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Abstract
Video question answering (VideoQA) is challeng-
ing given its multimodal combination of visual
understanding and natural language processing.
While most existing approaches ignore the visual
appearance-motion information at different tempo-
ral scales, it is unknown how to incorporate the
multilevel processing capacity of a deep learning
model with such multiscale information. Target-
ing these issues, this paper proposes a novel Mul-
tilevel Hierarchical Network (MHN) with multi-
scale sampling for VideoQA. MHN comprises two
modules, namely Recurrent Multimodal Interaction
(RMI) and Parallel Visual Reasoning (PVR). With
a multiscale sampling, RMI iterates the interaction
of appearance-motion information at each scale and
the question embeddings to build the multilevel
question-guided visual representations. Thereon,
with a shared transformer encoder, PVR infers the
visual cues at each level in parallel to fit with an-
swering different question types that may rely on
the visual information at relevant levels. Through
extensive experiments on three VideoQA datasets,
we demonstrate improved performances than pre-
vious state-of-the-arts and justify the effectiveness
of each part of our method.

1 Introduction
With the advancements of deep learning in computer vision
and natural language processing [He et al., 2016; Vaswani
et al., 2017; Hara et al., 2018], Video Question Answering
(VideoQA) has lately received more attention for its wide ap-
plication in video retrieval, intelligent QA system, and au-
tonomous driving. In comparison with Image Question An-
swering (ImageQA) [Yang et al., 2016; Gao et al., 2021],
VideoQA is more difficult because it needs to properly ex-
tract the dynamic interaction between the text and the video
in addition to modeling the semantic association between the
text and a single image.

The majority of existing methods [Dang et al., 2021;
Kim et al., 2019; Huang et al., 2020; Le et al., 2020;
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Figure 1: (a) The multiscale property of a video example, where at a
fine-grained scale the richer frames contribute to understanding gen-
eral action and logical information, and the local attributes could be
better inferred with fewer frames at a coarser scale. (b) The typical
multilevel processing of a deep learning model, where the increase
of feature levels leads to the transition of learning from local objects
to global semantics.

Park et al., 2021; Gao et al., 2018; Chowdhury et al., 2018]
used recurrent neural networks (RNNs) and their variants to
connect the embeddings of the text and spatial features ex-
tracted with convolutional neural networks (CNNs) of the
video, and adopted spatial-temporal attention mechanisms to
learn the text-related visual representation [Xu et al., 2017;
Jang et al., 2017] or the so called co-attention representation
[Li et al., 2019; Zha et al., 2019]. To acquire the long-term in-
teraction between the question and the video, some methods
[Cai et al., 2020; Fan et al., 2019] proposed to use extra mem-
ory modules to augment the capacity of sequential encoding.
While these methods achieved interesting results on bench-
mark datasets of VideoQA, the multiscale semantic relations
existed between the text and appearance-motion information
of the video is largely ignored.

For the video example shown in Fig.1 (a), the local attribute
of the ‘man’ is better inferred at a coarser scale, while the
semantic information of ‘what’ and ‘jump over’ is mostly re-
vealed from consecutive frames at a finer-grained scale. For
such a multiscale characteristic, a model should be able to
search sufficient information from the video given different
question types that rely on the visual clues at different scales.
In addition, as illustrated in Fig.1 (b), the multilevel represen-



tation learning of a deep learning model covers generalizable
information of local objects and global semantics of the in-
put video along the increase of model depth [Krizhevsky et
al., 2012]. It remains an open question about how to incor-
porate the multiscale information of a video with multilevel
processing of a deep learning model for VideoQA.

Given the above findings, we propose a novel method
named Multilevel Hierarchical Network (MHN) with mul-
tiscale sampling for VideoQA, as shown in Fig.2. MHN
comprises two modules of Recurrent Multimodal Interac-
tion (RMI) and Parallel Visual Reasoning (PVR). To lever-
age the multiscale visual information, we first apply a multi-
scale sampling to acquire several frame groups from the input
video. To accommodate the frame groups at different scales,
the RMI module uses a recurrent structure to bridge the mul-
timodal interaction blocks, where each block takes the frame
group at a scale as an input. In the later section, we empiri-
cally analyze the impact of the ways of matching the scales of
frame groups with the levels of different multimodal interac-
tion blocks within this module. Each multimodal interaction
block extracts the question-guided visual representation per
scale, and the recurrent structure provides the representations
across different levels. The PVR module takes this output
at each level for visual reasoning, where a transformer en-
coder is shared during the parallel processing. In this way,
our method fits with different question types, where their an-
swering could benefit from the visual clues at relevant levels.

