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Abstract

Photonic quantum technologies rely on the deterministic preparation of qubits en-

coded in quantum states of light: advances in this field are therefore contingent

with the development of reliable photon sources. In this Thesis, I address this chal-

lenge presenting a novel and versatile approach to single-photon generation based

on nonlinearity engineering in parametric down-conversion. By tailoring the ef-

fective nonlinearity of a crystal, this scheme enables access to the spectral degree

of freedom of photonic qubits with unprecedented precision, and translates into a

number of different applications based on the manipulation of the biphoton spec-

tral/temporal properties. A thorough theoretical and numerical description of such

approach is provided and paired with experimental benchmarks conducted in three

main experiments. The first experiment tackles the single-photon spectral purity

problem in down-conversion sources: pure photons are in fact required for achiev-

ing perfect two-photon interference, a keystone of most quantum protocols. The

second experiment demonstrates the feasibility of nonlinearity engineering to pro-

duce tailored entanglement encoded in the spectrum of biphoton states. Finally, the

third experiment certifies the compatibility of this technique with different degrees

of freedom, demonstrating hyperentanglement of spatially and spectrally structured

quantum light. In conclusion, this Thesis stands as a cookbook for designing simple

yet flexible and highly-efficient single-photon sources based on tailored parametric

down-conversion processes.
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The trail narrows, Diane. I’m close, but
the last few steps are always the darkest
and most difficult.

Agent Cooper, Twin Peaks

CHAPTER 1

Introduction

Half-way through the 14th century, during the Black Death pandemic, Giovanni

Boccaccio wrote the “Decameron”, gifting the world with one of the most irrever-

ent and funny literature masterpieces ever written. In the second half of the 17th

century, while forced to isolation due to the Great Plague pandemic, a very young

Isaac Newton developed his theories on calculus, optics, and the laws of gravitation.

In 2020, during the Covid-19 pandemic and the longest lock-down in a European

country (we are on day 95 as I write this very sentence), I’m forced home, writing

this manuscript. I certainly lack Boccaccio’s creativity and talent for writing and,

needless to say, I obviously don’t possess Newton’s brilliant mind: I, therefore, feel

the moral obligation to warn the reader that this piece of work will be as boring

(if not more) as countless other doctorate theses. However, I tried to write down,

here and there, some considerations and analyses that—I believe—cannot be found

in published literature. By doing so, I hoped to turn what at first looked like just

a mere exercise of self-inflicted pain into something that might actually be of some

use to someone. I’m not sure I achieved this goal, but a man can dream.

1



Chapter 1. Introduction

Half a century ago, in the late sixties, the generation of photon pairs mediated

by a nonlinear crystal was observed in the lab [1–4], and the theory behind it was

in the process of being developed [5]. It’s hard to believe that the deep impact of

these results was already clear at that time: it was the beginning of a “parametric

down-conversion (PDC) era”.

After two decades, PDC allowed researchers to observe for the first time non-

classical two-photon interference on a beam-splitter, which is nowadays commonly

known as [6, 7] Hong-Ou-Mandel (HOM) effect. Parametric down-conversion was at

that point used for many fundamental tests of quantum mechanics, but it struggled

to achieve high efficiencies in entanglement-based applications due to probabilistic

schemes: type-I parametric down-conversion was often used due to higher nonlinear-

ities, and entanglement generated in post-selection sending the two down-converted

photons on a polarising beam-splitter (PBS)

It took a few more years for a second major breakthrough in down-conversion

sources to come: in 1995 Kwiat et al. proposed and demonstrated the first efficient

source of polarisation entanglement [8]. At last, a simple and efficient source of

entangled photons was readily available, enabling countless experiments that so far

had only been theorised, and many other yet to be proposed.

Since then, many techniques for entangled photon generation via parametric

down-conversion have been developed. Double-pass schemes allowed type-I PDC to

be used for efficient generation of polarisation entanglement [9] and polarisation-

momentum hyperentanglement [10]. Orbital angular momentum (OAM) entangled

states were also originally demonstrated with a PDC source [11]. Sandwich-type

sources [12] were used to achieve 12-photon entanglement [13]. Moving away from

the non-collinear emission typical of most “early days” sources, we find that col-

linear down-conversion can also generate entanglement in a highly efficient way.

Sagnac interferometer sources [14] and Mach-Zehnder interferometer sources [15]

are the main examples: both have been successfully used in very many experi-

ments, amongst which are two loophole-free Bell tests [16, 17]. This list is far from

being exhaustive—one could spend a whole Ph.D. digging the literature for PDC-

related schemes—but it only aims to give the reader a flavour of how extensively

Page 2



Chapter 1. Introduction

down-conversion has been investigated in the last 50 years, and how it happened to

establish itself as the backbone of many quantum optics experiments

Being myself a huge fan of down-conversion processes, it hurts to admit that

life for parametric down-conversion sources is not as idyllic as I presented it so far.

Indeed, PDC suffers from intrinsic limitations, from its probabilistic nature and the

multi photon-pair emissions to unwanted correlations within the biphoton state, that

seems to have brought these sources to a major roadblock. Some of these problems

can be overcome with none or small overheads—as I’ll discuss in this manuscript—

while others are of a fundamental nature and appear to be hardly surmountable,

jeopardising the scalability of PDC sources for large scale applications. Several

possible solutions have been proposed, prototypes have been built, and might suc-

ceed in overcoming these problems: indeed, recent schemes have demonstrated that

parametric sources can approximate a nearly deterministic photon source with high

production rates and photon purity [18–24]. However, the future is still uncertain.

It must be mentioned that, in the five decades that separate the pioneering PDC

experiments from our days, the competition for building the best single-photon

source has become tougher. First of all, other parametric sources (based on four-

wave-mixing in optical fibres [25] or in integrated silica-based chips [26]) are quickly

catching on in the field, owing to the promise of being easily scalable from the

manufacturing and miniaturisation point of view, paving the way to large-scale

quantum applications. However, due to their probabilistic and nonlinear-optical

nature, I think it is fair to group them together with PDC sources. Other platforms

have been proposed and developed for efficient generation of quantum light, from

solid-state devices, such as quantum dots [27] and colour centres [28], to trapped-

ions [29], from single atoms [30] to molecules [31], etc. Such sources are now routinely

used in many quantum optics lab, and recently stole down-conversion’s thunder

in two major breakthrough experiments—a loophole-free Bell test [32] and boson

sampling [33], fields that until then were monopolised by PDC-based experiments.

However, the simplicity of parametric down-conversion combined with its cost-

effectiveness is still unparalleled, arguably making it the most widespread technique
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Chapter 1. Introduction

to routinely generate single photons in hundreds of quantum optics lab around the

world—as well as in space [34–37]!

In this Thesis, I build upon the knowledge of uncountable previous works by

adding a small piece to the understanding of parametric down-conversion. I report

and expand on the results I obtained during the last four years with the invaluable

contributions of my supervisor and colleagues. In particular, I focus on understand-

ing the spectral properties of biphoton states produced in down-conversion processes:

this is of great importance for quantum technology applications, where the ability

of producing single-photons in a well-defined spectral state is crucial for the success

of most quantum protocols. Indeed, multi-photon schemes (such as recent proposals

for loss-robust photonic cluster-state percolation [38] amongst many others) rely on

a high number of successive two-photon interference events: any reduction in inter-

ference visibility leads to a drastic resource cost increase in the required number of

photon sources, detectors and circuit complexity [39, 40]. Since perfect interference

can only be achieved with spectrally-pure and indistinguishable photons [41], un-

derstanding how to manipulate the PDC biphoton spectrum to development of high

performance single-photon sources is essential.

Here, I introduce theoretical, numerical, and experimental methods to under-

stand, characterise, and tailor the joint spectral properties of down-converted pairs:

part of the analysis described in the following pages is completely general and applies

to almost any kind of parametric source; other parts are more specific, concerning

PDC in periodically-poled nonlinear crystals. When either one or the other case

occurs, I tried to specify it in the text: whenever I failed in doing so, I trust the

reader to be able of understanding it from the context (and from the physics itself).

The discussion of the results presented in this Thesis is structured as follows:

In Chapter 2 I briefly discuss the theory of PDC, introducing all the notions

that will be needed to understand the results discussed in the following chapters.

Well-known concepts as pump-envelope function (PEF), phase-matching function

(PMF), joint spectral amplitude (JSA) etc. are presented to the reader, focusing on
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the properties that will play a role in the rest of this manuscript.

In Chapter 3 I discuss two practical issues that arise when we want to build an

efficient PDC source: what are the optimal parameters for designing the best possible

source, and how to faithfully characterise the source once it has been built. I address

these questions considering realistic source parameters (several PEF and PMF shape

combinations) and realistic outputs of the most common characterisation setups.

In Chapter 4, I introduce domain engineering in poled crystals, a technique for

shaping the phase-matching function of nonlinear processes to, amongst other ap-

plications, tailor the biphoton spectrum of down-converted photons. After a quick

recap of pre-existing domain engineering methods, I introduce the nonlinearity en-

gineering technique that we developed at the beginning of my Ph.D. This scheme

not only outperforms previous schemes in generating pure heralded single-photons,

but it also enables new possibilities in tailoring the single-photon spectra.

The first application of our novel nonlinearity engineering technique consists

in certifying its capability of tailoring the PMF as a Gaussian shape, in order to

maximise the separability of the JSA, hence the spectral purity of the heralded

photons. I discuss this in Chapter 5, introducing a method for estimating the

spectral purity of heralded photons via two-photon interference, and experimentally

proving the effectiveness of our engineering scheme for generating pure heralded

photons.

While nonlinearity engineering techniques applied to PDC sources have only

been used in the past for maximising the separability of the biphoton spectrum, the

possibilities enabled by such techniques are not limited to this standard scenario. I

expand this idea in Chapter 6, introducing the time-frequency modes (TFM) frame-

work for photonic quantum information processing, and discussing an experiment

where generation and measurement of TFM-entanglement enabled by our domain

engineering scheme.

One can move beyond homogeneous encoding, and exploit different degrees of

freedom of light to encode quantum information, enlarging the accessible Hilbert

space and enabling new quantum protocols. This is discussed in Appendix B,

where I report an experiment that combines TFM-encoding with polarisation- and
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OAM-encoding, generating hyperentanglement between spectrally- and spatially-

structured light. Unlike previous Chapters, here I don’t have additional material to

present or further comments to discuss with respect to what appeared on arXiv [42],

hence I attach the pre-print version of this work. A careful reader would have no-

ticed that this Chapter appears as an Appendix after the Conclusions, and not

as Chapter 7, where it would more naturally stand. The reason is of bureaucratic

nature: due to University policy, whenever a published article is attached to a thesis,

it should appear as the last appendix before the List of References. I bend my knee

to the red tape, and apologise to the reader for forcing them to jump back and forth

in this manuscript.

Finally, in the Conclusions I take stock of what I presented in the Thesis, dis-

cussing open challenges, and outlining a number of possible research directions that

can be explored to improve, complement and move beyond the results I presented

in this manuscript.
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CHAPTER 2

Parametric Down-Conversion
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A light beam passing through a

nonlinear optical material can inter-

act with the medium, decaying into

two lower-energy photons (namely

signal and idler) under conserva-

tion of energy and momentum. This

process is a second order nonlinear

effect known as (spontaneous) para-

metric down-conversion (PDC), and is a widespread technique for generating high

quality single photons for optical quantum technologies. The basic theory of three-

wave mixing and, in particular, of PDC has been discussed in many articles, books,

and theses. Different derivations have been provided, some more rigorous and de-

tailed than others, but at the end of the day they all converge to analogous results.

For this reason, we will only give a very brief introduction to PDC as a three-wave

mixing process, without going into the mathematical details of quantum nonlinear

optics (interested readers are referred to, e.g., [43–45]). We will instead focus on

those PDC properties that will be relevant for understanding the results discussed in

the following chapters, introducing the concepts of pump-envelope function (PEF),

phase-matching function (PMF), and how they relate to the joint spectral amplitude

(JSA) and the heralded single-photon spectral purity.
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Chapter 2. Parametric Down-Conversion

2.1 Generation of PDC photons

2.1.1 Three-wave mixing: a hint of classical and quantum

descriptions

When an electromagnetic wave passes through a nonlinear optical material, it will

induce a polarisation (dipole moment) of the form:

P (t) = ε0
(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

)
= P (1)(t)+P (2)(t)+P (3)(t)+. . . ,

(2.1)

where ε0 is the vacuum permittivity, χ(1) is the linear optical susceptibility, and

χ(n) (with n > 1) are the n-th order nonlinear susceptibilities. In a more thorough

picture, both P and E would have vectorial nature, while the susceptibilities χ(n)

would be tensors [46].

In the nonlinear interaction, electromagnetic fields with different energies can in-

teract in what are, effectively, frequency conversion processes. In particular, second-

order nonlinear effects are also known as three-wave mixing processes, as three waves

interact in a non-centrosymmetric medium and, under conservation of total energy

and momentum, they can exchange energy. Let’s assume an incident electric field

of the form:

E(t) = E1e
−iω1t + E2e

−iω2t + h.c. . (2.2)

According to Eq. (2.1), the corresponding second-order polarisation reads:

P (2)(t) =
(
P (2)(2ω1)e−2iω1t + P (2)(2ω2)e−2iω2t + P (2)(ω1 + ω2)e−iω1+ω2t (2.3)

+P (2)(ω1 − ω2)e−iω1−ω2t + h.c.
)

+ P (2)(0) , (2.4)

where the addends in the right-hand side correspond to second harmonic generation

(SHG), sum frequency generation (SFG), difference frequency generation (DFG),
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and optical rectification (OR) respectively:

P (2)(2ω1) = ε0χ
(2)E2

1 (SHG)

P (2)(2ω2) = ε0χ
(2)E2

2 (SHG)

P (2)(ω1 + ω2) = 2ε0χ(2)E1E2 (SFG)

P (2)(ω1 − ω2) = 2ε0χ(2)E1E
∗
2 (DFG)

P (2)(0) = 2ε0χ(2)(E1E
∗
1 + E2E

∗
2) (OR) . (2.5)

By considering a nonlinear polarisation in Maxwell’s equations, one can easily derive

the field’s amplitude equations for these nonlinear processes under the slowly varying

envelope approximation, as shown in many nonlinear optics books [46]. As an

example, we show below the coupled-amplitudes equations for the SFG process—the

other χ(2) effects have analogous classical coupled equations:



d2A3
dz2 = 2idω2

3
k3c2

A1A2e
i(k1+k2−k3)z

d2A1
dz2 = 2idω2

1
k1c2

A3A
∗
2e
−i(k1+k2−k3)z

d2A2
dz2 = 2idω2

2
k2c2

A3A
∗
1e
−i(k1+k2−k3)z .

(2.6)

All the χ(2) processes described in Eq. (2.5) are characterised by two input fields

producing a single output field. However, a χ(2) process can also occur when a single

input field is converted into two output fields. This is known as parametric down-

conversion (or, nowadays less common, parametric fluorescence), and is in some

sense the reverse process of SFG: a strong input field gets (partially) converted into

two lower-energy fields.

A full description of PDC requires a quantummechanical approach. The quantum

Hamiltonian of the process can be written as [45]:

H = 1
2

∫
d3r

(
1
µo
BiBi + ε0

(
1 + χ

(1)
ii

)
EiEi

)
︸ ︷︷ ︸

H0

+ 2
3ε0

∫
d3rχ

(2)
ijkEiEjEk︸ ︷︷ ︸

HI

, (2.7)
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where H0 is the linear part of the Hamiltonian and HI is the interaction part: we

will focus on the HI term, that captures the dynamics of the nonlinear processes.

We also need to consider quantised electromagnetic fields [47]:

Êi(z, t) = i
∫
dωiA

(
ei(~ki(ωi)·~r−ωit)âi(ωi)− e−i(

~ki(ωi)·~r−ωit)â†i (ωi)
)

(2.8)

where A includes all the constant factors, and âi(ωi), â†i (ωi) are the photon annihil-

ation and creation operators, respectively, for frequency ωi and momentum k(ωi).

Finally, the quantised fields (2.8) can be inserted in the interaction Hamiltonian

HI to obtain the quantum description of all the χ(2) processes, including the ones

already discussed in Eq. (2.5) from the classical point of view. However, here we are

interested in the Hamiltonian part specific to parametric down-conversion, where the

higher energy photon (namely the pump, “p”) gets down-converted into two lower

energy photons (“signal”, ‘s”, and “idler”, ‘i”). This translates into a Hamiltonian

of the form:

ĤPDC ∝
∫
dωpdωsdωid

3rχ(2)
(
ei(

~kp·~r−~ks·~r−~ki·~r)−i(ωp−ωs−ωi)tâ(ωp)â†s(ωs)â
†
i (ωi) + h.c.

)
,

(2.9)

where we can replace the pump annihilation operator â(ωp) with its classical coun-

terpart α(ωp), assuming the pump field to be a strong laser field (more details on

this in Section 2.2.1). More details on α(ωp) and the pump spectral properties are

discussed in Section 2.2.1.

The PDC output state can hence be calculated in the interaction picture accord-

ing to the Schödinger equation [48]:

i~
d

dt
|ψ(t)〉 = ĤI(t) |ψ(t)〉

|ψ〉PDC = T exp
[
− i
~

∫ t

0
dt′ĤPDC(t′)

]
|0〉 ,

(2.10)

where T is the time-ordering operator, that we will neglect from now on as it doesn’t

play a role in relatively low pump-power regimes (the validity of this approximation

is discussed extensively in [49–52]). The integral over time in Eq. (2.10) leads to the
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energy conservation relation:

∫
dt′e−i(ωp−ωs−ωi)t

′ = δ(ωp − ωs − ωi) . (2.11)

Following from Eqs. (2.9), (2.10) and (2.11), considering a collinear process where

the signal and idler photons co-propagate with the pump field, and neglecting the

variety of spatial modes that can be emitted in the process, the PDC biphoton state

can be written as:

|ψ〉s,i = exp
[
BO

∫∫
dωsdωi

∫
dzg(z)ei∆k(ωs,ωi)z︸ ︷︷ ︸

φ(∆k(ωs,ωi))

α(ωs + ωi)â†s(ωs)â
†
i (ωi) + h.c.

]
|0〉s,i ,

(2.12)

where g(z) is the normalised nonlinearity along the crystal, ∆k(ωs, ωi) = ωp−ωs−ωi
is the phase mismatch, φ(∆k(ωs, ωi)) is the PMF (see Section 2.2.2 for details), O

is a constant related to the overlap of the transverse modes of the photons [45], and

B = πχ
(2)
0

√
~ω0pω0sω0i
ε0π3c3npnsni

, with ω0,j being the central frequencies of the fields and nj
the corresponding refractive indices. Eq. (2.12) assumes that the spectral part of

the PDC biphoton is in a pure bipartite quantum state: this assumption neglects

the correlations between the spatial and the spectral part of the state that might

occur when particular focusing condition are considered [53].

In order to analyse the PDC biphoton state, we can perform a Magnus expansion

(see Ref. [51] for details) of Eq. (2.12) and consider only the first order term, which

reads (neglecting the constant pre-factors):

|ψ〉s,i =
∫∫

dωsdωi φ(∆k(ωs, ωi))α(ωs + ωi)︸ ︷︷ ︸
f(ωs,ωi)

â†s(ωs)â
†
i (ωi) |0〉s,i (2.13)

Equation (2.13) captures the spectral properties of PDC biphoton state by means

of the quantity f(ωs, ωi), commonly referred to as joint spectral amplitude or joint

spectrum: we note that, following from the assumptions in Eq. (2.12), the biphoton

state in Eq. (2.13) is also a pure bipartite state. Most of the following discussions

will be about understanding the JSA properties and how to manipulate and measure
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them.

As a last remark of this introductory Section, let us point out that paramet-

ric down-conversion can occur in collinear (where the down-converted photons co-

propagate with the pump) or non-collinear (where they are emitted with a non-zero

angle with respect to the pump incident beam) configuration. Moreover, PDC is

usually categorised in three different types:

type-0, where pump and PDC photons share the same polarisation;

type-I, where the pump has opposite polarisation respect to the PDC photons;

type-II, where the pump share same polarisation of either signal or idler, while

the other photon has opposite polarisation.

In this Thesis, we will focus on collinear, type-II down-conversion: however,

most of the discussion will be general and independent from what type of PDC one

is interested in (indeed, most results will also hold for other nonlinear processes,

such as difference frequency generation or spontaneous four-wave mixing).

2.1.2 Photon number statistics

Before digging into the spectral domain, let’s briefly discuss photon number statistics

in parametric down-conversion, as it will play a role in the “experimental chapters”.

As mentioned in the introduction, an ideal photon source is required to emit

photons that are pure in all their degrees of freedom. Clearly, this is not the

case for bare PDC: even if we neglect the spectral degree of freedom, the down-

converted photons are not pure in the photon number space. Indeed, the expansion

of Eq. (2.12) contains infinite terms, each one corresponding to the emission of n

photon pairs—where n can vary from 0 to∞—degrading the photon-number purity

of the state. While a thorough description of the PDC photon number statistics is a

complex problem, and it has been extensively discussed in many works both in low-

and high-gain regime (e.g. [54–58] amongst many others), here I’ll keep it as basic

as possible to stress the most relevant points for this Thesis.
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Omitting the spectral part of the wavefunction and considering a single frequency

component, the expansion of Eq. (2.12) can be written as:

|ψ〉s,i =
√

1− |λ|2
∞∑
n=0

λn |n〉s |n〉i , (2.14)

where |n〉 is the photon number state defined as:

|n〉j =

(
â†j
)n

√
n!
|0〉j , (2.15)

while the parameter λ relates to the source brightness [19, 59] and can be expressed

as a function of the pump power P and a constant τ , determined by the overall

efficiency of the nonlinear interaction: λ =
√
Pτ , that holds for λ << 1. From

Eq. (2.14) we can calculate the normalised probability of emitting n photon pairs in

a given pump pulse:
P (λ, n) =

(
1− |λ|2

)
|λ|2n

∞∑
n=0

P (λ, n) = 1 .
(2.16)

While eq. (2.16) is just a rough approximation of the PDC process in the Fock

space, it serves the purpose of showing why using down-conversion as a single-photon

source might not look very promising. First of all, even from this somewhat naive

approach (that neglects spectro-temporal properties, losses, time ordering effects,

etc.) we can see how the photon pair emission maxes out at 25 % when λ = 1/
√

2,

meaning that increasing the power indefinitely doesn’t lead to an ever increasing

production of PDC photons, see red line in Figure 2.1. Secondly, and possibly more

importantly, for any value of λ greater than 0, the production of a single photon

pair always goes together with the production of none or higher order terms, which

are detrimental in most photonic quantum protocols. In fact, we can define a simple

metric for the signal to noise ratio as the ratio between a single pair emission and

multiple pairs emissions, where we consider bucket detectors (i.e. not able to resolve
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the number of detected photons within the same time bin):

SNR = P (λ, 1)∑∞
n=2 P (λ, n) = (1− |λ|2) |λ|2

1−
(
1− |λ|2

)
︸ ︷︷ ︸

P (λ,0)

−
(
1− |λ|2

)
|λ|2︸ ︷︷ ︸

P (λ,1)

= −1 + 1
|λ|2

. (2.17)

It’s worth noting that this metric doesn’t capture all the drawbacks of PDC prob-

abilistic nature, as the probability of not emitting any pair (which is actually the

dominant term) also compromises significantly the usefulness of such sources. More

sophisticated (and setup-dependent) metrics are needed for a more accurate de-

scription of noise: for example, photon-number resolving detectors can mitigate the

multi-photon noise contribution, however in the (inevitable) presence of losses some

noise will always be present.

Figure 2.1: Photon pairs’ emission probability. The emission of n
photon pairs as a function of the parameter λ is reported in different colours.
As λ increases (e.g. by increasing the pump power or the nonlinear interaction
strength), the probability of not producing any photon pair decreases mono-
tonically, while the probability of producing n > 0 pairs increases. However,
the probability of emitting exactly n pairs doesn’t increase indefinitely, while
it reaches a maximum at λn > λn−1 and then decreases to 0 when λn = 1.
Clearly, this approximation only holds for low values of λ, and a more thor-
ough approach should be used when considering the high squeezing case, as
discussed in the main text.

Luckily, possible solutions to the zero- and multi-photon emission problem have

been proposed and significant progress has been made in this sense, spanning tem-

poral multiplexing of the pump [19, 60] and of the down-converted photons [22, 23,

61], as well as spatial multiplexing of multiple sources [20, 62], keeping alive the
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dream of a scalable PDC-based source for practical quantum photonics application.

A thorough description of these schemes is beyond the scope of this Thesis, and we

point the reader to the aforementioned references (and possibly many others that

we failed to report) for more details.

2.2 PDC spectral properties

Let’s now go back to the first-order term of the parametric down-conversion state,

as described in Eq. (2.13), and focus on the spectral properties of the photon pair.

The PDC joint spectrum is characterised by the pump-envelope function, α(ωs+ωi),

and the material properties of the crystal (through its dispersion relations) that are

captured by the phase-matching function, φ(ωs, ωi):

f(ωs, ωi) = α(ωi + ωs)φ(ωs, ωi) . (2.18)

Before analysing these quantities in detail, let’s specify the convention adopted

throughout this Thesis. When discussing the purely theoretical properties of the

PEF, PMF and JSA, without loss in generality we’ll consider the (ωs, ωi) plane to

be centred at zero—we’ll refer to these shifted axes as (Ωs,Ωi), see Figure 2.2 for

an example. However, when discussing numerical simulations of PDC for actual ap-

plications and experiments, we will represent the results as a function of the photon

wavelengths in the (λs, λi)-plane for ease of reading.

2.2.1 Pump-envelope function

The so called pump-envelope function α(ωp) = α(ωs+ωi) carries the spectral proper-

ties of the pump photon, and due to energy conservation depends on the sum of the

signal and idler frequencies. For this reason, when represented in the (ωs, ωi) plane,

the pump function always appears parallel to the top-left bottom-right diagonal,

independently from the functional form of α. This can be visualised in Figure 2.2,

where we show a standard Gaussian-shaped pump and a third-order Hermite-Gauss

mode-shaped pump. While most theoretical works assumed a Gaussian pump spec-
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trum, this is not always the case in realistic experiments. A detailed discussion

on the possible PEF shapes in relation to the heralded-photon source performances

is provided in the next chapter, Section 3.1.2, while more exotic pump shapes are

briefly considered in Chapter 6 where we discuss time-frequency modes encoding.

Figure 2.2: Pump-envelope function. Two examples of PEF, a “standard”
Gaussian-shaped (a) and a third-order Hermite-Gauss mode (b). The PEF,
α(ωp) = α(ωs + ωi), always lies on the anti-diagonal of the (ωs, ωi) plane due
to energy conservation, independently from the spectral shape of the pump.

2.2.2 Phase-matching function

The phase-matching function accounts for the material properties, in particular

dispersion, as well as longitudinal variations in the crystal’s nonlinearity. There

exist a number of related, but slightly different definitions of PMF in the literature.

Here, we define it as:

φ(∆k(ωs, ωi)) =
∫ +∞

−∞
g(z) ei∆k(ωs,ωi)zdz (2.19)

where g(z) = χ(2)(z)/χ(2)
0 is the normalised nonlinearity along the crystal (note that

g(z) is a real function), and:

∆k(ωs, ωi) = kp(ωs + ωi)− ks(ωs)− ki(ωi) , (2.20)
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is the phase (or momentum) mismatch, which depends on the material dispersion,

with the wave vectors kj(ωj) = ωjnj(ωj)/c. It is worth noting that this definition

has units of length, while in other popular definitions, the PMF is dimensionless.

When defined as above, the PMF for consecutive crystals is the sum of the PMFs

for the individual crystals. Take for example a block composed of two crystals. If

the normalised nonlinearity function for the i-th crystal (i = 1, 2) is gi(z), then

the normalised nonlinearity function for both crystals is g1,2(z) = g1(z) + g2(z).

According to Eq. (2.19), the PMF for both domains is then:

φ12(∆k) =
∫ +∞

−∞
g12(z) ei∆kzdz =∫ +∞

−∞
g1(z) ei∆kzdz +

∫ +∞

−∞
g2(z) ei∆kzdz = φ1(∆k) + φ2(∆k)

(2.21)

where φi(∆k) is the PMF for the i-th domain, and we dropped the dependency

of ∆k on the photons’ frequencies for brevity. Take, on the other hand, another

popular definition for the PMF:

φother(∆k) = L−1
∫ +∞

−∞
g(z) ei∆kzdz . (2.22)

The function φother(∆k) is dimensionless, but in this case

φother12 (∆k) = (L1 + L2)−1
∫ +∞

−∞
g12(z) ei∆kzdz

6= φother1 (∆k) + φother2 (∆k) = L−1
1

∫ +∞

−∞
g1(z) ei∆kzdz + L−1

2

∫ +∞

−∞
g2(z) ei∆kzdz .

(2.23)

While this might not seem particularly relevant, it actually plays a crucial role when

considering poled crystals, as we will extensively do in Chapter 4. In such case, each

individual domain is by all means equivalent to an independent crystal, and the

additivity of our PMF definition in Eq. (2.19) makes the calculation of the overall

PMF mathematically simpler and more scalable.

Let’s now consider, as an example, the simplest crystal possible, i.e. a bulk

crystal. The nonlinearity of such crystal has the form of a rectangular function,

equal zero before and after the crystal edges, and one in the crystal itself. This
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translates into a phase-matching function of the form:

φ(∆k(ωs, ωi)) =
∫ L

0
ei∆k(ωs,ωi)zdz = L ei

∆k(ωs,ωi)L
2 sinc

[
∆k(ωs, ωi)L

2

]
, (2.24)

where L is the crystal length. As expected, the PMF grows linearly with the crys-

tal length, hence the intensity of the nonlinear effect grows quadratically with it.

