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ABSTRACT

Binary polymer systems provide significant advantages in the preparation of materials used
in biomedical applications. To highlight the importance and need of binary polymer
systems in biomedical applications; utilisations of nano-carrier and fibre are discussed in
detail in terms of their use as biomaterial, and their potential for further development
with focus on dual and sequential drug delivery applications. On the other hand, in fibre
technology, creation of binary polymer systems have been investigated using spinning
processes such as electrospinning and even more recently innovated pressurised
gyration. How these methods can be used to promote the mass production of binary
polymer systems with various morphologies and characteristics are elucidated. The
effects of different polymer materials, including solvents, mechanical properties, and the
rate of degradation of polymers, are discussed. Current polymer blending systems and
manufacturing processes are analysed, and technologies for biomaterials are carefully
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considered with up to date details.

Introduction

Polymers are a critical class of materials owing to
their chemical variations and characteristics for bio-
medical purposes. While natural polymers have
modifiable properties where largely a top-down strat-
egy can be adopted, synthetic polymers can be syn-
thesised from bottom-up or can be made suitable
for a specific aim by chemical modification [1,2].
However, the complex nature of biological systems
and the difficulty of the materials design needed in
diagnostic and therapeutic strategies to respond to
this complex hierarchy reveal the need to use differ-
ent polymers together. Polymers used in the health
applications have flexibility, strength, biocompatibil-
ity, biodegradability, biological activity, cell-inducing,
regenerative, and differentiation properties, which
can vary depending on the chemical, physical and/
or mechanical structure of the polymer [3-7].
While these polymers developed for demand are
sometimes prepared as copolymers, they are more
often obtained by preparing blend forms of dual
(binary) or more polymers.

Copolymers are a broad group of polymers which
comprise of at least two different monomer groups (A
and B). These different monomers covalently bond to
each other. However, the type of copolymer varies
upon the A and B monomer groups bonding types
(locations) such as, block, random, graft and alternating.

On the other hand, blended polymers present materials
with improved/reorganised physicochemical properties
that are obtained by homogeneously mixing at least
two types of polymers. Additionally, blended polymers
can be composed of homopolymers and copolymers. If
the prepared blended polymer system consists of two
different types of polymers, this dual system is called a
binary polymer system [7,8].

The use of binary polymer systems provides advan-
tages in many application areas. The basis of these
advantages lies in the ability to create a combination
by combining the properties of two different types of
polymers. The fact that binary polymer systems have
adjustable and modifiable properties causes them to
have a leading position for applications in biomedical
fields. The binary polymers which have been used in
the biomedical area must be considered with priority,
as the components of the binary polymer character-
istics can serve as a therapeutic, diagnostic, or thera-
nostic purposes. Binary polymer systems have
application areas such as nano-carriers [9], nanofibres
[10], implants [11], catheters [12], scaffolds [13],
microfluidic reactors [14,15] etc. (Figure 1). Following
on, the binary system should be designed considering
the biological, physical, and structural needs of the
application area, as it will interact, regenerate, support
(mechanically) and/or replace. Alginate (ALG) [16,17],
cellulose [18,19], silk [20,21], chitosan (CS) [22,23],
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Figure 1. Schematic representation of (A) binary polymers composed of two different types of polymer molecules, (B) binary poly-
mers systems for particle and fibre applications (i) core shell, (ii) Janus, (iii) blend.

collagen [24,25], keratin [26], gelatine [27,28], poly(lactic
acid) (PLA) [29], poly(lactic-co-glycolic acid) (PLGA)
[30], poly(ethylene glycol) (PEG) [31], poly(caprolac-
tone) (PCL) [32], poly(vinyl alcohol) (PVA) [33,34]
etc. are the most commonly utilised polymers in binary
systems for biomedical applications. Additionally, deter-
mining the common physicochemical parameters (solu-
bility, melting temperature, viscosity, conductivity etc.)
required for the adaptation of binary polymer systems
to co-production techniques is of immense importance
in the selection of binary polymer pairs to be used
together [35].

In this review, the advantages of binary polymers
are highlighted within the integrated bio-fabrication
methods, and the applications are exemplified by
given binary polymer pairs. Moreover, binary polymer
systems are discussed in order to address the needs of
biomedical applications and solutions that can be
developed, considering different purposes from phys-
ical, chemical and biological aspects, and it is aimed to
generate guidelines for researchers interested in binary
polymer-based biomedical materials.

Binary polymer systems

Polymers are made up of small molecules called
monomers, which bind together to form long
chains. In the biomedical field, various chain
length polymers can be used for repair in the
body or for drug delivery and various other appli-
cations [36]. There are two main polymer groups
that are classified in terms of their sources, natural
and synthetic. Natural polymers have been exten-
sively studied because of their unique biocompat-
ibility and bioactivity, however, problems with

physiochemical stability [37] and material batch
variations continue to be a limitation [38].

Natural biopolymers, like thermo-responsive poly-
mers, have numerous advantages for biomedical appli-
cations. As direct extracellular matrix (ECM)
derivatives, polymers including collagen and gelatine
provide intrinsic biocompatibility and improve bioac-
tivity in comparison to synthetic polymers. From the
available natural sources, ALG, gelatine, CS, and cellu-
lose are readily available and relatively inexpensive.
Natural polymers typically produce soft hydrogels
which, for certain applications, may not meet the
mechanical requirements [39-41]. To achieve signifi-
cant improvement of mechanical properties and
degradation kinetics; chemical modification, copoly-
merisation or binary natural/synthetic polymer sys-
tems can be generated.

Synthetic polymers have generated a significant
level of attraction for medical applications. A broad
variety of physical and chemical characteristics are
being accomplished upon the basis of monomeric
groups, polymerisation mechanisms, as well as the
production of copolymers composed of various com-
ponents at different concentrations [41]. Shape mem-
ory polymers, for example, have sophisticated
mechanical properties that allow them to be easily dis-
torted and then recover to its original position when
exposed to a specific stimulation such as pH, tempera-
ture, magnetic field, or light. For several applications,
synthetic, hydrolytically degrading polymers are
desired as an implant or drug release device because
their degradation is relatively invariant from patient
to patient and for various sites of implantation
[42,43]. In comparison to this, enzymatic degradation
is the common degradation mode of biopolymers. In



tissue engineering, the decomposition strategy is
investigated for scaffolds and as a replacement for
the ECM, at which the physiological enzymatic turn-
over of the ECM, is required to disappear [44,45].

Solubility

The concept of polymer blending is an important
technique that helps to eliminate the deficiencies of
each polymer separately by using at least two different
polymers together. The biggest difficulty encountered
at this stage is the solubility mismatches of the poly-
mer components in the polymer blend structure.
The main reason of the polymer blends immiscibility
is thermodynamic incompatibility. Polymer blend
homogeneity is directly related to the free energy of
blending a polymer mixture. Homogeneous polymer
blend pairs should have AGm <0 for miscibility. If
the AGm > 0, the polymer (pair) solution is an immis-
cible polymer blend [46]. Additionally, secondary
interactions increase the homogeneity in between the
polymer blend components which can be listed as
hydrogen bonding, ionic and dipole-dipole inter-
actions [47]. These properties can be driven by com-
mon solvent systems with suitable physicochemical
properties, such as melting point, boiling point, pH
(acidity or alkalinity), relative density, surface tension,
viscosity, solubility in water and organic solvents. Mis-
cibility (solubility and melting) properties also have a
direct impact on drug loading and biomaterial pro-
duction in binary polymer systems.

Solvents respond differently with polymers, there-
fore, choosing the right agent is important [48] as cer-
tain solvents will completely dissolve a polymer, while
others merely partially dissolve or enlarge the polymer
[49]. Solvent-polymer interactions may impact the
processing of binary polymers by influencing the vis-
cosity and surface tension of a polymer solution
[50,51]. The morphology is primarily affected by the
polymer solution, and the properties of the solution
are usually associated with the solvent class [52]. The
morphology is determined by the electrical conduc-
tivity of the solution, the dielectric constant, the boil-
ing point, the viscosity, the surface tension, and the
activity between the polymer and the solvent [53,54].
As a polymeric fibre production example; solvents
with a higher boiling point vaporise gradually, allow-
ing a polymer fibre jet to thin and to be smaller in
diameter [55].

A substance dissolves in another when the chemi-
cal potential of the blend is less than that of the start-
ing system [56]. It has been found that this
mechanism will take place as the entropy increases
upon dissolution, unless it is resisted by energetic
interactions. This may be the case with non-electro-
lytes where the pure substances” binding strength is
much greater than that of the mixture. Dissolution
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will occur if the interactions are approximately
equal for all of the substances involved. The solubility
parameters of volatile substances can be determined
directly from the evaporation enthalpy and the
volume of molars. The concept of the solubility par-
ameters helps to find potential solvents rapidly and at
a low cost, and to understand many facts about the
solubility behaviour. With respect to a given poly-
mer, the thermodynamic efficiency of a solvent deter-
mines the value of the second virial coeflicient.
Expansion coefficients can be determined by the
measurement of viscosity or by angular dependence
of the scattered light outcomes.

Solubility is also a critical factor in the design of
biodegradable binary polymeric drug delivery sys-
tems, and it is determined by the chemical compo-
sition, structure, and degree of crystallinity of the
polymer. Polymer hydrophobicity typically rises
with molecular weight, leading to more water-sol-
uble polymers with an increase in backbone branch-
ing [57]. Drug release is regulated by surface erosion
when the polymer utilised is hydrophobic in nature,
and when the polymer backbone has a balance of
hydrophobic and hydrophilic functions, degradation
may proceed from within the core of the polymer
system [58].

Although physical properties at the nanoscale, such
as a high surface-to-volume ratio, deliver colloids of
polymeric particles stable under physiological circum-
stances, a broad range of hydrophobic polymers may
be developed, a significant amount of hydrophilicity
of the constituent polymers is required for macro
and microscale polymer therapeutic agents.

Drug miscibility

Fibrous materials and nanoparticles have been exten-
sively studied as vehicles to transport therapeutic
agents to target sites because of their benefits, includ-
ing large surface area, porosity, and structural simi-
larity to the ECM [59-63]. Co-axial electrospinning,
for instance, has been used to generate multi-compart-
mental fibres that enable multiple release states or
delivery of multi-drugs [62,64,65]. Polymers need to
be carefully chosen to achieve the optimal drug release
profiles using polymeric carriers, since the release
rates are determined by their degradability, wettabil-
ity, and diffusivity [66,67]. For degradable polymers,
the release mechanism can be more challenging than
that of non-degradable drug carriers as their geometry
changes during degradation [68,69].

As a controlled release excipient, water-soluble
polymers such as poly(ethylene oxide) (PEO) are
widely used to regulate drug release and degradation
from stable hydrophilic matrix compositions. This is
mostly due to the favourable hydration and controlled
release abilities of various grade and PEO molecular
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weight [70]. PEO tends to hydrate and swell when it
encounters with liquid, generating a hydrogel surface
that controls the ultimate passage of fluids into the
matrix and the migration of the therapeutic agents
from the active ingredients. Subsequently, due to the
emergence of the hydrogel, the pace of liquid con-
sumption reduces, whereas the rate of drug release
lowers and extends. The emergence of the hydrogel
layer on the surface of a controlled release matrix
tablet can be categorised into three phases: (1) the
early increase in hydrogel due to the polymer swelling;
(2) the maintenance of constant gel layer thickness
between the swelling and the frontal dissolution; and
(3) the reduction in the gel layer thickness due to
the depletion of the glass core. Drug solubility and
loading, molecular weight and ratio of polymer, tablet
processing method, compression power, and physical
configuration of the tablet are all aspects that can
affect the release of pharmaceuticals from a swelling
matrix tablet. Drug solubility is one of these features
that has a big impact on the rate and degree of drug
release.

For example, electrospun fibres made from PCL
and poly(glyconate) binary polymer blends have
been applied as biomaterials in tissue engineering to
enhance cell growth, with polymer compositions
affecting fibre breakdown and mechanical qualities
[71]. Controlling drug release is another promising
biological use for electrospun polymer blend fibres
[62]. The release rate of teriflunomide from the blend-
ing of PLA and poly(butylene adipate) fibres has been
modulated by the binary blending of polymer compo-
sitions [72]. Moreover, PLGA, PEG-b-PLA and PLA
(80/5/15) ternary blended fibres showed controlled
delivery of cefoxitin sodium for 7 days comparable
to burst release of PLGA fibres in 6 h [73].

