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The “Decentralised Web” (DW) is an evolving concept, which encompasses technologies aimed at providing
greater transparency and openness on the web. The DW relies on independent servers (aka instances) that
mesh together in a peer-to-peer fashion to deliver a range of services (e.g. micro-blogs, image sharing, video
streaming). However, toxic content moderation in this decentralised context is challenging. This is because
there is no central entity that can define toxicity, nor a large central pool of data that can be used to build
universal classifiers. It is therefore unsurprising that there have been several high-profile cases of the DW
being misused to coordinate and disseminate harmful material. Using a dataset of 9.9M posts from 117K users
on Pleroma (a popular DW microblogging service), we quantify the presence of toxic content. We find that
toxic content is prevalent and spreads rapidly between instances. We show that automating per-instance
content moderation is challenging due to the lack of sufficient training data available and the effort required
in labelling. We therefore propose and evaluate ModPair, a model sharing system that effectively detects toxic
content, gaining an average per-instance macro-F1 score 0.89.

1 INTRODUCTION
Social platforms such as Facebook and Twitter are amongst the most popular websites in the world.
Despite their huge success, criticism for their role in disseminating toxic content (e.g. hate speech)
is mounting. This is a thorny issue that could pose a threat to freedom of speech [3]: the monolithic
nature and lack of competition of these platforms gives them full discretion over the activities
that are allowed to take place. This has raised a number of regulatory concerns and triggered
widespread political debate [68].

In reaction to this, a growingmovement referred to as the “DecentralisedWeb” (DW) has emerged.
The goal of the DW is to decentralize power and control away from the major centralised tech
giants. As such, these projects have striven to create a more open environment that champions
freedom of speech, whilst simultaneously disincentivising toxicity by giving users greater control
over their own online communities. The DW consists of a range of platforms that offer decentralised
equivalents to mainstream services. Some of the most popular DW applications include Pleroma
and Mastodon [44] [57] (Twitter-like micro-blogging services), Diaspora [25] (a Facebook-like
social network), and PeerTube [56] (a YouTube-like video hosting software). These DW platforms
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have several unique properties: (i) They are made up of independently operated and moderated
communities located on different servers (called instances), which any new administrator can setup;
(ii) They enable users, who must sign-up to specific instances, to own their data – in fact, some
users choose to fork their own instance to keep complete control of their data; and (iii) They allow
users to interact locally (within instances) as well as globally (across instances) via the so-called
“Fediverse” — this involves instances interconnecting in a peer-to-peer fashion, allowing their users
to communicate (referred to as federation). Through these novel features, these independent servers
collaborate to offer a globally integrated platform atop of an entirely decentralised infrastructure.
Despite its novelty, this model creates interesting challenges for toxic content moderation (§2).

Namely, whereas centralised services (like Twitter) have the resources to actively moderate content
by hiring moderators and refining automated classifiers using large data pools, DW administrators
have limited resources and only control the data in their own instance. Furthermore, whereas
many major services rely on third-party commercial and centralised moderation APIs [4] (that
tag their posts), this goes against the vision and philosophy of the DW. Even if this were possible,
an administrator can only moderate their own instance — it is possible for content from poorly
moderated instances to “spread” to other instances through the peer-to-peer federation links. Of
course, this all assumes that administrators even have similar definitions of “toxic”. Thus, addressing
the challenge of toxic content moderation has proven to be labour-intensive and impractical for
many instance operators. A recent example of this occurred when the gab.social instance [83]
joined the Fediverse, rapidly spreading hate speech to other instances [2]. We argue that addressing
this problem is vital for ensuring the success of DW applications.
With this in mind, we identify four critical questions: (i) How much toxicity exists in the DW?

(ii) How does toxic material spread across DW instances via federation? (iii) Is it possible for
DW instances to train their own automated classification models to reduce the manual load on
administrators? And (iv) How can administrators cooperate to improve content moderation and
reduce their workload?

To address these questions, we present the first large-scale study of toxicity in theDWand propose
ModPair, a collaborative approach to better enable instances to automate content moderation in
a decentralised fashion. We do so from the point of view of one of the largest decentralised
microblogging networks, Pleroma. We first present a measurement study of Pleroma (§4), gathering
data from 30 unique Pleroma instances (§3), covering more than three years and 9.9M toots1 from
117K users. We confirm that extensive toxic content is present in the DW. We identify 12.15% of
all toots as toxic. Furthermore, we show that toxic content does spread across Pleroma: 26 out of
the 30 instances receive an average of at least 105K remote toxic toots through federation. In fact,
Pleroma instances receive more toxic content from remote instances than they generate locally.
This makes it impractical for individual administrators to manually flag toxic toots at such a scale.

Driven by these observations, we explore the potential of decentralised automated content
moderation in the DW (§5). We start by assessing the ability of administrators to train local models
to automatically tag local toots as toxic vs. non-toxic. We confirm that it is possible to build such
local models, attaining an average macro-F1 score of 0.84 across all instances. However, we find
that such models struggle to accurately tag remote content due to divergent linguistic features.
For example, whereas a model trained using my.dirtyhobby.xyz data gains a macro-F1 score of
0.95, it attains an average of just 0.69 when applied to toots from other instances. This makes it
difficult to rely on such models to detect toxicity in incoming toots from remote instances, without
requiring administrators to tag thousands of more toots.

1A toot is equivalent to a tweet in Twitter.

gab.social
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To improve moderation, we therefore propose ModPair (§6) — a system for collaborative moder-
ation where instances share partially trained models to assist each other. This has the benefit of
implicitly sharing annotations across instances, without compromising the privacy of administra-
tors by asking them to expose their own moderation tags. To enhance knowledge transfer, ModPair
leverages semantic similarity of instances by pairing instances with similar topical characteristics.
Specifically, each instance uses its own small set of (annotated) toxic toots to build local models.
Instances then predict which remote models are most likely to perform well on their own local
content, creating an ensemble to improve their own classification performance. We show that
ModPair can correctly identify the top three best performing remote models 83% of the time,
gaining an average per-instance macro-F1 score 0.89. Although here we focus on text-based toxic
content moderation, our methodology can equally apply to other types of decentralised content
classification, e.g. image classification (§8).

2 BACKGROUND & MOTIVATION

What is the Fediverse? The Fediverse is a network of independently hosted and interconnected
“Decentralised Web” servers (i.e. instances). In this model, no single entity operates the entire in-
frastructure. Instead, instances collaborate (aka “federate”) in a peer-to-peer fashion to collectively
offer various types of services (e.g. microblogging, file sharing, video streaming). This federation is
performed using the W3C ActivityPub [1] protocol, which allows instances to subscribe to objects
provided by each other. The nature of these objects varies based on the specific application in
question. For example, whereas Pleroma (a microblogging platform) exchanges messages, Peer-
Tube (a video sharing platform) exchanges videos. This allows these server instances to form a
decentralised network of content exchange. There are around 30 open source platforms that are
built with ActivityPub. Servers installing any of these software packages are interoperable and can
communicate with each other irrespective of the service they provide.
What is Pleroma? Pleroma is a DW open source microblogging service that runs in the Fediverse
and the largest decentralised social platform (next to Mastodon [59]). Unlike centralised online
social networks, anyone can run a Pleroma instance which will then operate independently under
the control of its administrator. The Pleroma software is a lightweight web server written in Elixir,
using the Phoenix framework with a database backed with PostgreSQL. Accordingly, administrators
can deploy Pleroma on a wide range of hardware, ranging from Raspberry Pis to high-end compute
servers. Both administrators and regular users can then access these instances using any web
browser (via HTTP).

