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Abstract. Fully convolutional U-shaped neural networks have largely
been the dominant approach for pixel-wise image segmentation. In this
work, we tackle two defects that hinder their deployment in real-world
applications: 1) Predictions lack uncertainty quantification that may be
crucial to many decision-making systems; 2) Large memory storage and
computational consumption demanding extensive hardware resources. To
address these issues and improve their practicality we demonstrate a few-
parameter compact Bayesian convolutional architecture, that achieves a
marginal improvement in accuracy in comparison to related work using
significantly fewer parameters and compute operations. The architecture
combines parameter-efficient operations such as separable convolutions,
bilinear interpolation, multi-scale feature propagation and Bayesian in-
ference for per-pixel uncertainty quantification through Monte Carlo
Dropout. The best performing configurations required fewer than 2.5
million parameters on diverse challenging datasets with few observations.

Keywords: two-dimensional image segmentation, convolutional neural networks,
Bayesian probabilistic modelling

1 Introduction

Image segmentation is the pixel-level computer vision task of segregating an im-
age into discrete regions semantically. Among various algorithms, convolutional
neural networks (CNNs) have been key to this task, demonstrating outstanding
performance [10,8,22,11,12,9,29,15,1]. CNNs are able to express predictions as
pixel-wise output masks by learning appropriate feature representations in an
end-to-end fashion, while allowing processing inputs with various size. This is es-
pecially useful in inferring object support relationships for robotics, autonomous
driving or healthcare, as well as scene geometry [12,16,23].

A practical drawback of regular CNNs is that they are unable to capture their
uncertainty which is crucial for many safety-critical applications [6]. Bayesian
CNNs [5] adopt Bayesian inference to provide a principled uncertainty estima-
tion on top of the segmentation masks. However, as the research community seeks

ar
X

iv
:2

10
4.

06
95

7v
2 

 [
cs

.C
V

] 
 2

6 
Ju

n 
20

21



2 Martin Ferianc, Divyansh Manocha, Hongxiang Fan, and Miguel Rodrigues

Pre-process Post-process

Dense Dense

Downsample Upsample

ASPPC C

Dense

Repeat block

C

C

C

BL

BL

BL

Fig. 1: ComBiNet an U-Net [22,11] like architecture consisting of Repeat blocks
with different input scales and dilation rates in an Atrous Spatial Pyramid
Pooling (ASPP) module. The block contains Dense feature extracting blocks,
Downsampling to reduce the spatial dimensionality by 2× and Upsampling for
restoring it back after processing the features from a lower dimensionality. The
context is transferred through an optional ASPP module and concatenated (C),
pairing the same spatial resolution. On the right is the detail of the Dense block
consisting of Basic Layers (BLs). The arrows represent data flow.

to improve accuracy and better capture information in a wider range of applica-
tions, potential CNN architectures become deeper and further connection-wise
complicated [8,11,14,29]. As a result they are increasingly more compute and
memory demanding and a regular modern CNN architecture cannot be easily
adopted for Bayesian inference. As an analytical prediction of uncertainty is not
tractable with such architectures, it is required to approximate it through Monte
Carlo sampling with multiple runs through the network. The increased runtime
cost, primarily due to sampling, has been a limiting factor of Bayesian CNNs in
real-world image segmentation.

To address the aforementioned issues of lacking uncertainty quantification
in regular CNNs and extensive execution cost, the contribution of this work
is in improving the hardware performance of two-dimensional (2D) Bayesian
CNNs for image segmentation, while also considering an efficient pixel-wise un-
certainty quantification. Our approach builds on recent successes to improve
software-hardware performance [8,11,3,22,9,12,27] and extends these into a novel
2D Bayesian CNN architectural template as shown in Figure 1. Specifically, we
focus on few-parameter/few-operation models which decrease the runtime cost of
each feedforward pass, and present a compact design named ComBiNet. Monte
Carlo Dropout [6] is used for Bayesian inference. The novelty of our work is in
demonstrating that it is possible to develop compressed models for 2D image
segmentation while preserving uncertainty estimation capabilities, without com-
promising accuracy. We demonstrate ComBiNet’s fine performance on the few-
samples video-based CamVid [2] dataset and a database of darkfield microscopy
images [20]. On the account of the results obtained, we demonstrate designs that
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achieve accuracy comparable to the state-of-the-art [1,12,11,7,17,26,28,19], but
requiring only a fraction of the parameters or operations. Code for the imple-
mentation is at: https://git.io/JmhTo.

