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SUMMARY
The accurate interpretation of ethologically relevant stimuli is crucial for survival. While basolateral amygdala
(BLA) neuronal responses during fear conditioning are well studied, little is known about how BLA neurons
respond during naturalistic events. We recorded from the rat BLA during interaction with ethological stimuli:
male or female rats, amoving toy, and rice. Forty-two percent of the cells reliably respond to at least one stim-
ulus, with over half of these exclusively identifying one of the four stimulus classes. In addition to activation
during interaction with their preferred stimulus, these cells signal micro-behavioral interactions like social
contact. After stimulus removal, firing activity persists in 30% of responsive cells for several minutes. At
the micro-circuit level, information flows from highly tuned event-specific neurons to less specific neurons,
and connection strength increases after the event. We propose that individual BLA neurons identify specific
ethological events, with event-specific neurons driving circuit-wide activity during and after salient events.
INTRODUCTION

The basolateral amygdala has been assigned many different

roles, including fear conditioning (Ledoux, 2000), valence asso-

ciation (Paton et al., 2006; Beyeler et al., 2016), exploratory

behavior (Botta et al., 2020), and internal state (Gr€undemann

et al., 2019). Single BLA neurons have largely been studied in

the context of trained task-related activity, displaying responses

to various cues, including neutral sensory information (e.g., audi-

tory, tactile, olfactory) (Ono et al., 1995), fear and pain cues (Wolff

et al., 2014; Corder et al., 2019), food (Liu et al., 2018), and condi-

tioned valence responses (Beyeler et al., 2016). The presence of

these small responses in broad, overlapping populations of

BLA neurons has led to the suggestion that the complex, multi-

sensory characteristics of naturalistic stimuli are likely to be

encoded at the BLA circuit level as an aggregation of these

low-amplitude noisy single-cell responses (Gr€undemann and

L€uthi, 2015; Kyriazi et al., 2018; Kyriazi et al., 2020). In contrast,

an earlier view proposed that single units could selectively iden-

tify events of significance to the animal (O’Keefe and Bouma,

1969). To distinguish between these alternative hypotheses,

we recorded from large populations of neurons across the BLA

using Neuropixels probes during several salient ethological

events.

We recorded from 426 neurons throughout the basolateral

complex (Figure 1A) of five male rats using single-shank Neuro-

pixels probes. Each session consisted of a series of events

(Figures 1B, 1C, and S1; Videos S1, S2, S3, and S4) during which

the implanted rat could freely interact with an ethological stim-

ulus placed in the recording chamber. Electrophysiological and
This is an open access article und
video recording was continuous during a series of 5-min interac-

tions with several males, females, a toy, or sweetened rice food

with 5-min baseline recordings before and after each event. We

classified different cell types on the basis of their waveforms,

sensory/behavioral correlates, and location within the basolat-

eral complex, and will discuss the involvement of each of these

cell groups in different aspects of the events.

RESULTS

Single BLA cells identify the ethological event
The most striking result was that 23.5% of the cells showed a

strong specific excitatory response to only one of the four clas-

ses of ethological stimuli (Figures 1 and S2 and STAR Methods).

Figure 1C shows typical examples of these event-specific cells

and quantifies the proportion of cells responding to each event

(Figures 1D and S2). Typically, event-specific cells had a very

low resting firing rate (median, 0.5 spikes s �1) which increased

many fold (3–63 on average) during the triggering ethological

event. Importantly, the event-specific cells were highly selective,

responding to only one class of event (for example, to all females

or males) but showing virtually no response to other events

(Figures 1C, 1D, and S2). We found no evidence that the BLA

cells could discriminate among the different females or among

the different males but cannot rule out the possibility that they

might do so with further experience.

In addition to the event-specific responses, another 11.3% of

the cells were multimodal, responding to more than one etholog-

ical event. Most of these neurons were panresponsive, respond-

ing to both social and non-social events (64% of panresponsive
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Figure 1. BLA neurons respond to salient social and non-social stimuli with regional differences

(A) Schematic of a coronal rat brain section depicting a Neuropixels probe (dashed red line) implanted in the BLA.

(B) The implanted rat freely engaged with different stimuli (top, social interaction with a conspecific; lower left, with a mobile toy mouse; lower right, eating sweet

rice). Events were tracked using a combination of color marking and Deeplabcut (see Videos S1, S2, S3, and S4; Figure S1; and STAR Methods).

(C) Each recording session consisted of 5-min event blocks of free interaction with one of four classes of stimuli interspersed with 5-min control periods. Stimuli

consisted of (top) up to three different males (_), up to three females (\), a toy mouse (toy), and sweetened rice (food). (Below) Examples of diverse responses in

subsets of BLA single neurons: from top to bottom, panresponsive, male-specific, female-specific, toy-specific, and food specific.

(D) Average response score for all BLA single units ordered by response strength and category. From top to bottom, panresponsive, social (male specific, female

specific), non-social (toy specific, food specific, no responses, and decreased firing).

(E) Population correlation of response score vectors from all responsive units across individual stimulus presentations shows strong correlations within events of

the same typeandweaker correlations acrossevents of different types.Rowsandcolumns represent the first (1) and second (2) presentations of a given event type.

(F and G) (F) Male, object and food event-specific neurons are clustered along the dorsal-ventral axis with (G) lower pairwise distances than the average neuron.

Female-specific and panresponsive neurons are not clustered. **p < 0.01. Male: 431.2 ± 22.74 (20). Toy: 499.1 ± 17.85 (34). Food: 481.9 ± 25.52 (24). Female:

638.5 ± 28.1 (22). Panresponsive: 684.1 ± 18.91 (36). All BLA: 643.3 ± 1.60 (426). Neuron-type (N): micrometer distance between neuron pairs. Mean ± SEM;

Kruskal-Wallis test.

(H) Population response vector correlation shows little discrimination between male and female conspecifics in LA, and greater discrimination in BA and BMA.
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neurons responded to three or more events), and the majority of

these had narrower waveforms and higher baseline firing rates

compared with the more silent putative pyramidal neurons (Fig-
2 Cell Reports 39, 110921, June 7, 2022
ure S2). A smaller proportion of neurons that were not classified

as panresponsive or event specific instead decreased in firing to

one or more stimuli (7.7%). There were no significant differences
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in response intensity to different events, suggesting that, as a

whole, the BLA does not prefer one type of ethological stimulus

over another (Figure S2).