Effect on mechanical properties

The mechanical property is a key aspect in the biome-
dical production processes especially in fibre pro-
duction applications [74]. Some studies have shown
the effect of mechanical properties of the composites
created from plastics and fibres which may differ
depending on the fibre distribution on the structure,
fibre size, fibre content, and fibre matrix adhesion
force. Cuvalci et al. [75] investigated an increase in
the density of composites as the fibre content
increased, for example, the composite density was
1150 kg m™ at 5.5% fibre volume ratio, whereas it
reached the value of 1730 kg m™ at fibre volume con-
tent of 54.9%. An increase in tensile strength was
demonstrated with increasing fibre content [76] up
to volume ratio of 34.3%. In addition, the tensile
strength of the composite decreased as the fibre ratio
increased [77], and it reduces to 84 MPa at fibre
volume ratio of 54%. Thus, the fibre content in the

composites has a beneficial impact on the tensile
strength up to 34.3% fibre volume ratio, however,
the addition of fibres beyond this level has a detrimen-
tal impact on the composite tensile strength.

A study determined the effect of PCL, PLA, and
bacterial cellulose (BC) composition on the mechan-
ical properties of such wound dressing constructs, by
tensile testing of binary polymer used samples [78].
It was demonstrated that the PLA-PCL binary sys-
tems’ ultimate tensile strength varied between 2.2
and 5.6 MPa, while the Young’s modulus values ran-
ged within 3.5-22.3 MPa. PLA is characterised by its
high ultimate tensile strength, however, results in
low durability, which can be overcome by PCL’s sub-
stantial prolongation at break. This study demon-
strated the superior mechanical properties by
combining beneficial characteristics in their compo-
site products [78]. In this analysis, PLA-PCL polymer
blends showed excellent elongation and tensile prop-
erties at 50:50 ratios. Across all occurrences, the high-
est BC ratio in the composite fibres is observed to
result in an increase in tensile strength up to 30 wt-
%, above this range a decrease in tensile strength is
detected [78]. There is an increase in the stiffness of
PLA composite systems as the BC content is increased.
In PCL systems, however, an adverse trend is seen
where the stiffness decreases. The mechanical compat-
ibility of PLA-PCL and the importance of compara-
tive fluctuation among both polymers can justify this
reduction. In conjunction with the PLA matrix, the
highly elastic nature of the PCL and the bonding
forces between the polymers inhibited fibre elonga-
ting, due to improved mechanical properties of the
composites.

Effect on degradation rate

Modifications in both the chemical structure and
physical properties of polymers or polymer-based
materials lead to the loss of properties such as tensile
strength, colour, shape, etc. under the influence of
processing conditions, or one or more environmental
parameters such as heat, light, or exposure to chemi-
cals [46,79,80]. Breakage of polymer structure or poly-
mer fragmentation into units that are tiny enough to
deteriorate, but comparable to the original substance
may cause such loss of characteristics [81]. Thermal,
mechanical, hydrolitic, chemical, biological, photoli-
tic, ultrasonication, pollutant contact, radiolytic, and
sludge activation are some of the ways polymers can
degrade.

In vitro studies have demonstrated that the pH of
the solution plays a part in in vitro degradation, and
that it is possible to use this as an indicator of its in
vivo degradation [82]. For example, high molecular
weight PLA has 2-8 years of total resorption time.
In some organs, this prolonged presence in vivo may



result in inflammation and infection. There is a weak
hindering effect of low molecular weight PLAs that are
used for drug delivery. They degrade reasonably fast
into lactic acid through hydrolysis, which decreases
the likelihood of material aggregation in the tissue.
For instance, PLA with molecular weight 2000 and
20,000 gmol " was used as an artificial antimicrobial
release mechanism. The continuous release of anti-
biotic was found to last for 33 days and more than 3
months in low and high molecular weight implants,
respectively [83]. The degradation rate of low molecu-
lar weight poly(L-lactide) (PLLA) (60,000 gmol_l) was
found to be able to retain mechanical properties for a
period of time normally needed for the healing of bone
fractures [84].

When exposed to hydrolytic degradation processes,
PCL is a long-term durable polymer, and thus
demands 2-4 years for comprehensive degradation,
reliant on the initial molecular weight of PCL [85].
On the other hand, hydrolytic degradation has been
reported to alter the degradability of the polymer
matrix by incorporating carbon-based nanomaterials
into the polymer matrix [86]. The relation between
the degree of crystallinity and the Young’s modulus
is extremely important as it defines the mechanical
properties and can be controlled by crystallinity [87-
89]. Thus, it is very convenient and advantageous to
use systems in which binary polymers are used
together for a targeted tissue-specific biomedical
material development. Considering the different
degradation mechanisms and degradation times of
binary polymers, it is critical to obtain materials
with the potential to degrade at a rate that provides
extended drug release, prolonged mechanical strength,
and an environment conducive to cell migration and
proliferation.

Micro-nano particle production

Micro and nano particles are transport materials that
have wide potential use in material science and tech-
nology. Basically, it is aimed to transport cargo mol-
ecules to a targeted area. In biomedical applications,
cargo molecules are most often composed of drugs
and/or active agent ingredients. Particles (micro and
nano-carrier) are divided into two categories: organic
and inorganic. Inorganic particles can be exemplified
as carbon nanotubes, quantum dots, silica, gold, and
magnetic particles. On the other hand, organic par-
ticles are classified as: polymeric micelles, dendrimers,
drug conjugates, liposomes and polymeric particles
[90,91]. Polymeric particles are the most frequently
used carriers and can be selected according to the
extensive range of physicochemical parameters of
the polymers, drug loading capacity/type, targeting
and surface modification availability, adjustable degra-
dation, and release profiles [92]. Depending on the
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purpose of use, polymeric particles can be prepared
with single, binary, ternary, or multiple polymer
systems.

The main nano-carrier types and the techniques
used to synthesise polymeric micro-nano particles
are categorised as follows: precipitation, solvent evap-
oration, emulsification/solvent diffusion, salting out,
dialysis, supercritical fluid technology (SCF), inter-
facial polymerisation, controlled/living radical poly-
merisation and emulsions: mini emulsion, nano-
emulsion, microemulsion (Figure 2). The most com-
monly used techniques are reported as emulsion-
based and nanoprecipitation [93], and these tech-
niques are reviewed in more detail below for appli-
cations in binary polymer systems.

Precipitation

Precipitation is a simple and rapid nanoparticle pro-
duction technique. The nanoprecipitation technique
relies on solubility relationships between the drug,
polymer, non-solvent, and the solvent. This method
most often involves dissolving a hydrophobic polymer
together with a hydrophobic drug in a common
organic solvent and thereafter adding to an aqueous
solution with an optimised flow and stirring rate
[94,95]. Then purification occurs by removing the
organic solvent. It has been also reported that, molecu-
lar weight of polymer, polymer solution concen-
tration, glass transition properties of polymer,
solvent-non solvent ratio and rate of solution mixing
are significant in nanoparticle formation in the nano-
precipitation technique [96]. The precipitation tech-
nique can be used for binary polymer systems in a
step-by-step precipitation method to obtain core-
shell binary polymer particles. In the first step the
core layer of particles can be precipitated, then the
obtained particles can be purified and can be coated
as a second layer in the next step. Additionally, differ-
ent drugs can be loaded to the core and shell structures
in each step of forming. If the polymer layer differs,
the same drug can be loaded to design a sustained
release model. On the other hand, different active
ingredients can be easily loaded to create a binary
action from a binary polymer system. Han et al. [97]
reported a binary polymer system-based nanoprecipi-
tation application for sustained release of ketamine-
loaded nanoparticles. Ketamine is an analgesic active
molecule which has a short half-life in biological sys-
tems. To overcome this limitation, they designed
PEG-PLGA nanoparticles and PEG-PLGA/shellac
binary polymer systems to increase both drug-loading
efficiency and releasing period. It has been demon-
strated that, the new binary polymer system increased
in vivo drug release up to 21 days with a sustained
release profile [97].
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MICRO-NANO CARRIERS

Polymeric micelle

Solid-lipid nanoparticle

Polymeric nanoparticle

Nanoprecipitation

Solvent evaporation
Emulsification/solvent diffusion
Salting out

ORGANIC
Nanogels
Drug conjugate
INORGANIC Qalidtimid nane
Carbon nanotube Dendrimer
Gold nanoparticle Liposome
Magnetic nanoparticle
Quantum dot
Silica nanoparticle

Supercritical fluid technology (SCF)
Controlled/living radical polymerization
Interfacial polymerization

Emulsions: mini, nano, micro-emulsions

Figure 2. Classification of nano-carriers in terms of material type and polymeric nano-carrier preparation techniques. Nano-car-
riers are divided into two main groups as organic and inorganic. Polymeric nanoparticles/carriers are a subset of organic nano-
carriers, and their preparation methods have been classified in detail as explained in this diagram.

Emulsions

Emulsion-based nanoparticle systems involve two
immiscible phases and a surfactant. Emulsion solution
can be composed of one single (water(w) in oil(o) or
oil(o) in water(w)), double (w/o/w or (o/w/0)) and/
or multiple emulsions. Additionally, surfactants can
be anionic, cationic, or zwitterionic which lowers the
surface tension of solution. Emulsion system design
depends on the relationship between drug-polymer-
target tissue [98]. Bioavailability, biocompatibility,
and particle size are the key properties to design nano-
particles with optimal physicochemical aspects. There-
fore, a suitable emulsion system is chosen according to
the drug type (hydrophilic or hydrophobic), polymer
properties (molecular weight, single/copolymer, solu-
bility, in organic phase or water phase, polarity, etc.)
and dissolution properties/kinetics of solvents because
these parameters directly affect particle yield, size,
loading efficiency and release kinetics. Hydrophilic
drugs should be loaded into the water phase, while
hydrophobic drugs should be loaded into the oil
phase [99]. The emulsion system should be designed
taking into account whether the polymer used is
hydrophilic or hydrophobic. At present, binary poly-
mer systems offer an important role for overcoming
dissolution properties and creating sequential and/or
dual drug delivery. Additionally, binary polymer sys-
tems offer a significant advantage for designing tar-
geted nanoparticles with versatile properties.

Kietzke and co-workers [100] reported the binary
polymer nanoparticles synthesis by a mini-emulsion
method. In the study, the binary system was composed
of polystyrene (PS) and poly(propylene carbonate)
(PPC) polymer pair. PS:PPC binary polymer

nanoparticles size range was measured as ~75nm
and the synthesised binary polymer-based nanoparti-
cles exhibited Janus (biphasic) structure (Figure 3).
The Janus-like biphasic nanoparticle formation is
related to the immiscible nature of binary PS and
PPC polymers. When the binary polymer pair
encountered water molecules in the emulsion system,
there were no preferences of either polymers to take
part in the core or shell of the binary system, thus
phase separation and the biphasic structure occurred.

Fibre production techniques relevant to
binary polymer systems

Developing polymer binary systems is a versatile strat-
egy for obtaining novel biomaterials with improved
properties [101,102]. The addition of the second poly-
mer in a binary system not only provides the original
characteristics of the additives to the polymer blend,
but also generates novel attributes by tuning the struc-
ture of the polymer blend, improving processing and
lowering production costs [103-105]. To fabricate
functional materials, such as biomaterials using binary
polymer fibres, forming must occur on a technologi-
cally viable scale, generating fibres with a large surface
area and tuneable porosity [38,106]. Such improved
properties have been used in a variety of applications,
including medicinal delivery and tissue engineering
scaffolds [107-110].

Electrospinning

Electrospinning is a process that can generate polymer
nanofibres by using electric fields and flow [111-114]
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Figure 3. Polystyrene (PS) and poly(propylene carbonate) (PPC) (PS:PPC) binary polymer Janus nanoparticles produced by emul-
sion method. (A) Transmission electron microscopy (TEM) micrographs of PS:PPC Janus nanoparticles (scale bar = 200 nm) (i) non-
stained, (ii) stained, (B) schematic representation of Janus nanoparticles phase separation, and (C) high resolution TEM micro-
graphs of PS:PPC Janus nanoparticles biphasic-binary polymer structure (scale bar = 100 nm). Reproduced from Ref. [100] with

permission.