2 Related Work

CNN-based architectures for image segmentation comprise of an encoder-decoder
network, which first encodes the input into features and an upsampler that
then recovers the output from the features as the decoder [15,1]. The decoder is
usually hierarchically opposite to the encoder, although both consist of multiple
levels of computationally-expensive convolutions. Based on this encoder-decoder
structure, the input is thereby refined to obtain the segmentation mask.

Long et al. [15] first proposed the idea of Fully Convolutional Network (FCN)
for this task, which outputs a segmentation mask in any given spatial dimen-
sionality. Further improvements were achieved using bipolar interpolation and
skip connections [8]. However, FCN is limited to few-pixel local information and
therefore prone to lose global semantic context. SegNet [1] was the first CNN
trained end-to-end for segmentation. The novelty of the architecture was in elim-
inating the need for learning to upsample using fixed bilinear interpolation for
resolution recovery. Ronneberger et al. [22] introduced a contracting and ex-
pansive pathway to better capture context and improve localisation precision,
forming the characteristic ”U”-shaped network.

Atrous convolutions [3,29] have also been key to recent advancements, as they
allow increasing the receptive field without changing the feature map resolution.
Multiple such convolutional layers, that can accept the input in parallel, allow
us to better account for multi-scale contextual information across images. This
is termed Atrous Spatial Pyramid Pooling (ASPP) [29].

The downsampling of input images in deep classification networks can be
hardware-inefficient, and several works have addressed this in the context of em-
bedded vision applications. MobileNets [9] introduced the idea of factorising the
standard convolution into depth-wise/kernel-wise separable convolutions, formed
of a depth-wise convolution layer that filters the input and a 1 × 1 convolution
that combines these to create new features. In [21], the authors employed kernel-
wise separable convolutions to construct a compact model with the objective of
enabling efficient real-time semantic segmentation. ESPNet [17] used a hierar-
chical pyramid of dilated and 1× 1 convolutions to reduce the architecture size.
Nekrasov et al. [19] developed an automatic way to find extremely light-weight
architectures for image segmentation.

Bayesian neural networks [7,5,16,13,12] assign a probability distribution on
the network weights instead of point estimates, to provide uncertainty measure-
ments in the predictions. Employing this Bayesian mathematical grounding for
CNNs enables us to obtain both the mask and uncertainty associated with it
in the context of image segmentation. To the best of our knowledge, there are
only two works focusing on 2D Bayesian CNNs in image segmentation for robust
uncertainty quantification. Both of these approaches use Monte Carlo Dropout

https://git.io/JmhTo
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(MCD) [6], in which Gal and Ghahramani cast dropout [24] training in a NN as
Bayesian inference without the need for additional parametrisation. In [12] the
authors searched and utilised dropout positioning in a SegNet [1]. In [7] the au-
thors learned the dropout rates with respect to a DenseNet-like architecture [11].

In comparison to the related work, our work repurposes existing approaches
[8,11,3,22,9,12] to construct hardware-efficient 2D segmentation networks by de-
creasing the number of parameters and multiply-add-accumulate (MAC) op-
erations while also providing improvements in accuracy. Furthermore, unlike
previous hardware-efficient works, we use MCD for uncertainty quantification.

3 ComBiNet

The 2D network architecture of ComBiNet is presented in Figure 1, which is
based on a ”U”-net-like architecture [11,22] that divides itself into upsampling
and downsampling paths as briefly described in Section 2. Skip connections con-
necting the paths preserve sharp edges by reducing the coarseness of masks and
as a result contextual information from the input images can be preserved. The
general building unit of the network is a Repeat block. A Dense block at the
bottom of the network is used to capture global image features in addition to
the optional ASPP blocks that are placed with skip connections. The input is
processed using a 3 × 3 2D convolution Pre-processing block, while the output
is processed through a 1× 1 2D convolution Post-processing block.