We observed strong population correlations between presenta-

tions of the same event type, despite significant behavioral vari-

ability during the event period (Figures 1E and S1). The selectivity

of these responses for stimulus class was so strong that it was

possible to use a decoder to identify the stimulus with 77% accu-

racy (Figure S3). Decoding of stimulus identity was possible with

relatively few neurons (Figure S3, performance plateaus with 10

neurons) and that effect was largely, but not exclusively, driven

by the contribution of event-specific neurons (Figure S3). In a sub-

set of neurons reliably tracked across 2 days of recording, single-

unit responses to events remained stable and specific (Figure S4).

Different stimuli are represented in different
subdivisions of the BLA
The large number of electrodes and their density along the Neu-

ropixels probes, together with careful placement of the probes

within the BLA, allowed simultaneous recording from two or

more subdivisions of the BLA including lateral (LA), basal (BA),

and basomedial (BMA) in each animal (Figure S5; STAR

Methods). All three subdivisions contained roughly the same

percentage of multimodal panresponsive cells (11%–12%) and

the same percentage of cells that decreased firing (7%–8%)

but differed in number and type of event-specific neurons. LA

contained fewer responsive neurons, fewer putative interneu-

rons, and had lower average baseline firing rates compared

with the BA and BMA (Figures S2 and S5). Non-social (food

and toy) events were more highly represented in the LA and

BA (77% and 67% of event-specific neurons), while social

events were more prominent in the BMA (74%) (Figures 1F,

1G, and S5). At the population level, this resulted in BMA and,

to a slightly lesser extent, BA distinguishing strongly between

males and females (Figure 1H). Decoding of social stimuli

improved at greater depths corresponding to the ventral BA

and BMA (Figure S5).

Increased firing in neurons temporally linked to
identification of the ethological event
Responsive BLA units exhibited large sudden increases in firing

activity around the time of event onset (Figures 2A and 2B). To

further understand the temporal dynamics of this increase, we

divided the event start into distinct periods (presentation, inter-

action, and direct contact; Figure 2C; STARMethods). The dura-

tion of the event start epoch varied based on the behavior of the

implanted rat and the stimulus (Figure 2D). Using this intrinsic

variability, we observed that panresponsive cells showed a brief

transient period of activity at both the presentation and removal

of the stimulus regardless of the stimulus identity (Figures 2E, 2F,

and S6), while the largest increase in firing in both event-specific

and panresponsive neurons occurs seconds prior to direct con-

tact with the stimulus. This increased activity likely reflects

awareness of stimulus identity or the decision to interact

(Figures 2G–2I) and was not linked to any identifiable behavior.

Unit activity profiles showed similar temporal patterns across

the four classes of stimuli despite their very different sensory

natures and across 2 days of recording (Figure S6), strongly sug-
gesting identification of the event and not its specific sensory

characteristics.

Firing persists in a subset of BLA neurons after stimulus
removal
In contrast to the sharp increases in firing activity seen at event

onset, elevated firing continued in approximately 30% of

responsive neurons after the removal of the stimulus (33% of

event-specific neurons and 27% panresponsive compared

with 9%nonresponsive; Figures 2J and 2K). Figure 2A shows ex-

amples of this after-response in a male-responsive cell (top) and

a panresponsive cell (bottom; also Figure 1C, top two panels).

The period of persistence differed between cells and even within

cells during different presentations of the same event, with some

elevated firings lasting the entire post-event and others decaying

at a faster rate. All stimuli were capable of producing these after-

effects and aftereffects were present on the second day of

recording in slightly fewer neurons (Figure S6). Compared with

baseline, the population firing activity in the post-event period

was capable of decoding stimulus identity, suggesting that this

activity may function as a memory trace (Figures 2L and 2M).

Firing rates of activated neurons are modulated by
specific social interactions
Once firing activity was triggered by an event, behavioral

interaction caused short-term fluctuations in firing rates

(Figures 3A–3C). To study these micro-behaviors, we classified

key social behaviors using an support vector machine classifier

(SVC) trained on manually annotated video data (Figure S7 and

Video S5). From the resulting automatically classified social

behavior, we calculated the inter-individual distance that best

discriminated social versus non-social interaction and applied

this metric to non-social events (i.e., toy and food; Figure S7;

see STARMethods) as well. Event-specific neurons only showed

micro-behavioral modulation in response to their own tuned

stimulus (Figures S7 and S8). The micro-behavioral correlation

was higher at the population level than at the single-unit level,

and there was no difference in anatomical location between units

that showed micro-behavioral modulation and those that did not

(Figure S8). Linear discriminant analysis (LDA) decoding on BLA

population activity allowed reliable decoding ofmicro-behavioral

modulation in all four event types (Figures 3D and S9), and de-

coding performance was strongly dependent on the number of

neurons used (Figure S9). We further examined social events

to see whether single units fired in response to common social

micro-behaviors, including sensory behaviors (head-to-head

contact, head-to-tail contact), movement-related behaviors

(approach and following), and passive contact initiated by the

conspecific. We found units showing increases or decreases in

response to all these specific social behaviors, with head-to-

head contact particularly well represented (Figures 3E–3I and

S8). Although these neurons reliably responded to specific be-

haviors, their responses were not unique to these behaviors (Fig-

ure S8). Less common social behaviors, such asmating between

the implanted rat and a female conspecific, were not obviously

reflected in BLA neuronal activity (Figure S8).

To examine the influence of motor activity on BLA neurons,

we cross-correlated firing activity with the speed before, during,
Cell Reports 39, 110921, June 7, 2022 3



Figure 2. BLA neurons fire at the beginning of, during, and after an ethological event

(A) Abrupt increase in activity at event onset and its slow decay afterward in typical event-specific (top) and panresponsive (bottom) neurons.

(B) Event-specific and panresponsive neurons show this pattern of sharp increase in activity with sustained activity for several minutes following event start

across different events.

(C) Event start can be further divided into distinct periods based on behavior. After baseline recording, the stimulus is placed at the opposite end of the chamber

(presentation). Following a decision to engage, there is direct physical contact between the implanted rat and the stimulus.

(D) There is a large variation in time to contact after presentation, with an average of about 10s.