Moreover, Eq. (2.24) recovers the well-known sinc shape of the PMF typical of

standard optical nonlinear processes [46] and arising from what is, for all intents

and purposes, the Fourier transform of a rectangular function. The phase term

ei∆k(ωs,ωi)z is not particularly relevant in this general discussion, but we will get

back to it for a more detailed discussion in Chapter 6. We plot Eq. (2.24) in Fig-

ure 2.3, highlighting its absolute value and its phase.

Figure 2.3: Phase-matching function. The PMF of a standard bulk
crystal can be thought of as a sinc function (green), as shown by its absolute
value (blue) and normalised phase (red), which is linear in ∆k.

Equation. (2.24) and its representation in Figure 2.3 describe the PMF as a

function of the momentum mismatch. However, we need to consider the PMF in

the (ωs, ωi) space for relating it to the PDC-photons’ spectral properties, as we

did for the pump-envelope function in Figure 2.2. To do so, we can consider the

dependence of ∆k on the frequencies of the photons involved in the PDC process.

Since the photon wave vector, k(ω) = ωn(ω)/c, depends on the refractive index

of the material, n(ω), we need frequency-dependent refractive index equations to

properly describe the momentummismatch. The natural choice falls on the Sellmeier
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equations [63]: empirical equations that link refractive index and wavelength of the

(nonlinear) material. Such equations are typically of the form:

n(λ) =
√√√√1 +

∑
j

Ajλ2

λ2 −Bj

, (2.25)

where λ is the vacuum wavelength, the coefficients Aj and Bj are obtained ex-

perimentally, and the number of poles in the equation is empirically chosen on a

case-by-case basis to reduce the sum of the residuals squared in the fitting proced-

ure. Slightly different forms of Eq. (2.25) exist in literature, where additional terms

can be introduced to, e.g., extend the validity of the equations to larger wavelength

ranges, or include temperature effects.

Let’s consider for example potassium titanyl phosphate (KTP), a common crystal

that is routinely used in nonlinear and quantum optics labs, and that we use in the

experiments discussed in the second half of this Thesis. Different Sellmeier equations

for KTP crystals can be found in the literature: for the simulations discussed in this

work, I’ll refer to the values reported in Ref. [64–66].

Figure 2.4 helps us to visualise ∆k(λs, λi) as a function of the signal and idler

wavelengths for a type-II down-conversion in KTP. The lines, representing the con-

tours where ∆k is constant, highlight two important features. Firstly, the contours

are not necessarily linear in the photons’ frequencies, especially when considering

large spectral ranges: in fact, there are extreme cases where they might be so curved

that lead to PDC generation at two very different wavelengths. Secondly, the slope

of such contours is not fixed to a given value, but changes as we sweep the signal

and idler frequencies. This slope can be approximately calculated in a simplified

picture. We can expand the wave numbers to first order kj(ω) = kj(ω̄j) + v−1
j Ωj,

where vj = dω/dkj(ω)|ω=ω̄j is the group velocity of photon j, Ωj = ωj − ω̄j—with

ω̄j being the central frequency of photon j—are the frequencies shifted to 0, and

the relation ω̄p = ω̄s + ω̄i holds. We can ignore quadratic and higher-order terms

corresponding to group-velocity dispersion if the photons in each mode are not too

spread out around the central frequencies, and if we are considering ordinary non-

linear materials. It’s worth keeping in mind that “edge-cases” are not infrequent,
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Figure 2.4: Momentum mismatch in type-II down-conversion in
KTP. This contour plot shows the momentum mismatch ∆k = kp − ks − ki in
the signal-idler wavelengths space. While Eq. (2.24) suggests that the phase-
matching condition is only satisfied when ∆k ' 0, where the sinc-shaped PMF
has non-zero values, we’ll see in Chapter 4 how quasi-phase-matching can be
used to overcome this limitation, allowing the PMF to be shifted so that it is
non-zero at ∆k 6= 0.

and should be considered whenever ultra-short pulses are involved in the process,

or when the nonlinear material has a strong wavelength dependence of its refractive

index. If this is not the case, we can write:

∆k(ωs, ωi) = ∆k0 + (v−1
p − v−1

i )Ωi + (v−1
p − v−1

s )Ωs , (2.26)

where ∆k0 = kp(ω̄s + ω̄i) − ks(ω̄s) − ki(ω̄i). When plotted as a function of Ωi and

Ωs, the PMF lies along an axis defined by the angle θ, which depends on the group

velocities according to:

tan θ = −
v−1
p − v−1

s

v−1
p − v−1

i

. (2.27)

Picking group velocities appropriately for optimal PDC-pairs generation is a problem

known as group-velocity matching (GVM), and we will discuss it in Chapter 3.
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Now that we know how to calculate the momentum mismatch as a function of the

PDC photons frequencies, the final step to compute the PMF is straightforward. We

can in fact calculate φ(∆k(ωs, ωi)) in the relevant frequency range of signal and idler,

obtaining the phase-matching function in the (ωs, ωi) space. A visual representation

of this procedure is provided in Figure 2.5, where we consider a 775 nm pump down-

converted into 1550 nm photons in a type-II PDC process. A sinc-shaped PMF

is considered, and calculated point-by-point in the (ωs, ωi) space according to the

corresponding momentum mismatch value.

Figure 2.5: Phase-matching function in the signal-idler plane. (a)
Momentum mismatch in the signal-idler frequencies space on a smaller spec-
tral range with respect to Figure 2.4. Here the ∆k contours are approximately
linear, but some slight curvature is already evident despite the reduced range.
This is highlighted by the red line, having a slope of approximately 48° calcu-
lated accordingly to Eq. (2.27) at 1550 nm for both signal and idler: indeed,
the ∆k contour starts to deviate from the red line when we move away from
the central point, where the slope is calculated. The red sinc-shaped function
corresponds to the PMF that will be calculated at each ∆k (ωs, ωi), resulting
in the function shown in (b).

2.2.3 Joint spectral amplitude

So far, we have discussed what the pump-envelope function represents, and how

the phase-matching function is related to the crystal properties via the dispersion

relations and the nonlinearity of the crystal. The last—trivial—step consists in
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Figure 2.6: Joint spectral amplitude. The joint spectral amplitude (c)
is the product of the pump spectrum (a) and the phase-matching function (b).
The pink dot-dashed and yellow dashed lines represent the 1/e contours of
the PEF and PMF, respectively. The red projections represent the marginal
spectra (in the intensity domain) of the PDC photons.

multiplying the PEF and PMF to obtain the joint spectral amplitude of the PDC

process, as prescribed in Eq. (2.18) and shown in Figure 2.6. The JSA captures the

PDC single-photon spectra, defined as the marginals of the joint spectral intensity

(JSI):

ϕ(ω1) =
∫ +∞

−∞
dω2 |f(ω1, ω2)|2 , (2.28)

where we define the JSI as the absolute value squared of the JSA, |f(ω1, ω2)|2, and

ϕ(ω1) is the single-photon spectrum, as one would measure with a spectrometer.

An example of the single-photon spectra is provided in Figure 2.6. Most import-

antly, the JSA describes joint spectral properties of the PDC-photons, including in

Page 22



Chapter 2. Parametric Down-Conversion

particular the non-classical correlations that might exist between signal and idler:

note that this is true under the (reasonable—as discussed earlier) assumption of the

biphoton JSA describing a pure bipartite quantum state. These correlations can

be quantified by the amount of separability of the JSA, that can be obtained via

Schmidt decomposition (SD) as discussed in the next Section.

2.2.4 Schmidt decomposition and JSA separability

In this Section we introduce the Schmidt decomposition, i.e. arguably the most

useful tool to characterise the joint spectral amplitude. The JSA can be expressed

as a sum of orthogonal modes:

f(ωs, ωi) =
∑
k

bkuk(ωs)vk(ωi) , (2.29)

in what is known as the Schmidt decomposition [67, 68]. The Schmidt coefficients

{bk} are real numbers such that their absolute values sum to unity if f(ωs, ωi) is

normalised, and the Schmidt modes {uk(ωs)} and {vk(ωi)} are orthonormal single-

photon spectral functions, namely time-frequency modes (TFM). Likewise, the two-

photon state in Eq. (2.13) can be decomposed as

|ψ〉s,i =
∑
k

bk |uk〉s |vk〉i , (2.30)

where

|uk〉s =
∫
dω uk(ω) |ω〉s ; |vk〉i =

∫
dω vk(ω) |ω〉i , (2.31)

are orthonormal states in the signal and idler subspaces, and |ω〉j = â†j |0〉j. The

states satisfy the orthonormality conditions 〈uk|uk′〉s = δkk′ and 〈vk| vk′〉i = δkk′ ,

which simplifies expressions for many interesting quantities that can be written just

in terms of the Schmidt coefficients.

As we have discussed before, a drawback of PDC is that photon pairs are gen-

erated spontaneously, making them difficult to interfere in optical networks. The
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spontaneous nature of the down-converted source can be mitigated by placing a

photon detector in one of the down-converted modes. Photon-number correlations

between the two down-converted modes ensure that detection of a single photon

in one mode projects the state in the other mode into a single photon—a process

known as heralding. The heralded photon can then be stored for future use in a

quantum memory or appropriately delayed so that it arrives in the experiment at

the right time [23]. While this might seem a weird digression in this Section, we’ll

see in a few lines why this is instead actually very relevant.

To calculate the heralded state, in say mode s, we model single-photon detection

with a flat frequency response, in say mode i, by the projector

P̂i =
∫
dω |ω〉i 〈ω|i =

∑
k

|uk〉i 〈uk|i , (2.32)

expressed in terms of the Schmidt modes |vk〉i for convenience. The heralded state

is then calculated by applying the Born rule, and tracing out the detected mode:

ρs = Tri
[
|ψ〉s,i 〈ψ|s,i (Îs ⊗ P̂i)

]
(2.33)

=
∑
k

b2
k |uk〉s 〈uk|s . (2.34)

This result shows that, after detection of a single photon in mode i, the state in

mode s is a statistical mixture of single-photon states with orthogonal spectral

distributions uk(ω). The mixed nature of this state is undesirable because it reduces

its interference visibility in an interferometric network, as we will see in Section 3.2.2.

The degree to which the state is mixed can be quantified by the heralded-photon

purity:

Ps = Tr
[
ρ2
s

]
=
∑
k

b4
k , (2.35)

which ranges from Ps = 1 for a pure state to Ps = 1/N (where N is the number

of Schmidt modes) for a maximally mixed state. The heralded-photon purity only

depends on the Schmidt coefficients, and is independent from what PDC photon we
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are considering:

Ps = Pi = P . (2.36)

Similarly, one can define the Schmidt number K as the inverse of the heralded-

photon purity:

K = 1
P

= 1∑
k b

4
k

, (2.37)

that quantifies the amount of spectral entanglement between the PDC photons and,

equivalently, the amount of correlations in the JSA [67, 69, 70]. Note that another

definition of Schmidt number exists in literature, where Schmidt number is used as a

synonym of Schmidt rank, i.e. the minimum number of Schmidt coefficients needed

to express a quantum state: however, we do not use such definition in this work.

When the JSA is a separable function of signal and idler frequencies:

f(ωs, ωi) = u0(ωs)v0(ωi) , (2.38)

then b0 = 1 and all other coefficients bk>0 are zero and Eq. (2.30) describes a

separable bipartite state:

|ψ〉s,i = |u0〉s ⊗ |v0〉i . (2.39)

Consequently, the heralded photons are spectrally pure:

|u0〉s =
∫
dωs u0(ωs) |ωs〉s

|v0〉i =
∫
dωi v0(ωi) |ωi〉i .

(2.40)

The SD method discussed in this Section can only be used for pure bipartite

states [69], as we assume in Eqs. (2.12),(2.13): a generalisation to mixed states

might be possible but it’s beyond the scope of this Thesis. As a last remark, we

point out that the mathematical procedure prescribed by the Schmidt decomposition

is generally hard (and in some cases impossible) to perform analytically. What one
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can do instead is to numerically approximate it with what is called the singular value

decomposition (SVD), by discretising the frequency space, and consequently the joint

spectrum and the Schmidt modes. The reader can find an excellent discussion on

how to do this in practice in reference [68], while some more advanced details will

be discussed in the next Chapter.
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When building a parametric

down-conversion source with a sep-

arable joint spectrum, e.g. for mak-

ing spectrally-pure heralded single

photons, two practical issues must

be accounted for: the design of

the experiment, and its character-

isation. Following from and ex-

panding on the results published in

Ref. [71], this Chapter is dedicated to discussing these problems in detail. To address

experiment design, we study the impact on spectral separability of realistic pump

fields combined with the most common phase-matching function shapes; for a com-

prehensive discussion of realistic crystals, however, we refer the reader to Chapter 4.

To address the characterisation of the experiment, we discuss the effect of discret-

isation and spectral range of the measured joint spectrum, the difference between

inferring separability from the joint spectral amplitude vs. the joint spectral intens-

ity, and the advantages of interference experiments for purity characterisation over

methods based on the joint spectrum reconstruction.
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3.1 Designing a down-conversion source

In the previous Chapter, we have discussed how the joint spectral amplitude cap-

tures spectral properties and correlations of the PDC photons. In some cases, cor-

relations in the joint spectrum are desirable (see e.g. Chapter 6), but more often

than not, they are problematic and ought to be minimised. For example, in a heral-

ded single-photon source, a separable JSA ensures high-purity single photons, which

are necessary for, e.g., high-visibility interference in optical networks. Being able to

tailor the biphoton spectrum accordingly to the specific application is therefore of

utmost importance.

Quantifying the temporal-spectral correlation in PDC photon pairs and designing

the pump spectrum to reduce them are well-studied problems [48, 53, 70, 72–85]. In

virtually all studies, however, the pump laser is taken to have a transform-limited

Gaussian spectral amplitude or delta-function distribution; when in reality, a pulsed

laser has a sech-shaped spectral amplitude that may not be transform limited [86].

The design of crystal properties for generation of uncorrelated photon pairs is also

a well-studied problem. This typically involves matching the group velocities of the

fields inside the crystal [48, 70, 87, 88] as well as shaping the crystal’s nonlinearity

profile to approximate a Gaussian function [89–93].

The first part of this Chapter is dedicated to addressing these practical problems

that ought to be considered when designing optimal PDC sources.

3.1.1 Spectral filtering

PDC can be used as a heralded source of single photons, in which one photon of a pair

is sacrificed in detection to herald the presence of a photon in the other mode. As

we have seen in Section 2.2.4, the heralded photon generally emerges in a spectrally-

mixed state due to strong correlation in the joint spectrum of PDC photon pairs

resulting from the conservation of energy and momentum. To create pure photons,

we therefore need to eliminate correlations without introducing mixture in other

degrees of freedom.
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The easiest way to reduce spectral correlations is to employ narrowband spectral

filters. This approach, however, comes at the price of introducing losses, which

severely compromise the heralding efficiency (i.e. the probability of detecting a

photon knowing that the other photon of the pair has been detected) of the source

even with ideal filters [40], and decreases the absolute flux of the heralded photons.

Moreover, spectral filtering acts at the intensity level and can destroy photon-number

correlations between the two down-converted modes, and at relatively high pump

powers it can also introduce mixing in the photon-number degree of freedom [40, 94–

96]. A classic example is the case of heralded sources with photon number resolving

detectors: in the case of a lossless source, one can discriminate one- vs multi-photon

emission, mitigating the high-order emission problem of PDC sources. However,

when a filter introduces losses in the heralding arm, a single-photon click in the

trigger detector doesn’t necessarily correspond to a heralded single photon, and

photon-number-mixed states might be emitted by the source.

It’s therefore clear that filtering is not the ideal solution for dealing with un-

wanted spectral correlations: luckily enough, there exist alternative solutions that

are less detrimental on the overall PDC usefulness.

3.1.2 Group-velocity matching

A lossless method to remove (at least part of) frequency correlations is to achieve the

so-called group-velocity matching condition [70, 73, 75, 88]. Starting with a set of

desired pump, signal and idler wavelengths, one can find phase-matching conditions

in certain materials that allow the inverse group velocity of the pump laser in the

nonlinear crystal to either match one of the PDC photon’s inverse group velocities,

or to match the average of the two PDC photons’ inverse group velocities, or a value

in between the two. This erases some of the spectral correlations that otherwise

arises between the PDC photons, which in consequence leads to more separable

joint spectra and high purity photons.

What GVM alone cannot address is that, in a standard nonlinear crystal, the

nonlinearity that the pump pulse experiences is turned on suddenly as the pump
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enters the crystal, and turned off just as suddenly as the pump exists the crystal.

This sudden turning-on and turning-off in the nonlinearity can be modelled as a

rectangular nonlinearity profile along the direction of propagation. As discussed in

Section 2.2.2, the down-conversion spectrum is linked to the Fourier transform of this

longitudinal nonlinearity profile, and a rectangular profile results in a sinc-shaped

JSA which further restricts photon purity due to its side lobes [94] . To overcome

this problem, nonlinearity engineering techniques can be adopted, as discussed in

detail in Chapter 4), allowing one to suppress these side lobes and enhance the JSA

separability.

In the following, we will discuss GVM in both ideal and more realistic conditions,

considering different possible combinations of PEF and PMF shapes.

Group-velocity matching: the ideal case

It was well-known that, under certain conditions, Gaussian-shaped pump and phase-

matching functions can make the joint spectral amplitude separable [70]. Recently,

it was shown that Gaussian functions are conditio sine qua non to make the JSA

separable in standard PDC processes [97]. In this Section, we discuss the conditions

for perfect separability, i.e. when both PEF and PMF are Gaussian-shaped.

A Gaussian pump function can be defined as:

αGauss(ωs, ωi) = exp
[
−(Ωs + Ωi)2

2σ2
pef

]
; (3.1)

different yet equivalent definitions of Gaussian PEF can also be found in the lit-

erature. We also define the bandwidth (or simply width) of a spectral (or tem-

poral) distribution as its full width at half maximum (FWHM). This corresponds

to 2
√

2 log 2 σpef for a Gaussian PEF. It’s worth stressing that, when defining the

bandwidth, we are considering the spectral amplitude of the pump, while there are

other conventions that define the bandwidth differently (either with reference to

the profile of the spectral intensity of the pump, or by considering the 1/e width

instead of the FWHM [70, 81, 89, 94]). For completeness sake, and for avoiding
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any ambiguity in the following lines, we also remind the reader of the obvious fact

that functions having the same FWHM in the amplitude domain might not have

the same width in the intensity domain (see for example Figure 3.2).

We can also define a Gaussian PMF as:

φGauss(ωs, ωi) = exp
[
−(sin(θ)Ωs − cos(θ)Ωi)2

σ2
pmf

]
, (3.2)

where θ defines the orientation of the PMF [80, 82, 98] and depends on the group

velocities according to Eq. (2.27), as already discussed in Section 2.2.2.

Let’s study the JSA separability condition, i.e. f(ωs, ωi) = u0(ωs)v0(ωi), when

PEF and PMF are chosen accordingly to Eq. (3.1) and (3.2):

f(ωs, ωi) = αGauss(ωs, ωi)φGauss(ωs, ωi) . (3.3)

We can expand Eq. (3.3) as follows:

exp
[
−Ω2

s + Ω2
i + 2ΩsΩi

2σ2
pef

− sin(θ)2Ω2
s + cos(θ)2Ω2

i − 2 sin(θ) cos(θ)ΩsΩi

σ2
pmf

]

= exp
[
− Ω2

s

2σ2
pef
− sin(θ)2Ω2

s

σ2
pmf

]
exp

[
− Ω2

i

2σ2
pef
− cos(θ)2Ω2

i

σ2
pmf

]

exp
[
−ΩsΩi

σ2
pef

+ 2 sin(θ) cos(θ)ΩsΩi

σ2
pmf

]
.

(3.4)

The JSA in Eq. (3.4) is the product of two separable functions and an additional

non-separable one that still depends on both photons’ frequencies: f(ωs, ωi) =

u0(ωs)v0(ωi)p(ωs, ωi). Hence, the condition for having an overall separable joint

spectrum translates into the following statement: p(ωs, ωi) = 1. This corresponds

to the following condition for perfect separability:

exp
[
−ΩsΩi

σ2
pef

+ 2 sin(θ) cos(θ)ΩsΩi

σ2
pmf

]
= 1

ΩsΩi

σ2
pef

= 2 sin(θ) cos(θ)ΩsΩi

σ2
pmf

2 cos(θ) sin(θ) = σ2
pmf/σ

2
pef

(3.5)
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which has a solution only when the relation 0 < θ < π/2 is satisfied. From Eq. (3.5)

we can see that, to guarantee perfect separability, the ratio between the widths of

PMF and PEF increases from θ = 0 to θ = π/4 (where it is exactly equal to one),

and then decreases symmetrically between θ = π/4 and θ = π/2. When the angle

θ is outside this range, the separability condition can’t be satisfied. In Figure 3.1

we show two examples, where the PMF angle is either θ = π/4 or θ = 3π/7, and

the resulting JSA is perfectly separable (it’s indeed the product of two Gaussian

functions having either ωs or ωi as their only variable).

Figure 3.1: JSAs in perfect group-velocity matching condition. Two
examples of GVM in the ideal case, where both pump and phase-matching
function are Gaussian shaped. On the left, θ = π/4 and PEF and PMF have the
same width, condition known as symmetric GVM. On the right, θ = 3π/7 and
the pump spectrum is broader than the PMF to guarantee the JSA separability.

Group-velocity matching: the realistic case

Many studies on the joint spectral properties of down-conversion pairs assume either

Gaussian or delta pump-envelope functions. These functions are convenient to work

with analytically, but often don’t reflect what happens in an experiment. Indeed,

most experiments which aim to create more than just one heralded photon, or mul-

tiple photon pairs, are performed with mode-locked, ultra-short-pulsed lasers whose

temporal intensity function can be described by a squared hyperbolic secant (sech)

function, sech2(t/τ), where τ is a temporal scaling factor [86]. This yields a PEF
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represented, up to an irrelevant linear phase, by a sech function:

αsech(ωs, ωi) = sech
[1
2πτ (Ωs + Ωi)

]
, (3.6)

having a bandwidth equal to 4 cosh−1 [2]/(πτ). Note that the sech and Gaussian

amplitude functions have equal width when τ ≈ 0.712σpef.

Moreover, we also need to consider sinc-shaped PMFs when discussing standard

PDC processes, as we have seen that this is the standard form of the PMF arising

from crystals with constant nonlinearity profile, see Eq. (2.24). We can define the

sinc PMF in the (ωs, ωi) space as:

φsinc(ωs, ωi) = sinc
[√

2κ (sin(θ)Ωs − cos(θ)Ωi)
]
, (3.7)

where κ is the width parameter, and θ defines the PMF’s orientation as in Eq. (3.2).

The sinc and Gaussian amplitude functions, as defined in Eq. (3.7) and (3.1), have

equal width when σpmf ≈ 1.61/κ. Finally, the sech and sinc functions have equal

width when τ ≈ 0.442κ. These three highly-relevant functions are shown in Fig-

ure 3.2, both in their amplitude and intensity (i.e. absolute value squared of the

amplitude) forms.

Figure 3.2: Comparison of Gaussian, sech and sinc functions. The
width parameters of Gaussian, sech and sinc amplitude functions (a) are chosen
to match their FWHM (n.b. the corresponding intensity functions (b), defined
as the absolute value squared and shown on the right, have different FWHMs).
The sech function has higher tails with respect to the Gaussian function, in-
troducing unwanted correlations in the JSA. The sinc function, on the other
hand, presents side lobes near the main peak, even more detrimental for the
heralded-photon purity.
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We can now analyse how realistic PEFs and PMFs affect the JSA separability.

For all four combinations, the spectral purity of heralded photons depends on the

relative widths of the functions, in analogy with the Gaussian-Gaussian case dis-

cussed analytically in Eq. (3.5). To maximise the purity, we introduce a parameter

ξ equal to the ratio between the PEF and PMF widths:

ξ = σpmf

σpef
≈ 1.40 σpmfτ ≈

1.61
σpefκ

≈ 2.26τ
κ
, (3.8)

and optimise over ξ for each PMF angle θ.

The results of this analysis are shown in Figure 3.3. The angle θ is studied

over a range of [π/4, 3π/4], as the results show symmetric behaviour when studied

over the supplementary range [−π/4, π/4]. As expected from Eq. (3.5), optimal

purity (relative to each combination of PEF and PMF) can be achieved via GVM

only for θ ∈ (0, π/4), while it drops when the PMF angle is outside this range. At

first glance, it’s clear that sinc-shaped PMFs are the main cause of the reduction

in heralded-photon purity (Chapter 4 is indeed entirely dedicated to solving this

issue). Moreover, sech-shaped pump spectra behave very similarly to Gaussian-

shaped ones: this is not surprising, as the two functions are both bell-shaped and

have very similar profiles. However, the sech function slightly compromises the

Figure 3.3: Group-velocity matching. GVM condition for different com-
binations of pump-envelope function and phase-matching function: Gaussian-
Gaussian (blue dots), Gaussian-sinc (red triangles), sech-Gaussian (green
squares), and sech-sinc (yellow stars).
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JSA separability, leaving the Gaussian-Gaussian combination as the only optimal

one [97], providing perfect purity whenever the group-velocity matching condition is

satisfied. Curiously, in the extreme asymmetric group-velocity matching condition

(θ ' 0 and θ ' π/2) all the combinations approximately hit perfect heralded-photon

purity. The price to pay is a very small ξ parameter, meaning that the PMF width

should be much smaller than the PEF width (see also Eq. (3.5)): a condition hard

to implement in actual experiments as it would require extremely short pump pulses

combined with extremely long nonlinear crystals.

In an actual experiment, the crystal length determines the phase-matching func-

tion width according to Eq. (2.24) and (2.26) (this is not the case for custom-poled

crystals discussed in Chapter 4), while the pulse length gives the pump-envelope

function bandwidth. Therefore, when designing the experiment, one chooses the

crystal length based on the PEF FWHM (or vice-versa) to maximise the purity,

as we did in the numerical simulation shown in Figure 3.3. However, the optimal

relationship between crystal length and pulse bandwidth differs for different mater-

ials, as the Sellmeier equations might not be exactly linear in ∆k (see Eq. (2.25)).

For this reason, one should always consider their specific case, taking into account

the exact pump spectral shape and the nonlinear properties of the crystal, and run

simulations with realistic parameters to be sure that the output will approximate

sufficiently well the physics of the process. Last but not least, the optimal pulse

length for a given PMF is also dependent on eventual filtering that might be ap-

plied on the PDC photons: one should also take the filter profile into account when

simulating the effective JSA of the overall process, keeping in mind that the filter

transmission needs to be translated from the intensity domain to the amplitude

domain before applying it to the joint spectrum.

3.1.3 Symmetric group-velocity matching

In this Section, we focus on the special case where v−1
p =

(
v−1
s + v−1

i

)
/2, i.e. θ =

π/4. In this case, the PMF is perpendicular to the PEF, and is on the main diagonal
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of the (ωs, ωi) plane:

φsymGauss(ωs, ωi) = exp
[
−(Ωs − Ωi)2

2σ2
pmf

]
,

φsymsinc(ωs, ωi) = sinc [κ (Ωs − Ωi))] .
(3.9)

This regime is known as symmetric group-velocity matching condition, which for

Gaussian functions generates separable photons with equal bandwidths when σpmf =

σpef. These photons can be used for heralded photon generation, but the photons

can also both be fed into an experiment, as they will exhibit perfect two-photon

interference if their central wavelengths are chosen to be identical.

Figure 3.4: Symmetric group-velocity matching. The figure shows
the heralded-photon purity as a function of the parameter ξ, defined as the
ratio between the PMF and PEF widths, for different combinations of phase-
matching function and pump-envelope function. For each combination, there
is only one optimal ξopt that maximises the purity, as shown in Table 3.1, while
any other value is sub-optimal and compromises the JSA separability. The only
PMF-PEF combination that guarantees perfect purity is Gaussian-Gaussian,
as we have already seen in Figure 3.3.

As already mentioned above, the optimal ratio for a Gaussian-Gaussian combin-

ation is ξ = 1, but we found that for other combinations, this can vary by up to 26 %.

We can see how, in this symmetric GVM case, a sech PEF reduces the maximum

purity only slightly, while a sinc PMF reduces the maximum purity significantly, by

approximately 20 %. Figure 3.4 shows the dependence of heralded-photon purity on
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ξ for all four PEF-PMF combinations here studied, and Table 3.1 shows maximum

purities and corresponding ξ for each combination:

PEF PMF maximum Ps optimal ξ
Gaussian Gaussian 1 1

sech Gaussian 0.99 1.12
Gaussian sinc 0.80 1.13

sech sinc 0.79 1.26

Table 3.1: Maximum purities and corresponding ξ for the most common
combinations of pump-envelope functions and phase-matching functions. Due
to the low purity arising from a sinc-shaped PMF, spectral filtering on the
heralding or both beams is typically used to improve the purity at expense of
the overall photon counts.

The optimal JSAs given by the four PEF and PMF combinations are shown in

Figure 3.5.

3.1.4 Chirped pump pulses and their effect on photon purity

So far, we have considered Fourier-transform-limited pump-envelope functions, where

the temporal and spectral profile of the pump pulses have minimal time-bandwidth

product. However, it is possible to have non-transform-limited pulses in an ex-

periment i.e. the temporal duration might exceed the time-bandwidth product,

especially when ultra-short pulses are used. This is the scenario we’ll discuss in this

Section.