Each Pleroma instance has a unique domain name and users must sign up to a specific instance
to gain access to the wider Pleroma network. Often, each instance will be themed around a
given topic, e.g. users interested in arts might join imaginair.es, whereas programming might
join pythondevs.social. Once a user has created an account on an instance, they can follow other
accounts from the same instance or, alternatively, users on other instances that also host Pleroma.2

In Pleroma, “toots” are the equivalents of “tweets” in Twitter and much of the functionality (e.g.
the ability to follow users and ‘like” toots) works in a similar fashion. That said, there are clear
differences between Pleroma and prior microblogging services: Pleroma (i) provides no ranking
and recommendation algorithm instead toots are displayed chronologically; (ii) has no algorithm to
recommend followees, instead new connections rely on searching an already known user through

2In fact, they can follow users from any other Fediverse instances that use the ActivityPub protocol (e.g.Mastodon, Peertube,
etc.).



4 Haris Bin Zia et al.

      @alice@x.pleroma

@bob@x.pleroma

x.pleroma 

@carol@y.pleroma

@dave@z.mastodon

y.pleroma 
 
 

z.mastodon
 

    

@carol@y:
my post!!

@dave@z:
my video!!

Remote  
Follow

@bob: my
art!!

@carol: my
post!!

@dave: my
video!!

 2 1  3

 5
 4

 6

(a) (b)

Fig. 1. (𝑎) Example federation workflow. (𝑏) A graph representation of how instances exchange toots in the
Fediverse. Nodes are instances, and links indicate that two instances are federated.

the search functions or exploring the instances to find like-minded users; (iii) is a community-
oriented platform: each instance supports specific interests or topics and users can register on the
instance that is better matched to their own tastes.
What is Federation in Pleroma? Once a user joins an instance, they can follow (i) other users on
the same instance; or (ii) remote users from other instances. The latter action creates a federation
link between two instances (i.e. federation). Thus, remote toots are retrieved by the local server
(using ActivityPub) and presented to the local users on their timelines.

Figure 1a illustrates an example of how these toots are subscribed to and retrieved across the
federated network. Consider three instances x.pleroma, y.pleroma, z.mastodonwith users [Alice,
Bob], Carol, and Dave, respectively. Let us assume *.pleroma hosts Pleroma and *.mastodon hosts
a Mastodon microblogging service. ActivityPub allows Alice to follow Carol, who is a user on a
different instance. While this is not possible with traditional platforms (e.g. a user on Twitter cannot
follow a user on Facebook), the Fediverse allows this flexibility. This is done by Alice performing a
remote follow request to Carol which involves the following steps. 1 Alice makes a request to her
local instance (x.pleroma) to follow Carol (on instance y.pleroma). 2 The request is forwarded
to y.pleroma. 3 The remote instance (y.pleroma) informs Carol that Alice is now following her.
Thereafter, whenever 4 Carol posts a toot on her instance (y.pleroma), 5 it gets pushed to Alice’s
instance (x.pleroma). Finally, 6 when Alice logs in, the toot will appear on her timeline. Note,
Alice can also view the video posted in z.pleroma as Bob (also from x.pleroma) remotely follows
Dave (from z.mastodon). This federated approach results in a complex network, where instances
are linked as a result of the following relationships of their user base.
Challenges in Toxic Content Moderation. Administration in the Fediverse is decentralised: each
instance decides which toots are considered toxic vs. non-toxic. Thus, prior centralized approaches
to moderation, where a single administrative entity (e.g. Twitter) has full control, no longer applies.
This greatly complicates moderation as toots generated on one instance can easily spread to
another instance, even if those two instances have wildly different viewpoints. For example, imagine
z.mastodon allows the posting of pornographic content, yet x.pleroma does not. An explicit post
by Dave –acceptable in his instance (z.mastodon)– may easily spread to x.pleroma where it is not
acceptable. Given the huge scale of the Fediverse and the voluntary nature of most administrators,
manual moderation of large quantities of content is not feasible. This would makes it difficult
for x.pleroma to moderate all incoming posts from z.mastodon. Complicating this is the fact
that instance administrators rarely wish to upload content to centralised moderation APIs, as this
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naturally undermines the nature of the DW (and incurs extra costs). To give a preliminary sense of
the scale of this federation network, Figure 1b presents the network representation of the federation
links formed between the instances in our dataset (later explained in §3). Preventing the spread
of toxic content with this dense and complex instance interconnectivity is challenging due to the
ability for content to spread across the federated links.

3 DATASET AND METHODOLOGY
We start by describing our data collection and toxicity labeling methodology. Although the Fediverse
contains a large number of diverse services, we focus on Pleroma (microblogging platform). We do
this because it is one of the largest by both content and user counts. Our data collection follows
three key steps: (i) Discovering a set of Pleroma instances to measure, including its federation
network; (ii) Gathering the full set of toots from each instance; and (iii) Labeling each toot as toxic
or non-toxic. For the latter, we use toxicity annotations from Jigsaw Perspective [4], due to its
widespread uptake and well-understood definition.
Discovering Instances. We first need to identify the domains of Pleroma instances deployed
around the globe. To do this, we crawled a list of Pleroma instances from the-federation.info/
pleroma on December 15, 2020. This yielded 729 unique instance domains. We then expanded
this list by recursively capturing the instances that these instances federate (i.e. its list of remote
instances it has previously connected to). This is done using each instance’s Peers API3 between
December 2020 and January 2021. This API endpoint returns a complete list of instances that any
instance has federated with during its lifespan. In total, we identify 1360 instances.
Collecting User Data & Toots. Next, we collect all public toots from the identified instances. For
this, we gathered all toots using their Public Timeline API.4 This API endpoint returns all public
toots on the instance. Each toot includes information about the author, text content, associated
media, timestamp, number of likes, number of reblogs, and any self-tagged content warnings. The
latter is voluntarily added by the toot author to notify future viewers that the toot may contain
(subjectively judged) sensitive material. In total, 5.4% of toots in our dataset are self-tagged with
warnings.

