2017 and 2018 (mean differ-
ence = −5 ± 2474 s, ET p < 0.017), between 2017 and 
2019 (mean difference = −295 ± 2646 s, ET p < 0.017) 
and between 2018 and 2019 (mean differ-
ence = −291 ± 2616 s, ET p < 0.017). Figure 2 illustrates 
the environmental parameters experienced by runners 
across the years. Figure 3 illustrates the absolute 
humidity and relative humidity experienced by run-
ners across the years. Noteworthily, a small difference 

Figure 1. Distribution of age and sex of runners that took part in the 2017 Standard Chartered Singapore Marathon. This same 
sample of runners also participated in the 2018 and 2019 Standard Chartered Singapore Marathons.
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between the mean absolute humidity of 2017 and 2018 
was observed (difference in mean = −0.11 g/m3, 
p < 0.017). This indicates that the mean absolute 
humidity of 2017 and 2018 were very similar to each 
other (mean absolute humidity = 23.86 ± 0.083 g/m3 

and 23.96 ± 0.12 g/m3, respectively).

Performing K-means clustering on all runners 
and male runners alone, K = 6 was selected by 
observing the within-cluster sum of square for 
a range of number of clusters (2–14 clusters), 
and identifying the number of clusters after 
which the changes in the within-cluster sum of 

Figure 2. (a) Tdb and (b) Twb experienced by all runners across the years. * denotes difference (p < 0.017) between 2019 to 2017 and 
2018. ** denotes difference (p < 0.017) between 2018 and 2017.

Figure 3. (a) Absolute humidity and (b) Relative humidity experienced by all runners across the years. * denotes difference 
(p < 0.017) between 2019 to 2017 and 2018. ** denotes difference (p < 0.017) between 2018 and 2017.
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square becomes insignificant (in this case K = 6). 
For female runners alone, the K-means clustering 
resulted in K = 5 being selected, but a clear dis-
tinction between HMP and LMP clusters was still 
observed. When analyzing the clustering results 
for all runners, a total of 1830 data rows (derived 
from 610 runners) across 6 clusters were pro-
duced. Figure 4(a) illustrates clusters 1, 2, and 5 
which were designated as HMP, and clusters 3, 4, 
and 6 which were designated as LMP. The largest 
difference between HMP and LMP clusters was 
between clusters 1 and 3, respectively (difference 
in mean = −7622 s, p < 0.0033), while the smallest 
difference between HMP and LMP clusters was 
between clusters 5 and 6, respectively (difference 

in mean = −3942 s, p < 0.0033). Figures 4(b-c) 
illustrate the distribution of the environmental 
parameters across the six clusters for all runners.

The analysis performed on runners that were 
consistently in HMP or LMP across the 3 y yielded 
218 runners in HMP and 228 runners in LMP, and 
runners that were not consistently in HMP or LMP 
each year were excluded. Table 1 illustrates the dif-
ferences in mean net time and environmental para-
meters between 2017, 2018, and 2019 for HMP and 
LMP. There was greater improvement in mean 
marathon performance for HMP than LMP runners 
across 2017 and 2018 (difference in mean = 392 ± 1266 
s p < 0.017 and 137 ± 2060 s ET p < 0.017, respec-
tively). Conversely, mean marathon performance 

Figure 4. a) Marathon net time for all runners, b) Tdb across experienced by all runners and c) Twb experienced by all runners across 
the clusters generated from the all runners’ K-means clustering analysis. The diamonds represent outliers with respect to the cluster’s 
interquartile range. *** denotes difference (p < 0.0033) between cluster 1 to clusters 2, 3, 4, 5 and 6.
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deteriorated from 2018 to 2019 for both HMP and 
LMP (difference in mean = −486 ± 1396 s p < 0.017 
and −421 ± 2116 s p < 0.017). For HMP, the mean 
net times for 2017 and 2019 were similar (ET 
p < 0.017). For LMP, the mean net times between 
2017 and 2018 was similar (ET p < 0.017).