When short optical pulses propagate through a transparent medium whose re-

fractive index is wavelength dependent, they acquire a phase that depends nonlin-

early on the wavelength, known as frequency chirp. To study how a linear frequency

chirp affects the down-converted photons, we introduce a quadratic spectral phase

to the PEF to model the group-delay dispersion in the material [86] (the main con-

tribution to the overall dispersion and pulse chirping), i.e., we multiply the PEF

by e−ik(ω̄p−ωp)2 (or, equivalently, multiply the JSA by e−ik(Ωs−Ωi)2), where k is equal

to half of the group delay dispersion. This phase introduces temporal broadening

which in turn introduces phase correlations in the JSA, reducing the spectral purity

of heralded photons.
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Figure 3.5: Joint spectra in symmetric group-velocity matching. The
figure shows the four JSAs corresponding to the four PEF-PMF combinations in
symmetric GVM condition, where ξ parameter is chosen individually according
to Table 3.1 to maximise the heralded-photon purity. (a) Gauss-Gauss, (b)
Gauss-sinc, (c) sech-Gauss, (d) sech-sinc.

The spectral purity of a chirped JSA can be parametrised by the dimensionless

parameter kw2, where w is the spectral width of the PEF. This tells us that there is

a trade-off between the pump width and the amount of chirp that can be tolerated,

i.e., increasing the chirp or increasing the square of the pump’s width will have the

same effect on the purity. We can therefore run numerical simulations to analyse

the effect of chirping on the joint spectrum separability. We find that separability

decays almost exponentially as chirping increases, as reported in Figure 3.6, where

the heralded-photon purity is plotted as a function of kw2.
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Figure 3.6: Effect of a chirped pump. The figure shows the purity as a
function of the chirping parameter, kw2, for different combinations of phase-
matching function and pump-envelope function. Optimal purity is achieved
only in absence of chirping, as correlations between signal and idler arise as
soon as kw2 > 0.

To explore the trade-off between k and w2, and provide some physical meaning

to the numerical result in Figure 3.6, we model sech pulses propagating in optical

glass N-BK7—a very common material for optical components. For example, a

400 nm, 50 fs sech pulse (where pulse length is defined as the FWHM of the temporal

intensity profile), which is the pulse length of modern GHz repetition rate Ti:sapph

lasers, passing through 1 cm of the standard optical substrate of N-BK7 acquires a

quadratic phase of kw2 ≈ 2.1, decreasing the purity from ∼ 0.99 to ∼ 0.90 (when

the PMF is Gaussian-shaped) or from ∼ 0.80 to ∼ 0.74 (in the sinc-shaped PMF

case). But a 200 fs sech pulse travelling through the same piece of glass acquires

a quadratic phase of only kw2 ≈ 0.13, decreasing the purity by less than 0.1 %.

However, if the same 200 fs pulse is sent through 30 cm of fused-silica single-mode

fibre, the corresponding chirping is kw2 ≈ 3.2 and is therefore not negligible. This

shows that while group delay dispersion, and therefore spectral chirping, can be

neglected for relatively long pulses (in particular picosecond pulses), it should be

taken into account for short (i.e. sub-picosecond) pulses. Figure 3.7 shows values of

kw2 in N-BK7 for a sech pulse at different pulse durations and central wavelengths.

While the frequency chirp introduces correlations in the JSA, these correlations

are not visible in the JSI, where the absolute value squared of the joint spectral

amplitude is considered. Therefore, in the presence of chirp, the JSI is not a good
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indicator of heralded photon spectral purity, as discussed in the second half of this

Chapter.

Figure 3.7: Dispersion in N-BK7. Example of chirping parameter, kw2,
in the optical substrate N-BK7 as a function of pulse duration (assuming a
sech-shaped pulse) and glass length. The legend shows kw2 values for central
wavelengths λ = 400 nm and λ = 800 nm, where the group velocity dispersion
of the material is equal to 122 fs2/mm and 45 fs2/mm, respectively.

3.2 Benchmarking a down-conversion source

In the previous Section, we discussed the design of a heralded single photon source

that (aims to) produce spectrally pure photons. In the second part of this Chapter

we address the question of how a PDC photon source can been characterised in its

spectral properties once it is built. While it can be extremely hard to directly meas-

ure the spectral purity of a heralded photon via, e.g., quantum state tomography,

this property can be inferred from other measurements, such as those of the JSA,

the JSI (in special cases), or HOM interference [41].

Any experimental measurement—as well as any numerical simulation—of the

JSA or JSI necessarily yields a discretised approximation over a finite range of

signal and idler frequencies. Since poor choice of discretisation and spectral range
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can give incorrect results, we will discuss the effect of discretisation and spectral

range on the inferred spectral separability. What’s more, in many situations only

the JSI can be measured directly: common experimental methods such as scanning-

monochromator measurements, fibre-spectroscopy techniques or stimulated emission

tomography [99–105] lack spectral phase and sign information, and have access to

the intensity only. We show that using the square root of the JSI,
√

JSI = |JSA|, for

purity estimation involves some pitfalls if the JSA has phase-correlations, including

sign-changes, and temporal correlation introduced by e.g. a chirped pump. It’s

worth noting that there are also methods to reconstruct the JSA directly (including

phase correlations), such as phase-sensitive stimulated emission tomography [106,

107] or Franson-inspired interferometric schemes [108], but they are experimentally

hard and are not widespread techniques.

We will finally discuss why two-photon interference is generally a better bench-

mark for inferring the PDC heralded-photon purity.

3.2.1 JSA reconstruction

In the first Chapter, we have seen that the purity can be calculated from the Schmidt

decomposition of the JSA. To do this in practice, the JSA is discretised into fre-

quency bins, over finite ranges of signal and idler frequencies, then represented as a

complex-valued matrix. The Schmidt decomposition is then computed numerically

applying SVD [68, 109] to the matrix representation of the JSA.

Whether the discretised JSA is obtained experimentally using, e.g. phase-sensitive

stimulated emission tomography, or constructed from the analytical form of the JSA

for a numerical simulation, it is crucial to correctly choose the spectral range of both

the signal and the idler photons and the number of frequency-bins used for the dis-

cretisation. Here, we discuss this matter considering, as an example, a sinc-shaped

PMF and Gaussian-shaped pump function in symmetric GVM regime (θ = π/4).

Clearly, an analogous analysis should be repeated for any given experimental condi-

tion: however, the conclusions we’ll show in the following pages are general enough

to give the reader an idea of how to tackle this problem in any practical case.
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Mathematically, we know that only a SVD of the JSA can yield the actual purity.

But since others (e.g. [81, 84, 88, 98, 104, 110]) have used the JSI or the
√
JSI (|JSA|)

to get information about the purity from experiments, we also construct matrix

representations of the JSI and
√

JSI (|JSA|) and compute a purity-like parameter

using the singular values of these matrices. In the following, we’ll show that neither

the JSI nor the
√

JSI provide good estimates of the true purity (with exception of

very specific cases).

To study the effect of a finite spectral range, we fix the discretisation (defined

as the number of frequency bins) and construct matrix representations of the JSA

for increasing spectral ranges. We parameterise the spectral range by the ratio

between the spectral range used in the JSA calculation and the average PDC photon

bandwidth (defined as the FWHM of the marginal spectral distributions of the

photons). We then find the singular values of each matrix and use it to compute

the purity according to Eq. (2.35). We find that for a fixed discretisation, the

purity starts from near-unity values: this is not surprising, as very small ranges

introduce filtering-like effects. As the spectral range increases, more of the “true

spectrum” is included in the finite representation of the JSA, and the value of the

purity approaches its true value, and in general, as expected, coarser discretisation

leads to worse, more unstable results. However, since the number of frequency bins is

fixed, each bin gets larger as the spectral range continues to increase, and eventually

cannot capture detailed features of the JSA, so the inferred purity diverges from the

true purity. This can be seen in Figure 3.8, where the blue dots show the purity

computed from the JSA as a function of spectral range for matrix discretisations of

50 × 50, 51 × 51, and 250 × 250. It’s worth noting how the purity-like parameter

obtained via SVD of the JSI significantly overestimates the separability of the JSA,

and also an analysis based on the
√

JSI doesn’t lead to the correct value, converging

to a purity-like parameter about 2.3 % higher than the true purity. Curiously, the

SVD behaves differently for even and odd discretisations

To study the effect of discretisation, we fix the spectral range and construct

matrix representations of the JSA for a range of discretisations. As before, we find

Page 42



Chapter 3. Design Considerations for PDC Sources

Figure 3.8: JSA separability as a function of spectral range. Blue
points, red triangles, and green squares represent the purity-like parameters
estimated from the JSA, |JSA| and JSI, respectively, considering (from top to
bottom) 50 × 50, 51 × 51, and 250 × 250 joint spectral matrices. The yellow
dashed line corresponds to the best estimation of the JSA separability, com-
puted from a 3000×3000 matrix over a spectral range larger than 80 times the
PDC-photon bandwidth. The density plots at the top represent the JSAs at
different spectral ranges, where the PDC-photon spectral bandwidth is high-
lighted in red.

the singular values of each matrix and use it to compute the purity according to

Eq. (2.35). We find that, for a fixed spectral range, the computed purity converges

to a fixed value as the discretisation is increased. This can be seen in Figure 3.9,

where again the blue dots show the purity computed from the JSA as a function of

discretisation for spectral ranges of 5, 15, and 30 times larger of the photons’ band-
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Figure 3.9: JSA separability as a function of spectral discretisation.
Blue points, red triangles, and green squares represent the purity-like paramet-
ers estimated from the JSA, |JSA| and JSI, respectively, considering (from top
to bottom) spectral ranges of 5, 15, and 30 times larger than the photon band-
width. The yellow dashed line corresponds to the best estimation of the JSA
separability, computed from a 3000× 3000 matrix over a spectral range larger
than 80 times the PDC-photon bandwidth. Density plots at the top represent
the JSAs at different discretisations.

widths, respectively. The calculated purity-like parameters are extremely sensitive

to relatively small discretisation, and these results aren’t suitable for estimating

accurately the spectral properties of the PDC photons. At higher discretisations

the inferred purity converge to a single value of spectral purity. However, when the

spectral range is too small (e.g. in the top plot), the purity converges to an overes-

timated value, as the corresponding JSA matrix doesn’t take into account spectral
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correlations existing far from the central peak. As before, we also construct matrix

representations of the JSI and
√

JSI (|JSA|) and compute purity-like parameters

using the singular values, shown in Figure 3.9 as green squares and red triangles,

respectively. Both converge, but to the wrong value, thus neither provide very good

estimates of the true purity. This discrepancy is due to the sinc-shaped PMF having

both positive and negative amplitude components. For ideal Gaussian-shaped PEF

and PMF, the purity-like parameter would instead converge to the true purity.

To study the interplay between discretisation and spectral range, and to show in

what regimes a purity estimation from a measured JSA can be trusted, we compute

the JSA separability at different discretisations and spectral ranges, and we show

the results in Figure 3.10. The purity is significantly overestimated for small spectral

ranges, generally < 10 times the photon bandwidth, while a coarse discretisation

leads to noisy results. In general, reliable purity values are obtained in the top-right

corner of the plot: while there isn’t an optimal recipe for choosing these parameters

(as they also depend on the nonlinear properties of the material and on the pump

pulse properties), it is advisable to use spectral ranges larger than 10 times the

photon bandwidth, and discretisation values of at least 100 × 100, for obtaining a

good approximation of the real JSA, and therefore of the purity.

In light of this discussion, we conclude that estimating purity from joint spectral

measurements has a number of pitfalls. Measurements based on JSA and JSI are

impacted by limited spectral range and rough discretisation. In the case of JSI,

even if the characterisation is carried out meticulously, the purity-like parameter

inferred from the SVD (which, as discussed above, can sometimes correspond to

the spectral purity) is at best a rather loose upper bound, and one should seek

alternative methods for a more precise purity estimation.
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Figure 3.10: Purity estimation at different spectral ranges and dis-
cretisations. This contour plot shows the interplay between discretisation the
spectral range when estimating the purity from a JSA matrix. As thoroughly
discussed in the main text, small spectral ranges overestimate the purity, while
small discretisations lead to noisy and unreliable results.

3.2.2 Two-photon interference

If there is reason to believe that the JSA has both positive and negative regions, or if

it has additional temporal correlations such as those that come from chirped pulses—

and it is not possible to do phase-sensitive stimulated emission tomography—then

one ought to find alternative schemes to benchmark the PDC-photons spectral prop-

erties.

A more reliable benchmark is HOM two-photon interference. This can be ex-

perimentally achieved by interfering the signal and idler photons produced in the

same down-conversion process (to gather information on what kind of spectral cor-

relations exist in a given JSA), or two heralded-photons (either signal with signal or

idler with idler) produced in the same nonlinear crystal at different times (to infer

the heralded-photon spectral purity). The visibility of such process is defined as:

V = 1− Nmin

Nmax
, (3.10)
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where Nmax is the number of photon pairs that exit the BS from opposite ports

after arriving at the BS simultaneously, while Nmin is the number of photon pairs

that exit the BS from opposite ports after arriving at the BS at different times for

identical photons. In this last Section, we will discuss how to link the interference

pattern and visibility to the PDC spectral properties, and we’ll show how two-photon

interference predicts the spectral purity even in the case of chirped pulses.

3.2.3 HOM: the general case

Let’s consider two spectrally-pure photons entering a BS from the two input modes

a and b:

|ψin〉a,b =
∫
dωaϕa(ωa)â†(ωa) |0〉a

∫
dωbζb(ωb)e−iωb∆tb̂†(ωb) |0〉b , (3.11)

where e−iωb∆t is a time delay term indicating a ∆t-delay in the arrival times of

the two photons at the BS. An ideal 50-50 beam-splitter introduces the following

transformations on the creation operators:


â†(ωa)→ 1√

2

(
iâ†(ωa) + b̂†(ωa)

)
b̂†(ωb)→ 1√

2

(
â†(ωb) + ib̂†(ωb)

)
,

(3.12)

and, consequently, the biphoton state after the BS reads:

|ψout〉a,b = 1
2

∫
dωaϕa(ωa)

∫
dωbζb(ωb)e−iωb∆t(

iâ†(ωa)â†(ωb)− â†(ωa)b̂†(ωb) + b̂†(ωa)â†(ωb) + iâ†(ωa)b̂†(ωb)
)
|0〉a,b .

(3.13)

To calculate the probability of having the two photons exiting opposite outputs of

the BS (here labelled as cc, standing for coincident count detected in opposite modes

simultaneously), we need to consider the detection projectors on mode k, assuming
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flat spectral response to avoid filtering-like effects:

P̂k =
∫
dωk̂†(ω) |0〉k 〈0|k k̂(ω) , (3.14)

and to apply the projectors on the output modes of the BS:

pcc(∆t) = Tr
[
|ψout〉a,b 〈ψ

out|a,b P̂a ⊗ P̂b
]
. (3.15)

Combining Eq. (3.13) and (3.14) with Eq. (3.15), and after a few simplification steps,

we obtain the relation [41]:

pcc(∆t) = 1
2 −

1
2

∫
dω1ϕ

∗
a(ω1)ζb(ω1)e−iω1∆t

∫
dω2ϕa(ω2)ζ∗b (ω2)eiω2∆t . (3.16)

When the two photons are spectrally identical, and arrive at the BS simultaneously,

the probability of having a coincident count at the two opposite outputs of the BS

is 0, meaning that the photons interfere perfectly and always bunch at the beam-

splitter.

Eq. (3.16) only holds in the case of spectrally-pure photons. However, it can

be easily generalised to mixed states summing over the contributions of all the

components of the statistical mixture [41]:

pcc(∆t) = 1
2 −

1
2qkqk

′
∑
k,k′

∫
dω1ϕ

∗
k(ω1)ζk′(ω1)e−iω1∆t

∫
dω2ϕk(ω2)ζ∗k′(ω2)eiω2∆t ,

(3.17)

where qk, qk′ are the weights of the statistical mixture of the two photons, and

ϕk(ωa), ζk′(ωb) are the corresponding spectra.

3.2.4 Signal-idler interference

Following from the general case described above, we can now discuss the case of in-

terfering signal and idler photons produced in the same parametric down-conversion
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process. Starting from the input state:

|ψin〉a,b =
∫∫

dωsdωif (ωs, ωi) e−iωi∆t â†(ωs)b̂†(ωi) |0〉s,i , (3.18)

we can go through the same steps as above, applying the BS transformations and

the projections on the BS output modes. The result is the following relation:

pcc(∆t) = 1
2 −

1
2

∫∫
dω1dω2f

∗ (ω1, ω2) f (ω2, ω1) ei(ω2−ω1)∆t (3.19)

that can be rewritten in terms of the Schmidt modes of the biphoton state according

to Eq. (2.29), with f(ωs, ωi) = ∑
k bkuk(ωs)vk(ωi):

pcc(∆t) = 1
2 −

1
2
∑
k,k′

bkbk′
∫
dω1u

∗
k(ω1)vk′(ω1)e−iω1∆t

∫
dω2uk′(ω2)v∗k(ω2)e−iω2∆t .

(3.20)

In Figure 3.11 (a) we show the signal-idler interference patterns for the PEF-

PMF combinations Gaussian-Gaussian and Gaussian-sinc, obtaining the well known

“Gaussian HOM dip” and “triangular HOM dip”, respectively.

Conveniently, signal-idler interference can also be used to infer the particle-

exchange symmetry properties of the JSA [111, 112]. For example, a JSA of the form

f1(ωs, ωi) = exp
[
− (ωs + ωi)2

]
is perfectly symmetric, as f1(ωs, ωi) = f1(ωi, ωs),

while a JSA equal to f2(ωs, ωi) = exp
[
− (ωs + ωi)2

]
(ωs−ωi) is maximally antisym-

metric, as as f2(ωs, ωi) = −f2(ωi, ωs). Any JSA can be decomposed in its symmetric

and antisymmetric parts as follows:

f(ωs, ωi) = f(ωs, ωi) + f(ωi, ωs)
2 + f(ωs, ωi)− f(ωi, ωs)

2
f(ωs, ωi) = γfs(ωs, ωi) + δfa(ωs, ωi) ,

(3.21)

where fs(ωs, ωi) = fs(ωi, ωs), fa(ωs, ωi) = −fa(ωi, ωs) are normalised functions:

∫∫
dωsdωi|fs(ωs, ωi)|2 =

∫∫
dωsdωi|fa(ωs, ωi)|2 = 1 , (3.22)

and γ, δ need to satisfy the following condition: |γ|2 + |δ|2 = 1.
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Figure 3.11: Signal-idler interference. (a) Signal-idler interference for a
JSA composed of Gaussian pump and Gaussian (top) or sinc (bottom) phase-
matching function, respectively. (b) Signal-idler interference at different de-
grees of antisymmetry of the joint spectrum: perfect bunching occurs when the
spectrum is maximally symmetric, perfect antibunching when it’s maximally
antisymmetric. (c) Corresponding JSAs at different degrees of antisymmetry.

We now replace the JSA in Eq. (3.19) with its decomposition in symmetric and

antisymmetric parts, and consider the photons arriving simultaneously at the BS

(i.e. we consider ∆t = 0):

pcc(0) =1
2 −

1
2

∫∫
dωsdωi(|γ|2|fs(ω1, ω2)|2

− γ∗δf ∗s (ω1, ω2)fa(ω1, ω2) + γδ∗f ∗a (ω1, ω2)fs(ω1, ω2)− |δ|2 |fa(ω1, ω2)|2
)
,

(3.23)

where we have rearranged the order of the frequencies and changed sign accordingly

to the symmetry/antisymmetry of the function. The integral of the mixed terms

is equal to zero because the overall product of fs and fa is antisymmetric and

integrated over a symmetric interval, and considering the normalisation conditions
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in (3.22) the coincidence probability reads:

pcc(0) = 1
2 −

1
2(|γ|2 − |δ|2) = 1− |γ|2 = |δ|2 . (3.24)

Equation (3.24) relates the antibunching probability with the antisymmetry of the

joint spectrum. As a last step, we can relate the interference visibility with the

antisymmetry weight δ:

V = 1− 2pcc(0) = 1− 2|δ|2 , (3.25)

with V = 1 for maximally symmetric biphoton states, and V = −1 for maximally

antisymmetric ones. As an example, in Figure 3.11 (b,c) we show the signal-idler

interference patterns for JSAs having different amount of antisymmetry, showing

how the amount of bunching/antibunching depends on the overall symmetry of the

joint spectrum.

3.2.5 Heralded-photon interference

We finally consider the interference of heralded PDC photons. Let’s consider two

independent joint spectra, expanded in terms of the Schmidt modes of the biphoton

states: f(ωs, ωi) = ∑
k bkuk(ωs)u′k(ωi) and g(ωs, ωi) = ∑

k dkvk(ωs)v′k(ωi) . Analog-

ously to the previous Sections, we can calculate the probability of having antibunch-

ing at the BS as:

pcc(∆t) = 1
2 −

1
2
∑
k,k′

b2
kd

2
k′

∫
dω1u

∗
k(ω1)vk′(ω1)e−iω1∆t

∫
dω2uk(ω2)v∗k′(ω2)e−iω2∆t

(3.26)

where we are considering the interference of the signal photons, described by the

Schmidt modes uk(ωs) and vk(ωs). An analogous discussion holds for any combina-

tion of signal and idler of the two PDC processes.

When we consider two identical JSAs, as for example considering the interference

of photons produced by the same crystal at successive time steps, and we consider
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∆t = 0, Eq. (3.26) reduces to:

pcc(0) = 1
2 −

1
2
∑
k,k′

b2
kb

2
k′

∫
dω1u

∗
k(ω1)uk′(ω1)

∫
dω2uk(ω2)u∗k′(ω2)

= 1
2 −

1
2
∑
k,k′

b2
kb

2
k′

∫
dω1u

∗
k(ω1)uk′(ω1)δkk′

= 1
2 −

1
2
∑
k

b4
k .

(3.27)

We can finally calculate the interference visibility, as we did in Eq. (3.25), obtaining:

V = 1− 2pcc(0) = 1− 2
(

1
2 −

1
2
∑
k

b4
k

)
=
∑
k

b4
k = Ps,i , (3.28)

that corresponds exactly to the heralded-photon purity of signal and idler, Ps,i,

as defined in Eq. (2.35). This result is very important as it tells us that, under

the assumption of perfect indistinguishability of all the other photon degrees of

freedom (DOFs), two-photon interference is the perfect tool for measuring the JSA

separability or, equivalently, the PDC-photon purity. Unlike techniques based on

the JSI reconstruction, HOM interference is intrinsically phase-sensitive, providing

the correct estimate of the purity even when non-negligible phases are present in the

joint spectrum. Figure 3.12 shows that the two-photon interference is indeed capable

of capturing the phase information of the JSA: the visibilities of the interference

patterns match the purities obtained via Schmidt decomposition shown in Figure 3.6.

As in any measurement, experimental imperfections (such as for example not-

perfectly balanced BS or not-identical sources emitting the interfered photons) might

compromise the result, giving a misleading estimate of the single-photon purity.

However, this errors are generally small: in the experimental chapters of this Thesis

we estimate an error of about 0.2 %. Moreover, the main reason why ultimately one

wants to characterise pure photons is to use them in quantum information protocols,

where two-photons interference is required to implement many quantum operations.

Estimating purity via quantum interference is therefore also a direct benchmark of

how well the photons will interact when used in real applications.
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Figure 3.12: Heralded photons’ interference for purity estima-
tion. HOM interference patterns for different combinations of PEF and PMF:
Gaussian-Gaussian (a), Gaussian-sinc (b), sech-Gaussian (c), and sech-sinc (d).
The solid and dashed lines correspond to different amounts of pump chirping
(kw2 = 0 and kw2 = 2, respectively), highlighting the phase sensitivity of the
two-photon interference. As expected from Figure 3.6 and the discussion in the
first half of this chapter, a chirped pump decreases the spectral purity of the
heralded photons and consequently spoils the quality of the interference.

3.3 Conclusion and discussion

In this Chapter, we investigated a number of practical issues relevant to the design

and characterisation of single-photon sources based on parametric down-conversion

in a group-velocity matching regime. We showed that when realistic laser pulses and

phase-matching functions are used, the pulse laser and PDC bandwidths (i.e. choice

of crystal length as a function of pulse shape and duration) that optimise heralded

photon spectral purity differ to those previously found for ideal Gaussian functions.

We examined state characterisation methods based on the joint spectrum of bi-

photons or two-photon interference, studying how discretisation and spectral range

of the joint spectrum play a large role in correctly inferring the heralded photon

spectral purity. We also discussed that, in cases where the joint spectral amplitude

changes sign or contains non-trivial phases, inferring the purity from the JSI leads

to incorrect results. In those cases, if it is not possible to measure the JSA, then
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a two-photon HOM interference experiment is a good option to infer the spectral

purity. Most importantly, pure single photons are needed in quantum photonics

protocols, where the interference quality is usually mapped to the protocol success

probability: an additional reason for using two-photon interference as a benchmark

for the heralded-photon purity.

The theory developed in this Chapter is for PDC in χ(2) materials, but the

analysis on how the PEF shape and chirp impact the bi-photon properties can be

extended to four-wave-mixing processes in χ(3) materials, which are a building block

of integrated nonlinear sources. Furthermore, the results on JSA characterisation

apply directly to bi-photons generated via four-wave-mixing.

The sum of these considerations provide a recipe for the correct choice of the

experimental parameters for matching laser pulses to PDC bandwidths, and of the

parameters for characterising the photon purity. Taking these considerations into

account will further improve the quality of PDC photon sources in terms of bright-

ness, spectral purity, and heralding efficiency.
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Se una notte d’inverno un viaggiatore

CHAPTER 4

Nonlinearity Engineering

Contents
4.1 Quasi-phase-matching and periodic poling 56
4.2 Tailoring the PMF: a brief overview . . 61
4.3 Novel nonlinearity engineering techniques 62
4.3.1 Theory behind the scenes . . . . . . 63
4.3.2 Choosing the width parameter . . . 67
4.3.3 “Two-domain blocks” tracking . . . 70
4.3.4 “One-domain blocks” tracking . . . 72
4.3.5 Simulated annealing algorithm . . . 73
4.3.6 Sub-coherence length domains . . . 77

4.4 Engineering techniques comparison . . . 81
4.5 (A)periodic poling in realistic crystals . 83
4.5.1 Undesirable PDC generation far

from central peak . . . . . . . . . . 84
4.5.2 Crystal Imperfections . . . . . . . . 86

4.6 Irregular momentum mismatch: an edge
case . . . . . . . . . . . . . . . . . . . . 90

4.7 Down-conversion in KTP at telecom
wavelength: a case study . . . . . . . . . 90

4.8 Conclusion and discussion . . . . . . . . 93

In this Chapter we tackle

the problem of sub-optimal, sinc-

shaped PMFs typical of stand-

ard nonlinear crystals. We start

with an introduction to quasi-

phase-matching and periodic poling

through periodic inversion of the

crystal lattice, linking them to the

effective nonlinearity of the crys-

tal and the corresponding PMF. We

will then move on to the core of this

Chapter and of the whole Thesis,

discussing how tailored PMFs can

be achieved by means of aperiodic poling. After a brief introduction to pre-existing

techniques, we present nonlinearity engineering techniques developed in Ref. [93].

We will discuss the important parameters of this scheme, pointing out the many ad-

vantages that it provides over other techniques, and commenting on its limitations

and drawbacks. As a case study, we will finally discuss domain engineering in KTP

for producing photons at telecom wavelength.
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4.1 Quasi-phase-matching and periodic poling

Let’s imagine a nonlinear material with very strong χ(2) coefficient, that we’d like

to use in a nonlinear process, e.g., parametric down-conversion. It might be the

case that conservation of momentum is not satisfied at the desired wavelengths, i.e.

∆k0 = ∆k(ω̄s, ω̄i) = kp(ω̄p) − ks(ω̄s) − ki(ω̄i) 6= 0, making the process apparently

impossible. This is the case for several materials, as for example potassium titanyl

phosphate (KTP) and Lithium Niobate, very common crystals in nonlinear and

quantum optics applications at visible, near- and mid-infrared applications. Such

problem can be overcome with a technique known as periodic poling, which inverts

the crystal lattice periodically to induce quasi-phase-matching [113], as shown in

Figure 4.1: this shifts the PMF peak in the ∆k space to satisfy momentum conser-

vation without significant changes of the PMF shape, enabling the nonlinear process

at the desired frequencies.

Figure 4.1: Periodic poling. The PMF of a non-phase-matched crystal
(red line) reaches a maximum at `c, where the PDC photons and the pump
photon are in counterphase, and then it drops back to 0 at 2`c: this behaviour
is repeated along the crystal, and the PMF keeps oscillating close to 0 and
doesn’t grow with z. When periodic poling is introduced, the π phase-shift
is compensated by a flip in the ferroelectric orientation each domain, and the
PMF grows linearly in the crystal (blue line), with a 2/π scaling factor with
respect to a bulk crystal (green line).
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Let’s start by generalising the phase-matching function definition in Eq. (2.19)

to arbitrary longitudinal positions, z, in the crystal:

φ(∆k; z) =
∫ +z

−∞
g(z′) ei∆kz′dz′ , (4.1)

where we omit the dependence of ∆k on the signal and idler frequencies, (ωs, ωi),

for brevity. When considering a PDC process in a bulk crystal, the normalised

nonlinearity along the crystal, g(z), is equal to 1 between z = 0 and z = L (where L

is the crystal length), and 0 everywhere else. Thanks to the additivity property of

our PMF definition, Eq. (2.19) can be rewritten to study the PMF along the crystal

at any given position z:

φbulk(∆k; z) = z ei
∆kz

2 sinc
[

∆kz
2

]
. (4.2)

When ∆k is centred around 0 at the target frequencies, the PMF grows linearly

along the crystal, while its width narrows down also linearly (intuitively, as the

crystal gets longer its Fourier transform gets narrower): we show this behaviour in

Figure 4.2: 3D phase-matching function of bulk crystal. Three-
dimensional plot of the PMF of a bulk crystal, according to Eq. (4.2). As
expected, the PMF is 0 at the starting edge of the crystal, it then grows lin-
early along the longitudinal direction of the crystal while its width narrows
down. The plot section at z/L = 1 corresponds to the overall PMF of the
nonlinear process.
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Figure 4.2. However, when the target frequencies correspond to ∆k = ∆k0 6= 0,

the PMF follows the relation: φ(∆k0; z) = ei
∆k0z

2 sin
[

∆k0z
2

]
= i

2

(
1− ei∆k0z

)
, that

oscillates with period Λ = 2`c = 2π/∆k0 without increasing along the crystal,

see plot in Figure 4.1. The semi-period `c is known as the coherence length, and

represents the distance over which the phase between pump and down-converted

photons changes by π, and the φ(∆k0; z) reaches its maximum value before starting

to decrease.