Our contributions are as follows: 1) We propose a novel
Multilevel Hierarchical Network (MHN) with multiscale
sampling for VideoQA, to incorporate the multiscale inter-
action between the text and the video with the multilevel pro-
cessing capability of a deep learning model; 2) We design a
recurrent multimodal interaction module to enable the multi-
modal multilevel interaction between the two input modali-
ties, and a parallel visual reasoning module to infer the visual
clues per each level; 3) We conduct comprehensive evalua-
tions on TGIF-QA, MSRVTT-QA, and MSVD-QA datasets,
achieving improved performances than previous state-of-the-
arts and verifying the validity of each part of our method.

2 Related Work
VideoQA challenges a model on analyzing the complex
interaction between the text and visual appearance-motion
information. [Xu et al., 2017] proposed a method based
on Gradually Refined Attention to extract the appearance-
motion features using the question as guidance. [Jang et
al., 2017] proposed a dual-LSTM approach together with
spatio-temporal attention to extract visual features. Later on,
other spatio-temporal attention-based methods proposed to
use co-attention representation [Li et al., 2019; Zha et al.,
2019], hierarchical attention network [Liu et al., 2021], and
memory-augmented co-attention models [Cai et al., 2020;
Fan et al., 2019] for the extraction of motion-appearance fea-
tures and question-related interactions. Recently, [Kim et
al., 2019] proposed a multistep progressive attention model
to prune out irrelevant temporal segments, and a memory net-
work to progressively update the cues to answer. Addition-
ally, some proposed to leverage object detection across the

video frames to acquire fine-grained appearance-question in-
teractions [Dang et al., 2021; Huang et al., 2020]. [Le et
al., 2020] proposed to use a hierarchical structure for the ex-
traction of question-video interactions from the frame-level
and segment-level. [Park et al., 2021] proposed a heteroge-
neous multimodal graph structure using the question graph as
an intermediate bridge to extract the internal semantic rela-
tion between each word and the video. Although interesting
results are achieved by these methods, the multiscale struc-
ture of the answering cues existed in the visual information is
not well explored.

Transformer [Vaswani et al., 2017] has achieved out-
standing performance using its self-attention mechanism and
forward-passing architecture, which is first introduced for
neural machine translation tasks. Given its promising ef-
ficiency in analyzing temporal information, transformer be-
comes one of the dominant approaches for various NLP tasks
[Wolf et al., 2020]. Recent efforts are seen in transferring
transformer to the computer vision domain, where improved
performances are achieved in object detection [Dai et al.,
2021], instance segmentation [Liang et al., 2020], and action
recognition [Girdhar et al., 2019]. In this paper, we propose
to use a shared transformer encoder to extract the semantic
interaction between the question and the video at different
levels in parallel for visual inference.

3 Method
Given a video V and the question Q, VideoQA aims to ac-
quire the correct answer â. For open-ended and multi-choice
types of question, the answer space A comprises the group of
pre-defined answers and list of candidate answering options,
respectively. Generally, VideoQA is formulated as follows.

â = argmax
a∈A

fθ(a | Q,V), (1)

where θ represents the group of trainable parameters of the
modeling function f .

As shown in the overview of our proposed MHN model in
Fig.2, we first extract multiscale appearance-motion features
from the input video, and embeddings from the input ques-
tion. Thereon, the proposed Recurrent Multimodal Interac-
tion (RMI) module propagates the information across its mul-
timodal interaction blocks in a recurrent manner, providing
the semantic representations at different levels. Note, in this
section, we assume that these blocks from the low-level to the
high-level accommodate the visual information from coarser
scale (fewer frames) to finer-grained scale (richer frames) ac-
cordingly. Thus, the scale and level n are the same in this
case. With such multilevel representations, the proposed Par-
allel Visual Reasoning (PVR) module uses a shared trans-
former block to establish the visual inference at each level
and produces the final visual cues after a fusion operation.
Finally, a classification or regression operation is done in the
decoder for answering. It is worth mentioning that, similar to
the methods we compare with in this paper, our method does
not rely on large-scale pre-training and big models to achieve
the improved performances.