To gather this data, we build and execute a multi-threaded crawler to gather all prior toots made
before January 22, 2021, from all responsive instances. This covered 713 (out of 1360) instances.
The primary reason for failures among the remaining instances was that many instances were not
reachable (31.5%), and some (12.3%) had zero toots. The remaining instances did not make their toots
publicly available and we made no attempt to circumvent the publicly available data restrictions.
Finally, we gather associated user profile information, namely the full list of each account’s followers
and followees. Note, due to the distributed nature of the instances, we parallelised our crawler
across several servers and implement a set of precautions, like rate limiting on API requests, to not
burden the instances.
Toxicity Labels. This paper focuses on exploring the spread of toxicity on Pleroma. Hence, we
label toots in our dataset using Google Jigsaw’s Perspective API [4]. Our choice of Perspective API
is motivated by similar and recent measurement studies of the other social platforms like 4chan [54]
and Voat [53]. We apply the same classification model and toxicity definition for comparability.
Perspective defines toxicity as “a rude, disrespectful, or unreasonable comment that is likely to
make people leave a discussion“. Internally, Perspective trains BERT-based models [24] on millions
of comments from online forums such as Wikipedia and The New York Times where each comment

3<instance.uri>/api/v1/instance/peers
4<instance.uri>/api/v1/timelines/public

the-federation.info/pleroma
the-federation.info/pleroma
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Fig. 2. (a) Distribution of toots and users on Pleroma instances (note log scale on Y-axis). (b) Number of toots
in different toxicity intervals.

is tagged by 3-10 crowdsourced annotators for toxicity. For a given toot, Perspective returns a
score (between 0 and 1) for its toxicity. This offers an estimate of the fraction of human moderators
who would label the content as toxic. Following [53, 54, 60, 66], we consider a toot to be toxic if its
toxicity score is greater than 0.5 (and vice versa). This represents a moderately toxic score, but we
opt for this to capture a broad range of problematic content and behavior. We label a user as toxic
if the average toxicity of their toots is greater than 0.5 (and vice versa). For completeness, we also
repeat our later experiments with a stricter toxicity threshold (0.8) to find that it provides similar
results, as summarised in the Appendix A.
Unfortunately, due to rate limitations, it is not possible to label all toots in our dataset. Hence,

we select the 30 largest instances based on the number of toots they contain (see Figure 2a). Overall,
these 30 instances contain 9,927,712 unique toots (of which 1,394,512 were local toots) posted by
116,856 unique users (of which 8,367 were local users) between 1 January 2017 and 22 January
2021. This represents 55% of the total toot count for that period. The federated graph showing the
subscriptions of these 30 instances is shown in Figure 1b. These 30 instances are connected to many
further instances (on average 1,511). This implies that the annotated toots in our dataset include
many toots that have been imported from other instances.

In §5 we use these Perspective annotations in lieu of human labels provided by administrators of
each instance. A limitation of this methodology is that each instance will obviously have annotations
using a consistent and standardised definition (as dictated by Perspective). This is not necessarily
representative of where individual instance administrators may moderate on differing criteria. To
address this, we later introduce randomised noise into the annotations on a per-instance basis, to
reflect discrepancies between administrators’ annotation styles.

4 CHARACTERISING TOXICITY IN PLEROMA
Considering recent media reports of toxic activity in the DW [67], we start by presenting a general
overview of the toxicity in Pleroma. We use this to quantify and motivate the importance of
moderation.

4.1 Overview of Toxicity
The toxicity labels obtained from Perspective range between 0 and 1. Figure 2b presents the
distribution of toxicity scores across all toots. In line with studies of other social platforms [53, 54],
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Fig. 3. Percentage of toxic toots (a) on Pleroma instances split by local and federated toots (b) from top-30
federated instances with the largest number of federated toots split by the origin of the federated toots.

the majority of toots in our dataset are non-toxic. On average, we find the amount of toxic content
is significantly less than that observed on other online fringe communities such as 4chan (37%) [54]
and Voat (39.9%) [53]. That said, we still find a large portion of toxic toots (12.15%).
We conjecture that this may be driven by certain instances spreading large volumes of toxic

content. Thus, Figure 3a presents the percentage of toots on each instance that score above 0.5
toxicity. We find that 80.7% of toots on my.dirtyhobby.xyz are classified as toxic. This adult-
themed instance is classified as toxic primarily due to the abundance of sex-related conversations.
Note, this also highlights the diversity of toxic content types considered in centralised moderation
APIs. In contrast, we observe that the majority of other instances have between 7–23% of toxic toots,
confirming a wide range of toxicity levels. We do discover a small number of exceptions though,
with 3 instances generating under 3% toxic toots: pleroma.ml (2.2%), pleroma.wakuwakup.net
(0.8%), unkworks.net (0.3%). This confirms that the DW is composed of a variety of instance types,
with certain instances generating a significant share of toxicity.

4.2 Spread of Toxicity
A unique aspect of the DW is federation, whereby content is imported from one instance to another.
This poses a particular challenge for local administrators, who have little control over the remote
instances where content is created.
Local vs. Federated Toots. To test if this concern is legitimate, we compare the toxicity of local
vs. federated toots (i.e. toots that have been retrieved from a remote instance). Figure 3a plots the
percentage of local vs. federated toxic toots on all 30 instances. In line with our intuition, we see
that federated toots constitute the most significant chunk of toxic content on 26/30 of the instances.
In contrast, only four instances have more toxic content generated locally (rather than imported via
federation). Interestingly, this suggests that, on average, users tend to follow and import content
that is more toxic than the locally generated one.
Next, recall that our dataset includes federated content that has been retrieved from instances

outside of Pleroma (theW3C ActivityPub [1] protocol allows Pleroma instances to interoperate with

my.dirtyhobby.xyz
pleroma.ml
pleroma.wakuwakup.net
unkworks.net
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Fig. 4. CDF of (a) the number of instances federated toots reach split by toot toxicity, (b) number of users
federated toots reach split by toot toxicity, (c) number of reblogs of toxic and non-toxic toots, (d) number of
followers of toxic and non-toxic users.

various other DW-enabled platforms such as Mastodon). In total, our 30 instances have federated
with 5,516 other instances from the wider Fediverse. This allows us to inspect the composition of
toxic vs. non-toxic toots contributed by these other platforms. To this end, we extract the set of
instances (from the 5,516) with at least 10% of their toots classified as toxic. This results in 1,489 non-
Pleroma instances (27%) being extracted. Figure 3b plots the percentage of toxic toots from these
federated instances with the largest number of federated toots. We observe a mix of both Pleroma
and Mastodon (the two most popular DW microblogging services). For instance, we see prominent
controversial Pleroma instances like kiwifarms.cc, an instance that manages various forms of
group trolling, harassment, and stalking. We also observe several large Mastodon instances like
gab.com, famed for hosting hate speech material [2, 83]. Interestingly, not all federated instances are
equally harmful in absolute terms. We observe a significant number of instances that contribute a
relatively small number of federated toots (< 100 per instance), even though a significant fraction of
them are toxic. This confirms that federation is a significant challenge for per-instance moderation:
regardless of how well an administrator moderates their own instance, it is possible for millions
of remote (toxic) toots to be retrieved by users from other instances that may have very different
policies. The openness of DW federation exacerbates this further, by allowing different platforms
(e.g. Pleroma, Mastodon, PeerTube) to interoperate. Thus, any solutions cannot rely on remote
instances adhering to identical practices, as they may be running distinct software stacks.
Reach of Toxic Toots. After showing how toxic content flows across instances, we now study
how many instances and users this content spreads to. Figure 4a shows the number of instances
that toots are replicated onto (via federation). The distributions are extremely similar, with a
Kolmogorov-Smirnov p-value of 0.85. However, we do see that toxic content has a marginally
higher probability of reaching a larger number of instances (than non-toxic content). In total, 52%
of toxic toots are federated on at least one other instance, and, on average, toxic toots are replicated
onto three instances vs. two for non-toxic toots.
This, however, may be misleading as different instances have different user populations sizes.