In a periodically-poled crystal, g(z) alternates between +1 and −1 every co-

herence length `c, to compensate for the π-phase shift between pump and down-

converted photons. The corresponding PMF reads:

φpp(∆k) =
N∑
n=1

∫ n`c

(n−1)`c
(−1)n−1 ei∆kzdz

= i
N∑
n=1

(−1)n︸ ︷︷ ︸
einπ

ei∆kn`c
1− e−i∆k`c

∆k

= i
ei∆k`c

(
−1 + eiN(∆k`c+π)

)
1 + ei∆k`c

1− e−i∆k`c
∆k

= i

−1 + eiN`c
π
`c ei∆kN`c︸ ︷︷ ︸

e
i(∆k− π

`c
)N`c

 1
∆k

ei∆k`c − 1
ei∆k`c + 1

= i N`c e
i(∆k− π

`c
)N`c2

ei(∆k− π
`c

)N`c2 − e−i(∆k− π
`c

)N`c2

2
(
∆k − π

`c

)
N`c

2

(
∆k − π

`c

)
∆k

ei∆k`c − 1
ei∆k`c + 1

= L ei(∆k− π
`c

)L2 sinc
[(

∆k − π

`c

)
L

2

]
︸ ︷︷ ︸

standard bulk PMF shifted by π
`c

(
∆k − π

`c

)
∆k

1− ei∆k`c
1 + ei∆k`c︸ ︷︷ ︸

additional term: ϕadd(∆k)

= φbulk

(
∆k − π

`c
;L
)
ϕadd(∆k) ,

(4.3)

where N is the number of domains, φbulk is the PMF as in Eq. (2.24) shifted

by π/`c, and in the second-last step we used N`c = L, with L being the total

crystal length. Note that Eq. (4.3) considers a crystal centred in L/2 and not in 0

along the z-axis, but such shift only corresponds to a negligible phase term. The

effects of the additional term, ϕadd, in Eq. (4.3) are small but non-negligible, and
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they make the sinc-shaped PMF slightly asymmetric, as shown in Figure 4.3. The

common practice of thinking periodic poling as resulting in an additional term in

Figure 4.3: Phase-matching function in periodically-poled crystals.
The figure shows (a) the bulk component of the PMF, φbulk

(
∆k − π

`c

)
, and (b)

the additional term, ϕadd(∆k). The overall PMF in (c), φpp(∆k), is slightly
asymmetric: the side lobes on the right of the central peak are slightly higher
than the ones on the left. The width of peaks and side lobes depends on the
crystal length. The main PMF peak and the higher harmonics, typical of the
periodic poling structure, are plotted over a larger ∆k range in (d), highlighting
the asymmetry. In all the plots, blue, red, and green lines correspond to the real
part, imaginary part, and absolute value of the plotted function, respectively.
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the momentum mismatch, ∆kQPM, that compensates for ∆k0 6= 0 and enables the

process—a practice that can be found in virtually any nonlinear optics textbook—is

not precise because it doesn’t take into account the reshaping of the sinc-shaped

PMF.

When ∆k → ∆k0 = π/`c, the additional term |ϕadd(∆k0)| = 2/π, meaning that

the PMF function of a periodically-poled crystal grows linearly with the crystal

length, but with a smaller slope with respect to the bulk counterpart: φpp(∆k) =
2
π
φbulk (0). This is visualised in Figure 4.1.

By following the reverse reasoning to what we have discussed above, we can think

of small variations in the domain widths (introduced via, e.g., temperature tuning

of the crystal) as a new coherence length, `newc , that will lead to a slightly different

∆knew0 6= ∆k0. This corresponds to a shift of the PMF in the ∆k space, allowing

one to fine tune the frequencies of the emitted PDC photons, see Figure 4.4 for an

example. Such fine tuning works not only for periodic poling, but also for crystals

having custom poling structures, and it’s crucial when the PDC photons need to

exactly match a target frequency for, e.g., achieving perfect interference. In some

materials the refractive index also changes significantly with temperature, and both

Figure 4.4: Fine-tuning of poled crystal. (a) The PMF can be shifted
in ∆k by slightly changing the individual domain width (e.g. by varying the
temperature of the crystal). (b) In the (ωs, ωi) plane, this corresponds to a shift
of the PMF parallelly to the ∆k contours, enabling the generation of PDC pairs
at slightly different frequencies.
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domain widening and refractive index change play a role in shifting the PMF when

varying the crystal temperature.

4.2 Tailoring the PMF: a brief overview

While periodic poling has been the first attempt to achieve quasi-phase-matching in

nonlinear crystals, aperiodic poling is also possible. Domain engineering methods

have long been studied in nonlinear optics, for example to compress or shape pulses

in second-harmonic generation [114–119].

These techniques have only recently been adapted for single-photon generation,

where usually the aim is to reduce the spectral correlations arising from a sinc-shaped

PMF (see previous Chapter for details), by tailoring the PMF as a Gaussian. In this

context, existing methods for non-trivial poling fall into two categories. Those that

vary the domain widths of a predefined poling configuration [90], and those that

keep the domain widths equal, but vary their relative orientations [89, 91, 92, 120].

Although such techniques still constrain g(z) to values of +1 and −1, the non-

trivial structure makes it possible to shape the effective nonlinearity of the crystal

and consequently to customise the PMF.

The first step towards overcoming this issue was proposed by Brańczyk et al.,

who showed that the nonlinearity profile of the PDC crystal could be suitably shaped

via domain engineering [89] in order to achieve a Gaussian PMF. Considering differ-

ent poling orders along the crystal, it is indeed possible to approximate a Gaussian

nonlinearity with rectangular-functions having different amplitudes (i.e. having dif-

ferent heights). Consequently, the corresponding PMF is also approximately Gaus-

sian, as PMF and nonlinearity profile are related via Fourier transformation. A

proof-of-principle experiment [89] showed a high overlap between the design and the

experimentally determined PMF, proving the feasibility of tailored nonlinearities for

this purpose.

This technique was subsequently refined leading to even better approximations

to ideal nonlinearity profiles. In [84, 90] the domain-periodicity is restricted to

twice the coherence length of the crystal, but the duty-cycle is customised along
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the crystal. In [91] a simulated-annealing algorithm is used to randomly flip the

domain-orientations (of fixed length `c) to minimise a cost function that quanti-

fies the difference between the actual and the target PMFs. Similarly, machine-

learning frameworks can be used in order to choose domain-orientations along the

crystal [120]. Finally, Tambasco et al. [92] proposed a fully deterministic, computa-

tionally easy algorithm based on tracking the PMF along the crystal. As the results

presented in this Chapter follow from [92], I’ll discuss this technique in detail in the

next Section.

All domain engineering methods mentioned above are intrinsically related to a

coherence-length structure typical of periodically-poled crystals. In the following,

I’ll move beyond the coherence-length domain boundaries to allow for more fine-

grained shaping of the nonlinearity. While in the long crystal limit most of these

methods provide nearly separable JSAs, we’ll see that for short crystal matched with

femtosecond lasers, sub-coherence length domain engineering is required to achieve

spectrally pure heralded-photons.

4.3 Novel nonlinearity engineering techniques

In the following, we describe two methods for tailoring the phase-matching func-

tion by engineering the nonlinearity of the crystal. Both use the method recently

introduced by Tambasco et al. [92] as a starting point, but deviate from the method

by allowing domain widths smaller than the crystal’s coherence length. This move

toward sub-coherence length structures allows much greater accuracy in tailoring

the phase matching function.

In the first approach, we modify the method in Ref. [92] and use it for tailoring

a crystal with fixed domain widths: we then shift the boundaries of the domains by

means of a previously existing annealing method developed for classical applications

in higher-harmonic generation [118, 119]. In the second approach, we generalise the

algorithm in [92] to arbitrarily small, but constant domain widths (not necessarily

equal to the coherence length) and to a complex target phase-matching function.

Both methods lead to a better approximation of the desired PMF and to an enhanced
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heralded single-photon purity, especially in the short-crystal regime.

4.3.1 Theory behind the scenes

We begin by discussing and expanding the ideas that lie at the basis of the method

introduced by Tambasco et al. [92].

Let’s start by defining a target phase-matching function: here we consider a

Gaussian function, but the following reasoning is completely general and holds for

(almost) arbitrary functions:

φtarget(∆k) = e−
1
2 (∆k−∆k0)2σ2

, (4.4)

where σ is a width parameter, and ∆k0 is the centre of the PMF, as discussed in the

previous Sections for the periodically-poled case. An example of such PMF is given

in Figure 4.6(a). A Fourier transformation of Eq. (4.4) leads to the corresponding

crystal nonlinearity:

gtarget(z) = F [φtarget(∆k)] = 1√
2

∫ ∞
−∞

φtarget(∆k)ei∆kzd∆k

= e−
z2

2σ2 +i∆k0z

σ
.

(4.5)

Note that according to this definition, gtarget(z) is centred in z = 0, meaning that

we are considering a crystal spanning z ∈
[
−L

2 ,
L
2

]
, as shown in Figure 4.6(b). By

definition, a crystal having such nonlinearity would have the PMF described in

Eq. (4.4).

The following step might seem counter-intuitive, as it looks like a step back

with respect to what we already did. Indeed, we want to find an equation for a

target PMF but, unlike Eq. (4.4), we need to know how the PMF behaves along the

longitudinal direction of the crystal. To do so, we can perform an inverse Fourier

transorm of Eq. (4.5) using the beginning of the crystal, −L
2 , and a generic position

in the crystal, z < L
2 , as boundaries of the integration. This leads to the following
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equation:

φtrack(∆k; z) = 1√
2

∫ z

−L2
gtarget(z′)e−i∆kz

′
dz′

= N
√
π

2 e−
1
2 (∆k−∆k0)2σ2

[
erf
(
z + i (∆k −∆k0)σ2

√
2σ

)
− erf

(
−L

2 + i (∆k −∆k0)σ2
√

2σ

)]
,

(4.6)

where we introduce a rescaling constant N that will be used in the next few lines.

Eq. (4.6) describes the PMF as a function of both ∆k and z, allowing us to un-

derstand how it changes along the crystal. This can be also visualised in a three-

dimensional plot, as shown in Figure 4.5. When z = L
2 , we are looking at the

“overall PMF” of the nonlinear process, i.e. we are taking into account the whole

crystal when Fourier transforming the nonlinearity. It’s important to notice that

φtrack(∆k;L) 6= φtarget(∆k), while the equality holds only in specific cases: this is

because the crystal dimension is finite while, mathematically, the function describ-

ing its nonlinearity might non-vanish outside the crystal boundaries. More details

are provided in a Section 4.3.2, where optimal parameters for engineering techniques

will be discussed.

Figure 4.5: 3D phase-matching function. Three-dimensional plot of
the PMF φtrack(∆k; z) in Eq. (4.6). As expected, the PMF is zero at the
starting edge of the crystal, it then grows with a non-trivial behaviour along
the longitudinal direction of the crystal, and finally assumes a Gaussian shape
when the whole crystal is considered: φtrack(∆k;L).
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We are now close to the finish line. For simplicity, we can translate Eq. (4.6) by

z → z − L
2 to shift the crystal in the region z ∈ [0, L], and fix the phase mismatch

to the quasi-phase-matching condition, ∆k = ∆k0, obtaining:

φtrack(∆k = ∆k0; z − L

2 ) = N
√
π

2

(
erf
[

L

2
√

2σ

]
+ erf

[
z − L

2√
2σ

])
, (4.7)

where “erf” is the error function. This equation describes the PMF along the crystal

at ∆k0, as depicted in Figure 4.6(c).

Following the previous steps backwards, we find that a crystal having a given

PMF at ∆k0, as described in Eq. (4.7), corresponds to a crystal with a well-defined

nonlinearity profile, the one in Eq. (4.5), that in turn corresponds to the target PMF

in Eq. (4.4) shown in Figure 4.6(d). As mentioned above, this reasoning breaks when

the starting parameters are not chosen carefully, as we’ll see in the next Section.

As a last step, we can now choose the domain orientations of a poled crystal

so that the corresponding PMF at ∆k0 tracks the one in Eq. (4.7): φeff.(∆k =

∆k0; z − L
2 ) ≈ φtrack(∆k = ∆k0; z − L

2 ). However, in the previous Section we have

seen how the maximum slope of the normalised PMF in a periodically-poled crystal

is 2/π, and we need to rescale the tracking function accordingly:

N = 2
π

(
max

[
d

dz
φtrack(∆k)

])−1

, (4.8)

where the derivative of the tracking function is:

d

dz
φtrack(∆k) = e−

(z−L2 )2

2σ2

σ

max
[
d

dz
φtrack(∆k)

]
= 1
σ
.

(4.9)

The scaling factor is therefore N = 2σ
π
, and the tracking PMF reads:

φtrack(∆k = ∆k0; z − L

2 ) =
√

2
π
σ

(
erf
[

L

2
√

2σ

]
+ erf

[
z − L

2√
2σ

])
. (4.10)
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It’s important to keep in mind that the scaling factor N is not general, but only

holds for a Gaussian target phase-matching function, as defined in Eq. (4.4). Whenever

one is interested in different shapes of the PMF, the scaling factor should be calcu-

lated according to the target function.

We provide a visual representation of all the steps of the procedure described

above in Figure 4.6.

Figure 4.6: Nonlinearity engineering theory. A target PMF (a) cor-
responds to a nonlinearity profile (b) centred in 0. The vertical dashed lines
correspond to the crystal edges. The absolute value of the nonlinearity (green
line) is Gaussian shaped, as expected from the Fourier transform of a Gaussian,
while the real and imaginary part of the nonlinearity (blue and red lines) oscil-
lates with period 2π

∆k0
= 2`c: this is an effect of the target PMF being centred

in ∆k0 6= 0. Inverse Fourier transform, shifting of the z variable, and rescaling
of the function lead to (c), i.e. the PMF that ought to be tracked by choosing
an appropriate domain orientation pattern in the poled crystal. The effective
PMF corresponding to the engineered crystal is finally shown in (d). In all the
plots, blue, red, and green lines correspond to the real part, imaginary part,
and absolute value of the plotted function, respectively.
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4.3.2 Choosing the width parameter

Equations (4.4) and (4.5) represent the target phase-matching function and the

corresponding crystal’s nonlinearity. Both equations are parametrised by the width-

term, σ, that will be chosen according to the pump-envelope function bandwidth

(or vice versa) as discussed in the previous Chapter. However, the nonlinearity

profile is also subject to an additional parameter, the crystal length L. Even if the

Fourier transform of the target PMF leads to a function that might not be fully

contained in the interval
[
−L

2 ,
L
2

]
, meaning that the corresponding gtarget(z) 6= 0

when z < −L
2 and z > L

2 , this is physically impossible as the crystal cannot have

non-zero nonlinearity outside its edges. This is captured by Eq. (4.6), which is in

fact integrated from z = −L
2 to a generic position in the crystal z < L

2 . Whenever

gtarget(z) is non-zero outside the crystal boundaries, the effective nonlinearity of the

crystal abruptly drops to 0 with a step function, giving rise to fluctuations in the

Fourier space, i.e. to the side lobes near the main PMF peak.

To understand the importance of a correct choice of the parameter σ, let’s rewrite

it as a function of the crystal length: σ = L
nσ
. We can therefore rewrite gtarget(z) in

Eq. (4.5) as:

gtarget(z;nσ) = nσe
− z

2n2
σ

2L2 +i∆k0z

L
. (4.11)

We can now calculate the area of Eq. (4.11) as a function of the parameter nσ, both

inside the crystal (i.e. the area of the effective nonlinearity):

Ain(nσ) =
∫ L

2

−L2
|gtarget(z;nσ)|dz =

√
2π erf

[
nσ

2
√

2

]
, (4.12)

and outside the crystal:

Aout(nσ) =
∫ −L2
−∞
|gtarget(z;nσ)|dz =

√
2π erfc

[
nσ

2
√

2

]
, (4.13)

where “erfc” is the complementary error function. Finally, we calculate the ratio of
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the two areas, obtaining:

Aratio(nσ) = Aout(nσ)
Ain(nσ) = 1

erf
[
nσ

2
√

2

] − 1 , (4.14)

that we plot in Figure 4.7. We see that reasonably small values of Aratio(nσ) are

achieved when nσ & 5, where the ratio between the areas gets smaller than 1 %.

Figure 4.7: Area of the nonlinearity profile. This figure shows the
portion of gtarget(z) area contained in the crystal (blue), outside of the crystal
(red), and the ratio between the two (green). The sum of Ain and Aout (i.e.
the total area) is normalised to

√
2π according to Eq. (4.5).

In light of this discussion, one might think that the optimal parameter choice is

a very large nσ. However, the collateral effect of taking large nσ values is that the

overall nonlinearity of the crystal decreases, meaning that the effective “strength”

of the process will be lower: in the case of parametric down-conversion, this means

that the source will produce fewer photon pairs. We see this tradeoff in Figure 4.8,

where we consider the case of a bulk crystal compared to a periodically-poled one,

and to engineered crystals with different width parameters. As we have already seen,

bulk crystals have the higher nonlinearity, followed by periodically-poled ones. The

PMF in tailored crystals gets more Gaussian as nσ increases, as the whole gtarget fits

in the crystal’s boundaries and the side lobes get suppressed. However, the PMF’s

peak decreases, meaning that there is a tradeoff between PMF “Gaussianity” and

amplitude. As mentioned above, nσ ≈ 5 seems to be a happy medium. Whenever

one is not limited in the crystal length, choosing larger L and proportionally larger nσ
is generally the best practise, as it guarantees a better approximation of the Gaussian
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function: however, crystal length is often limited for manufacturing limits or by the

Figure 4.8: Effects of width parameter in nonlinearity engineered
crystals. This figure shows a comparison between bulk crystal, periodically-
poled crystal, and engineered crystals at different σ values. The real, imaginary
parts, and absolute value of the functions are plotted in blue, red, and green,
respectively. The vertical dashed lines in the nonlinearity plot represent the
crystal edges, while in yellow is highlighted the amount of “artificial” non-
linearity outside the crystal. The PMFs φeff. represented in the third column
correspond to an ideal case, where custom poling approximates φtrack. infinitely
well: effects of non-ideal tracking will be discussed in the following Sections.
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experimental setup (e.g. when short crystals are needed for matching particular

focusing conditions) and therefore the above discussion provides a guideline for an

optimal choice of parameters.

4.3.3 “Two-domain blocks” tracking

So far, we have discussed the main idea of nonlinearity engineering, as depicted in

Figure 4.6. What is still missing is an algorithm that chooses the domain pattern

in order to track φtrack as defined in Eq. (4.10). For simplicity of notation, in the

following we will refer to a ferroelectric domain pointing up by “up” and to a domain

down by “down”.

Tambasco et al. [92] originally proposed what we will call here “two-domain

blocks” tracking method. This method involves three different building blocks which

are chosen to track the target function: an up-up block leaves the average phase-

matching function at ∆k0 unchanged, an up-down block increases the average

φeff.(∆k0; z) by a factor ∆φ = 2
π
`c, while down-up block decreases it by −∆φ =

− 2
π
`c. These three possible configurations are graphically represented in Figure 4.9

in green, red, and yellow, respectively.

One can therefore define an error function that will determine which block to

use at each step of algorithm:

e(z + 2`c) = φtrack(∆k0; z + 2`c)− φeff.(∆k0; z) , (4.15)

and choose the appropriate block according to the following rules:

• if −∆φ ≤ e(z + 2`c) ≤ ∆φ: place an up-up block in z

• if ∆φ < e(z + 2`c): place an up-down block in z

• if −∆φ > e(z + 2`c): place a down-up block in z

Figure 4.9 shows two examples of this tracking algorithm: a Gaussian target

PMF (as discuss above) and antisymmetric PMF function, that we’ll meet again in

Chapter 6. Being tied to the two-domains blocks means that the domain structure
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is not fine-grained enough to track the target function with high accuracy. This

translates in sub-optimal results in the case of short crystals, as we’ll discuss in

Section 4.4.

Figure 4.9: “Two-domain blocks” method. The two example target
functions are tracked by piecing together three different types of blocks: up-up
(green), that keeps φeff. approximately constant, up-down (red), that makes
φeff. grow, down-up (yellow), that makes φeff. decrease. Such rough discretisa-
tion doesn’t allow φeff. to track the targets φtrack with high accuracy, esepcially
when the total number of domains is very small.

For comparison, in Figure 4.10 we show the domain structure and corresponding

φeff.(∆k0; z) for the duty-cycle modulation technique.
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Figure 4.10: Duty-cycle modulation. Here the domain orientation is
periodic and blocks of two adjacent domains have fixed width 2`c. However,
the duty-cycle changes along the crystal, meaning that every other domain
wall is allowed to shift. Differently from the schemes discussed above, in this
method the imaginary part of φeff. doesn’t stay close to 0 along the whole
crystal: however, it converges back to 0 at the end of the crystal.

4.3.4 “One-domain blocks” tracking

Tambasco et al. framed their algorithm in terms of two-domain blocks to ensure

that the inverted regions were of equal width: this is not a necessary requirement—

one might just as well choose each individual domain’s orientation. We therefore

consider each domain in the grating with fixed width, w = `c, and we define the

“domain-by-domain” error function:

e(z + `c) = φtrack(∆k0; z + `c)− φeff.(∆k0; z) , (4.16)

which quantifies the difference between the generated φeff. at a certain position z

and the target φtrack at z + `c (i.e. after one domain). The decision to flip (or not

flip) a given domain is determined by which option gives a closer approximation to

the target PMF at that point in the crystal, according to the following algorithm:

• if e(z + `c) ≥ 0 and φtrack(∆k0; z) ≥ φtrack(∆k0; z − `c) (i.e. in the
previous domain φeff. was increasing), flip the domain orientation
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with respect to the previous domain: φeff. will continue to increase;

• if e(z + `c) ≥ 0 and φtrack(∆k0; z) ≤ φtrack(∆k0; z − `c) (i.e. in the
previous domain φeff. was decreasing), keep the same orientation
of the previous domain: φeff. will start increasing;

• if e(z + `c) < 0 and φtrack(∆k0; z) ≥ φtrack(∆k0; z − `c), keep the
same orientation of the previous domain: φeff.will start decreasing;

• if e(z + `c) < 0 and φtrack(∆k0; z) ≤ φtrack(∆k0; z − `c), flip the
domain orientation with respect to the previous domain: φeff. will
continue to decrease.

We show two examples of the “one-domain blocks” method in Figure 4.11, con-

sidering the same target PMFs of Figure 4.9. Thanks to the ability of choosing

each domain orientation individually, the algorithm allows for higher flexibility, and

the effective PMFs at ∆k0 stay closer to the target functions with respect to the

“two-domain blocks” method, leading to higher purities—see Section 4.4.

4.3.5 Simulated annealing algorithm

The previous methods consider the case of a poled crystal with constant domain

width, allowing an easy approach to the problem. However, there is no evidence to

suggest that a fixed-domain structure leads to an optimal result, and it is reasonable

to ask if it is possible to improve the PMF shape by slightly varying the width of each

domain. To this aim, we use an adapted version of the simulated annealing algorithm

introduced by Reid et al. in [118, 119] to introduce domain-width variation to a pre-

defined poling pattern. Annealing algorithms are commonly exploited for finding

a global minimum of a given function dependent on multiple parameters [121, 122]

by slightly perturbing the system from a suitable starting point, calculating the

relative cost function (commonly called energy in analogy with the internal energy

in a physical annealing process) and accepting the change with some probability—

the higher the energy the lower is the probability of accepting the new configuration.

These kinds of algorithms are probabilistic and may require several runs to get an
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Figure 4.11: “One-domain blocks” method. Here the each domain
orientation is chosen individually to achieve higher accuracy in tracking the
targets φtrack, and we can already see an improvement respect to the “two-
domain blocks” method in Figure 4.9, especially in tracking the top function.

optimal result.

Given a target PMF φtarget(∆k), we first find the initial configuration of domain

orientations by means of the “one-domain blocks” method described above. Ad-

jacent domains with the same orientation are grouped together into bigger blocks.

Secondly, we define a starting temperature T and a temperature step ∆T for the

annealing algorithm: we found that a value of T ∈ {0.1; 10} and ∆T = T/100000

works well for the configurations that we tested. The width of each block is then

perturbed by up to 1 % and the relative PMF is computed. The perturbation value
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1 % is empirically determined: too small values would lead to slow convergence of

the algorithm, while if the perturbation is too big the algorithm is unstable and

doesn’t converge. It is then possible to find the system energy defined as

E =
(∑

∆k
[|φtarget (∆k)| − |φannealing (∆k)|]2

)1/2

. (4.17)

If this energy is smaller than the minimum energy recorded so far, the new do-

main widths are recorded as the best configuration and they are accepted with a

probability of exp (−E/T ) (even if they are not the optimal configuration). Finally,

the temperature is decreased by ∆T and the algorithm is repeated until the energy

becomes smaller than a chosen threshold or the temperature reaches 0. A block

diagram of the algorithm is shown in Figure 4.12, and is described below:

1. Define target phase-matching function, φtarget(∆k), and initial do-
main configuration.

2. Group together all the adjacent domains in bigger blocks having
the same orientation.

3. Define algorithm temperature T , temperature step ∆T and en-
ergy threshold Et (used for accepting a given configuration as the
optimal one).

4. Compute the energy for the initial configuration and store it in the
variable Emin.

5. Apply a random perturbation to the blocks’ width of up to 1% of
their current width.

6. Calculate the new phase-matching function.
7. Compute the corresponding energy E.
8. If E < Emin, accept the current block configuration as the best

configuration, update Emin = E and go to step 11.
9. Else if E > Emin, accept the new configuration with probability

exp [−E/T ].
10. If the new configuration is not accepted, return to the best config-

uration an decrement T by ∆T .
11. Iterate 5 to 10 until Emin < Et or T = 0.
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This algorithm is computationally demanding and may require a few hours for con-

verging to a solution for a crystal having a large number of domains.

Figure 4.12: Simulated annealing algorithm. Block diagram of the
algorithm.

One may think to directly use the annealing procedure without using a pre-

processed initial configuration as a seed: however, our annealing algorithm doesn’t

allow the flipping of domain orientations, and thus a near-optimal result cannot

be obtained without a suitable starting configuration. Moreover, it’s reasonable

to think that the “one-domain blocks” method discussed above provides a good

initial domain orientation because we know that the corresponding PMF is already

approximating the target reasonably well.

When we first developed the simulated annealing algorithm, we obtained some

improvement in the heralded-photon purity of the order of 1 % (or slightly less) with

respect to the “one-domain blocks” method. However, after a thorough study of the

domain engineering techniques and having obtained a better understanding of the

parameter choice discussed in Section 4.3.2, we realised that simulated annealing

doesn’t provide a significant improvement in the PMF quality (generally less than

0.1 %). Moreover, in light of the following Section—where a more sophisticated al-

gorithm is proposed and implemented—I believe that there is no reason in exploring

this technique in more detail. It’s also worth noting that better algorithms, based

e.g. on stochastic gradient descent, can perform multiparameter minimisations in a

much more efficient way [120], rendering our simulated annealing approach obsolete.
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4.3.6 Sub-coherence length domains

Until now we have considered domain widths equal to the coherence length, `c, with

small variations of this configuration. In this Section, we will see that pushing the

algorithm beyond this constraint by allowing a finer discretisation of the domain-

structure leads to an even better approximation of the target function.

Analogously to what we have seen for the periodically-poled crystal in Eq. (4.3),

we consider the PMF at the end of the m-th domain:

φcp (∆k; {sn}mn=1) =
m∑
n=1

sn

∫ nw

(n−1)w
ei∆kzdz

=
m∑
n=1

sn
i
(
ei∆k(n−1)w − ei∆knw

)
∆k

=
i
(
e−i∆kw − 1

)
∆k

m∑
n=1

sn e
i∆knw ,

(4.18)

where “cp” stands for custom poling, w is the domain width and sn = ±1 is the

orientation of the n-th domain. Note that φcp (∆k; {sn}mn=1) depends on the orienta-

tions of all domains that come before it (but not those that come after). Calculating

the PMF value at an arbitrary point in the crystal, z, and not necessarily at the

end of a given domain, is as simple as adding to Eq. (4.18) an additional piece that

takes into account the contribution of the portion of crystal after the last crystal

wall:
φcp (∆k; z) = φcp (∆k; {sn}mn=1) +

∫ z

nw
ei∆kzdz

with: m = Floor
[
z

w

]
.