Figure 2: An overview of our MHN method. With a multiscale sampling, a series of frame groups Cn are produced, from which the multiscale
appearance-motion features Xn are extracted with CNNs. The RMI module uses a recurrent structure to incorporate its multilevel processing
capacity with such multiscale input. Thereon, the PVR module establishes the visual reasoning per each level in parallel, and fuses the output
visual semantics X̂n under the guidance of a high-level textual representation Q̂n to produce the answering feature O.

3.1 Multiscale Sampling and Feature Extraction
Multiscale Sampling. Different from some previous
VideoQA works [Dang et al., 2021; Fan et al., 2019;
Le et al., 2020; Park et al., 2021] that adopted dense sampling
for the input video, we conduct a multiscale sampling to help
acquire visual features at different temporal scales. For input
video V , at scale n ∈ {1, ..., N}, we sample T ×2n−1 frames
along the forward temporal direction, with T as the size of
our sampling window, which is set to 16 in our experiment.
At this scale, for a clip comprising T frames, the group of
such clips Cn is represented as

Cn = {cn,1, cn,2, ..., cn,2
n−1

}, (2)

where cn,i is the i-th video clip sampled at scale n. Given the
same number of video clips sampled from the video, multi-
scale sampling provides richer visual information than dense
sampling, covering more aspects from the local object to the
global interaction or event, which help the network to better
exert its multilevel processing capacity on understanding the
semantic relations between the question and the video.
Visual Representation. Following [Li et al., 2019; Dang
et al., 2021; Cai et al., 2020; Fan et al., 2019; Huang et al.,
2020; Le et al., 2020; Park et al., 2021], we use ResNet [He
et al., 2016] and 3D ResNet152 [Hara et al., 2018] to extract
the appearance and motion features, respectively, from the
video. Therein, the feature output at the last pooling layer
of each network is used. For the group of video clips Cn at
scale n, the extracted frame-wise appearance feature Vn can
be represented as

Vn = {vn,i | vn,i ∈ R2048}T×2n−1

i=1 . (3)

Similarly, we extract the clip-wise motion feature Mn as

Mn = {mn,t | mn,t ∈ R2048}2
n−1

t=1 . (4)

We use a linear feature transformation layer to map feature
vectors in Vn and Mn into a d-dimensional feature space,

where we now have vn,i,mn,t ∈ Rd. After a feature con-
catenation following the temporal order of video clips, the
appearance-motion feature Xn at n-th scale is represented as

Xn = {xn
j | xn

j ∈ Rd}L
n
X

j=1, (5)

where xn
j ∈ {vn,i,mn,t}, with the total number of

appearance-motion features at scale n being Ln
X = 2n−1(T+

1). Meanwhile, such feature is added with the positional em-
bedding Pn ∈ RLn

X×d, in order to maintain the positional
information of the feature sequence.
Linguistic Representation. For the multi-choice ques-
tion and answer candidates, we adopt Glove word embed-
ding method [Pennington et al., 2014] to acquire the 300-
dimensional feature embeddings, which is further mapped
into a d-dimensional space using linear transformation layers.
Thereon, a bidirectional LSTM network is adopted to extract
the contextual semantics between each word in the question,
and the answer, respectively. Finally, the acquired represen-
tation for the question or answer candidates is obtained by
concatenating the hidden states of the last forward and back-
ward LSTM layer per timestep, written as

Q = {qj | qj ∈ Rd}LQ

j=1, (6)
and

Ak = {akj | akj ∈ Rd}L
k
A

j=1, (7)

where LQ and Lk
A are the number of words in the question

and k-th answer candidate, respectively.

