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Recent advances in high-speed acoustic holography have enabled levitation-based 6 
volumetric displays with tactile and audio sensations. However, current approaches do 7 
not compute sound scattering of objects’ surfaces; thus, any physical object inside can 8 
distort the sound field. Here, we present a new technique that allows high-speed multi-9 
point levitation even with arbitrary sound-scattering surfaces and demonstrate a 10 
volumetric display that works in the presence of any physical object. Our technique has 11 
a two-step scattering model and a simplified levitation solver, which together can 12 
achieve over 10,000 updates per second to create volumetric images above and below 13 
static sound-scattering objects. The model estimates transducer contributions in real-14 
time by reformulating the boundary element method for acoustic holography, and the 15 
solver creates multiple levitation traps. We explain how our technique achieves its 16 
speed with minimum loss in the trap quality and illustrate how it brings digital and 17 
physical content together by demonstrating new interactive applications. 18 

Introduction 19 
Acoustic levitation (1), a technique that utilizes mechanical energy of sound to levitate and manipulate materials, has been 20 
significantly advanced over the last decade through the introduction of two fundamental techniques: phased arrays of transducers 21 
(PATs) (2, 3) and acoustic holography (4–6). PATs allow dynamic control of dense arrays of sound sources (e.g., 16 × 16 22 
ultrasound transducers) while holography, a wavefront-handling technique originally developed in optics, enabled PATs to 23 
accurately control sound fields in 3D space. Thanks to its capability of levitating almost any type of materials, acoustic holography 24 
using PATs has many potential applications in laboratory-on-chip (7), biology (8), computational fabrication (9), and mid-air 25 
displays (6, 10–16). Acoustic levitation is also emerging as a strong candidate for creating new mixed-reality (MR) interfaces that 26 
can seamlessly blend the digital and physical worlds, as envisioned in the Ultimate Display of Ivan Sutherland (17). 27 

In general, acoustic holography using PATs relies on a linear model (15, 18, 19), represented by using a transmission matrix 𝑭. 28 
The matrix 𝑭 describes how complex activations of 𝑁 transducers (𝝉 ∈ ℂ𝑁) contribute to the complex acoustic pressures at 𝐿 29 
points of interest in a sound field (𝜻 ∈ ℂ𝐿), using a linear system: 𝜻 = 𝑭𝝉, with 𝐿 ≪ 𝑁. Each element of this matrix (𝐹𝑙,𝑛) is equal 30 
to the pressure at the 𝑙-th point of interest generated by the 𝑛-th transducer when its activation is 1 (i.e., the maximum amplitude 31 
with a phase delay of 0 rad), and it can be approximated as a piston model (20) if we consider only direct contributions. Using this 32 
common linear model, existing approaches use different solvers to obtain the transducers’ activations 𝝉 that generate an ideal 33 
sound field 𝜻, which, for example, creates focal points to provide tactile sensations (21, 22) or provides the maximum trapping 34 
stiffness (i.e., the Laplacian of the Gor’kov potential, commonly been used as a metric to assess how strong each acoustic trap is 35 
(4, 6, 15)) for levitating particles at desired positions (4). One critical milestone in this solving process for acoustic levitation was 36 
the introduction of the holographic acoustic element (HAE) framework, which simplified the computation of levitation traps by 37 
encoding them as the combination of a holographic acoustic lens creating focal points and a fixed levitation signature (4). This 38 
framework supports a huge range of symmetric transducer arrangements (e.g., single-sided, top-bottom, V-shape) and has been 39 
extended to multi-point levitation (6). Recent algorithmic advances have further accelerated the computational speed of this 40 
framework, and consequently, the accelerated update rates (i.e., 10,000 fps) have enabled PATs to create volumetric visual content 41 
(i.e., high-speed levitation) in mid-air using the persistence of vision (POV) effect, together with tactile and audio sensations in 42 
order to provide multi-modal experiences (13, 15).  43 

However, realizing the full potential of such approaches is hindered by the model used, which operates under the assumption 44 
of empty space. That is, sound scattering of objects’ surfaces is not taken into account; thus, any physical object within the 45 
working volume can distort the sound field and cause particles to fall.  46 

Transmission matrices 𝑭 only capture direct contribution from each transducer to each point, ignoring interactions with any 47 
sound-scattering objects and implicitly representing an empty working volume. The only objects permitted within the working 48 
volume are acoustically transparent materials, which are carefully chosen not to affect sound fields (12), along with the levitated 49 
particles, which are usually much smaller than the acoustic wavelength (e.g., 𝜆 = 8.65 𝑚𝑚  in this study) and thus can be 50 
considered as acoustically transparent as well. To date, there have been limited explorations of acoustically manipulated particles 51 
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in a presence of sound-scattering objects. For example, in one set of papers, the authors explored 2D plane manipulation above flat 52 
reflector (2, 6, 19, 23), while in another approach the authors used PATs with acoustic metamaterials to demonstrate a single-53 
particle levitation above a cloaked object (24).  54 

Models such as the boundary element method (BEM (25, 26)) can simulate sound-scattering fields, and BEM has been used to 55 
levitate objects several times larger than the wavelength (27) or to assemble nanoparticles inside arbitrary shaped closed reservoirs 56 
(28, 29). However, BEM is usually considered incompatible with real-time applications, particularly for high demands of POV 57 
display applications (i.e., 10,000 fps), and no dynamic manipulation using BEM has been demonstrated in those existing works.  58 

To make full use of acoustic holography in more flexible environments, we require a new acoustic holographic technique that 59 
does not rely on the assumption of the empty working volume and works in the presence of arbitrary sound-scattering objects. The 60 
main challenge in developing such techniques is that the entire process of both modeling the transmission matrix and solving for 61 
transducer phases must be computed in real time for practical applications of particle manipulation (e.g., 50 fps to manipulate 62 
particles at 1 cm/s with a step size of 0.2 mm). This becomes even more challenging in order to create volumetric images using the 63 
POV effect (13, 15), as these require update rates above 10,000 fps. Thus, producing models as computationally efficient as 64 
transmission matrices, but with BEM’s power to capture sound-scattering hence becomes the first obvious challenge.  65 

For solvers, on the other hand, the HAE framework does not account for sound scattering and thus cannot provide the 66 
optimum solutions within the non-empty working volume (i.e., the top array with reflector, see Fig. 1). Therefore, to develop a 67 
high-performance solver without the HAE framework, we need more efficient metrics to assess trap quality, compared to the most 68 
common current metric given by trapping stiffness (i.e., Laplacian of Gor’kov potential (4, 6)). 69 

Here, we present a novel high-performance approach to modeling the extended transmission matrix and solving for transducer 70 
phases. Our technique has two novel computational components: a two-step scattering model and a simplified levitation solver. In 71 
these components, physical phenomena (i.e., sound scattering, acoustic levitation) are rebuilt or simplified as models that are 72 
suitable to be computed at high update rates. We start by reformulating BEM to pre-compute the contribution of each transducer to 73 
the mesh and then use these pre-computed values in updating the transmission matrix in real time as the trap positions move. This 74 
extended version of the transmission matrix keeps the efficiency of the empty-volume methods but provides the accuracy that is 75 
exactly equivalent to BEM. Additionally, we show that a simplified Gor’kov potential can be used as a new metric in our solver 76 
instead of stiffness, further improving the computational speed with negligible loss of accuracy. Our approach allows high-speed 77 
and accurate multi-point acoustic manipulation, even with arbitrary sound-scattering objects (see Fig. 1 and Movie S1). It allows 78 
the creation of volumetric POV images with arbitrarily shaped objects in the working volume by creating levitation traps at high 79 
computational rates. Our technique provides extra freedom in system design and allows previously impractical application 80 
scenarios, which inherently involve physical objects in their working space, such as mid-air MR displays (see Fig. 1b) and 81 
contactless manufacturing. Additionally, thanks to the high computational rates, the displayed content can be interactive to user 82 
inputs (e.g., keyboard, hand gestures) in real time. We illustrate for the first time how our acoustic holographic technique brings 83 
digital and physical content together by demonstrating several MR applications, such as a mid-air screen, a point-scanning-based 84 
volumetric display, and a surface-scanning-based volumetric display. We are the first to demonstrate a free-space surface-85 
scanning-based volumetric display that can create full volumetric images in mid-air, within a non-empty working volume. 86 

 87 
Fig. 1. Real-time acoustic holography with arbitrary scattering surfaces. (a) Schematical concept of our acoustic holographic 88 
technique that can create multiple levitation traps in a presence of sound-scattering physical objects. 𝑃𝑚𝑎𝑥 represents the maximum 89 
amplitude of the pressure in the sound field. (b) Experimental example of our technique that can levitate four particles with a 90 
projection screen (i.e., a piece of light fabric), demonstrating a mixed-reality display that creates digital content in the presence of 91 
a 3D-printed physical object. The high computational rates of our approach enable the digital content to be interactive to user 92 
inputs (i.e., the levitated screen moves according to the keyboard input). 93 

Results 94 

Model and Solver 95 
First, we show how our new model and solver realized high-speed multi-point levitation with minimum loss of accuracy, even 96 
within a non-empty working volume. 97 

Two-step scattering model: BEM can model sound scattering objects by modeling them as a mesh of 𝑀 boundary elements 98 
(i.e., we use meshes with 3,000–6,000 elements in our examples). A transmission matrix 𝑬 that captures both the direct and 99 
scattering contributions of the transducers to target points could be computed by repeating the BEM computation for each of the 𝑁 100 
single transducers (i.e., 𝑁 = 256). However, each BEM computation involves solving a large dense linear equation system, and 101 
therefore, repeating this process for every transducer in real time is not practical. Thus, we propose a new technique to reformulate 102 
BEM for acoustic holography to define the matrix 𝑬 using three matrices as: 𝑬 = 𝑭 + 𝑮𝑯 (see Fig. 2a). Here, the matrices 𝑭 and 103 
𝑮 represent the respective contributions from the transducers and mesh elements to the points of interest (i.e., thus, 𝑭 is the 104 
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conventional transmission matrix capturing only direct contributions), and the matrix 𝑯 represents the contribution from the 105 
transducers to the mesh elements. The sizes of these matrices are 𝐿 × 𝑁 for 𝑬 and 𝑭, 𝐿 × 𝑀 for 𝑮, and 𝑀 × 𝑁 for 𝑯. Given the 106 
fact that the inequality 𝐿 ≪ 𝑁 ≪ 𝑀 is usually satisfied in acoustic levitation, the determination of 𝑯 is more time-consuming than 107 
the other matrices.  108 

For static set-ups, 𝑯 is constant and we can thus pre-compute it once the set-up is defined (i.e., position and normal of each 109 
transducer and position, area and normal of each mesh element in the reflector). In contrast, computing 𝑭 and 𝑮 requires the 110 
positions of points of interest in addition to the set-up information. For interactive applications, these points of interest are usually 111 
unknown beforehand, and thus 𝑭 and 𝑮 need to be created in real time depending on the application logic and/or user input. While 112 
𝑯 must be pre-computed, computation of 𝑭 and 𝑮 is highly parallelizable, and our model can achieve high computational rates for 113 
this modeling process by using a graphics processing unit (GPU) even in the presence of static sound-scattering objects. Fig. S6a 114 
shows the computational speed of only this modeling process after the pre-computation part. Note here that our model is exactly 115 
equivalent to BEM, not relying on any approximation to compute the acoustic pressures on the meshes, and thus can be used to 116 
model any geometry of scattering objects without sacrifice in accuracy, unlike the methods based on the Rayleigh integral (18, 19, 117 
30), which are limited to flat or slightly curved reflectors. We also note that our model does not require high sampling resolution 118 
for 3D models’ mesh (i.e., the best-balanced mesh size is 𝜆 2⁄ , see Mesh-size Dependency of the Trap Quality and Fig. S7). We 119 
also discuss how to adapt our approach to dynamically changing meshes later in Discussion. 120 