(Figure 4(i)). Binary polymers can be adopted to elec-
trospinning technique by mixing the two different
types of polymers, and spinning the mixture to obtain
the blended fibres, or using a co-axial needle system
and feeding the binary polymer pair separately from
the different solution systems. Both techniques allow
to load various drugs, such as antibiotics, vitamins,
peptides, and proteins, and fibres can be spun to be
incorporated into scaffolds [115-117]. The electro-
spinning method has the ability to control the fibre
pore structure and produce nanofibres that provide a
high surface-to-volume ratio [118]. These character-
istics are highly desirable in biomedical applications
including wound dressings, tissue engineering
scaffolds,  biomedicine, and  pharmaceuticals
[119,120]. Komur and co-workers [121] produced
starch and PCL binary polymer to produce PCL core
and starch shell double layer fibres by co-axial electro-
spinning. The PCL core layer imported mechanical
strength to the structure, and the starch shell layer
resulted in a cell-friendly surface for wound dressing
applications. Additionally, increased starch concen-
tration increased cell viability and decreased the ten-
sile strength of the binary fibre structure. Owing to
their high surface-to-volume ratio, electrospun fibres
are able to load high amounts of antimicrobial pep-
tides (AMPs) where the release can be modified by
altering the type of material properties in the fibres

[122]. Electrospinning has attracted much interest in
biomedical applications, as this technique can gener-
ate biomimetic nanofibrous materials from an exten-
sive range of biologically relevant natural and
synthetic polymers. However, this system encounters
limitations including poor cell filtration and growth,
potential toxicity of chemical residues in electrospun
fibres and a slow batch production rate that impedes
the progress of its applications [123-125].

Centrifugal spinning

Centrifugal spinning is an easy system for converting a
spinning solution to micro-nano diameter range
fibres [126]. The process is voltage free (Figure 4(ii)),
using centrifugal force to generate bulk fine fibres
from melting and/or solution materials used for a
selection of applications, ie. wound dressing
materials, tissue engineering scaffolds and medical
engineering [127-129]. The process has the ability to
generate a high degree of alignment and intercon-
nected fibres, as well as high porosity at a low cost.
Depending on the solution and spinning environ-
ment, the fibre output spun per minute can vary
significantly.

On the other hand, centrifugal spinning fails to
control both fibre morphology and pore size. While
the fibre diameter is small (in the low micro-range),
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Figure 4. Schematic representations of (i) Electrospinning of poly(lactic acid)/chitosan core-shell nanofibres (a) PLA/SDS-CS =
100/0; (b) PLA/SDS-CS =80/20; (c) PLA/SDS-CS =70/30; (d) PLA/SDS-CS = 60/40; (e) PLA/SDS-CS =50/50; (f) PLA/SDS-CS =40/
60 [130] (i) Centrifugal spinning of poly(acrylonitrile)/PEG fibres (a) pure PAN fibres, (b) PAN/PEG PCM fibres, and PAN/PEG/
SiC PCM fibres: (c) SiC 4.0 wt-%, (d) SiC 6.0 wt-%, (e) SiC 8.0 wt-%, (f) SiC 10.0 wt-% and the corresponding energy dispersive spec-
tra (inset in c to f) [131], (iii) Pressurised gyration (a) 0.1 MPa (b) 0.2 MPa (c) 0.3 MPa and core-sheath nanofibre cross-sections
[132]. Reproduced from Ref. [130-132] with permission.

the fibres are beaded on a string which reduces wider
applications. Moreover, when the morphology is ideal,
the fibre diameter is large which reduces a high drug
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Figure 5. Schematic illustrating the preparation of a binary polymer system. Fibres have been fabricated using pressurised gyra-
tion and a scanning electron micrograph (SEM) of the binary fibres is provided (scale bar = 10 um). Fibres spun at 36,000 rev min™’
and no applied pressure.



nanofibre movement, which can be a potential limit-
ation. Moreover, centrifugal spinning lacks core-
shell and or layer by layer fibre formation. The ease
of binary polymer systems adaption to centrifugal
spinning technique is only improved by blending the
binary polymer pair in single solvent system to obtain
blended binary polymer fibres.

Pressurised gyration

Pressured gyration (PG) is an effective manufacturing
technique used to produce largely low micro-range
diameter fibres [133]. It can be adapted as a technique
for spinning nanofibres and nanofibrous structures,
that are spun at high speed (36,000 rev min~') and
under high pressure (0.1-0.3 MPa) (Figure 4(iii) and
Figure 5), especially with water-soluble polymers caus-
ing fibres to erupt, elongate and thin from a cylindrical
aluminium pot containing the polymer solution. The
large surface-to-volume ratio creates desired con-
ditions for the development of ECM to imitate native
tissues, which are promising for wound healing [134]
and tissue regeneration applications [135,136]. More-
over, this process has demonstrated a mechanism for
rapid release of drugs, such as developing progester-
one-loaded nanofibres for vaginal therapeutics for
the prevention of pre-term birth [137].

For desired applications, PG enables fibres to be tai-
lored. For example, the fibre diameter can be adjusted
using fluid acceleration and enhanced kinetic energy
of the evolving jet. As the polymer jet lengthens, jet
elongation produces lower diameter fibres, resulting
in rapid evaporation of solvents. By varying the gas
pressure, the surface topography of the developed
fibres can be adjusted. When highly volatile solvents
are applied, the ambient temperature drops, and the
surface perforations form as water droplets evaporate
from the fibre surface. With a greater applied working
pressure, the temperature decrease is higher, resulting
in faster solvent evaporation and creation of pores.
Additionally, by increasing the collection distance,
the fibre diameter is decreased. Whereas at greater dis-
tances, the jet is allowed to spread further, resulting in
smaller diameter fibres. The outcome of the fibre
characteristics is substantially influenced by the sol-
ution properties such as viscosity and molecular
weight, therefore, it is important to confirm the
necessary requirements for manufacturing fibres for
a specific polymer. Mahalingham et al. [138] reported
generating PCL-PVA binary polymers based core-
shell fibrous scaffolds for bone tissue engineering
(Figure 6). Hydroxyapatite (HA) molecules embedded
into the shell layer of binary polymer system induced
cell proliferation. In the core layer, PCL provided the
long-time stability and mechanical support, and the
HA embedded PVA shell layer ensured the rapid
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release of active molecule to induce the cell migration
and proliferation on the intended application area.

This ambient temperature method is used to man-
ufacture functional materials from polymeric fibres,
such as biomaterials, which must be generated on a
technologically significant scale, with a high surface
area and tuneable porosity. Due to their inherent flexi-
bility, the desire for ultrafine polymeric fibres is on the
increase. It is important that fibres can be mass pro-
duced in a consistent, durable, and cost-effective man-
ner in order to be effective in all these application
areas. While there are benefits to techniques such as
centrifugal spinning, electrospinning and self-assem-
bly, they are not without their limitations. PG has
addressed the limitations of other sister spinning tech-
niques and has gained popularity with communities
pursuing large-scale manufacturing. It is a more effec-
tive process for mass production, but for the low
micro-nano diameter fibres.

Drug loading of binary polymer systems

Polymeric drug delivery systems are complex in terms
of their preparation and mechanisms of action. While
the large number of parameter variables affecting the
designed system makes it difficult to obtain the tar-
geted properties, on the other hand, they show the
existence of different options to achieve the intended
purpose. Presently, binary polymer systems provide
a significant advantage by increasing design options
in drug delivery system applications. Single drug load-
ing to binary polymer systems with different release
kinetics for sustained release and/or dual drug loading
with different drug solubility can be easily attained by
binary polymer systems for both micro/nanoparticle
and micro/nanofibre applications.

Single drug loading

Controlled drug delivery systems (CDDSs) aim to
satisfy drug loading efficiency, bioavailability, and bio-
compatibility. There are numerous examples of drug
delivery systems which benefit from binary polymer
systems to attain these goals. Khalil and co-workers
[139] compared the pharmacokinetics of curcumin
loaded PLGA and PLGA-PEG binary polymers. Par-
ticle size and encapsulation efficiency parameters did
not exhibit a significant difference between these two
different systems. However, it has been stated that
binary PLGA-PEG nanoparticles increased bioavail-
ability of curcumin 3.5-fold compared to PLGA nano-
particles [139]. In another study, Parveen and Sahoo
[140] reported that paclitaxel-loaded PLGA-PEG-CS
nanoparticles remained in the bloodstream for a
longer time and showed increased anti-proliferative
activity compared to PLGA nanoparticles. Mayol
et al. [141] studied curcumin loaded PLGA and
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PLGA-poloxamer blend nanoparticles bioavailability
against mesothelioma cells. Their study resulted in
enhanced permeability and retention (EPR) on tar-
geted cell lines while inhibiting rapid degradation of
curcumin. In another study, 5-fluoruracil loaded
CS-PCL blend nanofibres were prepared for antican-
cer activity [142]. It has been shown that increased
CS content increased drug loading efficiency and sup-
ported sustained release and prolongation, but in an
acidic environment a shortened releasing period was
observed. Additionally, increasing CS content
decreased the strain in the fibres. As a result, slow
degradation was attained with high drug loading
efficiency, owing to the optimised binary polymer for-
mulation of CS-PCL fibres.

Dual drug loading

Binary polymer systems exhibit a vital role in dual
drug loading systems. Especially in the applications
of dual drugs with sequential delivery and different
dissolution properties, binary polymers play a key
role [143]. Su et al. [144] designed and prepared binary
polymer fibres by co-axial electrospinning for model-
ling dual drug delivery. Rhodamine B and bovine
serum albumin (BSA) were loaded as model drugs
into different layers of poly(L-lactide-co-caprolactone)
(PLLACL) fibres. It was reported that the active ingre-
dient in the core layer exhibited sustained release,
while the shell layer exhibited a burst release profile,
making this model a powerful candidate for various
combinational therapies. Cao and co-workers [145]
studied dual drug delivery of combretastatin A4
(CA4) and doxorubicin (DOX) anticancer drugs for

Figure 6. PCL-PVA binary polymer fibres, (A) schematic representation of production set-up of pressurised gyration, (B) fluor-
escence microscope image of manufactured fibre with core and shell PCL and PVA binary polymer layers, (C) SEM image showing
cell-binary PCL-PVA core—shell fibre interactions, and (D) fluorescence microscope image of living cells that interact with PCL-PVA
core-shell fibres. Reproduced from Ref. [138] with permission.

two different core-shell nanoparticles contained in
binary polymer systems. Poly(vinylpyrrolidone)
(PVP)-PLGA and PCL-PLGA core-shell nanoparti-
cles were used throughout the study and PVP-DOX/
PLGA-CA4 and PCL-DOX/PLGA-CA4 formu-
lations successfully inhibited HUVECs and B16-F10
cell proliferation [145].

In another study, Mahalingam and co-workers have
very recently produced core-shell binary polymer-
based fibres by PG [132]. PVP was used as the shell
layer and PEO was included in the core. This new
method has the ability to be used for dual/sequential
drug delivery applications. Also, Silva et al. [146] pro-
duced core-shell dual-drug loaded microparticles
(Figure 7). Curcumin loaded PCL microparticles
were produced by emulsion technique for the core
layer. Then ciprofloxacin (CPx) loaded PVA was
used as the shell layer which was produced via spray
drying. Resulting core-shell dual drug loaded micro-
particles were a few micrometres in size and showed
very promising outcomes for controlled release appli-
cations especially in inhalation therapies.

Binary polymers and biomedical
applications

Over the last few decades, the study of polymers and
polymer blends has had a huge influence on both
industry and academia. These materials have enor-
mous potential as a tool for novel applications [147].
Blending two polymers is a technique for manufactur-
ing a material with specific characteristics, appropriate
for highly demanding applications that are often sim-
pler and quicker than the final product’s scratch



@)

INTERNATIONAL MATERIALS REVIEWS . 1

(ii)

o/w emulsion Collection &

Redispersion

A

RSESTS

TAS ®®

VWater phase
A

PCL+CMm
Oil phase

Spray-drying

FE =~ ) - 50 pg/mL
58 .. I v o 100 pg/mL
23 7 m 200 pg/mL
- S o o >z >F P

f"’:'-'_@*' e e .f"f

<
S. aureus
o€ ™
2 E o 993 50 pg/mL
£F ™ - < pug/m
=z g - " w100 pg/mL
£s lﬁ B 200 pg/mL
= S ot

Inhibition halo
diameter (mm)

Inhibition halo

u
[

. 200 pg/mL

a N
[] o
F-
o
J—
—

ii 50 pg/mL
| 100 pg/mL
s

s 100 pg/mL
200 pg/mL

diameter (mm)

‘|’| 50 pg/mL

PVA/CPx + PCL/CM

Control (PS disk)

Figure 7. Core-shell microparticle production via bilayer polymer systems. (i) (a) Process diagram of core—shell microparticles, (b)
macroscopic images of dried powders of microparticles, (c—e) SEM images of microparticles with the size distribution graphs given
as inset figures, (f) transmission electron micrograph of microparticles. (ii) ATR-FTIR chemical mapping of drug loaded/non-loaded
core-shell microparticles. (a) PCL core-PVA shell, (b) PVA shell and drug, (c) PCL core and drug (scale bar =5 pm), (iii) antibacterial
test results against P. aeruginosa, E. coli, S. aureus and B. subtilis. (a) Inhibition zone test results for P. aeruginosa, E. coli, S. aureus
and B. subtilis species. (b) SEM images of antibacterial efficiency against P. aeruginosa cells for drug loaded particles (scale bar =

2 um) [146]. Reproduced from Ref. [146] with permission.

synthesis [148]. As mentioned in the previous sec-
tions, binary polymer systems have a significant
impact in many application areas and biomedical
applications have priority when considering human
health and life. In this section, literature review on
binary polymer systems and their applications used
in the biomedical field is reported elucidated and cri-
tically reviewed (Table 1).

