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Abstract

Stabiliser operations and state preparations are efficiently simulable by classical comput-

ers. Stabiliser circuits play a key role in quantum error correction and fault-tolerance,

and can be promoted to universal quantum computation by the addition of "magic" re-

source states or non-Clifford gates. It is believed that classically simulating stabiliser

circuits supplemented by magic must incur a performance overhead scaling exponen-

tially with the amount of magic. Early simulation methods were limited to circuits with

very few Clifford gates, but the need to simulate larger quantum circuits has motivated

the development of new methods with reduced overhead. A common theme is that algo-

rithm performance can often be linked to quantifiers of computational resource known as

magic monotones. Previous methods have typically been restricted to specific types of

circuit, such as unitary or gadgetised circuits. In this thesis we develop a framework for

quantifying the resourcefulness of general qubit quantum circuits, and present improved

classical simulation methods. We first introduce a family of magic state monotones that

reveal a previously unknown formal connection between stabiliser rank and quasiproba-

bility methods. We extend this family by presenting channel monotones that measure the

magic of general qubit quantum operations. Next, we introduce a suite of classical algo-

rithms for simulating quantum circuits, which improve on and extend previous methods.

Each classical simulator has performance quantified by a related resource measure. We

extend the stabiliser rank simulation method to admit mixed states and noisy operations,

and refine a previously known sparsification method to yield improved performance. We

present a generalisation of quasiprobability sampling techniques with significantly re-

duced exponential scaling. Finally, we evaluate the simulation cost per use for practically

relevant quantum operations, and illustrate how to use our framework to realistically es-

timate resource costs for particular ideal or noisy quantum circuit instances.





Impact statement

For several years global technology companies such as Google and IBM, as well as a

number of specialised quantum computing start-ups, have been engaged in serious ef-

forts toward building working quantum computers. The long-term goal is to develop

devices capable of carrying out useful computations to solve real-world problems that

are intractable for classical (meaning conventional) computers. Prospective applications

include materials and chemistry simulations, drug discovery, machine learning and opti-

misation. In the academic community, much work has been devoted to the development

of quantum algorithms, and to the theory of quantum error correction and fault tolerance,

which will be vital if scalable quantum computation is ever to become a reality. The

question of whether and to what extent quantum circuits can be tractably simulated using

classical computers is of central importance to research programmes both within and out-

side academia. Related to this is the question of what quantum resources are necessary

to provide a quantum speedup.

This thesis is largely concerned with the quantum resource known as "magic". This

resource was previously known to be necessary for universal quantum computation, dif-

ficult to simulate classically, and costly to manufacture experimentally in fault-tolerant

constructions. Quantum circuits using this resource are set in contrast to stabiliser or

Clifford circuits, which can be efficiently simulated on classical computers. The results

presented in this thesis contribute to the resource theory of magic by presenting new

well-behaved measures of magic for general multi-qubit states and operations, and for-

malising the link between magic resources and hardness of classical simulation. We

present a family of classical simulation algorithms that extend the class of circuits that

can be efficiently simulated, and improve simulator performance in the general case. We

anticipate this having application, for example, in numerical studies of error correction

and magic state distillation protocols. The results of this work have been disseminated
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to the academic community through articles published in the Proceedings of the Royal

Society A [1] and Physical Review X Quantum [2], and via talks and poster presentations

at a number of international quantum computation and quantum information conferences

and workshops.

Beyond academia, we expect our work to have impact in the ongoing efforts to

build prototype quantum computing devices and develop applications for them. The

field is now entering the so-called Noisy Intermediate-Scale Quantum (NISQ) era, where

devices comprising tens to hundreds of qubits are being constructed and tested. We an-

ticipate that it will become increasingly important to benchmark and verify these devices

against classical simulators. The algorithms presented in this thesis are ideally suited

to simulating quantum circuits with a wide range of models. By using our methods re-

searchers could potentially reduce the computing time needed to produce numerical data,

and access classical simulation results for larger circuit instances with greater depths than

would be possible otherwise.
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Statement of contribution

Part I of the thesis, comprising Chapters 1-3, largely reviews prior art. In Section 1.3

we give criteria for completely stabiliser-preserving operations, and in Section 2.3 and

Appendix C.1 we briefly discuss Choi state robustness and its failure as a well-behaved

measure of magic. Similar material previously appeared in the author’s MRes thesis, and

in our paper Ref. [1]. We include the material in this thesis not as novel work, but as

necessary background to novel results presented in Part II. Some of the discussion on

sparsification in Section 3.4 and Appendix E.1 was adapted from our paper Ref. [2].

In Part II, Chapters 4-6, we present our novel contribution. Most of the results in

Section 4.1 first appeared in Ref. [2], which was joint work with Bartosz Regula, Hakop

Pashayan, Yingkai Ouyang, and Earl Campbell. The present author’s main contributions

to that work were in developing the classical simulation algorithms, sparsification results,

and associated proofs appearing in Section VII and Appendices C-H of Ref. [2], with in-

put from Hakop Pashayan and Earl Campbell. These simulators and results are discussed

in detail in Section 5.2 and Appendices E.2 and F of this thesis. Our co-authors were the

principal originators of the magic state monotone results presented in Section 4.1, but we

include them as they are closely connected to the classical algorithms just mentioned, and

to the novel channel monotones defined by the present author (Section 4.2). The more

general form of the monotone equality lemma (Lemma 4.13) is new to this thesis.

The results relating directly to channel robustness (Section 4.2.2) and its formulation

as a linear program (Appendix D.1), diagonal channels (Section 4.4), the stabiliser-Kraus

teleportation scheme (Section 5.1), the static channel simulator (Section 5.3.1), the nu-

merical results in Section 6.1, and the simple example in Appendix B.1 first appeared in

Ref. [1], co-authored with Earl Campbell. There we also defined and proved properties

of the magic capacity with respect to robustness of magic (Section 4.3.1), and proposed

the associated dynamic simulator (Section 5.3.5). The generalisation of magic capacity
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to other magic state monotones presented in Section 4.3 is new to this thesis and is the

author’s own work. In Section 6.1 we include numerical results adapted from our Ref.

[1]. A suggestion by an anonymous reviewer of Ref. [2] resulted in the refinement to the

stabiliser-Kraus subroutine that we call the polar scheme.

The rest of the novel material presented in Part II is the author’s own work and has

not been published elsewhere at the time of submission.
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Chapter 1

Quantum computation and the

stabiliser formalism

Computers can be modelled as devices that take input data, perform a set of instructions

we call an algorithm and return output data [4]. The circuit model of classical compu-

tation is a strictly less general one, but arguably more instructive. In this model logic

circuits [5] are finite-sized constructions that can be used to compute Boolean functions

f : {0,1}n→ {0,1}m. In a given circuit instance, the input is encoded as an n-bit binary

number, the output is some other m-bit string, and the algorithm is implemented via a fi-

nite sequence of elementary logic gates such as AND, OR, NOT and CNOT (controlled-

NOT), which perform Boolean operations on a subset of bits. Gates are connected by

“wires” which pass the output from one gate to the input of another. This is not a univer-

sal model for classical computation, in the sense of the famous Turing machine model [6,

7] since while logic circuits always halt for any inputs, Turing machines do not. Never-

theless, it has been shown that any function that can be computed by a Turing machine,

can be computed by some circuit family [4]. Crucially, this kind of classical logic can be

realised reliably by physical components such as transistors, enabling their exploitation

in the conventional computers ubiquitous today.

Since logical gates must be implemented by physical components, logical data takes

up physical space, and any logical operation takes place in some finite time. An important

consideration in algorithm design is therefore the amount of memory or space a given al-

gorithm requires, in terms of number of data and work bits, and the number of logical

gates that must be carried out in sequence, which translates to the algorithm runtime.

Classical complexity theory is the branch of computer science concerned with funda-



26 Chapter 1. Quantum computation and the stabiliser formalism

mental limits on time and space requirements for different families of computational task

[8]. Computational tasks are often formulated as decision problems, where a problem

instance is specified by an input bit string of length n, and the task of the computer is to

decide whether the output of the algorithm should be “YES” or “NO”, or equivalently,

whether the output bit should be 0 or 1. Problems are sorted into complexity classes

by studying their space and time costs with respect to some computational model, and

how they scale with problem size, as quantified by the length of the input string. For

example, a problem is in P if it can be decided in time polynomial in n by a determin-

istic Turing machine (i.e. one which always gives the same output for a given input),

whereas PSPACE is the class of problems that can be solved using a polynomial amount

of memory.

Other complexity classes are concerned with how easily the solution to a problem

can be checked. A problem is in NP if for every “YES” instance, it is possible for a

deterministic Turing machine to check that a solution is valid in polynomial time. A

famous open question in complexity theory is whether P is equal to NP. It is clear that

P⊆ NP [9]. In the other direction, it is widely conjectured that NP * P, though this has

never been proven definitively. The archetypal illustration of this is the problem of prime

factorisation. There is no known classical algorithm that is able to factor arbitrary n-bit

integers into primes in poly(n) time, but it is straightforward to check a given factorisation

simply by computing the product of the given factors. Therefore the problem is in NP

but is not known to be in P [4].

Many other practically important problems are not known to have an efficient classi-

cal algorithm. Of particular interest for this thesis is the problem of simulating quantum

systems, which has wide application in many areas of fundamental and applied science

and industry [10, 11]. Simulating quantum systems is hard in general, since the amount of

information needed to describe the wave function grows exponentially with the number

of physical particles [11]. In the early 1980s Feynman [12] and Manin [13] independently

hit on the idea that rather than simulating a quantum system with a conventional com-

puter, which is in essence a physical system that evolves classically, it would be more

natural if the simulator itself evolved quantum mechanically at the logical level. This

proposition eventually led to the field of quantum computation [4]. The model of quan-

tum computation we focus on in this thesis is the circuit model. This model is analogous
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to the logic circuit in classical computation; quantum bits, or qubits, replace classical bits

as the fundamental unit of information, and reversible logic gates are replaced by unitary

operations. Other models include measurement-based [14, 15] and continuous variable

[16] quantum computation. Constructing a quantum computer represents a major engi-

neering challenge, and it is only in recent years that serious efforts toward building one

have got underway. It has recently been suggested that we are now entering the era of

Noisy Intermediate-Scale Quantum (NISQ) technologies, and can expect to see devices

comprising 50 to several hundred noisy qubits appearing over the next few years [17].

There is a widespread expectation that quantum computers will at some point out-

strip the ability of classical computers to simulate them, and there is a body of work

dedicated toward achieving this milestone [18–21]. Quantum complexity theory [22] in-

troduces new complexity classes based on quantum models of computation. BQP, which

stands for bounded-error quantum polynomial time, is the class of problems solvable

with a quantum computer in polynomial time, allowing a bounded probability error. This

is the analogue of a classical complexity class called BPP, comprising problems that can

be solved classically with bounded probability of error. BQP can be shown to contain

BPP, which in turn contains P, and it is hoped that there exist problems in the gap be-

tween BQP and BPP, as this is where the potential for quantum advantage exists. Various

candidate problems have been proposed for which an efficient quantum algorithm exists,

but for which there is no known classical algorithm [4, 23]. Bravyi, Gosset and Koenig

showed that the 2D Hidden Linear Function problem requires logarithmic depth circuits

in the classical case, but can be solved in constant depth by a quantum computer [24].

The search for unconditional quantum advantage in scenarios where the classical circuit

size grows superpolynomially remains an active field of research.

Meanwhile, a number of techniques have been developed for classically simulat-

ing restricted classes of quantum circuit [25–29]. The Gottesman-Knill theorem was an

important early result that tells us that there is a large subclass of circuits, called sta-

biliser circuits, that can be efficiently simulated classically [25, 30, 31]. The stabiliser

circuits are usually taken to be generated by Clifford gates and measurements of Pauli

observables, supplemented by classical randomness and adaptivity. In order to achieve

universal quantum computation (and thereby quantum speedup), it is necessary to add

another ingredient, and the standard choice is the single-qubit unitary operation known
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as the T -gate. It turns out that in many error correction schemes for scalable quantum

computation, the stabiliser circuits can be implemented fault-tolerantly, but T -gates can-

not [32, 33]. The usual solution is to “inject” a resource state known as a magic state; by

consuming the magic state, a stabiliser circuit can in effect be promoted to an implemen-

tation of the T -gate [34, 35]. The catch is that in order to avoid introducing uncorrectable

noise into the computation, these magic states must be prepared to extremely high fidelity

through magic state distillation protocols, introducing a significant operational overhead

every time a T -gate is required in the circuit [33–44]. While the term magic state is often

used to mean the specific resource states used in fault-tolerant quantum computation, in

this thesis we adopt a broader definition. We simply say that a state is a magic state if it is

not a stabiliser state. Similarly, an operation is termed magic if it can convert a stabiliser

state to a magic state. We make precise the definitions of stabiliser states and operations

later in this chapter.

Non-stabiliser circuits can in principle be classically simulated inefficiently by ex-

tending the Gottesman-Knill framework [31], with a simulation overhead that is expected

to grow exponentially with the amount of magic resource used by the circuit. In this the-

sis, we are primarily motivated by the intermediate regime of noisy “near-Clifford” cir-

cuits, where the magic resource involved is modest enough that simulation may at least

be practical within a reasonable timeframe, given a powerful enough classical computer

[45]. One of the main aims of the thesis is to make precise what is meant by magic

resource, so that we can rigorously quantify the resource cost of a given quantum oper-

ation. Identifying the required resource for a given quantum channel is of interest both

from the point of view of classical simulation, and with respect to the implementation of

prototype fault-tolerant devices where magic state resource must be consumed in order

to complete a sequence of operations. The former application is our focus in this thesis.

There are two main strands to the novel results presented in later chapters:

1. The development of a framework for meaningfully quantifying magic as a resource,

including understanding the resourcefulness of general non-stabiliser operations on

n-qubit systems. This forms the topic of Chapter 4.

2. The design and improvement of classical simulation algorithms for emulating gen-

eral quantum circuits on qubits, based on extensions of stabiliser simulation tech-
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niques. Our improved algorithms are presented in Chapter 5, where we also prove

results relating to their performance.

In Chapter 6, we draw on the formal results of Chapters 4 and 5 to numerically

estimate classical simulation costs for sequences of gates relevant to practical quantum

algorithms suitable for implementation on near-term devices. We conclude in Chapter 7.