Clustering results for male runners

When analyzing the clustering results for male 
runners alone, a total of 1641 data rows (derived 
from 547 male runners) across 6 clusters were 
produced. Clusters 2, 3, and 4 were designated as 
HMP, and clusters 1, 5, and 6 were designated as 
LMP. The largest difference between HMP and 
LMP clusters was between clusters 3 and 5, respec-
tively (difference in mean = −7540, p < 0.0033), 
while the smallest difference between HMP and 
LMP clusters was between clusters 4 and 1, respec-
tively (difference in mean = −4018, p < 0.0033).

Clustering results for female runners

When analyzing the clustering results for female 
runners alone, a total of 189 data rows (derived 
from 63 female runners) across 5 clusters were 
produced. Clusters 3, 4 and 5 were designated as 
HMP, while clusters 1 and 2 were designated as 
LMP. The largest difference between HMP and 
LMP clusters was between clusters 3 and 2, respec-
tively (difference in mean = −7221, p < 0.005), 
while the smallest difference between HMP and 
LMP clusters was between clusters 4 and 1, respec-
tively (difference in mean = −6572, p < 0.005).

Impact of environmental parameters on all 
runners

Table 2 illustrates the differences in mean for net 
time and environmental parameters for chosen pairs 
of clusters from the all runners, male runners, and 
female runners’ K-means clustering analyses. Each 
pair of clusters was chosen because the differences 
in mean for Tdb were similar (see Table 2). For all 
runners’ and male runners’ clusters, increases in Twb 

when Tdb were similar coincided with increases in 
net time (p < 0.0033). This observation was absent 
for the female runners’ clusters.

Figure 5(a) illustrates the regression coefficients 
for Tdb for all K-means clustering-filtered runners, 
with the regression coefficient for LMP being higher 
than that for HMP (no overlap in 95% confidence 
intervals). Figure 5(b) illustrates the regression coef-
ficients for Twb for all K-means clustering-filtered 
runners, with the regression coefficients for LMP 
and HMP being similar (overlap in 95% confidence 
intervals). Furthermore, the regression coefficient 
for Tdb is ~7.6 and the regression coefficient for 
Twb is ~39.1 across all performance groups 
(p < 0.025, see Figure 5), suggesting that each per-
centage rise in Tdb and Twb leads to an increase in net 
time by 7.6% and 39.1%, respectively. The findings 
generated by the regression analysis for Tdb and Twb 
for all percentile-filtered runners were similar to that 
of Figure 5. The regression coefficients for Tdb for 
LMP, HMP and across all performance groups were 
11.05, 7.03, and 7.64, respectively. The regression 
coefficients for Twb for LMP, HMP, and across all 
performance groups were 50.04, 27.20, and 39.08, 

Table 1. Differences in mean for net time and environmental 
parameters between 2017, 2018 and 2019 for HMP and LMP, 
respectively.  

Net Time Tdb Twb

(s) (%) (°C) (%) (°C) (%)

2017–2018 HMP 392 2.4 1.0 3.7 0.2 0.9
LMP 138 0.6 0.6 2.2 0.2 0.6

2017–2019 HMP −93 −0.6 −0.7 −2.7 1.4 5.3
LMP −284 −1.2 0.0 0.2 1.6 6.0

2019–2018 HMP −485 −3.1 −1.8 −6.6 1.2 4.5
LMP −422 −1.8 −0.6 −2.1 1.4 5.4

For HMP, the difference in mean net time between 2017 and 2019 was 
similar (ET p < 0.017). For LMP, the difference in mean net time 
between 2017 and 2018 was similar (ET p < 0.017). 

Table 2. Differences in mean for net time and environmental 
parameters between selected cluster pairs.