Simplified levitation solver: We propose a simplified solver using the model above. Our SIMPLIFIED solver uses a gradient 121 
descent minimizing a simplified metric 𝑈′ at every trap position 𝒓𝒋 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), allowing us to create multiple stable traps at high 122 
computational speed. Our metric 𝑈′ is based on the Gor’kov potential 𝑈, which can be used to compute the acoustic radiation 123 
force 𝑭𝒓𝒂𝒅 applied on a small particle (i.e., much smaller than the acoustic wavelength) at the point 𝑗 as: 𝑭𝒓𝒂𝒅 = −𝛁𝑈(𝒓𝒋). Here, 124 
𝑈(𝒓𝒋) can be determined by the complex acoustic pressure 𝑝 and its spatial derivatives at the trap position 𝒓𝒋 and constant values 125 
(𝐾1 and 𝐾2) as (31): 126 

𝑈(𝒓𝒋) = 𝐾1|𝑝|2 − 𝐾2 (|
𝜕𝑝
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|

2

+ |
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) . (1) 127 

Trapping stiffness (4, 6) is a common metric to evaluate (and optimize) the quality of acoustic traps and is computed as the 128 
Laplacian of the Gor’kov potential (∇2𝑈) at the point 𝑗. A traditional method is to create levitation traps by maximizing such 129 
trapping stiffness at the desired locations, with an optimization algorithm such as gradient descent (4). However, computing 130 
stiffness ∇2𝑈(𝒓𝒋) requires sampling pressure values at many points of interest around each trap and thus is computationally heavy 131 
for use in real-time applications.  132 

In this study, we accelerate our solving process of creating 𝐽 traps by using a simplified Gor’kov potential 𝑈′(𝒓𝒋) as a new 133 
metric (i.e., our cost function in gradient descent): 134 

𝑈′(𝒓𝒋) = 𝐾1|𝑝|2 − 𝐾2 |
𝜕𝑝

𝜕𝑧
|

2

. (2) 135 

The advantage of this new metric is that it can be computed by sampling pressure values at only two points per trap (i.e., the 136 
number of total points of interest is 𝐿 = 2𝐽). This simplified metric is suitable for our experimental set-ups, in which the 137 
transducers face downward (i.e., −𝑧 direction) and sound-scattering objects are placed underneath (see Fig. 1a), allowing them to 138 
create standing-wave-like acoustic traps along the 𝑧-axis, similar to the commonly-used top-bottom set-ups (6).  139 

Our simplification in Eq. 2 approximates sufficiently the potential 𝑈(𝒓𝒋) because the derivative of the pressure along the 𝑧-140 
axis is more dominant than the derivatives along the other axes. Also, the Gor’kov potential along the 𝑧-axis behaves locally as a 141 
sinusoidal pattern (32). Thus, the second derivative of such sinusoidal pattern (i.e., trapping stiffness) should also be sinusoidal of 142 
opposite sign, supporting our assumption that a negative relationship between 𝑈(𝒓𝒋) and its Laplacian (∇2𝑈(𝒓𝒋)) still holds. Figure 143 
2b validates this, showing the relationship between our new metric and trapping stiffness in our set-ups with a very good 144 
correlation (i.e., 𝑅2 = 0.940) and experimentally evaluating our assumption. Note here that our simplified metric (Eq. 2) could not 145 
be directly used in set-ups, where this assumption is not valid, but this can be easily adjusted to other set-ups such as single-sided, 146 
top-bottom, and V-shape, as shown in the section Metric validity and Figs. S4.  147 

Validation and Performance Evaluation 148 
To evaluate our SIMPLIFIED solver in terms of trapping stiffness, we compared it with the other two solvers, which we refer to as 149 
BASELINE and HEURISTIC. The BASELINE solver is a traditional method that uses a physically accurate and broadly accepted 150 
metric (i.e., trapping stiffness ∇2𝑈(𝒓𝒋)) to optimize trapping quality (4) but is slow. The HEURISTIC solver is an extension of the 151 
HAE framework, enabling us to create traps by creating two focal points around each trap with a 𝜋-radian offset in the target 152 
phases (6). Although this approach is fast and would work well in a single-point manipulation, destructive interference between 153 
traps is likely to occur in multi-point manipulation (15). Note here that all the three solvers use our two-step scattering model. 154 

As shown in Fig. S9, our SIMPLIFIED solver avoids destructive interference between multiple traps when compared to the 155 
HEURISTIC solver, while achieving similar quality (i.e., trapping stiffness) than the BASELINE solver that directly maximized 156 
∇2𝑈(𝒓𝒋) (see Comparison between the Solvers for more detailed evaluations). Additionally, with an appropriate initialization, our 157 
SIMPLIFIED solver can converge within 100 iterations (see Convergence and Initialization and Fig. S8). Therefore, our solver 158 
represents solutions being the most balanced, realizing accurate and fast acoustic manipulation. 159 

Figure 2c summarizes the computational performance of our acoustic holographic technique. We evaluated how the numbers 160 
of traps (𝐽) and mesh elements (𝑀) influence the computational speed. Here, the number of transducers (𝑁) and the number of 161 
iterations (𝐾) in the solver were fixed (i.e., 𝑁 = 256, 𝐾 = 100). The results show the linear relationship between them as 162 
expected, and high update rates over 10,000 fps (i.e., less than 0.1 ms computational time) can be achieved in several scenarios 163 
(e.g., 𝐽 = 4 with 𝑀 = ~8,000). For example, the 3D model of the bunny and the flat reflector (i.e., 12 × 12 cm2), which was used 164 
in the four-trap application in Fig. 1b, is composed of 4,134 elements in total, achieving over 15,000 fps. The plots also show that 165 
even with the slowest scenario in the plots (i.e., 𝐽 = 16 and 𝑀 = 32,000), we can still get over 700 fps, which is enough to 166 
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manipulate particles in real time. Although the set-up-related part cannot be computed in real-time (see Computational 167 
Performance), this part can be pre-computed once the set-up is defined. 168 

 169 
Fig. 2. Performance of the proposed technique. (a) Schematical explanation of our two-step scattering model, adapting 170 
the boundary element method (BEM). (b) Correlation between trapping stiffness ∇2𝑈 and the simplified form of the 171 
Gor’kov potential 𝑈′, justifying the use of 𝑈′ as our metric. (c) Computational performance of our acoustic holographic 172 
technique after pre-computation, depending on the numbers of mesh elements (𝑀) and traps (𝐽).  173 

Versatile Manipulation Capabilities  174 
The combination of our two-step scattering model and the simplified levitation solver allows real-time manipulation of materials 175 
in 3D space, in the presence of sound-scattering objects. Figure 3a shows an experimental example of levitating 10 expanded 176 
polystyrene (EPS) particles above a 3D-printed smooth surface. The simulated sound field in the 𝑥𝑦-plane 𝜆/4 above the trap 177 
positions (i.e., the inserted image in Fig. 3a) shows 10 high-pressure points. The closest previous demonstrations (2, 6, 19, 23) of 178 
this example were limited to 2D plane manipulation of EPS particles or liquid droplets just above flat reflector surfaces without 179 
any scattering object. In our case, we have enabled acoustic 3D manipulation even with a non-flat reflector. In addition, particles 180 
can be levitated under sound scattering obstacles, which occlude most direct sound contributions from the transducers (see Fig. 181 
3b), showing manipulation capabilities in scenarios that were not previously possible.  182 

Unlike other levitation techniques such as electromagnetics, the acoustic approach can levitate almost any type of material, 183 
including solids and liquids (1). Figure 3c shows the manipulation of a water droplet in the presence of 3D-printed cacti. Acoustic 184 
manipulation of liquid droplets is particularly challenging, as the acoustic velocity of air particles at the trap position needs to be 185 
carefully adjusted, keeping it within the range determined by the droplet’s radius and surface tension to avoid droplet atomization 186 
(2, 33). The fast computational rates of our technique enable us to estimate the acoustic velocity in real time, dynamically 187 
adjusting the transducers’ amplitudes to make the acoustic velocity constant along the manipulation path (see Fig. S12). 188 
Additionally, by modulating the amplitudes of all the transducers at certain frequencies, we can induce oscillatory vibrations to 189 
levitated droplets, which is useful for mixing multiple materials in a contactless manner without any cross-contamination (34). 190 
Furthermore, our scattering model works even if the scattering surfaces are liquids. Figure 3d shows the manipulation of a mixture 191 
of water droplets, taking into account the liquid surface of a container filled with water (see also Movie S2). We approximated the 192 
liquid surface is acoustically rigid (i.e., 𝛽𝑚 = 0), still showing correct droplet manipulation. Such material independence lends 193 
versatility to our technique, which can be applied in fields such as computational fabrication, laboratory-on-a-chip, and biomedical 194 
imaging. The use of other 𝛽𝑚 values is also possible, as detailed in Two-step Scattering Model. 195 

 196 
Fig. 3. Levitation capabilities of the proposed technique. (a) Our technique can create and manipulate multiple traps 197 
individually (i.e., there are 10 traps in the photograph). (b) Traps can be created even under sound-scattering obstacles by 198 
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utilizing scattered waves. (c) Materials that can be manipulated in mid-air include both solids and liquids (i.e., a water 199 
droplet is levitated). (d) Our scattering model works on scattering surfaces of liquids as well. The inserted boxes show 200 
simulated sound fields in the 𝑥𝑦-plane 𝜆/4 above the trap positions for (a) and the 𝑥𝑧-plane on the trap positions for the 201 
others (b-d), normalized using the maximum amplitude. The white dashed lines in these figures represent the positions of 202 
the scattering objects in the planes. 203 

Creation of POV Images Using High Update Rates 204 
An important aspect of our technique is its computational speed. As discussed in the literature (13, 15), high update rates for 205 
PATs, of ideally more than 10,000 fps, enable us to manipulate EPS particles at fast velocities (i.e., maximum velocity of 8.75 m/s 206 
with the top-bottom setup was reported in (13)), allowing the creation of mid-air volumetric images using the POV effect by 207 
scanning particles in 0.1 s (35). The fast computational speeds of our technique (see Fig. 2c) allow such a point-scanning-based 208 
method to create volumetric POV images even in the presence of sound-scattering objects. Additionally, thanks to the high update 209 
rates of our approach, created POV images can be interactive to user inputs (e.g., keyboard, hand gestures) in real time. Figure 4a 210 
shows the creation of a butterfly flapping around a 3D-printed bunny (𝑀 = 4,134), which can be controlled by hand gestures (see 211 
Movie S4), by using a single particle colored by full-color LEDs. Other examples of volumetric shapes are shown in Fig. 4b (see 212 
also Movie S3), showing two particles on top of plastic bricks (𝑀 = 5,010), while Fig. 4c shows a single particle under sound-213 
scattering obstacles (𝑀 = 3,792). These are the first demonstration of the creation of digital volumetric images with physical 214 
objects as a new MR human–computer interface, blurring the boundary between the digital and physical worlds.  215 