Before turning to this novel work, in the rest of this chapter we introduce fundamental

concepts, tools and notation that will be important throughout the thesis, including the

representation and classical simulation of stabiliser states and operations. We will see

how the stabiliser formalism stands in relation to universal quantum computation and

the theory of fault tolerance. We discuss the idea that “non-stabiliserness” or magic

is a resource for quantum advantage; classical simulation of non-stabiliser circuits is

thought to require computational resources that grow exponentially with the “amount” of

magic. We close the chapter by reviewing how quantum resource theories can be used to

formalise what is meant by the “amount” of some resource. In Chapters 2 and 3 we will

review the prior state of the art in the theory of magic resources and methods for their

classical simulation.

1.1 Preliminaries
In this section we briefly review some important basic concepts and notation. We follow

treatments given in standard texts on quantum computation and quantum information,

such as Refs. [4, 30, 46], and the interested reader can find more comprehensive intro-

ductions to these topics therein.

1.1.1 Definitions and notation

For vectors in a finite dimensional Hilbert space H, we use ‖·‖ to denote the usual 2-

norm, i.e. ‖ψ‖= ‖|ψ〉‖=
√

∑ j
∣∣c j
∣∣2, for |ψ〉= ∑ j c j | j〉 decomposed in some orthonor-

mal basis | j〉. We will also make use of the following family of operator norms.

Definition 1.1 (Schatten p-norms). For operator A, the Schatten p-norm for positive

integer p is defined

‖A‖p =

(
∑
k
(sk(A))p

) 1
p

, (1.1)

where sk(A) are the singular values of A.
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The Schatten norms are unitarily invariant, ‖UAV‖p = ‖A‖p for any unitary opera-

tors U and V . The Schatten 1-norm will be particularly important in later chapters. This

is also known as the trace norm and can be equivalently defined,

‖A‖1 = Tr[|A|] = ∑
k

sk(A), where |A|=
√

A†A (1.2)

We will encounter many convex sets. Given a space V, a linear combination of

points a′ = ∑ j p ja j, a j ∈ V, is called a convex combination if ∑ j p j = 1 and p j ≥ 0, ∀ j.

A set C ⊆ V is convex if any convex combination of points in C is also an element of C.

For a generic subset S⊆V, we can obtain a convex set by taking the convex hull conv(S),

defined as the set of all convex combinations of points in S,

conv(S) =

{
a : a = ∑

j
p js j, ∑

j
p j = 1, p j ≥ 0, s j ∈ S, ∀ j

}
. (1.3)

Later in this thesis we will describe algorithms using pseudocode. For the most part

the notation used is standard, but for the avoidance of doubt, the notation a← b means

“update variable a to the value b”. For example a← a+1 should be read as “increment

a by 1”.

1.1.2 The Pauli group

Throughout this thesis we will use the standard convention of representing pure single-

qubit states as C2 vectors, expressed in the computational basis:

|0〉=

1

0

 , |1〉=
0

1

 , (1.4)

where |0〉 and |1〉 are respectively the +1 and -1 eigenstates of the Pauli Z operator. In

this basis the single-qubit Pauli operators are represented:

σ0 = 1=

1 0

0 1

 , σ1 = X =

0 1

1 0

 , (1.5)

σ2 = Y =

0 −i

i 0

 , σ3 = Z =

1 0

0 −1

 . (1.6)
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These operators are self-inverse (σ2
j = 1), Hermitian (σ†

j = σ j), and are traceless except

for the identity (Tr
(
σ j
)
= 2δ j,0). We denote the eigenstates of X and Y as |±〉 and |±i〉

respectively:

|±〉= |0〉± |1〉√
2

=
1√
2

 1

±1

 , |±i〉=
|0〉± i |1〉√

2
=

1√
2

 1

±i

 . (1.7)

We will shortly define stabiliser states formally, but for now we simply note that the pure

single-qubit stabiliser states are precisely the six Pauli eigenstates just described. Distinct

non-identity Pauli operators anticommute and compose as

XY = iZ, Y Z = iX , ZX = iY. (1.8)

It follows that the single-qubit Pauli operators with phase ±1 or ±i form a group,

P1 = 〈i1,Z,X〉. Generalised Pauli matrices can be defined as n-fold tensor products of

elements from P1. We use a subscript to indicate which qubit a single-qubit Pauli acts

on non-trivially; for example, for a 4-qubit system, Z3 = 1⊗1⊗Z⊗1. We will use the

notation 1n to denote the identity operator for an n-qubit Hilbert space, represented by

the 2n×2n identity matrix. Let Pn be the group of all n-qubit Pauli matrices, let Pn± be

the subset of Pauli operators with real phase, and let Pn+ be the unsigned Pauli operators.

Each P ∈ Pn± inherits the standard properties from the single-qubit case. Namely, they

are self-inverse and Hermitian, and traceless unless equal to the identity, TrP = 2nδP,1n .

Since ZX = iY , we can represent any P ∈ Pn± in the form,

P = (−1)a0Ta, Ta = (−i)z·x
n

∏
k=1

Zzk
k Xxk

k , (1.9)

where a0 ∈ 0,1, and a = (z,x) is an element of the 2n-dimensional linear vector space

F2n
2 . Note that the factor (−i)z·x ensures that any imaginary phase arising from a product

of Z and X operators on the same qubit is cancelled.

Given a pair of unsigned Pauli operators, Ta,Tb ∈ Pn+ we can check whether they

commute as follows. Let P = P1⊗ . . .⊗Pn and Q = Q1⊗ . . .⊗Qn, and let Na be the

number of indices such that {Pj,Q j} = 0. If Na is even, P and Q commute; if odd, they
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anticommute. This can be expressed in terms of the symplectic inner product,

〈a,b〉= ax ·bz⊕az ·bx, (1.10)

where ⊕ indicates that addition is modulo 2. This is consistent with the definition of

the symplectic inner product in higher dimensions, as in F2, addition and subtraction are

equivalent. So, two Pauli operators commute if and only if 〈a,b〉= 0,

TaTb = (−1)〈a,b〉TbTa. (1.11)

Using the relation (1.9), and observing that we acquire a factor of (−1) for every place

a Zk operator must be commuted past an Xk operator, it is straightforward to check that

signed Pauli operators P = (−1)a0Ta and Q = (−1)b0Tb compose as

PQ = (−1)(a0+b0)TaTb = (−1)(a0+b0)i(za·xb−xa·zb)Ta+b. (1.12)

Note that the expression (za · xb− xa · zb) is computed modulo 4, so differs from the

symplectic inner product. However when [P,Q] = 0, the expression evaluates to either 0

or 2, so the product of commuting P and Q remains Hermitian.

1.1.3 Single-qubit rotations

Next we review some basic properties of single-qubit systems. The unsigned Pauli matri-

ces form a real basis for the space of Hermitian operators on C2. In particular, the density

operator for any single-qubit state can be written,

ρ =
1+a ·σ

2
(1.13)

where a is a real-valued three-dimensional vector, called a Bloch vector, and σ is the

vector of non-trivial Pauli matrices. The operator a ·σ has eigenvalues ±‖a‖ where ‖·‖
is the usual Euclidean norm. The positivity of ρ imposes ‖a‖ ≤ 1, while the purity

condition Tr
[
ρ2] = 1 is equivalent to ‖a‖ = 1. This leads to the Bloch sphere picture

(Figure 1.1), where pure states are represented as unit vectors on the unit sphere, while

mixed states are represented as vectors in the interior of the unit ball. The axes x̂, ŷ

and ẑ are associated with the Pauli operators X , Y and Z respectively, while an arbitrary
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Figure 1.1: The Bloch sphere picture for single-qubit states. As an example, the green vector
represents the Hadamard eigenstate |H〉 = (|0〉+ |+〉)/

√
2, which has Bloch vector

a = [1/
√

2,0,1/
√

2]T . Image produced using the QuTIP package [47].

axis defined by the unit vector â is associated with the operator â ·σ . Pure states can

alternatively be parameterised as |ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉, up to a global

phase, where θ and φ are respectively the polar and azimuthal angle on the Bloch sphere.

Reversible operations on qubits are represented by elements of the unitary group

U(2). Since global phase can be ignored, the restriction to SU(2) is sufficient to represent

any physical unitary operation. Elements in SU(2) can be parameterised

U(α,β ,γ) =

eiβ cos(α) −e−iγ sin(α)

eiγ sin(α) e−iβ cos(α)

 . (1.14)

The isomorphism from SU(2) to SO(3) means that any reversible single-qubit operation

can be represented by a 3-dimensional rotation matrix R in the Bloch sphere. This trans-

forms vectors a in the Bloch sphere as a′=Ra. Up to overall phase, any unitary operation

can be parameterised as Ur̂(θ) = exp(−iθ(r̂ ·σ)/2) for some angle θ and unit vector r̂.

For example, a rotation about the ẑ-axis can be represented

Uẑ(θ) =

e
−iθ

2 0

0 e
iθ
2

 or Rẑ(θ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (1.15)
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Any rotation Râ(θ) can be generated by a sequence of rotations about a pair of orthogonal

axes b̂ and ĉ, such that we have:

Râ(θ) = Rb̂(θ3)Rĉ(θ2)Rb̂(θ1) ←→ Uâ(θ) =Ub̂(θ3)Uĉ(θ2)Ub̂(θ1) (1.16)

for some triple of angles (θ1,θ2,θ3). This covers most of the machinery we will need for

single-qubit unitary evolution, but before moving onto more general quantum operations,

it is worth introducing several important single-qubit gates.

1.1.3.1 Single-qubit Clifford gates

The Clifford gates are the unitary operators that map Pauli operators to Pauli operators.

We will discuss these in detail later, here we give some important examples for the single-

qubit case. The SO(3) matrices for Cliffords are signed permutation matrices. Pauli

operators are themselves Clifford operators, and can be represented as π-rotations about

the relevant axis (up to a phase), e.g. Z ∝ Uẑ(π). Their SO(3) matrices are diagonal,

flipping the sign of the elements corresponding to the other two Pauli operators:

RX =


1 0 0

0 −1 0

0 0 −1

 , RY =


−1 0 0

0 1 0

0 0 −1

 , RZ =


−1 0 0

0 −1 0

0 0 1

 . (1.17)

This is equivalent to swapping basis states, and indeed the X gate is sometimes called the

NOT or bit-flip gate, X |0〉= |1〉 and X |1〉= |0〉.

The Hadamard gate exchanges the Z and X operators, and flips the sign of Y . It can

be represented as a π-rotation about the axis ĥ = (x̂+ ẑ)/
√

2.

H =
1√
2

1 1

1 −1

= iUĥ(π), RH =


0 0 1

0 −1 0

1 0 0

 . (1.18)

The phase gate S, sometimes referred to as P or
√

Z in the literature, is a rotation
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through π/2 about the Z-axis:

S =

1 0

0 i

= e
iπ
2 Uẑ

(
π

2

)
, RS =


0 1 0

−1 0 0

0 0 1

 . (1.19)

All single-qubit Clifford gates, of which there are 24, can be generated by composition

of the Hadamard and phase gates [30].

1.1.3.2 Non-Clifford gates

Another gate that we will discuss many times in the course of this thesis is the T -gate,

which we will see has an important role in fault-tolerant quantum computation. This is

represented by a rotation through π/4 about the ẑ-axis, though it is sometimes called the

π/8-gate in the literature due to the phase factors appearing on the diagonal in the SU(2)

representation.

T =

1 0

0 e
iπ
4

= e
iπ
8

e−
iπ
8 0

0 e
iπ
8

 , RT =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 . (1.20)

1.1.4 Representing quantum operations

While unitary operations are central in the circuit model of quantum computation, non-

unitary processes will be of particular interest in this thesis. These include adaptive maps,

where operations are conditioned on the outcome of previous measurements, and noise

channels. The former are often a vital component in architectures for quantum computa-

tion, while the latter can be a serious obstacle. Noise channels are usually understood as

resulting from global unitary dynamics that induce an uncontrolled interaction between

the system combined with its environment; ignorance of the environment manifests as

non-unitary dynamics in the system of interest. Modelling such channels is vitally im-

portant in the theories of error correction and mitigation [30, 48, 49].

Quantum operations are represented by linear maps from an input space H1 to an

output space H2. We will typically assume the input and output space have the same

dimension. The most general maps that are physically meaningful in the sense that they

map physical states to physical states, up to normalisation, are the completely positive
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(CP) maps. These are the maps T that preserve the positivity of operators, even when

extended to a larger system: T ⊗1(A)≥ 0 for all A≥ 0. The CP maps E that also preserve

normalisation are called completely positive trace-preserving (CPTP) maps; these satisfy

Tr(E(A))=Tr(A), ∀A. Throughout this thesis we will refer to quantum channels, and this

should be taken to mean CPTP maps, unless otherwise specified. However, non-trace-

preserving CP maps can have a meaningful operational interpretation. For example, we

will sometimes want to consider maps corresponding to post-selection on a particular

measurement outcome. We now review several representations for quantum operations.

1.1.4.1 Kraus representation

Any quantum channel E on a system S can be modelled as resulting from unitary dy-

namics U a larger system SE [46, 50], where the environment E can, without loss of

generality, be assumed to be initialised in some pure state |ψ0〉. To obtain the action of

this process on the state of system S alone, we trace out the environment E.

E(ρ) = TrE [U(ρS⊗|ψ0〉〈ψ0|E)U†] (1.21)

= ∑
j
〈 j|E U |ψ0〉E ρS 〈ψ0|E U | j〉E = ∑

j
K jρK†

j . (1.22)

Here {| j〉} is any orthonormal basis for the spaceHE . In the last line, K j = 〈 j|E U |ψ0〉E
is called a Kraus operator, and (1.22) is called a Kraus representation or operator-sum

representation of the channel. The representation is in general non-unique because we

can choose any orthonormal basis for the partial trace. If we assume the channel is trace-

preserving, then for any operator A we have

Tr[E(A)] = Tr

[
∑

j
K jAK†

j

]
= Tr

[
∑

j
K†

j K jA

]
= Tr[A] (1.23)

where we used linearity and cyclicity of the trace. But Tr
[
∑ j K†

j K jA
]
= Tr[A] holds for

arbitrary A if and only if ∑ j K†
j K j = 1. In fact, given any set of operators {K j} j, we

can be sure that E(·) = ∑ j K j(·)K†
j represents a valid quantum channel provided that the

operators satisfy the completeness relation,

∑
j

K†
j K j = 1. (1.24)
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It can be shown that any map satisfying this relation is completely positive, hermiticity-

preserving and trace-preserving [46]. We can also model quantum operations that are

trace non-increasing by changing the equality in the completeness relation (1.24) to an

operator inequality,

∑
j

K†
j K j ≤ 1. (1.25)

Maps represented by Kraus operators satisying (1.25) remain linear, completely positive

and Hermiticity-preserving. At this point it is useful to define the dual of a map [46],

sometimes called the adjoint map.

