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Abstract 

The analysis of static deflections of an infinite beam resting on a nonlinear and 

discontinuous foundation is not trivial. We apply a recently proposed iterative nonlinear 

procedure to the analysis. Mathematical models of the elastic foundation are 

incorporated into the governing nonlinear fourth-order differential equation of the 

system and then, the differential equation is transformed into an equivalent nonlinear 

integral equation using Green’s functions. Numerical solutions of the integral equation 

clearly demonstrate herein that our nonlinear iterative numerical method is simple and 
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straightforward for approximate solutions of the static deflection of an infinite beam on 

a nonlinear elastic foundation. Iterative numerical solutions converge fast to 

corresponding analytic solutions. However, numerical errors are observed in a narrow 

neighborhood of material discontinuities of foundations. 

 

Keywords: Infinite Beam; Discontinuous Nonlinear Elastic Foundation; Green’s 

Function; Iterative method 

 

1. Introduction 

The purpose of this paper is to obtain nonlinear deflections of an infinite beam resting 

on a discontinuous nonlinear elastic foundation in a numerically stable and efficient way. For 

many years, the problem has attracted much interests in the fields of mechanical or civil 

engineering for its wide and practical applications; the analysis of the deflection plays an 

important role in the design of highways, rail tracks and long pipelines, floating offshore 

airports, and many other narrow and long structures lying on foundations. Hence, a number of 

studies have been carried out in order to analyze the nonlinear deflection of a thin body more 

realistically involving elastic foundations mathematically. 

Winkler (1867a, b), in the early stage, proposed the widely known linear elastic 

foundation model in which the relation between the deflection of a beam and applied force is 

linear. There have been many studies in the past on the identification of an infinite beam on 

uniform elastic foundation with linear and nonlinear elasticity (Beaufait & Hoadley, 1980; 

David, 1988; Failla & Santini, 2007; Hetenyi, 1950; Ho & Chen, 1998; Jang et al., 2011a; 

Kuo & Lee, 1994; Ma et al., 2009; Sharma & DasGupta, 1975; Timoshenko, 1926; Tsiatas, 

2010). Furthermore, some studies have included the effect of curvature as well as 
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displacement of the foundation layer (Pasternak, 1954; Filonenko-Borodich, 1940; Vlasov & 

Leontev, 1966).  

More specifically, Guo & Weitsman (2002) considered non-uniform elastic 

foundations; they presented an analytical solution for simply supported beams employing a 

Green’s function formulation and elementary numerical techniques. Their foundation model 

is the simple Winkler model with a spatially varying foundation. Many other studies have 

considered the nonlinearity of the problem, but their methods are strongly dependent on small 

perturbation parameters with a limited working range. So they cannot deal with a highly 

nonlinear system with a more realistic non-uniform (or discontinuous) elastic foundation. 

Moreover, the formulation and the mesh generation in their methods could be time 

consuming.  

Recent research by Choi and Jang (2012) shows analytically the existence and 

uniqueness of the static deflection of an infinite beam on a non-uniform and nonlinear elastic 

foundation. Moreover, they propose a new approach based on Green’s function, which can 

handle even nonlinear elastic foundations. Hence, in this paper, we apply the Green’s 

function-based method to general problems with non-uniform and nonlinear reaction forces 

from elastic foundations. The method solves deflection problems iteratively based on the 

Banach fixed-point theorem (Banach, 1922). Based on the theorem, Jang et al. (2011a) 

proposed a new iterative method for the analysis of an infinite beam on nonlinear & uniform 

elastic foundation. Jang & Sung (2012) suggest a general approach to a variable cross-section 

beam on nonlinear elastic one. A new semi analytical approach to the identification of large 

deflection of Bernoulli-Euler-v. Karman beam was also proposed (Jang, 2013a). Nonlinear 

elastic foundation using an one-way spring model (Park et al. 2013) and variable flexural and 

axial rigidities Bernoulli-Euler-v. Karman beam were also considered (Jang, 2014). Finally, 
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iterative methods also have been successfully applied to problems in ocean engineering such 

as nonlinear water waves (Jang & Kwon, 2005; Jang et al., 2006; Jang et al., 2007a; Jang & 