Alginate

Alginate-gelatine

ALG is a biocompatible, linear binary copolymer
made up of monosaccharide units of D-mannuronic
acid (M) and its C5 epimer, L-guluronic acid (G),
that are covalently bonded by 1-4 glycosidic linkages
[180]. In the primary structure, M and G are dispersed

in variable amounts throughout the polymer chain to
generate heterogenous alternating (MG) and homo-
geneous (MM or GG) sequences [181-183]. ALG is
a naturally occurring anionic polymer found in
brown seaweed species like Laminaria digitata, Lami-
naria japonica, Ascophyllum nodosum, and Macro-
cystis pyrifera [184,185]. The structural closeness of
ALG to the ECM of living tissues allows for a diverse
range of biomedical applications, such as wound heal-
ing, bioactive agent delivery, and cell transplantation.
ALG is also biodegradable because the cross-linking
elements release and exchange with monovalent
cations in body fluids, causing it to disintegrate gradu-
ally in the body. The rate of ALG dissolving can be
adjusted by electrochemical reactions [186] of the
molecular weight of ALG [187,188]. One significant
disadvantage of ALG is that it can gelate into a softer
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Table 1. Binary polymer system pairings for biomedical applications found in the literature.

Polymer Binary component Fabrication technique Application Reference
Alginate Gelatine Hydrogel Wound healing [149]
Chitosan Wet spinning Antibacterial fibre [150]
PCL (melted) Bio-printing Cartilage tissue engineering [151]
Cellulose PVA Freeze-drying Cartilage tissue engineering [18]
PEG Freeze-drying Wound dressing or tissue engineering scaffolds [152]
Collagen Freeze-drying Bone tissue engineering [153]
Chitosan PCL Electrospinning Wound healing [154]
PCL Electrospinning Nerve tissue engineering [155]
Silk fibroin Freeze-drying Wound healing [22]
Cellulose Nanoparticle Cancer therapy [156]
Collagen Gelatine methacrylate 3D printing Angiogenesis [157]
Alginate Hydrogel Neurogenesis and neuronal maturation [158]
Gelatine PEGDA Hydrogel (UV cure) Bone regeneration [159]
Cellulose Electrospinning Wound healing [160]
Silk Collagen Electrospinning Vascular tissue engineering [161]
Chitosan/PVA Electrospinning Wound dressing [162]
PVA Hydrogel Drug delivery [163]
PHA Gelatine Electrospinning Diabetic wound [164]
Gelatine Electrospinning Tissue engineering [165]
PCL Melt extrusion Nerve guidance conduit [166]
PCL PGS Electrospinning Cornea tissue engineering [167]
Collagen 3D printing Tracheal replacement [168]
Hydrogel Vascularisation [169]
PEG/PEO PLGA Electrospinning Myoblast differentiation and alignment [170]
PLGA Nanoparticle Alzheimer [98]
PHBV Electrospinning Skin tissue engineering [171]
PLA Nanoparticle Prostate-specific membrane antigen (PMSA) targeting [172]
PLGA PLA Nanoparticle Bio-membrane model [173]
Hyaluronic acid Electrospinning Diabetic wound healing [174]
PVA PHBH Electrospinning Wound dressing [175]
PGS Pressurised gyration Tissue engineering [34]
Starch Membrane Wound dressing [176]
PVP PVA Hydrogel Articular cartilage [177]
Gelatine Gas foaming Bone tissue engineering [178]
PCL 3D printing Tissue engineering [179]

form when exposed to the physical environment, lim-
iting its ability for soft tissue regeneration, and making
it unsuitable for use in load-bearing body parts [187].
To address this issue, a variety of elements have been
mixed into the ALG structure. Incorporating an
adhesive peptide and a natural or synthetic polymer
to ALG moieties results in a composite material that
not only has superior mechanical properties compared
to native ALG, but also has more healing potential and
promotes better tissue regeneration [184,187,189-
192].

Gelatine is a protein that is made by hydrolysing
collagen from animals (such as bovine, porcine, or
fish collagen), connective tissues, and bones
[193,194]. It has been FDA approved because of its
biocompatibility, lack of inflammatory processes in
the body, degradability, and lack of toxicity [195]. As
a result, it has been used in biomedical applications
[196], such as drug delivery [197], gene therapy
[198], wound healing [199], tissue engineering [200]
and regenerative medicine [201]. Since it retains the
bioactive sequences of collagen, gelatine is a popular
material for cell hosting. This enables the development
of an optimal environment for cell adhesion,
migration, proliferation, and differentiation [193,202].

Despite these important benefits, gelatine has cer-
tain disadvantages too. Gelatine, for example, tran-
sitions from a gel to a solution around 30-40°C,

limiting its long-term applications in transplantation
[203]. As a result, gelatine can be combined with
other polymers, such as ALG, to extend its degra-
dation period and improve its water resistance [204].
Hydrogels, which are a blend of natural polysacchar-
ides (i.e. ALG) and proteins (i.e. gelatine), have
recently gained a lot of attention. This is attributed
to ALG’s negative properties, such as poor cell
adhesion, inefficient ALG cell interactions, and pro-
longed degradability with unregulated kinetics [205].

The incorporation of ALG that has been initially
oxidised to produce ALG dialdehyde (ADA) and
then cross-linked with gelatine can be a solution to
these restraints. The resulting ALG-gelatine binary
hydrogel (ADA-gelatine) can be used to create micro-
capsules for encapsulating bioactive compounds or
cells and drug delivery [206-208], as well as a non-
cytotoxic biomaterial with good mechanical strength
and biocompatibility in regenerative medicine such,
as bone tissue regeneration [209] and as a soft tissue
adhesive in wound healing [210]. The microstructure
and physicochemical characteristics of the obtained
ALG-gelatine binary hydrogels can vary depending
on the oxidation degree of the ADA and the cross-
linking degree and gelation time of the ADA-gelatine
[209-211]. According to Serafin and co-workers [149],
ALG microcapsules and ADA-gelatine microcapsules
have a greater degradability and demonstrate good



cell adhesion, proliferation, and migratory capabilities
[195,207,212].

Alginate—chitosan

Chitin and its deacetylated derivative, CS, are a class of
linear polysaccharides made up of differing quantities
(B1—4) of N-acetyl-2 amino-2-deoxy-D-glucosee
(glucosamine, GIcN) and 2-amino-2-deoxy-D-glucose
(N-acetyl-glucosamine, GIcNAc) residues [213,214].
CS is found in a limited number of fungus (Mucora-
ceae) in nature. Primary amine protonation serves to
make CS miscible in aqueous acidic media. The quan-
tity of acetylated resides in chitin, on the other hand, is
sufficient to avoid the polymer from degrading in aqu-
eous acidic conditions. The fact that chitin and CS are
not only abundant in nature, but also harmless and
biodegradable is the fundamental driving force behind
their development in emerging applications [215]. CS
possesses antibacterial [216-219], antifungal [220],
mucoadhesive [221], analgesic [220], haemostatic
[222], biocompatibility, biodegradability, and non-
toxicity properties that have captivated researchers’
interest in recent years, generating significant interest
in the field of biomedical applications, according to
several studies [223,224].

Despite the fact that ALG and CS biopolymers have
been exploited individually in biomedical applications,
each has significant drawbacks. The hydrophilic
nature of ALG inhibits serum proteins from being
accumulated, restricting the ability of anchorage-sen-
sitive cells such as hepatocytes to promote specific
cell connections or execute different cell activities
like migration, proliferation, and specialised gene
expression [225-227]. On the other hand, CS has
poor mechanical properties and is difficult to manip-
ulate and mould into a scaffold structure [228,229].
Therefore, cell encapsulation is a difficult process.
Thus, an ALG-CS binary system can overcome the
single biopolymer limitations.

Dumont et al. [150] investigated acidic aqueous CS
acetate solutions. As a result, the antibacterial action
may have been caused by both the bioactivity of CS
and the acid used to make the solution. Antibacterial
efficacy of CS-coated ALG fibres against Gram-nega-
tive Escherichia coli (E. coli) species and, more inter-
estingly, Gram-positive Staphylococcus epidermidis
were assessed. The results suggest that using CS-
coated ALG fibres in wound dressings can combine
the wound-healing properties of calcium ALG with
the antibacterial activity of CS to combat bacterial
infection, notably against antibiotic-resistant and
healthcare-associated pathogens.

Alginate-PCL (melt)

ALG has tuneable mechanical characteristics owing to
cross-linking with divalent ions like Ca** and it can be
used in a blend with PCL [230]. The inability of
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hydrogel to retain a homogeneous 3D structure is its
fundamental drawback for tissue engineering. Hydro-
gels can be combined with synthetic biomaterials to
alleviate this challenge. PCL is an FDA-approved poly-
mer with excellent biocompatibility and low hydroly-
sis degradation. It is also a cost-effective and versatile
polymer that is commonly utilised to produce 3D
structures for bone regeneration [231]. PCL has excel-
lent rheological properties than many of its resorbable
polymer competitors, allowing it to be made and
moulded into a wide variety of shapes and structures
[231]. Owing to these characteristics, PCL can be
formed into scaffolds via 3D printing, electrospinning,
and melt-electrowriting (MEW) [232-236]. However,
the hydrophobic PCL surface [237] is not suitable for
cell adhesion and proliferation, therefore, it must be
modified to become more hydrophilic [238]. An
additional limitation of PCL is its inability to create
bone-forming potentials.

Kundu et al. [151] used the advantages of cell-print-
ing technology to construct pre-tissue by LBL depo-
sition of PCL and chondrocytes enclosed by
hydrogels (ALG), with and without transforming
growth factor (TGE). Findings suggest that the vital-
ity of chondrocytes was not affected by the cell-print-
ing procedure of cells embedded in ALG hydrogels.
The created cartilage with the cell-printed PCL-ALG
scaffolds had increased ECM and GAG content with-
out an undesirable tissue reaction. A novel cell-printed
bio-hybrid scaffold for cartilage regeneration was also
developed. The 3D created tissues will have an impact
not only in the field of regenerative medicine, but also
as an experimental tissue model for cell biology, drug
screening, and drug discovery exploration.

Cellulose

Cellulose-PVA

Cellulose is a natural polymer made up of repeating
glucose units (C¢H;005),, that is unbranched and is
considered to be the most easily and accessible organic
material and polysaccharide [239,240]. It is often pre-
sent in the form of microfibrils in wood and plant cell
walls, algae tissue, and the membrane of tunicate epi-
dermal cells [241,242]. Owing to its great physical and
mechanical properties, such as biocompatibility [243],
low density and biodegradability [244], cellulose and
its derivatives allow porosity tuning and interconnec-
tivity that have attracted significant attention for bio-
medical applications. With the application of
hierarchical structure, cellulose generates functional-
ity, versatility, and high specific strength naturally
[242,245]. However, cellulose has several less favour-
able characteristics for use in the biomedical field,
such as moisture sensitivity, insolubility in water and
most common solvents, and a low resistance to
microbial attacks [246,247].
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Among the biomaterials designed for cartilage tis-
sue engineering, 3D supports focused on mechanically
robust hydrogels are being researched, in order to
benefit from their unique characteristics including
porosity, pore size and matrix rigidity [248,249].
PVA hydrogel is extensively used in the biomedical
field owing to its biocompatibility and non-toxicity,
it has a high moisture content and tuneable mechan-
ical behaviour making it an attractive alternative for
the formation of synthetic cartilage [250-253]. How-
ever, there are several drawbacks to applying PVA-
based scaffolds in cartilage tissue engineering, includ-
ing low biodegradability after cross-linking [254] and
a limited ability to facilitate cell adhesion [255]. Apart
from improving the biological efficacy of PVA, the
manufacturing of these composite scaffolds intends
to deliver the engineered construct mechanical fea-
tures that are consistent to those of the original carti-
laginous tissue. Therefore, the binary system of PVA
with cellulose can deliver an ideal mechanical effec-
tiveness which has a higher tendency for cell-to-
matrix and cell-to-cell activities, allowing the 3D sys-
tem to effectively resemble in vivo functions and tissue
architecture [18,256].