3.1 Repeat Block

Repeat blocks have the dual purpose of extracting features, through the Dense
block, and extracting contextual information, through an optional ASPP block.
Each block spatially downsamples the input by a factor of 2 and later upsamples
it back to the block’s input resolution.

The Repeat block is reusable, such that multiple blocks can be appended to
one another to extract contextually richer features. The output of the Down-
sampling block is the input into the next Repeat block. This means the features
and the input are processed at different spatial sizes. It is important to highlight
there is a connection between the input of the Repeat block and the output of
its encoding Dense block, prior to Downsampling. The input is concatenated to
the output of the block, without being processed through the feature extracting
Dense block, to enable propagation of local and global contextual information.

Basic Building Blocks The Dense block is inspired by [10,11] and shown
expanded in Figure 1 on the right. It is a gradual concatenation of previous
features allowing for feature-map changes processed through a Basic Layer (BL).
A BL accepts inputs from all previous layers in a Dense block. The output
channel number of the BL is restricted to a growth rate of k, which is constant for
all BLs in the network, to avoid exponential increase in the channels propagated.
More intuitively, it regulates the amount of new information each layer can
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contribute to the global state. For similar reasons, the output of the Dense
block does not automatically include the original input, unless considering the
downsampling path. The Dense block can have an arbitrary number of BLs and
their counts are increased towards smaller spatial input size. Efficient gradient
and feature propagation is ensured by concatenations between all previous stages
and the current stage. Details of the serially connected individual operations of
BL, Downsampling and Upsampling are given below.

Basic Layer: Batch normalisation; ReLU; 3× 3 Completely separable con-
volution; Dropout

Downsample: Batch normalisation; ReLU; 1 × 1 Convolution; Dropout;
2× 2 Max-pooling with stride 1; 2× 2 Blur with stride 2

Upsample: Bilinear interpolation; 1× 1 Convolution

The BL first performs batch normalisation (BN) which pre-processes the
inputs coming from the different BLs. This operation is followed by ReLU and a
3×3 completely separable convolution for feature extraction. It consists of serially
connected 1×3; 3×1 convolutions with the output channel size same as the input,
while being channel-wise separated, followed by a reshaping pointwise 1 × 1
convolution. We use completely separable convolutions for their parameter and
MAC operation count efficiency. In particular, when paired with an appropriate
k, BL can be an extremely compact feature extractor. The convolution is followed
by a 2D dropout to provide regularisation and perform Bayesian inference [5].

The Downsampling extracts coarse semantic features. The combined oper-
ations include BN, ReLU, 1 × 1 convolution, dropout and 2 × 2 max-pooling
with stride 1 and 2× 2 blurring with stride 2. We used additional blurring with
max-pooling to preserve shift-invariance of convolutions [27].

The Upsampling uses the parameter-less bilinear interpolation to save com-
putational and memory resources. Furthermore, it also preserves shift invariance
of objects in the input images and avoids aliasing [27]. We add a 1× 1 2D con-
volution to the output of the interpolation to refine the upsampled features.

Atrous Spatial Pyramid Pooling (ASPP) ASPP [29,3], as briefly intro-
duced in Section 2, has been successfully used in various segmentation models
to capture contextual information. It consists of atrous (dilated) convolutions
which enables the preservation of shift-invariance while at the same time in-
creasing the receptive field and enhancing the robustness to augmentations [27].
Specifically, it is composed of 4 convolutions interleaved with BN and ReLU
to extract information over a wide spatial range though setting wider dilation
rates in convolutions. Global average pooling and 1× 1 convolution are used for
global feature aggregation at the given scale. Each part accepts inputs from all
channels, downscales them such that the output is only 32 channels. These are
concatenated with all other in the channel-dimension and refined to the out-
put channel dimension by 1 × 1 convolution. Finally, we regularise by applying
dropout. In our work we use ASPP blocks in all Repeat blocks, except the first
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and the last one. We also changed the original ordering of the dilated convolu-
tions to place BN first, instead of the convolution, for better regularisation. We
kept the partial channel numbers to 32 to limit computation.