For example, a toot being replicated onto 10 instances, each with one user, has less reach than a
toot being replicated onto a single instance with a million users. To examine the audience reach in
terms of the number of users the content hits, Figure 4b plots the number of unique users each
toot reaches. We calculate this based on the number of registered users on each instance. Here,
we observe clearer trends, with a Kolmogorov-Smirnov p-value of 0.24. This confirms that toxic
toots reach noticeably larger audiences. 87% of non-toxic toots reach more than 1 user, compared
to 92.3% for toxic toots. On average, toxic toots appear on the timelines of 1.4x more users.

4.3 Characterising Local Toots & Users
We next seek to explore the characteristics of local toots and users that are toxic vs. non-toxic. For
this analysis, we therefore exclude all federated toots. In total, this leaves 1,394,512 unique local

kiwifarms.cc
gab.com
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Topic Representative words
Distribution
in all toots

(%)

Distribution
in toxic toots

(%)

Toxic toots
per topic

(%)

General conversation time, like, know, date, message 29.5 28.5 18.8
Profinity fuck, wtf, ass, shit, holy 8.8 22.0 46.2
Dark web dark, net, deep, box, web 7.4 4.4 11.2
Sex talks and online cams online, love, video, cum, guys 7.0 7.9 21.7
Computers, e-games and tech. game, linux, work, windows, play 7.0 4.9 13.3
Greetings and compliments hope, good, day, morning, nice 6.9 4.4 12.1
Fediverse post, server, mastodon, pleroma, instance 6.7 4.0 11.4
NSFW content jpg, nsfw, source, tits, porn 5.4 0.9 3.3
COVID and economy coronavirus, million, economics, pandemic, markets 4.9 1.5 6.0
Loli content png, image, loli, screenshot, husky 4.7 1.6 6.5
Politics trump, election, vote, biden, america 4.4 7.2 31.4
Humam rights (esp. gender) women, men, gender, white, rights 3.7 9.1 46.3
Free speech and societal issues governance, people, speech, crowd, free 3.6 3.6 18.7

Table 1. Topics in local toots as determined by CombinedTM and interpreted using pyLDAvis with their
overall distribution, distribution in toxic toots, and percentage toxic toots per topic.

toots (of which 17.6% are toxic). These are posted by 8,367 unique local users (of which 12.7% are
considered toxic). By focusing solely on local toots, we can better understand the characteristics of
each individual instance’s user base.
Reblogs. Wefirst inspect the reblog rate of toxic toots (a reblog is equivalent to a retweet on Twitter).
We conjecture that toxic toots are likely to get more reblogs than non-toxic ones. To explore this,
we analyze the number of reblogs that toxic vs. non-toxic toots receive. Figure 4c presents the CDF
of the number of reblogs observed. Indeed, we see that toxic toots gain substantially more reblogs.
60% of toxic toots get more than one reblog, compared to only 16% of non-toxic toots. This trend
indicates that interest and uptake in toxic material are consistently greater. On average, toxic toots
get 140% more reblogs than their non-toxic counterparts. This confirms the virality of toxic content
and helps explain the greater spread of toxic toots.
Followers. Pleroma allows its users to follow other users across the Fediverse. In addition to
toots, we also have information about each user’s follower list. We next inspect whether there is a
relationship between the number of followers a user has and the toxicity the account produces.
Figure 4d plots the CDF of the number of followers of toxic and non-toxic users. Recall, we define a
user as toxic their average toxicity score exceeds 0.5.
We observe that toxic users tend to have more followers, with a Kolmogorov-Smirnov p-value

of 0.96. On average, toxic users have 142 followers compared to just 70 for non-toxic ones. One
possible explanation is that this may be driven by differences in the frequency of toots (as the
users who toot frequently are more likely to be viewed). To test this, we compute the toot:user
ratio for toxic vs. non-toxic users. This actually shows a contrary trend. On average, non-toxic
users have 188 toots per user compared to just 28 for toxic users. This suggests that our population
of non-toxic users are actually more active. Therefore, we conjecture that these patterns may be
driven by the higher reblog rates for toxic toots (see Figure 4 (c)), thereby increasing the exposure
of such accounts.
Distribution of Topics. Until now, we have analysed toots regardless of their instance. However,
users on different instances may hold discussions on very diverse topics with varying levels of
toxicity. This may play a large role in defining and identifying toxicity. Thus, we analyze the topics
found in local toots using topic modeling to get a more granular view [58].
For this, we use CombinedTM from Contextualized Topic Models (CTM) [11], which combines

contextual embeddings with the bag of words to make more coherent topics. The number of
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topics was chosen using a grid search over model coherence [65] and the model with the highest
coherence was selected. In addition, we use pyLDAvis [71] to interpret topics and identify topic
overlaps and similarity. Our final topic model results in 13 topics. We assign each toot with the
most probable topic as predicted by the topic model. Table 1 lists the final topics, their overall
distribution, distribution in toxic toots, and percentage of toxic toots per topic.
We observe that instances participate in diverse discourse ranging from sex to politics. In-

terestingly, the make-up of these conversations (in terms of toxicity) differs across each topic.
Unsurprisingly, general everyday conversations form the largest portion of both overall (29.5%) and
toxic (28.5%) toots. We also see several contrasting topics, where they contribute a larger share of
toxic toots as compared to the overall distribution. For instance, human rights contribute just 3.7%
of toots yet constitutes one of the most significant portions of toxic content (9.1%). In our dataset,
this topic primarily covers gender issues, with strongly worded dialogue throughout. Similar com-
ments can be made for Profanity (8.8% overall vs. 22.0% of toxic toots) and Politics (4.4% overall vs.
7.2% toxic). The former is not surprising as, by definition, profane toots are classified mainly as
toxic. However, it is perhaps more worrying to see the significant density of toxic behaviour when
discussing politics. As our dataset covers the 2019 United States Presidential Elections, we find
extensive discussion about people such as Trump and Biden. This highly polarising topic triggered
substantial confrontational and abusive language in our dataset. We again emphasise that our
annotations are based on Perspective, providing a unified definition of toxic across the instances.
In practice, we highlight that individual instance administrators may have differing views on what
they personally consider toxic.
Topics vs. Instances. As topics may not be evenly distributed across all instances, we also analyse
the distribution of topics on individual instances. We conjecture that some of the above trends may
be driven by a subset of controversial instances. For example, a larger number of toots on a given
topic could simply be generated by a single highly active instance. Figure 5a presents the percentage
of toots belonging to each topic on a per-instance basis. We see that the topics discussed across
instances do vary. Other than the general day-to-day discussions that occur almost everywhere,
most instances prefer some topics more than others. For example, Not Safe forWork (NSFW) content
is popular on my.dirtyhobby.xyz and neckbeard.xyz, whereas human rights (particularly gender
issues) is discussed heavily on spinster.xyz. This flags up noticeable challenges for automating
the detection of toxic content on the instances. This is because many toxic content models fail to
generalize well beyond their target environment [75, 76]. Thus, applying models trained on human
rights discussions to gender issues may not transfer well.

To further probe into the popularity of these topics, we also analyze the reblogs of toots belonging
to each topic. Figure 5b shows the CDFs of the number of reblogs of toots split by topic. We observe
that Loli content (sexualised anime material) receives more reblogs than any other topic, followed
by NSFW toots. Again, this further confirms the virality of sensitive content on Pleroma instances.