Kwon, 2007b, Jang et al. 2010a) and the simultaneous detection of the nonlinear restoring and 

nonlinear damping of a nonlinear oscillation (Jang, 2009; Jang et al. 2010b, 2011b, 2011c, 

2013b) 

In numerical experiments section, the nonlinear deflection of an infinite beam on a 

non-uniform elastic foundation is successfully obtained, and they show the method is simple 

and straightforward. They show that an accurate solution can be achieved within a few 

iterations (2~15) or it converges to the nonlinear solution relatively fast in comparison with 

other similar studies (Beaufait and Hoadley, 1980; Mahaidi et al. 1990). Finally, we point out 

that the method does not require a small parameter.  

2. Nonlinear integral equation formulation 

The problem at hand is the nonlinear deflection of an infinite beam that is resting on a 

foundation composed of inhomogeneous materials, as depicted in Figure 1. It shows that the 

discontinuous elastic foundation consists of more than two parts with different spring force 

  ,  f u x x . The weight of the beam is balanced out with the restoring force and the beam is 

straight without in-plane loading. In practice, lateral or longitudinal loading and combinations 

of them can be observed and hence, the bending moment and consequently the governing 

equation changes accordingly. However, in this paper, such loading condition and coupling 

between them are not considered, for mathematical simplicity. Instead, we focus on tackling 

nonlinear restoring forces and the presence of their discontinuities.  Here, we describe a 

procedure to formulate a nonlinear integral equation from the Euler beam equation, a 4
th 

order 
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differential equation that governs beam deflections. According to the classical Euler beam 

theory, the vertical deflection  u x  satisfies the differential equation as follows: 

4

4
( )

d u
EI p x

dx
,                                               (1) 

where the net load distribution ( )p x  is defined as 

( ) ( ) ( , ) p x w x f u x .                                                  (2) 

In Eq. (2), the upward nonlinear spring force ( , )f u x  depends both on the beam deflection  u  

and on the position x , and  w x  denotes the loading applied downward. The flexural rigidity 

of the beam is denoted by EI  where E  and I  are Young's modulus and the mass moment of 

inertia, respectively.  

Substituting Eq. (2) into Eq. (1) yields 

4

4
( , ) ( ) 

d u
EI f u x w x

dx
                                                        (3) 

where the boundary conditions are 

u , 'u , ''u ,  3
u

 
and 

(4) 0u  as | |x .                                        (4) 

Then Eq. (3) with boundary conditions (4) constructs a well-defined boundary value problem.  

We now attempt to seek a nonlinear integral equation, which is equivalent to the 

nonlinear differential equation (1). We start with a simple modification as 

4

4
( , ) ( )  

d u
EI ku N u x w x

dx
,                                                   (5) 
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where the nonlinear spring force is split into two parts: 

( , ) ( , ) f u x ku N u x                                                          (6) 

The first tem on the right, ku , is the linear portion of the reaction force  ,f u x  with the 

linear spring constant k , while  ,N u x  is the remaining part, i.e., nonlinear portion of the 

reaction force  ,f u x . 

Rearranging the nonlinear term  ,N u x , we denote the new forcing term by  , u x  for the 

simplicity of our notation as in  

 
4

4
,

d u
ku u x

dx
   , where

 
( , ) ( ) ( , )  u x w x N u x .                    (7) 

The modified differential equation (7) is a starting point to the formulation of a nonlinear 

integral equation equivalent to the original equation (1). To that end, we first note that the 

linear solution of Eq. (1), which corresponds to a case with ( , ) 0N u x  in Eq. (5), was 

derived by Timoshenko (1926), Kenney (1954), Saito & Murakami (1969), Fryba (1957), 

they used the Fourier and Laplace transforms to obtain a closed-form solution 

( ) ( , ) ( )  



 u x G x w d ,                                                        (8) 

where G  is the following Green's function : 

| | | |
( , ) exp sin

2 42 2

     


    
     

   

x x
G x

k
,                                  (9) 

with parameter 4 /  k EI . A localized loading condition was assumed in the derivation of 
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Eq. (8): u , 'u , ''u ,  3
u  and  4

u  all tend towards zero as | |x . Green's function is the key 

to development of the method applied in this paper which plays a crucial role in obtaining the 

solution of linear differential equations equivalent to the 4
th
 order differential equation in Eq. 