3.2 Bayesian Inference

MCD [6,5] provides a scalable way to learn a predictive distribution, by applying
dropout [24] to the output of convolutions at both training and test time. This
leads to Bayesian inference over the network’s weights. The sampled distribution
provided by the dropout is used to sample models from the learnt variational
posterior distribution. Although this can be achieved without additional pa-
rameters, it requires sampling and repeating S feedforward steps through the
network with the same input. The S repeated steps linearly increase the com-
pute demand, such that the runtime computational or memory complexity scales
with O(S), and hence it is of further importance that the network is hardware
efficient both in terms of memory consumption as well as the number of oper-
ations for the individual runs. A pixel-wise entropy can be derived, based on
the repeated runs, that quantifies uncertainty as H(ŷ) = −

∑C
c ŷc log(ŷc). The

ŷ ∈ RC is the pixel-wise mean of the softmax outputs across the S runs with
respect to C output classes. The dropout rate presents a trade-off between data
fit and uncertainty estimation. For convenience of hardware implementation, we
use a dropout rate of 0.05 across the entire network for all experiments.

4 Experiments

This Section first discusses our experimentation settings and then presents an
assessment of the results on the CamVid and bacteria datasets. We did not
perform pre-training on additional image data or post-training fine-tuning. We
introduce three ComBiNet models: ComBiNet-S, ComBiNet-M, ComBiNet-L:
small, medium or large depending on the MAC count or the number of param-
eters, with the aim to trade-off computational complexity, accuracy and uncer-
tainty quantification capabilities. We evaluated uncertainty through the mean
per-pixel entropy of networks trained on CamVid or bacteria with respect to
a random subset of 250 PascalVOC images [4]. We initalised the weights of all
ComBiNets with respect to the He-Uniform initialisation [8]. To train, we used
Adam for 800 epochs with an initial learning rate of 0.001 and an exponential
decrease with a factor 0.996. We trained ComBiNets with respect to a batch
size of 2 and with BN applied to each batch individually, as we found it essen-
tial to not use train-time statistics during evaluation. We set S = 30 for the
quantitative and qualitative software evaluation. For quantitative evaluation we
measured the standard per-pixel mean intersection over union (mIoU), entropy,
MACs and number of trainable parameters. The number of MACs was calculated
with respect to 224 × 224 × 3 input size and S = 1. We repeated each experi-
ment 3 times from which we report mean and ± a single standard deviation in
following Tables.
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Fig. 2: Qualitative evaluation. (from left) The first column depicts the input
image, the second column is the ground-truth segmentation mask, the remaining
columns are with respect to predictions of ComBiNet-L, DenseNet-103 + CD
and DeepLab-v3+-ResNet50.

4.1 CamVid

The CamVid road scenes dataset [2] originates from fully segmented videos from
the perspective of a driving car. It consists of 367 frames for training, 101 frames
for validation and 233 frames for testing of RGB images with a 480× 360 input
resolution. There are 11 manually labelled classes that include roads, cars, signs
etc. and a background that is usually ignored during training and evaluation. To
augment the dataset we carried out channel-wise normalisation and the following
randomly: re-scale inputs between a factor of 0.5 to 2.0; change aspect ratios
between 3/4 to 4/3; crop with a square size of 360; horizontal flips; and random
colour changes with respect to contrast, saturation and hue for training. We used
the combo loss function [25], and weighted it proportionally to class-pixels in the
images as CamVid is unbalanced. A weight decay of 1e−3 was applied.