(E andF) (E) Warping each event start into a common time frame reveals differences between panresponsive and event-specific neurons, with increased activity

occurring during the presentation period exclusively in panresponsive neurons and event-related firing starting in both event-specific and panresponsive before

contact. This effect is quantified in (F). **p < 0.001; significant effects for neuron-type, time point, and interaction; N = nonresponsive (2,960), panresponsive (320),

event-specific (423) trials; ordinary two-way ANOVA.

(G) Step-like increases in population activity prior to direct contact in (E) are caused by clusters of neurons rapidly switching onwithin a single event, as seen in this

representative example.

(H and I) Within a single-event trial, individual neurons initiate their firing within seconds of each other, indicating a uniform population response to the eliciting

event. This is quantified by comparing the relative timing of firing activity of responsive neurons within individual events with the relative timing of firing activity of

the same neurons across different events (see STARMethods). **p < 0.01; N = within-event (3,231), across-event(2,026) neuron pairs; Kolmogorov-Smirnov test.

(J) In contrast to the rapid onset of activity at event start, after event offset, many neurons continue to show elevated firing activity for severalminutes (aftereffects).

(K) This elevated activity occurs in approximately 30% of event-specific and panresponsive neurons and persists long after event stop.

(L) Stimulus identity can be reliably decoded from neuronal activity both during the event (area shaded gray) and after the stimulus is removed. Decoding accuracy

is significantly higher than baseline (M), (*p < 0.05; baseline, 0.26 ± 0.01; early event, 0.78 ± 0.06; late event, 0.74 ± 0.06; post event, 0.48 ± 0.05; mean ±SEM; N =

4 rats; repeated measures one-way ANOVA). Data on box plots correspond to the median and 25th–75th percentiles.
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and after events and identified 28% of BLA neurons that show

some speed correlation. These speed-correlated neurons only

modestly overlapped with BLA neurons encoding event micro-
4 Cell Reports 39, 110921, June 7, 2022
behaviors (Figures 3B and 3C), and firing activity was unable

to decode whether the animal was moving or stationary

(Figure S10).



Figure 3. BLA neuronal activity is modulated by interaction with the stimulus with a subset of neurons reacting to discrete social behaviors

(A) Representative trial showing modulation of firing activity (population, top; single-unit raster plots bottom) by interaction with a female conspecific (social

behavior shaded in pink).

(B and C) (B) The majority of both event-specific and panresponsive BLA units are modulated by social interaction in the same proportion (C).

(D) Behavioral interaction with a stimulus can be decoded from neuronal activity (**p < 0.01; shuffled, 0.50 ± 0.002; actual, 0.68 ± 0.01; mean ± SEM; N = 60

events; paired Student’s t test).

(E) Representative example of a single unit showing time-locked firing increases during head-to-head contact (green ticks). Note that the unit also bursts outside

these contacts.

(F) Peri-event histogram of the unit in (E) showing all instances of head-to-head contact (at 0).

(G) Z scored peristimulus time histogram (PSTH) traces for all head-to-head contact units sorted by magnitude of response.

(H and I) (H) The proportion of units that increase (red) and decrease (blue) firing to specific social behaviors by behavior type and (I) neuronal class.
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Event-specific neurons drive firing in panresponsive
neurons
We identified the directionality of firing and connection strength

from significantly cross-correlated BLA neurons throughout the

entire recording session (STAR Methods; Figures 4A, 4H–4J).

This revealed a clear circuit structure where, typically, several

event-specific neurons conveyed information to single panres-

ponsive neurons through putative monosynaptic inputs

(Figures 4B–4F and S11). Connected neurons tended to lie within

200 mmof each other (Figure 4G). To test how these connections

changed in response to presentation of the ethologically relevant

stimulus, we calculated the connection strength from correlated

neurons before, during, and after the first presentation of each

stimulus type (Figures 4K–4M). Connection strength significantly

increased during the post-event period both at the population

level and within continuously active pairs of correlated neurons

(Figures 4N and 4O). These results support a model where firing

from event-specific neurons drives activity in panresponsive

neurons, likely driving increased plasticity within the BLA.

DISCUSSION

The BLA contains information about many important aspects of

the ethological events studied in this experiment. Unlike other
areas often described as part of the social circuitry (e.g., prefron-

tal cortex, medial amygdala) (Li et al., 2017; Levy et al., 2019), the

BLA as a whole did not show a strong preference for social or

non-social events. Instead, such a preference was manifested

at the level of BLA subdivisions with non-social (food and toy)

events represented in the LA and BA and social conspecific

events in the ventral BA and BMA. The BMA and, to a slightly

lesser extent, BA further distinguished strongly between males

and females. Subnuclear preferences for different events are

consistent with reported anatomical differences in BLA connec-

tivity (Beyeler et al., 2018). However, female conspecifics acti-

vated event-specific neurons across the whole BLA, which

may be due to female stimuli recruiting multiple downstream cir-

cuits compared with male stimuli; for example, circuits neces-

sary for identifying and responding to sexual receptivity. The

similarity in temporal response profiles across events and

anatomical subdivisions suggests that, despite the recruitment

of different neuronal clusters, the coding principles used by

BLA neurons during different ethological events are likely similar

at the cellular and circuit level.

At the single-cell level, we identified two main classes of BLA

neurons. Approximately 30% of BLA neurons (event-specific

neurons) exhibited well-tuned macro-scale increases in firing to

one of the four ethological events in our study. These neurons
Cell Reports 39, 110921, June 7, 2022 5



Figure 4. Event-specific neurons drive firing activity in panresponsive neurons

(A) BLA cells are highly interconnected. Representative cross-correlograms show short-latency, putative monosynaptic connectivity between BLA neurons.

Connected target neurons exhibited a sharp increase in firing within milliseconds of the projection neuron firing (see STAR Methods).

(B) BLA circuit model suggested by the cross-correlation results where different event-specific neurons drive firing in panresponsive neurons.

(C) Throughout the entire recording session, we identified 234 pairs of BLA neurons with short-latency cross-correlations. Within these pairings, the majority of

projection neurons were event specific or nonresponsive, while the majority of target neurons were panresponsive.

(D) Individual projection neurons had few downstream targets (top), while target neurons, specifically panresponsive neurons, often received input from many

projection neurons.

(E) The majority of correlated neuron pairs fired within 1–2 ms of each other, suggesting putative monosynaptic connections.

(F) Connectivity between specific types of neurons was seen more often in the BLA than expected by chance (>1 = more likely than chance, <1 = less likely than

chance).