However, the volumetric geometries that the point-scanning-based approach can create are limited to simple shapes, as 216 
demonstrated in Figs 4a, 4b, and 4c, because particles must scan all the geometries in the POV time (i.e., 0.1 s). Therefore, here we 217 
additionally demonstrate for the first time a free-space surface-scanning-based display within a non-empty working volume, to 218 
create more complex volumetric shapes with many voxels (volume elements). In this approach, we levitated a piece of light fabric 219 
with the same levitation set-up used for the point-scanning approach and used a high-speed projector (i.e., 1,440 fps) and a mirror, 220 
as shown in Fig. 4d. Our technique can rotate the fabric in the presence of sound-scattering objects at five rotations per second 221 
while synchronously projecting cross-sectional images of a 3D model on the rotating fabric, revealing the full volumetric image in 222 
mid-air due to the POV effect. The reason we used the mirror is to project images even when the projection direction and the 223 
fabric are in parallel. The two photographs taken from the different perspectives (see Figs. 4e and 4f) show the digital 3D image of 224 
a bunny projected onto the rotational fabric. The digital 3D image was created on top of a physical bunny (𝑀 = 4,134), which was 225 
3D-printed using the same 3D model for the digital bunny. We can confirm that our system can project complex volumetric shapes 226 
in mid-air, which can be viewed from any direction. 227 

 228 
Fig. 4. Mixed-reality applications using high-speed acoustic holography. (a, b) Examples of the creation of volumetric 229 
POV images using single and multiple particles with sound-scattering objects. (c) POV images can be created even under 230 
sound-scattering obstacles. (d) Full-volumetric projection of 3D digital content together with a 3D printed object using a 231 
quickly rotating screen (i.e., five rotations per second) and a high-speed projector. (e, f) Two photographs taken from two 232 
different perspectives (i.e., from front and right) to demonstrate full volumetric projection. Note here that the digital and 233 
physical objects both used the same 3D model (i.e., bunny) with the same orientation. 234 

Discussion  235 
Prior to this work, 3D manipulations of materials using acoustic holography have been accomplished only in an empty volume. 236 
This limitation has so far forced the technology to be used in limited scenarios (i.e., no scattering objects around). Here, we 237 
overcome this limitation by reformulating and simplifying the model and solver for acoustic holography. Our approach extends the 238 
possibilities of acoustic levitation, enabling 3D printing for contactless manufacturing and mixing of physical and digital artifacts 239 
for novel MR applications. In this study, we assumed only sound-scattering objects with high acoustic impedance compared to air 240 
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(e.g., plastic, water), within a single propagation medium (i.e., air). However, BEM can also be used to compute sound scattering 241 
from sound soft boundaries, even through multiple media. The same two-step approach could be applied to such more complex 242 
scenarios, accelerating computational speed and paving the way for real-time exploitation beyond the environments demonstrated. 243 

This range of potential scenarios will also increase as we relax our current limitation of using only static scattering objects 244 
(i.e., a single pre-computed matrix 𝑯), but so do the challenges that need to be considered. That is, by removing the need for an 245 
empty volume, our current method already enables ultrasound-based solutions to be applied to many more real-world settings, 246 
such as inside appliances or in the dashboard of a car.  247 

An obvious step to support dynamic (i.e., moving/changing) objects would be to pre-compute different 𝑯 matrices, one per 248 
state of the object. This would require us to know in advance the nature of the dynamic evolution of the object, but even this 249 
simple step would be enough to enable many novel applications such as 3D printing and contactless assembly, as in all these cases 250 
the evolution of the geometry is known ahead of time.  251 

Moving towards fully interactive scenarios opens new challenges and possibilities. For objects interactively changing position 252 
and orientation but with fixed shape, the LU decomposition technique discussed in Moving Sound-scattering Objects and Fig. S10 253 
could allow matrix 𝑯 to be computed in real-time. The most challenging scenario is when the objects change their shapes, 254 
positions, and orientations in an unpredictable manner (e.g., an MR application where users’ hands interact inside the working 255 
volume). New approaches to compute 𝑯 in real time would be required here, but one potential solution is to exploit the local 256 
nature of changes. That is, if the positions and/or geometries of objects do not change drastically between updates, the solution for 257 
the previous geometry can be used as good initial estimations for the next geometry, reducing the computational cost. It is worth 258 
noting that the computational rates for this set-up-related part do not need to achieve 10,000 fps, and more conventional rates 259 
could suffice (e.g., >30 fps).  260 

Also, our two-step scattering model can be adapted to various PAT arrangements (e.g., top-bottom, V-shape, single-sided; see 261 
Figs. S4d, S4e, S4f) with no modification. This offers great flexibility in designing new applications using our acoustic 262 
holographic technique. However, we need to note that the simplified metric should not be used as in Eq. 2 by default, but rather be 263 
adjusted to the geometric relationship between the involved PATs and trap positions (see Figs. S4a, S4b, S4c). This suggests that 264 
dynamically tuning the most suitable metric simplification for the set-up and content used would enable us to always bring the best 265 
accuracy and speed out of the device. 266 

The point-scanning-based approach has been adopted and explored to realize free-space volumetric displays by using several 267 
levitation techniques such as acoustic (13–15), photophoretic (36), and electromagnetic traps (37). In this study, we for the first 268 
time introduced the surface-scanning-based approach into these levitation techniques and achieved the free-space volumetric 269 
display that can represent more voxels with minimum constraint in voxel arrangement, compared to the point-based ones (detailed 270 
in Surface-scanning-based Volumetric Display). In comparison with the volumetric displays using mechanically-rotated screens or 271 
emitters (38, 39), the advantage of our approach is that we can manipulate the rotational screen itself within the space that the user 272 
can directly access, highlighting the MR aspect of the acoustic holographic technique proposed in this study.  273 

Materials and Methods 274 

Modeling sound-scattering for acoustic holography 275 
Our scattering model is based on BEM (25, 26). Therefore, we first describe how the conventional BEM works for general 276 
scattering problems and then how we reformulated BEM for acoustic holography in two steps, to achieve the high update rates.  277 

Conventional BEM for Scattering Problems: In BEM, acoustic pressure at some point 𝒙 can be represented as a boundary 278 
integral equation (i.e., Helmholtz-Kirchhoff integral equation) obtained via Green’s theorem. In scattering problems, BEM can be 279 
computed by discretizing the surface of the scattering objects into 𝑀 mesh elements. The size of the elements is small enough so 280 
that the pressure across each mesh 𝑝𝑚 can be considered as constant across the element. Then, under certain impedance boundary 281 
conditions parametrized by 𝛽𝑚 , the complex pressure 𝑝(𝒙) in the domain of propagation (i.e., the region in which the wave 282 
propagates) is given by the direct incident contributions 𝑝𝑖𝑛𝑐(𝒙) and scattered contributions from every mesh element as: 283 

𝑝(𝒙) = 𝑝𝑖𝑛𝑐(𝒙) + ∑ 𝑝𝑚𝑠𝑚 [𝑖𝑘𝛽𝑚𝐺(𝒙𝑚, 𝒙) +
𝜕𝐺(𝒙𝑚, 𝒙)

𝜕𝑛(𝒙𝑚)
]

𝑀

𝑚=1

. (3) 284 

Here, 𝑠𝑚  represents the surface area; 𝑘  is the wavenumber; and 𝛽𝑚  denotes the relative surface admittance at the boundary, 285 
computed as the ratio of acoustic impedances of the propagation medium 𝑍0 and the scattering object 𝑍𝑠 (i.e., 𝛽𝑚 = 𝑍0 𝑍𝑠⁄ ; 𝛽𝑚 =286 
0 when the surface is acoustically rigid). 𝐺(𝒚, 𝒙) is the so-called free-field Green’s function, defined in the 3D case by:  287 

𝐺(𝒚, 𝒙) = −
𝑒𝑖𝑘𝑑(𝒙,𝒚)

4𝜋𝑑(𝒙, 𝒚)
. (4) 288 

Here, 𝑑(𝒙, 𝒚) is the Euclidean distance between two points 𝒙 and 𝒚. In Eq. 3, 𝜕/𝜕𝑛 denotes the normal derivative on the boundary 289 
(i.e., the rate of increase in the direction of the mesh’s normal 𝒏𝑚). Let 𝜓(𝒙, 𝒚) denote the angle between the mesh’s normal at 𝒚 290 
and the vector 𝒙 − 𝒚 and 𝛁𝒚 denote the gradient for the components of 𝒚. The normal derivative of the Green’s function at 𝒚 can 291 
be represented as: 292 

𝜕𝐺(𝒚, 𝒙)

𝜕𝑛(𝒚)
= 𝒏(𝒚) ∙ 𝛁𝒚𝐺(𝒚, 𝒙) =

𝑒𝑖𝑘𝑑(𝒙,𝒚)

4𝜋𝑑(𝒙, 𝒚)
(𝑖𝑘 −

1

𝑑(𝒙, 𝒚)
) cos 𝜓(𝒙, 𝒚) . (5) 293 

On the other hand, when the surface is smooth around 𝒙𝑚, the acoustic pressure on each mesh 𝑝𝑚 can be derived from the 294 
Helmholtz-Kirchhoff integral equation under the same impedance boundary condition (25) as: 295 

1

2
𝑝𝑚 = 𝑝𝑚

𝑖𝑛𝑐 + ∑ 𝑝𝑚′𝑠𝑚′ [𝑖𝑘𝛽𝑚′𝐺(𝒙𝑚′ , 𝒙𝑚) +
𝜕𝐺(𝒙𝑚′ , 𝒙𝑚)

𝜕𝑛(𝒙𝑚′)
]

𝑀

𝑚′=1
 𝑚′≠𝑚

;  𝑚 = 1, … , 𝑀. (6) 296 



Science Advances                                               Manuscript Template                                                                           Page 7 of 17 

 

 

Eq. 6 leads a set of 𝑀 linear equations to determine the 𝑀 unknown pressure values at the mesh elements 𝑝𝑚. The equation can be 297 
represented as a simple equation system 𝑨𝒑 = 𝒃, where each element of the matrix 𝑨 and the vector 𝒃 are given by: 298 

𝑏𝑚 = 𝑝𝑚
𝑖𝑛𝑐 . (7) 299 

𝐴𝑚,𝑚′ = {

0.5, 𝑚 = 𝑚′

−𝑠𝑚′ [𝑖𝑘𝛽𝑚′𝐺(𝒙𝑚′ , 𝒙𝑚) +
𝜕𝐺(𝒙𝑚′ , 𝒙𝑚)

𝜕𝑛(𝒙𝑚′)
] , 𝑚 ≠ 𝑚′ . (8) 300 

Once the set of pressure values at the mesh elements (𝒑 = [𝑝1 ⋯ 𝑝𝑀]𝑇) is obtained by solving this equation system, we can 301 
compute sound pressure 𝑝(𝒙) at any position in the propagation field using Eq. 3. The matrix 𝑨 depends only on the geometry of 302 
the boundary, while the vector 𝒃 depends on the incident wave (i.e., direct sound contributions from the transducers). It must be 303 
noted that solving this equation takes a huge amount of time and memory for a large 𝑀.   304 