We summarise the performance of the different ComBiNets in Table 1, com-
paring to the other state-of-the-art 2D segmentation networks that include those
focused on hardware efficiency with respect to their number of parameters and
those considering Bayesian inference. The results show all ComBiNets obtained
competitive results on mIoU with significantly fewer parameters and MACs.
One result that stands out is [30] which used video, fine-tuning and an over-
parametrised architecture. ComBiNet-L is the most accurate of ComBiNets with
approximately 3× fewer parameters and MACs than its current equivalent with
S = 1. ComBiNet-S is the most hardware efficient with 42× fewer parameters
and 7× fewer MACs than the Bayesian SegNet when S = 1, while achieving an
accuracy that is still close to the related works. We also compared the entropy
pixel-wise, in which ComBiNets are marginally better in comparison to [12,7]. In
Figures 2 and 3 we demonstrate the qualitative results. In general, the model is
more uncertain in the objects that are more distant, occluded or surrounded by
the background class (black), which was ignored during training and evaluation.
The results of the segmentation showed that the most problematic classes were
fence and sign/symbol, whilst roads and the sky were most accurately distin-
guished. Figure 2 demonstrates on one sample that the model is accurate also
in comparison to the related work consisting of a non-Bayesian or a Bayesian
model.
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Table 1: Comparison with respect to other networks on the CamVid test dataset,
† notes training and testing with respect to 960×720 images instead of 480×360,
‡ denotes Bayesian approaches. Arrows denote desired trends. - denotes not
reported. ∗ were replicated in this work and not officially reported.
Method mIoU [%] ↑ Params [M] ↓MACs [G] ↓ Entropy [nats] ↑
SegNet [1] 55.6 29.7 - -

Bayesian SegNet‡ [12] 63.1 29.7 30.8∗ 0.68∗

DenseNet-103 [11] 66.9 9.4 24.9∗ -

DenseNet-103 + CD‡ [7] 67.4 9.4 24.9∗ 0.47∗

ESPNet [17] 55.6 0.36 - -

BiSeNet† [26] 65.6 5.8 - -

ICNet† [28] 67.1 6.7 - -
Compact Nets [19] 63.9 0.28 - -
DeepLab-v3+-ResNet50 [3] 57.6∗ 16.6∗ 13.2∗ -

Video-WideResNet38† [30] 79.8 137.1 - -

ComBiNet-S‡ 66.1±0.3 0.7 4.2 0.69±0.02
ComBiNet-M‡ 66.9±0.2 1.3 7.9 0.68±0.01

ComBiNet-L‡ 67.9±0.1 2.3 9.4 0.65±0.02

4.2 Bacteria

The bacteria dataset [20] comprises of 366 darkfield microscopy images with
manually annotated masks for segmentation. The task is to detect bacteria of the
phylum Spirochaetes in blood. This therefore leads to a problem of segmenting
two classes corresponding to the bacteria and red blood cells - Spirochaetes and
Erythrocytes respectively. This is a challenging task due to both the nature
of the problem, a heavily unbalanced dataset, and the collection methodology
which results in considerable noisy RGB input images of varying sizes from
1000 × 1000 to 300 × 300 pixels. We randomly split the dataset into sizes 219,
73, 74 images for training, validation and test respectively. We then apply the
same augmentations as those mentioned in Section 4.1 for the CamVid dataset,
extended further with vertical flips. We train with respect to the Combo loss
function and added a log-dice coefficient. Weight decay was set to 1e−4.

Table 2 shows that all ComBiNets obtain better accuracy with significantly
fewer parameters and MACs. ComBiNet-S is the most hardware efficient with
13× fewer parameters and 6× fewer MACs than DenseNet when S = 1. We
note that ComBiNet-87 achieves a worse accuracy than ComBiNet-M in our
experiments with this dataset, showing that a bigger network is not always the
best. All ComBiNets infer that all unrecognisable objects should be classified as a
background resulting in smaller entropy than the related work. The qualitative
evaluation of Figures 3 and 4 demonstrates the ability of the architecture to
segment noisy images, while comparing it to DenseNet with Concrete Dropout
(CD) [7] and Bayesian SegNet. We further depict the corresponding predictive
uncertainty of this sample in Figure 5, which helps us understand the portions of
the image where the architecture was less certain in its given predictions. It can
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Table 2: Comparison with respect to other networks on the bacteria test dataset,
‡ denotes Bayesian approaches. Arrows denote desired trends. ∗ were replicated
in this work and not officially reported.
Method mIoU [%] ↑ Params [M] ↓MACs [G] ↓ Entropy [nats] ↑
Bayesian SegNet‡,∗ [12] 76.1 29.7 30.8 0.19