Definition 1.2 (Dual map). Given a linear map T , the dual map T ∗ is the map that

satisfies, for arbitrary operators A and B,

Tr[AT ∗(B)] = Tr[T (A)B]. (1.26)

The dual map can easily be obtained from the Kraus representation. By cyclicity

of the trace, Tr
[
∑ j K jAK†

j B
]
= Tr

[
A∑ j K†

j BK j

]
. So, we can write T ∗(·) = ∑ j K†

j (·)K j.

Note that it follows that the map T is trace-preserving if and only if the dual map satisfies

T ∗(1) = 1.

1.1.4.2 The Choi-Jamiolkowski isomorphism

The Choi-Jamiolkowski isomorphism [51–53] reveals a duality between states and chan-

nels that will be of central importance in this thesis. Let B(H) be the space of bounded

linear operators on Hilbert space H. Then the isomorphism is encapsulated in the fol-

lowing theorem, where we follow the conventions used in Ref. [46].

Theorem 1.3 (Choi-Jamiolkowski isomorphism [51, 52]). Suppose T is a linear map

from B(HB) to B(HA). Let dB = dim(HB). Then there exists a unique operator ΦT ∈
B(HA⊗HB) such that

ΦT = (T ⊗1)(|Φ〉〈Φ|B|B′), Tr[PT (Q)] = dB Tr
[
ΦT P⊗QT ] (1.27)

for any P ∈ B(HA) and Q ∈ B(HB), where

|Φ〉B|B′ = 1√
dB

dB−1

∑
j=0
| j〉B⊗| j〉B′ , (1.28)
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and {| j〉} is an orthonormal basis for HA, and the transpose in (1.27) is taken with

respect to this basis. The map T and matrix ΦT have the following equivalences:

1. Trace-preservation: T ∗(1) = 1 ⇐⇒ TrA(ΦT ) = 1/d .

2. Unitality: T (1) = 1 ⇐⇒ TrB(ΦT ) = 1/d.

3. Complete positivity: T is CP ⇐⇒ ΦT ≥ 0.

4. Hermiticity: T (A†) = (T (A))† ⇐⇒ Φ
†
T = ΦT .

5. Normalisation: Tr[ΦT ] = Tr(T ∗(1))/d.

It follows that ΦT is a valid density operator if and only if T is a CPTP map. In this case

we call ΦE the Choi state for the channel.

For n-qubit systems, we take {| j〉} j to be the computational basis. We will usually

consider channels E from an n-qubit space to an n-qubit space, so that the Choi state ΦE

is a 2n-qubit density operator. We will use the convention of labelling subsystems with

superscripts when necessary (see equation (1.27)), so as to avoid confusion with other

indices used in the subscript. Another useful property is as follows.

Lemma 1.4 (Tensor product Choi state). The Choi state for a tensor product of two maps

T1⊗T2 is a tensor product of the respective Choi states for each map,

ΦT1⊗T2 = ΦT1⊗ΦT2. (1.29)

This follows from the fact that the maximally entangled state for a 2n-qubit system

can be re-expressed as an n-fold tensor product of two-qubit Bell pairs. Let Bk label the

k-th qubit in the partition B. We use |Φn〉 to denote a 2n-qubit maximally entangled state,

|Φn〉B|B
′
=

1
2n/2

2n−1

∑
j=0
| j〉B | j〉B′ (1.30)

=
1

2n/2

1

∑
j1=0

. . .
1

∑
jn=0
| j1〉B1 . . . | jn〉Bn | j1〉B

′
1 . . . | jn〉B

′
n (1.31)

=
n⊗

k=1

(
|0〉Bk |0〉B′k + |1〉Bk |1〉B′k√

2

)
=

n⊗
k=1

|Φ1〉Bk|B′k . (1.32)
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This implies that for the 2n-qubit state |Φn〉B|B
′
, for any 1 ≤ m < n, we can write B =

CD as a partitioning into an m-qubit subsystem C and (n−m)-qubit subsystem D, and

similarly for B′ and then write |Φn〉CD|C′D′ = |Φm〉C|C
′ ⊗ |Φn−m〉D|D

′
. Lemma 1.4 then

follows.

1.1.5 Stabiliser states and the Clifford group

The stabiliser states will be central to this thesis. These are the set of states that can be

efficiently represented, and therefore simulated, within the Gottesman-Knill framework

[25, 31]. They are also central to the theory of quantum error correction [30]. The details

of the stabiliser formalism can be found in standard texts on quantum computation [4,

30]. For the majority of this thesis, we will focus on the stabiliser formalism as defined

for systems of n qubits, i.e. for systems with Hilbert space of dimension 2n, and we will

introduce this setting first. The stabiliser formalism is also defined for systems of qudits,

with odd local dimension d, but we defer discussion of this to Chapter 2. For qubits,

stabiliser groups are defined in relation to the Pauli group.

Definition 1.5 (Stabiliser group). Any abelian subgroup S of the Pauli group Pn such

that −1n /∈ S is called a stabiliser group, or a stabiliser.

Note that n-qubit stabiliser groups cannot contain Paulis with imaginary phase, as

these would generate −1n. Recall that any signed Pauli operator P ∈ Pn± can be rep-

resented P = (−1)a0Ta, for a0 ∈ {0,1} and a ∈ F2n
2 , so we can specify any element of

a stabiliser group with a string of 2n + 1 classical bits, and a stabiliser group with k

independent generators can be fully specified by k(2n+1) bits.

We say that a state |ψ〉 is stabilised by a stabiliser group S if S |ψ〉 = |ψ〉 for all

S ∈ S [30]. A stabiliser group with m independent generators will have 2m elements

in total. As we add each independent generator to the stabiliser, in effect we halve the

dimension of the subspace stabilised by the group. When m < n for an n-qubit system,

this subspace is non-trivial, having dimension 2n−m. In the context of quantum error

correction, the elements of such subspaces form the codewords in stabiliser codes [30,

48]. For the purposes of this thesis, we are instead interested in stabilisers S with m = n

independent generators. In this case, there is a unique state |φ〉 that is stabilised by S. It

is these states that we call stabiliser states. We can therefore specify a stabiliser state by

giving an n-element generating set.
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Figure 1.2: The single-qubit stabiliser polytope embedded within the Bloch sphere.

We can now justify our earlier claim that there are just six pure single-qubit stabiliser

states, and that these are the eigenstates of the Pauli operators. The computational basis

states |0〉 and |1〉 are stabilised by the subgroups {1,Z} and {1,−Z}, respectively. Simi-

larly {1,±X} stabilises |±〉 and {1,±Y} stabilises |±i〉. There are no other possibilities

for non-trivial stabiliser groups, since distinct single-qubit Pauli operators anticommute.

In the Bloch sphere picture, the six pure stabiliser states form the vertices of an octahe-

dron (Figure 1.2). Points on the facets or within the interior of the octahedron represent

probabilistic mixtures of stabiliser states, and we call these mixed stabiliser states. This

octahedron is the n = 1 instance of a (4n−1)-dimensional object called the n-qubit sta-

biliser polytope, which is the convex hull of the pure n-qubit stabiliser states,

STABn = conv({|φ〉〈φ | : |φ〉 ∈ STABn}). (1.33)

The structure becomes much richer for multiple qubits, as it includes both tensor

products and superpositions of the single-qubit states, and we must now specify n gen-

erators to uniquely determine a state. For example, the state |0〉⊗ |0〉 is stabilised by the

group with generators 1⊗Z and Z⊗1.

〈1⊗Z,Z⊗1〉= {1⊗1,1⊗Z,Z⊗1,Z⊗Z} (1.34)

The Bell states are also stabiliser states:
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• The Bell states |Φ±〉= (|00〉± |11〉)/
√

2 are stabilised by 〈Z⊗Z,±X⊗X〉;

• The Bell states |Ψ±〉= (|01〉± |10〉)/
√

2 are stabilised by 〈−Z⊗Z,±X⊗X〉.

Another set of operators fundamental to the study of the stabiliser formalism is the

set of Clifford gates. These unitary operations preserve stabiliser structure.

Definition 1.6 (Clifford group). The n-qubit Clifford group Cln is the normaliser of the

Pauli group Pn in the unitary group. That is,

Cln =
{

U ∈U(2n) : UPU† ∈ Pn, ∀P ∈ Pn

}
. (1.35)

Equivalently, the Clifford gates are those that map stabiliser states to stabiliser states.

One can show that the Clifford group can be generated by the gate set

G = {H,S,CNOT}, (1.36)

comprising the single-qubit Hadamard H and phase S gates already defined, supple-

mented by two-qubit CNOT (controlled-NOT) gates. The list of gates on the right-hand

side of equation (1.36) should be understood as shorthand for {H1, . . . ,Hn} where H j is

the Hadamard on the j-th qubit, and similarly for the S and CNOT gates. The H and S

gates transform single-qubit Pauli operators as

HXH† = Z, HY H† =−Y, HZH† = X , (1.37)

SXS† = Y, SY S† =−X , SZS† = Z. (1.38)

Note that the transformation of Y can always be inferred from that of X and Z, from the

relation ZX = iY . Let C j→k denote the CNOT controlled on qubit j and targeted on qubit

k. For two qubits, in block form we have

C1→2 =

1 0

0 X

 . (1.39)
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More generally we define the CNOT by its action on Z and X operators.

C j→kZ jC
†
j→k = Z j, C j→kZkC

†
j→k = Z jZk (1.40)

C j→kX jC
†
j→k = X jXk C j→kXkC

†
j→k = Xk. (1.41)

We will see later how these update rules lead to efficient simulation of Clifford circuits

[25]. The gate set G generates a group that preserves the Pauli group, since

• if UPU† ∈ Pn and V PV † ∈ Pn and for all P ∈ Pn, then UV P(UV )† ∈ Pn, so we

have closure.

• H2 =CNOT 2 = S4 = 1, so the identity and inverses can be found in the generated

set.

For brevity, we have not proved that the set G = {H,S,CNOT} generates the whole

Clifford group, but the interested reader can find a proof in Appendix A.1.

1.1.5.1 Operator representation

Consider the n-qubit state |φ〉 stabilised by the group S with independent generating set

{g1,g2, . . . ,gn}, i.e. g j |φ〉 = |φ〉 for all j. Notice that the operator Π j = (1n + g j)/2 is

the projection onto the +1 eigenspace of the Pauli operator g j, and we have Π j |φ〉=
∣∣φ j
〉
.

Suppose we construct the product of all n projectors Π j:

ΠG =
n

∏
j=1

1n +g j

2
=

1
2n ∑

x
gx1

1 gx2
2 . . .g

xn
n , (1.42)

where the summation on the right-hand side is over all length-n bit strings x =

(x1, . . . ,xn). This summation is obtained by enumerating over all possible multiples of g j

and g0
j = 1n. Now, notice that any element of the stabiliser S∈S must have some decom-

position as a product of generators S = g j1g j2 . . .g jm for some number m. But recalling

that a stabiliser group is always abelian, we are free to reorder this product so that we

can always write S = gy1
1 gy2

2 . . .g
yn
n , where y is a list of integers of length n. Furthermore,

since any Pauli operator is self-inverse, for any generator g we have gk = gk mod 2, so that

without loss of generality we can assume that y is a binary string. But the right-hand

side of equation (1.42) enumerates over all possible such binary strings, therefore it is a

summation over all elements of the stabiliser, ΠG = 2−n
∑S∈S S.
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We can now check some properties of ΠG. First, note that since all Pauli operators

except the identity are traceless , we have,

Tr[ΠG] = 2−n
∑
S

Tr[S] = 2−n
∑
S

2n
δS,1n = 1 (1.43)

since exactly one element of S is the identity. Next, Π
†
G = ΠG follows from the Hermitic-

ity of S ∈ S . Finally, ΠG is positive semidefinite since it is a projector. Therefore ΠG is a

normalised density operator, and furthermore since Π2
G = ΠG, we have Tr

[
Π2

G
]
= 1. This

tells us that it represents a pure state, so there exists some |ψ〉 such that ΠG = |ψ〉〈ψ|.
But recall that S stabilises the state |φ〉. Therefore | 〈φ |ψ〉 |2 = 〈φ |ΠG|φ〉 = 〈φ |φ〉 = 1.

Thus |ψ〉 = |φ〉 is the unique state stabilised by S , and we can write the corresponding

density operator as,

|φ〉〈φ |=
n

∏
j=1

1n +g j

2
=

1
2n ∑

S∈S
S (1.44)

This relation is useful in proving many results relating to stabiliser states. For example,

it is manifest from this equation that the transformation of one stabiliser state to another

by a Clifford circuit U is fully specified by the transformation of the generators,

U |φ〉〈φ |U† =
n

∏
j=1

UU† +Ug jU†

2
=

n

∏
j=1

1n +g′j
2

=
∣∣φ ′〉〈φ ′∣∣ , (1.45)

where g′j =Ug jU†, and {g′1,g′2, . . . ,g′n} generates the stabiliser of |φ ′〉=U |φ〉.

1.1.5.2 Stabiliser tableaux

We saw above that 2n+ 1 classical bits are required to specify each generator, so that

O(n2) bits are needed to specify the stabiliser group. This gives us a much more efficient

way to represent a given stabiliser state, as compared to having to write down 2n complex

amplitudes. It will be useful to represent the generators of the stabiliser in so-called

stabiliser tableau form [31]. Recalling that each Pauli operator can be specified by a

binary vector a j = (z j,x j,s j), where Pj = (−1)s j(−i)z j·x j ∏
n
k=1 Z

z j,k
k X

x j,k
k , the tableau for

an n-qubit stabiliser state is written:
zT

1 xT
1 s1

...
...

...

zT
n xT

n sn

 (1.46)
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For example, the stabiliser state |000〉 has stabiliser generated by Z1, Z2 and Z3, so has

tableaux form: 
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

. (1.47)

Similarly |001〉 has stabiliser 〈Z1,Z2,−Z3〉, so can be specified as:


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 1

. (1.48)

Note that these representations are not unique for a given state, as we have freedom in

choosing the generating set. Given any pair of independent generators g j and gk, we can

obtain a new generating set by making the substitution g j → g′j = g jgk. In the tableaux

picture this is equivalent to adding two rows modulo 2, up to some additional arithmetic

to compute the sign bit s′j in the last column.

1.1.5.3 Affine space representation

We next introduce one more representation of stabiliser states, due to Dehaene and De

Moor, that will be instrumental in proving some of our results in Chapter 4.