(7). Here, an infinite differentiability of solution regularity is concerned with the kernel of 

Green’s function via Riemann integration.  We extend the relation (8) to a nonlinear case in 

which the forcing term at the right hand side includes the solution itself. Such extension by a 

substitution of the Green’s function (9) into the relation (8) results in the following nonlinear 

relation for the case of ( , ) 0N u x : 

( ) ( , ) ( ( ), )u x G x u d   



                                                    (10) 

Substituting Eq. (7) into Eq. (10) reveals the following nonlinear Fredholm integral equation 

for u  (Choi & Jang 2012): 

( ) ( , ) ( ) ( , ) ( ( ), )      
 

 
  u x G x w d G x N u d                               (11) 

The first integral ( , ) ( ) 


 G x w x d  in Eq. (11) amounts to the linear deflection of an infinite 

beam on a linear elastic foundation with an artificial linear spring constant k , which is 

uniform in x . The second term ( , ) ( ( ), )   



 G x N u d  corresponds to the nonlinear 

deflection of the beam.  
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3. Numerical Method 

3.1 Iterative procedure for the solution  

On the basis of the derived nonlinear integral equation (11), we apply a nonlinear 

solution procedure. We first define   x  and ( ) u  for notational simplicity as follows: 

( ) ( , ) ( )   




 x G x w d                                          (12) 

and 

 ( ) ( , ) ( ),      




 u G x N u d .                                        (13) 

Then, Eq. (11) is written in a simple form:  

( ) ( ) ( )  u x x u                                               (14) 

Now, the fixed-point iteration is applied to solve Eq. (11) or Eq. (14) as follows (Jang et al. 

2011a) , 

 1
( ) ( ) ( )


 u π λ u

n n
x x x .                                          (15) 

The fixed-point iteration is a simple way to get an approximate solution and its convergence 

was studied by Choi & Jang (2012). 

We need to restrict the physical domain ( ,  )  
 
to a feasible, computational one, 

because we cannot handle the infinite domain in a computer without an introduction of a 

proper nonlinear mapping between the physical domain and a finite computational one. 

Therefore, we conveniently take the domain D [ ,  R] R  for a sufficiently large positive 
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number R , which results in a good approximation of boundary conditions (4). Hence, the 

integral operator, Eq. (12) and Eq. (13) are computed on the truncated domain as  

( ) ( , ) ( )   


 
R

R
x G x w d                                                     (16) 

and 

 ( ) ( , ) ( ),    


 
R

R
u G x N u d ,                                               (17) 

respectively. 

3.2 Discretization of nonlinear integral equation  

A numerical integration rule being employed, the recursive equation (15) is 

discretized to 

 1( ) ( ) ( ) , 0, 1, ,n i i n ix x x i N   u π λ u                                  (18) 

where  

1

( ) ( , ) ( ), 0, 1, , 


 π        
N

i i j i j j

j

x w G x w i N
                        

(19) 

and 

1

[ ( )] ( , ) ( ) , 0, 1, , 


    λ        
N

n i i j i j n j

j

u x w G x N u i N .
                

(20) 

Quadrature weights are denoted by 
ijw . When the infinite limits in integrals (12) and (13) are 

replaced by a large value R , the number N  for the summation in Eqs. (19)-(20) represents 
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the number of grid points in the interval ( ,  )R R .  

4. Numerical experiments 

In this section, we examine the applied iterative method through computation to 

confirm the validity and efficiency. In order to give physically more realistic loading 

conditions, rectangle-type loadings are used for the simulations. As in the previous sections, 

an infinite beam is assumed to be on discontinuous and elastic foundations. Without loss of 

generality, a discontinuity in the nonlinear spring constant of the foundations is placed at 

0x .  