Net Time Tdb Twb

(s) p-Value (°C) p-Value (°C) p-Value

Cluster 3 & 4 (All  
runners)

559 0.001 −0.1 0.000 1.5 0.000

Cluster 5 & 6 (Male 
runners)

558 0.002 −0.1 0.000 1.5 0.000

Cluster 1 & 2 (Female 
runners)

−447 0.421 −0.1 0.481 1.5 0.000

Cluster 3 from the all runners’ analysis, cluster 5 from the male runners’ 
analysis and cluster 1 from the female runners’ analysis comprised of 
runners’ performance in 2017 and 2018. Where else cluster 4 from the 
all runners analysis, cluster 6 from the male runners’ analysis and 
cluster 2 from the female runners’ analysis comprised of runners’ 
performance in 2019 only. 
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respectively. Notable differences compared to the 
regression analysis for all K-means clustering- 
filtered runners were that the regression coefficients 
for Tdb for LMP and HMP were similar (overlap in 
95% confidence intervals), while the regression coef-
ficient for Twb for LMP was higher than that for 
HMP (no overlap in 95% confidence intervals). 
Regardless, the influence of Tdb and Twb on net 
time was still observed for LMP, HMP, and across 
all performance groups.

Figures 6 illustrate the regression coefficients for 
Twb for K-means clustering-filtered male and 
female runners. The regression coefficients for 
Twb for male runners (between 34.33 and 43.41) 
and female runners (between 27.58 and 53.86) 
across all performance-level groups were similar 

(overlap in 95% confidence intervals for male and 
female runners). For Tdb, regression coefficients 
across gender and across all performance groups 
were similar (overlap in 95% confidence intervals). 
The findings generated by the regression analysis 
for Twb for all percentile-filtered male and female 
runners were similar to that of Figure 6, with the 
exception of the regression coefficients for female 
LMP and HMP runners being less conclusive 
(p > 0.025). The regression coefficients for Twb 
for male runners for LMP, HMP and across all 
performance groups were 47.34, 28.40, and 38.87, 
respectively, while the regression coefficient for 
Twb for female runners across all performance 
groups was 40.72. As such, the influence of Twb 
on net time across genders was still observed 

Figure 5. a) Regression coefficients for Tdb for all performance levels of runners, b) Regression coefficients for Twb for all performance 
levels of runners. The lines and dashes represent the range of values for the 95% confidence interval. # denotes statistical 
significance (p < 0.025) for 95% confidence interval within the group.

Figure 6. (a) Regression coefficients for Twb for male runners, (b) regression coefficients for Twb for female runners. The lines and 
dashes represent the range of values for the 95% confidence interval. # denotes statistical significance (p < 0.025) for 95% 
confidence interval within the group.
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across all performance groups; however, the 
regression coefficients for Twb for female LMP 
and HMP runners were less conclusive (p > 0.025).

Discussion

The principal finding of this study was that rising Tdb 
and Twb coincide with increases in net time, with the 
effect on marathon performance being greater for Twb 
than Tdb (see Figure 5). Our findings suggest that 
changes in Twb have a greater impact on marathon 
performance than Tdb, which differ from previous 
studies [1,36] that reported how Tdb has the greatest 
influence on marathon performance as compared to 
other environmental parameters. The larger influence 
of Twb on marathon performance could be attributed 
to the fact that Twb as a parameter encompasses Tdb, 
humidity, and wind conditions. Tdb as a parameter 
directly influences heat exchange between the body 
and the environment, impacting skin and potentially 
core temperature. Rises in Tdb increase the heat strain 
experienced by the body and the need for the body to 
dissipate this heat to prevent hyperthermia [37–39]. 
This, in tandem with how humidity and wind condi-
tions can affect marathon performance [1,9], would 
suggest that Twb (with its many variables encompassed 
within itself) would have a greater influence on mara-
thon performance as compared to Tdb. Additionally, 
the observations from Table 2 also suggest the impor-
tance of evaporative heat loss for marathon perfor-
mance among the all runners’ and male runners’ 
clusters. Since the body’s evaporative heat loss cap-
ability is influenced by Twb, and consequently RH as 
RH includes information from Tdb and Twb, higher 
Twb would result in higher RH values given similar Tdb 
values. High RH values impair the ability to evaporate 
sweat [40], which could lead to greater heat strain [41]. 
However, this observation was absent when observing 
the female runner clusters, which could be attributed 
to the smaller size of the female runner clusters.