5 EXPLORING AUTOMATED MODERATION
The previous section has confirmed the presence of large volumes of toxic material and its propensity
to spread further and faster than non-toxic content. This is a challenge for administrators who
must moderate not only their own instance’s toots but also any federated material imported
by their userbase. As the use of centralised moderation API (e.g. Perspective) undermines the
decentralisation goals of the DW (as well as introducing cost, privacy and overhead issues), we
argue that operating locally trained classification models is the only way forward. Thus, we next
explore the potential of deploying automated content moderation on instances.

my.dirtyhobby.xyz
neckbeard.xyz
spinster.xyz
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Fig. 5. (a) Distribution of topics on each instance, and (b) CDFs of the number of reblogs of toots belonging
to each topic.

5.1 Experimental Methodology
As instances do not have in-built content classification tools, we propose and evaluate several
potential architectures. We first take the toxicity annotations listed in §3 to train local models
for each instance. These annotations include both the Perspective labels (recall that 12.15% of all
toots are toxic) and the self-tagged content warnings for each toot (recall that 5.4% of all toots
contain these). Note, we use the Perspective labels in lieu of human decisions made by an instance’s
administrator.

We next train models for each instance using their respective toot datasets. Recall that the data of
each instance includes both the toots from the local users as well as the federated toots from remote
users followed by the local ones (see §2). Numerous text classifiers could be used for this purpose.
Due to the resource constraints of Pleroma instances (many run on Raspberry Pis), we choose
the methodology used by two heavily cited seminal works [21, 82]. Namely, we rely on a Logistic
Regression (LR) classifier with bag-of-words features [9], implemented using Scikit-learn [55].
We also experimented with an SVM classifier and obtained equivalent results (as measured using
Student’s t-test with p > 0.05). We report these additional experiments in the Appendix.Note, we
acknowledge that this simple model although resource-light has limitations e.g. it discards word
order and context and in turn could not differentiate between the same words differently arranged
("you are stupid" vs "are you stupid").

5.2 Performance Across Instances
First, we compare the performance of the models trained on the two different label schemes (content
warnings vs. Perspective). We train per-instance models based on all the toots available to it, with an
80:20 split stratified by respective labels between training and testing data. Our goal is to estimate
the feasibility of using content warnings to help automate the annotation process.
ContentWarning Labels. First, we use the self-tagged content warnings as annotations. Figure 6a
shows the macro-F1 scores of the classifiers for each instance. Overall, the results are not promising.
The majority of the instances have a macro-F1 score less than or equal to 0.6, with only two
instances exceeding 0.7.

We attribute this inefficiency to label noise introduced by inter-observer variability, i.e. different
users perceive sensitivity differently, which results in uncertainty of labels. Also, we observe that
these self-tagged content labels often do not necessarily correspond to typical interpretations of
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Fig. 6. Macro-F1 scores of classifiers trained on (a) content labels vs toxicity labels for each instance, (b)
toxicity labels with varying percentages of noisy labels for each instance.

toxicity. For instance, we observe users adding content warnings to their toots that reference news
articles pertaining to war. To evidence this better, we calculate the inter-agreement between the
content warnings and the toxicity labels from Perspective: the Cohen’s Kappa is just 0.01. In other
words, there is only a small (random) chance that agreement exists between the two labels.
Perspective Toxicity Labels. The above indicates that using content warning labels is not suitable
for training local models. Hence, we next repeat the previous training process for each instance
using the Perspective labels instead. Figure 6a presents the macro-F1 scores of classifiers for each
instance. The classifiers trained on Perspective labels show a significant improvement over those
trained using content warnings. All the instances have a macro-F1 score greater than 0.8, with an
average (calculated over all instances) of 0.84. This is 40%more than the average of classifiers trained
on content warnings. This is reasonable as the Perspective labels exhibit far greater consistency
than the self-tagged warnings. We therefore confirm that it is viable to train local models using data
labeled with a consistent labeling scheme that can support and semi-automated content moderation
for the administrators.
Variations in Toxicity Labels. One limitation of the above methodology is that the use of
Perspective implies that annotations across all instances are identical. For example, if two instances
have the same text in a toot, those two toots would be allocated identical Perspective labels. This
does not necessarily reflect reality, as individual administrators may have different perceptions
of what is “toxic”. Administrators may also make mistakes or simply not exhibit consistent views
across time.
To assess the effect of annotation inconsistency, we emulate mistakes that might take place in

the annotation process. For each instance, we generate five new training sets with different noise
levels (5% to 25%) by randomly flipping the labels of 𝑥% of the toots (where 𝑥 = [5, 25]). We then
repeat the above training process with these noisy labels.
Figure 6b presents the macro-F1 scores of the classifiers trained with varying degrees of noise

in the labels. We observe an expected gradual decrease in performance as the noise in the labels
increases. However, even with 25% of noisy labels, the average (calculated over all instances)
macro-F1 score decreases only by 11.9%. This gives us confidence that it is feasible to build these
local models, even in the presence of mistakes and inconsistency.

Whereas the above emulates mistakes, it does not reflect topical differences between annotation
policies per-instance. Specifically, we expect that instances may have more systematic differences
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based on the theme of their instances. For example, an instance dedicated to sharing adult content
is unlikely to tag sexual-related material as toxic. To assess the impact of this, we generate a new
topic-based training set for each instance. For each instance, we select the topic that is the most
popular among its users (excluding “General Conversation”, see Figure 5a). We then whitelist
all toots in that topic, and label them as non-toxic. For example, we select NSFW content for
my.dirtyhobby.xyz and Human rights for spinster.xyz.
Figure 6b presents the macro-F1 scores of the classifiers trained using this topic-based set. We

see that these models perform far better than the prior experiments that introduced random noise.
For these topic-based noisy models, the average performance decreases only by 4.7%. This is largely
because the local training sets retain consistency on what is and what is not toxic.
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Fig. 7. Memory & Time consumption of training local models on Pleroma instances.

Computational Time and Cost. Due to the lightweight nature of each instance, for completeness,
we finally plot the computational costs for training the models. We train each model on a machine
with 128 GB of RAM with 16 cores (note, we did not use any GPUs). Figure 7 shows the memory
footprint of training each model, as well as the time taken. We see a wide variety of values, largely
incumbent on the number of training toots within the instance. For example, kitty.social takes
662.3 seconds (containing 196,6617 toots), whereas my.dirtyhobby.xyz takes just 8.0 seconds
(containing 29,987 toots). On average, training takes 241 seconds per model. Importantly, we see
that, on average, training only requires 409MB of RAM, suggesting this is well within the capacity
of even lightweight hosted instances (e.g. the Raspberry Pi 4 has 8 GB RAM).

5.3 Annotation Feasibility
The prior experiments have a key assumption. The 80:20 split assumes that an administrator has
time to annotate 80% of toots on their instance. In practice, this is probably infeasible due to the
voluntary nature of most Pleroma administrators. Moreover, a newly created instance may only
have annotated a tiny number of toots in its early days. Thus, we next evaluate how many toots
each admin must label to attain reasonably good performance.