4.1 Validity of the procedure 

In order to demonstrate the accuracy of the applied procedure, we compute 

analytically a loading which results in our desired deflections ( )u x   as follows: 

2 /( )  x su x e ,                                                                 (21) 

where s  is a constant which determines how fast the exponential function decays; the smaller 

s , the faster  u x  decays. We also assume a simple form of the nonlinear spring force 

 ,f u x  of a discontinuous elastic foundation as  

                        1

2

 0
( , )     

 0






 



p

p

for xk u u
f u x

for xk u u
.                                     (22) 

Firstly, the linear spring coefficients 1
k  and 2

k  are chosen as the same constant to investigate 

the validity of the applied method ( 1 2
2 k k ). Other principal properties of the beam are 

1EI , 100s  and 1/ 4  . In this section, we use 600 equally spaced grid points (or 
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0.1 x ) between 30 30  x . Eq. (3) gives an analytical form of the applied loading 

 w x  for the given foundation model in Eq. (22):   

(4) 3( ) ( ) ( ) ( )     w x EI u x k u x u x  

                     
2

2 4

/

2 3 4

12 48 16
  

      
 

x sx x
k e

s s s
                                 (23) 

Deflection  u x  in Eq. (21), reaction force  ,f u x  in Eq. (22), and the loading  w x  in Eq. 

(23) satisfy the governing equation (3).  Hence, selecting two of them determines the 

remaining one. We specify an easy  u x  and  ,f u x  and then a complicated  w x  in Eq. 

(23) is obtained. Using the nonlinear iterative procedure of Eq. (18), the recovered numerical 

solutions converge to the exact solutions and the error reaches a steady state within 20 

iterations as shown in Figure 2. The  error n  at the n
th

 iteration step is defined as 

  2

2




n
u u

error n
u

, where 

1/2

2

2
1

 
  
 


N

i

i

z z .                        (24) 

Secondly, the same numerical simulation is performed with discontinuous spring constants 

1
1k  and 

2
2k . The discontinuous loading and converged solution are plotted in Figure 3. 

Small errors are observed near the discontinuity showing undershoot and overshoot on the left 

(
1

1k ) and right (
2

2k ), respectively. The result is not contradictory to the previous 

analytic results presented in Choi & Jang (2012) since the differentiability assumption is not 

kept in this model. Hence, the contraction property of the integral operator formulation is not 

guaranteed in our example. 
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We take another deflection 
2 /( ) sin   x su x x e  as the exact solution to a problem with 

a nonlinear spring model    3( , )  f u x ku x u x . Using Eq. (3), an analytical expression of 

the corresponding loading is obtained as: 

2

2

2

(4) 3

2 2 4
/

2 2 3 4

3
/

2 3

3 / 3

( ) ( ) ( ) ( )

12 12 24 48 16
       1 sin

8 48 32
          cos

          sin











     

 
        
 

 
    
 

 

x s

x s

x s

w x EI u x k u x u x

x x x
k e x

s s s s s

x x x
e x

s s s

e x

               (25) 

Figure 4 shows the iterative solutions and the relative errors (
1 2

1 k k ).  

In this section, we assume analytic solutions and obtain loadings via the governing 

equation Eq. (3) corresponding to the nonlinear spring force of a nonlinear elastic foundation. 

Using the nonlinear iteration in Eq. (18), we show that the recovered numerical solution 

converges to the assumed exact solution, which demonstrates the accuracy and the validity of 

the nonlinear iterative method. When the foundation is discontinuous, however, the proposed 

method does not converge to the exact solution in a small region around a point of 

discontinuity. Since the error is localized near the material discontinuity, numerical solutions 

of our proposed method are still meaningful. 