Two-step Scattering Model: To compute the transmission matrix 𝑬 at high update rates, our model reformulates BEM into 305 
two parts: the set-up-related and the application-related parts. Each element of the matrix 𝐸𝑙,𝑛 equals the pressure 𝑝𝑙,𝑛 that the 𝑛-th 306 
transducer generates at the 𝑙-th point with a transducer’s complex activation 𝜏𝑛 = 1. In this study, we assumed 𝛽𝑚 = 0 in Eqs. 3 307 
and 8 for all the sound-scattering surfaces used (i.e., plastic, water) because their acoustic impedances are very high when 308 
compared to air. Then, 𝑝𝑙,𝑛 can be represented by using BEM as: 309 

𝑝𝑙,𝑛 = 𝑝𝑙,𝑛
𝑖𝑛𝑐 + ∑ 𝑝𝑚,𝑛𝑠𝑚

𝜕𝐺(𝒙𝑚, 𝒙𝑙)

𝜕𝑛(𝒙𝑚)

𝑀

𝑚=1

. (9) 310 

Here, 𝑝𝑙,𝑛
𝑖𝑛𝑐 denotes the direct contribution from the 𝑛-th transducer to the 𝑙-th point, and 𝑝𝑚,𝑛 denotes the pressure at the  𝑚-th 311 

mesh generated by the 𝑛-th transducer. Then, as shown in Fig. 2a, the transmission matrix 𝑬 can be represented as: 312 

𝑬 = [

𝑝1,1 ⋯ 𝑝1,𝑁

⋮ ⋱ ⋮
𝑝𝐿,1 ⋯ 𝑝𝐿,𝑁

] = 𝑭 + 𝑮𝑯. (10) 313 

𝐹𝑙,𝑛 = 𝑝𝑙,𝑛
𝑖𝑛𝑐; 𝐺𝑙,𝑚 = 𝑠𝑚

𝜕𝐺(𝒙𝑚, 𝒙𝑙)

𝜕𝑛(𝒙𝑚)
; 𝐻𝑚,𝑛 = 𝑝𝑚,𝑛. (11) 314 

The direct incident contribution 𝑝𝑙,𝑛
𝑖𝑛𝑐 can be represented as: 𝑝𝑙,𝑛

𝑖𝑛𝑐 = 𝑃𝑙,𝑛𝛷𝑙,𝑛, where 𝑃𝑙,𝑛 denotes the scalar directivity of our sound 315 
sources approximated as a piston model, and 𝛷𝑙,𝑛 denotes the complex phase propagation approximated as a spherical sound 316 
source:  317 

𝑃𝑙,𝑛 =
2𝐽1(𝑘𝑟 sin 𝜃(𝒙𝑙 , 𝒙𝑛))

𝑘𝑟 sin 𝜃(𝒙𝑙 , 𝒙𝑛)

𝑃𝑟𝑒𝑓

𝑑(𝒙𝑙 , 𝒙𝑛)
; 𝛷𝑙,𝑛 = 𝑒𝑖𝑘𝑑(𝒙𝑙,𝒙𝑛). (12) 318 

Here, 𝑃𝑟𝑒𝑓  represents the transducer’s reference pressure at 1 m distance; 𝑟 represents the transducer’s radius; 𝜃(𝒙𝑙 , 𝒙𝑛) is the 319 
angle between the transducer’s normal and point 𝑙; and 𝐽1 represents a Bessel function of the first kind. 320 

As we already mentioned, we assumed 𝛽𝑚 = 0 for all the sound-scattering surfaces in this study. The extension to other values 321 
of 𝛽𝑚 is also possible by keeping the term of 𝑖𝑘𝛽𝑚′𝐺(𝒙𝑚′ , 𝒙𝑚) in Eq. 8 when solving the matrix 𝑯 and adjusting Eq. 11 to have 322 
the term when computing the matrix 𝑮. We can adopt this extension, without much increasing the computational complexity.  323 

The important point is that the matrices 𝑭  and 𝑮  depend on point positions while the matrix 𝑯 , the largest and most 324 
computationally expensive element in our model, does not. Therefore, once the geometry of the set-up (i.e., transducers and 325 
scattering objects) is determined, 𝑯 remains constant and does not have to be computed every time we update the trapping 326 
positions (i.e., the set-up-related part). On the other hand, we must compute 𝑭 and 𝑮 every time for interactive applications (i.e., 327 
the application-related part), but the computations of these have direct expressions given in Eq. 11 and thus are highly suitable for 328 
computing in parallel using a GPU. Therefore, once we pre-compute the matrix 𝑯, the whole matrix can be computed at very high 329 
rates (see Fig. S6a). The pre-computation process for the set-up-related part to calculate the matrix 𝑯 is as follows: 330 

1. Given the geometry of the sound-scattering objects, build an 𝑀 × 𝑀 matrix 𝑨 using Eq. 8. 331 
2. Build an 𝑀 vector 𝒃(𝑛) for the 𝑛-th transducer: 𝑏𝑚

(𝑛)
= 𝑃𝑚,𝑛𝛷𝑚,𝑛. 332 

3. Solve 𝑨𝒑(𝑛) = 𝒃(𝑛) to obtain 𝒑(𝑛) and store the results: 𝐻𝑚,𝑛 = 𝑝𝑚
(𝑛)

.  333 
4. Repeat the steps 2 and 3 for all the 𝑁 transducers. 334 

In this study, we used a MATLAB function gmres, which uses the generalized minimum residual (GMRES) algorithm (40), to 335 
solve the linear systems in the step 3. An alternative way to represent the steps 2–4 is as 𝑨𝑯 = 𝑩, where 𝑩 = [𝒃(1) ⋯ 𝒃(𝑁)]. 336 
We could also decompose the matrix 𝑨 (e.g., LU decomposition) to compute 𝑯 at higher speeds, instead of using GMRES. 337 

Sound-field Simulation Using Our Model: As the conventional BEM, our model can be used for the general purpose of 338 
simulating sound fields, even though the main purpose of developing it in this study was to solve for the transducers’ activation 𝝉 339 
to create multiple traps at high speeds. Figs. S1a and S1b show the sound fields simulated by the conventional BEM (see 340 
Conventional BEM for Scattering Problems) when we created single traps at different positions, while Figs. S1c and S1d were 341 
simulated by our model (see Two-step Scattering Model) when we used the same transducers’ activations 𝝉 as Figs. S1a and S1b, 342 
respectively. In these simulations, we used the bricks object shown in Fig. S3. We can confirm that the sound fields generated by 343 
our model are equivalent to the ones simulated by the conventional BEM.  344 

The conventional BEM requires solving the linear equation 𝑨𝒑 = 𝒃 every time to simulate sound fields with different 𝝉, even 345 
with the same set-up (e.g., as in the case of Figs. S1a and S1b). In contrast in our model, once we compute the transmission matrix 346 
𝑬, it can be used for simulating sound fields with different 𝝉 unless the same set-up is used. Note here that 𝑬 can be computed at 347 
very high speeds (see Fig. S6a), once we obtain the data from the pre-computation (i.e., the matrix 𝑯). Our model is especially 348 
useful for simulating and evaluating sound fields many times with different 𝝉 but with the same set-up. Therefore, in this paper, we 349 
used our model for every evaluation and visualization of the sound fields. 350 
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 351 
Fig. S1. Comparison between the conventional BEM and our two-step scattering model. Sound fields simulated by 352 
using (a, b) the conventional BEM and (c, d) our two-step scattering model when creating single traps at different 353 
positions. The sound fields simulated by our model are equivalent to the ones obtained using the conventional BEM.   354 

Solving for the Transducers’ Phases for Acoustic 3D Manipulation 355 
Once we know how to model the extended transmission matrix (𝑬 = 𝑭 + 𝑮𝑯), the next step is to solve for the transducers’ 356 
activation 𝝉 that generates levitation traps at target positions in the presence of sound scattering objects. In this study, we assumed 357 
phase-only optimization (i.e., the amplitudes of the transducers are always maximum), and thus the goal of this optimization is to 358 
find the optimum phases of the transducers (𝝋 = [𝜑1, … , 𝜑𝑁]𝑇) that maximize trapping stiffnesses ∇2𝑈 at every trap position  𝒓𝒋.  359 

We considered three different levitation solvers: BASELINE, HEURISTIC, and SIMPLIFIED. The BASELINE solver uses 360 
stiffness, as a physically accurate and broadly accepted metric for trapping quality but is the slowest. The HEURISTIC solver is the 361 
fastest but not accurate enough. The SIMPLIFIED solver represents our solutions being the most balanced, realizing accurate and 362 
fast acoustic manipulation. 363 

BASELINE Levitation Solver: One straightforward approach in this optimization problem is, as proposed in (4), to directly 364 
maximize trapping stiffnesses ∇2𝑈(𝒓𝒋) at every trap position 𝒓𝒋 by using a cost function 𝑂(𝝋) determined as: 365 

𝑂(𝝋) = ∑ [−∇2𝑈(𝒓𝒋) + 𝑤𝑠(∇2𝑈(𝒓𝒋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − ∇2𝑈(𝒓𝒋))
2

]

𝐽

𝑗=1

. (13) 366 

Here, the bar (   ̅) represents the mean value among all the 𝐽 traps; and 𝑤𝑠 is a weight coefficient. We added the second term in this 367 
cost function to equalize the qualities (i.e., stiffnesses) of all 𝐽 traps by minimizing the standard deviation similarly to (41). The 368 
BASELINE solver minimizes this cost function 𝑂(𝝋) in Eq. 13 using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 369 
(42, 43).  370 

However, as already described in the main text, computing trapping stiffnesses ∇2𝑈 is computationally heavy because it 371 
requires sampling pressure values at many points (e.g., 55 points in this study, which means 𝐿 = 55𝐽) around each trap. The 372 
reason it requires so many points is that the second spatial derivative of 𝑈 requires up to third derivatives of pressure values at the 373 
trap position as: 374 

𝜕2𝑈

𝜕𝑎2
= 2𝐾1 (

𝜕𝑝

𝜕𝑎
∙

𝜕𝑝

𝜕𝑎
+ 𝑝 ∙

𝜕2𝑝

𝜕𝑎2
) − 2𝐾2 ∑ (

𝜕2𝑝

𝜕𝑎𝜕𝑏
∙

𝜕2𝑝

𝜕𝑎𝜕𝑏
+

𝜕𝑝

𝜕𝑏
∙

𝜕3𝑝

𝜕𝑎2𝜕𝑏
)

𝑥,𝑦,𝑧

𝑏

, 𝑎 ∈ {𝑥, 𝑦, 𝑧}. (14) 375 

Here, 𝑎 represents 𝑥, 𝑦, or 𝑧; and the dot operator (∙) is defined as: 𝑝𝑓 ∙ 𝑝𝑔 = ℛℯ[𝑝𝑓]ℛℯ[𝑝𝑔] + ℐ𝓂[𝑝𝑓]ℐ𝓂[𝑝𝑔]. To numerically 376 
obtain the derivatives in Eq. 14, this metric requires sampling pressure values at many points. In this study, we used the second-377 
order centered difference approximation to compute these derivatives for accuracy because this metric needs to serve as our 378 
baseline. Fig. S2a shows how we sampled the pressure values at points around the trap in an 𝑎𝑏-plane, where 𝑎𝑏 ∈ {𝑥𝑦, 𝑦𝑧, 𝑧𝑥}. 379 
Note here that 𝑝10  in the 𝑥𝑦-plane is duplicated in the other two planes; and 𝑝9  and 𝑝11  in the 𝑥𝑦-, 𝑦𝑧-, and 𝑧𝑥-planes are 380 
respectively identical to 𝑝6 and 𝑝14 in the 𝑦𝑧-, 𝑧𝑥-, and 𝑥𝑦-planes. This means, in this study, we used 55 points in total per trap 381 
(i.e., 21 for each of the 𝑥𝑦-, 𝑦𝑧- and 𝑧𝑥-planes excluding the 2 + 2 × 3 = 8 duplicated points). 382 