DenseNet-103 + CD‡,∗ [7] 75.8 9.4 24.9 0.32
U-Net∗ [22] 71.4 31.0 41.9 -
DeepLab-v3+-ResNet50∗ [3] 80.4 16.6 13.2 -

ComBiNet-S‡ 82.3±0.4 0.7 4.2 0.18±0.02

ComBiNet-M‡ 83.0±0.4 1.3 7.9 0.16±0.01

ComBiNet-L‡ 82.3±0.2 2.3 9.4 0.16±0.02
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Fig. 3: Qualitative evaluation. (from left) The first column depicts the input
image, the second column are the ground-truth segmentation masks, the third
column are the predictions and the fourth column are the per-pixel uncertainties
measured through the predictive entropy of ComBiNet-L and ComBiNet-M. The
two top rows are with respect to CamVid models and the bottom two rows are
with respect to bacteria models.
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Fig. 4: Qualitative evaluation. (from left) The first column depicts the input
image, the second column is the ground-truth segmentation mask, the remaining
columns are with respect to predictions of ComBiNet-M, DenseNet-103 + CD
and Bayesian SegNet.

0.25

0.50

0.75

1.00 Entropy [nats]

Fig. 5: Qualitative evaluation of predictive uncertainty. (from left) The first
column depicts the input image, the second column is the ground-truth seg-
mentation mask and the remaining columns are with respect to predictions of
ComBiNet-M, DenseNet-103 + CD and Bayesian SegNet.

be seen that the network is uncertain about suspicious bacteria bodies, which
can further help practitioners to better understand their samples.

4.3 Discussion

With respect to the qualitative results in Figure 3 along with the quantified
uncertainty measured by per-pixel entropy we observe that, due to the skip con-
nections and gradual downsampling and upsampling, the model retains sharp
edges and detail in the predictions. Additionally, through feature reuse and de-
tailed construction of efficient modules, e.g. BL, the model was able to provide
favourable performance, despite smaller parameter or operation counts.

The main bottleneck of this work lies in its use of MCD for Bayesian in-
ference, as it requires multiple feedforward runs, but no extra network weights,
to obtain an uncertainty estimate in the output mask. These runs multiply the
MAC cost ×S and hence S represents a trade-off between hardware demand and
quality of approximation of the predictive distribution. For this reason lowering
MACs at the individual feedforward pass level was the focus of this work. Addi-
tionally, in hardware it is possible to simply parallelise these runs [18]. Lastly, if
uncertainty estimation is not needed, the presented networks can still guarantee
high accuracy with respect to weight averaging, disabling dropout and setting
S = 1, which was relatively lower by approximately one standard deviation as
shown in the Tables 1 and 2 for CamVid or bacteria respectively.
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5 Conclusion

We propose a compact 2D Bayesian architecture, ComBiNet, that re-purposes
hardware efficient operations for the task of image segmentation. We demon-
strated that good accuracy along with predictive uncertainties can be achieved
with significantly fewer parameters and MACs, lowering hardware resources and
computational costs. We show that ComBiNet performs well with an imbalanced
dataset, as well as the established CamVid dataset, showing higher uncertainty
in misclassified sections. Furthermore, it was not necessary to perform any pre-
training or post-training fine-tuning to reach the observed accuracy. For the
future, we would like to measure and optimise the architectures with respect to
other hardware performance metrics such as power consumption or structured
instance-wise uncertainty estimation instead of pixel-wise.
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Martin Ferianc was sponsored through a scholarship from ICCS at UCL.
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