Cellulose-PEG
Cellulose has several distinct properties that make it
an excellent material for wound dressings, including
non-toxicity, non-carcinogenicity, the ability to retain
moisture, absorb exudates from damaged tissue and
intensity granulation, as well as high purity and poros-
ity [257-261]. To enhance its efficacy as a wound dres-
sing material, or to supply it with specific qualities or
functionalities, techniques have depended on exploit-
ing and improving its natural properties, such as ten-
sile strength, biocompatibility, and water uptake. On
the other hand, cellulose lacks numerous desired fea-
tures, such as antibacterial activity and anti-inflamma-
tory effects [262]. In combining cellulose with other
polymers, such as PEG, new properties can be incor-
porated through the development of binary systems.
PEG is a synthetic and hydrophilic polymer with
remarkable solubility properties. It is a biocompatible
polymer that has been widely used in the medical
industry, such as biomedical applications to enhance
wound healing. A study by Cai and Kim [152] has
shown that PEG has the ability to penetrate cellulose
fibre networks. In terms of fibroblast cell culture, the
outcomes reveal that cellulose-PEG polymer binary
system has greater biocompatibility than pure cellu-
lose. In vitro studies suggest that it could be exploited
as a wound dressing material or tissue regeneration
scaffold [152].

Cellulose-collagen
Previous research has shown that collagen is a viable
biomaterial for bone tissue regeneration due to its

superior biocompatibility, degradability, adhesion,
osteogenic induction and low immunogenicity
characteristics [263]. Collagen serves as an effective
matrix for a variety of cell types, however, alone it
may not be singularly sufficient for bone tissue engin-
eering [264]. As a result, collagen must be modified or
combined with other polymers to achieve enhanced
mechanical characteristics [265]. Cellulose has been
widely used as a biomaterial for bone regeneration
[266-269]. However, due to its low physicochemical
attributes it is limited in its future applications.
Thus, cellulose has been regarded as an alternate
source for polymer reinforcement in tissue engineer-
ing. According to a study by Noh and co-workers
[270], binary polymers of cellulose-collagen with a
higher cellulose content are more stable, and thus
more resistant to contraction in wet conditions, than
collagen. It is also known that cellulose content plays
a key role in mesenchymal stem cell (MSC) osteogen-
esis induction, with cellulose-collagen (5:1) being the
most potent combination [270].

Chitosan

Chitosan-PCL

CS can be biodegraded into non-toxic residues
[271,272], owing to its properties mentioned in Sec-
tion ‘Alginate-Chitosan’. The rate of breakdown is lar-
gely proportional to the polymer’s molecular mass and
degree of deacetylation, and it is biocompatible with
physiological medium to a certain degree [273,274].
All of these unique characteristics have demonstrated
enhanced potential for biomedical applications, such
as wound healing [154,155,275-281] and nerve tissue
engineering [155]. Moreover, CS can contribute to
the formation and structure of granulation tissue by
stimulating and modifying the action of inflammatory
cells such as neutrophils, macrophages, and fibro-
blasts, as well as endothelial cells [282,283]. However,
pure CS as a biomaterial has structural integrity in
moist settings due to swelling [281]. Furthermore,
due to the high viscosity of CS solutions, spinning
pure CS can be challenging [284].

PCL can be fabricated readily at low voltages and
offers the mechanical resistance required for scaffolds
in aqueous conditions [285]. The CS-PCL poly-blend
fibres, which are formed without chemical cross-link-
ing, have improved mechanical characteristics in both
wet and dry environments as well as improved cellular
behaviour, and hence would be a better substrate than
other PCL-protein structures [286]. In a study by
Fahimirad and co-workers [154], PCL-CS-curcumin
was functionalised with curcumin CS nanoparticles
(NPs), which enhanced the antibacterial efficacy
against MRSA by 99.3% and significantly increased
antioxidant performance by 89%. The proliferation
rate of human dermal fibroblasts (HDF) cells was



improved when PCL-CS-curcumin was integrated
with the curcumin CSNPs scaffold. As a result, this
finding shows that PCL-CS-curcumin electrosprayed
with curcumin CSNPs could be used as an effective
new wound dressing with substantial antibacterial
activity. The micro and nanostructure of CS-PCL
nanofibre scaffolds mimics the original ECM in
terms of fibre morphology and dimensionality, and
it is likely that it acts as an instant reinforcement for
keratinocyte and fibroblast migration in the pro-
motion of wound healing and skin repair [287].
Therefore, the wound healing efficiency and ultimate
closure, as well as re-epithelialisation, neo-epidermis
maturity, and collagen deposition, can be improved
with the use of CS-PCL nanofibre scaffolds.

Binary polymer fibrous scaffolds made of synthetic
and natural polymers have been explored for nerve
regeneration [288-290] to take advantage of the
characteristics of CS and PCL. In correlation with
this, Cooper and colleagues [155] examined the com-
bination of CS with PCL to generate a mechanically
stable polymer for nerve regeneration applications.
The thermal degradation of CS and PCL fibres was
studied, indicating that CS-PCL is thermally stable,
and that neither the CS-PCL material nor the top-
ology of the material generated further cell harm or
death [155]. In comparison to CS-PCL film and ran-
domly oriented fibres, highly aligned CS-PCL
fibrous scaffolds were found to direct Schwann cells
(SC) attachment, resulting in distinctive cell shape
required for nerve regeneration. The findings suggest
that CS-PCL fibres stimulate chemical and topogra-
phical signals for neuritogenesis modulation.

Chitosan-silk fibroin

CS is limited in its applicability due to its low solubility
in neutral and alkaline liquids. However, physical, and
chemical alterations, as well as the development of
new cross-linked CS-based structures, have given it
unique functional capabilities that allow it to be used
in biosensing [291,292], tissue engineering [293],
and medicinal applications [294]. The amino and
hydroxyl functional groups of CS can react covalently
or non-covalently with various cross-linker reagents
such as glutaraldehyde [295], genipine [296], acrylic
acid [297], and palladium cations [298], depending
on the structure. Indeed, these cross-linking processes
have resulted in the development of new cross-linked
CS-based composites and hydrogels with varying
properties [294,299]. According to previous research,
CS hydrogels degrade promptly, which has reduced
their use as a biomedical material [300]. Silk fibroin
(SF), on the other hand, has demonstrated significant
mechanical strength [300]. SF is derived from Bombyx
mori silkworm cocoons and has a number of unique
properties, including high mechanical strength, low

immunogenicity, non-cytotoxicity, non-
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carcinogenicity, strong biocompatibility, high air per-
meability, biodegradability and minimal inflammatory
reaction [301-305]. Hydrogel [306], film [307], non-
woven textiles [308], nanofibre [309], and 3D porous
scaffolds [310] are some of the various shapes and
forms that this natural protein can make. Research
has shown that combining SF with other materials,
such as natural polymers [304,311] and forming SF-
based composites can improve SF’s antibacterial prop-
erty, which is an important component in wound
dressing applications. Therefore, the mechanical
characteristics of CS biopolymer can be considerably
improved by various chemical modification pro-
cedures, and that its combination with other polymers
[22], such as SF makes it an excellent covering material
for wound healing [312].

Cai et al. [313] found that increasing the quantity of
SF in CS enhanced the tensile strength of cross-linked
nanofibrous membranes from 1.3 to 10.3 MPa. The
study revealed that fibroblast growth was facilitated
by the CS-SF binary polymer nanofibrous mem-
branes. CS-SF binary polymer nanofibrous mem-
branes increased «cell adhesion and growth,
according to MTT experiments. The growth of
Gram-negative bacteria E. coli was inhibited by binary
polymer nanofibrous membranes, according to tur-
bidity measurements [313]. Furthermore, when the
ratio of CS increased, the antibacterial activity
increased dramatically, considered favourable for
CS-SF nanofibrous membranes used as wound
dressings.

Chitosan-cellulose

CS nanoparticles show promise as a carrier for antic-
ancer therapeutics, with advantages such as high
drug loading capacity and long-term drug release
[314]. By mixing with other biopolymers and cross-
linking, the degradation of CS can be tailored to acidic
environments of tumour tissue [315]. CS-based nano-
carriers are usually applied for encapsulation of
hydrophilic and hydrophobic pharmaceuticals in sev-
eral drug delivery systems. In a single cellulose fibril,
there are several hundred to thousands of p-—1, 4-
anhydro-d-glucopyranose units joined by -d-glycosi-
dic linkages, which are linear, water-insoluble polysac-
charides [316]. In the form of fibril aggregates, fibrils,
nano-crystallites and nanoscale disordered domains,
cellulosic materials use hierarchical structure design
that spans from nanoscale to macroscopic dimensions.
Cellulose can provide functionality, flexibility, and
high specific strength by taking advantage of its hier-
archical structure [245]. However, cellulose has a
number of limitations as mentioned in Section ‘Cellu-
lose’. To address less desirable qualities or produce
new desired characteristics, cellulose can be chemi-
cally changed by replacing its native hydroxyl groups
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with functional groups such as particular acids, chlor-
ides, and oxides [317].

For this reason, Jafari et al. [156] used MTT assays
to investigate the in vitro cytotoxicity of free melatonin
(MLT) and MLT encapsulated in CS-hydroxypropyl
methylcellulose (HPMC) NPs. After 48 h of incu-
bation, both free and encapsulated MLT caused
dose-dependent toxicity in MDA-MB-231 breast can-
cer cells. MLT encapsulated in CS-HPMC NPs was
found to have a greater toxicity than free MLT, indi-
cating that encapsulation increased MLT absorption
in cancer cells. In an acidic medium (pH 5.5), MLT
encapsulated in CS-HPMC NPs demonstrated signifi-
cantly greater release than in a neutral medium (pH
7.5) [156]. It is suggested that the novel CS-HPMC
NPs have a higher efficiency for cancer therapeutic
agent delivery in an acidic condition of the tumour tis-
sue. By combining with other biopolymers and cross-
linking with tripolyphosphate (TPP) or glutaralde-
hyde, the degradation of CS can be tailored to the
acidic environment of tumour tissue [315].

Collagen

Collagen-gelatine methacrylate
The body’s major structural protein, collagen, is a
natural hydrogel [318]. Collagen comes in thirteen
different types, with type I being the most prevalent.
They all have the same structure of three polypeptides
called a-chains that create a triple helix [319]. Type I
collagen is an excellent 3D scaffold material for tissue
engineering [320] owing to its capacity to self-assem-
ble into a fibrillary gel, chemical alterations, low anti-
genicity and bioactivity features [321-323]. Gelatine is
produced when collagen is chemically or physically
denatured or degraded [324]. When gelatine is func-
tionalised with methacrylic groups ((gelatine metha-
crylate) (GelMA)), photochemical cross-linking with
UV light can result in a gelatine gel that is stable at
body temperature [325], allowing tissue engineering
procedures to be implemented [326-330]. Gelatine
has a number of benefits, such as solubility and ease
of acquisition [331]. In specific, it has a lower antige-
nicity when compared to collagen. Furthermore, gela-
tine maintains an arginine-glycine-aspartic acid
(RGD) peptide series that promotes a matrix metallo-
proteinase (MMP) degradation sequence that stimu-
lates cell enzymatic degradation [325,332].
Nonetheless, since some cross-linking chemicals are
hazardous, gelatine’s low melting point and chemical
cross-linking may impact its biocompatibility [203].
Fortunately, gelatine’s side chains comprise many
active groups, such as -OH, -COOH, -NH,, and -
SH. Thus, gelatine can be modified with specific
groups to recompense for its limitations.