 383 

 384 
Fig. S2. Sampling points required to compute the metrics. (a) Sampling points in an 𝑎𝑏-plane to calculate the trapping 385 
stiffness, where 𝑎𝑏 ∈ {𝑥𝑦, 𝑦𝑧, 𝑧𝑥}. We used 55 points in total per trap (i.e., 21 for each of the 𝑥𝑦-, 𝑦𝑧- and 𝑧𝑥-planes 386 
excluding the 8 duplicated points). (b) Our proposed simplified metric requires sampling only two points per trap.  387 

HEURISTIC Levitation Solver: In order to simplify this optimization problem, we adapted the heuristic approach proposed 388 
in (6) for the top-bottom levitation set-ups. This approach uses two points of interest per trap (i.e., 𝐿 = 2𝐽), 𝜆/4 above and 𝜆/4 389 
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below the position where the trap needs to be located, with a 𝜋 radian offset in the target phases. By simply back-propagating 390 
those points with the conjugate transpose of the transmission matrix 𝑬∗ and then constraining the transducers’ amplitudes to their 391 
maxima, we can calculate the transducer phases 𝝋 without any iterations (i.e., 𝐾 = 1). Although this HEURISTIC approach is the 392 
simplest and would work well in a single-point manipulation, destructive interference between traps is likely to occur in multi-393 
point manipulation (15). 394 

This HEURISTIC approach would still work even if the solver used slightly different positions for the two control points, 395 
which are at the trap position 𝒓𝒋 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and the position slightly above it (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 + ℎ). This modified version of the 396 
HEURISTIC levitation solver is also used to obtain initial guesses for the BASELINE and SIMPLIRIFED solvers (as explained in 397 
Convergence and Initialization). 398 

SIMPLIFIED Levitation Solver: This SIMPLIFIED solver uses our proposed simplified Gor’kov potential 𝑈′ at each trap 399 
position as our target cost function, instead of directly using trapping stiffnesses ∇2𝑈(𝒓𝒋). As mentioned in the main text, we 400 
determined 𝑈′(𝒓𝒋) as:  401 

𝑈′(𝒓𝒋) = 𝐾1|𝑝|2 − 𝐾2 |
𝜕𝑝

𝜕𝑧
|

2

;

𝐾1 =
1

4
𝑉 (

1

𝑐0
2𝜌0

−
1

𝑐𝑝
2𝜌𝑝

) ; 𝐾2 =
3

4
𝑉 (

𝜌𝑝 − 𝜌0

𝜔𝜌0(𝜌0 + 2𝜌𝑝)
) . (15)

 402 

Here, 𝑉 represents the volume of the levitated particle; 𝜔 represents the angular frequency; 𝑐 and 𝜌 represent the speed of sound 403 
and the density, and the subscripts 0 and 𝑝 refer to the host medium (i.e., air) and the particle material, respectively. The important 404 
point here is that 𝑈′(𝒓𝒋) can be computed by sampling pressure values at only two points around each trap (i.e., 𝐿 = 2𝐽, see Fig 405 
S2b), located at the trap position 𝒓𝒋 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and the position slightly above it (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 + ℎ), in order to numerically compute 406 
the derivative along the 𝑧-axis (e.g., we used ℎ = 𝜆/32 in this study). Note here that adding the derivatives along the 𝑥- and 𝑦-407 
axes (i.e., using the original Gor’kov potential shown in Eq. 1) requires sampling pressure values at four points around each trap 408 
(i.e., 𝐿 = 4𝐽). Our simplified metric allows about twice faster update rates when compared to using the original Gor’kov potential 409 
(described in Computational Performance), but (slower) solutions using the original Gor’kov potential would require minimal 410 
changes.  411 

The derivative of 𝑈′(𝒓𝒋) with respect to the phase of each transducer 𝜑𝑛 can be computed as: 412 
𝜕𝑈′(𝒓𝒋)

𝜕𝜑𝑛
= 2𝐾1(ℐ𝓂[𝑝]ℛℯ[𝑝𝑛] − ℛℯ[𝑝]ℐ𝓂[𝑝𝑛]) − 2𝐾1 (ℐ𝓂 [

𝜕𝑝

𝜕𝑧
] ∙ ℛℯ [

𝜕𝑝𝑛

𝜕𝑧
] − ℛℯ [

𝜕𝑝

𝜕𝑧
] ∙ ℐ𝓂 [

𝜕𝑝𝑛

𝜕𝑧
]) . (16) 413 

Here, ℛℯ[ ] and ℐ𝓂[ ] represent real and imaginary parts, and 𝑝𝑛 represents a complex pressure value at the 𝑗-th trap position 414 
created by a single transducer 𝑛. 415 

Due to the negative correlation between ∇2𝑈(𝒓𝒋) and 𝑈′(𝒓𝒋) (see Fig. 2b and explanation in section Metric Validity), we can 416 
obtain our cost function 𝑂(𝝋) to maximize the trapping stiffnesses as: 417 

𝑂(𝝋) = ∑ [𝑈′(𝒓𝒋) + 𝑤𝑠(𝑈′(𝒓𝒋)̅̅ ̅̅ ̅̅ ̅̅ − 𝑈′(𝒓𝒋))
2

]

𝐽

𝑗=1

. (17) 418 

The weight coefficient 𝑤𝑠 was fixed to 0.0001 in this study. The gradient of this cost function ∇𝑂(𝝋) can be computed as: 419 

𝜕𝑂(𝝋)

𝜕𝜑𝑛
= ∑ [

𝜕𝑈′(𝒓𝒋)

𝜕𝜑𝑛
+ 2𝑤𝑠(𝑈′(𝒓𝒋)̅̅ ̅̅ ̅̅ ̅̅ − 𝑈′(𝒓𝒋)) (

𝜕𝑈′(𝒓𝒋)

𝜕𝜑𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
−

𝜕𝑈′(𝒓𝒋)

𝜕𝜑𝑛
)]

𝐽

𝑗=1

. (18) 420 

Again, computing this gradient requires sampling pressure values at only two points per trap, allowing high-speed computation.  421 
Although any optimization algorithm, such as BFGS, can be used to minimize this cost function 𝑂(𝝋), we decided to use 422 

gradient descent because it is suitable for parallel computation. For further simplicity, we set the step size of the gradient descent 423 
algorithm to −1/‖∇𝑂(𝝋)‖𝟐, which can be determined without using any line searching algorithm. For all evaluations in this 424 
study, we set the number of iterations 𝐾 = 100, based on the evaluation in section Convergence and Initialization. 425 

Evaluation of Our Acoustic Holographic Technique 426 
In this section, we describe how we evaluated our acoustic holographic technique. In the evaluations, we used four 3D models, 427 
flat, smooth, bricks, and bunny. We used a polygon mesh processing library (44) to uniformly re-mesh the 3D models so that the 428 
maximum length of the mesh elements 𝑙𝑚𝑎𝑥 is always less than 𝜆, 𝜆/2, 𝜆/4, or 𝜆/6, as shown in Fig. S3. The program detects 429 
edges with dihedral angles larger than certain degrees as object features and reserves those features while re-meshing. In most of 430 
the evaluations, we used the models with 𝑙𝑚𝑎𝑥 = 𝜆/2, as it is the best-balanced mesh size between speed and accuracy (detailed in 431 
Mesh-size Dependency of the Trap Quality). 432 
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 433 
Fig. S3. 3D models used for the evaluations: flat, smooth, bricks, and bunny. The 3D models were re-meshed to have a 434 
maximum length of 𝜆, 𝜆/2, 𝜆/4, or 𝜆/6.  435 

Metric Validity: As described earlier, our SIMPLIFIED levitation solver uses the simplified Gor’kov potential 𝑈′(𝒓𝒋) of Eq. 2 436 
to evaluate the quality of traps, instead of using the trapping stiffness ∇2𝑈(𝒓𝒋). To justify our choice of the metric, we evaluated 437 
the correlation between 𝑈′(𝒓𝒋) and ∇2𝑈(𝒓𝒋). In this evaluation, the sound-scattering objects with 𝑙𝑚𝑎𝑥 = 𝜆/2 (see Fig. S3) were 438 
placed at the origin (𝑥, 𝑦, 𝑧) = (0, 0, 0), and the PAT was arranged at 12 cm above the objects. We created single traps at 2,000 439 
random arrangements for each of the four objects (i.e., so 8,000 samples in total). Here, the 𝑥 and 𝑦 coordinates of the trap 440 
positions ranged from -5 to 5 cm, and 𝑧 was set from 2 to 9 cm. The trap positions that were too close to the objects (i.e., the 441 
distance less than 2𝜆) were excluded. We used the BASELINE solver to create the traps and computed 𝑈′(𝒓𝒋) and ∇2𝑈(𝒓𝒋) to plot 442 
them together (see Fig. 2b). The data obtained can be linearly fit as: 𝑈′(𝒓𝒋) = 𝑏1∇2𝑈(𝒓𝒋) + 𝑏2 (𝑏1 = −7.23 × 10−7 and 𝑏2 =443 
−1.69 × 10−8), with the square of the correlation 𝑅2 = 0.940. This correlation indicates that minimizing 𝑈′(𝒓𝒋) would result in 444 
maximizing the trapping stiffness ∇2𝑈(𝒓𝒋). 445 

Although we confirmed that our simplified Gor’kov potential 𝑈′(𝒓𝒋) can be used in our set-ups (i.e., the top array with 446 
arbitrary objects), this does not necessarily apply to all experimental set-ups. Here, we demonstrate how our technique can be 447 
adjusted to three other PAT set-ups: the top-bottom, V-shape, and single-sided without any reflector. Note here that we assumed 448 
using the same 16×16 PAT, but the top-bottom and V-shape ones use two PATs. First, we can use the same simplification (i.e., Eq. 449 
2) for the top-bottom set-up because sound waves propagating in +𝑧 and −𝑧 directions from the top and bottom arrays can create 450 
vertical standing-wave-like traps (see Fig. S4a). In the V-shape set-up with an angle between PATs (𝜙 = 90°), the propagation 451 
directions of the two PATs are (sin 𝜙/2 , 0, cos 𝜙/2) and (− sin 𝜙/2 , 0, cos 𝜙/2), respectively. Therefore, thanks to the waves 452 
propagating in opposite directions along the 𝑥-axis, the following metric enables the creation of strong levitation traps (see Fig. 453 
S4b): 454 

𝑈′(𝒓𝒋) = 𝐾1|𝑝|2 − 𝐾2 |
𝜕𝑝

𝜕𝑥
|

2

. (19) 455 

Note here that the constants 𝐾1 and 𝐾2 are determined by the physical properties of particles and air (see Eq. 15). The single-sided 456 
set-up without any reflector is the most challenging of the three due to the absence of the sound wave propagating in the opposite 457 
direction. However, we can still create a vortex trap (see Fig. S4c), which is very similar to that already demonstrated in (4), by 458 
using the following metric: 459 