(G) The majority of connected neuron pairs were located within 200 mm of each other, closer than expected by chance.

(legend continued on next page)
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were anatomically localized, encoded the identity of the etholog-

ical stimuli, and continued to signal the most recent event for mi-

nutes after its termination. They drove firing in a second class of

BLA cells (panresponsive neurons), which fired in response to

multiple ethological events, signaled the beginning and the end

of each event by brief bursts of action potentials, and received

input from multiple neurons, including event-specific neurons

and other nonresponsive neurons.

Given the stable responses of individual event-specific neurons

to a single ethological stimulus, we suggest that these BLA neu-

rons may be hard-wired to respond to innate naturalistic stimuli

(for example, male or female conspecifics, food, or prey), and hy-

pothesize that the detection of these stimuli is one of their primary

functions, reminiscent of neuronal responses to salient stimuli like

faces previously reported in other brain areas (Freiwald and Tsao,

2010). To our surprise, neuronal responses to the moving toy

mouse were both selective and stable. Based on the rat’s behav-

ioral response to this stimulus (i.e., high levels of engagement,

chasing, and occasional chewing), we suggest that the rat viewed

the toy as the real thing (i.e., as prey). On this view, we would pre-

dict that many of the neurons in the BLA classified as nonrespon-

sive would respond selectively to other ethologically significant

stimuli, such as rat pups, nests, other salient locations, or preda-

tors. In our study, nonresponsive neurons resembled event-spe-

cific neurons with low baseline firing rates, broad waveforms,

and similar directional connectivity to panresponsive neurons.

We further speculate that continued experience with different

males, females, or types of food might lead these cells to begin

to distinguish individual animals or foods, respectively.

Once activated by a given event, the firing patterns ofmanyBLA

cells are modulated by the microstructure of the event, most

notably by active interaction with the stimulus. This suggests

that activated clusters of BLA neurons represent finer-grained de-

tails of the event, including specific sensory social behaviors,most

predominantly head-to-head contact. Our study looked only at a

limited set of specific behaviors associated with sensory inputs,

and it is likely thatBLAneuronsaremodulatedbya host of sensory

and behavioral factors (e.g., smells, taste, auditory vocalizations).

For example, it is known that social transmission of olfactory infor-

mation about edible foods is transmitted by the breath of the in-

forming animal and is amygdala dependent (Wang et al., 2006).

The firing modulation seen in our study is similar to previously

described BLA state-dependent activity (Gr€undemann et al.,

2019; Botta et al., 2020; Fustiñana et al., 2021).

In addition to providing evidence that the BLA is involved in

identification of ethologically salient stimuli, the results show

that single neuronscontinue toprovide informationabout thepre-

vious event forminutes after its cessation. TheBLAhas awell-es-
(H–J) (H) Connection strength between pairs of neurons (see STAR Methods). P

specific, nonresponsive, and other panresponsive neurons (I and J).

(K) Number of neuron pairs with significant cross-correlations before, during, an

(L) During these events, projection neurons were once again more likely to be

dominantly panresponsive.

(M and N) (M) Connection strength increases in the post-event period. This is

correlated neuron pairs; Kruskal-Wallis test.

(O) Increase in connection strength of individual neuron pairs between the event

pairs; event to post-event connectivity, **p < 0.01, N = 157 neuron pairs; Studen
tablished role in memory consolidation and recall (McGaugh,

2004), and inhibition of the BLA or activation of specific engram

cells can affect this process (Han et al., 2009; Liu et al., 2012).

The aftereffects seen in our data might support short-term active

memories allowing subsequent recognition and recall of the

event. Theymight also be required for consolidation in other brain

areas or the elicitation of long-term hormonal responses by these

events. These effects have been observed at smaller scales in

other brain regions (e.g., cortex, hypothalamus) (Curtis and Lee,

2010; Kennedy et al., 2020), but the BLA responses are unique

in their long timescales, oftenexceeding5min induration.Wehy-

pothesize that this long-term persistent BLA firing originates with

the BLA event-specific neurons, which then trigger firing in BLA

panresponsive neurons. These panresponsive neurons may

release neuropeptides or other signalingmolecules that maintain

and reinforce high activity in the BLA for long periods of time. It

remains to be seen how BLA projection neurons relate to the

functional classes described in this study (e.g., do the same

event-specific neurons that send local BLA connections to pan-

responsive neurons also project to other brain structures?).

Limitations of the study
In this study, we allowed rats to engage in a semi-naturalistic task

where they could freely interact with four distinct stimuli types.

While this design allowed us to directly compare the neuronal re-

sponses between these stimuli to begin to understand the BLA’s

neuronal heterogeneity, many questions remain. BLA population

and single-cell activity often remained elevated for longer than

the 10 min between stimulus presentations. Since firing from

strongly activated event-specific neurons sometimes extended

into additional event periods, a complete characterization of

aftereffect timecoursewasnot possible. Future studies designed

to explicitlymeasure aftereffects would benefit from fewer stimuli

presented, longer recordings, and explicit control of behavior af-

ter stimulus removal to fully understand their role in BLA activity.

On the other hand, to understand whether silent nonresponsive

BLA neurons might be recruited by other ethological stimuli, we

intend to present the rat with a greater range of stimuli, including

sensory-specific stimuli (e.g., auditory tones, odors) and multi-

sensory stimuli, as well as additional ethological ones.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
anresponsive neurons were more likely to receive stronger input from event-

d after the first presentation of each stimulus.

event-specific or nonresponsive neurons, whereas target neurons were pre-

quantified in (N). *p < 0.05, N = baseline (100), event (157), post-event (107)

and post-event period (baseline to event connectivity: p = 0.54, N = 65 neuron

t’s paired t test).
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-GFAP DAKO Logistics Company ApS N1506; RRID:AB_10013482

Goat anti-rabbit Alexa Fluor 568 Life Technologies Limited A11011; RRID:AB_143157

Chemicals, peptides, and recombinant proteins

Neuro-DiO Biotium #60015

Experimental models: Organisms/strains

Lister Hooded Rats Charles River 603

Software and algorithms

Spike GLX https://billkarsh.github.io/SpikeGLX/ N/A

Kilosort 1.0 https://github.com/cortex-lab/KiloSort N/A

DeepLabCut 2.0.1 https://github.com/DeepLabCut/DeepLabCut N/A

scikit-learn https://scikit-learn.org/stable/ N/A

scipy https://scipy.org/ N/A

Prism 8 GraphPad https://www.graphpad.com/

scientific-software/prism/

Custom analysis code [Zenodo]: [10.5281/zenodo.6547050] https://zenodo.org/badge/

latestdoi/491890756
RESOURCE AVAILABILITY

Lead contact
Further information and request for resources and should be directed to and will be fulfilled by the lead contact, Cristina Mazuski (c.

mazuski@ucl.ac.uk).