The proposed hydrogels’ high level of cytocompat-
ibility in terms of angiogenesis is associated with poor

printing properties. As a result, Stratesteffen et al.
[157] hypothesised that the biological and printing
properties of GelMA and type I collagen hydrogel
binary polymers could be tuned to produce a material
ideal for microvalve-based drop-on-demand bioprint-
ing. Collagen enhances rheological parameters such as
viscosity and hydrogel stiffness while also reducing
unwanted droplet spreading. The observed capillary-
like network creation in GelMA-collagen hydrogels
stimulated the fabrication of sophisticated cell-laden
3D structures, helping the creation of 3D-printed
pre-vascularised cell-laden hydrogel constructs [157].

Collagen-alginate

ALG must be chemically manipulated or combined
with cell-adhesive compounds to enhance attachment
features and growth [333-337]. Collagen hydrogels
quite often have a reduced matrix stiffness and integ-
rin binding sites for cell-matrix interactions [338-
341]. It has been suggested as a polymer that can be
mixed with ALG to form a mechanically tuneable
hydrogel that allows for cellular attachment [342].
To examine how the hydrogel’s physical and structural
properties affect human neuron growth and develop-
ment, Moxon et al. [158] created an integration of
ALG and collagen hydrogel networks as accessible
platforms for 3D culture of induced pluripotent stem
cell (iPSC) produced neurons. The derived hydrogel
matrix is a heterogeneous network of crosslinked
ALG and collagen fibrils, which promotes cell attach-
ment, neuronal maturation, and mechanotransducive
responses. The ability to tune the mechanical and
structural properties of the hydrogel using simple
ionic crosslinker concentration modulation has
influenced cell phenotype and allowed for optimis-
ation of neuron-specific gene expression. As a result,
ALG-collagen blend hydrogels can be used as tailored
substrates for investigating neuronal reactions to var-
ious mechanical and structural settings, influencing
3D neurogenesis, and examining neuronal behaviour
in 3D cell culture models.

Gelatine

Gelatine-PEGDA

Various chemical cross-linking procedures, such as
glutaraldehyde [343] and diisocyanate [344,345],
have been used to generate appropriate mechanical
strength, and a stable gelatine hydrogel. Nonetheless,
since the majority of chemical crosslinkers are toxic,
their use as cell-laden matrices in tissue engineering
is restricted. To enhance the degree of cross-linking
and restrict the amount of biodegradation, Wang
et al. [159] added poly(ethylene glycol)diacrylate
(PEGDA) to a pre-polymer solution. The GelMA-
PEGDA binary hydrogel outperformed the pure
GelMA hydrogel in terms of mechanical strength,



degradation time, diffusion rate and swelling rate. Via-
bility, adhesion, and proliferation were all high in in
vitro cell culture tests. Therefore, PEGDA can improve
the performance of GelMA hydrogels, and expand
their uses as a promising bone regeneration material.

Gelatine-cellulose

Gelatine is a readily available biopolymer that can be
electrospun and used as a scaffold for dermal and epi-
dermal tissue engineering [346]. Cellulose has long
been used in wound treatments in the form of
woven cotton gauze [347]. However, cellulose’s pro-
cessability is severely constrained due to its low solu-
bility in typical organic solvents [348,349]. Instead,
cellulose acetate (CA) is a commercially available, sol-
uble derivative of cellulose that is currently widely
used. It has a lower crystallinity, is soluble in a wide
range of organic solvents, and is thus easily electro-
spinnable [350].

According to Vatankhah and colleagues [160], data
demonstrates a decreasing trend in porosity with
increasing gelatine concentrations, and the pore size
in CA-gelatine composite scaffolds reduced dramati-
cally with increased gelatine content. It was suggested
that decreasing the pore size caused an increase in the
surface area [351,352]. By increasing the gelatine com-
position in CA-gelatine composite blends, the hydro-
philicity of the nanofibrous membrane increased,
which provides superior support for cell attachment,
adhesion, and proliferation. Electrospun CA-gelatine
scaffolds resemble both the morphological and struc-
tural properties of normal skin depending on the com-
positional ratios used. As a result, CA-gelatine 25:75
membranes can be used as tissue engineered implants,
while the CA-gelatine 75:25 scaffolds can be used for
wound dressing [160].

Silk

Silk—collagen

Silk has the ability to immobilise growth factors
through amino acid side shift alterations. Further-
more, chemical modifications can be made to adapt
them to a variety of biomedical applications [353-
366]. Due to the dominance of hydrophobic domains
composed of short side chain amino acids in the pri-
mary sequence, silks are typically comprised of B-
sheet structures. These structures enable the protein
to be packed tightly in stacked sheets of hydrogen
bonded anti-parallel networks. To allow cells to
deposit new ECM, and restore functional tissue,
many biomaterials must degrade at a pace that corre-
sponds to new tissue creation. Furthermore, polymer-
based products must be modified by the addition of
various natural or synthetic polymers, such as col-
lagen, to improve polymer characteristics [367].
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In a study by Zhou et al. [161], SF-collagen tubular
scaffolds were electrospun from aqueous solution with
the purpose of creating novel vascular tissue engineer-
ing alternatives by combining these two materials. The
findings reveal that collagen has a better cell attach-
ment and expression ability than SF. The diameter
of the fibres increased significantly as the concen-
tration of SF-collagen solution increased. It showed
that too much collagen caused the formation of belt-
like fibres, and a slight decrease in crystallinity. This
work showed that the SF-collagen binary system has
more potential in tissue engineering than other natu-
ral materials, e.g. used in vascular tissue engineering.

Silk-PVA

SF, unlike other natural polymers, has received signifi-
cant attention for a variety of biomedical applications
due to its ease of chemical modification, slow in vivo
degradability, autoclavability and ability to influence
structure and function [353,355,368]. To prepare
hydrogels with enhanced characteristics, regenerated
SF can be combined or chemically cross-linked with
other natural or synthetic polymers. PVA is notably
beneficial because it allows for the attachment of cell
signalling molecules, or drugs via the numerous
hydroxyl groups existing on the backbone [369]. The
abundance of pendant hydroxyl groups, which can
be substituted by a range of substituents, allow PVA
to be transformed into multifunctional and multivinyl
macromers [370-373].

Numerous researchers are focusing on finding out
what enables SF to gel, and one of the most common
theories is that the transition to a -sheet structure is
one of the key causes of gelation. The quantity of SF
produced can be determined by the hydrogel compo-
sition. The PVA and SF result in hydrogels that can
release encapsulated model materials in a regulated
manner, demonstrating the potential of copolymer
networks for drug delivery applications [163]. The
findings by Kundu and co-workers [163] suggest
that the interaction of silk and embedded drug, associ-
ated with diffusion, regulates drug release. As a result,
the binary polymer hydrogels can be considered safe
drug delivery carriers and hold immense promise as
photo-crosslinked gel forming controlled drug deliv-
ery systems.

Nonetheless, in order to fabricate composite
nanofibres, organic solvents or organic acids such as
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), trifluoroa-
cetic acid, dichloromethane and formic acid must be
used. When applied to wounded human skin or tissue,
the residual toxic organic solvent or acid in electro-
spun materials is unacceptable. To address these
issues, Zhou et al. [162] created composite nanofi-
brous membranes of water-soluble N-carboxyethyl
CS (CECS)-PVA-SE. CS has a chemical composition
that is similar to glycosaminoglycans found in ECM
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and has been discovered as a suitable potential bioma-
cromolecule for skin scaffolds owing to its haemostatic
capacity, ~which aids wound regeneration
[283,374,375]. Following the failure of electrospinning
from an aqueous solution of CECS and SF, PVA was
chosen as the additive for the binary polymers to pro-
duce electrospun nanofibrous mat due to its fibre-
forming (increasing viscosity and surface tension),
biocompatibility and chemical stability attributes
[376].

Findings suggest that increasing the SF content in
this binary system from 0 to 8% reduced the average
fibre diameter of binary nanofibres from 643 to
126 nm, resulting in a narrower distribution. As a
result, wound treatment and skin regeneration
materials can be generated with the new electrospun
matrices.

PHA

PHA-gelatine
PHAs are divided into two groups: short chain length
(SCL) PHAs, which have 3-5 carbon atoms in their
monomeric unit, that are generally stiff, crystalline
polymers, and medium chain length (MCL) PHAs,
which have 6-14 carbon atoms in their monomeric
unit, and are generally elastomeric with a bigger amor-
phous phase composition [377]. PHAs have a broad
range of monomeric compositions, resulting in a
family of materials with controllable physical proper-
ties and degradation rates [378,379]. Poly-3-hydroxy-
butyrate (PHB) is a biopolymer generated from PHA
that is hydrophobic, biodegradable, and biocompati-
ble [379]. These polymers have triggered both long-
term and short-term inflammatory reactions. It was
discovered that PHAs are required for the engineering
of biological tissues and a variety of biomedical appli-
cations [380,381]. PHAs with the appropriate
improvements offer a great deal of potential to
advance tissue engineering, and the development of
tissue products for medicinal and therapeutic pur-
poses, such as (1) vascular grafts, (2) heart valves,
and (3) nerve tissue engineering [382-393]. PHA has
been used alone [394-397] or in combination with
other natural and synthetic polymers [398], such as
silk, CS, gelatine, PV A, polyglycerol, polyvinylidene
fluoride (PVF) and PCL [399-405], to improve mech-
anical strength and flexibility for tissue regeneration
applications like skin, cartilage, tendon, ligament,
and bone, among others. In addition, gelatine can pro-
vide a suitable environment for cell adhesion, develop-
ment, and proliferation. Gelatine nanofibres can have
a safe and functional structure for tissue engineering
due to their biological origin and non-immunogeni-
city [406].

Sanhueza et al. [164] created scaffolds using PHB
microfibres and gelatine nanofibres to produce a

more biomimetic architecture for skin regeneration
in diabetic wounds, that more closely resembles the
properties of the natural ECM. The PHB-microfibre
network strengthened and promoted the cross-linking
of gelatine nanofibres, which prevented the scaffold
from contracting. The generated dual-size gelatine-
PHB binary fibre scaffold was biocompatible, encour-
aged fibroblast attachment, and skin regeneration
effectively, with the added benefits of ease of handling
and no risk of skin contraction. Gelatine-PHB blend
scaffolds also exhibited a significant increase in
wound healing rate and overall closure, development
of hypodermis, and higher content in hair follicles
and sweat glands when compared to non-treated
wounds. Ultimately, it is hoped that the gelatine-
PHB scaffold proves to be a promising vehicle for
more extensive tissue engineering constructs that
involve the transport of bioactive constituents with
varied polarity to improve skin wound healing.

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-
gelatine
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P
(3HB-co-4HB)) copolymer is composed of 3HB and
4HB monomers, both of which are found in human
metabolites [407]. The biodegradation rate of this
copolymer can be controlled by manipulating the
4HB monomer composition. As a result, it is widely
used for nanofibre production (electrospinning) and
wound healing applications [408]. Although the P
(3HB-co-4HB) polymer has outstanding therapeutic
benefits, its hydrophobicity prevents it from being
used extensively since it does not induce cell adhesion,
resulting in ineffective cell colonisation [409]. The
polymers are combined with other natural polymers,
such as gelatine to provide hydrophilicity, which
improves the biological performance of P(3HB-co-
4HB) scaffolds. Gelatine is used in the encapsulation
of several pharmacological products due to its
micro/nanoparticles [410]. Moreover, oral gelatine
consumption can also help with bone and joint health
[411].

Researchers are looking at using gelatine as a matrix
for 3D cell culture and as a material for tissue-engin-
eering scaffolds [412]. However, temperature reversi-
bility [413] of gelatine will limit its applications,
such as wound healing treatments where gels must
be stable for a specific amount of time before dissol-
ving [414]. To alleviate this challenge and stabilise
the gelatine gels, chemical or enzymatic cross-linking
is recommended [415]. The study of gelatine-P(3HB-
co-4HB) by Azuraini et al. [165] proves that binary
polymer scaffolds achieved good biocompatibility
properties, implying that the scaffolds produced can
support cell growth and proliferation [165,406,416].
These scaffolds are also significantly more hydrophilic
than pure P(3HB-co-4HB) copolymer.