𝑈′(𝒓𝒋) = 𝐾1|𝑝|2 − 𝐾2 (|
𝜕𝑝

𝜕𝑥
|

2

+ |
𝜕𝑝

𝜕𝑦
|

2

) . (20) 460 

Our two-step scattering model works in any levitation set-up. Thus, by combining it with the levitation solver using the proper 461 
metrics, we can create levitation traps with the top-bottom, V-shape, and single-sided set-ups, even in the presence of sound-462 
scattering objects (i.e., the sphere with a radius of 3 cm; see Figs. S4d, S4e, S4f). 463 
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 464 
Fig. S4. Other possible metrics for different set-ups. Creation of levitation traps with (a) top-bottom, (b) V-shape, and 465 
(c) single-sided set-ups. (d, e, f) We can create traps with these set-ups even in the presence of sound-scattering objects 466 
(i.e., the sphere with a radius of 3 cm). The trapping stiffness ∇2𝑈(𝒓𝒋) in each case is shown as a reference. 467 

Distortion and Correction of Sound Fields: To show how sound fields are distorted by sound-scattering objects and how 468 
they are corrected by our two-step scattering model, we attempted to create four traps without (assuming-flat) and with (ours) our 469 
model and simulated the generated sound fields. In this evaluation, we used different two 3D models (i.e., smooth, bricks) in Fig. 470 
S3. As the assuming-flat model, we used the method of images (20). This method can compute sound waves scattering from a flat 471 
reflector, by assuming them as the waves emitted by virtual sound sources located at the mirrored positions of the actual sources 472 
(i.e., transducers). Therefore, these assuming-flat simulations do not account for sound scattering from the objects (i.e., assuming 473 
there was only a flat reflector), and thus the generated sound fields can be distorted due to ignoring the presence of the objects. As 474 
ours, we used our two-step scattering model and compared the results with the assuming-flat model (Figs. S5a, S5b). Then, as in 475 
the surface-scanning-based display application (Fig. 4d), we horizontally rotated the trap positions and plotted the trapping 476 
stiffnesses ∇2𝑈(𝒓𝒋) at four trap points according to the rotation angle (Figs. S5c, S5d).  477 

Fig. S5 shows that the sound fields are distorted a lot by both of the objects (e.g., the mean trapping stiffnesses decrease 77% 478 
and 75% on average, respectively). The bricks object is more challenging as it has a non-smooth surface. The minimum trapping 479 
stiffness with bricks using the assuming-flat model becomes even negative (Fig. S5d), suggesting at least one of the four traps is 480 
not able to levitate a particle (e.g., the bottom-right trap in the assuming-flat image of Fig. S5b). On the other hand, our two-step 481 
scattering model can correct such distortion and improve the trapping stiffness by accounting for the sound scattering from the 482 
objects. 483 

 484 
Fig. S5. Distortion and correction of the sound fields. (a, b) Sound-field simulations when creating four traps without 485 
(assuming-flat) and with (ours) our two-step scattering model, with different 3D models (i.e., smooth, bricks). (c, d) Plots 486 
showing the mean trapping stiffness of the four traps when the trap positions horizontally rotate. The shaded areas 487 
represent minimum and maximum trapping stiffnesses in each case.  488 
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Computational Performance: Next, we evaluated the computational performance of our technique using a consumer-grade 489 
laptop PC (Intel Core i7-9750H CPU at 2.60 GHz) with a single GPU (NVIDIA GeForce RTX 2080). We used C++ and OpenCL 490 
for a parallelized implementation of our method. The positions of traps and mesh elements were randomly generated to be tested 491 
as the computational time does not depend on them. We tested 100 times for each combination of the numbers of traps 𝐽 =492 
{1, 2, 4, 8, 16}  and mesh elements 𝑀 = {1,000, 2,000, 4,000, 8,000, 16,000, 32,000} , and reported the average of the 493 
computational times. Note here that in our implementation, the maximum number of frames (i.e., transducers’ activation) that the 494 
GPU can compute at the same time depends on the number of workgroup size of the GPU (i.e., 𝑁𝑤 = 1,024 in this case) and the 495 
number of points of interest required to compute each frame (i.e., 𝐿 = 2𝐽 in our solver), determined as: 𝑁𝑤/2𝐽. This indicates the 496 
importance of choosing a metric with a small 𝐿 as it directly relates to the available update rates, for example, using our simplified 497 
metric (𝐿 = 2𝐽) enables the solver to compute about twice faster as using the original Gor’kov potential (𝐿 = 4𝐽). 498 

Figure 2c summarizes the total computational performance of our technique (i.e., the combination of our model and solver 499 
after the pre-computation), for given numbers of transducers (𝑁 = 256) and iterations for the solver (𝐾 = 100). Additionally, we 500 
tested how fast our scattering model can compute alone to show the breakdown of the computational times (see Fig. S6a). In these 501 
plots, the solid lines represent the computational time for only the model, and the dashed lines represent the total computational 502 
time (i.e., the same plots as in Fig. 2c). These plots indicate that the solving process becomes more dominant when the number of 503 
traps 𝐽 is higher. This is more notable when the number of iterations 𝐾 is higher (see Fig. S6b). The numbers of transducers 𝑁 and 504 
traps 𝐽  are determined by the hardware and applications, respectively, and thus cannot be changed. To reduce the total 505 
computational time while keeping sufficient accuracy, the numbers of mesh elements 𝑀 and iterations 𝐾 are keys to balancing 506 
between speed and accuracy, and we explore these next. 507 

In these performance evaluations, we excluded the set-up-related part (i.e., pre-computation for the matrix 𝑯) as our main 508 
focus is on the ability of our method to retain real-time high-computing rates for applications. Unlike the application-related part, 509 
the computational time for the set-up-related part does not depend only on 𝑁, 𝐿, and 𝑀 but also on the object geometry. That is, 510 
even when two objects have the same number of mesh elements 𝑀, the computational times for these objects could differ (e.g., the 511 
flat reflector is easy to be solved). As references, the pre-computation for the 3D models in Fig. S3 with 𝑙𝑚𝑎𝑥 = 𝜆/2 takes about 9 512 
s for flat, 12 s for smooth, 21 s for bricks, and 17 s for bunny, using a naïve CPU implementation.  513 

 514 
Fig. S6. Computational performance in detail. (a) Computational performance of only the scattering model (solid lines). 515 
The dashed lines represent the total computational time (i.e., model + solver excluding the pre-computation) when the 516 
number of iterations 𝐾 = 100. (b) Total computational performance of the technique with different 𝐾.  517 

Mesh-size Dependency of the Trap Quality: As shown in Fig. 2c, the number of mesh elements 𝑀 is an important parameter 518 
that highly affects the computational speed in our technique. The total number of mesh elements depends on the 3D models’ mesh 519 
resolutions (i.e., the size of the elements), which also influences the accuracy of BEM. In general scattering problems using BEM, 520 
six boundary elements per wavelength are usually required for accurate scattering simulations (45). However, the purpose of this 521 
work is to solve for transducer phases that provide sufficient trapping stiffness, not to accurately simulate sound fields; therefore, 522 
such high degrees of freedom per wavelength might not be necessary for our scattering model.  523 

To find the best-balanced size for the mesh elements, we evaluated the mesh-size dependency of the trap quality (i.e., stiffness) 524 
using the 3D models in Fig. S3 with different maximum lengths of the mesh elements 𝑙𝑚𝑎𝑥 = {𝜆, 𝜆/2, 𝜆/4, 𝜆/6}. In this evaluation, 525 
we created single traps using the BASELINE solver at the same trap positions used in the Metric Validity test and then simulated 526 
the trapping stiffness ∇2(𝒓𝒋) using the finest meshes (i.e., 𝜆/6). Figure S7 summarizes the mean stiffnesses, showing that the use 527 
of 𝑙𝑚𝑎𝑥 = 𝜆 is insufficient for our two-step scattering model, failing to provide enough stiffness (e.g., especially for smooth and 528 
bricks) compared to the subwavelength maximum element sizes. Considering the balance between speed and accuracy, we decided 529 
to use 𝑙𝑚𝑎𝑥 = 𝜆/2 in our solver for the rest of the evaluations.  530 
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 531 
Fig. S7. Mesh-size dependency of the trap quality in our acoustic holographic technique. When the maximum length 532 
of the mesh elements 𝑙𝑚𝑎𝑥 = 𝜆, the model fails to provide enough stiffnesses at the trap positions.  533 

Convergence and Initialization: We now show how our SIMPLIFIED levitation solver performs on multi-point levitation 534 
(i.e., number of traps 𝐽 = { 1, 2, 4, 8, 16}) in the presence of the four scattering objects used in the previous evaluations (see Fig. 535 
S3). We used 1,000 random combinations of trap positions per condition. To avoid cases where traps were too close to each other, 536 
we set the minimum distance between the traps to 2𝜆. Figure S8a shows the average stiffnesses and their standard deviations with 537 
different numbers of traps 𝐽, with 𝐾 = {10, 20, 40, 80, 100, 200, 400, 800}, showing the increase of stiffness along with iterations, 538 
when transducer phases were randomly initialized. Even with the highest number of traps (i.e., 𝐽 = 16), we can achieve positive 539 
stiffnesses, required for trapping particles, after several iterations.  540 

Figure S8b shows the results when we used the phases obtained using the modified HEURISTIC solver instead of random 541 
initial phases. The plots demonstrate that the use of such HEURISTIC initial guesses reduces the required number of iterations 𝐾 542 
in the SIMPLIFIED solver. Note here that even though the HEURISTIC solver already provides comparatively high mean 543 
stiffnesses without iterations (i.e., 𝐾 = 1), the iterations are still required to reduce the standard deviation. This is because, in 544 
multi-point acoustic levitation, weak traps could fail to hold particles in mid-air (15), and the objective is to generate equally 545 
strong traps (see more discussion in the next section). The advantage of using the modified version of the HEURISTIC solver is 546 
that it uses pressure values at exactly the same points with the SIMPLIFIED solver (i.e., at the trap position (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and the 547 
position slightly above it (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 + ℎ)) so that we can use the same transmission matrix 𝑬 for both these initial and iterative 548 
steps, without any additional modeling process required. Following these, this HEURISTIC initialization and 𝐾 = 100 were used 549 
in all the applications and for the rest of the evaluations. 550 

 551 
Fig. S8. Convergence of the simplified levitation solver. (a) The trap quality of the SIMPLIFIED solver improves 552 
depending on the number of iterations 𝐾. (b) The use of the modified HEURISTIC solver as initial guesses reduces the 553 
number of iterations required to be converged. The error bars represent standard deviations. 554 

Comparison between the Solvers: In this study, we considered using three solvers: BASELINE, HEURISTIC, and 555 
SIMPLIFIED, with our two-step scattering model. Here, we compare these three solvers to demonstrate that only the SIMPLIFIED 556 
solver provides both high computational speed and trap quality. Similar to the previous evaluation, we used 1,000 random 557 
combinations of trap positions per condition (i.e., four scattering objects with the different numbers of traps 𝐽 = { 1, 2, 4, 8, 16}). 558 
The numbers of transducers (𝑁 = 256) and iterations (𝐾 = 100) were fixed.  559 