3.2 Recurrent Multimodal Interaction
Within the RMI module, the recurrent connections of multi-
modal interaction blocks facilitate the extraction of multilevel
semantic relations between the question and the video. In a
block that processes information at scale n, with the input
visual feature Xn

in and question feature Qn
in, the interim in-

teraction output X̃n is computed as

X̃n = Xn
in +MCA(Xn

in,Q
n
in), (8)



where MCA(·) denotes the operation in a multi-head cross-
modal attention layer, and at a single attention head h its out-
put is

MCAh = softmax(
Fh

qF
h⊤
k√
d

)Fh
v , (9)

where Fh
q = LN(Xn

in)W
h
q is the Query, Fh

k = LN(Qn
in)W

h
k

is the Key, and Fh
v = LN(Qn

in)W
h
v is the Value, with LN(·)

being the layer normalization [Xiong et al., 2020]. We con-
catenate the output per head to obtain

MCA(Xn
in,Q

n
in) = concat(MCA1,MCA2, ...,MCAH), (10)

where Wh
q , Wh

k , Wh
v ∈ Rd×d/H , and Wo ∈ Rd×d are the

learnable weight matrices, and H is the total number of atten-
tion heads. In short, within the MCA, the question semantics
and appearance-motion features are connected, while the se-
mantic co-occurrence of them is extracted using the attention
mechanism.

Given X̃n and Qn
in, a feed forward layer is further added to

each modality to acquire the final interaction feature outputs
X̂n ∈ RLn

X×d and Q̂n ∈ RLQ×d as

X̂n = X̃n + fX(LN(X̃n)), (11)
and

Q̂n = Qn
in + fQ(LN(Qn

in)), (12)
where fX(·) and fQ(·) represent the operation in a feed for-
ward layer, which comprises two linear projections separated
by a GELU non-linearity. The feature dimension d stays un-
changed.

We design a recurrent connection to connect multimodal
interaction blocks at different levels for multilevel processing,
which also handles the difference in temporal dimension of
the feature at each level. Given the interaction feature output
X̂n−1 of the previous block and current appearance-motion
feature input Xn, the recurrent connection (shown in the area
marked by blue dashed contour in Fig.2) uses an attentional
dimension alignment to provide the input Xn

in for the current
block as
Xn

in = Xn + softmax((XnWn−1
1 )(X̂n−1Wn−1

2 ))X̂n−1, (13)

where Wn−1
1 and Wn−1

2 are learnable weight matrices. In
addition, we have Qn

in = Q̂n−1. The extra bypass scheme
within the connection ensures that the current block receives
the higher-level information. For the whole module, we re-
peat Equation 13 and Equation 8-12 to propagate the vision-
question interaction recurrently across different levels.

3.3 Parallel Visual Reasoning
An essential step of VideoQA is to infer the visual cues from
the appearance-motion feature via understanding the question
semantics. Given vision-question outputs at different levels
from the RMI module, the proposed PVR module first infer
visual cues at each level and acquire the final feature for an-
swering under the guidance of question semantics.

Given the interaction feature output X̂n at scale n (at the
highest level) of RMI module, we use the encoder layer pro-
posed in transformer [Vaswani et al., 2017] to acquire the
visual cue Rn as

Rn = Zn + f(LN(Zn)), (14)

with
Zn = X̂n +MCA(X̂n, X̂n), (15)

where f(·) denotes the operation in a feed forward layer. For
the outputs from RMI module at different scales, PVR mod-
ule repeats Equation 14 and 15 with the shared processing
layers. This help to maintain the consistency of the semantic
space during visual inference, and a compact learnable weight
even if the number of scales increases.

Given the high-level question feature Q̂n output by RMI
module, PVR module further fuses the multilevel visual cues
to acquire the final feature for answering as

αn = softmax(Q̄nR̄n⊤), (16)
with

O =

N∑
n=1

αnR̄n, (17)

where Q̄n, R̄n are acquired by applying average pooling
along the temporal dimension on Q̂n,Rn, respectively, and
the final feature for answering is O ∈ Rd.

3.4 Answer Decoder and Loss Function
Following [Jang et al., 2017; Li et al., 2019; Dang et al.,
2021; Cai et al., 2020; Fan et al., 2019; Huang et al., 2020;
Le et al., 2020; Park et al., 2021; Gao et al., 2018; Chowdhury
et al., 2018], different decoding strategies are used according
to the types of question.