Theorem 1.7 (Affine space representation of stabiliser states [54, 55]). We can write any

pure n-qubit stabiliser state in the form:

|K,q,d〉= 1
|K|1/2 ∑

x∈K
id

T x(−1)q(x) |x〉 , (1.49)

where x ∈ Fn
2 is a binary vector, K ⊆ Fn

2 is an affine space, d is some fixed binary vector,

and q(x) is a quadratic form,

q(x) = xT Qx+λ
T x, (1.50)

where Q is a binary, strictly upper triangular matrix, and λ is a vector. Conversely, any

state written in this form must be a stabiliser state.

An affine space K is obtained by adding some constant shift vector h to all elements

of a linear subspace L ⊆ Fn
2. For example, suppose we take the n = 2 linear subspace
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L =
{
(0,0)T ,(0,1)T}. Then we can get a new affine space by adding modulo 2 some

shift vector, eg. h = (1,1)T , giving us K = L+h =
{
(1,0)T ,(1,1)T}. Now suppose we

set the following parameters:

Q =

0 1

0 0

 , λ =

0

1

 , d =

0

1

 . (1.51)

These are all valid choices according to Theorem 1.7, so they fully specify a stabiliser

state:

|K,q,d〉= 1√
2

(
i0(−1)0⊕0 |10〉+ i1(−1)1⊕1 |11〉

)
(1.52)

=
1√
2
(|10〉+ i |11〉) = |1〉⊗ |+i〉 , (1.53)

which in this case happens to be a tensor product of single-qubit stabiliser states.

1.1.6 Types of classical simulation

We will shortly discuss a famous result called the Gottesman-Knill theorem[25, 31],

which establishes that stabiliser circuits can be efficiently classically simulated. Before

doing so it is worth reflecting on what it means to classically simulate a quantum cir-

cuit. In this thesis, we primarily deal with the following circuit-based model of quantum

computation: (1) a system of n qubits is initialised in a standard state |φ0〉; (2) the sys-

tem undergoes a sequence of quantum operations, which can be mediated by a classical

control computer, and can be represented by a quantum channel E ; (3) some subset of w

qubits are measured in the computational basis and the resulting binary string is relayed

back to the classical device. The quantum computer can therefore be viewed as a de-

vice that draws a string x randomly from a distribution p(x), which we call the quantum

output distribution, and which is determined by the Born rule:

p(x) = Tr[(|x〉〈x|⊗1n−w)E(|φ0〉〈φ0|)]. (1.54)

So, a quantum computer does not in general have the ability to exactly compute any

given Born rule probability p(x), or indeed compute a general expectation value 〈A〉
for some observable A, in any single run of the circuit. If we cannot expect this of a

quantum computer, we should not require it from a classical simulation algorithm. In this
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sense, a classical simulator that has the ability to efficiently draw a bit string x from p(x)

would have the same power as the quantum computer. This is sometimes called weak

simulation in the literature [56], and is thought to be efficient only for restricted classes

of circuit, otherwise super-polynomial quantum advantage would be an impossibility.

Weak simulation can either be exact or approximate. For this type of simulation to be

meaningful, the classical distribution should be quantifiably close to the quantum output

distribution. In this thesis we use the `1-norm, and we say that two distributions p1 and

p2 are δ -close if

‖p1− p2‖1 = ∑
x
|p1(x)− p2(x)| ≤ δ . (1.55)

On the other hand, certain classical algorithms do have the ability to compute or

estimate Born rule probabilities or other expectation values when the quantum device is

suitably restricted. This is often called strong simulation [56]. For example, as we shall

see shortly, given a pure stabiliser state |φ〉 and Clifford operation U , it is possible to

efficiently compute both Pr(x) = | 〈x|U |φ〉 |2 and 〈φ |U†PU |φ〉 exactly, where |x〉 is any

computational basis state, and P is any Pauli operator [25, 31]. In other cases estima-

tion of observable expectation values is possible inefficiently and/or approximately. This

thesis will consider two types of approximation error for direct expectation value estima-

tion. We define these here for Born rule probability estimation, but we will use analogous

definitions for more general expectation values. Given a projector Π, quantum channel

E , and initial state ρ , we say that a random variable P̂ output from a classical algorithm

has additive error δ > 0, where usually δ � 1, if it satisfies

|P̂−Tr[ΠE(ρ)]| ≤ δ . (1.56)

We say we can estimate up to multiplicative error ε > 0 if the variable satisfies

(1− ε)Tr[ΠE(ρ)]≤ P̂≤ (1+ ε)Tr[ΠE(ρ)]. (1.57)

We will usually consider classical algorithms where the additive error δ or multiplicative

error ε can be made arbitrarily small subject to additional runtime overhead. Note that

when Born rule probabilities can be computed exactly or up to multiplicative error, we

can construct a bit-string sampling simulator by computing a chain of conditional proba-
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bilities and sampling the string x one bit at a time. We discuss how this is done in more

detail in later chapters. To prevent ambiguity, we will usually avoid the terms weak and

strong in this thesis, preferring instead to distinguish between expectation value estima-

tion and simulated sampling from the output distribution, and we will be precise about

whether a given method is exact or approximate, and which type of error is assumed.

1.2 The Gottesman-Knill theorem
There are multiple routes to proving the Gottesman-Knill theorem, the key result that

establishes the efficiency of classical simulation of stabiliser circuits. We will work in

the stabiliser tableau picture.

Theorem 1.8 (Gottesman-Knill Theorem [25]). Suppose that a quantum circuit involves

at most n qubits and can be described as a sequence of m operations from the following

list: (i) computational basis state preparations; (ii) the generators of the Clifford group:

H, S, CNOT ; (iii) measurement of Pauli observables; (iv) efficient classical processing.

Then the circuit can be simulated by a classical computer in poly(n,m) time and space.

Before proving the theorem, we first make concrete what is meant by efficient clas-

sical processing. Any quantum computing device must be interfaced with via a classical

control computer, which sends instructions to the quantum hardware telling it which

physical operation to perform at each step. We make the following restrictions on the

computational power of this classical device. We assume a classical register of size

poly(n,m). The classical register can store results of any Pauli measurements carried

out by the quantum device, and the register can be used to decide which instructions to

send to the quantum processor at any later step. This is referred to as conditioning or

adaptivity in the literature. Any kind of classical algorithm can be used to decide in-

structions, provided that it takes no more than poly(n,m) time at each step. The control

computer can therefore introduce any kind of classical randomness, provided it can do so

efficiently.

Proof. The proof will be constructive; for each operation listed in the theorem, we need

to give an efficient procedure for updating the stabiliser tableau. Here we largely follow

an argument due to Aaronson and Gottesman [31], using a stabiliser tableau augmented

with an additional n rows that represent generators of the destabiliser. This is a subgroup
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that generates the entire Pauli group when combined with the stabiliser generators. While

the inclusion of these additional rows doubles the number of classical bits needed to store

the state during the simulation, we will see that it speeds up the subroutine for simulating

Pauli measurements from O
(
n3) time to O

(
n2). This difference can be significant when

the number of qubits is in the thousands. With destabiliser included, the tableau takes the

form, 

zT
1 xT

1 s1
...

...
...

zT
n xT

n sn

zT
n+1 xT

n+1 sn+1
...

...
...

zT
2n xT

2n s2n


. (1.58)

where the first n rows specify the stabiliser, and the last n give the destabiliser. We

assume that the state will always be represented by a single tableau, so the algorithm

requires 2n(2n+2) =O
(
n2) bits of classical memory to store the state. We will denote

z j,a to mean the a-th element of vector zi, and so on. We also assume the tableau always

starts in a standard initial form  1n×n 0 0

0 1n×n 0

. (1.59)

where 1n×n means the n× n identity matrix. Before describing the algorithm, we note

several properties of the tableau that can be checked by inspection, and that remain invari-

ant even after the updates described below: (1) all elements of the destabiliser commute;

(2) the stabiliser generator in row j anticommutes with the destabiliser generator in row

n+ j, but (3) commutes with all other destabiliser generators.

(i) Computational basis state preparations. This step is straightforward as the

stabiliser group for any n-qubit computational basis state |a〉 is comprised solely of Z-

operators, differing only in the phase on each generator:

S = 〈(−1)a1Z1, . . . ,(−1)anZn〉. (1.60)

For the |0n〉 state, the stabiliser group is generated by the single-qubit unsigned Z j op-
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Initial Final
z j x j z j x j
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

Table 1.1: Truth table for phase gate update in stabiliser tableau method [31].

erators, for j ∈ {1,2, . . . ,n}. It follows that the destabiliser comprises the n single-qubit

X j operators. The standard initial tableau (1.59) is therefore already in the correct form

to represent |0n〉. To generalise to specific computational basis states, we merely need to

set s j to the appropriate value, as per equation (1.60), so if we assume that the tableau is

always initialised in a standard state (1.59), this takes O(n) steps.

(ii) Clifford gates, H, S and CNOT . For unitary operations, we treat both stabiliser

and destabiliser generators alike, as this will ensure that combined they generate the

whole Pauli group. First consider the Hadamard, H. Recall that this gate exchanges the

X and Z operators and changes the sign of Y . So if the Hadamard acts on the j-th qubit,

in each row i we swap zi, j with xi, j. Then, the sign changes only if xi, j = zi, j = 1, so we

update si ← si⊕ xi, jzi, j. Since the entry for each of the 2n rows must be updated, this

requires O(n) steps.

Next consider the phase gate S. This gate maps X to Y , Y to −X , and leaves Z

unchanged. Suppose S acts on qubit j. Again the sign changes only if initially xi, j =

zi, j = 1, so the si is updated in the same way as for H. The truth table for this update is

shown in Table 1.1. Therefore we simply need to update z j to z j⊕ x j.

Finally consider the CNOT C j→k from qubit j to qubit k. This leaves Z j unchanged,

but exchanges Zk with Z jZk; and leaves Xk unchanged but exchanges X j with X jXk. This

immediately determines how all the X and Z entries will update, but we need to take care

of any sign changes. In fact one can check that the sign changes only in the exchange

YjYk ↔ X jZk. In terms of the tableau entries, this means that in row i, the sign changes

only when

(xi, j = zi,k = 1) AND
(
xi,k = zi, j = 0 OR xi,k = zi, j = 1

)
. (1.61)
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In arithmetic, this means we set:

si← si⊕ xi, j · zi,k · (xi,k⊕ zi, j⊕1). (1.62)

Then we can update the X and Z entries by setting zi, j ← zi, j⊕ zi,k and xi,k← xi,k⊕ xi, j.

Therefore the CNOT updates takes O(n) steps.

(iii) Pauli measurement. There are three possible scenarios when simulating mea-

surement of a Pauli observable Q given a state |φ〉 represented by stabiliser group S.

Either Q ∈ S , −Q ∈ S , or neither is in S. The first task of the simulator is to efficiently

determine which case holds. For simplicity, following Aaronson and Gottesman, we will

assume that Q = Z j for some j ∈ {1, . . . ,n} [31], but the procedure can be generalised to

any Pauli operator. Recall that S is a maximal Abelian subgroup of the Pauli group such

that−1 /∈ S . If±Q /∈ S there must exist a generator of S that anticommutes with Q; oth-

erwise we could construct a larger subgroup by adding Q to the list of generators, which

is a contradiction since S is maximal. Therefore ±Z j ∈ S if and only if all generators

commute with Z j, so we just need to check whether any row i ∈ {1, . . . ,n} has xi, j = 1,

which can be done in O(n) steps. If such an i exists then the corresponding stabiliser

generator anticommutes with Z j, so ±Z j /∈ S . Otherwise, either Z j ∈ S or −Z j ∈ S . We

will see that ±Z j ∈ S implies a deterministic measurement result, whereas if ±Z j /∈ S
the measurement outcome will be random. We deal with each case in turn.

Deterministic outcome, ±Z j ∈ S. When Z j ∈ S, then Z j |φ〉= |φ〉, so the measure-

ment outcome is always “+1”. If −Z j ∈ S then the outcome is “−1”. In each of these

cases, we do not need to update the state, we only need determine the sign of Z j in S.

This is non-trivial, as±Z j is not necessarily one of the generators encoded in the tableau,

so we cannot simply read off the sign bit from the corresponding row. Naively, one could

use Gaussian elimination to put the stabiliser generator tableau in a standard form so

that ±Z j appears in the tableau, but in practice this would take O
(
n3) steps. Instead the

destabiliser tableau can be used for a more efficient procedure [31].

We first need a subroutine to simulate group operations. Aaronson and Gottes-

man [31] defined ROWSUM(h, i) which simulates a change in generating set (but gen-

erating the same group) by replacing the generator gh represented by row h with the
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generator gigh. For the X and Z entries this simply involves making the update:

xh← xi +xh, zh← zi + zh. (1.63)

To update the entry sh representing the phase, we can use the relation (1.12), so that the

new phase will be given by,

(−1)(sh+si)i(zh·xi−xh·zi) = i(2sh+2si+zh·xi−xh·zi), (1.64)

so that

sh← sh + si +
zh ·xi−xh · zi

2
(mod2). (1.65)

This arithmetic can be evaluated in time O(n).

Let rh be the h-th row of the stabiliser tableau, representing generator gh, excluding

the sign bit, and let rZ represent ±Z j. Then since some product of generators generates

±Z j, there is some linear combination of rows that generates rZ:

n

∑
h=1

chrh = rZ, ch ∈ {0,1}. (1.66)

We need to determine which ch are non-zero, as then by using ROWSUM we can determine

the sign bit for rZ . Recall that 〈rh,ri〉= 0 if and only if the gh and gi commute, otherwise

they anticommute, and that a stabiliser generator gh anticommutes with a destabiliser

generator gi+n if and only i = h. Then, since the symplectic inner product is linear,

〈ri+n,rZ〉=
n

∑
h=1

ch〈ri+n,rh〉= ci. (1.67)

So ci = 1 if and only if Z j anticommutes with gi+n, which occurs only if xi+n, j = 1.

Therefore if we use ROWSUM to combine all stabiliser rows i such that xi+n, j = 1, then

read off the sign bit, we can determine the outcome of the measurement. This takes time

O
(
n2).