Materials availability
This study did not generate new reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d Original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All rats used in these experiments were adult male or female Lister Hooded rats. Rats were housed in large clear plastic cages and

maintained on a 12h reverse light/dark cycle (lights on at 21:30) in a temperature and humidity-controlled room. 5 adult male rats

received Neuropixels implants. They weighed between 450 and 600g, were 3-6 months of age, and had never been housed with

or exposed to female conspecifics prior to the experiment. Prior to surgery, they were housed 2-3 per cage and single-housed after

Neuropixels implantation. Implanted rats were fed once per day and maintained at least 90% of their pre-restriction body weight.

Both female and male rats were used as social conspecifics. Females were between 4 and 12 months of age to ensure possible sex-

ual receptivity and male conspecifics were between 3 and 6 months. Conspecific rats were housed 2-3 per cage and received ad

libitum access to food. All rats (conspecific and implanted) received ad libitum access to water. All animal procedures were conduct-

ed in accordance with the UK Animals (Scientific Procedures) Act (1986).
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METHOD DETAILS

Neuropixels implantation
To record fromBLA neurons, rats underwent stereotactic surgery to implant a Phase 3ANeuropixels probe (Jun et al., 2017) targeting

the left BLA. Rats were anaesthetized with isoflurane in O2 (2-3%) and given pre-op analgesia subcutaneously (Carprieve 5mg/kg)

before being placed in a stereotaxic device. All 5 rats were implanted in the left hemisphere (BLA coordinates relative to bregma,

�2.8mm anterior, 5mm lateral and -9mm ventral). A stainless steel reference screw located in the right frontal cortex was connected

to the ground/reference cable of the Neuropixels probe during surgery. 2-4 additional screws were threaded into the skull to support

the anchoring of the implant with superbond and light curable epoxy. The implant was protected with a copper mesh cage that pro-

vided physical protection to the probe, and being grounded to the probe/reference screw, shielded against electrical noise. The

opening of the copper mesh cage was wrapped with 3M Coban wrap when the probe was not in use.

4 rats received retrievable Neuropixels implants where the Neuropixels probe was dipped into concentrated Di-O (Neuro-DiO,

Biotium, 50mM in isopropanol) 1-2 h prior to implantation. Briefly, the Neuropixels probe was epoxied onto a 3-part CNC machined

holder that permitted retrieval of the intact probe post-experiment for later re-use. 1 rat received a Neuropixels probe permanently

implanted in a custom-designed 3D printed holder. Post-surgery rats received analgesic and antibiotic mixed in strawberry jelly for 3

and 5 days respectively (Metacam 1mg/kg, Baytril 1%). Animals were allowed to recover for 48 h before a test baseline recording and

72 h before full experiments commenced.

Neuropixels probes were retrieved for reuse after the experiment was completed in 4 rats (average duration of recordings was

7-10 days). Briefly, the rat was reanesthetized (isoflurane in O2, 2-3%) and the copper mesh cage surrounding the implant was

removed. Since the Neuropixels probe was solely attached to 1 part of the CNC machined holder, we carefully unscrewed

this part from the rest of the holder that was affixed to the skull with superbond. The probes were carefully removed, tested, cleaned

(1h in 1% Terg-a-zyme in MilliQ, Sigma-Aldrich, followed by 1h in milliQ) and reused (3 probes used in 4 rats). Anaesthetized rats

immediately received an overdose of sodium pentobarbital prior to perfusion.

Histology
After completion of the recording session and/or probe retrieval, rats under isoflurane anaesthesia received an overdose of sodium

pentobarbital and were transcardially perfused with phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA). In the 4 rats

that received a Di-O dipped Neuropixels probe, brains were transferred to phosphate buffer (50mMPB) and then coronally sectioned

in 50um steps while simultaneously imaged using a custom serial two-photon tomography microscope. For the other rat, the brain

was transferred to 30%sucrose in PBS for at least 48 h and frozen on dry ice prior to sectioning on a cryostat. Frozen coronal sections

cut at 40 umwere collected and stained for GFAP expression (primary antibody: DAKO anti-rabbit GFAP 1:500 in PBSGT - 1%normal

goat serum and 0.3% Triton-X in PBS; second antibody: goat anti-rabbit Alexa 568 1:500 in PBSGT). Mounted sections were imaged

using a Zeiss Axioscan. Regions of the Neuropixels probe within the BLA were determined by manually registering the Di-O or GFAP

track onto the Paxinos brain atlas and mapping the coordinate channel locations of the Neuropixels probe onto the track.

Data collection/experimental setup
Neuropixels recordings took place in a custom-made rectangular acrylic box measuring 100 cm3 70 cm with 45cm high walls. The

chamberwas illuminated by 6 LED photo lights (F + VK320 Lumic Daylight LEDVideo Light,Wex lighting) for consistent illumination of

the space. Continuous video recordings (minimum 30Hz frame rate) were taken with a Basler color video camera (acA2500-60uc

Basler Ace USB Camera with Kowa LM8HC camera lens) focused to the floor of the chamber. Neuropixels recordings collected

at 30KHz were multiplexed and digitized on the probe and sent via a connected cable to an FPGA board. Extracellular recordings

were collected and saved in binary format using SpikeGLX software (https://github.com/billkarsh/SpikeGLX). The video camera

was controlled through custom-written software on labview which saved compressed avi video files of the experimental events

and sent a 5V synchronizing signal to the Neuropixels board (National Instruments 2018 with NI USB-6000 for 5V pulse generation).

To stabilize the Neuropixels cable and headstage and prevent pulling of the delicate Neuropixels flex cable, we 3D printed a custom-

designed holder that held and protected the headstage and cable connection. This was secured to the coppermesh cage on the rat’s

head using alligator clips and counterbalanced with a small weight.