4.2 Dependence on loading  

We now investigate the convergence of the solution in response to the loadings. The applied 

loading conditions are varied to observe their effects on the deflection of an infinite beam 

which is resting on the same discontinuous elastic foundation of quadratic form in Eq. (22); 

1
1k , 

2
2k , 1/ 6  , 3p  and 1.0c , 1.5  and 2.0  as listed in Table 1.  
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Since a complicated loading can be approximated by a linear combination of 

piecewise constant function, we use the following rectangle-type loading  rectanglew x
 
which 

is constant in a finite interval as 

rectangle

, 5 5
   

0, otherwise

  
 


c x
w .                                                       (26) 

In this study, we truncate the infinite spatial domain to D [-20, 20] , i.e., 20R  and 

the number of the sub-interval is 400. Of course, this domain satisfies the boundary condition 

of Eq. (4). For the numerical quadrature, the Simpson’s rule is employed. Figure 5 shows the 

nonlinear deflections using the iterative procedure in Eq. (18). We confirm that the deflection 

of the beam gets larger when the magnitude of the applied load increases while the 

convergence rate gets slower because of the increase of nonlinearity which is proportional to 

the load intensity. 

4. 3 Mathematical models of nonlinear foundations 

Here we examine the convergence of the iteration using three mathematically simple 

models of discontinuous nonlinear elastic foundation. We test our method with simple forms 

such as polynomials, trigonometric functions, and exponential functions whose combinations 

can easily represent more complicated and realistic nonlinear foundations.  

 

Model 1: We use the discontinuous nonlinear elastic foundation model that consists of 

linear and nonlinear polynomials as introduced in Eq. (22). The nonlinearity in this model 

does not depend on the spatial variable x  explicitly but implicitly through the non-uniform 

displacement  u x .  
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Model 2: The nonlinear spring force has both a linear and a sinusoidal term, 

1

2

for 0cos
( , )     

for 0cos





 
 



p

p

xk u u x
f u x

xk u u x
,                                   (27) 

where 1k  and 2k  are linear spring coefficients and the cos pu x  is nonlinear spring force with 

a coefficient 0  . The nonlinear term cos pu x  has explicit dependency on the spatial 

variable x  and the displacement u . In this, nonlinearity can reduce the reaction force because 

cos x  can be negative, which may not be physical. However, we just want to point out that it 

is positive around the discontinuity 0x  and the model is purely mathematical, designed for 

the demonstration of our method.    

Model 3: The final model is as follows: 

                           

2

2

/

1

/

2

for 0
( , )     

for 0













  
 



p x

p x

k u u e x
f u x

xk u u e
,                                      (28) 

where the linear spring constants 
1

k  and 
2

k . The mathematical form of nonlinear elastic 

foundation is the linear and the combination of linear and exponential forms. The nonlinearity 

in this model is concentrated around 0x  and the parameter   controls how far the 

nonlinearity extends.  

The numerical solutions are found for the above three different types of discontinuous 

elastic foundation in order to demonstrate the capability of the applied method. We also focus 

on the behavior of the solution as the discontinuity in the linear term at the origin, i.e., 0x , 

grows. 
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4.3.1 Model 1 

To find the validity of the solution, we model a system of an infinite beam on the 

discontinuous elastic foundation of model 1 in Eq. (22) with the tabulated properties of Table 

2. Figure 6 demonstrates the comparisons of the iterative solutions and shows the 

convergence behaviors of the iterative solutions according to the loading conditions as listed 

in Table 2.  

In Figure 6, it is noticeable for the iterative solution to overshoot in the first step and 

then undershoot in the second. From the third step, it is already close to the final state. The 

relative error norm shows that the iterative procedure converges very quickly within 10 

iterations for test cases in Table 2. When the coefficient 
2

k  increases from 1 to 3, the 

symmetry around the origin breaks down, which agrees with our intuition. The displacements 

on the positive x - axis decrease as the reaction forces from the foundation increase. The 

differences between polynomial order 2 and 3 are not noticeable because the nonlinear 

reaction term does not make much difference in the range of displacements. 

4.3.2 Model 2  

Using Eq. (27), the linear plus sinusoidal form of the elastic foundation is applied as 

1c , 
1

1k , 1/ 6  , 3p  and the parameter 
2

1k , 2, and 3. All test cases are listed in 

Table 3 and we look at the effect of discontinuity in the linear term. As observed in the 

previous model 1, introduction of discontinuity term breaks the symmetry in the 

displacements. As the coefficient 
2

k  in the positive x - axis increases, the displacements get 

smaller, which agrees to our intuition. The numerical solution converges very fast within 10 

iterations and changes beyond 5 iterations are almost negligible as shown in Figure 7. The 
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iterative solution does not show overshoot and undershoot over the first few iterations, which 

is also observed in the cases of Model 1.  