(4.19)

As we have discussed before, for domain widths equal to the coherence length, the

imaginary part of the PMF is always zero at the domain boundaries, and therefore it

always oscillates about zero. If the domain widths differ from the coherence length,

however, the phase might get flipped at a place where the imaginary part is non-

zero, providing control over both the real and imaginary parts of the phase-matching

function. With this modification, it is now possible to approximate complex PMFs.

To account for the complex nature of the PMF, we define a cost function that
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we want to minimise at each domain:

em({sn}mn=1) = |φtrack(∆k0;mw)− φcp (∆k; {sn}mn=1)| . (4.20)

Since the target function for tailoring a Gaussian PMF has a zero imaginary part

(see Eq. (4.10)), the algorithm with the new cost function will force the imaginary

component close to zero. However, different target functions might have a non-zero

imaginary part, and the error function in Eq. (4.20) would also include these cases.

The algorithm can be summarised as follows. First, define a domain width w,

the coherence length `c, and the number of domains N . Note that the total crystal

length will therefore be L = Nw. Then, starting from a crystal having just one

domain, compute the cost function eup for the case where a domain up is added and

the cost function edown when a domain down is added. Next, compare the two cost

functions: if eup < edown keep the configuration where the up domain was added,

otherwise keep the configuration where the down domain was added. Repeat for

each subsequent domain. Below the step-by-step procedure:

1. Define complex φtrack.
2. Define parameters w, `c, and the number of domains N .
3. Initialize an empty list S = {} for storing the domain orientation.
4. Define m = 1.
5. Create two trial lists that are identical except for the last element:
Sup = S + {up} and Sdown = S + {down}

6. Compute cost functions for the two trial lists:
eup = em(Sup) and edown = em(Sdown).

7. If eup < edown, update S = Sup.
8. Else if eup > edown, update S = Sdown.
9. Update m = m+ 1.
10. Iterate Steps 4 to 9 until m = N + 1.

With this technique, it is possible to generate a wide range of PMF shapes,

as long as the corresponding φtrack does not vary too quickly. When the domain

width is equal to the coherence length, w = `c, this algorithm corresponds to the
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“one-domain blocks” method.

We show two examples of this algorithm in action in Figure 4.13, considering

the same target PMFs of Figure 4.9 and 4.11. Using small domains without being

bounded to `c-long domains means that this algorithm can achieve arbitrarily-high

accuracy in tracking φtrack, corresponding in better approximations of the target

Figure 4.13: Sub-coherence length poling. As in “one-domain blocks”
method, here the each domain orientation is chosen individually: however, the
domains can be arbitrarily small. In this example, we choose a domain width
of w = `c/3, that already provide a significant improvement in accuracy respect
to “one-domain blocks” and “two-domain blocks” methods shown in Figure 4.9
and 4.11. We can see that the imaginary part of φeff. might be slightly above
or below 0 at the domain boundaries: however, the algorithm actively keeps
this value small, unless one wants to track a complex function with non-zero
imaginary part.
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PMF.

The choice of a correct domain width should be done on a case-by-case basis. If

a crystal is “long” respect to the coherence length, the ratio `c/L is small, and φtrack
can be tracked efficiently regardless of the specific choice of w (even if w = `c and

the “one-domain blocks” methods is used). However, when the crystal is “short”,

smaller domain widths need to be considered to approximate correctly the target

function. We show an example in Figure 4.14, where a crystal long L = 20`c is

considered. When w = `c, the crystal only has 20 domains, and the algorithm

can’t approximate the target function sufficiently well. Decreasing the domain size

down to w ≤ `c/15, allows one to approximate the wanted PMF with increasing

Figure 4.14: Effects of domain width on very short crystals. When
very short crystals are considered, tracking the target PMF can be tricky.
Here we show how the choice of the domain width in sub-coherence length
poling algorithm affects the resulting PMF for a crystal having only 20 domains.
w = `c/1 corresponds to the “one-domain blocks” method, and it’s not fine-
grained enough to correctly shape the PMF. Acceptable results are achieved
when w < `c/15.
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accuracy. Obviously, there are physical limits that might prevent one from being

able to fabricate crystals with such a small poling period, and this depends on the

material as well as on the target frequencies. For example, type-II PDC in KTP

for producing telecom wavelength photons (as discussed later on in this Thesis)

requires a poling period of ∼46 µm: in this case, a domain size of w ≤ `c/20 would

correspond to ∼1 µm, which is achievable with the current fabrication capabilities.

However, producing 800 nm photons in the same material would require a poling

period of ∼10 µm, making a domain size of w ≤ `c/20 infeasible.

4.4 Engineering techniques comparison

In this Section we compare the performances of different poling methods. Figure 4.15

shows a comparison of the PMFs for periodic poling, duty-cycle modulation, two-

and one-domain blocks methods, and sub-coherence length poling for a crystal of

length L = 100 `c. The width parameter for the tracking-based algorithms is chosen

to be σ = L/5, and the domain width for the sub-coherence length technique is taken

as ten times smaller than the coherence length: w = `/10. We can see that duty-

cycle modulation is not able to completely suppress the PMF side lobes, while other

methods do a better job in approximating a Gaussian PMF, with the sub-coherence

length method achieving the best result.

We can quantify this by looking at the heralded-photon purity in Figure 4.16,

where we numerically simulate 125× 125 JSA matrices with spectral ranges 10 and

40 times larger than the PDC photon bandwidths. We find that for crystals longer

than 200 `c, all methods converge to a fixed value of the purity, as shown in Table 4.1.

poling purity purity
(larger spectral range) (smaller spectral range)

periodic 0.817 0.870
duty-cycle modulation 0.969 0.978
two-domain blocks 0.995 0.999
one-domain blocks 0.998 1.000

sub-coherence length 0.999 1.000

Table 4.1: Asymptotic purities for crystal longer than 200 coherence lengths.
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Two-, one-domain blocks and sub-coherence length methods all behave similarly,

surpassing the duty-cycle modulated poling by a few percent. The difference between

the algorithms is more drastic when short crystals are considered, where L < 200 `c.

While the sub-coherence length poling always achieves an almost optimal result, the

other techniques are quite sensitive respect to small number of domains. It’s worth

mentioning that periodic poling and duty-cycle modulation are less affected by short

crystals.

Figure 4.15: PMF comparison. Comparison of PMFs for different poling
schemes, considering crystals length L = 100 `c. All PMFs are normalised
respect to the periodic poling case (a), which is sinc-shaped. Duty-cycle modu-
lation (b) is not able to completely suppress the side lobes, while “two-domain
blocks” method (c) does a better job. However, the PMF still shows some
noise away from the central peak, due to a sub-optimal tracking of the target
function. This can be fixed using the “one-domain blocks” method (d) or, in
the extreme case, with sub-coherence length poling (e).
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Figure 4.16: Purity for different engineering methods. The purities
are calculated for spectral ranges 10 (a) and 40 (b) times larger than the PDC
photon bandwidths.

4.5 (A)periodic poling in realistic crystals

Existing work on tailoring crystal nonlinearities for JSA separability assumed ideal

crystal fabrication [89–93, 120], and for the most part neglected discussion of un-

desirable PDC generation that arises from nonlinearity shaping methods. In this

Section, we discuss how fabrication imperfections in nonlinearity shaping impact

JSA separability and pair generation probability, and discuss the implications of

undesired PDC generation [71]. Having already discussed how the “two-domain

blocks” method is similar to and outperformed by the algorithms discussed above,
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we won’t consider this case in the following numerical simulations.

4.5.1 Undesirable PDC generation far from central peak

The nonlinearity engineering techniques discussed so far shape the PMF through

“interference” between the PMFs of individual domains. The PMF is shaped as

desired only within a certain spectral range of interest, but outside this range the

nature of interference can generate undesired PMF amplitude, leading to what we

call here “undesirable PDC generation”.

Undesirable PDC generation far from the central PMF peak arises in all poling

techniques, but the nature of this amplitude differs. Figure 4.17 shows the undesir-

able PDC generation for four poling patterns, compared with an unpoled crystal.

We consider a periodically-poled crystal with L = 300 `c, a duty-cycle modulated

crystal with L = 362 `c, and two crystals with L = 476 `c shaped with the “one-

domain block” and sub-coherence length methods, respectively. In the latter two

cases, the width parameter is chosen as σ = L/5, and the sub-coherence length do-

main is w = `c/5, and in all cases, the main PMF peak is in ∆k0 = π/`c The crystal

lengths are chosen to provide PMFs having the same bandwidths. In periodically

poled crystals these regions are concentrated at ∆k = ±nπ/`c. When duty-cycle

modulation is used there is additional amplitude peaked at ∆k = 0. Finally, for the

“one-domain blocks” and the sub-coherence length poling techniques, the additional

amplitude is more spread out in ∆k.

For periodic poling and the customised duty-cycle method, the undesirable PDC

generation is typically far outside the spectral range of the detectors and therefore

gets filtered out automatically. For the customised domain orientation methods,

such generation is closer to the spectral range of interest: choosing small domains in

the sub-coherence length poling case can both suppress and push this undesirable

amplitude away from the main PMF peak, but it might still need to be filtered

out deliberately. This raises the question: when the motivation for nonlinearity

shaping is to avoid destruction of photon-number correlations caused by filtering, is

nonlinearity shaping a good idea when filtering is required anyway? The answer lies
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Figure 4.17: PDC generation far from central peak. PMF over a large
(left column) and smaller (right column) ∆k range, for bulk (a), periodically-
poled (b), and duty-cycle modulated (c) crystals, as well as two crystals shaped
with the “one-domain blocks” method (d) and sub-coherence length poling (e)
(w = `c/5). The main PMF peaks are centred in ∆k0 = π/`c, and the crystal
lengths are chosen to match the PMFs bandwidths. We note that non-zero
PMF far from the main peak in (d) and (e) can be further suppressed by
choosing smaller values for the width parameter σ, as shown in Figure 4.8. All
PMFs are normalised respect to the bulk crystal case.

in the nature of the filtering. Filtering preserves photon number correlations if the

filter is partially transmissive only at frequencies for which the JSA is negligible (the

special case of this is a filter described by a top-hat function with unit transmittance,

which can be used in any region of the JSA). If the region containing undesirable

PDC generation is far enough away from the region of interest to ensure no overlap

between where the JSA is non-negligible and where the filter is partially transmissive,
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then the undesired PDC generation can be safely filtered out without destroying

photon-number correlations [40, 94–96, 123, 124]. We can conclude that, as long

as the undesired PDC generation is sufficiently far away from the desired PDC

generation, nonlinearity shaping is indeed a good idea.

4.5.2 Crystal Imperfections

A popular method for generating poled crystals is ferroelectric poling, in which the

spontaneous polarisation of a ferroelectric crystal can be reversed under the influ-

ence of a sufficiently large electric field that is applied using lithographically defined

periodic electrodes [125]. This process is susceptible to various fabrication imper-

fections: timing errors in applying the field may systematically over- or under-pole

inverted domains, roughness in electrode lithography may introduce random vari-

ations in domain walls, and failure of the crystal to nucleate may prevent inversion,

resulting in missed domains. These imperfections are sketched in Figure 4.18 for

the periodic and aperiodic poling.

Impact of imperfections on conversion efficiency has been studied for periodically-

poled crystals (e.g random variations in domain walls [126], missed domains [127],

and deviations in duty-cycle [128]). Expanding on the analysis conducted in Ref. [71],

here we study how fabrication errors affect custom poled crystals, studying the re-

lation between crystal imperfections, heralded-photon spectral purity and overall

nonlinearity. To gain information about photon pair generation, we compute the

peak of the PMF, defined as φeff. (∆k0;L), and compare it with that generated by a

periodically-poled crystal.

We consider a periodically-poled crystal with L = 300 `c, a duty-cycle modu-

lated crystal with L = 362 `c, and two crystals with L = 476 `c shaped with the

“one-domain block” and sub-coherence length methods, respectively. In the lat-

ter two cases, the width parameter is chosen as σ = L/5, and the sub-coherence

length domain is w = `c/2. All PMFs are centred in ∆k0 = π/`c. We run numer-

ical simulations generating 200× 200 JSA matrices, considering a spectral range of

about 25 times the PDC photons bandwidth (smaller spectral range is discussed in
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Figure 4.18: Different types of poling errors. Sketch of poling errors
in periodic (a) and aperiodic (b) poling, where the aperiodic poling emulates
a crystal shaped with the one-domain blocks method. From top to botton
are representend the effects of over- and under-poling, random variations in
the wall positions, missing domains (i.e. crystal’s section of elementary width
w, where w = `c in the sketch, that aren’t poled in the correct direction),
and missing blocks (i.e. whole uniformly-poled crystal blocks are not poled
correctly). In the periodic poling case the last two types of errors have the
same effect, but this is not the case for aperiodic poling, where blocks might
be composed of more than one domain poled in the same direction, forming
uniformly-poled blocks larger than w. The dashed lines represent the walls of
the missing domains/blocks.

Appendix A). The results are shown in Figure 4.19.

Under/over-poling

Simulations for over- and under-poling are analogous, we thus restricted our simu-

lations to over-poling. We systematically increased the widths of up blocks while

proportionally decreasing the down segments, considering variations of the domain

width up to a 20 % of the coherence length `c (note that deviations of around 5 %

were reported in [128]). We find that the heralded-photon purity is not affected in

the case of periodic poling and “one-domain blocks” apodisation, while it decreases

up to 15 % in the case of duty-cycle modulation and sub-coherence length poling.

In all cases, the PMF amplitude decreases in amplitude as the over-poling increases.

Results are shown in Figure 4.19(a).
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Figure 4.19: Poling errors. Effect of poling errors on different poling
methods: periodic (green squares), duty-cycle modulation (yellow stars), “one-
domain blocks” (red triangles), and sub-coherence length poling (blue points).
Each panel represents the purity (top) and PMF amplitude (bottom) as a func-
tion of the amount of (a) under- and over-poling, (b) domain-width variation,
(c) missing domains, and (d) missing blocks.

Random variations in wall positions

We ran Monte Carlo simulations averaged over 1000 data samples, where we shift

the wall position of each uniformly-poled block. The amount of shift is based on

a Gaussian distribution parameterised by its standard deviation normalised to the

coherence length: σstd.dev./`c, and we considered variations up to a 20 %. Errors

in standard crystals made by established manufacturers will typically be on the
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low end of this range, but others have reported errors of σstd.dev. = 0.08 `c in two

different experiments involving lithium niobate waveguides [129, 130]. This kind of

error makes the purity decrease in all cases, but the periodically-poled one is slightly

less affected. The PMF amplitude decreases similarly to the under- and over-poling

case. Results are shown in Figure 4.19(b).

Missing domains

We model missing domains by considering crystal segments of length `c pointing

in one direction, then flipping the sign of a randomly selected subset of these, up

to 20 %. We average over 1000 data points for each % value. Both purities and

PMF amplitudes drop linearly as the percentage of missed domains increases, but

the purity of “one-domain blocks” poling seems to be effected more strongly than

the other poling methods. Results are shown in Figure 4.19(c).

Missing blocks

We model missing blocks by considering uniformly-poled crystal blocks pointing

in one direction, then flipping the sign of a randomly selected subset of these, up

to 20 %. This is analogous to the missing domains error in the case of periodic

poling and duty-cycle modulation, as the ferroelectric orientation is reversed every

domain. However, in the case of “one-domain blocks” and sub-coherence length

poling, adjacent domains might have the same ferroelectric orientation, forming

uniformly-poled blocks. Again, we average over 1000 data points for each percentage

of flipped blocks, and we find a linear drop of both purities and PMF amplitudes as

the amount of errors increases. Results are shown in Figure 4.19(d).

In summary, we can say that the fabrication imperfections considered here impact

all poling methods approximately in an equivalent way.
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4.6 Irregular momentum mismatch: an edge case

This Section is a speculation on a possible (but probably unlikely) problem that

domain engineering wouldn’t be able to entirely solve. In all previous simulations we

have considered linear momentum mismatch, meaning that the ∆k(ωs, ωi) contours

are linear in the (ωs, ωi) space, and the contours are equally spaced (meaning that

the momentum mismatch is also linear perpendicularly to the contours). This is

clearly true when considering relatively small frequency ranges, as we have seen for

KTP crystals in Figure 2.5.

However, let’s imagine a material where this is not the case. Two possible cases

might occur: the ∆k(ωs, ωi) contours might not be linearly spaced, or they might

not be linear themselves. An exaggerated example of such cases is provided in

Figure 4.20 (a) and (b) to highlight the nature of this problem, and examples of the

corresponding sinc-shaped PMFs are depicted in (c) and (d).

While nonlinearity engineering can shape the PMF pattern, such PMF is then

applied to each ∆k value in the considered frequency range, and the effects of “non-

linear ∆k” will compromise the shape of the tailored PMF. In the first case, where

the ∆k(ωs, ωi) contours are not linearly spaced, one can compensate this effect with

nonlinearity engineering, by considering a target PMF φtarget that takes into account

the non-linear nature of ∆k. In the second case, however, nonlinearity engineering

cannot compensate for the non-linear contours of the momentum mismatch, and

optimal PMFs cannot be achieved.

4.7 Down-conversion in KTP at telecom wavelength:

a case study

So far we have analysed nonlinearity engineering in an ideal scenario, where ∆k

dependence on signal and ilder frequencies was perfectly linear, and the pump was

Gaussian shaped. We now consider a more realistic case, and we numerically simu-

late the spectral properties of parametric down-conversion in KTP crystals to gen-
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Figure 4.20: Momentum mismatch matrices. The momentum mismatch
contours might not be equally spaced (a), or they might not be linear (b). The
corresponding PMFs in (c) and (d) follow the ∆k(ωs, ωi) contours.

erate telecom-wavelength photons.

We compare periodically-poled crystals (where the crystal length is chosen to

maximise the JSA separability) with apodised crystals designed with one-domain

blocks and sub-coherence length poling techniques, where we have chosen the width

parameter as σ = L/5. We consider sech-shaped pump pulses, centred at 775 nm,

that generate photon pairs at 1550 nm in a type-II PDC process. Conservation of

momentum is achieved by considering a coherence length `c =23.1 µm, corresponding

to a poling period of λ =46.2 µm in the periodic poling case.

We generate 150× 150 JSA matrices considering spectral ranges 20 and 8 times

larger than the PDC photon bandwidth. This choice of spectral ranges allows us
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to examine the “unfiltered case” (20), as well as the “gentle-filtering case” (8): two

scenarios that are quite common in numerical simulations and actual experiments.

We find that the optimal crystal length (in millimetres) for a given pump pulse

duration (in femtoseconds) is given by the following linear relations:

Lpp [mm] ' 0.01374 · sech2 pulse duration [fs]

Lσ=L/5
ap [mm] ' 0.02432 · sech2pulse duration [fs] ,

(4.21)

as also shown in Figure 4.21(a). It’s important to keep in mind that it’s very

unlikely that a periodically poled crystal will be used in a multi-photon experiment

without any kind of narrowband filtering, or the interference quality would be very

low (unless one consider extremely asymmetric GVM conditions, where the use

of strong filtering can be somehow avoided). For this reason, when choosing the

experiment parameters, one should also consider the bandpass filter bandwidth in

their simulations, and optimise the periodically-poled crystal length not only with

Figure 4.21: Nonlinearity engineering in KTP crystals. The optimal
KTP crystal length grows linearly with the pulse duration (a). Corresponding
purities are calculated for spectral ranges 20 (b) and 8 (c) times larger than
the PDC photon bandwidths.
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respect to the pulse duration, but also with respect to the filter parameters. Taking

filtering into account typically results in crystals that are slightly longer than in the

unfiltered case.

We also find that optimal purity of 0.99 is achieved for pulse lengths longer than

500 fs independently from the chosen engineering method, but for shorter pulses

(i.e. shorter crystals) the finite-domain effects arise and sub-coherence length poling

is required to maximise JSA separability. These results are shown in Figure 4.21

(b) and (c) for the one-domain blocks and sub-coherence length poling methods,

respectively.

4.8 Conclusion and discussion

This Chapter was entirely devoted to tailoring the PMF of nonlinear crystals via

domain engineering. We have seen how such technique promises to make narrow-

band filtering in PDC sources obsolete—it has indeed been proven that apodized

crystals would significantly reduce the overhead source-costs in boson-sampling ex-

periments [131]—as well as enabling access to more exotic PMFs (more of this in

Chapter 6). We compared different engineering methods, and discussed how man-

ufacturing errors might affect their performances. Overall, it appears evident that

nonlinearity engineering is the simplest solution for making efficient PDC sources

and, in the next Chapters, we’ll see several experimental demonstrations of this

technique.
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In Chapter 3 we have discussed

the desirable properties of a PDC

source, while in Chapter 4 we in-

troduced a state-of-the-art nonlin-

earity engineering technique that

promises to significantly enhance

the usefulness of PDC sources. In

this Chapter, we report the first experimental demonstration of our technique, as

presented in Ref. [24]. In the first Section, we will introduce a reliable method for

characterising the spectral purity of heralded PDC photons, based on two-photon

interference. We will then proceed to describe the experimental setup and paramet-

ers that we used for benchmarking our nonlinearity engineering technique. We will

discuss the results we obtained, and we will finally report the latest results that we

recently measured in an improved version of our original experiment.
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5.1 Heralded-photons interference for purity es-

timation

In Chapter 3 we have discussed how interfering heralded PDC photons is arguably

the most reliable way of measuring their spectral purity. However, the relation

between interference visibility and spectral purity derived in Eq. (3.28) only takes

into account the first-order term of the PDC state defined in Eq. (2.12). Clearly,

higher-order PDC terms are detrimental for quantum interference, spoiling the direct

correspondence between visibility and purity. Here we provide a simple way of

modelling high-order contribution to HOM interference visibility, and we introduce

a reliable method for estimating a lower-bound on the heralded-photon spectral

purity.

In Eq. (3.10) we defined the interference visibility as V = 1− Nmin
Nmax

, where Nmax

(Nmin) is the maximum (minimum) number of coincident counts recorded during the

two-photon interference scan at opposite beam-splitter output ports, and in which

the arrival time of the photons at the BS from its two inputs is varied by means of

a delay line. In a standard HOM experiment, Nmax corresponds to counts recorded

when the photons arrive at the BS at perfectly distinguishable times: no quantum

interference occurs, as the photons are distinguishable in the temporal degree of

freedom. In line with the wide-spread quantum optics slang, we will refer to this

configuration as “outside the dip”.

Nmin is instead the number of coincidences recorded when the photons arrive

simultaneously at the BS: in this case quantum interference effects occurs and, when

two and only two indistinguishable photons enter the BS, we have perfect two-photon

bunching. We will refer to this configuration as “in the dip”.

The visibility can be written in terms of the probabilities of having a coincidence

“outside the dip” (poutcc ) and “in the dip” (pincc):

V (λ) = poutcc (λ)− pincc(λ)
poutcc (λ) , (5.1)
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where the brightness parameter λ =
√
Pτ has been defined in Eq. (2.14). In order to

find the visibility dependence on the λ parameter (which translates to its dependence

on the pump power), we need to consider the BS action on the higher-order terms

of the PDC states.

We rewrite the PDC state in the Fock space (Eq. (2.14)) in terms of the creation

operators â† and b̂†:

|ψPDC〉 =
√

1− |λ|2
∞∑
n=0

λn |n〉s |n〉i

=
√

1− |λ|2
∞∑
n=0

λn

(
â†b̂†

)n
n! |0〉s |0〉i .

(5.2)

In this framework, the probability of having coincidences after the BS corres-

ponds to the amplitudes squared of the |n > 0〉c |m > 0〉d terms in the BS-output

Fock-state, i.e. all the terms where both the â† and b̂† operators occur. This prob-

ability is calculated as ∑n,m>0|〈n,m|ψBS〉|2, where |ψBS〉 is the state after the BS.

In the “outside the dip” case, an additional term has to be taken into account for a

correct estimation of poutcc , as discussed in the next Section.

Signal estimate outside the interference region

We can write the state after the BS by means of the transformations in Eq. (3.12)

applied to one PDC state in the case of signal-idler interference:

|ψout
BS 〉 =

√
1− |λ|2

∞∑
n=0

λn

(
â†1 + i b̂†1

)n (
i â†2 + b̂†2

)n
2nn! |0〉s |0〉i , (5.3)

or heralded PDC photons:

|ψout
BS 〉 =

(
1− |λ|2

) ∞∑
n,m=0

λn+m

(
â†1 + i b̂†1

)n (
i â†2 + b̂†2

)m
2n+mn!m! ĉ†d̂† |0〉a |0〉b |0〉c |0〉d , (5.4)

where we have used the subscripts 1 and 2 to indicate the different arrival time at

the BS of the input photons â†1 and b̂†2, while ĉ†, d̂† are the heralding photons. For

simplicity, we use the same λ parameter for both the PDC processes.
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We can then calculate the probability of having coincidences “outside the dip”.

We assume a lossless setup, and that the detectors and the logic can’t resolve the

detection time of the photons: this is reasonable for an actual experimental setup

because the difference in the photons’ detection time is usually narrower than the

counting logic resolution. Under this assumptions, we calculate poutcc as follows:

poutcc =
∑

n>1,m>1
t1,t2={1,2}

|〈nt1 ,mt2|ψout
BS 〉s,i|

2 , (5.5)

for the signal-idler interference, and

poutcc =
∑

n>1,m>1,l>1,k>1,
t1,t2={1,2}

|〈nt1 ,mt2 , l, k|ψout
BS 〉a,b,c,d|

2 , (5.6)

for the heralded-photon interference.

Signal estimate within the interference region

We can also calculate the probability of having coincidences “in the dip” by con-

sidering the state after the BS when the photons from the two inputs arrive simul-

taneously at the BS. In the case of signal-idler interference, the output state reads:

|ψin
BS〉 =

√
1− |λ|2

∞∑
n=0

λn

(
â† + i b̂†

)n (
i â† + b̂†

)n
2nn! |0〉s |0〉i

=
√

1− |λ|2
∞∑
n=0

λn in

(
â†2 + b̂†2

)n
2nn! |0〉s |0〉i ,

(5.7)

while in the heralded-PDC-photons case it reads:

|ψin
BS〉 =

(
1− |λ|2

) ∞∑
n,m=0

λn+m

(
â† + i b̂†

)n (
i â† + b̂†

)m
2n+mn!m! ĉ†d̂† |0〉a |0〉b |0〉c |0〉d . (5.8)

In this configuration we don’t have the subscripts 1 and 2 as in Eq. (5.3) and (5.4)

because it’s impossible to distinguish the arrival time of the photons at the BS.
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The probability of having coincidences reads:

pincc =
∑

n>1,m>1
|〈n,m|ψin

BS〉s,i|
2 , (5.9)

for the signal-idler interference, and

pincc =
∑

n>1,m>1,l>1,k>1
|〈n,m, l, k|ψin

BS〉a,b,c,d|
2 , (5.10)

for the heralded-photon interference.

Interference visibility

We can finally find the two-photon interference visibility by plugging Eq. (5.5)

and (5.9) (for the signal-idler HOM) or Eq. (5.6) and (5.10) (for heralded-photon

HOM) into the visibility relation in Eq. (5.1). In Figure 5.1 (a) we show the vis-

ibilities as a function of the brightness parameter λ: as expected, visibilities start

from 1 at λ ≈ 0, and then drop approximately quadratically as the brightness in-

creases. Consequently, visibilities decrease approximately linearly with the pump

power, as shown in Figure 5.1 (b). Note that the visibility drop is quicker for the

heralded-photon interference with respect to the signal-idler case.

Figure 5.1: Interference visibility. HOM interference visibility as a func-
tion of the λ parameter (a) and the pump power (b).

This result gives us a tool to estimate the heralded-photon purity. Indeed, one

can perform two-photon interference scans at different pump powers, find the cor-

responding visibilities and extrapolate a visibility at 0 power, V (0), with a linear
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fit. This value will be equal to 1 if the heralded-photons are spectrally pure and our

experimental setup is perfect. However, V (0) < 1 when interfering spectrally-mixed

heralded photons: in this case, V (0) will give us an estimate of the single-photon

purity according to Eq. (3.28). As experimental imperfections, detrimental for the

HOM interference quality, are inevitable, it is reasonable to assume that V (0) repres-

ents a lower-bound to the heralded-photon spectral purity. It’s also worth noticing

that this model neglects dark counts, that at very low powers (hence low counts)

would lead to a drop of the visibility.

5.2 Experiment

In this Section we discuss the experiment where an enhancement of heralded-photons’

interference visibility enabled by nonlinearity engineering has been observed for the

first time [24].

5.2.1 Experimental setup

PDC source

A 80 MHz repetition rate Ti-Sapphire laser, with 775 nm, 1.7 ps sech2-shaped pulses,

is filtered in power and polarisation with a half-wave plate (HWP) and a Glan-Taylor

polariser. The beam is then focused into KTP crystals (more details below), phase-

matched for degenerate type-II parametric down-conversion, producing orthogonally

polarised photons with central wavelength of 1550 nm. The PDC photons are filtered

from the pump with a dichroic mirror, and are then separated to two orthogonal

paths by means of a PBS. Finally, signal and idler pass through a long-pass filter (for

removing residual pump light) and, in some of the measurements, a “gentle” band-

pass filter (for suppressing noise far from the main JSA peak discussed in Chapter 4),

before being coupled into single-mode fibres with aspheric lenses. The photons

can then be used in interference experiments (as discussed in the next Section)

or sent straight to superconducting nanowire single-photon detectors (SNSPDs) for

characterising source brightness and heralding efficiency. The PDC source is shown
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in Figure 5.2.

Figure 5.2: Photon source setup. Collinear parametric down-conversion
source (a) and setup for measuring brightness and heralding efficiency (b) as
well as four-fold coincidences (c).

Details on the crystals under study are provided below. We designed a 29 mm-

long apodized KTP crystal (fabricated by Raicol Crystals Ltd.) using the annealing-

algorithm combined with a preliminary version of the one-domain blocks method.