After a baseline recording and habituation to the recording chamber, we started experiments. Rats implanted with Neuropixels

probes were connected to the recording apparatus and allowed to freely explore the chamber. The counterbalance was adjusted

as needed for the individual rat. During a single experimental day, rats were presented with a battery of different presentations

including female conspecifics, male conspecifics, remote-controlled toy mice (HEXBUG 480-4466-00TG12 Remote Control Mouse

Cat Toy) and sweetened cooked rice. Following 5 min of baseline recording, each stimulus was placed into the box on the opposite

side of the implanted rat and the rat and stimulus were allowed to freely interact. Social interaction was only discouraged when there

was danger to the Neuropixels probe (i.e. conspecific rat climbing upon or attempting to chew on the exposed bit of the probe). After

5 min of free interaction with the stimulus, the stimulus was removed from the box during a suitable window (i.e. when there was a

break in the social interaction or in the case of food when the rat had finished eating). Recordings were continued for an additional

5 min prior to the chamber being wiped clean of any feces or urine and the start of the next event sequence. In a randomized order,

social conspecifics were presented 2-4 times each while non-social toy and food were presented once each. The entire battery of
Cell Reports 39, 110921, June 7, 2022 e2
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presentations was then repeated once more in the same order. Rarely, the implanted rat had to be carefully untwisted due to exces-

sive turning in one direction. To do so, between different stimulus presentations, rats were carefully lifted and untwisted to preserve

recording integrity. Experiments were repeated for a minimum of 2 days. 1 of the 5 rats did not receive repeat presentations of stimuli

and did not have color labelling necessary for multi-animal tracking, therefore the data from that rat was only included in Figure 1.

Single-cell isolation from multi-unit recordings
Neuropixels and video data were saved in a single file each for individual events. Neuropixels data was concatenated across an entire

recording day, noisy channels were removed from analysis and the rest of the data was median subtracted to remove artifacts com-

mon across the probe. Single units were isolated through Kilosort 1.0 (https://github.com/cortex-lab/KiloSort) and manually curated

using Phy or Phy2.0 (https://github.com/cortex-lab/phy). Single units were manually curated according to the following criteria: less

than 0.1% of spikes violated the cell refractory period of 2ms, spike waveform was consistent with a single unit, amplitude of at least

40mV and absence of any 50Hz noise in autocorrelogram. Waveform and crosscorrelograms of all nearby units were compared to

verify that there were no two clusters corresponding to the same neuron.

Synchronization of video and electrophysiology
During each frame acquisition of video data, the labview programgave a random 80%chance that a 5V pulsewould be sent out to the

Neuropixels board. The resulting pulse or no pulse was recording by the program along with the relative timing, preserving a copy of

the exact synchronizing spike train that represents the camera frames. We extracted the received spike train from the synchronizing

channels of the Neuropixels board through a custom-written python program and verified that the pulses received by the Neuropixels

board were of the exact number and sequence as the pulses recorded sent by Labview. We extracted the timing of the received

pulses by the Neuropixels board, interpolated based on framerate for the 20% of not-sent pulses and used this as the synchronizing

index for synchronizing video to electrophysiology.

Tracking from video data
Prior to experiment, the white fur on the tailbase of 4 implanted rats was marked with a purple marker. Conspecific rats also received

fur colorings on their right ear, left ear and tailbase with yellow, orange and blue colors, respectively. All conspecific rats received the

same color patterns. This color pattern was replicated on the moving toy mouse to approximate the ‘ears’ and tailbase.

All video data was post-processed offline to identify the coordinate positions of all animals and objects in the recording chamber.

We trained Deeplabcut 2.0.1 (Mathis et al., 2018) on videos from 3 different recording sessions which contained different implanted

rats and different conspecific rats. Using this trained network, wewere able to reliably identify 10 different body parts per rat across all

videos. On the implanted rat we identified the following: the left and right headstage, the head location, the left, right, and center

napes, the left, right, and center mid-back, and the tailbase. On conspecific rats we identified the left and right ears, the nose, the

left, right, and center nape, the left, right, and center mid-back, and the tailbase. Deeplabcut tracking of the experimenter-colored

body parts had better accuracy, so we thresholded the other body parts per rat to exclude data points where there was an unnatural

distance between body parts. We also excluded all points that were under 0.999 probability for the experimenter-colored body parts

and 0.9 for the other body parts. Data was then interpolated linearly to fill in gaps.

From the xy coordinates of the 20 tracked body parts, we calculated features relevant to social behavior. The features, calculated

independently for the implanted rat and conspecific, are as follows; head velocity, tailbase velocity, spine length, head angular ve-

locity, and tailbase velocity offset by 1s; from both animals: interindividual distance between different body parts (head, tailbase,

nape, and back), headdirection from one rat to the other rats different body parts, the difference in head angle between that of

the implanted rat and that of the conspecific, the difference in interindividual distance between the two rats’ heads on the one

hand, and the implanted rat’s head and conspecific’s tail on the other, the difference in the headdirection between the two rats’ heads

and the implanted rat’s head and conspecific’s tail, and the correlation between head and tail positions over 1s. We removed outliers

from these features and interpolated any missing data.

Classifying responsivity of individual neurons
We evaluated the response of each individual neuron to each event. Briefly, we calculated the firing rate of each neuron with 1s bins

and compared the firing rate from the 5min event period to the firing rate of the immediately preceding 5min baseline period. We

computed the receiver operating curve (ROC) and from that calculated the area under the receiver operating curve (auROC) and con-

verted this into a response score (auROC�0.5)3 2. We assigned a response score of 0 (auROC of 0.5) to neurons that had low firing

rates during the baseline and event periods (less than 50 spikes).

To calculate the average response score, we averaged the response score for each of the 4 stimulus types (male, female, food, and

object) and set the threshold for responsiveness at +0.2. Neurons that had a response score above 0.2 for more than one modality

were classified as multimodal and split into 2 categories – panresponsive (significant scores on both social and non-social stimuli) or

non-social/social. A large proportion of units exceeded the threshold on only one specific stimulus type (event-specific) and these

were classified based on their stimulus preference. Units that did not increase firing in response to any stimulus presentation

were further split into 2 groups (non-responsive and firing decreases). Neurons that decreased firing had average response scores

less than �0.2 for at least one modality.
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Classification of putative pyramidal neurons and putative interneurons
We calculated the waveform for each recorded neuron by extracting the raw voltage trace from 500 randomly selected spiketimes

per neuron. We averaged these voltages together and calculated the time delay between the trough and peak. A small fraction of

waveforms had inverted waveforms (where the peak voltage precedes the trough) and these were excluded from the analysis and

classified as irregular waveforms. To divide the rest of the neurons into putative pyramidal or interneurons we plotted the peak to

trough distance against the baseline firing frequency from the first 5 min of each recording day. We divided the results into 2 groups

using K-Means clustering, with putative pyramidal neurons having longer peak to trough to distances and lower baseline firing rates

and putative interneurons having shorter trough to peak distances and higher firing rates.