4.3.3 Model 3  

Using Eq. (28), the linear plus exponential form of the elastic foundation is 

investigated: 1c , 
1

1k , 1/ 4  , 3p , 4   and the parameter 
2

1k , 2 and 3 which 

are summarized in Table 4. The iterates at different steps are shown in Figure 8. The trends of 

changes in the displacements are similar to that of Model 1 when the discontinuity is 

introduced to the foundation model.  

Numerical simulations with above three models clearly show that our methods can 

handle nonlinear elastic foundations in the simple mathematical forms, which are not 

continuous at a discrete point. More complicated foundations and loading can be easily 

expressed with combinations of the simple forms. Hence, numerical solutions are obtained 

similarly. 

5. Concluding remarks 

The highly nonlinear problem of the Euler beam sitting on a nonlinear elastic 

foundation with discontinuities is solved numerically. Various numerical simulations are 

performed with the discontinuous nonlinear spring forces of the elastic foundations. For the 

application of the procedure, the nonlinear differential equation is transformed to the 

equivalent nonlinear integral one and then the integral operator is recognized. Our current 

study shows the feasibility of the iterative procedure as well as its convergence. Accuracy of 

numerical solutions is confirmed with analytical solutions. Convergence to accurate solutions 

is achieved with 10-20 iterations in all simulations. Regardless of loading conditions, accurate 

numerical solutions are obtained. The effect of a material discontinuity on the nonlinear 
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deflections is localized numerical errors near the material discontinuity, deserving further 

investigation. 
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Table 1 3 cases of loading conditions for the elastic foundations with cubic nonlinear term 

Cases c  1
k

 2
k

 
  p  

a 1.0 1 2 1/6 3 

b 1.5 1 2 1/6 3 

c 2.0 1 2 1/6 3 

Table 2 Test cases of model 1 with the elastic foundations of the monomial form 

Cases c  1
k

 2
k

 
  p  

a 1 1 1 1/4 2 

b 1 1 2 1/4 2 

c 1 1 3 1/4 2 

d 1 1 1 1/4 3 

e 1 1 2 1/4 3 

f 1 1 3 1/4 3 

Table 3 Test cases of model 2 with the elastic foundations of the sinusoidal form 

Cases c  1
k

 2
k

 
  p  

a 1 1 1 1/6 3 

b 1 1 2 1/6 3 

c 1 1 3 1/6 3 

Table 4 Test cases of model 3 with the elastic foundations of the exponential form 

Cases c  1
k

 2
k

 
  p    

a 1 1 1 1/4 3 4 

b 1 1 2 1/4 3 4 

c 1 1 3 1/4 3 4 
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Figure 1 An infinite beam on a discontinuous nonlinear elastic foundation 
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Figure 2 Validity test: (a) localized loading, (b) iterative solutions, and (c) relative errors.  
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Figure 3 Accuracy test with discontinuity in the nonlinear foundation: (a) discontinuous 

applied loading due to the material discontinuity, (b) iterative solutions, and (c) comparison 

of exact solution and converged solution. 
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Figure 4 Validity test with uniform nonlinear elastic foundation: (a) applied loading, (b) 

iterative solutions, and (c) relative errors 

  



26 

 

a 

 

 

b 

 

 

c 

 

 

Figure 5 Behaviours of convergence according to 3 different loading conditions 1.0c , 1.5  

and 2.0 with other parameters in Table 1. 

  



27 

 

(a) 
1 2

1 k k    (b) 
1

1k , 
2

2k   

  

(c) 
1 2

1,  3 k k   (d) 
1 2

1 k k    

  

(e) 
1

1k , 
2

2k  (f) 
1

1k , 
2

3k   

  

 Figure 6 Convergence behaviours of cases in Table 2 

  



28 

 

a 

 

b 

 

c 

 

Figure 7 Convergence behaviours of cases in Table 3: (a) 
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Figure 8 Convergence behaviours of cases in Table 4: (a) 
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