However, when the crystal was designed, we didn’t have a full understanding of

the engineering algorithm parameters. Consequently, we designed “sub-optimal”

crystals, where the tracking function wasn’t rescaled as discussed in Eq. (4.8) for

maximising the crystal nonlinearity, and the width parameter was chosen as σ =

L/4, slightly larger than optimal (see Figure 4.8). Moreover, we chose a seed poling

period for the algorithm equal to 46.22 µm, according to the Sellmeier equations in

Ref. [64–66], but it ended up being slightly too long, meaning that the degeneracy

PDC emission was achieved below room temperature, making the experiment hard

to keep stable. Last but not least, our crystal was designed for being optimally
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group-velocity matched with 1.4 ps pulses, while the laser we used in this experiment

wasn’t stable when pulses were shorter than 1.7 ps, further compromising the JSA

separability. Nonetheless, despite these problems, we numerically estimated a JSA

separability of 95.3 % for our experimental settings, and we managed to measure

very high heralded-photon purities. For comparison with a standard PDC source, we

benchmarked the apodised crystal performances against a 22 mm-long periodically-

poled KTP crystal, with numerically-estimated JSA separability of 80.1 %. JSAs,

PMFs, and poling patterns of periodically-poled and apodised crystals are shown in

Figure 5.3.

Figure 5.3: JSAs and crystal structures. The apodised crystal’s JSA
in (b) is slightly elliptical, due to a too long laser pulse resulting in a nar-
rower spectral width, while 1.7 ps pulses are almost optimal for the unfiltered
periodically-poled case (a). The poling pattern is uniform for the periodically-
poled KTP (c), while it is composed of longer uniformly-poled blocks at the
edges of the crystals, and shorter blocks in the centre (d).
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As shown in Figure 5.2 (b,c), we send the PDC photons straight to the de-

tectors and collect singles counts (si) detected by the SNSPDs and collected by a

timing logic, as well as coincident counts (cc) within a 1 ns time window between

different channels of the timing logic (i.e. corresponding to different detectors).

With the setup in Figure 5.2 (b), we measure a source brightness (defined as the

number of coincident counts in unit of time and power) of (11.25± 0.08) kHz/mW

and (4.02± 0.04) kHz/mW detected pairs for periodically-poled and apodised crys-

tals, respectively, and a four-photon rate (Figure 5.2 (c)) for two independent PDC

sources of (1.52± 0.02) Hz/mW2 and (0.19± 0.01) Hz/mW2. We estimate a sym-

metric heralding-efficiency η = cc/(√s1s2) of 53 % in the configuration used for the

experiment, but a value of η up to 68 % is achieved with the same crystals under

loose focusing conditions [16, 132–134], at expense of the brightness: this corres-

ponds to a collection efficiency of 88.5 % once detector efficiency (nominally 80 %)

and known optical losses of (7.6 %) are accounted for.

Figure 5.4: Source brightness. Pairwise (each source) (a) and four-
folds (across two sources) (b) coincident counts within 1 ns window for the
periodically-poled (p.p.) and apodised (a.p.) crystals.

Interference setup

Signal-idler indistinguishability is measured via HOM interference of PDC photons

in a two-photon experiment, as shown in Figure 5.5 (a).

Ideally, measuring the spectral purity of a PDC photon requires interfering two

copies of the same photon. However, the quantum state of a photon cannot be
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Figure 5.5: Interference setups. Signal-idler interference setup (a),
heralded-photons interference schemes of delayed photons produced by the
same source (b) and of photons produced by independent sources (c).

cloned, and a faithful purity estimate can be obtained from interfering two photons

emitted in short succession from the same crystal pumped with the same laser. In

our setup, Figure 5.5 (b), we send the first heralded photon into a fibre delay-line and

a second into a shorter fibre before superposing them on a fibre BS. This schemes

succeeds with probability 1/4, and we chose a delay of five pump pulses to exceed

the ∼60 ns SNSPDs reset time. The two interfering photons are heralded by their

respective twins, and four-photon coincidences are recorded.

We finally interfere photons produced by two different crystals, Figure 5.5 (c)

to show that our technique is feasible for multi-photon experiments. We detect the

idler photons as a heralding trigger and interfere the signal photons, collecting the

overall number of four-fold coincidences from the four SNSPDs connected to the

timing logic.
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5.2.2 Signal-idler interference

We first estimate the signal-idler indistinguishability with the setup in Figure 5.5 (a):

when interfering signal-idler, the indistinguishability is equal to the symmetry of

the JSA, as discussed in Section 3.2.4. According to the model introduced in Sec-

tion 5.1, we interfere the PDC pairs produced at different pump powers, P , to

extrapolate the HOM visibility “at 0 power”, V (0), that gives us a lower-bound

to the photons’ indistinguishability. Being close to symmetric GVM condition, the

interference pattern can be approximated by the convolution of the phase-matching

function with itself [83]: as expected, it is almost triangular for the standard crys-

tal [111], and Gaussian for the custom design, as shown in Figure 5.6. We find in-

distinguishabilities of V (0) = (99.7± 0.1) % for the periodically-poled crystal, and

V (0) = (98.7± 0.1) % for the apodised one, where we use the interference visibility

as a metric for the signal-idler indistinguishability. By the time of publication, to

our knowledge, this signal-idler indistinguishability was the highest reported so far

with an unfiltered nonlinearity-engineered crystal.

The interference visibility can be further increased by introducing an additional

“gentle” spectral filtering stage. We use a band-pass filter with a spectral transmis-

sion of the form: exp
[
− (ω−ω0)4

2σ4

]
, centred at 1550 nm and having nominal FWHM of

7.4 nm (roughly five times larger than the PDC bandwidth). This kind of filtering

decreases heralding efficiency by less than 1 %, and we measure a signal-idler indis-

tinguishability of (99.7± 0.1) % for loosely-filtered apodised crystals. This value is

close to the maximum visibility we can achieve (99.8 %) due to imperfect optics. In

fact, the fibre BS has a reflectivity (transmissivity) 49.2 % (50.8 %), and the PBS

leaks 0.5 % of opposite polarised photons, corresponding to a visibility decrease of

∼ 0.2 %.

5.2.3 Heralded-photons interference

The interference model for PDC photons discussed in Section 5.1 assumes a perfect

setup, with negligible losses, no detector dark counts or other sources of noise. In

the case of lossy detectors and non-negligible background noise, the photon num-
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ber purity not only decreases at high pump powers (i.e. high values of λ in the

PDC state), but it is also compromised at very low powers, where the number of

detected single-photons is comparable to the background noise counts [135]. In our

experiment, the background noise rate is about 300 Hz, the chosen power range cor-

responds approximatively to a λ-range of 0.05 - 0.3, and the coincidence window

is 1 ns. Under these assumptions, according to Eq. (17) in Ref. [135], we work in

a regime were the number-photon purity decreases linearly as the power increases,

but we are away from the region where number-purity drops at very low power:

this translates to linear behaviour of the visibility, as predicted by our model and

experimentally verified by the linear trend of the data points.

By interfering PDC photons emitted by successive pulses (Figure 5.5 (b)), we

extrapolate a V0 = (79.6± 0.1) % for the standard periodically-poled crystal (a

value that matches theory expectations discussed above), and we measure V0 =

Figure 5.6: Signal-idler interference Signal-idler interference visibilities
at different pump powers (a), and three examples of HOM scans dips (b) for the
unfiltered and filtered apodised crystals—a.p., blue dots, and a.p. (filtered),
red triangles, respectively—as well as the periodically-poled case (p.p., green
squares). As expected, the apodised crystals have a Gaussian-shaped interfer-
ence pattern, while the periodically-poled one shows a triangular dip.
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(90.7± 0.3) % for the apodised crystals. Results are shown in Figure 5.7. As we did

in the signal-idler interference case, we can increase the JSA separability by applying

“gentle” spectral filtering, achieving a heralded-photon purity of (92.7± 0.2) %. Fi-

nally, we measure V0 = (89.8± 0.2) % when interfering heralded-photons produced

in different crystals: a slightly lower value with respect to the interference of photons

produced by the same crystal, probably due to fabrication imperfections and small

discrepancies between the two sources.

Figure 5.7: Heralded-photons interference. Heralded-photons interfer-
ence visibilities at different pump powers (a), and four examples of HOM scans
dips (b) for unfiltered and filtered apodised crystals—a.p., blue dots, and a.p.
(filtered), red triangles, respectively, two independent apodised crystals (a.p.
(independent sources), green squares), as well as the periodically-poled case
(p.p., yellow stars).

The V0 values corresponding to the apodised crystals shown in Figure 5.7 (a)

are definitely higher than for the standard periodically-poled case: however, they

are still somewhat short of expectations by ∼ 3 %. Some degradation may be due

to poling errors, as discussed in Chapter 4. Imperfect BS and components also
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compromises the HOM visibility, as discussed for the signal-idler interference case.

Laser instability (in both pulse duration and central wavelength) might also have

impacted negatively the interference quality. Finally, the imperfect indistinguishab-

ility of the unfiltered signal-idler photons, and its increase under “gentle” filtering,

suggests the presence of undesirable PDC-generation far from the central JSA peak,

which is not present in standard crystals.

5.3 Sneak peek at the latest results

The original paper on experimental nonlinearity engineering [24] ended with the

following sentence:

By fixing all known minor problems—fine tuning the domain-engineering

algorithm, shaping a Gaussian pump pulse at 791 nm, and suppressing

PDC noise—we are confident we can push the lower bound on spectral

purity to at least 95 % in the near future.

Indeed, I’m happy to say that this is exactly what happened. We used the

one-domain block engineering technique to design 30 mm-long crystals with a width

parameter of σ = L/4.7—a width of σ = L/5 would have probably been the optimal

choice, however KTP crystals longer than 30 mm aren’t commercially available. We

also used a new, more stable laser (Tsunami Spectra-Physics), with 1.3 ps pulses,

group-velocity-matched with the crystals above, and improved some setup compon-

ents (e.g. a more balanced fibre BS). We compare these apodised crystals with

periodically-poled crystals with narrow-band filters, where filtering width of 2.8 nm

is chosen to filter out most of the JSA side lobes without compromising the source

brightness and heralding efficiency too much. JSAs and crystal patterns are shown

in Figure 5.8 (a) and (b), respectively. Numerical simulations, according to the

above parameters, suggest that apodised crystal JSA would have 0.989 separability,

while the filtered standard crystal would have 0.984 separability.

As discussed above, we perform heralded-photons HOM scans at different pump

powers, and we show the results in Figure 5.9 Here, however, we don’t consider

Page 107



Chapter 5. Pure Single Photon Generation Enabled Via Nonlinearity Engineering

Figure 5.8: JSAs and crystal structure in latest experiment. The
periodically-poled crystal JSA (a) doesn’t show strong side lobes, as they are
suppressed with narrowband filters (1/e filter contours are represented with
green-dashed lines). The apodised crystal JSA is circular, meaning that it is
close to perfect separability. The poling pattern is uniform for the periodically-
poled case (c), while it is composed of longer uniformly-poled blocks at the
edges of the crystals, and shorter blocks in the centre (d).

delayed photons from the same source, but we interfere photons produced in two

different crystals, as we are more interested into the scalability of this approach to

multiple sources. We measure V0 = 0.980 ± 0.001 for the apodised crystals, while

filtered periodically-poled crystals achieve V0 = 0.967±0.001—with a 15 % reduction

of the heralding efficiency. Such V0 values represent a lower-bound to the heralded-

photon purities, and as we have seen in the previous Sections, it could be further

enhanced by interfering photons produced by the same crystal.

These latest results represent what I think is safe to consider as being a con-

clusive proof of the success of nonlinearity engineering for producing spectrally pure
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photons.

Figure 5.9: Heralded-photons interference in new apodised crystals.
Heralded-photons interference at different pump powers. Here, the visibilit-
ies of both apodised crystal (blue dots) and filtered periodically-poled crystal
(green squares) are plotted as a function of the PDC parameter γ, in order to
provide a more fair comparison between the two sources. In fact, equal γ means
equal amount of squeezing, and factoring out discrepancies in the effective non-
linearity of the crystals. The visibility decreases approximately quadratically
as λ increases.

5.4 Conclusion and discussion

Using parametric down-conversion successfully in actual applications, such as build-

ing deterministic single-photon sources [123] or proving a true quantum advant-

age in Boson sampling experiments [131], requires minimising losses to reduce the

number-of-sources overhead cost. In this Chapter, we have experimentally proven

that nonlinearity engineering can indeed improve PDC performances significantly,

increasing heralded-photon purities without compromising the heralding efficiency.

As a last remark, we conclude by assessing the impact of spectral filtering on the

heralding efficiency and the single-photon purity of our photon sources (considering

sech2 pulses) to stress the relevance of nonlinearity engineering. In Figure 5.10,

the normalised heralding represents the maximum heralding achievable, factoring

out known losses, detection and collection efficiency, while the x-axis is the ratio

between filter and single-photon bandwidth. The data corresponds to our experi-

mental results discussed in the previous Sections: filtered and unfiltered, standard

and apodised KTP crystals. We see a drastic trade-off between spectral purity and
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heralding efficiency for photons created in standard crystals. A purity of 0.99 can be

achieved when a filter with twice the PDC bandwidth is applied. However, even ideal

filters with 100 % peak transmission would decrease the heralding efficiency to 80 %,

and the source brightness to 60 %, which in a modest six-photon experiment would

amount to a drop in observed rates to just 22 %. In contrast, our apodised crystal

sources operate at, or at least very close to, 100 % heralding efficiency, overcoming

this tradeoff: this is particularly evident in the red-triangle data points, represent-

ing the latest results obtained with domain engineering, where both heralding and

purity are close to 100 %.

Figure 5.10: Filtering effects. Empty (filled) data points represent her-
alding (purity) of each source. The bottom plot zooms over the region with
purity and heralding >80 %.
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Time is an illusion. Lunchtime doubly so.

Douglas Adams,
The Hitchhiker’s Guide to the Galaxy
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While generating pure heralded

single-photons is the original and

arguably the main application of

nonlinearity engineering, its capab-

ilities go much beyond this. Shap-

ing the phase-matching function

of nonlinear processes enables dir-

ect generation and manipulation of

spectrally-tailored photonic states.

We briefly discuss this in the first part of this Chapter, where we introduce what we

call the time-frequency modes framework. We will then move on to the main part

of this Chapter, reporting an experiment where we generate maximally-entangled

biphoton states encoded in the TFM degree of freedom [112]. We describe the char-

acterisation techniques and the novel analysis tools that allowed us to certify the

authenticity of the produced TFM entangled state, and we report the experimental

implementation of a TFM entanglement-swapping scheme as a proxy for multi-

photon time-frequency modes protocols. Finally, we will conclude this Chapter

with a brief discussion on upcoming projects following this line of research.
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6.1 TFM framework

In the previous Chapter, nonlinearity engineering was used to generate spectrally

pure single photons. For implementing photonic quantum information processing

tasks, one needs to encode quantum information into these photons, in the form

of, e.g., polarisation, transverse and longitudinal spatial modes [136, 137], time and

frequency bins [138–141], etc. While this has been the most common choice for

nearly three decades, the last few years have seen increasing interest into encoding

quantum information directly into the complex spectral (temporal) envelope of the

single-photon wavefunction: the time-frequency modes, that we have already dis-

cussed in the Schmidt decomposition Section of Chapter 2. Figure 6.1 shows the

first five TFMs encoded in the Hermite-Gauss modes basis, that is the most common

basis for describing such encoding. As for other high-dimensional encodings (e.g. or-

bital angular momentum), different bases can be obtained with linear superposition

of the HG functions.

Figure 6.1: Example of Hermite-Gauss TFMs. This Figure represents
the first five (not-normalised) HG time-frequency modes.

Time-frequency modes arise naturally in parametric down-conversion processes,

as they are eigenstates of the PDC Hamiltonian spanning an infinite-dimensional

Hilbert space. These modes possess highly desirable properties: being centred

around a target wavelength makes them compatible with waveguide integration and

fibre networks, they are robust against noise [142] and chromatic dispersion [143],

their pulsed nature enables synchronisation and therefore multi-photon protocols,

and they offer intrinsically high dimensionality [144]. Manipulation and detection

of TFMs is enabled by the quantum-pulse toolbox, where engineered sum- and

difference-frequency generation are used for reshaping and projecting the quantum
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states, composing a complete framework for linear optical quantum computing based

on time-frequency modes encoding [144, 145].

Generating spectrally-pure heralded TFM-encoded states requires PDC in asym-

metric group-velocity matching condition, as depicted in Figure 6.2 for the case of

a vertical phase-matching function. In this configuration, a spectrally broad pump

Figure 6.2: Heralded TFMs in asymmetric group-velocity matching.
Heralded spectrally-pure TFMs can be generated in engineered PDC sources
by either shaping the PMF (a) or the pump envelope (b). In both cases the
pump function has to be much broader than the PMF to guarantee separability
of the JSA. From left to right, we show HG modes of order 1, 2, and 3. The
same JSA matrices shown in this picture also correspond to transfer matrices in
a DFG process, meaning that one could use the same crystal to perform mode-
selective TFM measurements. The red dot-dashed lines are the 1/e contours
of the pump, while the yellow dashed lines are the PMF contours.

pulse is combined with a narrower PMF and leads to a nearly separable JSA. Unlike

what we have seen in previous Chapters, however, in this case the joint spectrum

is not Gaussian, as either the pump spectrum or the phase-matching function are

chosen as a HG mode function (or other non-Gaussian functions that might be rel-

evant for specific applications). This results in one of the two photons having an
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approximately Gaussian spectral envelope, while the other one will have a tailored

spectrum. One can therefore measure the Gaussian-shaped photon to herald the

TFM-encoded one.

Incidentally, the same matrices depicted in Figure 6.2 also correspond to the

transfer matrix of the frequency conversion process, where one of the two axes

corresponds to the input photon spectrum, and the other one to the output, as

described by the interaction Hamiltonian:

Ĥint = θ
∫
dωindωoutF (ωinωout) âinb̂†out + h.c. , (6.1)

where â and b̂ are the annihilation operators of the input and output modes, θ is the

coupling constant, and F (ωinωout) is the transfer matrix. The quantum-pulse tool-

box requires engineered transfer matrices to manipulate TFM states (e.g., Hadamard

and Pauli gates can be implemented with cascades of three or four frequency con-

version stages), as well as to perform mode-selective projective measurements on

specific TFM-encoded states. Figure 6.2 shows that tailored transfer matrices can

be obtained by shaping the pump as a Hermite-Gauss mode (as originally proposed

in [145]), but equivalently one can also tailor a HG-shaped phase-matching function

via domain engineering to achieve the same goal.

Parametric down-conversion also enables the generation of TFM entanglement.

In this case one can work in symmetric GVM, where pump and PMF are perpendicu-

lar, and shape one of them as HG mode function, as shown in Figure 6.3. The output

biphoton state will exhibit time-frequency-mode entanglement, however the amp-

litudes of the TFM basis states might not be perfectly balanced [145]: whenever this

could be a problem for specific applications, tailoring different PEF or PMF shapes

can easily overcome this problem and lead to balanced entangled TFM states [144].
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Figure 6.3: Entangled TFMs in symmetric group-velocity match-
ing. parametric down-conversion can be engineered for producing entangled
biphoton states in TFM encoding by either shaping the PMF (a) or the pump
envelope (b) in symmetric GVM. From left to right, we show HG modes of
order 1, 2, and 3. The red dot-dashed lines are the 1/e contours of the pump,
while the yellow dashed lines are the PMF contours.

6.2 Nonlinearity engineering for TFM encoding

Nonlinearity engineering can be used for tailoring the PMF as an Hermite-Gauss

mode function to enable TFM encoding in parametric down-conversion, as shown

for example in Figure 6.2 an 6.3. As we did for the Gaussian nonlinearity, we analyse

step by step the engineering algorithm. Take for example the first-order HG mode

as a target PMF (see Figure 6.5(a)):

φtarget(∆k) = 2 (∆k −∆k0)σe− 1
2 (∆k−∆k0)2σ2

. (6.2)
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Figure 6.4: 3D phase-matching function Three-dimensional plot of the
PMF φtrack(∆k; z). As expected, the PMF is 0 at the starting edge of the crys-
tal, it then grows with a non-trivial behaviour along the longitudinal direction
of the crystal, and finally assumes a first-order HG mode shape when the whole
crystal is considered: φtrack(∆k;L).

The corresponding nonlinearity profile reads:

gtarget(z) = F [φtarget(∆k)] = 1√
2

∫ ∞
−∞

φtarget(∆k)ei∆kzd∆k

= −2ze−
z2

2σ2 +i∆k0z

σ2 ,

(6.3)

and is depicted in Figure 6.5(b). Then, we perform the inverse Fourier transform of

Eq. (6.3): the output φtrack(∆k; z) is too complex to write down here, but we plot

its envelope in Figure 6.4.

We finally fix the phase mismatch to the quasi-phase-matching condition, ∆k =

∆k0, obtaining the tracking function shown in Figure 6.5(c):

φtrack

(
∆k = ∆k0; z − L

2

)
= 2
π
σe

1
2−

L2+4z2
8σ2

(
e
Lz
2σ2 − e

z2
2σ2

)
, (6.4)

where we have already included a scaling factor (in this case equal to
√

2eσ
π

), as

discussed in Chapter 4 for a Gaussian PMF. When the poling structure of a nonlinear

crystal is chosen to track Eq. (6.4) accordingly to one of the tracking methods

discussed in Chapter 4, the corresponding PMF approximates the target function,
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Figure 6.5: First order HG mode PMF engineering. The target PMF
(a) corresponds to a nonlinearity profile (b) centred in 0. The vertical dashed
lines correspond to the crystal edges. The absolute value of the nonlinearity
(green line) is also shaped as the absolute value of a first order HG mode, while
the real and imaginary part of the nonlinearity (blue and red lines) oscillates
with period 2π

∆k0
= 2`c: this is an effect of the target PMF being centred in

∆k0 6= 0. Inverse Fourier transform, shifting of the z variable, and rescaling
of the function lead (c), i.e. the PMF that ought to be tracked by choosing
an appropriate domain orientation pattern in the poled crystal. The effective
PMF corresponding to the engineered crystal is finally shown in (d). In all the
plots, blue, red, and green lines correspond to the real part, imaginary part,
and absolute value of the plotted function, respectively.

as shown in Figure 6.5(d).

This procedure can be applied to any order of HG modes. In Figure 6.6 we show

target nonlinearity profile gtarget(z), tracking function φtrack
(
∆k = ∆k0; z − L

2

)
and

corresponding PMF shaped as the first seven HG modes.
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Figure 6.6: Nonlinearity engineering for TFM generation. Nonlinear-
ity profile (left), tracking function (centre) and corresponding PMF (right) for
first seven orthogonal HG modes.

6.3 Experimental TFM entanglement generation

6.3.1 Target TFM-entangled state

Let’s consider a Gaussian pump-envelope function combined with a first-order HG

mode phase-matching function:

α(ωs, ωi) = e−
(ωs+ωi)2

2σ2

φ(ωs, ωi) = e−
(ωs−ωi)2

2σ2 (ωs − ωi) .
(6.5)
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The corresponding PDC first-order biphoton state reads:

|ψ−〉s,i =
∫∫

dωsdωiα(ωs, ωi)φ(ωs, ωi)a†s(ωs)a
†
i (ωi) |0〉s,i

=
∫∫

dωsdωi exp
[
−ω

2
s + ω2

i

σ2

]
(ωs − ωi) a†s(ωs)a

†
i (ωi) |0〉s,i ,

(6.6)

where we are omitting the wavefunction normalisation, and the corresponding joint

spectrum is shown in Figure 6.7 (a).

Figure 6.7: JSA and time-frequency modes. Joint spectrum (a) and
corresponding TFMs (b) that compose the PDC state.

Eq. (6.6) can be decomposed via Schmidt decomposition considering the zero-

and first-order HG modes:

|u〉j ≡ | 〉j =
∫
dωj exp

[
−
ω2
j

σ2

]
a†j(ωj) |0〉j

|v〉j ≡ | 〉j =
∫
dωj exp

[
−
ω2
j

σ2

]
ωja

†
j(ωj) |0〉j ,

(6.7)

with j = s, i, and where we are neglecting the normalisation constants. The shape

of the two spectral modes is shown in Figure 6.7 (b). Following from (6.7), the
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biphoton state can be therefore written as follows:

|ψ−〉s,i = 1√
2

(|u〉s |v〉i − |v〉s |u〉i)

= 1√
2

(| 〉s | 〉i − | 〉s | 〉i) ,
(6.8)

where = u(ω) and = v(ω) in Figure 6.7(a). The state in Eq. (6.8) is a

maximally entangled singlet state in the spectral-temporal mode basis.

To approximate the ideal case in Eq. (6.8), we use nonlinearity engineering to

tailor a first-order HG-shaped PMF, as discussed in detail in the previous Section.

We design an apodised 30 mm-long KTP crystal for close-to-symmetric GVM (the

PMF is at ∼48° in the (ωs, ωi) plane). The fundamental domain width is ∼23.1 µm,

equal to the coherence length of a 775 nm pump down-converted into two 1550 nm

photons. The domain structure, Figure 6.8 (b), is quite different from the ones

shown in Figure 5.3 and Figure 5.8 for Gaussian-shaped PMFs: the domain pattern

of “longer - shorter - longer blocks” is now replaced with a pattern of the kind

“longer - shorter - longer - shorter - longer blocks”, due to the very nature of the

tracking function that has a flat section in the middle of the crystal. The absolute

value of the PMF, Figure 6.8 (c), has the expected shape, and the phase is linear

where the amplitude is not non-negligible, with a π shift in ∆k0, as expected from

the first-order HG function. We’ll discuss again the nature of this linear phase in

the next Sections.

By considering a 1.3 ps pump pulse, we can also numerically simulate the |JSA|

of the process, that we show in Figure 6.8 (a).

6.3.2 Experimental setup

The photon-pair source is exactly the same as described for pure heralded photons

generation in Chapter 5, and depicted in Figure 5.2, where the Gasussian shaped

crystals are replaced with TFM crystals

1.3 ps-long, 775 nm laser pulses with 80 MHz repetition rate are focused into

the tailored KTP crystal to create orthogonally-polarised 1550 nm photon pairs via
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Figure 6.8: Crystal design. Simulated |JSA| (a), poling pattern in the
crystal (b), and simulated PMF (absolute value in blue, phase in red).

type-II PDC. The photons are loosely filtered with a band-pass filter (∼ 3 times

broader than the PDC photons’ bandwidth). A polarising BS separates them before

they are coupled into single-mode fibres. When the source is sent to the SNSPDs,

we measure a brightness of ∼ 4 kHz/mW photon pairs with a symmetric heralding

efficiency higher than 60 %, a reasonable trade-off achieved by optimising the pump,

signal and idler focusing conditions [16, 132–134].

A full characterisation of the biphoton quantum state could be obtained via

quantum state tomography in the TFM basis, which requires projective measure-

ments onto three mutually unbiased bases using cascades of tailored nonlinear pro-

cesses [146–148], or by reconstructing the JSA including its phase, which assumes a

pure biphoton state and involves complex interferometric techniques [106, 108, 149].

We instead characterise the PDC state using an indirect approach that exploits

joint spectral intensity reconstruction via dispersive fibre spectroscopy [101] and

two-photon interference to infer information on populations and entanglement of

the quantum state, respectively. The experimental setups for the biphoton charac-

terisation is shown in Figure 6.9.
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Figure 6.9: Experimental setup. Two-photon interference setup (a) and
dispersive fibre spectroscopy setup (b).

6.3.3 Dispersive fibre spectroscopy

The setup for the JSI reconstruction is shown in Figure 6.9 (b). Each photon is

sent through ∼20 km single-mode fibre to convert spectral to temporal information

exploiting the fibre dispersion of ∼18 ps/km/nm at 1550 nm. The photons are then

detected with SNSPDs with nominal 80 % detection efficiency and < 50 ps timing

jitter. Arrival times are recorded as time tags by a Picoquant HydraHarp in 1 ps bins

for offline processing. We collected ∼2.8× 106 two-photon coincidence counts with

respect to a clock signal, used to centre the JSI matrices, in 24 hours. The clock

consisted of a third SNSPD triggered by an independent PDC source (at ∼0.9 MHz

count rate) synchronously pumped by the same laser pulse. We reconstruct 12250×

12250 JSI matrices, where each bin has a size of 1×1 ps, corresponding to the timing

logic’s resolution. We calibrate our dispersive-fibre spectrometer with a reference

signal with respect to a commercial single-photon CCD spectrometer, obtaining

a scaling factor of ∼ 2.94 pm/ps (centred around 1550 nm). This corresponds to

a 36 nm spectral range, ∼ 12 times larger than the PDC photons’ bandwidth, to

ensure reliable estimation of the JSI properties as discussed in Chapter 3. We

down-sample the JSI matrices to 40 × 40 ps bins for reducing the sparsity of the

data and computing the singular value decomposition as numerical implementation
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of the Schmidt decomposition.

Figure 6.10: JSI matrices via fibre spectroscopy. Reconstructed JSI
matrix over the whole 36 nm spectral range (a), and focusing on a reduced
12 nm range (b). The red dot-dashed lines represent the 1/e2 contours of the
PEF, while the yellow dashed lines the PMF ones.

Results are shown in Figure 6.10 over the whole (a) and reduced (b) spectral

range. The overlay contours show the theoretical pump spectrum and the numeric-

ally calculated PMF, assuming the ideal crystal domain structure and a sech2 pump

function. There is excellent correspondence between the theoretical target and the

measured JSIs, which faithfully reproduces not only the two main peaks but also

the spectral bandwidth.