Figure S9a shows the average trapping stiffnesses and their standard deviations obtained by the different solvers. The mean 560 
values indicate that BASELINE overall is slightly better than HEURISTIC and that the performance of SIMPLIFIED tends to be 561 
between these two. We also confirmed this relationship statistically using the statistics software (i.e., IBM SPSS Statistics 25), as 562 
shown in Fig. S9a. The plots also show that SIMPLIFIED provides the smallest standard deviations of the solvers. Providing small 563 
standard deviations is important in multi-point acoustic levitation to avoid weak traps and realize stable particle manipulation (15).  564 

To highlight this point, we performed the same evaluation but focused on the weakest traps of the 𝐽 traps (see Fig. S9b). The 565 
plots indicate that the difference between HEURISTIC and the other two becomes more apparent, and HEURISTIC likely fails to 566 
create traps when the number of traps is large (i.e., negative stiffness with 𝐽 = 16). This is why HEURISTIC is not enough even 567 
though it offers the fastest computational performance. Figure S9b also shows that SIMPLIFIED performs slightly better than even 568 
BASELINE in terms of the minimum stiffnesses, indicating that SIMPLIFIED is more suitable to uniformly provide sufficient 569 
stiffness for all the traps in multi-point levitation.  570 
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 571 
Fig. S9. Comparison of the trap quality between the different solvers. Average stiffnesses (a) and minimum stiffnesses 572 
(b) obtained by the three different solvers. The bars represent standard deviations. The symbol ‘<’ indicates there is a 573 
significant difference between the homogeneous groups represented by the symbol ‘{ }’. 574 

Manipulation Capability: 575 
In this section, we discuss the manipulation capabilities enabled by our technique.   576 

Moving Sound-scattering Objects: In our scattering model, the mesh models remain static over time. This assumption allows 577 
us to pre-compute the scattering model (i.e., the matrix 𝑯). In other words, dealing with dynamic scattering objects is challenging 578 
in our acoustic holographic technique. If we know ahead of time the nature of the dynamic evolution of the sound scattering 579 
object, different 𝑯 matrices can be pre-computed, and the other two matrices 𝑭 and 𝑮 can be computed in real time. If the sound-580 
scattering object changes in a manner that cannot be predicted ahead of time, we need to repeatedly solve linear equations 𝑨𝒑(𝑛) =581 
𝒃(𝑛), where 𝑨 is an 𝑀 × 𝑀 matrix, for every 𝑁 transducer to compute 𝑯 in real time. Note here that, as shown in Eq. 8, the matrix 582 
𝑨 depends only on the geometry of the scattering objects and not on the positions of the transducers or traps. 583 

One common scenario is where the shape of the scattering object is constant but the object’s position or transducers’ 584 
arrangement changes. In such scenarios, we can assume the object is relatively static by assuming instead the positions of the 585 
transducers change. Thus, the matrix 𝑨 is constant even while the actual position of the object is moving. Therefore, once we 586 
decompose this matrix (e.g., by using LU decomposition), we can reuse the decomposed matrices to easily solve the linear 587 
equations, obtaining different 𝑯 at high rates during the movement of the object. Figure S10 shows an example of creating a POV 588 
image with a scattering object located at different positions. In these three examples, we used the same lower and upper triangular 589 
matrices, which were obtained from the decomposition of 𝑨, to accelerate the computation of 𝑯.  590 

 591 
Fig. S10. Creation of POV image with a scattering object located at different locations. (a, b, c) The center of the 3D-592 
printed bunny was located at 0, 1, and 2 cm from the center of the system, respectively. 593 

Scattering Objects Vicinity: One limitation of our technique is the manipulation of particles near the scattering surfaces. 594 
When we try to create a trap near a surface, strong sound reflection from the surface tends to create standing-wave-like sound 595 
fields on the surface, resulting in the creation of traps at certain discrete heights (𝑧) from the surfaces (i.e., 𝑧 = 𝜆/4, 3𝜆/4). 596 
Therefore, it is difficult to manipulate a particle from 𝑧 = 𝜆/4 to 𝑧 = 3𝜆/4, or vice versa. To show this limitation, we tried to 597 
create a single trap with our solver at certain heights (𝑧) from the flat surface (see Fig. S11a) and plot how far the simulated trap 598 
positions (i.e., positions where the Gor’kov potential is minimum) were from the target trap positions, even with the BASELINE 599 
solver (see Fig. S11b). The plot shows very high position errors within the area around 𝜆/2 < 𝑧 < 3𝜆/4, indicating failures to 600 
create the trap within this area. This manipulation difficulty near scattering surfaces was also confirmed experimentally. 601 
Additional research efforts on both algorithmic and hardware fronts (e.g., transducer arrangement) are required for realizing 602 
acoustic holographic systems with this feature. 603 

A practical way to bypass this problem is the use of sound-scattering props (see Fig. S11c). Our two-step scattering model 604 
enables us to manipulate a particle along the ramp by creating traps 𝜆/4 over the ramp surface. Once the particle is high enough 605 
from the surface (e.g., 𝑧 ≥ 3𝜆/4 = 6.49 mm), we can push the particle off the ramp and manipulate it in 3D without any 606 
constraint. We have experimentally confirmed this approach works to pick up particles from the ground. 607 
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 608 
Fig. S11. Limitation on acoustic manipulation near scattering surfaces. (a) Experimental set-up. (b) Position error 609 
near the flat surface depending on the trap height (𝑧). Here, the wavelength 𝜆 = 8.65 mm in this study. (c) Sound-610 
scattering prop enabling to translate particles near the surface. 611 

Handling Liquid Droplets: Consider we manipulate a liquid droplet horizontally as shown in Fig. S12a. In acoustic 612 
manipulation of liquid droplets, the ratio of acoustic forces to surface forces for a levitated droplet is described by the acoustic 613 
Bond number (2, 33) as: 𝐵𝑎 = 2𝑣𝑟𝑚𝑠

2 𝜌0𝑅𝑠/𝜎, where 𝜎 is the surface tension of the liquid; 𝑅𝑠 is the droplet radius, and 𝑣𝑟𝑚𝑠 is the 614 
root mean square of the acoustic velocity of air particles. To avoid atomization of the levitated droplet (i.e., droplet bursting), this 615 
acoustic Bond number needs to be between 2.5 and 3.6, as experimentally determined in (33). Therefore, it is important to keep the 616 
acoustic velocity constant along manipulation paths. In our experiment, we manipulated a liquid droplet horizontally (see Fig. 617 
S12a and Movie S2). The fast computational rates of our technique enable us to estimate the acoustic velocity in real time and to 618 
adjust the transducers’ amplitudes to make the acoustic velocity constant along the manipulation path (see Fig. 9b).  619 

  620 
Fig. S12. Equalization of acoustic velocity along levitation paths to avoid atomization of droplets. (a) Definition of 621 
the manipulation path of a pain droplet. (b) Adjusting the amplitudes of the transducers depending on the estimated 622 
acoustic velocity (i.e., the velocity of air particles) allows the handling of liquid droplets without causing atomization. 623 

MR Applications 624 
In this section, we describe how we created the MR applications.  625 

Experimental Set-ups: All our applications used the same levitation set-ups. The applications were created using a single 626 
PAT of 16 × 16 transducers, designed as an extension of the Ultraino platform (6), modified for faster communication rates as 627 
(15). The array used Murata MA40S4S transducers (40 kHz, 10.5 mm diameter (∼1.2λ), delivering ∼8.1 Pa at 1-m distance when 628 
driven at 20 Vpp). A Waveshare CoreEP4CE10 Field Programmable Gate Array (FPGA) board was used to receive phase and 629 
amplitude updates from the CPU, using a USB FT245 Asynchronous FIFO Interface at 8 Mbyte/sec and allowing more than 630 
10,000 phase and amplitude updates per second. The PAT and a base flat acrylic reflector were aligned on top of each other with 631 
an adjustable separation (e.g., fixed to 12 cm in this study). A square part (12 × 12 cm2) of the flat reflector can be replaced by 632 
arbitrary scattering surfaces, such as 3D-printed ones, sets of bricks, and a glass container filled with water. We used a LulzBot 633 
mini 3D printer with eSUN PLA+ filament to 3D-print the objects. For the interactive applications (see Movie S4), we used a 634 
LeapMotion sensor to detect the user’s fingertip positions. 635 

Mid-air Screen: We used the same method described in (12) to prepare the mid-air screen for levitation. We first laser-cut 636 
light, acoustically transparent fabric (Super Organza) into a square of 3 × 3 cm2. Four EPS particles were glued on the piece of 637 
fabric, acting as anchors to allow 6-degrees-of-freedom manipulation of the fabric. For projection mapping onto this levitated 638 
fabric, we used a projector (Texas Instruments, DLP LightCrafter Evaluation Module) with a native resolution of 608 × 684 pixels. 639 
We obtained the intrinsic parameters of this projector in advance by using an OpenCV function (calibrateCamera) with a 640 
checkerboard and a web camera, and then obtained the extrinsic parameters (i.e., positions and orientation, relative to the levitator 641 
coordinate) by using the manually collected combinations of trap positions in the levitator coordinate and pixel positions in the 642 
projector coordinate. We then used such parameters for our OpenGL cameras (i.e., projection and view matrices) to enable real-643 
time projection mapping (see Fig. 1b). 644 

Point-scanning-based Volumetric Display: In these applications, we used high-intensity full-color LEDs (OptoSupply, 645 
OSTCWBTHC1S) to illuminate the levitated EPS particles. The LEDs were directly controlled by the FPGA, which controls the 646 
transducers as well so that the illumination colors and the movements of the levitated particles were synchronized. All the 647 
scanning paths were generated to be scanned by the particles in the POV time (i.e., 0.1 s). Therefore, we were able to create the 648 
volumetric POV images (see Figs. 4a, 4b, and 4c). 649 
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Note here that in the point-scanning-based approach, the maximum number of voxels 𝑁𝑣 is determined by the update rate of 650 
the levitator 𝑓𝑙, the number of traps 𝐽, and the POV rate (𝑓𝑃𝑂𝑉 = 10 Hz) as: 𝑁𝑣 = 𝐽 ∙ 𝑓𝑙/𝑓𝑃𝑂𝑉 (e.g., 𝑁𝑣 = 4,000 when 𝑓𝑙 = 10,000 651 
and 𝐽 = 4). Also, there are additional constraints in the voxel arrangement because the paths created by these voxels need to be 652 
scanned by single or multiple points. That is, the voxels need to be continuous, and the particle movements along the voxel paths 653 
need to be within the system’s capabilities (i.e., maximum velocity and acceleration). These constraints make it difficult to create 654 
complex volumetric shapes with the point-scanning-based approach. 655 

Surface-scanning-based Volumetric Display: We re-used the same fabric, projector, and calibration scheme used in the mid-656 
air screen application. However, in this application, we used the projector in a high-speed binary mode at 1,440 fps. As shown in 657 
Fig. 4d, we placed a mirror in the system to cover the angles, where the projector is not capable of directly projecting onto the 658 
fabric (i.e., when the fabric and projection direction become parallel). In other words, we used the mirror as a second projector. 659 
We created 144 cross-sectional binary images of a 3D model (i.e., bunny) every 1.25 degrees, mapped those images onto the 660 
rotating screen, and encoded them into 24-bit images as in (46). Then the system levitated and rotated the fabric at five rotations 661 
per second while updating the encoded images at 60 Hz. Our OpenGL-based software can adjust the timing of projecting the 662 
cross-sectional images so that it matches the fabric’s rotational timing. The software also receives a VSYNC signal to 663 
automatically adjust the timing of projecting the cross-sectional images corresponding to the levitator update. 664 