Specifically, we treat an open-ended question as a multi-
class classification task, where the answer decoder aims to
predict the correct category from the answer space A. Given
the final feature O, the probability vector P ∈ R|A| towards
each class is computed as

y = δ(WoO + bo), (18)

P = softmax(Wyy + by), (19)
where Wo, Wy , bo, and by are the learnable weight matrices
and biases of each layer, respectively; δ(·) is the activation
function. The cross-entropy loss is used here.

For the repetition count task, linear regression is used to
replace the classification function shown in Equation 21, the
output of which is processed by a rounding function to ac-
quire the integer output. The loss function used here is the
Mean Squared Error (MSE).

For multi-choice questions, we use an answer candidate
Ak as input to the MHN model, similar with the question Q.
Therein, the learnable parameters are shared for the process-
ing of the answer and the question. Given the final feature
outputs O conditioned by the question and Ok

a conditioned by
the k-th answer candidate, the predicted probability towards
the k-th answer candidate is computed as

yk = δ(W∗[Ō; Ōk
a ] + b∗). (20)

pk = W∗yk + b∗. (21)
The answer candidate that produces the highest probability

p is selected as the predicted for the question. Hinge loss
[Gentile and Warmuth, 1998], namely max(0, 1 + pi − pc),
is adopted to compute the loss between the correct answer pc
and the incorrect answer pi.



4 Experiment
4.1 Datasets
Three VideoQA benchmarks are adopted for our evaluation.
TGIF-QA [Jang et al., 2017] is a large-scale dataset for
videoQA, which comprises 165K question-answer pairs and
72K animated GIFs. This dataset has four task types, includ-
ing Action, Transition (Trans.), FrameQA, and Count. Action
is a multi-choice task aimed to identify the repetitive actions.
Trans. is another multi-choice task for identifying the tran-
sition actions before or after a target action. FrameQA is an
open-ended task where the answer could be inferred from a
single frame of the video (GIF file). Count is to count the
number of a repetitive action.
MSVD-QA [Xu et al., 2017] comprises 1,970 short clips
and 50,505 question-answer pairs, which are divided into five
question categories of what, who, how, when, and where. All
of them are open-ended.
MSRVTT-QA [Xu et al., 2017] comprises 10K videos and
243K question-answer pairs. The question types are similar
to what included in the MSVD-QA dataset. However, the
scenario of the video is more complex, with a longer duration
of 10-30 seconds.

4.2 Implementation Details
Metrics
For multi-choice and open-ended tasks, we use accuracy to
evaluate the performance. For the Count task in TGIF-QA
dataset, we evaluate with Mean Squared Error (MSE) be-
tween the predicted answer and the ground truth.

Training Details
We use the official split of training, validation, and testing
sets of each dataset. By default, the maximum scale N is
set to 3, and the visual features are input to the model with
increasing scales. For each multimodal interaction block in
RMI module, the feature dimension d is set to 512, and the
number of attentional heads H is set to 8. The number of mini
batch size is set to 32, with a maximum number of epochs set
to 20. The Adam [Kingma and Ba, 2015] optimizer is used,
with the initial learning rate set to 1e-4, which reduces by
half when the loss stops decreasing after every 10 epochs. We
implement the method with PyTorch deep learning library on
a PC with two GTX 1080 Ti GPUs.

4.3 Comparison with the State-of-the-arts
On the TGIF-QA dataset, we compare with a series of state-
of-the-art VideoQA methods. As shown in Table 1, our MHN
model outperforms other state-of-the-art methods across all
four tasks. Our improvements are more obvious on Action,
Trans., and Count tasks, where the answering requires visual
inference at different temporal scales and processing levels of
the model. These show the advantage of the multiscale mul-
tilevel processing capacity of our model. In addition, most
methods use dense sampling for the input video, e.g., HCRN
[Le et al., 2020] and Bridge2Answer [Park et al., 2021] sam-
pled 8 clips each comprising 16 frames, while our method
with scale N set to 3 only samples 7 clips so that costing less
computational loads.