6.3.4 Two-photon interference

In Section 3.2.2 we have seen how signal-idler HOM interference can be used to

infer the antisymmetry of the biphoton down-converted state. Here we use this

result to study the spectral properties of the target state in Eq. (6.8), that ideally

is maximally antisymmetric in the photon spectra.

We can calculate the signal-idler interference pattern in Eq. (3.19) for the anti-
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symmetric normalised JSA of the biphoton state:

f(ωs, ωi) = 2
√
π
√
σ4

e−
ω2
i

+ω2
s

σ2 (ωs − ωi) , (6.9)

and we obtain the following equation:

pcc(∆t) = 1
2 −

1
4e
− 1

4σ
2∆t2(σ2∆t2 − 2) , (6.10)

where pcc is the coincidence-count probability after interference, σ depends on the

biphoton bandwidth and ∆t is the relative arrival time of the two photons at the

BS. As expected from a maximally antisymmetric joint spectrum, the coincidence

probability when the photons arrive simultaneously at the BS is 1, meaning that

they always anti-bunch. Remarkably, for a biphoton state that is separable in all

other degrees of freedom, anti-bunching at a BS corresponds to entanglement in the

biphoton spectrum, and we can use this result to verify TFM entanglement in our

generated state [111, 150–152].

Using the setup in Figure 6.9 (a), we measure the interference pattern by delay-

ing one photon with respect to the other before they interfere in a fibre BS. We show

the experimental data for two apodised crystals in Figure 6.11(a): the fitted HOM

visibility is equal to (99.4± 0.4) %, where we use Eq. (6.10) with an additional vis-

ibility scaling factor to fit the data, certifying a high degree of spectral entanglement

of the PDC biphoton state.

Small variations in the crystal domain widths can be introduced by changing the

crystals temperature. This results in a shift of the PMF in the (ωs, ωi) plane, as

discussed in Chapter 2, producing frequency non-degenerate photons and therefore

compromising the antisymmetry of the biphoton wavefunction. Surprisingly, this

doesn’t affect the Schmidt number of the quantum state: the biphoton state struc-

ture remains intact, but the signal and idler TFMs will be centred around different

frequencies. This enables the capability of switching between an antisymmetric state

to a non-antisymmetric one without spoiling the spectral modal structure. We ob-

serve the biphoton antisymmetry-breaking by performing HOM scans at different
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Figure 6.11: Signal-idler interference. (a) Signal-idler interference for
two apodised crystals with antisymmetric PMF. (b) Signal-idler interference
varying crystal temperature. The HOM visibility has a maximum at 25 °C,
while no antibunching occurs above 39 °C. Error bars assuming Poissonian
counting statistics are smaller than the symbol size.

temperatures, from 20° to 60° at 1° intervals. We show the results in Figure 6.11(b):

anti-bunching (and therefore antisymmetry) is maximal for perfectly degenerate

PDC and it reduces as we tune away from degeneracy, until no anti-bunching occurs

above a certain centre-frequency offset, as expected from theory.

In Chapter 3 we have seen that the spectral purity (and, consequently, the

Schmidt number) of the JSA can be mapped to the interference visibility in an

heralded-photon HOM experiment between two identical PDC sources. We can

use the same experimental scheme described in Figure 5.5 (c) for estimating the

heralded-photon purity: two (nearly) identical PDC sources emit simultaneously

two photon pairs, one photon of each pair is detected to provide a heralding sig-

nal for its twin photon, and the heralded photons are finally interfered on a fibre

BS. Since the |ψ−〉 state in Eq. (6.8) is composed of two equally-weighted TFM

basis states, the corresponding Schmidt number is expected to be equal to 2. We

can in fact calculate the heralded interference pattern according to the HOM equa-

tion (3.26) calculated for the antisymmetric JSA in Eq. (6.9), obtaining the following

relation:

pcc(∆t) = 1
2 −

1
128e

− 1
4 ∆t2σ2 (∆t4σ4 + 32

)
, (6.11)
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where the visibility of the interference pattern is equal to 1− 2pcc(0) = 1/2, corres-

ponding to a Schmidt number equal to 2.

We experimentally measure an interference visibility of (48.8± 1.2) % at 30 mW

of average pump power, which corresponds to a Schmidt number of 2.05± 0.05, in

excellent agreement with theory. The interference data are shown in Figure 6.12.

Figure 6.12: Heralded-photons interference. Heralded-photon interfer-
ence pattern for estimating the JSA Schmidt number. Error bars assuming
Poissonian counting statistics are smaller than the symbol size.

6.3.5 Effective JSA reconstruction

The JSI reconstruction provides full information on the absolute value of the JSA,

but it doesn’t give any information on the phase of the biphoton state. In the case

of Eq. (6.8), the value of |JSA| corresponds to:

|f(ωs, ωi)| = exp
[
−ω

2
s + ω2

i

σ2

]
|ωs − ωi| , (6.12)

which is in good agreement with the JSI we measured and showed in Figure 6.10.

While the JSI reconstruction doesn’t contain any phase information, we can ex-

ploit our knowledge of the antisymmetry and Schmidt number of the biphoton wave-

function to reconstruct an “effective” JSA. Specifically, to guarantee antisymmetry

and bi-modal structure of the quantum state (that we measured via signal-idler

and heralded-photon HOM interference), we impose a eiπ sign shift between the

two peaks of the square root of the measured JSI. This antisymmetric phase shift

matches, up to an additional linear phase, the output of the nonlinearity-engineering
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algorithm that generates the state in Eq. (6.8).

Any additional phase that multiplies Eq. (6.12) has to provide an antisymmetric

state in the signal and idler frequencies, otherwise it wouldn’t produce a HOM peak:

moreover, it also has to preserve the very specific interference pattern we derived in

Eq. (6.10) and measured (see Figure 6.11). In particular, we restrict our analysis

on JSA phase to a function of the form (ωs − ωi): this is a good approximation

for the symmetric group-velocity matching condition, where the dependence of ∆k

on the signal and idler frequencies rising from the phase-matching function is linear

and perpendicular to the pump field, as we discussed and showed in Chapter 2,

Figure 2.5 (a).

We consider an additional linear phase, as this is the expected PMF structure

produced by the nonlinearity engineering scheme used to design the crystal, as shown

in Figure 6.8. Under this assumption, the JSA reads:

f(ωs, ωi) = exp
[
−ω

2
s + ω2

i

σ2

]
(ωs − ωi) exp [i const (ωs − ωi)] , (6.13)

where “const” is the gradient of the phase, and the Schmidt decomposition provides

the corresponding orthonormal modes:

|u〉j ≡ | 〉j =
∫
dωj exp

[
−
ω2
j

σ2 ± i const ωj
]
a†j(ωj) |0〉j

|v〉j ≡ | 〉j =
∫
dωj exp

[
−
ω2
j

σ2 ± i const ωj
]
ωja

†
j(ωj) |0〉j ,

(6.14)

where the +(−) sign is used for the signal (idler) photon, and we are neglecting

the normalisation constants. The Schmidt number corresponding to Eq. (6.14) is

2, as for the antisymmetric JSA without linear phase, and the overall JSA is still

antisymmetric. The corresponding HOM pattern reads:

pcc(∆t) = 1
2 −

1
4e
− 1

4σ
2(∆t+2const)2(σ2(∆t+ 2const)2 − 2) , (6.15)

which still exhibits perfect antibunching and the same interference shape (only trans-

lated by twice the value of the constant). This phase is therefore a suitable candidate
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for describing the measured quantum state, as expected from the crystal engineering

technique used to tailor the PMF and consequently the JSA of the PDC process.

Other phase structures might, in principle, give rise to a JSA having a Schmidt

number equal to 2 while preserving the same HOM structure: testing this possibil-

ity would require a phase-sensitive JSA reconstruction [106, 108, 149].

As a result of the analysis above, we only apply a eiπ sign shift between the two

peaks of the |JSA|, as an additional linear phase factor is negligible. The effective

JSA obtained in this way is depicted in Figure 6.13. It qualitatively matches the

theoretical target JSA shown in Figure 6.7(a) and has an effective Schmidt number

of 2.026 ± 0.001, consistent with the HOM measurement and with our numerical

simulations. The error on the extracted Schmidt numbers represents 3σ statistical

confidence regions obtained via Monte-Carlo re-sampling (10k runs of the algorithm)

assuming a Poissonian statistics on the coincident counts distribution.

Figure 6.13: Effective JSA. Joint spectral amplitude reconstructed with
dispersive fibre spectroscopy and HOM interference to infer the phase structure
of the biphoton spectrum.
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6.4 TFM entanglement swapping

Multiphoton protocols using TFMs will require the ability to interfere and swap

independently generated TFM-encoded photons. While a generalised entanglement

swapping for TFM has been proposed, it relies on a nonlinear process between two

single photons and therefore has very low success probability [153]. Here, instead,

we implement the standard entanglement swapping scheme with the setup shown

in Figure 6.14. A similar experiment has been reported slightly after ours [154]

where TFM entanglement swapping is heralded by a frequency-resolved Bell-state

measurement, and verified using a similar scheme.

Figure 6.14: TFM entanglement swapping setup. Fibre spectroscopy
(a) and double HOM interference (b) setups for implementing the TFM entan-
glement swapping scheme.

Two entangled |ψ−〉 states are produced via two independent engineered TFM-

entangled pair sources:

|Ψ〉 = |ψ−〉1,2 |ψ
−〉3,4 , (6.16)

where |...〉1,2 are the mode indices of the first source, while |...〉3,4 corresponds to the

second source.
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The overall four-photon state in Eq. (6.16) can be rewritten as:

|Ψ〉 = 1
2(|φ+〉1,4 |φ

+〉2,3 + |φ−〉1,4 |φ
−〉2,3 + |ψ+〉1,4 |ψ

+〉2,3 − |ψ
−〉1,4 |ψ

−〉2,3) , (6.17)

where we are grouping together the heralding modes |...〉1,4 and the interfering modes

|...〉2,3. The four Bell states in Eq. (6.17) are defined as:

|ψ±〉 = 1√
2
| 〉 | 〉 ± | 〉 | 〉

|φ±〉 = 1√
2
| 〉 | 〉 ± | 〉 | 〉 .

(6.18)

The joint spectra for all four Bell states and the corresponding HOM patterns are

shown in Figure 6.14(c): perfect antibunching at the BS occurs only for the singlet

state |ψ−〉, while triplet states {|ψ−〉 , |φ+〉 , |φ−〉} bunch due to the symmetry of their

wavefunctions. We use this knowledge to discern a successful projection on |ψ−〉2,3
from all the other outcomes after the (first) fibre BS: a two-photon coincidence

detection at the two BS outputs corresponds to a projection on the singlet state,

and heralds swapping of the TFM |ψ−〉 state from the two original photon pairs to

the two non-interacting photons.

We benchmark the heralded swapped state via fibre spectroscopy and HOM

interference, as shown in Figure 6.14, (a) and (b) respectively.

The JSI of the swapped |ψ−〉1,4 state is measured by sending the two photons

through a pair of 20 km single-mode fibres, as we did in the previous Sections. Unlike

the standard biphoton JSI reconstruction discussed before, where an external clock

signal is needed to reference the arrival time of signal and idler, in this entanglement

swapping scheme a two-clicks event in the SNSPDs at the output of the BS acts both

as herald of a successful projection on |ψ−〉2,3, and as a clock signal for the arrival

time of the photons in modes (1, 4). This is possible because the photons in modes

(2, 3) after the BS are not sent through long fibres, and their arrival time is well

defined in time (and within the detector jitter window): therefore, there is no need

for an additional clock signal.
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Figure 6.15: TFM entanglement swapping: fibre spectroscopy. Re-
constructed JSIs corresponding to the mixed state (a) and the swapped |ψ−〉
state (b).

In Figure 6.15(a) we show the measured joint spectrum of the two-photon state

without post-selection, where we consider as heralding signal either one or two de-

tection events after the BS, corresponding to 3-fold and 4-fold coincidence counts,

respectively. We collect 670k 3-fold and 46k 4-fold coincident counts in 72 hours of

integration time. We observe 4 peaks, arising from a mixture of the four equally

weighted Bell state JSAs (depicted in Figure 6.14(c)). When we instead record

only 4-fold coincident counts, we measure the spectrum of the swapped |ψ−〉 bi-

photon state, recovering the two main peaks on the JSI’s diagonal, as shown in

Figure 6.15 (b).

We then measure two-photon interference of the swapped state with the setup

in Figure 6.14 (b), where we add an additional HOM stage for the modes |...〉1,4.

Because the probability of generating photon pairs independently in two sources

equals that of a double-pair emission in each source, the maximal theoretical HOM

visibility is 25 %. This is not a fundamental limitation of the scheme, but it only

occurs when both photons of two PDC pairs are interfered, which is not required

in realistic applications as, e.g., repeater protocols. We obtain an interference vis-

ibility of (24.5± 0.5) %, as shown in Figure 6.16(a). We subtract the multi-photon
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background by recording the counts when either of the two photon sources are

blocked. The corrected interference pattern in Figure 6.16(c) yields a HOM visibil-

ity of 97.1± 1.7%, certifying success of the TFM entanglement swapping protocol.

Figure 6.16: TFM entanglement swapping: two-photon interfer-
ence. HOM interference for benchmarking the TFM entanglement swapping
scheme. In (a) we show 4-fold coincidences at the outputs of the two BSs in
Figure 6.14 (b), looking at contributions from source 1 (red triangles), source 2
(green squares) or both sources (blue dots). In (b) we subtract the single-source
contributions from the overall recorded counts to correct for higher-order PDC
emission.

We can finally reconstruct the effective JSA of the swapped state under the

assumptions discussed earlier, imposing the eiπ sign shift between the two peaks

of the square root of the measured JSI. We calculate a Schmidt number of 2.15 ±

0.01: a value slightly higher than for the single-source scenario, as expected due to

discrepancies between independent sources that affect the interference quality.

6.5 Conclusion and future directions

The controlled generation and detection of TFM entanglement is a very challenging

task [155–159], limiting its usefulness in realistic scenarios. Here, we have discussed

how nonlinearity engineering can help us tackling this challenge, enabling genera-

tion of TFM entanglement from standard ultrafast laser pulses in single-pass PDC

sources. We experimentally validate this technique by benchmarking a maximally

antisymmetric state at telecom wavelength with near unity fidelity, and implement
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a four-photon entanglement swapping scheme. Our work complements the pulse-

gate toolbox [144, 145] for TFM quantum information processing, and establishes a

standard for the generation of TFM quantum states of light while paving the way

for more complex frequency encoding.

Due to its simplicity and quality, we expect this technique to be used in a host

of different quantum information tasks. The flexibility in tailoring the PMF lends

itself to the generation of high-dimensional TFM entanglement: not only can one

use higher-order Hermite-Gaussian PMFs to up-scale to qudits, as discussed in the

beginning of this Chapter, but one can also aim at different PMF shapes for targeting

specific applications, such as frequency multiplexing [160].

The natural step forward will be using quantum pulse gates to implement project-

ive measurements in the TFM space, enabling TFM-encoded quantum information

processing protocols. This can be achieved working in asymmetric group-velocity

matching condition, by either shaping the pump pulse or the PMF, as we have seen

in this Chapter. Moreover, the advent of reconfigurable functional materials [161]

would make this technique even more appealing for practical applications in gener-

ation and detection of TFMs.

Finally, the ability to customise biphoton spectra could be useful for multi-

photon quantum metrology applications in which measurement precision depends

on the shape and steepness of the HOM pattern [162].
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CHAPTER 7

Conclusion

We are finally at the end of this Thesis, and I believe there is not much to add to what

has been said in the previous (and following) pages. I hope to have convinced the

reader that, if photonics aims to be the leading platform for quantum information

applications, a lot of work in engineering reliable and high-performance single photon

sources has yet to be done, but the foundations have already been laid.

Parametric down-conversion (or other probabilistic sources based on nonlinear

processes) has the potential to fulfil this role as efficient source, if its three major

drawbacks are overcome: probabilistic emission, photon number purity, and spec-

tral purity. Both PDC probabilistic nature and photon number purity problems

still require quite some engineering to be considered solved, but I think that either

source multiplexing [20] with improved low-loss fast switches, or optimised temporal

multiplexed sources [23], (or a combination of the two) will be able to address these

problems sufficiently well. On the other hand, the challenge of increasing the photon

spectral purity has been intensively discussed in this manuscript, and I believe it is

fair to say that it has been in large part solved.

What would now be of utmost importance, is to start combining these solutions

into a single device that can actually fulfil all the requirements of a single photon

source. The simplicity of nonlinearity engineering allows one to easily combine it

with the aforementioned multiplexed schemes, and building a prototype of a high

efficient source under all aspects should now be near at hand.

While such a source would probably already meet industry standards for useful
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applications in fields where not many photons are required (e.g. two-party quantum

communication), it would only be another milestone in the route towards a photonic

device for quantum information processing. In that sense, the natural following step

would be to start implementing nonlinearity engineering in photonic chips, where

miniaturisation of optical components would enable scalability to many photons

quantum architectures.

Moving beyond these technological aspects, there are a few topics that would

require further investigation.

For example, it is known that focusing and collection conditions in a bulk PDC

source affect both efficiency and spatial/spectral properties of the PDC photons [16,

53, 132–134]. A thorough study that considers crystal structure (when nonlinearity

engineering is used), spectral properties and overall source efficiency in relation to

the focusing parameters is, to my knowledge, still missing, and it would be relevant

from both a scientific and a technological point of view.

Another open question is how nonlinearity engineering would behave when used

to tailor the nonlinearity of (integrated) waveguides. From a fundamental point

of view, there shouldn’t be any substantial difference with the bulk crystal case.

However, waveguide geometry and fabrication errors influence (in some case sig-

nificantly) the material dispersion and the overall phase-matching function of the

process [163], and I believe an in-depth analysis is required to understand whether

nonlinearity engineering and field propagation in the waveguide can be treated inde-

pendently (e.g. use the latter to find the fundamental poling period and feed it into

the engineering algorithm), or if there is an interplay between the two that needs to

be taken into account in a generalised framework.

As most of the analysis of the joint spectral amplitude properties can be directly

mapped to the four-wave mixing case, it is natural to ask if (the ideas behind) non-

linearity engineering can be applied to this nonlinear process. In this regard, there

are already proposals and proof-of-principle experiments addressing this questions.

For example, one could think of modifying the tapering structure of periodically

tapered waveguides [164] introducing an effective tailored nonlinearity, as we did
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in this work for the ferroelectric domains of poled crystals. Another solution, that

has been recently demonstrated [26] is to use dual-mode pump-delayed excitation

in spiralled waveguides to increase the output photons’ purity without narrowband

filtering: this solution, despite sharing the same underlying purpose of nonlinearity

engineering, is based on a quite different physical implementations.

Finally, it would be very interesting to use nonlinearity engineering in frequency-

conversion schemes to complement the quantum pulse gate framework, implementing

direct manipulation and projection of the time-frequency modes-encoded photons

and, in the long-term, building TFM-based devices for useful quantum photonics

applications.
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APPENDIX A

Poling errors effects at smaller spectral

range

Analogously to the analysis conducted in Chapter 4, in Appendix we report the

effects of poling errors on different types of poling. Instead of considering a very

wide spectral range (as I did previously, were a spectral range ∼ 25 larger than

the PDC photons bandwidth was taken into account), here we consider the effect

of poling errors on a reduced JSA, where I consider a spectral range only ∼ 7.5

larger than the PDC photons bandwidth. This is to emulate the effect of “gentle”

filtering, that is often used in combination with nonlinearity engineered crystals. We

run numerical simulations generating 60× 60 JSA matrices.

The results of this analysis are shown in Figs. A.1, A.2, A.3, and A.4.
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Figure A.1: Under/over poling. Both sub-coherence length and one-
domain blocks method are more robust to errors than the duty-cycle modula-
tion method.

Figure A.2: Domain-width variation. All poling techniques are similarly
affected by the domain-width variation error.
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Figure A.3: Missing domains. Different poling techniques exhibit different
behaviours when missing domain errors occur in the crystal.

Figure A.4: Missing blocks. All poling techniques are similarly affected
by the domain-width variation error.
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Goat butts against the hedge and its horns
become entangled.

Egg Shen, Big Trouble in Little China

APPENDIX B

Hyperentanglement in Structured

Quantum Light

As I already mentioned in the introduction, this Appendix should be considered as

a the seventh Chapter of this manuscript: the reason why it appears at the end of

this Thesis is simply bureaucratic.

In their “Roadmap on structured light” (2016) [165], Rubinsztein-Dunlop et al.

posed a somewhat challenging question:

Going forward one wonders what exciting prospects await the expansion

of structured light concepts beyond the spatial domain, for example, the

shaping of light’s time envelop [sic] and frequency control. Could we see

optical fields structured in all dimensions and in all degrees of freedom?

In this Chapter, we address this question by bridging the gap between spatially-

and spectrally-structured light.

To this aim, we exploit nonlinearity-engineering compatibility with different

photonic quantum encodings, such as polarisation and orbital angular momentum,

that makes it a versatile tool for multi-DOF quantum photonics applications. By

combining the TFM entanglement scheme discussed in Chapter 6 with a polarisation

to OAM conversion technique, we experimentally demonstrate hyperentanglement

between vector vortex beam and time-frequency modes: a quantum state of light

that, to our knowledge, has never been observed before.
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This result presents foundational interests arising from the non-trivial structure

of entanglement coexisting in three different forms within the same biphoton state:

hyperentanglement of biphoton entangled TFMs and VVBs, which in turn carry

single-particle entanglement between polarisation and OAM. However, it also holds

promise for direct applications in quantum technologies. Hyperentanglement of the

form discussed here can indeed leverage features of structured light, which offers

noise robustness and intrinsically high dimensionality to enhance existing protocols.

Unlike the other Chapters, here I attach the original manuscript to this Thesis, as

I don’t have additional material and/or comments on the results already published.
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Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are
involved, offers increased information capacities and enables new quantum protocols. Here, we demonstrate
a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and
vector vortex structured modes, which in turn carry single-particle entanglement between polarization and orbital
angular momentum. Pairing nonlinearity-engineered parametric downconversion in an interferometric scheme
with spin-to-orbital-angular-momentum conversion, we generate highly entangled photon pairs at telecom wave-
length that we characterize via two-photon interference and quantum state tomography, achieving near-unity
visibilities and fidelities. While hyperentanglement has been demonstrated before in photonic qubits, here we
present a rich entanglement structure involving spectrally and spatially structured light, where three different
forms of entanglement coexist in the same biphoton state.

DOI: 10.1103/PhysRevResearch.2.043350

I. INTRODUCTION

Photonic platforms are a natural choice for many quan-
tum applications owing to their advantages as low-noise
quantum systems with high-fidelity control and suitability
for long-distance transmission. The ubiquity of binary en-
coding in many proof-of-principle demonstrations, even for
contemporary experiments, has in part been motivated by
their simplicity in implementation. However, there are sce-
narios that benefit from expanding the system dimensionality,
e.g., for enhancing information capacity, noise resilience, and
robustness against external attacks in quantum cryptogra-
phy [1,2]. Intrinsically high-dimensional degrees of freedom
(DOFs) of light—such as orbital angular momentum (OAM),
time, and frequency—enable a larger quantum alphabet in a
single-photon state. The combination of two or more DOFs
of light—including entanglement across them, namely, hyper-
entanglement [3,4]—allows further expansion of the Hilbert
space while providing easy access to the individual sub-
systems for selective control and measurements, improving
existing protocols or enabling new ones [5,6]. Hyperentangle-
ment in particular enables protocols like complete Bell-state
analysis [7–9] and logic gates simplification [10], and has
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Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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been used in cluster state generation [11,12] as well as in
testing quantum foundations [13]. Moreover, hyperentangled
systems have been successfully used for demonstrations of
quantum dense coding [14] and teleportation of multiple
DOFs of a single photon [15,16].

Photonic hyperentangled states have been demonstrated in
different encoding regimes, such as polarization, time and
frequency bins, path, and OAM [4,9,17]. While entanglement
of three DOFs has been demonstrated [4,18] the generation
of hyperentanglement in spatially and spectrally structured
light having nontrivial polarization and OAM patterns and
temporal/spectral envelopes [19] (as discussed below in de-
tail) remains elusive owing to the complexity of accessing
such encoding regimes. Notably, structured light modes—
where one or more DOFs are modulated into custom light
fields—are highly sought after in quantum photonics ap-
plications spanning communication, metrology, and imaging
[19]. In this paper, we fill this gap combining a nonlinearity
engineering technique [20,21] with a spin-to-orbital-angular-
momentum conversion scheme [22] to generate and charac-
terize a biphoton state that exhibits complex entanglement
between spectrally and spatially structured light. We produce
hyperentanglement between time-frequency modes (TFMs)—
temporal/spectral envelopes of the electric field of the photons
[6,21], and vector vortex beams (VVBs)—spatially structured
beams characterized by a nonuniform polarization pattern
on their transverse profile [23–25]. Due to their resilience
to different noise sources, both TFMs [26,27] and VVBs
[5,28] are ideal encodings for free-space communication
schemes. Meanwhile sources that generate polarization-TFM
hyperentanglement could be immediately deployed in tele-
com networks, as both DOFs are suitable for long-distance
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FIG. 1. Sketch of the biphoton hyperentangled state. The overall
quantum state |�〉 (first row) exhibits hyperentanglement between
spectrally and spatially structured light. Signal and idler are encoded
in the |ψ−〉ω state of the TFM basis, represented with the biphoton
joint spectrum and the corresponding expansion in TFMs (first box),
and in any Bell states of the VVB basis (we only display |ψ〉-type
states for compactness). Each photon is also in a single-particle
entangled state between polarization and OAM, giving rise to a VVB
(second box). The plus (minus) sign corresponds to the radially
(azimuthally) polarized beams, respectively.

transmission in fiber. Furthermore, a recent demonstration on
quantum transmission of VVBs in specialized fibers [29] bol-
sters future prospects for fiber-based networks exploiting the
full capabilities of our scheme. Finally, silicon based quantum
photonics is compatible with periodically poled sources [30]
and has been recently proven capable of generating spatially
structured light [31], paving the way towards the integration of
TFM-VVB hyperentanglement sources into photonics chips.

The generation of hyperentanglement between time-
frequency modes and vector vortex beams implies the ability
to independently create spectrally and spatially structured
light. TFM encoding can be achieved via nonlinearity engi-
neering, a technique that tailors the phase-matching function
in parametric downconversion (PDC) processes by modifying
the ferroelectric structure of periodically poled nonlinear crys-
tals. Originally used for generating spectrally pure heralded
single photons [20,32,33], nonlinearity engineering has since
been applied to generate TFM entanglement with high fidelity
[21]. Vector vortex beams on the other hand can be efficiently
created by converting polarization into polarization-OAM en-
tanglement by means of birefringent liquid-crystal devices
known as q-plates [22,24]. Our scheme combines these two
techniques with an interferometric Sagnac scheme [34,35]
for generating the highly entangled state with the nontrivial
structure sketched in Fig. 1.

II. HYPERENTANGLEMENT GENERATION

We describe the experimental implementation of our state
generation scheme in Fig. 2(a). A Ti-sapphire laser produces
a train of near transform-limited, 1.3-ps pulses centered at
775 nm with 80-MHz repetition rate. A plano-convex lens
focuses the laser beam (30-mW average power) to a spot size

FIG. 2. Experimental setup. (a) State preparation: interferomet-
ric scheme to produce hyperentangled biphoton states in TFM and
VVB encoding. (b) Characterization setup to measure the overall
state via two-photon interference and tomographic reconstruction.
A set of QWP, HWP, and QWP is used to prepare any maximally
entangled state in the radial/azimuthal VVB basis. When the fast
axis of the QWPs is aligned, a rotation of the HWP corresponds
to changing the phase factor of the Bell-like state. The polarization
projection stages in the dashed boxes, each consisting of the QWP,
HWP, and polarizer, are used to perform projective measurements on
the polarization of the photons for the 16-dimensional polarization-
OAM biphoton state reconstruction.

of ≈220 μm into a Sagnac interferometer PDC source for
generating a polarization entangled state [34,35]:

|ψ−〉pol. = 1√
2

(|H〉s|V 〉i − |V 〉s|H〉i ). (1)

The PDC crystal in the Sagnac loop is a nonlinearity en-
gineered potassium titanyl phosphate (KTP) poled crystal
(details in Ref. [21]), that simultaneously enables the gener-
ation of TFM entanglement in a tailored PDC process. The
phase-matching function of the engineered crystal is indeed
shaped as a first-order Hermite-Gauss mode, leading to a
highly correlated joint spectrum of the form fs,i(ωs, ωi ) ∝
exp [−(ω2

s + ω2
i )], which we show in Fig. 1, and consequently

a TFM-entangled singlet state:

|ψ−〉ω = 1/
√

2(| 〉s| 〉i − | 〉s| 〉i ), (2)

where | 〉 and | 〉 are the orthonormal zeroth- and
first-order Hermite-Gauss TFM modes spanning a two-
dimensional TFM subspace (see Sec. 1 of Supplemental
Material for more details on the state generation [36]).