The influence of running capability is ambiguous 
when determining the impact of Twb on a runner’s 
marathon performance. An overlap in 95% confi-
dence intervals for the regression coefficients for Twb 
for LMP and HMP was present when performing the 
regression analysis with K-means clustering-filtered 
runners (see Figure 5(b)), but absent when doing so 
with percentile-filtered runners. This is because 

despite drastically reducing the sample size (as com-
pared to K-means clustering), the delineation of per-
centile-filtered runners into HMP or LMP was clearer 
(no overlaps in net time between HMP and LMP 
groups were observed). It is likely that some slower 
HMP runners, who belong to LMP but were segre-
gated into HMP via K-means clustering, contributed 
to higher variability within HMP and influenced the 
95% confidence interval for HMP to be larger (and 
overlap with the 95% confidence interval for LMP). 
The impact of Tdb on a runner’s marathon perfor-
mance was likely influenced by running capability. 
From the data, Tdb has a greater impact on the LMP 
runners than the HMP runners (regression coeffi-
cient = 10.48 and 6.87, respectively, see Figure 5(a)). 
Similar findings were also observed when the regres-
sion analysis was carried out on percentile-filtered 
runners, with a notable difference being that the 
regression coefficient for Tdb for LMP and HMP run-
ners were similar (overlap in 95% confidence inter-
vals). As mentioned prior, the delineation of 
percentile-filtered LMP and HMP runners was clearer 
than that of K-means clustering, but resulted in 
a drastic reduction in sample size (from 610 to 190 
runners). This reduction in sample size could have led 
to the overlap in 95% confidence intervals for the 
regression coefficients of Tdb for LMP and HMP. 
With respect to Figure 5 and the results from the 
regression analysis performed on percentile-filtered 
runners, it is likely that HMP runners were more 
tolerant toward increasing temperature. This was sup-
ported by previous studies [2,36,42] that ascertained 
the influence of weather on both elite and non-elite 
marathon runners. Evidence also suggests that slower 
runners were exposed to environmental parameters 
for a longer duration [2] which prolongs the negative 
effects of increasing temperature. Slower runners also 
tended to run in closer proximity to other runners in 
clustered formations [43,44], which might result in 
greater heat stress and reduced heat loss ability for 
runners [45,46]. However, it should also be acknowl-
edged that endurance performance in the heat can be 
attributed to the multifactorial regulation of factors 
such as athlete experience [47], perceived effort [10], 
endurance physiology [48] and heat acclimation status 
[49]. Hence, it is likely that running capability has the 
potential to influence the impacts of Twb and Tdb on 
runners’ marathon performance.
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The effects of Twb on male and female runners 
across all marathon performance levels were similar. 
When comparing across all marathon performance 
levels of runners, both male and female runners 
showed no difference in regression coefficients 
(overlap in 95% confidence intervals for male and 
female runners for both K-means clustering-filtered 
and percentile-filtered runners), resulting in similar 
responses to Twb among male and female runners. 
Male and female runners also showed similar 
responses to Tdb (overlap in 95% confidence inter-
vals for male and female runners for both K-means 
clustering-filtered and percentile-filtered runners). 
Our findings agree with previous studies [1,2,50] 
suggesting that there are minimal to no differences 
in the responses of male and female runners toward 
increasing heat stress. However, it is worth noting 
that factors such as menstrual cycle phase [51] and 
the heat acclimation differences among males and 
females [52,53] were not controlled for due to the 
present study’s design. These factors could have 
affected the results obtained, though the influence 
of menstrual cycle phase would likely be eclipsed by 
the influence of environmental conditions [54]. It 
was also observed that the 95% confidence interval 
of the regression coefficients for Twb for female LMP 
and HMP runners were inconclusive (p > 0.025). 
However, this is possibly due to the small sample 
size of 23 female runners when runners were filtered 
by percentile, and not because LMP and HMP 
female runners were more tolerant to temperature 
fluctuations. Regardless, there are minimal differ-
ences in the manner that male and female runners 
respond to Twb and Tdb changes.