Random outcome, ±Z j /∈ S . We argued that when neither Z j nor −Z j is in the

stabiliser group, there exists some P ∈ S that anticommutes with Z j. Then we have

〈φ |Z j|φ〉= 〈φ |Z jP|φ〉=−〈φ |PZ j|φ〉=−〈φ |Z j|φ〉 , (1.68)
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where we used the fact that |φ〉 = P |φ〉, and P is Hermitian. Equation (1.68) can hold

only if 〈ψ|Z j|ψ〉 = 0, so the outcome of the measurement will be either “+1” or “-1”

with equal probability. So, once the algorithm has checked that ±Z j /∈ S , an outcome

can simply be chosen randomly by flipping a fair coin. The state should be projected

onto the ±1 eigenspace depending on the outcome of this coin toss. We will now show it

remains a stabiliser state, and we need only replace one of the generators by ±Z j, given

a suitable choice of generating set. Let Q = Z j if the outcome was “+1”, and Q = −Z j

otherwise. Let G = {g1,g2, . . . ,gn} be the generating set for S represented by the current

stabiliser tableau, and let ri be the row of the tableau corresponding to generator gi. We

first show that the tableau can efficiently be put in a form where there is a single generator

ga that anticommutes with Q, and all other generators commute. Let ra be any row of the

tableau with xa, j = 1, so that ga anticommutes with Z j. Then for all other rows rh, h 6= a,

such that xh, j = 1, use ROWSUM to update rh to represent a new generator g′h = ghga.

Then,

g′hQ = ghgaQ =−ghQga = Qghga = Qg′h, (1.69)

so g′h now commutes with Q. This must also be done for all elements of the destabiliser

to ensure consistency of the tableau. Therefore inO
(
n2) steps we obtain a tableau repre-

senting a change to generating set G′ = {g′1,g′2, . . . ,g′n} with exactly one element g′a = ga

that anticommutes with Q.

The set G′ still represents the stabiliser S, but the update to the post-measurement

state will now be very straightforward. Recall that any pure stabiliser state can be ex-

pressed as a product of the projection operators for each generator, so we can write

|φ〉〈φ |= 1
2n (1+g′a)∏

j 6=a
(1+g′j). (1.70)

Consider the projector onto the eigenspace corresponding to the measurement outcome,

ΠQ = (1+Q)/2. This commutes with all projectors (1+ g′j)/2 except (1+ g′a)/2, for

which we obtain, (
1+Q

2

)(
1+g′a

2

)(
1+Q

2

)
=

1
2
1+Q

2
, (1.71)
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so that after normalising, the updated state is

|ψ ′〉〈ψ ′|= 2ΠQ |ψ〉〈ψ|ΠQ =
1
2n (1±Q)

n

∏
j=2

(1+g j). (1.72)

Therefore we simply need to update the stabiliser tableau to replace g′a with Q in the

generating set, and update the a-th row in the destabiliser tableau so that it anticommutes

with Q. A suitable choice is to simply set ra+n = ra, and then complete the update of

the stabiliser tableau by setting the a-th row to the bit string for Q = ±Z j (zeroes in all

entries except za, j = 1, and sign bit sa such that Q = (−1)saZ j). The total procedure to

update the tableau after random measurement outcome therefore takes O
(
n2) steps.

(iv) Classical processing. By assumption any classical processing in between quan-

tum operations requires no more than poly(n,m) time and space. Having established

that each of the listed quantum processes can be simulated using stabiliser tableaux in

polynomial time, it follows that combining this with classical processing steps remains

efficient.

The proof of the Gottesman-Knill theorem shows that we can efficiently simulate

sampling from the output distribution of a stabiliser circuit. Moreover, there is no `1-

norm error in this sampling algorithm; since we know that the outcomes of Pauli mea-

surements on pure stabiliser states are either deterministic or occur with equal probability,

we sample from exactly the same distribution as the quantum circuit. The proof can also

be adapted to show that exact estimation is possible in certain settings. For example, it is

clear from the argument above that we can exactly compute the expectation value of any

Pauli operator following a sequence of Clifford gates. In Ref. [31] it is also shown that

the magnitude of any inner product |〈φ |ψ〉| for a pair of stabiliser states |φ〉 , |ψ〉 ∈ STABn

can be computed in time O(n3); we omit the details here as inner products will be dis-

cussed in more detail in Section 3.5 of Chapter 3. One can also adapt the proof to show

that additional subsystems in stabiliser states can be appended to the tableau efficiently,

and that when a bipartite stabiliser state is known to be in a product state, tableaux for

the tensor factors can be obtained efficiently [57]. Finally, Aaronson and Gottesman also

generalised the method to simulate projectors onto stabiliser codes [31].
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1.2.1 Phase-sensitive Clifford simulators

The stabiliser tableau representation tracks the stabiliser group corresponding to a pure

quantum state, so that strictly speaking it is able to track the evolution of the state vector

only up to a global phase. Clearly this is unimportant if one is only interested in the

measurement statistics for a stabiliser state, but we will see later that it can be useful

to track this phase when a Clifford simulator is used as a subroutine for a more general

algorithm. For example, given a vector |ψ〉 = ∑k ck |Sk〉 where |Sk〉 is a stabiliser state

with stabiliser group Sk, if we want to make the transformation U |ψ〉=∑ckU |φk〉, where

U is Clifford, using a stabiliser update method, it is vital that we correctly compute the

relative phase αk for each term U |Sk〉 = αk |Sk〉. Indeed such a phase-sensitive Clifford

subroutine will be essential for some of the new algorithms we present in Chapter 5.

Fortunately several subroutines of this type have appeared in the literature [3, 58–60].

Typically these are based on representing the Clifford preparation circuit for the target

state in canonical form [3, 31, 58, 61, 62]. For concreteness, we will assume that the

phase-sensitive subroutines employed later in the thesis use the CH-form described by

Bravyi et al. in [3]. Since the details are rather technical, and we have already proved

the Gottesman-Knill theorem using the tableau method, here we will simply state the

capabilities of the simulator. We refer the interested reader to Appendix A.2 for a brief

overview of canonical forms and a description of the CH data format, and to Section 4.1

of Ref. [3] for a comprehensive technical description.

The CH-form relies on the fact that any stabiliser state vector can be represented

|φ〉 = ωUCUH |s〉, where ω is a complex number, UH is a layer of Hadamard gates, and

UC is a block of “control-type” Clifford gates satisfying UC |0n〉 = |0n〉. In Ref. [3] it is

shown that this form can be fully specified by a data format requiring 3n2 + 4n+O(1)
classical bits. Given this data format, the following simulation tasks can be performed in

time at most O
(
n2):

1. Compute the CH-form for Γ |φ〉, where Γ is either an elementary Clifford gate from

{S,CZ,CNOT,H}, or a Pauli projector Γ = (1n +P)/2, for P ∈ Pn±.

2. Evaluate the inner product 〈x|φ〉.

3. Draw a string x from the distribution P(x) = | 〈x|φ〉 |2.
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1.3 Completely stabiliser-preserving operations
The Gottesman-Knill theorem establishes the classical simulability of a class of quantum

circuits defined operationally, namely those composed from (i) computational basis state

preparation, (ii) Clifford gates, (iii) Pauli measurements and (iv) classical processing. We

call CPTP maps composed from these operations the stabiliser operations, SO. We de-

note by SOn this class restricted to n-qubit operations. The proof of the Gottesman-Knill

theorem depends on the fact that these operations preserve stabiliser structure. Compu-

tational basis states are stabiliser states, Clifford gates and Pauli measurements map sta-

biliser states to stabiliser states, and the addition of classical adaptivity and randomness

can be modelled by channels that map stabiliser states to convex mixtures of stabiliser

states. In short, any circuit in SOn preserves the n-qubit stabiliser polytope.

Later in this thesis we will be concerned with the resource theory of magic, and

we will study magic monotones, which quantify the resourcefulness of magic states and

operations. From this point of view, the stabiliser operations are considered free oper-

ations, since they cannot generate magic resource. In resource theories, it is useful to

have an axiomatic definition for the class of free operations. In Ref. [1], we defined the

completely stabiliser-preserving channels as follows.

Definition 1.9 (Completely stabiliser-preserving channels [1]). Let E be an n-qubit CPTP

map. We call E a completely stabiliser-preserving channel, if it satisfies

(E ⊗1n)(ρ) ∈ STAB2n, ∀ρ ∈ STAB2n. (1.73)

We denote the set of all n-qubit completely stabiliser-preserving channels by SPn,n.

The notation SPn,n is motivated by the following more general definition:

Definition 1.10 (Stabiliser-preserving channels [1]). Let E be CPTP map that acts non-

trivially on n qubits. We say that E ∈ SPn,k if it satisfies

(E ⊗1k)(ρ) ∈ STABn+k, ∀ρ ∈ STABn+k, (1.74)

that is, if the channel remains stabiliser-preserving when applied to an n-qubit subsystem

of an n+ k-qubit system.
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This distinction is significant because there exist channels that are in SPn,n−k but not

in SPn,n, for k ≤ n. That is, there are n-qubit maps that are stabiliser-preserving when

acting on part of a 2n− k-qubit system, but are able to generate magic resources when

applied to a 2n-qubit system. On the other hand, it can be shown that SPn,n ≡ SPn,n+k

for all k ≥ 0 [1]. This justifies Definition 1.9 as the appropriate definition for the largest

class of channels that can be considered free, in that they do not generate magic resources

on any size of system. For the interested reader, further discussion justifying this choice

can be found in Appendix B. In Ref. [1] we also showed that there is a convenient

characterisation of completely stabiliser-preserving maps in terms of the Choi state (see

Section 1.1.4.2).

Theorem 1.11 (Choi states for completely stabiliser-preserving maps [1].). Suppose T
is a linear n-qubit map. Then T is a completely stabiliser-preserving CP map if and only

if its Choi state is a stabiliser state, up to normalisation,

(T ⊗1n)ρ

Tr[(T ⊗1n)ρ]
∈ STAB2n, ∀ρ ∈ STAB2n⇐⇒

ΦT
Tr[ΦT ]

∈ STAB2n (1.75)

Moreover, T is a completely stabiliser-preserving CPTP map, T ∈ SPn,n if its Choi state

is a stabiliser state, and TrA[Φ
AB
T ] = 1/2n.

Since channels from the operationally defined class SOn are manifestly stabiliser-

preserving, it is clear that SOn ⊆ SPn,n. It is then natural to ask whether the two classes

are identical, or if SPn,n is a strictly larger class. It has very recently been proven by

Heimendahl, Heinrich and Gross [63] that SO1 ≡ SP1,1, but SPn,n is strictly larger than

SOn for n ≥ 2. In Chapter 5, Section 5.1, we present an algorithm showing that all

maps in SPn,n can be efficiently classically simulated, up to some caveats related to the

number of Kraus operators. The recent result due to Heimendahl, Heinrich and Gross

shows that our SPn,n simulator is strictly more powerful than the standard Gottesman-

Knill algorithm [63].

1.4 Universality, fault tolerance and state injection
Aaronson and Gottesman have shown that the problem of simulating a stabiliser circuit

without classical adaptivity is in a complexity class called⊕L (or parity-L) [64], which is

conjectured to be strictly contained in P [31, 64]. This suggests that stabiliser operations
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are not universal even for classical computation (i.e. there exist algorithms that one could

run on a classical computer that cannot be simulated by stabiliser circuits without the aid

of a classical co-processor). On the other hand it is believed that a universal quantum

computer could perform certain tasks that are currently intractable for classical computers

[4, 23]. Certainly, stabiliser circuits are not universal for quantum computation, so it

is natural to ask which sets of primitive quantum operations are needed to construct a

universal device. In this section, we address this question and illustrate how this naturally

leads to the notion that magic states are a resource for quantum computation.

1.4.1 Circuit synthesis

Real quantum devices are subject to physical constraints so that only certain classes of

quantum operation may be carried out in a single operation cycle. For example, super-

conducting architectures typically have a 2D layout where only nearest neighbour inter-

actions are available, so that the native gate set only includes single-qubit and local two-

qubit gates. More complicated multi-qubit interactions must be synthesised as a sequence

of layers of few-qubit gates. We say that a gate set G is universal for quantum computation

if any n-qubit unitary operation U ∈U(2n) can be realised (up to arbitrarily small error)

by a sequence of gates from G. A sequence of early results due to Deutsch [65] and Di-

Vicenzo [66] showed that any n-qubit unitary operation U ∈U(2n) can be synthesised by

gates from the set G1 = {CNOT,Ur̂(θ)} is universal, where Ur̂(θ) = exp[−i(r̂ ·σ)θ/2].

This is not the end of the story, as it is not possible to correct arbitrary errors on gates

from a continuous set. For scalable quantum computation on real quantum hardware, it is

necessary to seek discrete gate sets with known fault-tolerant constructions [33, 67]. This

means we must sacrifice the ability to synthesise arbitrary unitary operations exactly. For

the purposes of quantum computation it is sufficient to have the ability to implement U up

to some small error δ which can be made arbitrarily small by increasing the depth of the

circuit [68–71]. Clearly, a Clifford generating set such as GC = {H,S,CNOT} will not

suffice, since for any fixed n the Clifford group Cln is finite. Remarkably, however, only

a minimal addition needs to be made to achieve universality. Boykin et al. [72] showed

that only one more single-qubit gate need be added to reach universality. Specifically, the

Clifford+T set, generated by GC+T = {H,S,CNOT,T}, is known to be universal, where

T is defined T = diag(1,eiπ/4). In fact, the addition of any non-Clifford single-qubit gate

is enough to reach universality, though T is the usual choice in fault-tolerant schemes
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[33].

The next question is whether a given n-qubit circuit can be synthesised efficiently.

It can be shown that generic unitary operations in SU(2n) cannot be approximated ef-

ficiently by a finite library of gates that act on a bounded number of qubits, and there

exist U ∈ SU(2n) that require at least Ω(2n log(1/ε)/ log(n)) library gates [4, 73]. For a

quantum algorithm to be efficient, there must exist polynomial-sized decomposition into

few-qubit gates. Fortunately, it is not necessary for each of these gates to be elements

of any particular standard gate set, due to the famous Solovay-Kitaev theorem [74, 75].

To state the theorem we need the notions of a dense set, and of an ε-net. We say that a

set 〈G〉 is dense in some other set S if for all W ∈ S, and for arbitrary error ε > 0, there

always exists some U ∈ 〈G〉 such that ‖U −W‖1 < ε . As shown by Boykin et al., the

Clifford + T set satisfies this criterion. The condition for an ε-net is a weaker one; we

say that a set R is an ε-net for S, for some fixed ε , if for every U ∈ S, there exists W ∈ R

such that ‖U−W‖1 < ε . The theorem can then be stated as follows:

Theorem 1.12 (Solovay-Kitaev theorem for SU(2) [74]). Let G be a finite subset of SU(2)

such that the set 〈G〉 generated by G is dense in SU(2), and for each W ∈ 〈G〉, W † ∈ 〈G〉.
Then 〈G〉. Then for any ε > 0, the set 〈G〉M consisting of sequences of at most M =

O(logc(1/ε)) gates from G is an ε-net for SU(2), where c is a constant.