The PDC pair (signal “s” and idler “i”) is separated at a
polarizing beamsplitter (PBS), and the signal is filtered from
the pump with a dichroic mirror (DM). The photons are then
spectrally filtered with a long-pass filter (cutoff wavelength
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at 1400 nm) and a “loose” bandpass filter (10-nm nominal
bandwidth), about four times larger than the photons’ band-
width of ≈2.4 nm, defined as the full width at half maximum
of the marginal photon’s spectral intensity. The photon pair
is therefore coupled into single-mode fibers for spatial mode
filtering. At this stage of the scheme, the quantum state
carries hyperentanglement between the maximally antisym-
metric TFM Bell state and a polarization Bell state, |�〉ω,pol. =
|ψ−〉ω ⊗ |ψ−〉pol., that is already potentially useful for fiber-
based quantum photonic protocols, as both polarization and
TFM are readily compatible with long-distance transmission
over an optical network. We measure a source brightness of
≈4-KHz/mW detected photon pairs using superconducting
nanowire single-photon detectors (SNSPDs) with 80% nom-
inal detection efficiency, with symmetric heralding efficiency
of ≈60%. However, brightness and heralding can be easily
varied by changing the focusing and collection parameters of
the source.

The photons are then out-coupled and collimated in free
space, and a set of quarter-wave plate (QWP), half-wave plate
(HWP), and QWP is used to prepare any maximally entan-
gled polarization state via local operations. Each photon is
finally sent through a q-plate for converting polarization en-
coding into VVB encoding, producing the target TFM-VVB
hyperentangled state. A q-plate with topological charge q
(with q = 0.5 in our setup) implements the following trans-
formation: α|R, 0〉 + β|L, 0〉 → α|L,−2q〉 + β|R, 2q〉 where
the first and second label correspond to polarization and
OAM value, respectively. If the input polarization is linear,
a VVB in a linear superposition of the basis states |r̂〉 (radi-
ally polarized) and |θ̂〉 (azimuthally polarized) is produced in
the process. When each photon of the polarization-entangled
biphoton state is sent through a q-plate, the overall system
consists of two entangled vector vortex beams [37]. The
q-plates used in our setup are electrically tunable, and have a
transmittance of 70 to 75%, that could be improved by coating
the inner and outer surfaces of the devices, or by different
engineering techniques (e.g., nontunable q-plates with near-
unity transmission are already commercially available).

At the output of the q-plates, the biphoton state shows
a nontrivial entanglement structure, where three different
forms of entanglement coexist in the same quantum state:
hyperentanglement between TFMs and VVBs, which is in
turn composed of single-particle (intrasystem) entanglement
[25,37–39]—polarization and OAM of each photon—and two
distinct sets of intersystem entanglement—between the two
VVBs and between the two TFMs, as sketched in Fig. 1 and
shown in its full form below:

|�〉ω,VVB = |ψ〉ω ⊗ 1√
2

(|r̂〉s|θ̂〉i − |θ̂〉s|r̂〉i )
︸ ︷︷ ︸

|ψ−〉VVB

, (3)

with |r̂〉VVB = 1√
2
(|R〉pol.|+1〉OAM + |L〉pol.|−1〉OAM) and |θ̂〉VVB =

1√
2
(|R〉pol.|+1〉OAM − |L〉pol.|−1〉OAM). We note that this scheme

allows one to generate states within a two-dimensional
VVB subspace of order 1, while additional HWPs after the
q-plates enable the generation of any VVB state in the four-
dimensional space [37].

III. HYPERENTANGLEMENT CHARACTERIZATION

The analysis stage consists of two main steps, as shown
in Fig. 2(b). First, we send the two photons on a BS to
check for quantum interference depending on the symmetry
of the full state [21]. After the BS, a set of two additional
q-plates (with q = 0.5) and polarization optics (QWP, HWP,
and PBS for each photon) are used to perform tomographic
projections in the VVB space, and the photons are finally
detected with SNSPDs. An additional tomographic projection
set can be added before the measurement q-plates to per-
form a four-qubit tomography in the polarization and OAM
subspaces, simultaneously certifying the intrasystem entan-
gled structure of each VVB and the intersystem entanglement
between the two photons [37], and verifying the Greenberger-
Horne-Zeilinger (GHZ)-type structure of the state [40].

The synergy of the quantum interference and tomographic
parts of the setup allows us to demonstrate the hyperentangled
nature of the biphoton state. The tomographic stages are de-
coupled from the spectral degree of freedom and only act on
the polarization and OAM components of the state, providing
full reconstruction of the VVB-encoded quantum state: this
means that our setup is capable of preparing and measuring
unambiguously the spatial component of the state. On the
other hand, while the visibility depends on the overall state’s
symmetry, the shape of the interference pattern only depends
on the biphoton joint spectrum (see Sec. 2 of Supplemental
Material for proof [36]). Consequently, the knowledge of the
VVB component of the state combined with the measured
interference pattern allows us to decouple spatial and spectral
contributions of the overall measurement, and to use the inter-
ference results to certify the TFM entanglement, as proven in
Ref. [21].

IV. RESULTS

To benchmark our scheme, we produce states of the form

|�〉ω,VVB = |ψ−〉ω ⊗ |ψϕ〉VVB,

where |ψϕ〉VVB = 1/
√

2(|r̂, θ̂〉 + eiϕ |θ̂ , r̂〉) is a ψ-type maxi-
mally entangled state in the VVB basis. By changing the state
preparation HWP angle we can change the phase ϕ of the
VVB part of the state and hence the symmetry of the overall
wave function. The phase factors ei0 and eiπ correspond to
the |ψ−〉ω ⊗ |ψ+〉VVB and |ψ−〉ω ⊗ |ψ−〉VVB states, i.e., to a
maximally antisymmetric and symmetric state, respectively.
This translates into different interference behavior at the BS,
where moving from an antisymmetric to a symmetric state
corresponds to moving from photon antibunching to photon
bunching, as we show in Fig. 3. When the spatial contribu-
tion is symmetric (|ψ+〉VVB) the interference exhibits perfect
antibunching, while when it is antisymmetric (|ψ−〉VVB) it
exhibits bunching: this certifies the maximal antisymmetry of
the spectral part of the state, and consequently verifies the
TFM singlet state |ψ−〉ω (see Ref. [21] for details).

We monitor coincident counts between detectors {A1, B1},
{A1, B2}, {A2, B1}, and {A2, B2}, corresponding to the pho-
tons exiting from both outputs of the BS, and between the
detectors {A1, A2} and {B1, B2}, corresponding to the pho-
tons exiting the same outputs of the BS, to reconstruct the
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FIG. 3. Two-photon interference results. (a) The interference
fringes depend on the phase in the VVB-encoded part of the hy-
perentangled state: A maximum in the coincident counts at the two
outputs of the BS (labeled as

∑
i jAiB j , where Ai, Bj are the detectors

in Fig. 2) corresponds to a minimum in the coincident counts at each
BS output (labeled as A1A2 + B1B2), and vice versa. Interference
patterns measured by collecting coincident counts at the two outputs
of the BS (b) and corresponding visibilities (c) changing phase and
relative arrival time of the photons at the BS. By controlling the phase
of the |ψ〉 type we can move from almost perfect antibunching to
bunching, i.e., from an overall antisymmetric state to a symmetric
one. The acquisition time is 30 s per data point.

interference fringes as a function of the state’s phase ϕ.
We show the results in Fig. 3(a): the fringes corresponding
to antibunching (blue dots) and to bunching (red triangles)
are in antiphase, and have high visibilities (96.7 ± 0.2 and
99.3 ± 0.1%, respectively) certifying a high quality of the
generated state. By varying both the state’s phase and the
relative arrival time of signal and idler at the BS, we can re-
construct the full biphoton interference pattern for states with
different amounts of antisymmetry. The three-dimensional
plot in Fig. 3(b) shows how the interference pattern changes
from perfect antibunching (corresponding to ϕ = 0) to perfect
bunching (ϕ = π ), in excellent agreement with the theoretical
model we discuss in Sec. 2 of Supplemental Material [36].
Finally, Fig. 3(c) shows the interference visibilities of each
scan, where plus and minus 100% correspond to perfect anti-
bunching and bunching, respectively.

The two-photon interference allows us to measure the
overall antisymmetry of the biphoton state, but it does not pro-
vide any information on its spatial structure. The VVB state
can instead be measured via quantum state tomography after
the interference at the BS. We prepare the symmetric state

FIG. 4. Tomography results. (a) Tomographic reconstruction of
the biphoton |ψ+〉 state in the VVB subspace {|r̂〉, |θ̂〉}. We record
≈1.6 × 106 coincident counts in nine different settings (correspond-
ing to the two-photon Pauli projections), with 60 s of acquisition
time per setting. (b) Tomographic reconstruction of the biphoton
GHZ state encoded in polarization and OAM. We record ≈11 × 106

coincident counts in 324 different settings (corresponding to a com-
bination of 36 projective measurements on the OAM basis and nine
Pauli projections on the polarization basis), with 220 s of acquisition
time per setting.

|ψ−〉ω ⊗ |ψ+〉VVB, which antibunches at the BS. We then con-
vert the VVB information into polarization information, and
we perform a overcomplete quantum state tomography of the
state. We measure a purity and fidelity of (99.26 ± 0.07) and
(99.57 ± 0.03)%, respectively, in the VVB subspace {|r̂〉, |θ̂〉}
[see Fig. 4(a)]. Introducing an additional tomographic projec-
tion before each measurement q-plate allows us to investigate
the polarization-OAM intrasystem entanglement and, at the
same time, the two-photon intersystem entanglement [37].
With this scheme, we measure a two-photon, four-qubit purity
of (92.4 ± 0.1)% and a fidelity of (95.0 ± 0.1)% with the
GHZ state 1/

√
2(|R,+1, R,+1〉 + |L,−1, L,−1〉): we show

the corresponding density matrix in Fig. 4(b). Errors on the
extracted purities and fidelities calculated from the recon-
structed density matrices represent 3σ statistical confidence
regions obtained via Monte Carlo resampling (1000 runs of
the algorithm) assuming a Poissonian statistics on the coinci-
dent counts distribution.

The high interference visibility measured in both the
bunching and antibunching configuration, combined with the
high state quality obtained via tomographic reconstruction of
the VVB-encoded state, testifies to an unprecedented capabil-
ity of generating and manipulating structured light encoded in
three different degrees of freedom with very high efficiency
and precision.

V. DISCUSSION AND CONCLUSIONS

Many photonic quantum protocols rely on entanglement
to carry out their tasks efficiently, therefore the capability
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of generating and manipulating complex entangled states of
light with high precision is a fundamental requirement and a
key challenge of quantum technologies. Here, we tackled this
problem by introducing and experimentally demonstrating a
scheme for efficient generation of a complex entanglement
structure between three DOFs of light: polarization, orbital
angular momentum, and time-frequency modes. In particular,
we combine TFM encoding and VVB encoding introducing a
simple yet high-quality source of TFM-VVB hyperentangle-
ment. We expect our scheme will find applications in quantum
communication schemes (where increased information capac-
ity and noise resilience are obvious advantages) but also in
different areas of quantum technologies, such as metrology or
imaging, where both TFM and VVB encoding have already
been independently used as resources [41,42].

There are two main routes to go beyond the results of
this paper in the future. On the one hand, it would be ideal
to explore the intrinsic high dimensionality of these DOFs,
generating higher-order OAM and TFM states to increase
the information capacity of the biphoton state and investigate

even more complex entanglement structures. This could be
achieved by expanding either the TFM subspace (e.g., by en-
gineering higher-order Hermite-Gauss modes as nonlinearity
patterns, or by introducing spectral tailoring of the pump’s
spectral profile) or the VVB subspace (e.g., using q-plates
of different singularity order in interferometric schemes), or
a combination of the two. On the other hand, implementing
quantum pulse gates or other schemes [6,43–45] for perform-
ing TFM manipulation and measurements would allow one to
fully exploit the potential of our technique.
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This document provides Supplemental Material to “Hyperentanglement in structured quantum
light”. The document is structured as follows: In Section 1 we discuss the hyperentangled-state
generation; In Section 2 we derive the two-photon interference pattern for the hyperentangled state.

I. HYPERENTANGLED-STATE GENERATION

Frequency entanglement

The PDC biphoton state, neglecting the multipair emission, reads:

|ψ〉ω =

∫∫
dωsdωif (ωs, ωi) a

†
s(ωs)a

†
i (ωi) |0〉s,i , (S1)

where f (ωs, ωi) is the joint spectral amplitude (JSA) and contains the spectral properties of the PDC biphoton
state. The JSA is the product of the pump envelope function α (ωs, ωi), describing the pump spectrum, and the
phasematching function (PMF) φ (ωs, ωi), depending on the nonlinear properties of the crystal that mediates the
PDC process. Here, we work in symmetric group-velocity matching condition (i.e. pump and PMF are perpendicular
in the (ωs, ωi) plane [1]), and we consider a Gaussian-shaped pump pulse and a PMF equal to the first order Hermite-
Gauss function multiplied by a Gaussian envelope (deviations from the ideal case are discussed in details in Ref. [2]).
The corresponding JSA is shown in Fig. S1 (left).

JSA

FIG. S1. PDC biphoton state in frequency space. Joint spectral amplitude (left) and corresponding decomposed quantum
state (right) encoded in two equally-weighted, orthonormal TFM.

This corresponds to the following PDC state:

|ψ〉ω =

∫∫
dωsdωi

2 (ωs − ωi)√
π σ2

e−
ω2
s+ω

2
i

σ2 a†s(ωs)a
†
i (ωi) |0〉s,i . (S2)

We can perform the Schmidt decomposition on the state in Eq. (S2) to obtain the TFMs composing the biphoton
state, obtaining:

|u〉ω,j ≡ | 〉j =

(
2

πσ2

) 1
4
∫
dωj e

−
ω2
j

σ2 a†j(ωj) |0〉j

|v〉ω,j ≡ | 〉j =

(
25

πσ6

) 1
4
∫
dωj e

−
ω2
j

σ2 ωj a
†
j(ωj) |0〉j ,

(S3)

where j can label either the signal s or the idler i photon, and there are only two non-null, balanced Schmidt
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coefficients, both equal to 1√
2
. Hence, the decomposed PDC state can be written as the maximally entangled singlet

state:

|ψ−〉ω =
1√
2

(
|u〉ω,s |v〉ω,i − |v〉ω,s |u〉ω,i

)
=

1√
2

(| 〉s | 〉i − | 〉s | 〉i) . (S4)

In Figure S1 (right) we show the two orthonormal TFMs in a balanced superposition.

Polarisation-frequency hyperentanglement

We now consider the case of a Sagnac interferometer source, commonly used for generating polarisation entanglement
in the two photon state [3], where the standard ppKTP is replaced by the nonlinearity-engineered crystal in the Sagnac
loop. This enables the generation of an hyperentangled state in polarisation and frequency (as discussed in details in
the next paragraph):

|Ψ〉ω,pol. =
1√
2

(| 〉s | 〉i − | 〉s | 〉i) ⊗
1√
2

(|H〉s |V 〉i − |V 〉s |H〉i) = |ψ−〉ω ⊗ |ψ−〉pol. , (S5)

where the polarisation state |ψ−pol.〉s,i can be easily manipulated via linear optical components (half- and quarter-wave
plates) to generate any maximally entangled state.

Let’s first consider both the clockwise and the anticlockwise cases where a pump photon is down-converted in two
PDC photons having an antisymmetric joint spectral amplitude:

|ψclockwise〉ω,pol. =

∫∫
dωsdωifs,i(ωs, ωi)c

†
s,Hc

†
i,V |0〉

|ψanticlockwise〉ω,pol. =

∫∫
dωsdωifs,i(ωs, ωi)d

†
s,Hd

†
i,V |0〉 ,

(S6)

where we omit the frequency dependence of the creation operators c† (clockwise) and d† (anticlockwise). The half-wave
plate (HWP) and polarising beam splitter (PBS) introduce following transformations:

HWP :

{
d†...,H → d†...,V
d†...,V → d†...,H

PBS :





c†...,H → a†...,H
c†...,V → b†...,V
d†...,H → b†...,H
d†...,V → a†...,V

,

(S7)

where a†,b† corresponds to the two outputs of the PBS. The state before entering the polarising beam splitter (PBS)
reads:

|ψclockwise〉INω,pol. =

∫∫
dωsdωifs,i(ωs, ωi)c

†
s,Hc

†
i,V |0〉

|ψanticlockwise〉INω,pol. =

∫∫
dωsdωifs,i(ωs, ωi)d

†
s,V d

†
i,H |0〉 ,

(S8)

while at the output of the PBS the state is:

|ψclockwise〉OUT
ω,pol. =

∫∫
dωsdωifs,i(ωs, ωi)a

†
s,Hb

†
i,V |0〉

|ψanticlockwise〉OUT
ω,pol. =

∫∫
dωsdωifs,i(ωs, ωi)a

†
s,V b

†
i,H |0〉 .

(S9)

We note that in the Sagnac scheme the signal (idler) photons produced in both clockwise and anticlockwise paths
exit the PBS from the same port, hence the labels s, a (and i, b) are interchangeable. Being the clockwise and
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anticlockwise cases in a coherent superposition [3], we can write the output state as:

|Ψ〉ω,pol. =
1√
2

(∫∫
dωsdωifs,i(ωs, ωi)a

†
s,Hb

†
i,V |0〉+

∫∫
dωsdωifs,i(ωs, ωi)a

†
s,V b

†
i,H |0〉

)

|Ψ〉ω,pol. =
1√
2

(
|ψ− (ωs, ωi)〉s,i |H〉s |V 〉i + |ψ− (ωs, ωi)〉s,i |V 〉s |H〉i

)

|Ψ〉ω,pol. = |ψ− (ωs, ωi)〉s,i ⊗
1√
2

(|H〉s |V 〉i + |V 〉s |H〉i) = |ψ− (ωs, ωi)〉s,i ⊗ |ψ+
pol.〉s,i

(S10)

where |ψ+
pol.(ωs, ωi)〉s,i is the symmetric polarisation-encoded Bell state. From this state, one can prepare any state

of the polarisation Bell basis by means of local operations:

|Ψ+〉ω,pol. = |ψ−〉ω ⊗ |ψ+〉pol.

|Ψ−〉ω,pol. = |ψ−〉ω ⊗ |ψ−〉pol.

|Φ+〉ω,pol. = |ψ−〉ω ⊗ |φ+〉pol.

|Φ−〉ω,pol. = |ψ−〉ω ⊗ |φ−〉pol. .

(S11)

Ψ+, Φ+ and Φ− are antisymmetric states, because they result from the product of an antisymmetric state (in TFM
encoding) and a symmetric one (in polarisation encoding). Ψ− is the only symmetric state, being the product of two
antisymmetric states.

Polarisation to vector vortex beam conversion and final state

When a polarisation-encoded photon is sent through a q-plate, the circular component of the polarisation is flipped
and the photon acquires orbital angular momentum (OAM) according to the following transformation:

|L〉 |0〉 → |R〉 |+2q〉
|R〉 |0〉 → |L〉 |−2q〉 , (S12)

where the first and second ket state represent polarisation and OAM, respectively, and q is the topological charge of
the q-plate [4]. If the input polarisation of the photon is linear, the output photon is a vector vortex beam (VVB),
i.e. polarisation and orbital angular momentum are entangled, giving rise to a non-uniform polarisation pattern in
the transverse plane [5]. In particular, by sending H and V polarised light through the q-plate one can generate the
so called |r̂〉 and |θ̂〉 states, respectively, defined as [6]:

|H〉 → |r̂〉 =
1√
2

(|R〉 |+2q〉+ |L〉 |−2q〉)

|V 〉 → |θ̂〉 =
1√
2

(|R〉 |+2q〉 − |L〉 |−2q〉) .
(S13)

The other two state of the four-dimensional VVB basis, namely |π̂+〉 and |π̂−〉, can be generated with an additional
HWP after the q-plate:

|π̂+〉 =
1√
2

(|L〉 |+2q〉+ |R〉 |−2q〉)

|π̂−〉 =
1√
2

(|L〉 |+2q〉 − |R〉 |−2q〉) .
(S14)

By sending a polarisation-TFM hyperentangled state (i.e. the one described in Eq. (S5)) through the q-plates, the
following state is produced:

|Ψ〉ω,VVB =
1√
2

(| 〉s | 〉i − | 〉s | 〉i) ⊗
1√
2

(
|r̂〉s |θ̂〉i − |θ̂〉s |r̂〉i

)
= |ψ〉ω ⊗ |ψ−〉VVB , (S15)

which is an hyperentangled between the TFM space and VVB space. In such system, intersystem hyperentanglement
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(between VVB and TFM encoded in signal and ilder) and intrasystem entanglement (between polarisation and OAM
of each individual photon) coexist in the same biphoton state.

2. TWO-PHOTON INTERFERENCE OF THE HYPERENTANGLED STATE

In this section we discuss the two-photon interference for the polarisation-TFM hyperentangled state. We note that
the same procedure can be used for the VVB-TFM hyperentanglement, where the polarisation indices H and V needs
to be replaced by the VVB indices r̂ and θ̂.

Let’s consider the hyperentangled state:

|Ψ〉ω,pol. = |ψ−〉ω ⊗
1√
2

(
|H〉s |V 〉i + eiϕ |V 〉s |H〉i

)
: (S16)

depending on the value of the phase ϕ, the overall quantum state can be maximally symmetric (ϕ = π), maximally
antisymmetric (ϕ = 0), or a combination of the two cases (for any other value of ϕ). The signal and idler photon
enter the ports a and b of a beam splitter (BS), which introduce the following transformations:

BS :

{
a†p(ωs)→ 1√

2

(
ia†p(ωs) + b†p(ωs)

)

b†p(ωi)→ 1√
2

(
a†p(ωi) + ib†p(ωi)

) (S17)

where p is the polarisation index. The state after the BS reads:

|Ψ〉ω,pol. =
1√
2

∫∫
dωsdωifs,i(ωs, ωi)e

−iωiτ
(
a†H(ωs)b

†
V (ωi) + eiϕa†V (ωs)b

†
H(ωi)

)
|0〉

⇓ BS

|Ψ〉ω,pol. =
1

2
√

2

∫∫
dωsdωifs,i(ωs, ωi)e

−iωiτ

((
ia†H(ωs) + b†H(ωs)

)(
a†V (ωi) + ib†V (ωi)

)
+ eiϕ

(
ia†V (ωs) + b†V (ωs)

)(
a†H(ωi) + ib†H(ωi)

))
|0〉 ;

(S18)

where we added a delay τ on the arrival time of the idler photon respect to the signal, and we decomposed the state
in Eq. (S16) in its spectral and polarisation components. We can expand (S18) to:

|Ψ〉ω,pol. =
1

2
√

2

∫∫
dωsdωifs,i(ωs, ωi)e

−iωiτ

×
(
ia†H(ωs)a

†
V (ωi)− a†H(ωs)b

†
V (ωi) + b†H(ωs)a

†
V (ωi) + ib†H(ωs)b

†
V (ωi)+

+ eiϕia†V (ωs)a
†
H(ωi)− eiϕa†V (ωs)b

†
H(ωi) + eiϕb†V (ωs)a

†
H(ωi) + eiϕib†V (ωs)b

†
H(ωi)

)
|0〉 .

(S19)

We now project on the all possible coincidence cases:

P̂s,i =

∫∫
dωaωb

(
a†H(ωa)b†V (ωb) |0〉 〈0| aH(ωa)bV (ωb) + a†V (ωa)b†H(ωb) |0〉 〈0| aV (ωa)bH(ωb)

)
, (S20)

where we neglect the cases where the operators have the same label ((H,H) and (V, V )) because they are not present
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in the state.

pcc(τ) =Tr
[
|Ψ〉 〈Ψ|ω,pol. P̂s,i

]
= 〈Ψ| P̂s,i |Ψ〉ω,pol.

=
1

8

∫∫
dωsdωif

∗
s,i(ωs, ωi)e

iωiτ 〈0| (−iaH(ωs)aV (ωi)− aH(ωs)bV (ωi) + bH(ωs)aV (ωi)− ibH(ωs)bV (ωi)+

−e−iϕiaV (ωs)aH(ωi)− e−iϕaV (ωs)bH(ωi) + e−iϕbV (ωs)aH(ωi)− e−iϕibV (ωs)bH(ωi)
)

×
∫∫

dωaωb

(
a†H(ωa)b†V (ωb) |0〉 〈0| aH(ωa)bV (ωb) + a†V (ωa)b†H(ωb) |0〉 〈0| aV (ωa)bH(ωb)

)

×
∫∫

dω′sdω
′
ifs,i(ω

′
s, ω
′
i)e
−iω′

iτ

(
ia†H(ω′s)a

†
V (ω′i)− a†H(ω′s)b

†
V (ω′i) + b†H(ω′s)a

†
V (ω′i) + ib†H(ω′s)b

†
V (ω′i)+

+eiϕia†V (ω′s)a
†
H(ω′i)− eiϕa†V (ω′s)b

†
H(ω′i) + eiϕb†V (ω′s)a

†
H(ω′i) + eiϕib†V (ω′s)b

†
H(ω′i)

)
|0〉 .

(S21)
We can rearrange the terms obtaining:

pcc(τ) =
1

8

∫∫
dωsdωidω

′
sdω

′
idωaωb

× f∗s,i(ωs, ωi)fs,i(ω′s, ω′i)ei(ωi−ω
′
i)τ

×
(
−〈0| aH(ωs)bV (ωi)a

†
H(ωa)b†V (ωb) |0〉

+ 〈0| bH(ωs)aV (ωi)a
†
V (ωa)b†H(ωb) |0〉

− e−iϕ 〈0| aV (ωs)bH(ωi)a
†
V (ωa)b†H(ωb) |0〉

+e−iϕ 〈0| bV (ωs)aH(ωi)a
†
H(ωa)b†V (ωb) |0〉

)

×
(
−〈0| aH(ωa)bV (ωb)a

†
H(ω′s)b

†
V (ω′i) |0〉

+ 〈0| aV (ωa)bH(ωb)b
†
H(ω′s)a

†
V (ω′i) |0〉

− eiϕ 〈0| aV (ωa)bH(ωb)a
†
V (ω′s)b

†
H(ω′i) |0〉

+eiϕ 〈0| aH(ωa)bV (ωb)b
†
V (ω′s)a

†
H(ω′i) |0〉

)

(S22)

where we have already neglected all the terms where the polarisation of the creation and annihilation operators
don’t match, and where both the creation operator/annihilation operators are in one mode (as we are considering
coincidences between the two modes).

pcc(τ) =
1

8

∫∫
dωsdωidω

′
sdω

′
idωaωbf

∗
s,i(ωs, ωi)fs,i(ω

′
s, ω
′
i)e

i(ωi−ω′
i)τ

×
(
−δH(ωs − ωa)δV (ωi − ωb) + δH(ωs − ωb)δV (ωi − ωa)− e−iϕδV (ωs − ωa)δH(ωi − ωb) + e−iϕδV (ωs − ωb)δH(ωi − ωa)

)

×
(
−δH(ω′s − ωa)δV (ω′i − ωb) + δH(ω′s − ωb)δV (ω′i − ωa)− eiϕδV (ω′s − ωa)δH(ω′i − ωb) + eiϕδV (ω′s − ωb)δH(ω′i − ωa)

)

(S23)
Integrating over ωa and ωb we get:

pcc(τ) =
1

8

∫∫
dωsdωidω

′
sdω

′
if
∗
s,i(ωs, ωi)fs,i(ω

′
s, ω
′
i)e

i(ωi−ω′
i)τ

×
(
δH(ωi − ω′i)δV (ωs − ω′s)− eiϕδH(ωs − ω′i)δV (ωi − ω′s) + δH(ωs − ω′s)δV (ωi − ω′i)− eiϕδH(ωs − ω′i)δV (ωi − ω′s) +

− e−iϕδV (ωs − ω′i)δH(ωi − ω′s) + δV (ωs − ω′s)δH(ωi − ω′i)− e−iϕδV (ωs − ω′i)δH(ωi − ω′s) + δV (ωs − ω′s)δH(ωi − ω′i) )
(S24)

where we have neglected all the terms where the polarisation of the delta functions doesn’t match. Let’s now integrate
over ω′s and ω′i (and we can also get rid of the polarisation labels as are now irrelevant):

pcc(τ) =
1

8

∫∫
dωsdωi

(
4|fs,i(ωs, ωi)|2 − 2f∗s,i(ωs, ωi)fs,i(ωi, ωs)e

i(ωi−ωs)τeiϕ − 2f∗s,i(ωs, ωi)fs,i(ωi, ωs)e
i(ωi−ωs)τe−iϕ

)

=
1

2

∫∫
dωsdωi

(
|fs,i(ωs, ωi)|2 − cos (ϕ)f∗s,i(ωs, ωi)fs,i(ωi, ωs)e

i(ωi−ωs)τ
)

=
1

2

∫∫
dωsdωi

(
1− cos (ϕ)f∗s,i(ωs, ωi)fs,i(ωi, ωs)e

i(ωi−ωs)τ
)
.

(S25)
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We can finally write the JSA in terms of the Schmidt modes:

pcc(τ) =
1

2

∫∫
dωsdωi

(
1− cos (ϕ)

(∑

k

dku
∗
k(ωs)v

∗
k(ωi)

)(∑

k′

dk′uk′(ωi)vk′(ωs)

)
ei(ωi−ωs)τ

)

=
1

2


1− cos (ϕ)


∑

k,k′

dkdk′

∫
dωsu

∗
k(ωs)vk′(ωs)e

−iωsτ
∫
dωiv

∗
k(ωi)uk′(ωi)e

iωiτ




 .

(S26)

Replacing u and v with the corresponding Schmidt modes in Eq. (S3) we obtain the following interference pattern:

pcc(τ) =
1

2
− 1

4
e−

1
4σ

2τ2

(σ2τ2 − 2) cos (ϕ) , (S27)

that we plot in Fig. S2. ϕ = 0 corresponds to perfect antibunching, as expected by a maximally antisymmetric state,
while for ϕ = π leads to perfect bunching, as the state is symmetric.

FIG. S2. Two-photon interference pattern. Probability of having coincidences after the BS as a function of the state’s
phase, varying the relative arriving time of signal and idler.
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