Alongside environmental parameters, time 
of day and training effect also influences marathon 
performance. As it is challenging to ascertain the 
effects of time of day and environmental para-
meters separately, we focused on the 2017 and 
2018 results to examine the environmental para-
meters’ effect on marathon performance. First, this 
is due to training effect being potentially mini-
mized following the initial inclusion criteria for 
runners. The initial inclusion criteria excluded 
runners who had 0 or 1 y of Standard Chartered 
Singapore Marathon experience prior to 2017, who 
might have experienced greater marathon perfor-
mance improvements per year compared to run-
ners with at least 2 y of Standard Chartered 

Singapore Marathon experience prior to 2017. In 
tandem with the minimized training effect, time-of 
-day effects would also be at a minimum since 
both 2017 and 2018 marathons started at 
0400 hr, hence differences in marathon perfor-
mance would likely be attributed to the environ-
mental parameters’ influence. From Table 1, across 
2017 and 2018, the improvement in marathon 
performance for runners consistently in HMP 
was greater than that for runners consistently in 
LMP (2.4%, p < 0.017 and 0.6%, ET p < 0.017, 
respectively, see Table 1). These improvements in 
marathon performance for HMP and LMP run-
ners could be attributed to more favorable envir-
onmental parameters in 2018 than 2017 (see 
Table 1 and Figure 2), in conjunction with the 
minimized training effect. The 2.4% and 0.6% 
marathon performance improvements for HMP 
and LMP runners respectively were also similar 
to previous literature suggesting that endurance 
performance improves by approximately 1–3% 
per year with constant training [4,5,55]. Due to 
the observational nature of this study and the fact 
that the runners’ data were extracted from a public 
domain, it is difficult to ascertain or control the 
training history of every runner prior to each 
marathon. Assuming that the 2.4% and 0.6% 
improvements for HMP and LMP runners respec-
tively were entirely due to training effect, our 
findings still show that unfavorable environmental 
parameters hinder marathon performance more 
than training could improve performance. Each 
percentage rise in Tdb and Twb results in an 
increase in net time by 7.6% and 39.1%, respec-
tively (see Figure 5), and it is likely that the 2.4% 
and 0.6% improvements for HMP and LMP run-
ners respectively were due to training effect and 
the effect of favorable environmental parameters 
in tandem, rather than training effect alone. 
Additionally, the clinical difference in mean abso-
lute humidity between 2017 and 2018 was unre-
markable as seen from the small difference in 
mean of −0.11 g/m3 (p < 0.017, see Figure 3(a)). 
This indicates that the 2.4% and 0.6% improve-
ments for HMP and LMP respectively were largely 
unaffected by absolute humidity differences. Thus, 
the influence of environmental parameters on 
marathon performance potentially supersedes 
that of training effect.
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In the case of time of day, we focused on the 
2018 and 2019 results to examine the effects of 
time of day on marathon performance. It was 
observed that despite the lower Twb in 2019 than 
2018 and the additional year of training from 2018 
to 2019, marathon performance in 2019 was worse 
than that in 2018 (mean difference = −385 ± 2207 
s, p < 0.017). This worsened marathon perfor-
mance in 2019, rather than an improvement, 
could possibly be attributed to the 2019 marathon 
being held at a different time of day. Our findings 
agree with the study by Hobson et al. [6], who 
reported that in thermally stressing conditions, 
exercise capacity was greater in the morning than 
in the evening likely because of a lower initial core 
temperature, which results in lesser heat stress 
experienced in the morning [37–39]. This suggests 
that the possible improvements in marathon per-
formance due to training, the more favorable Twb 
in 2019 as well as the more favorable absolute 
humidity in 2019 (see Figure 3(a)) were super-
seded by the reduced ability to exercise in the 
evening than in the morning [6]. Though it should 
be noted that Tdb was higher in 2019 than 2018 
(see Figure 2(a)) which might have contributed to 
the worsened marathon performance in 2019, the 
different time-of-day effect in 2019 would have 
arguably a larger role in affecting 2019’s marathon 
performance. Furthermore, when comparing the 
current (2017 and 2018 data only) regression ana-
lysis with a regression analysis utilizing 2017 and 
2019 data only, it was observed that the relation-
ship between Twb and net time, and the relation-
ship between Tdb and net time was no longer 
present. This highlights how it is possible that 
other factors, such as time of day, convolute the 
relationship between environmental parameters 
and net time.