PHA-PCL
Innovations in the biosynthesis of natural PHA poly-
esters are raising the interest in the creation of biore-
sorbable and highly biocompatible biomaterials with
substantial potential in healthcare [417-419]. As a
result, the biocompatibility of neat poly(3-hydroxyoct-
tanoate) (P(3HO)) has been demonstrated to be as
good as collagen in terms of cell viability, prolifer-
ation, and adhesion of neonatal ventricular rat myo-
cytes [420]. A wide range of mechanical properties
are provided by a large diversity of PHA monomer
units, ranging from rigid and strong biomaterials to
very soft and elastomeric materials [381]. MCL
PHAs and their copolymers have been notably used
to generate healthcare-related materials for appli-
cations in cardiac engineering [420] and peripheral
nerve engineering [421-424] as a result of their low
crystallinity, low glass transition temperature, low ten-
sile strength, and high elongation to break. PHA and
blends have been widely explored to tailor their prop-
erties to various therapeutic uses, although PHA com-
bined with synthetic origin polymers is rare
[422,425,426]. In terms of clinical outcomes, none of
the commonly available hollow bioresorbable nerve
guidance conduits (NGCs) has yet successfully outper-
formed an autologous nerve transplant [166]. To
address this issue, semicrystalline PCL [427-429]
may be combined with a new family of aliphatic poly-
esters, such as naturally derived PHAs [430,431].
Mendibil and colleagues [166] created a biomimetic
NGC by combining natural MCL-PHA poly(3-hydro-
xyoctanoate-co-3-hydroxydecanoate) (P(3HO-3HD))
with synthetic PCL. According to the findings, P
(3HO-3HD)-PCL at a composition of 75:25 appeared
as a potential blend useful in the fabrication of hollow
NGC s, capable of supporting peripheral nerve regen-
eration. This system demonstrated a favourable poros-
ity/permeability relationship, providing enhanced
nerve regeneration, while maintaining sufficient stiff-
ness, and a low biodegradation rate to support the
nerve throughout the regeneration process.

PCL

PCL-PGS

PCL is compatible with a wide range of polymers with
great processibility and high thermal stability which
enables ease of melt processing [432,433]. PCL’s ease
of forming polymer blends make it a desirable material
to be used as a supporting device, especially for tissue
engineering [434-436]. It is a hydrophobic polymer,
and its mechanical characteristics are vastly different
from those of healthy tissue. Pure PCL fibres would
be undesirable for cornea tissue engineering appli-
cation. Moreover, poly(glycerol sebacate) (PGS) was
established in the last decade as a promising soft tissue
engineering scaffold material [437-439]. In
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biocompatibility investigations, the hydrophilic PGS
demonstrated a surprising cellular response when
compared to other polyesters such as PLGA [440,441].

PGS-PCL scaffolds were studied by Salehi et al.
[167] for cornea tissue engineering applications. A
polymer binary system of PGS-PCL is thought to be
the most promising. It is reasonable to assume that
when a crystalline polymer (PCL) is blended with an
amorphous polymer (PGS), the blend ratio affects
mechanical properties. The crystallinity of the blend
fibres diminish as the PGS content rises. While pure
PCL nanofibres had a crystallinity of 57%, the crystal-
linity of the blend fibres was as low as 17% [167]. The
elastic modulus of the fibres decreased as the PGS-
PCL mix ratio increased, which corresponded to the
decreasing crystallinity. Nano-mechanical character-
istics investigated, and nano-indentation
research revealed that surface modulus increases
with increasing PGS concentration (contrary to elastic
modulus), with the 4:1 blend fibre having the highest
surface modulus [167]. Furthermore, the surface
moduli were approximately two orders of magnitude
greater than the relevant elastic moduli. The fibre-
forming PCL is anticipated to be driven into restricted
and cross-linked domains near the fibre surface with a
rise in PGS content, resulting in the reported dimen-
sion and behaviour of the surface moduli.

were

PCL-collagen

The distinct properties of collagen fibres, as well as
their extensive occurrence and relatively easy accessi-
bility, continue to gain the attention of biomedical
researchers from numerous fields [442-444]. Poly-
meric electrospun fibres are currently being used for
the differentiation of numerous cell types such as
fibroblasts, osteoblasts, chondrocytes, and endothelial
cells due to their unique physical features [445-448].
However, cell growth and tissue formation were typi-
cally limited to the surfaces of electrospun substrates
[449-454]. Synthetic polymers (PCL) can be functio-
nalised with natural polymers (collagen) using a var-
iety of methods, such as simple blending or
particular surface modification [455-460].

For instance, Ekaputra et al. [169] developed a
scaffold mesh consisting of PCL-collagen binary poly-
mer system for vascularisation applications. This strat-
egy allows the loading and release of angiogenic
growth factors, such as vascular endothelial growth
factor (VEGF) and platelet derived growth factor
(PDGF) in an electrospun tissue engineering construct
that allowed for the recapitulation of primitive endo-
thelial plexus throughout its structure, demonstrating
its potential as a totally vascularised 3D scaffold. When
compared to PCL fibres alone, meshes constructed of
sub-micron sized PCL-collagen fibres have previously
shown better adhesion, proliferation and osteogenic
potential of bone marrow derived MSC [461].
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Furthermore, PCL possesses adequate mechanical
characteristics to perform as a tracheal substitute
and a slow rate of biodegradation in vivo, which can
help overcome drawbacks such as postoperative tra-
cheal softening, and re-stenosis that are associated
with rapid deterioration [462-466]. Integrating
scaffold materials to manufacture a tracheal construct
could be beneficial since one material can offer mech-
anical integrity, while the other could provide a bio-
compatible and chondrogenic environment for cells,
resulting in a biomimetic design.

Regrettably, the hydrophobicity and lack of porosity
of PCL limit its use in tracheal cartilage formation. On
the other hand, collagen is a major component of car-
tilage tissue, it is particularly hydrophilic, and so has
the potential to mitigate for PCL’s restrictions in com-
posite materials in terms of cell detachment, prolifer-
ation, and chondrogenesis [467,468]. She et al. [168]
demonstrated that by using a 3D-printed PCL frame-
work and embedded collagen, a biomimetic tracheal
scaffold with a differentiated structure can match
both the anatomy and mechanical features of the native
trachea [469]. As a result, the PCL scaffold demon-
strated reduced cell affinity than the collagen scaffold,
which had greater cell affinity [470]. These findings
revealed that by using a binary polymer system of
PCL and collagen, the differences between the two
scaffolds can be exploited to mimic the mechanical
properties of the original trachea, while also
promoting biomimetic anatomy creation with cartilage
rings alternated with PCL ring’s structure. Experiments
showed that this polymer blend combination can be
used to repair a long-segment tracheal fracture [168].

PEG/PEO

PEG/PEO-PLGA
PEG, also known as PEQ, is a versatile, thermoplastic,
and crystalline polymer with the general formula (-O-
CH,-CH,-), [471]. PEG polymers typically have mol-
ecular weights less than 20,000 gmol ', whereas PEO
polymers have higher molecular weights [472]. Studies
have shown that PEG/PEO is soluble in water, ethanol,
acetonitrile, benzene, and dichloromethane, but inso-
luble in diethyl aether and hexane [472]. Moreover,
PEO is a non-toxic polymer that is colourless, odour-
less, and resistant to heat and hydrolysis. It also works
as an inert substance to many chemical reagents. PEO
is a promising option for biomedical applications, par-
ticularly as scaffolds in tissue engineering [473] and
biocompatible coatings [474-476], due to its biocom-
patibility and non-immunogenicity, as well as fasci-
nating physicochemical characteristics. PEO can be
integrated with other polymers to improve its proper-
ties as a potential biomaterial [477].

Evrova et al. [170] introduced a new method for
tuning the physical and mechanical properties of

electrospun PLGA fibrous scaffolds, one of the most
thoroughly investigated polymers for synthetic
scaffold fabrication, without modifying the PLGA
polymer chemically [478,479]. When compared to
the PLGA-only scaffold, adding PEO to the PLGA
scaffolds influenced the mechanical and physical
properties of the scaffolds by enhancing strain at
break (%) and decreasing Young’s modulus and ten-
sile stress [170]. The increase in strain at break (%)
was proportional to the concentration of PEOQ,
which operated as a plasticiser, as previously demon-
strated in combination with other polymers [480-
482]. Myoblast attachment, proliferation, myoblast
fusion and myotube production were all improved
using a polymer binary system of PLGA:PEO [170].

PEG/PEO-PHBV
PEO is widely utilised in the biomedical area, par-
ticularly in blood-contacting devices, due to its
non-immunogenicity and ability to minimise surface
protein adsorption [483]. Additionally, it is consider-
ably easier to obtain PEO nanofibres than other poly-
mers such as CS and gelatine, due to its superior
solubility, which allows it to dissolve not only in
water but also in a variety of organic solvents. Poly
(3-hydroxybutyrate-co-3-hydroxyvalerate)  (PHBV)
has strong oxygen permeability and mechanical
properties, and the final degradation product is
(R)-3-hydroxybutyric acid, which is a naturally
occurring component of human blood [484-486].
As a result, PHBV has been widely researched as a
biomaterial for a broad variety of applications,
including sutures [487], prosthetic devices [488],
drug delivery systems [489], and surgical clips
[490]. In the case of artificial skin scaffolds, it should
be able to serve as a barrier to shield the wound from
infection and fluid loss [491,492] while enabling oxy-
gen to pass through [493] and provide a moist
environment to stimulate fibroblast activity during
the healing process [494]. Due to its high crystalli-
nity, brittle nature, and low hydrophilicity, PHBV
has been limited in skin tissue engineering appli-
cations. Hence, binary polymer systems of PHBV
with other polymers, such as PEO, is critical for
improving the drawbacks of PHBV [495-497].
According to Xu and colleagues [171], PHBV-
PEO electrospun mats have encouraging mechanical
properties for cellular morphogenesis in skin tissue
engineering. Furthermore, as the PEO concentration
increases, the crystallinity of PHBV-PEO electrospun
mats decreases. As a result of blending with a PEO
component, all studied PHBV-PEO electrospun
mats exhibited desirable and enhanced properties,
alleviating PHBV shortcomings (i.e. high crystalli-
nity, low flexibility, brittle nature, and hydrophobi-
city) [171].



PEG/PEO-PLA

PLA has undergone extensive research to improve its
characteristics in order to compete with flexible com-
modity polymers. Combining PLA with different poly-
mers, altering PLA with plasticisers, and blending PLA
with inorganic nano-fillers are all examples of these
approaches. PEG is a promising plasticising agent
for PLA, as it increases elongation at break by a signifi-
cant amount [498-503].

An investigation by Banerjee et al. [172] exploited
imaging to evaluate the effect of active targeting with
a small-molecule prostate-specific membrane antigen
(PSMA)-targeting moiety bonded to a PLA-PEG
nanoparticle in vivo. Surface functionalisation of
PLA-PEG particles with a urea-based PSMA-targeting
moiety resulted in a considerable, positive influence
on PSMA tumour association, as well as EPR. Particles
were linked to tumour epithelium and macrophages.
These findings demonstrate that imaging of radio-
labelled particles can be used to determine the biodis-
tribution and tumour accumulation of therapeutic
targeted particles, with similar size and surface proper-
ties, in patients. This technique can therefore be used
to select patients that are most likely to respond to
treatment. PLA-PEG blend particles incorporated
with dispersed docetaxel (DTX) can potentially target
the PMSA via surface expression of a low molecular
weight targeting ligand that binds to PMSA with a
high affinity [504,505].

PLGA

PLGA-PLA
PLA production necessitates the deployment of cata-
lysts under strict temperature, pressure, and pH con-
trol, as well as extensive polymerisation durations,
all of which result in substantial energy usage [506].
Many approaches have been developed to improve
its properties, such as physical blending to generate
biodegradable materials with various morphologies
and physical properties [507]. The combination of lac-
tic acid and glycolic acid produces PLGA, a copolymer
derivative of PLA. Due to their characteristics, they
have been widely explored in sustainable drug delivery
methods [508]. The lactic acid-glycolic acid content
ratio can be adjusted to fine-tune polymeric properties
such as degradation rate and Tg [42,479,509].
Polymeric nanoparticles have the ability to alleviate
the multi-drug resistance that characterises many
anticancer drugs through a mechanism of drug intern-
alisation [510], lowering drug efllux from cells
mediated by the P-glycoprotein [511,512]. Musumeci
et al. [173] investigated the feasibility of using nano-
sphere colloidal suspensions as sustained release sys-
tems for intravenous administration DTX which
enhanced drug solubility. The solvent displacement
method was used to create nanospheres from PLA
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with varying molecular weights and PLGA as biode-
gradable matrices. This study revealed that the drug
was unable to disperse into the external medium
through the rigid glassy polymer matrix. As a result,
the greater drug release reported in the in vitro assay
was attributable to the structural degradation of poly-
mer. The faster interaction of DTX with DPPC lipo-
somes was attributed to the maximum amount of
DTX adsorbed on the nanosphere surface, allowing
it to be released quickly, as well as the fast degradation
of PLA R203 polymer in comparison to PLA R207 due
to its low molecular weight. In summary, the results
showed that biodegradable polymeric colloidal sys-
tems composed of PLA and/or PLGA can entrap
DTX and provide sustained drug release.