Population correlation of response scores
To calculate the correlation between population response scores across different stimulus presentation, we calculated the popula-

tion vector for all responsive neurons (multimodal and event-specific) for each stimulus presentation. To combine population vectors

across different rats, we defined social presentations (e.g. female1 and female2) as being the first 2 conspecifics of the same sex

presented. If therewas also a third female ormale conspecific presented to that rat, theywere not shown in the heatmap, but included

in the quantification. We calculated the Pearson’s correlation between the calculated population vectors.

Decoding stimulus identity from neural activity
To test whether the population response score accurately represents the stimulus identity, we used Linear Discriminant Analysis

(LDA, python package Sci-kit learn). For each rat, we trained the LDAdecoder on all the population response scores of all the stimulus

presentations except one and then tested on the omitted dataset (leave-one-out method). We repeated this until we had a predicted

stimulus type of each stimulus presentation and calculated the accuracy of these labels against the correct labels, giving one score

per rat. We then repeated 500x with shuffled labels and calculated the control score per rat.

To calculate how the number of neurons used in the decoder affected performance, we trained the LDA decoder on a random se-

lection of neurons at increasing numbers (from 2 neurons to the maximum number of neurons per rat, 500x per neuron number se-

lection). We then repeated this analysis, but instead of using all neurons in the dataset we omitted specific classes of neurons (pan-

responsive, event-specific and nonresponsive). We calculated the change in performance of the decoder for each rat by subtracting

the performance using all neurons from the performance with the omitted neurons controlling for neuron number.

To calculate how the location of neurons affect the accuracy of the LDA decoder for social events, we recalculated the accuracy

using the leave-one-out method for all social events but only included neurons from the same rat located within 500um of each other,

with a minimum of at least 10 neurons included in the dataset.

To calculate how firing around the time of stimulus contact affected the performance of the LDA decoder, we used the leave-one-

out method described above to calculate the accuracy of an LDA decoder trained on a shifting window of 10s of neuronal firing data

from 30s before stimulus contact to 30s after contact. We compared the accuracy per rat in 5s epochs from 10s before stimulus con-

tact to 5s after.

Quantification of differences in firing onset and firing offset
We calculated firing rate data at event start with bins of 100ms per neuron. We z-scored the firing rate to the baseline firing rate per

event. For visualization across different events, we time-warped individual z-scored traces using Spline Interpolation into a common

timeframe. All quantification was performed on the non-interpolated raw z-scored data.

To calculate whether individual units within a specific trial started firing at similar times, we calculated the time delay to peak firing

per unit after stimulus presentation but before direct contact. We calculated the Euclidian distance between these values for all units

within a single trial. We compared this to the Euclidian distance of the time delays between the firing onsets of the same unit within

different trials.

To calculate aftereffects, we once again took z-scored firing rate data from individual stimulus presentations and sorted based on

largest average z-score difference in the post-stimulus presentation period relative to baseline. We calculated the proportion of neu-

rons with an average z-score above 1 in 10s bins for 3 min after stimulus removal.

To test whether neural activity before and after interactionwith a stimulus can decode stimulus identity, we trained an LDA classifier

on response scores during the event period. We calculated the response score from 2min before event start to 2 min after event stop

in 10s bins and testing decoding performance across this binned data.

Automatic classification of behavior from video data
To facilitate the analysis of whether neurons respond to specific social behaviors, we trained a support-vector classifier on 7 videos of

manually annotated social behavior. We annotated videos frame-by-frame with one of 7 different labels (non-social, head-head,

head-tail, approach, following, conspecific-initiated contact and other social) as detailed.

Non-social: No social engagement from either the implanted animal or conspecific.

Head-to-head: Implanted animal and conspecific facing each other and making direct contact with snout or whiskers

Head-to-tail: Implanted rat less than one head’s distance from the ano-genital region of the conspecific

Approach: Implanted rat moving towards a stationary conspecific
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Following: Implanted rat greater than one head’s distance from the conspecific with both animals facing and moving in the same

direction

Conspecific-initiated contact: Implanted rat is turned away from the conspecific, while the conspecific is engaged with and

touching the implanted rat (usually sniffing the implanted rat’s backside or flank).

Other Social: All other social engagement, which includes but is not limited to social grooming, boxing, flank nipping, mounting.

Using the trained SVC classifier, wewere able to automatically and reliably identify social and non-social periods aswell as specific

social behaviors including head-to-head contact, head-to-tail contact, approach, following and conspecific-initiated contact. We

used 30 features calculated from the xy coordinates for the 20 body parts on the 2 different rats and trained the support vector clas-

sifier with rbf kernel. Using 5-fold cross-validation, initial tests revealed that the SVC classifier correctly labeled data with 97% ac-

curacy. We retested the SVC classifier by omitting one out of 7 of the manually annotated datasets in each iteration and determined

that the SVC classifier had an accuracy of approximately 90% for frame-by-frame annotation prediction. We then trained the rest of

the collected videos on the trained SVC classifier of the manually annotated data and post-processed the bouts by removing

behavior gaps shorter than 0.25ms and behaviors that lasted for less than 5 frames.

We performed a simpler automatic classification of non-social videos. For interaction with a moving toy object, we calculated the

optimal pixel threshold for differentiating social contact vs no-contact from the automatically identified social video data and applied

this threshold to the videos depicting toy interaction. For the food interactions, given that the rat was stationary while eating the sweet

rice, we used the video and tracking data to draw an ROI at the position where the rat was eating the sweet rice and used this to

calculate moments of eating vs not eating the sweet rice.

Calculating unit response to behavior
To calculate whether individual units increased or decreased their firing in response to specific behaviors, we compared firing rates of

each neuron for periods of interaction to periods of non-interaction that occurred after the point of first contact with the stimulus. We

calculated the auROC and response score for the comparison of these two distributions for each individual event and calculated the

average response by averaging the response score for all the events that the unit responded to (e.g. interaction score for event-spe-

cific units was calculated only from those events, etc.). Units that had an interaction score greater than +0.2 or less than �0.2 were

classified as increasing or decreasing firing in response to interaction.