For this, we generate new training sets of different sizes. For each instance, we extract the first 𝑛
toots (where 𝑛 = [500, 10000] in intervals of 500) in the timeline, and train 20 models (1x per set of
size 𝑛). We also generate a second set, where we extract 𝑛 random toots from across the entirety of

my.dirtyhobby.xyz
spinster.xyz
kitty.social
my.dirtyhobby.xyz
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Fig. 8. Macro-F1 scores of classifiers (a) trained on first 𝑛 toots, (b) trained on random 𝑛 toots. (c) Distribution
of toots accumulated on all instances at different time steps (note log scale on Y-axis).

the timeline of each instance. These two sets represent the cases where (i) Administrators dedicate
their time to annotating all toots for the initial period of operation; and (ii) Administrators allocate
occasional time to annotate a small subset of toots across the entire duration of the instance’s
lifetime. In both cases, we repeat our prior training on each of these datasets and compute the
macro-F1 on the test set of each instance.

Figure 8a shows the results generated from the first 𝑛 toots, whereas Figure 8b shows the results
for 𝑛 toots randomly selected from across the entire timeline. In both cases, the X-axis depicts
the size of the training set. We see similar results for all configurations. We observe an expected
steady improvement in performance, with larger training sets (plateauing after around 6K posts).
Although the trends are roughly similar for all instances, we do observe a range of performance
and some outliers. For example, the models trained on poa.st achieve a relatively high macro-F1,
starting with 0.62 on the first 500 toots and reaching a maximum of 0.81 on the first 10,000 toots.
On average, instances attain a macro-F1 of 0.52 on the first 500 toots and 0.75 on the first 10,000.
The averages remain roughly the same when the classifiers are trained on the same number of
toots selected randomly.

Unfortunately, these results show that instances, on average, need more than 10K labeled posts
to get a reasonably good classification performance (0.80 macro-F1). This means it will be difficult
for instances to train and deploy their own local moderation models for two key reasons. First,
different instances accumulate toots at different rates. To quantify this, Figure 8c presents a box
plot showing the number of toots accumulated across different time periods. This is calculated
by taking the average number of toots generated over these time periods on a per-day basis
for each instance. We see a high degree of divergence (note the Y-axis log scale). For example,
obtaining a training set of 10K toots would take freespeechextremist.com just 12 hours, in
contrast to social.myfreecams.com which would take 16 days. Second, once this set of toots has
been accumulated, significant manual effort is still required to label them. Finding ways to minimise
these barriers is therefore vital.

6 MODPAIR: DECENTRALISED MODEL SHARING
We next explore collaborative approaches where instances can work together to improve automated
toxic content moderation. Namely, we present ModPair, a system that facilitates the sharing of

poa.st
freespeechextremist.com
social.myfreecams.com
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Fig. 9. (a) Comparison of models (in terms of macro-F1) trained on one instance (Y-axis) and tested on another
instance (X-axis), (b) Comparison of cosine similarity across instances.

pre-trained models between instances. We will show that this can improve the accuracy of local
models, with limited overheads for administrators.

6.1 The Potential of Model Sharing
As discussed above, a fundamental challenge is that training the classifier requires ground-truth
labels (§5.3). While, for our experiments, we rely on the centralised Perspective API, this is unattrac-
tive and infeasible for decentralised instances (due to associated costs and the need to upload toots
to centralised third parties). This leaves administrators to annotate toots manually, likely as part
of their general moderation activities (e.g. upon receiving a complaint from a user about a given
toot). This is both slow and laborious. We therefore argue that a potential solution is to allow
better-resourced instances (in terms of annotations) to share their models with other instances. In
this approach, models trained on one instance are “gifted” to another one.
To explore the potential of this, following the previous methodology (§5), we train a model on

each instance using their toots. We then test that model on all other instances. This allows us to
measure how transferable each model is across instances. Figure 9a presents the macro-F1 scores
as a heatmap. The Y-axis lists the instances a model has been trained on, and the X-axis lists the
instances a model has been tested on. We find that performance diverges across the instances. The
least transferable model is that trained on my.dirtyhobby.xyz. Whereas it attains a macro-F1 score
of 0.95 when tested on itself, it results in an average of just 0.69 across all other instances, e.g. just
0.63 when applied against pl.thj.no. That said, models trained on some other instances exhibit far
greater transferability. The best performing model is that trained on kitty.social, which attains
an average macro-F1 score of 0.89 across all other instances. Confirming our observations in §5.2,
these trends are largely driven by the types of topics and material shared. For example, we find
that 93.4% of my.dirtyhobby.xyz toots are identified as sex-related (see Figure 5a), whereas the
remaining instances contain just 1.4% of such toots on average. This makes it hard to transfer such
models, as their training sets differ wildly from those instances it is applied to. This confirms that
decentralised model sharing can work effectively, but only in particular cases.

my.dirtyhobby.xyz
pl.thj.no
kitty.social
my.dirtyhobby.xyz
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6.2 ModPair Design
The previous section shows that model sharing can work, yet performance is highly variable across
instance-pairs due to the differing (linguistic) discourse. Thus, a clear challenge is identifying which
instance models should be shared with other instances. This is not trivial, as it is not possible for
instances to scalably inspect all content on each other.
ModPair Primer. We propose ModPair, a system to manage model exchange between instances
in the Fediverse. ModPair runs on each instance, and executes the following three tasks: (i) Step 1:
It automatically identifies instances suitable for model exchange based on their content; (ii) Step
2: It manages model exchange between the instances; and (iii) Step 3: It employs an ensemble to
merge results from the top 𝑘 models, predicted to be most transferable. ModPair continues to
monitor activities across the Fediverse to constantly seek out better matching models. Although
we implement ModPair in Pleroma, it is suitable for any other Fediverse platform that follows the
same principles (e.g. PeerTube, Mastodon).
ModPair Design. Step 1: ModPair is first responsible for identifying instances with whom models
should be exchanged. To achieve this, ModPair exploits content similarity between instances to
predict pairs that should exchange their pre-trained moderation models. To achieve this, each
instance locally generates a vector with each component corresponding to the tf-idf of words from
the instance’s toots. Specifically, we define this as:

𝑡 𝑓 𝑖𝑑 𝑓 (𝑡, 𝑑) = 𝑡 𝑓 (𝑡, 𝑑).𝑖𝑑 𝑓 (𝑡)
where

𝑖𝑑 𝑓 (𝑡) = 𝑙𝑜𝑔[(1 + 𝑛)/(1 + 𝑑 𝑓 (𝑡))] + 1
and 𝑛 is the total number of toots in the instance and 𝑑 𝑓 (𝑡) is the number of toots in the instance
that contain the term 𝑡 . Instances then exchange these vectors, such that each instance can compute
the cosine similarity between its own vector and all other vectors. This provides a measure of
linguistic closeness between any two instances. To motivate this design choice, Figure 9b presents
the empirical cosine similarity across the instances as a heatmap. By comparing this against
Figure 9a, we see that content similarity does correlate with model performance, confirming the
ability for distance to serve as a predictor for model performance.