Method Action Trans. FrameQA Count ↓
ST-TP [Jang et al., 2017] 62.9 69.4 49.5 4.32
Co-Mem [Gao et al., 2018] 68.2 74.3 51.5 4.10
PSAC [Li et al., 2019] 70.4 76.9 55.7 4.27
HME [Fan et al., 2019] 73.9 77.8 53.8 4.02
FAM [Cai et al., 2020] 75.4 79.2 56.9 3.79
L-GCN [Huang et al., 2020] 74.3 81.1 56.3 3.95
HGA [Jiang and Han, 2020] 75.4 81.0 55.1 4.09
HCRN [Le et al., 2020] 75.0 81.4 55.9 3.82
Bridge2Answer [Park et al., 2021] 75.9 82.6 57.5 3.71
HOSTR [Dang et al., 2021] 75.0 83.0 58.0 3.65

MHN (ours) 83.5 90.8 58.1 3.58

Table 1: Comparison with state-of-the-art methods on TGIF-QA
dataset. For the Count task, the lower is better.

Method MSVD-QA MSRVTT-QA

AMU [Xu et al., 2017] 32.0 32.5
HRA [Chowdhury et al., 2018] 34.4 35.0
Co-Mem [Gao et al., 2018] 31,7 31.9
HME [Fan et al., 2019] 33.7 33.0
FAM [Cai et al., 2020] 34.5 33.2
HGA [Jiang and Han, 2020] 34.7 35.5
HCRN [Le et al., 2020] 36.1 35.6
Bridge2Answer [Park et al., 2021] 37.2 36.9
HOSTR [Dang et al., 2021] 39.4 35.9

MHN (ours) 40.4 38.6

Table 2: Comparison with state-of-the-art methods on MSVD-QA
and MSRVTT-QA datasets.

Further comparisons on the MSVD-QA and MSRVTT-QA
datasets are conducted. Results are reported in Table 2. On
such more challenging data, our MHN model still achieves
the best performances of 40.4% and 38.6% on both datasets,
respectively. While Bridge2Answer [Park et al., 2021] ad-
ditionally extracted semantic dependencies from the question
using a NLP tool and HOSTR [Dang et al., 2021] applied
Fast R-CNN for object detection per frame, our model is able
to produce even higher performances without such complex
feature pre-processing.

4.4 Ablation Study
Here, we run several ablation experiments on the TGIF-QA
dataset for in-depth analysis of our method. We adopt the
default MHN model used above as the baseline.

Multiscale Information
We first replace the multiscale input with the input at a sin-
gle temporal scale. Specifically, the multimodal interaction
blocks within the RMI module all take the same appearance-
motion feature Xn at a single scale, with n = 1, 2, 3 sep-
arately. Additionally, for the multiscale input, our default
model takes the inputs at scales from n = 1 to n = 3. We
further change such an input order to consider the inputs at
scales of n = 1, 3, 2, n = 3, 2, 1, and n = 3, 1, 2. Re-
sults are reported in Table 3. We can see that, when the in-
formation is provided at a single scale, model performances
reduced across all the tasks. Therein, by providing richer
frames at higher scales, the Action, Trans, and Count tasks
are improved, suggesting their dependencies on richer tempo-
ral information. By contrast, while the FrameQA task relies



Model Action Trans. FrameQA Count ↓
MHN w/ single scale, n=1 76.2 80.6 57.9 4.24
MHN w/ single scale, n=2 76.7 80.6 57.7 3.99
MHN w/ single scale, n=3 77.0 81.0 57.7 3.66

MHN w/ multiscale, n=1,3,2 83.2 90.7 58.1 3.57
MHN w/ multiscale, n=3,1,2 82.7 90.7 58.2 3.61
MHN w/ multiscale, n=3,2,1 82.6 90.8 58.0 3.60

MHN (default) 83.5 90.8 58.1 3.58

Table 3: The impact of the multiscale input on model performance
in the TGIF-QA dataset.

on the visual inference at a single frame, richer frames lead
to reduced performances. Furthermore, the change of orders
in the multiscale information input does not impact the model
performance noticeably, suggesting the incorporation of mul-
tiscale information with multilevel model processing does not
depend on a rigid matching of orders.