The Solovay-Kitaev theorem was first proven for SU(2), as stated above, and subse-

quently generalised to SU(d) for arbitrary d [74]. It is natural to ask what is the optimal

value for c. In early constructions it was found that the theorem held for c≈ 3.97, and it

can be shown [4, 73, 76] that c≥ 1. In recent work [68–71], notably due to Kliuchnikov,

Maskov and Mosca [68], and to Ross and Selinger [71], it has been proven that the lower

bound of c = 1 is achievable for synthesis using the Clifford + T set. In summary, if a

circuit can be efficiently implemented using any finite few-qubit gate set, then one can

construct an efficient implementation in terms of Clifford + T.

1.4.2 Fault tolerance and magic state injection

Two broad strategies can be deployed against the noise that inevitably arises on real quan-

tum hardware. Recently, much attention has been focused on noisy intermediate-scale

quantum (NISQ) devices [17], comprised of up to several hundred imperfect physical

qubits. It is acknowledged that these near-term devices, currently in development by
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various groups in academia and industry, will be incapable of full-scale quantum com-

putation. Instead, many groups have proposed techniques tailor-made to these noisy de-

vices [77], including algorithms that are inherently robust against noise [78], or through

error mitigation protocols employing classical post-processing [79–81], randomised cir-

cuit constructions [49, 80, 82], or other active error recovery techniques [83].

In the longer term, scalable universal quantum computers will require quantum er-

ror correction and fault tolerance. These ideas have a longer history than the NISQ-era

proposals just mentioned, and there exists an extensive literature on the topic [33, 48, 67,

84–87]. A detailed review is beyond the scope of this introduction, but we give a brief

sketch. The central idea of quantum error correction is that logical qubits are redundantly

encoded in a larger number of physical qubits, so that an error on any individual qubit

is not fatal to the computation. In stabiliser codes [30, 88], a logical code space of di-

mension 2k is fixed by specifying a stabiliser group with n− k independent generators.

Measurement of the stabiliser generators will yield a pattern of “±1” outcomes called

a syndrome. At least one “−1” outcome indicates that an error has caused the state to

migrate outside the codespace. Classical decoders can be used to infer the most likely

physical error corresponding to a given syndrome, and therefore the necessary unitary

correction.

The simple model just described implicitly assumes that while errors could occur

in the logical quantum circuit, the process of syndrome extraction and correction could

be done perfectly. More realistically, we have to assume that any quantum operation, in-

cluding all gates and measurements involved in syndrome extraction and error correction,

can be faulty. The theory of fault tolerance [33, 85] is concerned with engineering proto-

cols so that logical quantum information remains protected, even when all operations are

faulty. A central result is the fact that quantum codes can have a threshold [67]. Loosely

speaking, threshold theorems show that provided the maximum single-qubit error rate p

for any operation is below a certain threshold pc, logical errors can be efficiently sup-

pressed by increasing the number of physical qubits, so that a noisy quantum device with

error correction can efficiently simulate an ideal quantum computer. Conversely, if the

physical error rate is too high, increasing the size of the code only amplifies the logical

error rate. Therefore engineering gates to operate below threshold is a key consideration

in experimental efforts to build quantum computers.
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Each logical operation in a circuit must have an implementation in the codespace

which is itself fault-tolerant. One way to make a gate fault-tolerant is to find a transver-

sal implementation, where each physical gate in the protocol acts non-trivially on no

more than one physical qubit in each code block. For example, logical Z in the toric code

is fault-tolerantly implemented by multiple single-qubit Z gates. The intuition behind

this is that when errors do occur they need to remain localised in order to be correctable.

Multi-qubit physical gates can spread errors throughout the code block, corrupting the

logical quantum information. However, the Eastin-Knill theorem [32] states that for a

given quantum error-correcting code, the set of gates that can be implemented transver-

sally cannot be universal. For many stabiliser codes, only certain Clifford gates have a

transversal implementation, while non-Clifford gates do not. Various techniques can be

used to sidestep this problem [33], though they typically come with significant overhead.

The magic state model [33–44] is one of the leading schemes for implementing

fault-tolerant non-Clifford gates. Certain non-Clifford unitary operations can be emulated

deterministically by a non-unitary circuit, called a state injection or gate teleportation

gadget, that consumes a magic state along with the logical input state, but where all other

circuit elements employed are stabiliser operations [89]. At this point it is instructive

introduce the Clifford hierarchy [89]. We take the Pauli group to be the first level of

the hierarchy. Then we say that the k-th level of the hierarchy is the set of gates that

map the Pauli operators to the (k−1)-th level by conjugation. For example, the Clifford

gates make up the second level, since for any U ∈ Cln and Pauli P ∈ Pn, UPU† ∈ Pn.

Of interest for the present discussion are the third level gates, which map Pauli operators

onto Clifford operators, UPU† ∈ Cln for all P ∈ Pn. We will shortly see that any third-

level gate can be implemented deterministically by state injection.

The key idea is to take a teleportation circuit consuming a entangled state |Φ+〉,
apply the third-level gate U to the teleported state, but then commute U back through the

circuit onto a secondary input state. This is illustrated for single-qubit U in Figure 1.3.

Commuting U past the conditional X and Z gates transforms them to CX = UXU† and

CZ = UZU†, which are Clifford gates by virtue of the fact that U is a third-level gate.

This shows that implementation of the non-Clifford gate U can be traded for preparation

of the magic state (U⊗1) |Φ+〉. This can be straightforwardly generalised to arbitrary n-

qubit third-level gates by parallelising the Bell state preparation and measurement circuit.
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Figure 1.3: State injection gadget for general third-level n-qubit gate U [89]. When the resource
state is the Bell state |Φ+〉= (|00〉+ |11〉)/

√
2, the protocol simply teleports a state

|ψ〉 unchanged from qubit 3 to qubit 1, after which the gate U is applied. But when
U is a third-level gate, we can propagate it back through the circuit onto the initial
resource state, converting the Pauli corrections X , Z into Clifford corrections CX , CZ .

Figure 1.4: Gadget for “teleporting” a state |ψ〉 between qubit lines.

High fidelity preparation of an entangled resource state may in itself present chal-

lenges, but the construction can be streamlined for third-level gates diagonal in the com-

putational basis [35, 89]. The “half-teleportation” gadget shown in Figure 1.4 transfers

an input state |ψ〉 from qubit 2 to qubit 1, by means of an entangling gate followed by a

conditional Clifford correction. Now suppose we replace |+〉 with a resource state U |+〉
for diagonal third-level U . The CNOT commutes with any single-qubit diagonal gate

applied to the control qubit, so as in the the general case we can obtain an identity with

a circuit that teleports |ψ〉 from qubit 2 to 1 and then applies U . This is illustrated for

the T -gate in Figure 1.5, where we use T XT † = αXS, where α is an unimportant phase.

Again one can generalise this for general n-qubit diagonal third level gates (Figure 1.6).

In this way, the burden of a fault-tolerant construction is shifted from direct imple-

mentation with physical gates to high fidelity preparation of the magic state. This can

be achieved by distillation protocols that consume large numbers of noisy magic state

copies, and output a much smaller number of higher fidelity magic states [33–44]. This

process is costly experimentally, both in terms of the storage space required for the reser-

voir of noisy magic states, and the time needed to distil each magic state ready for injec-
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Figure 1.5: State injection gadget for the T -gate [90].

Figure 1.6: State injection gadget for diagonal third-level n-qubit gate U [90].

tion. There is ongoing work to develop highly optimised magic state factories in order to

drive down these space and time requirements [91, 92]. More importantly for this thesis,

the arguments above motivate the idea of magic states as a computational resource that

can be traded for non-Clifford gates. A classical simulator that admits adaptive Clifford

circuits initialised with magic states, is in effect also a classical simulator for non-Clifford

gates. In the next section we start to consider schemes that extend stabiliser simulators to

circuits involving magic.

1.5 Simulating circuits with magic
It has been known since at least 2004 that one can simulate universal circuits using ex-

tensions of the Gottesman-Knill algorithm, but with an overhead exponential in the num-



1.5. Simulating circuits with magic 63

ber of magic resources required [31]. We sketch two such algorithms here, again due

to Aaronson and Gottesman [31]. The first simulates stabiliser circuits initialised with

magic states, the second deals with arbitrary non-Clifford gates.

The method for magic states assumes that the initial state ρ is a tensor product

state comprising m blocks of up to b qubits, ρ =
⊗m

j=1 ρ j, and exploits the fact that

Pauli operators always have tensor product structure for any partitioning of qubits, P =⊗m
j=1 Pj. The circuit is assumed to be a sequence of polynomial-sized Clifford circuits

Ui alternating with single-qubit measurements Zi. We stipulate at most M measurements.

Note that this model allows for state injection, but at least one measurement is needed

for each injection gadget, so that t injected magic states implies at least t measurements.

Rather than evolve the density operator, we can move to the Heisenberg picture and

evolve the Pauli operators. For example, the probability of obtaining each outcome for

the first measurement is,

Pr(±1) = Tr
[
1±Z1

2
U1ρU†

1

]
= Tr

[
1±U†

1 Z1U1

2
ρ

]
. (1.76)

Since U1 is a Clifford operator, Z1 is mapped to some new Pauli operator U†
1 Z1U1 = P =⊗m

j=1 Pj. Then we can rewrite as:

Pr(±1) =
1
2
± 1

2
Tr

[
m⊗

j=1

[Pjρ j]

]
=

1
2
± 1

2

m

∏
j=1

Tr
[
Pjρ j

]
(1.77)

Each trace in this product involves at most b qubits, so can simply be computed by matrix

multiplication in time O
(
22b), which is tractable if b is small. A biased coin is flipped

based on the computed probabilities, and based on the result, the appropriate projector is

applied to the state,

ρ
′ =

1
4
(1±Z1)U1ρU†

1 (1±Z1)

Pr(±1)
. (1.78)

The process is repeated for the measurement of the second qubit, except that equation

(1.78) is now a linear combination of four terms, so the measurement step now involves

2 ·4 = 8 terms, each taking time O
(
m22b) to evaluate. By the time we get the final mea-

surement, there are 22M−1 terms, so the total runtime isO
(
m22M+2b). For the case where

we inject t magic states, there are at least t blocks of qubits and at least t measurements,
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so the runtime is O
(
t22t).

The method for non-Clifford gates is based on decompositions of b-qubit gates U in

the Pauli basis, which can have up to 4b terms, U = ∑
4b

i=1 ciPi. Let r(P) be the 2n-element

vector labelling the positions of Z and X operators for Pauli P. Then a pure stabiliser

state ρ with generators gk is updated as

UρU† = ∑
i, j

cic∗jPi

(
n

∏
k=1

1+gk

2

)
Pj (1.79)

= ∑
i, j

ci jPi j

(
n

∏
k=1

1+(−1)〈r(gk),r(Pj)〉gk

2

)
, (1.80)

where ci jPi j = cic∗jPiPj. With each additional non-Clifford gate, each term branches a

further 42b times. In the worst case, we need to keep track of 42bt coefficients, and

O
(
4bt) strings of length O(n), representing Pauli matrices and inner products.

Measurements are simulated by letting projectors ΠQ = (1+Q)/2 act by conju-

gation on the evolved state ρ ′. We omit the details here, but the result is that the de-

composition retains the same form as equation (1.80), and the number of terms does not

increase. To evaluate the trace of ΠQρtΠQ, where ρt is the state at the t-th step of the

circuit, Aaronson and Gottesman note that the trace of each term is either ±2nci j if Pi j

is in the stabiliser, and 0 otherwise, and O
(
42bt) terms must be summed. Putting this all

together, the algorithm requires time and space O
(
42bt).

Both of the techniques just described have runtime exponential in the number of

magic resources. We draw attention to the fact that both those methods are state/gate-

agnostic, in the sense that the strength of the scaling does not depend on the details of

the particular resource consumed, only on coarser parameters such as the total number of

non-Clifford gates or magic states, and the number of qubits on which they are defined.

It is natural to ask whether there are not, for example, gates that are easier to simulate

because they more closely approximate stabiliser states, and indeed this will be one of

the central questions considered in this thesis. To this end, it is useful to formalise how

quantum resources can be quantified. To close this chapter, we introduce some of the

basic machinery of quantum resource theories.
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1.6 Resource theories and monotones
Performing certain quantum information processing tasks requires access to resourceful

states and operations. Resource theories have become an important tool for the study of

many phenomena in quantum information theory [93–95], including entanglement [96,

97], coherence [98], contextuality [99], athermality [100], and numerous others. Our

main interest in this thesis is in the resource theory of magic [1–3, 101–104]. Resource

theories can be used to study questions such as which resourceful states can be intercon-

verted [103, 105, 106], and the rate at which higher quality resource states can be distilled

from many lower quality copies [33–44].

A resource theory can be defined by specifying a class of free operations F [93],

such as local operations and classical communication (LOCC) in entanglement theory

[107]. One can then identify the set of free states S as those states that can be prepared

from a standard fiducial state using free operations alone. By virtue of being non-free,

states outside S therefore acquire value as resourceful states. Likewise non-free opera-

tions are considered resourceful. Beyond the binary distinction of free versus non-free,

it is useful to assign a resource value to a state of interest. This can be done using a

resource monotone.

Definition 1.13 (Resource monotones). Given a resource theory equipped with a class

of free operations F , we say that a mapping M from states to the real numbers is a

monotone for that resource if it is non-increasing under the class of free operations. That

is, for all states ρ:

M(E(ρ))≤M(ρ), ∀E ∈ F . (1.81)

We call this property monotonicity.

For example, for any well-defined resource theory, once we have specified the set

of free states S, we can always define the relative entropy distance to the set of free

states [93]. The relative entropy of a state ρ with respect to state σ is defined S(ρ‖σ) =

Tr[ρ logρ]−Tr[ρ logσ ]. Then the relative entropy distance with respect to the set of free

states S is given by DS(ρ) = infσ∈S S(ρ‖σ). The relative entropy is contractive under

CPTP operations [108] (i.e. S(E(ρ)‖E(σ)) ≤ S(ρ‖σ) for any CPTP E), and it follows

thatDS must be non-increasing under CPTP free operations. Several other properties are

advantageous in proving results in magic theory. We note that monotones defined in the
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literature do not always have the properties defined below, but we will make use of them

many times in this thesis.

Definition 1.14 (Faithfulness). We say that a monotoneM is faithful if there is a con-

stant c such thatM(ρ) = c if ρ ∈ S, andM(ρ)> c otherwise.

For entropy-like monotones such as relative entropy distance, the constant c is zero.