In the surface-based approach, the maximum number of voxels of created images 𝑁𝑣 is determined by the update rate of the 665 
projector 𝑓𝑝 and the number of pixels of projected 2D images 𝑁𝑝 as: 𝑁𝑣 = 𝑁𝑝 ∙ 𝑓𝑝/𝑓𝑃𝑂𝑉. Thus, ideally, 𝑁𝑣 = 608 × 684 × 1,440/666 
10 ≅ 60,000,000, which is almost 15,000 times larger than the point-based approach. Although it is not realistic to assume full 667 
use of the pixels with a static projector like in our current system, it is possible to increase the usage of the pixels to nearly 100% 668 
by utilizing a projection engine with a rotational mirror such as demonstrated in (39). Additionally, the voxel arrangement is 669 
independent of the content because it is fixed, so the displayed content does not need to account for the levitator’s capabilities (i.e., 670 
velocity and acceleration), once the levitator is able to rotate the fabric at five rotations per second.  671 

References 672 

1.  M. A. B. Andrade, A. Marzo, J. C. Adamowski, Acoustic levitation in mid-air: Recent advances, challenges, and future perspectives. 673 

Appl. Phys. Lett. 116, 250501 (2020). 674 

2.  D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Acoustophoretic contactless transport and handling of matter in air. Proc. 675 

Natl. Acad. Sci. U. S. A. 110, 12549–54 (2013). 676 

3.  Y. Ochiai, T. Hoshi, J. Rekimoto, Pixie Dust: Graphics Generated by Levitated and Animated Objects in Computational Acoustic-677 

Potential Field. ACM Trans. Graph. 33, 1–13 (2014). 678 

4.  A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, S. Subramanian, Holographic acoustic elements for manipulation of 679 

levitated objects. Nat. Commun. 6, 8661 (2015). 680 

5.  K. Melde, A. G. Mark, T. Qiu, P. Fischer, Holograms for acoustics. Nature. 537, 518–522 (2016). 681 

6.  A. Marzo, B. W. Drinkwater, Holographic acoustic tweezers. Proc. Natl. Acad. Sci., 201813047 (2018). 682 

7.  X. Ding, S. C. S. Lin, B. Kiraly, H. Yue, S. Li, I. K. Chiang, J. Shi, S. J. Benkovic, T. J. Huang, On-chip manipulation of single 683 

microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. U. S. A. 109, 11105–11109 (2012). 684 

8.  T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward Contactless Biology: Acoustophoretic DNA Transfection. Sci. 685 

Rep. 6, 20023 (2016). 686 

9.  D. Foresti, K. T. Kroll, R. Amissah, F. Sillani, K. A. Homan, D. Poulikakos, J. A. Lewis, Acoustophoretic printing. Sci. Adv. 4, eaat1659 687 

(2018). 688 

10.  T. Omirou, A. Marzo, S. A. Seah, S. Subramanian, LeviPath: Modular Acoustic Levitation for 3D Path Visualisations. Proc. ACM 689 

CHI’15 Conf. Hum. Factors Comput. Syst. 1, 309–312 (2015). 690 

11.  D. R. Sahoo, N. Takuto, A. Marzo, T. Omirou, M. Asakawa, S. Subramanian, JOLED: A Mid-Air Display Based on Electrostatic 691 

Rotation of Levitated Janus Objects. 29th ACM User Interface Softw. Technol. Symp. (UIST ’16), 437–448 (2016). 692 

12.  R. Morales, A. Marzo, S. Subramanian, D. Martínez, LeviProps: Animating Levitated Optimized Fabric Structures using Holographic 693 

Acoustic Tweezers. Proc. 32nd ACM User Interface Softw. Technol. Symp. - UIS (2019), doi:10.1145/3332165.3347882. 694 

13.  R. Hirayama, D. Martinez Plasencia, N. Masuda, S. Subramanian, A volumetric display for visual, tactile and audio presentation using 695 

acoustic trapping. Nature. 575, 320–323 (2019). 696 

14.  T. Fushimi, A. Marzo, B. W. Drinkwater, T. L. Hill, Acoustophoretic volumetric displays using a fast-moving levitated particle. Appl. 697 

Phys. Lett. 115, 064101 (2019). 698 

15.  D. M. Plasencia, R. Hirayama, R. Montano-Murillo, S. Subramanian, GS-PAT: High-speed Multi-point Sound-fields for Phased Arrays 699 

of Transducers. ACM Trans. Graph. 39 (2020), doi:0.1145/3386569.3392492. 700 

16.  V. Paneva, A. Fleig, D. M. Plasencia, T. Faulwasser, J. Müller, OptiTrap: Optimal Trap Trajectories for Acoustic Levitation Displays. 701 

ACM Trans. Graph., 1–25 (2022). 702 

17.  I. Sutherland, The Ultimate Display. Proc. IFIPS Congr. 65, 506–508 (1965). 703 

18.  M. A. B. Andrade, N. Perez, F. Buiochi, J. C. Adamowski, Matrix method for acoustic levitation simulation. IEEE Trans. Ultrason. 704 

Ferroelectr. Freq. Control. 58, 1674–1683 (2011). 705 

19.  M. A. B. Andrade, T. S. A. Camargo, A. Marzo, Automatic contactless injection, transportation, merging, and ejection of droplets with a 706 

multifocal point acoustic levitator. Rev. Sci. Instrum. 89 (2018), doi:10.1063/1.5063715. 707 

20.  L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, in Wiley-VCH (Princeton University Press, Princeton, 1999; 708 

http://www.degruyter.com/view/books/9781400881734/9781400881734-002/9781400881734-002.xml). 709 



Science Advances                                               Manuscript Template                                                                           Page 17 of 17 

 

 

21.  T. Carter, S. A. Seah, B. Long, B. Drinkwater, S. Subramanian, UltraHaptics: Multi-point mid-air haptic feedback for touch surfaces. 710 

UIST 2013 - Proc. 26th Annu. ACM Symp. User Interface Softw. Technol., 505–514 (2013). 711 

22.  B. Long, S. A. Seah, T. Carter, S. Subramanian, Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph. 33, 712 

1–10 (2014). 713 

23.  P. Glynne-Jones, C. E. M. Démoré, C. Ye, Y. Qiu, S. Cochran, M. Hill, Array-controlled ultrasonic manipulation of particles in planar 714 

acoustic resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59, 1258–1266 (2012). 715 

24.  M. A. Norasikin, D. Martinez Plasencia, S. Polychronopoulos, G. Memoli, Y. Tokuda, S. Subramanian, SoundBender: Dynamic 716 

Acoustic Control Behind Obstacles. 31st Annu. ACM Symp. User Interface Softw. Technol. - UIST ’18, 247–259 (2018). 717 

25.  Y. Liu, Fast Multipole Boundary Element Method: Theory and Applications in Engineering (Cambridge University Press, Cambridge, 718 

2009; http://ebooks.cambridge.org/ref/id/CBO9780511605345). 719 

26.  S. N. Chandler-Wilde, S. Langdon, in Unified Transform for Boundary Value Problems: Applications and Advances, A. S. Fokas, B. 720 

Pelloni, Eds. (SIAM, 2014), pp. 181–222. 721 

27.  S. Inoue, S. Mogami, T. Ichiyama, A. Noda, Y. Makino, H. Shinoda, Acoustic Macroscopic Rigid Body Levitation by Responsive 722 

Boundary Hologram. arXiv. 328 (2017), doi:10.1121/1.5087130. 723 

28.  J. Greenhall, F. Guevara Vasquez, B. Raeymaekers, Ultrasound directed self-assembly of user-specified patterns of nanoparticles 724 

dispersed in a fluid medium. Appl. Phys. Lett. 108, 103103 (2016). 725 

29.  M. Prisbrey, J. Greenhall, F. Guevara Vasquez, B. Raeymaekers, Ultrasound directed self-assembly of three-dimensional user-specified 726 

patterns of particles in a fluid medium. J. Appl. Phys. 121, 014302 (2017). 727 

30.  T. Kozuka, K. Yasui, T. Tuziuti, A. Towata, Y. Iida, Acoustic standing-wave field for manipulation in air. Jpn. J. Appl. Phys. 47, 4336–728 

4338 (2008). 729 

31.  H. Bruus, Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip. 12, 1014–21 (2012). 730 

32.  T. Fushimi, B. W. Drinkwater, T. L. Hill, What is the ultimate capability of acoustophoretic volumetric displays? Appl. Phys. Lett. 116, 731 

244101 (2020). 732 

33.  C. P. Lee, A. V. Anilkumar, T. G. Wang, Static shape of an acoustically levitated drop with wave-drop interaction. Phys. Fluids. 6, 733 

3554–3566 (1994). 734 

34.  A. Watanabe, K. Hasegawa, Y. Abe, Contactless fluid manipulation in air: Droplet coalescence and active mixing by acoustic levitation. 735 

Sci. Rep. 8, 1–8 (2018). 736 

35.  R. W. Bowen, J. Pola, L. Matin, Visual persistence: Effects of flash luminance, duration and energy. Vision Res. 14, 295–303 (1974). 737 

36.  D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. 738 

Costner, A. Monk, M. Pearson, B. Haymore, J. Peatross, A photophoretic-trap volumetric display. Nature. 553, 486–490 (2018). 739 

37.  J. Berthelot, N. Bonod, Free-space micro-graphics with electrically driven levitated light scatterers. Opt. Lett. 44, 1476 (2019). 740 

38.  J. Geng, Three-dimensional display technologies. Adv. Opt. Photonics. 5, 456 (2013). 741 

39.  G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, W. S. Chun, 100 Million-voxel volumetric display. 742 

Proc. SPIE. 4712, 300–312 (2002). 743 

40.  Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. 744 

Stat. Comput. 7, 856–869 (1986). 745 

41.  S. Polychronopoulos, G. Memoli, Acoustic levitation with optimized reflective metamaterials. Sci. Rep. 10, 4254 (2020). 746 

42.  Dong C. Liu, Jorge Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989). 747 

43.  S. G. Nash, J. Nocedal, A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale 748 

Optimization. SIAM J. Optim. 1, 358–372 (1991). 749 

44.  D. Sieger, M. Botsch, The polygon mesh processing library (2020), (available at http://www.pmp-library.org). 750 

45.  S. Marburg, Six boundary elements per wavelength: Is that enought? J. Comput. Acoust. 10, 25–51 (2002). 751 

46.  A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 752 

40 (2007). 753 

Acknowledgements  754 
We thank E. Haynes from University College London, who helped with the supplementary videos. Funding: This work was 755 

supported by EU’s H2020 program through their ERC Advanced Grant (No. 787413) and the Royal Academy of Engineering 756 
Chairs in Emerging Technology Scheme (CiET1718/14). Author contributions: R.H. and S.S. conceived the concept and 757 
designed the research. R.H. and G.C developed the mathematical model and solver, with contributions from D.M.P and S.S. R.H. 758 
and D.M.P. implemented the algorithms and designed the software. Data analysis was led by R.H., with contributions from all 759 
authors. R.H. wrote the paper, with contributions from all authors. Competing interests: The authors declare no competing 760 
interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or 761 
the Supplementary Materials. Additional data is archived at https://doi.org/10.5281/zenodo.6366502. 762 

 763 