Step 2: Once similarity has been locally computed, each instance must decide which other
instances to download models from. To do this, ModPair uses a rank threshold, 𝑘 , which stipulates
the number of models an instance should retrieve. Specifically, an instance retrieves models from
the 𝑘 other instances that have the smallest cosine similarity (with its own local tf-idf vector). Note,
downloading such models is very lightweight — using our dataset, we find that the largest model is
just 7.7 MB, and the average size is only 3.2 MB per instance. The reciprocity of this process also
helps incentivise participation. Step 3: Upon receipt of the pre-trained model(s), the instances can
then use them to perform ensemble-based majority voting to classify future incoming toots.
ModPair Implementation. We have implemented ModPair as part of the Pleroma server software.
In our implementation, each Pleroma instance exposes two new API endpoints to enable the above
functionality: (i) one to publish their tf-idf vector (<instance.uri>/api/v1/tfidf); and (ii) one
to share their local model (<instance.uri>/api/v1/model). Any instance requiring moderation
models can therefore retrieve the vectors of other instances by communicating with their tfidf
endpoint. By default, each instance will retrieve updated vectors from all other known instances
each week.
ModPair Scalability. By default, ModPair selects the moderation models for an instance by
computing the tf-idf cosine similarity with all other instances. Although straightforward, this may
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Fig. 10. Comparison of macro-F1 scores of (a) instance’s own model vs. the majority voting on top-3 ModPair
predicted models for each instance, (b) majority voting on top-3 ModPair predicted models with varying
noise percentage for each instance.

result in scalability issues as the number of instances grows (due to the 𝑂 (𝑛2) complexity). For
example, the 1360 Pleroma instances in our dataset (§3) would generate 1.8M transactions alone.
Although ModPair rate limits its queries to avoid overwhelming remote instances, this workload is
still undesirable.

To overcome the above challenges, ModPair introduces the optional concept of pre-sampling to
select a subset of instances to exchange vectors directly with. This pre-sampling strategy is driven
by the observation that often the best performing models are exchanged among instances that have
a high degree of federation. Thus, on each instance, ModPair ranks all other instances by the number
of followers in the target instance. This estimates the amount of social engagement between users
on the two instances. We then pick the top 𝑓 instances (default 5) with the most shared followers.
Using this, each instance only retrieves the tf-idf vectors from these 𝑓 instances and, therefore,
only computes ModPair similarity amongst them. As before, we then select the top-3 most similar
instances from this set of 𝑓 options. Although this potentially misses higher-performing models,
this massively reduces the number of retrievals and, consequently, the data exchanged between
instances from 1.8M to 6,800 (assuming 𝑓 = 5).

6.3 Evaluation Results

Performance of Model Selection. To evaluate the correctness of ModPair’s selection of models,
we calculate its Precision@k (or P@k) [19], where 𝑘 is the similarity rank threshold (𝑘 = 1, 3). The
precision reflects the proportion of the top-𝑘 ModPair predictions that are correct. In other words,
this tests if ModPair selects the best models available. As an optimal baseline, we compare this
against an oracle that pairs each instance with the three other instances whose models achieve the
best performance on its local toots (as calculated in Figure 9a). Overall, ModPair achieves average
(calculated over all instances) P@1 and P@3 scores of 0.74 and 0.83, respectively. In other words,
74% of the top-1 and 83% of the top-3 model selections of ModPair are correct. This confirms the
viability of model sharing, where instances can request models from other similar instance(s) and
use them for the moderation of their content. Importantly, this confirms the appropriateness of
using lightweight tf-idf vectors to represent instance content.
Performance of Model Inference. We next test if ModPair improves the outcomes of the model
inference. To evaluate the impact of ModPair on model performance, for each instance, we apply
the top-3 ModPair predicted models (in a majority voting fashion) to its toots. This allows us to
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Fig. 11. Comparison of macro-F1 scores of the majority voting on top-3 ModPair predicted models selected
from the pool of all instances vs. selected from the pool of 5 federated instances.

calculate the newly attainable macro-F1. We compare this with each instance’s own model (i.e.
locally trained). Figure 10a presents the results. We see that consistently ModPair outperforms local
training across nearly all instances. On average, ModPair increases the macro-F1 by 5.9% compared
to when each instance uses its own model alone (calculated over all instances). The results are also
statistically significant as measured using Student’s t-test with p = 0.01. Furthermore, ModPair
also reduces the number of models (and consequently the number of annotated toots) required to
moderate all the instances. For our collection of instances, it reduces the number of models to 10.
Performance of Model Inference with Noise. Recall, we conjecture that some training sets (and
models) may contain noise, e.g. due to annotation mistakes by administrators (see §5.2). We next
analyse the inference performance of ModPair in scenarios where individual instance models might
be noisy (e.g. due to annotation inconsistency). To do so, for each instance, we apply the noisy
versions (see §5.2) of the top-3 ModPair predicted models (in a majority voting fashion) to its toots
and calculate the newly attainable macro-F1. Figure 10b presents the results. We observe that even
with 25% noise induced into individual models, this results in limited performance degradation
of just an average of 4.4% macro-F1 reduction (calculated over all instances). This is significantly
lower than the degradation observed earlier when only using a single locally trained model (which
obtained -11.9%). For the noisy models where we flipped the labels of toxic toots belonging to a
particular topic, we observe the average degradation in performance of only 2.2%. This occurs
because instances are being paired with others that have similar linguistic features. Therefore, this
has little impact on overall performance because the paired instances are flipping similar topics.
This further confirms the applicability of ModPair.
ModPair Scalability. The prior results are based on𝑂 (𝑛2) model comparisons. Therefore we next
repeat our experiments, using our scalable pre-sampling strategy that selects a subset of 𝑓 instances
to exchange 𝑡𝑑 − 𝑖𝑑 𝑓 vectors with. Figure 11 compares the performance against the prior approach
of retrieving all vectors. Confirming our intuition, we only observe a slight degradation (1.1%) in
the average performance compared to when models are predicted from the pool of all instances.
This occurs because instances often federate with others who discuss similar topics, therefore
increasing the probability that their models may transfer well. Despite the small degradation in



Toxicity in the Decentralized Web and the Potential for Model Sharing† 19

performance, we also emphasise that the average performance is still 4.7% better than when each
instance uses its own model (§5.2).

6.4 Discussion
Model sharing via ModPair allows instances to exchange models from other similar instances. This
raises several issues worthy of discussion.
Privacy. ModPair enables instances to share the trained models (specifically share weights and
biases of the trained models). In terms of privacy, this is better than sharing the raw data itself,
preserving the privacy of toot text, as well as the annotations given by other administrators. Further,
sharing of tf-idf vectors is privacy-preserving as they consider the words independently, hence it
is not possible to reconstruct the original data. That said, studies show [39, 51], through reverse-
engineering techniques, some important words or phrases used during the training can be identified.
Although not explored here, we also note that there are protocols for computing cosine similarity
and model sharing with privacy guarantees, which could be integrated with ModPair [28, 48].
Security in Adversarial Contexts. ModPair must also ensure it is not exploited by malicious
parties. Most obviously, malicious instances could purposefully provide invalid models or tf-idf
vectors to undermine other administrators. To mitigate this, ModPair’s pre-sampling leverages
follower relationships to better identify trusted similar instances. Nevertheless, this is a topic
ripe for further exploration. We envisage prior work on peer-to-peer reputational models will be
extremely useful here [35].
Fairness & Bias. There are chances that a model trained on a large instance with a large number
of toots could be paired with a relatively small instance for model transfers. If such models are used
widely, this could allow a small set of instances to bias the overall moderation process. Furthermore,
this may “drown out” models from more fringe instances that might be useful for identifying
specific forms of toxic content. While this is not necessarily a problem, as ModPair only pairs
instances with similar interests, it may be necessary to adjust voting weights to prevent bias. We
also plan to explore alternate ways of computing similarity that consider other factors such as the
number of toots on each instance.