We can see this easily for the relative entropy distance, since S(ρ‖σ) ≥ 0, but if ρ ∈ S
then infσ∈S S(ρ‖σ) = S(ρ‖ρ) = 0. Many of the magic monotones we consider later in

this thesis are defined in such a way that c = 1. However, this is a matter of convention,

as each of our quantifiers can be converted into a monotone such that c = 0, simply by

taking the logarithm. For the purposes of this thesis, we find the non-logarithmic variant

to be more convenient.

Definition 1.15 (Submultiplicativity/subadditivity). We say that a monotone is submulti-

plicative under tensor product if for any pair of states ρ and σ , we have:

M(ρ⊗σ)≤M(ρ)M(σ). (1.82)

Submultiplicativity applies to non-logarithmic monotones. Equivalently, ifM is submul-

tiplicative, then the logarithmic version is subadditive:

logM(ρ⊗σ)≤ logM(ρ)+ logM(σ). (1.83)

When submultiplicativity/subadditivity holds, it ensures that one cannot increase the

apparent resourcefulness of a state by preparing a free state on an auxiliary subsystem.

We note that submultiplicativity is not a strict requirement for all quantifiers in all con-

texts, as it is conceivable that measures that do not have this property may be useful in

the study of processes such as catalysis, and activation of bound resources [105, 109].

Indeed, some authors have defined quantifiers of magic that can be supermultiplicative

for some states [110], but we will later argue that this property can be problematic in

attempting to quantify classical simulation costs. Indeed, submultiplicativity is key to

proving several novel results presented later in this thesis. Returning to the notion of

faithfulness, there is a natural choice of the constant c depending on whether a monotone

is of the (sub)multiplicative or (sub)additive type. For subadditive monotones, we expect
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that composing one state with another via the tensor product adds some non-negative

real number to the monotone value. But we want to ensure that composing with another

stabiliser state does not increase the magic content. It therefore makes sense to set c = 0,

since 0 is the additive identity for the set of real numbers. For submultiplicative mono-

tones, composing two states at most multiplies their value, so it is natural to choose the

multiplicative identity, and define monotones so that c = 1.

Definition 1.16 (Convexity). A monotoneM is convex if for any state ρ = ∑ j q jρ j, we

have:

M(ρ)≤∑
j

∣∣q j
∣∣M(ρ j). (1.84)

Again, convexity is not a strict requirement for a resource monotone; indeed, log-

arithmic monotones are typically non-convex [111]. However, it holds for many of the

monotones we introduce later, and is instrumental in proving further properties.

1.7 Summary and outlook
In this chapter, we introduced the stabiliser formalism [30] and other key concepts in

quantum information and computation. We showed that stabiliser circuits can be sim-

ulated efficiently by a classical computer [25, 31], but that promotion to universality is

achieved by the addition of one type of resource, namely non-stabiliser, or magic, re-

sources [35]. Exploiting these resources fault-tolerantly is a major engineering challenge

that must be overcome if scalable quantum computation is to become a reality [33]. The

computational power of stabiliser circuits supplemented by t magic resources, as quan-

tified by the runtime of a classical simulation, appears to be exponential in t, though the

precise scaling depends on the particular algorithm employed. For the early simulators

of Section 1.5, the scaling was O(4t) or worse, so that the algorithms quickly become

impractical even for relatively small numbers of magic state copies. In more modern

algorithms, we still expect asymptotic exponential scaling O(2αt), but recent work [3,

59, 60, 103] has enabled the coefficient α to be significantly reduced. With these new

methods the performance scaling is sensitive to the “amount” of magic per gate (or state),

where “amount” is made precise by the resource theory of magic [101–103, 112]. In this

way, the exponential scaling is tamed so that classical simulation remains tractable for

larger non-stabiliser circuits. The main aim of this thesis is to contribute to this effort to

improve classical simulators, both by further developing the resource theory of magic,
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and by designing new classical algorithms with improved performance. In the next two

chapters we review related prior work where stabiliser simulation methods have been ex-

tended to more general classes of quantum circuit, broadly divided into two strands. In

the next chapter, we will review quasiprobability methods, including phase space meth-

ods and related techniques, which can be applied for general density operators. In con-

trast, the stabiliser rank techniques reviewed in Chapter 3 are usually restricted to pure

state evolution, but can lead to faster classical simulators. In the main part of the thesis,

following these chapters, we will present our novel work that improves and extends both

quasiprobability and stabiliser rank techniques.



Chapter 2

Quasiprobabilities and phase space

methods

2.1 The phase space picture of quantum mechanics

The Wigner function has a long history in quantum theory, having first been introduced

by Wigner in 1932 as a quantum analogue for probability distributions over classical

phase space [113]. Given a classical system with coordinates xi and momenta pi, one can

write down a probability density function P(xi; pi) for finding the system in a particular

infinitesimal region of phase space. In contrast, in quantum mechanics the possibility of

writing down a joint probability distribution for position and momentum is famously pro-

hibited by the uncertainty principle. Nevertheless, Wigner realised that one can formulate

a real-valued function W (xi, pi) that shares many features of a probability distribution. A

crucial difference is that its values can go negative, and it is in this sense that the Wigner

function yields a quasiprobability distribution. When this Wigner function is integrated

over either position or momentum, the correct quantum mechanical probability density

for the conjugate variable is recovered.

More recently, phase space techniques have seen application in the field of quan-

tum optics, where negativity of the Wigner function has been proposed as a signature of

nonclassicality [114, 115]. Conversely, the Gaussian states are those with non-negative

Wigner functions. This result is known as Hudson’s theorem [116, 117], and these are of-

ten seen as continuous-variable analogues of stabiliser states [118]. As quantum informa-

tion theory emerged as a field in its own right, various authors sought to define and study

Wigner functions for discrete, finite-dimensional quantum systems [119]. In particular,
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Gibbons et al. [119] proposed axioms that candidates for discrete Wigner function W

should possess in order to be consistent with the continuous-variable counterpart. These

include the stipulation that for systems of dimension d, W should be a mapping from

the space of operators to functions W (p,q) on a phase space, which can be modelled as

a d× d lattice; and the Wigner function should be covariant with respect to the action

of Heisenberg-Weyl operators, meaning that the values W (p,q) are permuted between

phase points (p,q) but the set of values does not change [118]. It turns out that for di-

mension d, there are dd+1 distinct definitions for generalized Wigner functions satisfying

the constraints of Gibbons et al. [119]. It was subsequently shown that stabiliser states

in prime-power dimension are precisely those that are non-negative for all valid choices

of Wigner function [120, 121]. However, Gross [118] showed that in any odd dimension

there is a natural choice of Wigner function.

Gross’s discrete Wigner function is based on the stabiliser formalism for odd-

dimension qudits. Since this thesis is largely concerned with systems of even dimension,

we will only give a brief outline here, and refer the interested reader to Ref. [118]. Given

the standard single-qudit basis {|x〉}x∈Fd = {|0〉 , |1〉 , . . . , |d−1〉}, the shift and boost op-

erators can be defined analogous to Pauli X and Z,

X(q) |x〉= |x+q mod d〉 , Z(p) |x〉= ω
xp |x〉 , (2.1)

where ω is a primitive d-th root of unity, ω = exp
(2πi

d

)
. These then generate the

Heisenberg-Weyl operators Ta = T(p,q) = ω−2−1 pqZ(p)X(q), where a = (p,q)T ∈ Fd ×
Fd . Notice that 2−1 is not defined for d = 2, so that this definition cannot be applied

to qubits. Multi-qudit Heisenberg-Weyl operators are constructed by forming tensor

products of the single-qudit operators, and these can similarly be labelled by vectors

(p,q) ∈ Fn
d ×Fn

d where p and q are the direct sum of the entries (p,q) for each qudit.

Heisenberg-Weyl operators compose according to TaTb = ω2−1〈a,b〉Ta+b where 〈·, ·〉 is

the appropriate symplectic inner product for the space V = Fn
d×Fn

d . Thus equipped with

the symplectic inner product, V is called the phase space. Qudit stabiliser states are spec-

ified by maximally commuting subgroups of the Heisenberg-Weyl operators. The qudit

Clifford operations correspond to symplectic affine transformations on the phase space

[118], and it follows that their action on elements of stabiliser groups can be simulated
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efficiently, as in the qubit case.

The Heisenberg-Weyl operators form a complete basis orthonormal with respect to

the Hilbert-Schmidt inner product, up to normalisation, i.e. d−n Tr
[
T †

a Tb

]
= δa,b. Any

density operator therefore has a unique expansion in this basis. The characteristic func-

tion specifies the expansion coefficient for each Heisenberg-Weyl operator. The discrete

Wigner function due to Gross [118] is obtained by taking the symplectic Fourier trans-

form of the characteristic function,

ρ = ∑
a∈V

Wρ(a)Aa, Aa = d−n
∑

b∈V
ω
−〈a,b〉T †

b , (2.2)

where Aa are a set of orthonormal operators with unit trace called phase point opera-

tors.The Wigner function for Hermitian ρ is always real-valued, but in general can take

negative values. This is key to the interpretation of equation 2.2 as a quasiprobabil-

ity distribution. The discrete Hudson’s theorem due to Gross [118] states that for pure

states, the stabiliser states are precisely those with a non-negative Wigner function, which

means their density operator description can be modelled as a proper probability distri-

bution over phase point operators. It follows that any convex combination of stabiliser

states must also have non-negative Wigner function, but it can be shown that the converse

is not true, and there exist non-stabiliser mixed states with non-negative Wigner function.

These are known as bound magic states [101, 122]. While a supply of noisy magic states

that are not bound can be refined to magic states with higher purity via magic state dis-

tillation, this cannot be done for bound magic states using stabiliser operations alone

[101].

2.2 Wigner function negativity as a computational re-

source
The fact that states with positive discrete Wigner function can be cast as probability dis-

tributions over phase point operators suggests that they may be simulated by random

sampling of these operators. Indeed, Veitch et al. [101] showed by explicit construction

of a classical algorithm that states and measurements with non-negative Wigner function

can be simulated efficiently if the intervening operations are limited to Clifford gates.

This result is therefore strictly stronger than the Gottesman-Knill theorem for qudits, as
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it shows that efficient simulation remains possible for a subclass of magic states, and for

measurements beyond projective measurements in stabiliser bases. Independently, Mari

and Eisert [123] developed a similar classical simulation scheme for odd qudit systems,

which additionally allows efficient simulation of quantum channels with positive phase

space representation. Thus, to achieve any speedup over classical computation, a quan-

tum circuit on a system of odd dimension must involve Wigner negativity in either state

preparations, transformations or measurements.

Later work made this notion of Wigner negativity as a resource quantitative by defin-

ing magic monotones [102, 124]. In a follow-up paper Veitch et al. [102] introduced the

sum negativity sn and the related quantity manaMW , defined,

sn(ρ) = ∑
u:Wρ (u)<0

∣∣Wρ(u)
∣∣ (2.3)

MW (ρ) = log[‖Wρ‖1] = log[2sn(ρ)+1]. (2.4)

Veitch et al. showed that the sum negativity is unique as a quantifier of magic for qudits,

in the sense that any reasonable magic monotone based on the negativity of the Wigner

function must be a function of sn(ρ) alone. Both sum negativity and mana are monotone

under stabiliser operations, but the mana has the convenient property of being exactly

additive. The mana distinguishes bound and distillable magic states since positively rep-

resented states have MW (ρ) = 0, whereas MW (ρ) > 0 for distillable states. Indeed,

Veitch et al. use their monotones to numerically analyse magic state distillation proto-

cols, comparing conversion rates for known protocols with the upper bound derived from

magic monotones [102]. Wigner negativity can therefore be seen as a necessary resource

for quantum advantage.

In this thesis our primary interest is in the cost of classical simulation, and it has

been shown that Wigner negativity can be directly related to runtime for a class of Monte

Carlo-type algorithms based on quasiprobabilities [124]. Wigner functions can be sit-

uated within a broader class of quasiprobability representation through the notion of a

frame [124–127]. In this picture we first define a pair of operator bases {F(λ )}λ∈Λ

and {G(λ )}λ∈Λ, called the frame and dual frame respectively, which satisfy the relation

A = ∑λ∈Λ G(λ )Tr[AF(λ )] for any Hermitian operator A, where the label λ runs over

some defined space Λ. For example, this can be satisfied by choosing Λ to be the qudit
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phase space already described, choosing the frame to be the phase point operators nor-

malised by dimension F(u) = Au/dn, and the dual frame to be the unnormalised phase

point operators, G(u) = Au. However, the frame concept is more general, as the frame

and dual frame bases are allowed to be overcomplete, and Λ is not constrained to have

the structure of a phase space.

Having defined the frame and dual frame, one can define a quasiprobability distribu-

tion for any density operator, Wρ(λ ) = Tr[F(λ )ρ]. Of course, when the frame is chosen

to be the set of normalised phase point operators, this is precisely the discrete Wigner

function identified by Gross [118]. One can also define distributions for unitaries U and

measurement effect operators E:

WU(λ
′|λ ) = Tr

[
F(λ ′)UG(λ )U†

]
, W (E|λ ) = Tr[EG(λ )]. (2.5)

Notice that for the representation of U , this notation is suggestive of a conditional prob-

ability for transition from point λ to point λ ′, and W (E|λ ) suggests the probability of

obtaining some the measurement corresponding to E given a system at point λ . Indeed

by applying the Born rule along with the definitions above,

Pr
(

E|UρU†
)
= ∑

λ ′,λ
W (E|λ ′)WU(λ

′|λ )Wρ(λ ). (2.6)

However, we must keep in mind that these functions should be understood as quasi-

probability distributions rather than proper probability distributions, since they can take

negative values. Nevertheless, Pashayan et al. [124] proposed a Monte Carlo simulation

method involving a renormalisation of the quasiprobability distribution, so that a genuine

probability distribution can be recovered. The negativity of Wρ is defined to be the `1-

norm, ‖Wρ‖1 = ∑λ∈Λ

∣∣Wρ(λ )
∣∣. Pashayan et al. define the point-negativity of a unitary U

at point λ to be ‖WU(·|λ )‖1 = ∑λ ′∈Λ |WU(λ
′|λ )|. To define probability distributions, we

normalise the distributions as

Pr(λ |ρ) =
∣∣Wρ(λ )

∣∣
‖Wρ‖1

, Pr
(
λ
′|U,λ

)
=
|WU(λ

′|λ )|
‖WU(·|λ )‖1

. (2.7)



74 Chapter 2. Quasiprobabilities and phase space methods

We can then rewrite the Born rule probability from equation (2.6) as

Pr
(

E|UρU†
)
= ∑

λ ′,λ
Êλ ′,λ Pr

(
λ
′|U,λ

)
Pr(λ |ρ), (2.8)

where Êλ ′,λ =W (E|λ ′) · sign
(
WU(λ

′|λ )Wρ(λ )
)
· ‖WU(·|λ )‖1 · ‖Wρ‖1 (2.9)

The simulation strategy is therefore to randomly sample a point λ from the distribution

{Pr(λ |ρ)}λ∈Λ, before sampling a transition to a second point λ ′ from the distribution

corresponding to the unitary U . This can be straightforwardly extended to a length T

sequence of unitary operations Ut , where each Ut is described by its own quasiprobability

distribution. Pseudocode for the procedure is given in Algorithm 1.