To calculate whether units experienced time-locked increases or decreases to specific behaviors, we extracted the timestamps of

all individual behaviors (head-head, head-tail, approach, following, conspecific-contact) that lasted more than 1s. We calculated the

peri-event stimulus histogram for each behavior by extracting all spike times from five seconds before to five seconds after and

summed the spikes binned in 100ms.We z-scored the resulting average traces per neuron to the first 3 s and considering any neuron

showing a z score above +5 or below �5 to be responsive to that particular behavior.

Decoding behavior from neural activity
We took the z-scored population data with labels for interaction or non-interaction per individual event and calculated the ability of an

LDA decoder to predict whether the animal was interacting or not interacting with the stimulus using 5-fold cross validation. Each dot

represents a different event comparing the predicted score against the actual score using ROC analysis. We reran the analysis with

different numbers of neurons as well as separating the events based on stimulus type.

Cross-correlation analyses
To identify pairs of cross-correlated neurons across the entire recording session, we calculated the cross-correlogram for every

simultaneously recorded neuronal pair with a resolution of 0.25 ms. To determine significance, we identified cross-correlograms

with increased firing that exceeded 3 standard deviations. We used a peak detection algorithm on the cross-correlogram between

�5 and +5 ms (scipy.signal.find_peaks, height = 3 standard deviations above mean, width = 0.75 ms) and filtered the dataset to

only include cross-correlograms where the peak occurred after 0 ms and the peak width did not start before 0ms (representing

directional putative monosynaptic connections). We excluded neuronal pairs where either the projection or target neuron fired less

than 100 spikes or when the peak firing in the cross-correlogram was lower than 20 spikes. To determine neuronal connectivity

during the first presentation of each stimulus type, we determined how many of the previously identified cross-correlated neurons

showed significant cross-correlations during the baseline, event or post-event period for the 4 stimuli using the same criteria as

above.

To determine whether connectivity between certain types of neurons was overrepresented in the dataset compared to chance,

we calculated the actual incidence of different connection types in the dataset and compared that to theoretical incidence of the

connection type if the neurons were randomly connected (1000x random sampling between the observed projection and target

neurons).

To calculate connectivity strength, we determined the number of spikes that occurred during the detected cross-correlogram peak

and divided that by the total number of spikes fired by the target neuron during the epoch. To determine whether changes in con-

nectivity occurred within individual neuron pairs, we identified neuronal pairs that showed connectivity between two consecutive

epochs (baseline and event or event and post-event) and compared their connectivity strengths.
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Tracking neurons across two days of recording
To track neurons across two days of recording, for each neuron we calculated the normalizedmeanwaveform across 20 consecutive

Neuropixels channels. For each neuron on day1, we compared this waveform to the normalized, mean waveform from all neurons

within +/� 5 channels on day2. Briefly, for all possible day2 neurons, we calculated the structural similarity index (SSIM – a measure

of image similarity, scikit-image) from the centered waveform heatmaps and the per channel pearson correlation of the waveform

trace. We visually verified that the neuron pair with the highest SSIM and pearson correlation obviously correlated between day1

and day2. This resulted in 121 neurons tracked between day1 and day2.

Speed correlation
To determine whether the firing rate of individual neurons was correlated with animal speed, we binned neuronal firing data in 50ms

bins and cross-correlated with the speed vector during baseline, event and post-event periods. We calculated the average cross-

correlated profile during these 3 time periods and classified neurons as positively or negatively correlated with speed based on

whether the average cross-correlation at time 0 was higher or lower than the cross-correlation between �20s and �10s. As previ-

ously done with decoding behavior from neural activity, we took the z-scored population data alongside labels for rest or movement

per individual event and calculated the ability of an LDA decoder to predict whether the animal wasmoving or notmoving using 5-fold

cross validation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
The data in bar graphs are plotted as mean ± SEMwhere SEM refers to standard error of the mean. Data on box-plots correspond to

themedian and 25th-75th percentiles. Statistical analysis was performed in PRISM (Graphpad) software or using stats-models Python

packages and individual statistical tests are as noted in the figure legends. Differences between two groups were assessed using

non-paired Student’s t-test or Kruskal-Wallis test with Dunn’s correction where normality could not be assumed. Differences within

a group were assessed using paired Student’s t-test or Kologrov-Smirnov test where normality could not be assumed. Comparisons

between 3 or more different groups were assessed using 1-way analysis of variance (ANOVA) with Tukey’s test and 3 or more

comparisons within-group were assessed using repeated-measures 1-way ANOVA with Geisser-Greenhouse correction and Tu-

key’s test. Repeated-measures two-way ANOVAwith Geisser-Greenhouse correction followed by Sidak’s test was used to compare

how different groups evolved over time (i.e. event-specific or panresponsive neurons across time). To evaluate the association be-

tween two variables, Pearson correlation coefficient was used. p < 0.05 was considered statistically significant and p values are de-

noted by the number of stars, *, ** representing p < 0.05, p < 0.01, respectively.
Cell Reports 39, 110921, June 7, 2022 e6


	Representation of ethological events by basolateral amygdala neurons
	Introduction
	Results
	Single BLA cells identify the ethological event
	Different stimuli are represented in different subdivisions of the BLA
	Increased firing in neurons temporally linked to identification of the ethological event
	Firing persists in a subset of BLA neurons after stimulus removal
	Firing rates of activated neurons are modulated by specific social interactions
	Event-specific neurons drive firing in panresponsive neurons

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Animals

	Method details
	Neuropixels implantation
	Histology
	Data collection/experimental setup
	Single-cell isolation from multi-unit recordings
	Synchronization of video and electrophysiology
	Tracking from video data
	Classifying responsivity of individual neurons
	Classification of putative pyramidal neurons and putative interneurons
	Population correlation of response scores
	Decoding stimulus identity from neural activity
	Quantification of differences in firing onset and firing offset
	Automatic classification of behavior from video data
	Calculating unit response to behavior
	Decoding behavior from neural activity
	Cross-correlation analyses
	Tracking neurons across two days of recording
	Speed correlation

	Quantification and statistical analysis
	Statistics