PLGA-hyaluronic acid

PLGA particles have several benefits in biomedical
applications: they can be targeted in vivo with anti-
bodies, and they achieve improved immune response
when modified with targeting ligands [42,479,513].
However, problems such as limited drug loading
efficiency, challenges regulating encapsulated drug
release rates, and/or formulation instability are pre-
venting PLGA from being used more extensively in
pharmaceutical products [479,514-518]. Polymer-
based scaffolds incorporating diverse biochemical
variables have been reported in order to promote dia-
betic wound healing [519-524]. Not only should an
ideal scaffold be biocompatible and bioactive, but it
should also facilitate the challenging healing process.
To facilitate cell proliferation, they should also be
structurally and dimensionally similar to the natural
ECM.

To satisty these needs, Shin and researchers [174]
created hyaluronic acid-PLGA core/shell fibre
matrices loaded with epigallocatechin-3-O-gallate
(EGCG) (hyaluronic acid/PLGA-E) and tested their
healing properties in diabetic rats with full-thickness
wounds. The results imply that controlled diffusion
with PLGA degradation released the hyaluronic acid
and EGCG from the matrices in a sustainable manner
[174]. Furthermore, an animal investigation showed
that the in vivo full-thickness wound healing rate
was dramatically accelerated in both normal and
STZ-diabetic rats. The finding suggests that the binary
system of hyaluronic acid/PLGA-E core/shell fibre
matrices are advantageous for diabetic full-thickness
wound repair and could be viable candidates for
novel scaffolds.

PVA

PVA-PHBH

PVA is derived from the hydrolysis of polyvinyl acet-
ate (PVAc) [525-527] with beneficial properties as sta-
ted in Section ‘Cellulose-PVA’. PHB has a high
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crystallinity of 55-80%, a melting point of 180°C, with
stiff, rigid, and brittle properties, as well as mechanical
characteristics, all of which are serious limitations in
most common applications [528]. Copolymerisation
of additional monomer units into the main chains,
such as 3-hydroxyvalerate (3HV), 3-hydroxyhexano-
ate (3HH), and 4-hydroxybutyrate (4HB), consider-
ably increases homopolymer behaviour
[400,529,530]. Although both polymers have attractive
characteristics, PVA has poor toughness and processa-
bility. Blending polymer is one method for combining
properties in each polymer material to improve
characteristics, material performance, and enhance
polymer limitations [531,532].

Rebia et al. [175] carried out a study to evaluate the
potential of PHBH-PVA biodegradable binary poly-
mer blend nanofibres as a suitable wound dressing.
According to the findings, PHBH-PVA blend nanofi-
bres were immiscible in the crystalline phase, but com-
patible in the amorphous state due to the presence of a
hydrogen interaction between them. As a result, the
combination of PHBH and PVA had an influence on
the morphological change in response to water. The
disintegration rate, cell adhesion, and proliferation
were all influenced by the surface properties of the
binary polymer nanofibre.

PVA-PGS

PGS has emerged as a promising polymer for tissue
engineering applications, particularly in soft tissue
applications, such as cardiac [533], nerve [534],
blood vessel [535] and cornea tissue engineering
[167], due to its elastomeric, mechanical, and biocom-
patible characteristics. Furthermore, PGS has the
advantage of being biodegradable with tuneable prop-
erties that become beneficial enzymatically and hydro-
Iytically without any adverse effects from degradation
products. Although PGS offers a range of attractive
properties, its processability is limited. To cross-link
PGS into an insoluble matrix, the polymer must be
thermally cured at high temperatures (commonly
>110°C) and under vacuum [536]. These factors
make it challenging to obtain consistent geometries,
limiting the polymer’s application in precision-inte-
grated cells or temperature-sensitive components
[440,537-541].

To address this drawback, polymer blends can be
formed which are soluble in the similar solvents with
the PGS pre-polymer and have a melting temperature
higher than the cross-linking temperature [542]. PVA,
which satisfies these characteristics and has been
adapted to electrospin PGS, is a potential polymer
candidate for forming a blend solution with PGS
pre-polymer [543,544]. The Young’s modulus of
PGS was determined to be 0.21+0.02MPa in a
study by Gultekinoglu et al. [34] and the maximum
elongation at break was calculated to be 67 £4.6%.

PGS can be exploited in soft tissue applications, such
as skin, muscle, and ligament tissue engineering.
Thus, PGS polymers were generated into fibrous
scaffolds for potential soft tissue applications. The
resulting fibre structure is 3D, allowing cells to enter
the scaffold. Researchers have thereby resolved the
processability concerns of PGS polymer, a bio-elasto-
mer with significant potential in tissue engineering
applications.

PVA-starch

Starch is a glucose-based natural polymer that is
widely available, and it is biodegradable and biocom-
patible [545]. It partially dissolves in water and can
be physically or chemically manipulated. Due to low
physicochemical characteristics, such as moisture
retention, gel fraction, and water vapour transition
rate, polysaccharides cannot be exploited alone
[546]. As a result, water-soluble starch can be coupled
with synthetic polymers, such as PVA, to generate
good mechanical characteristics and form stable
hydrogels [547].

Altaf et al. [176] produced an antimicrobial wound
dressing with PVA and starch, integrated with essen-
tial oils (clove oil, tea tree oil, and oregano oil), that
have been cross-linked with glutaraldehyde. The
results suggest that the produced binary hydrogels
have the ability to deliver a moist environment by
decreasing moisture transmission from the wound
bed [176]. Increasing the oil concentration enables
pores to form and the oil becomes immiscible. FT-
IR spectra revealed that PVA-starch blends are ade-
quately cross-linked with essential oils giving amine,
hydroxyl, and aether groups, proving the semi-crystal-
line nature of the membranes made.

PVP

PVP-PVA

PVP, also referred to as polyvidone or povidone [548],
is a synthetic polymer composed of linear 1-vinyl-2-
pyrrolidone groups. A poly-N-vinylamide structure
is included in this polymer, which has a carbon
chain with an amide group in the side substituent.
PVP has a unique combination of physicochemical
properties [549,550], including biocompatibility, thin
film forming ability [551], adhesiveness [552], pH
stability [549], temperature resistance [553], cross-
linking [554], and good complex formation capacity
[555]. Moreover, its affinity for complex, both hydro-
phobic and hydrophilic substances, has made it ben-
eficial as a biomaterial in a variety of substantial
medical applications, such as pharmaceutical industry
and medicine [556]. PVP is also a common hydrophi-
lization agent used in water purification and dialysis
membranes [557,558], as well as for physically stabilis-
ing suspensions [559]. One of the most well-studied



hydrogels for as a potential prosthetic articular carti-
lage is PVA [560-562]. PVA hydrogel can be easily
processed and manipulated to have a fluid content
(65-80%) similar to that of articular cartilage [563].
The 3D network structure of PVA has pores compar-
able to the native cartilage [564,565] and generates low
frictional behaviour [566-568].

Despite the fact that PVP and PVA have many ben-
eficial qualities, PVA is a crystalline polymer, and its
strong crystallinity inhibits gas penetration in the
polymer matrix due to lower diffusivity, especially in
the dry condition. Based on preliminary research by
Lilleby Helberg and co-workers [569], it was discov-
ered that blending PVA with a less crystalline poly-
mer, such as PVP, can enhance permeability, as well
as benefiting from the PVA’s mechanical strength,
increasing the polymer matrix’s capacity to retain
water and keep carriers in membranes.

Hydrogels with a PVA-PVP blend have been
extensively studied as a cartilage replacement material
[570,571]. Inter-chain hydrogen bonding between
PVA hydroxyl groups and PVP carbonyl groups
enhanced polymer network stability when moderate
amounts of PVP (0.5-5%) molecules were added to
PVA [571]. By adjusting a set of parameters such as
polymer concentration [572], freeze-thawing cycles
[573], thawing rate [574], PVA molecular weight
[575], and degree of polymerisation [564], the mech-
anical properties of PVA-PVP hydrogels can be pre-
dicted to imitate the mechanical properties of
articular cartilage. In an investigation by Kanca et al.
[177] PVA-PVP hydrogels produced low coefficients
of friction (COF) against articular cartilage and did
not harm the articulating cartilage counterface, mak-
ing them appealing as cartilage imitating materials.

PVP-gelatine
PVP has long been known for its amorphous form,
ease of solubility in organic solvents and ability to
interact with hydrophilic materials [576]. It has been
used in a variety of pharmaceutical applications,
including wound dressings, blood plasma compres-
sors, drug coating materials, nanofibre membranes/
mats, oral/injectable solutions and disinfectants
[555]. The pore-forming ability of PVP offers
additional porosity to the scaffold [577]. As an effec-
tive therapeutic strategy to imitate various com-
ponents of natural bone ECM, combining gelatine
and PVP can prove to be a desirable biomaterial that
can supply the essential environment for cell develop-
ment and differentiation. Gelatine exhibits efficient
absorbency, non-immunogenicity [578], in vitro bio-
compatibility [579], and thus its ability in the synthesis
of scaffolds for bone tissue engineering is being inves-
tigated extensively.

The polymer blend of gelatine-PVP composite
scaffolds for bone tissue engineering was investigated
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by Mishra and colleagues [178]. The study reveals
that the scaffold has appropriate physicochemical
properties. When stimulated with osteogenic medium,
enhanced matrix mineralisation was further demon-
strated by alizarin red staining and EDX examination
of apatite depositions over the scaffold. These findings
show that the gelatine-PVP biomimetic binary poly-
mer scaffold, with intrinsic proliferative and osteo-
genic potential, as well as osteoinductive capability,
is suitable for use as a bone graft substitute material.

PVP-PCL

PCL dissolving mechanisms have been investigated to
develop alternative solutions to overcome its hydro-
phobicity [580]. The impact of parameters including
molecular weight, morphology and chemical compo-
sition has been researched, as well as the impact of
polymer crystallinity reduction on an accelerated
degradation rate [581]. Blending strategies have also
been frequently employed to alter the physical and
chemical properties of PCL. A polymer binary system
of hydrophobic PCL with a hydrophilic polymer is
expected to promote water diffusion to the proximities
of PCL chains, speeding up their hydrolytic degra-
dation [582-585].

Tissue engineering and regenerative medicine have
recently used synthetic biopolymers such as PCL
[586,587] and PVP [588,589] to build substitute tis-
sues for human bodies. PVP can be used as a sacrificial
material because of its ability to integrate with a wide
range of hydrophilic and hydrophobic materials [590].
As a result, the integration of PCL with a biocompati-
ble water-soluble polymer such as PVP will indeed sig-
nificantly enhance the composite scaffold’s mechanical
characteristics that can result in scaffolds with custo-
misable fibre surface structure and degradation rates
[591,592].

In a study by Li et al. [179], the PCL-PVP binary
polymer scaffolds were printed in order to determine
the presence of PCL and PVP in the printed composite
scaffold. Microscale PVL-PVP composite 3D scaffolds
with good cell compatibility, as well as high cell den-
sity, were created to assist tissue development and pro-
liferation [179]. The innovative E-Jet 3D printing
process shows that printing composite synthetic bio-
polymers for tissue engineering is a viable option.

Concluding remarks and future
perspectives

Polymer blends incorporating more than one polymer
can be produced and alloyed with different additives,
in order to optimise them. This has been helped by
the ability to process these blends into various mor-
phologies. For example, the development of micro-
to-nano-metre scale polymeric fibres with limitless
potential in biomedical applications such as tissue
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engineering, wound dressings and microbial filtration
has helped to drive the demand for polymer blends, in
particular binary polymer systems as illustrated in this
review. Spinning techniques such as electrospinning,
centrifugal spinning, and pressurised gyration have
shown significant advantages for the exploitation of
polymer blends, especially binary polymer systems.
Properties such as fibre size, distribution, and mor-
phology can be tailored using different spinning par-
ameters to suit applications. Each technique and
polymer binary system will have its drawbacks; the
future, however, may be an integration of binary poly-
mer systems that will allow their desired outcome to
be achieved successfully will be exploited, and we fore-
cast extension of the idea to ternary polymer systems
and beyond too.
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