With respect to restricting the study cohort of run-
ners to those that took part in all Standard Chartered 
Singapore marathons from 2017 to 2019, by including 
race results prior to the 2017 marathon and compar-
ing within the runners who participated in all mara-
thons, the magnitude of confounders would be further 
exacerbated. Hence, the analysis was restricted to 
Standard Chartered Singapore marathons from 2017 
to 2019 only, with race results from 2014 to 2016 being 

used for the initial inclusion criteria for runners. The 
small variation in environmental parameters of the 
dataset within this study could be misinterpreted as 
a limitation since previous studies [2,3,21] on envir-
onmental parameters and marathon performance 
typically involve wider variations in environmental 
parameters. Noteworthily, apart from environmental 
parameters, factors not discussed in this study such as 
runners’ behavior and physiology, also bear 
a profound role in influencing marathon performance 
[56]. For instance, running behavior, runners’ beha-
vior toward rehydration during a marathon, and their 
individual physiological differences can affect mara-
thon performance [43,57–59]. Hence, future studies 
attempting to elucidate the management of heat strain 
for marathon performance should account for these 
factors.

Additionally, it should be noted that during 
exercise in the presence of heat stress, there is 
a prevalent dependency on sweat evaporation 
for heat exchange, which is influenced by the 
water vapor pressure gradient between the skin 
and air, alongside air movement and wetted area 
[60]. Thus, the environmental parameters used 
in this study would be limited in the sense that 
they do not directly determine the rate of sweat 
evaporation, which is instead influenced by 
absolute humidity [61,62]. However, it was 
observed that absolute humidity did not con-
found our findings of the environmental para-
meters and marathon performance across 2017 
to 2019, hence elucidating the influence of the 
environmental parameters on marathon 
performance.

Consequently, this study did reveal that even 
small variations in temperature resulted in 
changes to marathon performance, suggesting 
that human performance could be affected by 
slight alterations to Tdb and Twb, with each per-
centage rise in Tdb and Twb resulting in an 
increase in completion time by 7.6% and 39.1%, 
respectively (see Figure 5). One limitation of this 
study is the difficulty in ascertaining the exact 
influence of time of day on runners’ marathon 
performance due to the study’s design. Although 
Hobson et al. [6] reported that exercise capacity 
was greater in the morning than in the evening, 
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more work is necessary to fully elucidate the 
effects of time of day on marathon performance, 
especially in thermally stressing conditions like the 
tropics.

Conclusions

Small variations in environmental parameters 
affect marathon performance, with Twb having 
a larger impact than Tdb. The running capability 
of runners could potentially influence how runners 
respond to Tdb and Twb changes. The responses of 
male and female runners to Tdb and Twb are simi-
lar. Marathon performance was observed to be 
better in the morning than evening, possibly due 
to the detrimental effect of a different time of day, 
as well as increases in Tdb opposing the potential 
improvement in marathon performance from 
prior years of training and favorable Twb. Despite 
the constraints faced by this study due to unknown 
variables such as the training history of runners, 
the present findings highlight how small variations 
in Tdb and Twb alter marathon performance. Time- 
of-day effects potentially supersede favorable 
environmental parameters and absolute humidity 
along with training effect. This enables future stu-
dies to factor in small variations in Tdb and Twb, 
and the influence of time of day, when investigat-
ing the impacts of other environmental factors on 
marathon performance, especially for marathons 
in the tropics.
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