7 RELATEDWORK

Decentralised Social Network Measurements. Prior work has extensively studied social net-
works with respect to their structure [5, 18, 38, 41, 42, 52, 73] and evolution [30, 37, 77]. The
overwhelming majority of studies have been conducted on centralised social networks such as
Twitter [46, 62], with only a handful of papers focusing on decentralised social networks. In [20],
Datta et al. explore various motivations for decentralised social networking. Schwittmann et al. [69]
analyze the security and privacy of decentralised social networks. Bielenberg et al. [12] shed light
on the evolution of one of the first decentralized social networks, Diaspora, discussing its growth
in terms of the number of users, and the topology of Diaspora’s interconnected servers. Raman et
al. [59] identify key challenges in the decentralised web, mainly related to network factors [36]. Fi-
nally, [84] authors collect data from Mastodon and explore several features such as the relationship
network, placement of instances, and content warnings.

To the best of our knowledge, we are the first to measure the spread of toxicity on a decentralised
social network. The independent and interconnected nature of instances makes this particularly
different to prior studies of centralised platforms. Closest related to our work is [85], which gathered
a dataset of content warnings from Mastodon (another DW platform). However, as shown in §5.2,
we find that these are unsuitable for training classification models.
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Toxic Content Classification. There have been a variety of works that attempt to build classifiers
for the automatic identification of toxic content [74–76]. These include fundamental work on
creating formal toxic content definitions [70] and compiling vital datasets [7, 22, 31]. Of particular
interest are prior attempts to build text classifiers to automatically flag toxic material.
Deep learning has been widely used to classify toxic posts [8, 15]. The effectiveness of these

mechanisms has been extensively evaluated [16, 34, 45, 76], alongside the design of techniques
to circumvent such tools [27]. Badjatiya et al. [8] were amongst the first to show the benefits of
training models to identify hate speech (using 16K annotated tweets). Rizos et al. [64] evaluate
the performance data augmentation techniques applied on conventional and recurrent neural
networks trained on Yahoo [78] and Twitter [21]. Wulczyn et al. [82] similarly use 100K user
labelled comments from Wikipedia to identify the nature of online personal attacks. Others have
shown that more traditional machine learning models such as n-grams and Logistic Regression [79]
SVMs [72], Naïve Bayes, decision trees and random forests [21] also produce good results. There
has also been work identifying controversial posts by using non-text features, such as user profile
metadata [29, 63, 81].
Related to our work are recent efforts in the area of transfer learning [13, 24]. In terms of

toxic content identification, these exploit pre-trained language models such as BERT, and perform
fine-tuning to specialise the model [50, 80]. This subsequently ‘transfers’ semantic understanding
from the general language model to the task in-hand. Although similar in concept, we take a
very different approach to transferring knowledge between instances. Specifically, ModPair relies
on model exchange and ensemble voting. This is because transfer fine-tuning [26] and even
inference [23] are substantially more costly than lightweight models such as Logistic Regression
(considering the limited capacity of most Pleroma instances). In our future work, we intend to
explore the potential of using lightweight pre-trained models such as LadaBERT [43].
Moderation in Social Networks. There have been a number of studies that have applied the
above classification models to measure toxic activities within social networks, including Twit-
ter [14, 62, 79], Reddit [6, 16, 49], 4Chan [10, 54], as well as various fringe forums [22]. There
have also been studies that focus on specific domains of toxicity, including anti-Semitism [78],
cyberbullying [17], white supremacy [22], misogyny [31], and Islamaphobia [40]. More recently,
Anaobi et al. [32] highlighted the content moderation challenges for the instance administrators in
decentralised web. We contribute to this wider space, by focusing on characterising the spread of
toxicity in a novel platform: Pleroma. Beyond these prior works, we also show how such content
spreads across independently operated instances (a unique feature of the Fediverse). As part of
this, we identify and quantify hitherto unknown challenges for moderation that result from the
Fediverse’s decentralised architecture. Finally, we propose and evaluate a solution, ModPair, that
allows instances to automatically exchange models to support scalable decentralised moderation.

8 CONCLUSION & FUTUREWORK
This paper has examined toxicity in Pleroma, a popular Decentralised Web (DW) social platform.
We have characterised the spread of toxicity on the platform, confirming that the federation process
allows toxic content to spread between instances. We have further explored the challenges of
moderating this process by building per-instance models. We found that whilst this can be effective,
it comes with a heavy burden on administrators who must annotate toots. To reduce this burden and
enable collaboration amongst instances, we presented ModPair, a system for pairing instances that
can share pre-trained models. We showed that by exchanging models with just a small set of other
instances, administrators can effectively collaborate to improve each others’ detection accuracy.
Further, we have shown how ModPair can be scaled-up by using pre-sampling to dynamically
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select remote instances that are likely to have a close linguistic similarity. Our work contributes to
the wider debate on online toxic behaviour, as well as offers tools that can support the growth of
platforms with expanding importance within the Fediverse.
As part of our future work, we plan to expand our analysis to other DW platforms and inves-

tigate other behavioural attributes, including the time-variance of tf-idf vectors (i.e. as instances
generate toots, their tf-idf representation will change with time). We also intend to experiment
with alternative features (e.g. semantically-rich sentence embeddings [61]) as well as classifica-
tion approaches (e.g. allowing more resource-capable instances to train and share LSTM [33] or
BERT-based models [24]). As part of this, we are curious to investigate the feasibility of using other
types of Federated Learning [47, 48] too. Finally, we are keen to better understand the discrepancies
between the annotations performed by different administrators (e.g. in terms of how they locally
define toxicity). Through this, we hope to gain further evaluative insight into how ModPair can be
useful to administrators.
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A ADDITIONAL EXPERIMENTS
In addition to experimenting with a toxicity threshold of 0.5, we also conducted experiments with a
much stricter threshold 0.8. In this case, we considered a toot toxic if its toxicity score is > 0.8 (and
vice-versa). We performed 𝑁 2 experiments as shown in Figure 12a and the results were similar to
that obtained in case of 0.5 threshold.

Furthermore, we also conducted experiments with a SVM classifier and, as shown in Figure 12b,
results are comparable to Logistic Regression. These additional experiments further emphasize that
our methodology and approach can be reused with other labeling schemes and classifiers.
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Fig. 12. Comparison of models (in terms of macro-F1) trained on one instance (Y-axis) and tested on another
instance (X-axis).
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(a) With toxicity threshold of 0.8.
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(b) With SVM classifier.

Fig. 13. Macro-F1 scores of classifiers trained on random 𝑛 toots.


	Abstract
	1 Introduction
	2 Background & Motivation
	3 Dataset and Methodology
	4 Characterising Toxicity in Pleroma
	4.1 Overview of Toxicity
	4.2 Spread of Toxicity
	4.3 Characterising Local Toots & Users

	5 Exploring Automated Moderation
	5.1 Experimental Methodology
	5.2 Performance Across Instances
	5.3 Annotation Feasibility

	6 ModPair: Decentralised Model Sharing
	6.1 The Potential of Model Sharing
	6.2 ModPair Design
	6.3 Evaluation Results
	6.4 Discussion

	7 Related Work
	8 Conclusion & Future Work
	Acknowledgments
	References
	A Additional Experiments