Multilevel Processing and Parallel Reasoning
Here, as the first variant, we remove recurrent connections
between blocks in the RMI module. That is, each block only
receive the appearance-motion feature at a scale as input with-
out the information passed from the previous block, thus the
multilevel processing is no longer enabled. Thereon, the PVR
module still receives the output from each block. For the sec-
ond variant, we provide the PVR module only the output of
the last block of RMI module. Results are reported in Table
4. As we disable the multilevel processing by removing the
recurrent connections, model performances decrease across
the four tasks. Even with multilevel processing, when we
only provide the PVR module with the high-level informa-
tion, model performances improve a bit but are still lower
than our default model. These results show the importance
of incorporating multilevel processing with multiscale visual
inputs, with our proposed HMN model being a promising im-
plementation for such end.

From another perspective, we further consider a variant of
MHN model that uses separate transformer encoders for the
PVR module instead of using a single encoder with weight
sharing. While the number of trainable parameters increases
from 16.5M (default model) to 22.8M thereon, the model
achieves even better performances on Action, Trans., and
Count tasks as seen in Table 4. In comparison, for meth-
ods that have published their codes, PSAC [Li et al., 2019]
(39.1M), HME [Fan et al., 2019] (44.8M), HGA [Jiang and
Han, 2020] (104.1M), L-GCN [Huang et al., 2020] (30.4M),
and HCRN [Le et al., 2020] (42.9M) are all bigger than our
model that without weight sharing, but performed worse.

Model Action Trans. FrameQA Count ↓
MHN w/o recurrent connection in RMI 82.4 89.5 57.7 3.70
MHN w/o low-level information for PVR 82.8 90.6 57.1 3.63
MHN w/o weight sharing in PVR 83.9 90.9 57.5 3.57
MHN (default) 83.5 90.8 58.1 3.58

Table 4: The impact of multilevel processing and parallel reasoning
on model performance in the TGIF-QA dataset.

Model Action Trans. FrameQA Count. ↓
MHN w/ N = 2 82.7 90.0 58.0 3.70
MHN w/ N = 3 (default) 83.5 90.8 58.1 3.58
MHN w/ N = 4 83.3 90.2 58.2 3.55

Table 5: The impact of the number of scales on model performance
in the TGIF-QA dataset.

The Number of Scales
The maximum scale N sets the scope of multiscale sampling,
as well as the depth of vision-question interactions within our
MHN model. Here, we analyze the impact of setting different
values of N on model performance. Since the increase of N
by 1 would double the GPU memory consumption, we only
experiment with N ∈ {2, 3, 4}. We still use an ascent order
of the multiscale information to make the input for our MHN
model, i.e., n = 1, 2, 3 for N = 3. Results are reported in
Table 5. The reactions of performances of different tasks to-
ward the increase of scale N are different. The performances
on the FrameQA task improve with larger N , showing the ro-
bustness of our model for visual inference at a single frame
even if more frames are provided. The richer frames also
contribute to the Count task. For tasks of Action and Trans.,
where the informative visual cues exist at specific scales of
the video, the scale N is better set to reach a balance between
the amount of information provided and model performance.
For our MHN model on TGIF-QA dataset, we reach such a
balance at N = 3. We also find that, with N = 2 where only
3 clips are sampled, our model is able to outperform most
state-of-the-art methods reported in Table 1.

5 Conclusion
This paper presented a novel Multilevel Hierarchical Network
(MHN) with multiscale sampling for accurate VideoQA. In
general, MHN enables the incorporation of the multiscale vi-
sual information with the multilevel processing capacity of
deep learning. Specifically, we designed a Recurrent Mul-
timodal Interaction (RMI) module to use the recurrently-
connected multimodal interaction blocks to accommodate the
interaction between the visual information and the question
across temporal scales. We designed another Parallel Visual
Reasoning (PVR) module to adopt a shared transformer en-
coder layer to process and fuse the multilevel output of RMI
for final visual inference. Our extensive experiments con-
ducted on three VideoQA benchmark datasets demonstrated
improved performances of our MHN model than previous
state-of-the-arts. Our ablation study verified the importance
of multiscale visual information for videoQA, and the effi-
ciency and effectiveness of our method on leveraging it.
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