Algorithm 1 Pashayan quasiprobability simulator [124]
Input: Initial state ρ described by quasiprobability function Wρ ; Sequence of unitary

operations U = UT ◦UT−1 ◦ . . . ◦U1, each described by function WUt ; measurement
effect operator described by function W (E|·); number of samples M.

Output: Estimate Ê for Tr
[
EUρU†].

1: Ẽ← 0
2: for m← 1 to M do
3: Sample λ0 from {Pr(λ |ρ)}λ∈Λ.
4: Q← sign

(
Wρ(λ0)

)
×‖Wρ‖1

5: for t← 1 to T do
6: Sample λt from {Pr(λ ′|U,λt−1)}λ ′∈Λ.
7: Q← Q× sign(WUt (λt |λt−1))×‖WUt (·|λt−1)‖1
8: end for
9: Ẽm← Q×W (E|λT )

10: Ẽ← Ẽ + Ẽm
11: end for
12: return Ê = Ẽ/M.

Let λλλ = (λ0, . . . ,λT ) be a vector representing a trajectory of sampled points λt in

Algorithm 1. Then let

Eλλλ =W (E|λT ) · sign
(
Wρ(λ0)

)
· ‖Wρ‖1

×
T

∏
t=1

sign(WUt (λt |λt−1)) · ‖WUt (·|λt−1)‖1 (2.10)

We can then compute the expected value of the random variable Ẽm evaluated in step 9.
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We have

E(Ẽm) = ∑
λλλ

Pr(λ0|ρ)
(

T

∏
t=1

Pr(λt |U,λt=1)

)
Eλλλ (2.11)

= ∑
λλλ

W (E|λT )

(
T

∏
t=1

WUt (λt |λt−1)

)
Wρ(λ0), (2.12)

where in the last line we combined the definition of the probability distributions in equa-

tion (2.7) with the random variable (2.10) to rewrite

sign
(
Wρ(λ0)

)
· ‖Wρ‖1 Pr(λ |ρ) = sign

(
Wρ(λ0)

)
· ‖Wρ‖1

∣∣Wρ(λ0)
∣∣

‖Wρ‖1
=Wρ(λ0), (2.13)

and similarly for each unitary operation Ut . But given the quasiprobability distributions

defined using the frame and dual frame above, line (2.12) is an expression for the Born

rule probability, Pr
(
E|UρU†) = Tr

[
EUρU†] = E(Ẽm). In other words, the random

variable output from Algorithm 1 is an unbiased estimator for the quantum mean value

Tr
[
EUρU†].Therefore Ê will converge to the quantum mean value given a large enough

number of samples M. The critical question is how large M needs to be to achieve a

given precision, as this governs the runtime. Pashayan et al. make use of the Hoeffding

inequality.

Theorem 2.1 (Hoeffding inequality [128]). Given a sequence of M i.i.d. random vari-

ables X j bounded by |X j| ≤ b and with expected mean value E(X), the probability that

∑
M
j=1 X j/M deviates from the mean by more than ε is upper bounded by:

Pr

{∣∣∣∣∣E(X)−
M

∑
j=1

X j

M

∣∣∣∣∣≥ ε

}
≤ 2exp

(
−Mε2

2b2

)
. (2.14)

Supposing that we want to achieve a fixed precision and success probability, we can

use the following corollary, which follows immediately from Theorem 2.1.

Corollary 2.2 (Hoeffding inequality - sample complexity). Suppose that we can generate

a sequence of M bounded random variables {X j} as described in Theorem 2.1. We can

achieve the precision
∣∣∣E(X)−∑

M
j=1 X j/M

∣∣∣ ≤ ε with probability at least (1− pfail) by
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setting the number of samples as follows:

M =

⌈
2b2 1

ε2 ln
(

2
pfail

)⌉
(2.15)

We have already seen that E(Ẽm) = Tr
[
EUρU†]. Pashayan et al. [124] define the

total forward negativityM→ for a circuit to be the maximum negativity over all possible

trajectories:

M→ = ‖Wρ‖1

(
∏
t=1
MUt

)
max

λT
|W (E|λT )|, (2.16)

whereMUt = maxλ ‖WU(·|λ )‖1 is referred to as the negativity of Ut . Then, com-

paring with equation (2.10) one can check that the random variables Ẽm generated in

Algorithm 1 is bounded as
∣∣∣Ẽm

∣∣∣ ≤ max |Eλλλ | =M→. Therefore if M samples are gener-

ated by the algorithm, by Hoeffding’s inequality (Corollary 2.2) the output of the classical

algorithm will be within additive error ε of the quantum Born rule value with probability

at least (1− pfail) provided that M is set to be at least:

M ≥ 2M2
→

1
ε2 ln

(
2

pfail

)
. (2.17)

Pashayan et al. [124] demonstrated the method by classically simulating 100-qutrit ran-

dom Clifford circuits, where k qutrits were initialised in a magic state, and the remain-

der initialised in the |0〉 state, choosing the canonical phase space frame, so that the

quasiprobability distribution for the initial state is the discrete Wigner function. Re-

call that in Ref. [102] the mana was definedMW (ρ) = log[‖Wρ‖1], and is an additive

monotone, so that for k copies of a magic state ρ , the mana isMW (ρ⊗k) = kMW (ρ).

Therefore the runtime for this instance of the algorithm isO
(
‖Wρ⊗k‖2

1

)
=O

(
2kMW (ρ)

)
,

so exponential in the number of magic states k. This feature is shared with the

Aaronson-Gottesman algorithm [31], but the key difference is that whereas the Aaronson-

Gottesman algorithm treats all single-qubit magic states on an equal footing, the strength

of the exponential scaling in the Pashayan simulation is sensitive to the single-qubit mana

MW (ρ) appearing in the exponent.

The phase space formalism for odd-dimension qudits, combined with the quasiprob-

ability simulation framework therefore provides an elegant connection between the quan-

tification of magic as a resource and the hardness of classical simulation. However, our
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primary interest for this thesis is the setting of qubit quantum circuits, and here we find

that the convenient phase space picture breaks down [129, 130]. It is certainly possible

to develop a meaningful phase space framework for even dimension [110], but one finds

that many of the properties that lead to the striking connection between Wigner function

negativity and magic theory in odd dimension are lost. We will discuss the reasons for

this breakdown in Section 2.4. First, it will be useful to introduce alternative approaches

that allow us to construct practical quasiprobability simulators for the qubit case.

2.3 Robustness of magic
It is clear that in the state vector picture, any pure state can be written in a basis of sta-

biliser states, and we will consider decompositions of this type in Chapter 3. However, it

is also the case that the pure stabiliser state projectors |φ〉〈φ |, where |φ〉 ∈ STABn form an

overcomplete basis for the set of 2n-dimensional density matrices [103]. One can see this

by recalling that any pure stabiliser state projector can be written as a product of Pauli

projections (Section 1.1.5.1). For example in the base case for a single qubit, we have

|0〉〈0| = (1+ Z)/2 and |1〉〈1| = (1− Z)/2. But then we can write Z = |0〉〈0| − |1〉〈1|.
We can similarly decompose any Pauli operator as a linear combination of pure stabiliser

states. In turn, it is well known the Pauli operators form a complete basis for the space

of Hermitian operators. We can therefore write the normalised density matrix for any

state as an affine combination of pure stabiliser state projectors ρ = ∑ j q j
∣∣φ j
〉〈

φ j
∣∣ where∣∣φ j

〉
∈ STABn, and ∑ j q j = 1 (Figure 2.1). In general, q j can be negative, so this is again

ρ+

ρ−

ρ

Dn STABn

Figure 2.1: Schematic illustration of a density matrix ρ ∈ Dn decomposed as an affine combi-
nation of elements from the stabiliser polytope STABn. Figure reproduced from our
paper Ref. [1].

a quasiprobability distribution. It is clear that the basis of stabiliser projectors is over-

complete, since the number of n-qubit stabiliser states grows faster than 4n. It follows

that there are typically many possible stabiliser decompositions for a given density oper-
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ator. The robustness of magic (RoM) was defined by Howard and Campbell [103] to be

the minimal `1-norm ‖~q‖1 = ∑ j
∣∣q j
∣∣ over all valid decompositions [103].

Definition 2.3 (Robustness of magic (RoM) [103]). Given the density operator ρ for an

n-qubit state, the robustness of magicR is defined:

R(ρ) = min
~q

{
‖~q‖1 : ∑

j
q j
∣∣φ j
〉〈

φ j
∣∣= ρ,

∣∣φ j
〉
∈ STABn

}
(2.18)

= min
{

1+2p : (1+ p)ρ+− pρ− = ρ, p≥ 0,ρ± ∈ STABn
}

(2.19)

The robustness of magic is a well-behaved magic monotone, having the following

properties:

1. Convexity: R
(
∑ j q jρ j

)
≤ ∑ j

∣∣q j
∣∣R(ρ j

)
;

2. Faithfulness: If ρ ∈ STABn, thenR(ρ) = 1. OtherwiseR(ρ)> 1;

3. Monotonicity under stabiliser operations: If E is a stabiliser operation, then

R(E(ρ))≤R(ρ);

4. Submultiplicativity under tensor product: R(ρA⊗ρB)≤R(ρA)R(ρB).

The RoM can be calculated using standard linear programming techniques [131] (for

example using the MATLAB package CVX [132]). The naive formulation of the linear

program is practical on a desktop computer for up to five qubits (the number of stabiliser

states increases super-exponentially with n). It was recently shown by Heinrich and Gross

[133] that when states possess certain symmetries, the original optimisation problem can

be mapped to a more tractable one, so that RoM can be calculated for up to 10 copies

of a state. For example, this strategy can be applied when the state is a k-fold tensor

product of T -states, ρ = |T 〉〈T |⊗k. There is a known lower bound which can be directly

computed, namely the stabiliser norm, defined as follows.

Definition 2.4 (Stabiliser norm). Given a normalised n-qubit state ρ the stabiliser norm

is defined:

‖ρ‖ st =
1
2n ∑

P∈P+

|Tr[Pρ]|, (2.20)

where P+ is the set of unsigned Pauli operators.
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The stabiliser norm is multiplicative, convex, and is a one-way magic witness in

the sense that ‖ρ‖ st > 1 implies that ρ is a magic state, but the converse is not true. It

is always the case that ‖ρ‖ st ≤ R(ρ), and a tighter lower bound is obtained from the

formula:

R(ρ)≥ ‖ρ‖ st−2−n

1−2−n . (2.21)

Although the stabiliser norm gives rather a loose bound, it is significant that it is mul-

tiplicative, since it means that for n copies of a magic state ρ with ‖ρ‖ st > 1, one has

R(ρ⊗n)≥ ‖ρ‖n
st. In other words, though RoM is itself submultiplicative, we cannot ex-

pect it to be dramatically so for many-qubit states, as it is lower bounded by a quantity

that increases exponentially with n.

A further key result of Ref. [103] is that robustness of magic directly quantifies

simulation cost for a classical algorithm. Howard and Campbell adapt the approach

of Pashayan et al. [124] to classically estimate observables for stabiliser circuits with

mixed magic state inputs; rather than sampling over points in phase space, one samples

a stabiliser state from the distribution which can then be evolved efficiently using the

Gottesman-Knill theorem. Pseudocode is shown in Algorithm 2.

Algorithm 2 RoM simulator [103]
Input: Vector q describing stabiliser decomposition of an n-qubit state, ρ =

∑k qk |φk〉〈φk|, |φk〉 ∈ STABn; description of a stabiliser circuit E ; stabiliser observ-
able E; number of samples M

Output: Estimate Ê for Tr[EE(ρ)].
1: Ẽ← 0
2: for m← 1 to M do
3: Sample |φk〉〈φk| from {Pr(k) = |qk|

‖q‖1
}.

4: Ẽm← sign(qk)‖q‖1 Tr[EE(|φk〉〈φk|)] . Computed using Gottesman-Knill.
5: Ẽ← Ẽ + Ẽm
6: end for
7: return Ê = Ẽ/M.

Again, one can demonstrate the validity of the simulator by showing that the output

variable is an unbiased estimator, and that each Ẽm is bounded by the `1-norm of the
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distribution, then applying Hoeffding’s inequality. We have:

E(Ẽm) = ∑
k

Pr(k) · sign(qk)‖q‖1 Tr[EE(|φk〉〈φk|)] (2.22)

= ∑
k

qk Tr[EE(|φk〉〈φk|)] = Tr[EE(ρ)]. (2.23)

This shows Ẽm is an unbiased estimator for the quantum mean value. To bound Ẽm,

notice that Tr[EE(|φk〉〈φk|)] ∈ [−1,1] when E is a Pauli observable, or in the range [0,1]

if a stabiliser projector. Therefore, by inspecting step 4,

|Ẽm| ≤max
k
|sign(qk)‖q‖1 Tr[EE(|φk〉〈φk|)]| ≤ ‖q‖1. (2.24)

Using the Hoeffding inequality (Theorem 2.1), we obtain the following result.

Theorem 2.5 (RoM simulator performance [103]). Given an n-qubit magic state with

known decomposition ρ = ∑k qk |φk〉〈φk|, for |φk〉 ∈ STABn, where {|qk|/‖q‖1} can be

sampled from in time poly(n), we can estimate the mean value of a stabiliser observable

E up to additive error ε and with success probability at least (1− pfail) with polynomial

space and with runtime at most,

τ = 2
‖q‖2

1
ε2 log

(
2

pfail

)
T poly(n). (2.25)

If the known decomposition of ρ is optimal then the runtime is O
(
R(ρ)2).

In practice, when n is large, the exact optimal decomposition is hard to compute.

However, it is often the case that the initial state to be simulated is a tensor product of

few-qubit magic states. In this case, supposing without loss of generality that n = bk for

some small b, and arbitrary k, one can break the state into blocks of b qubits, ρ =
⊗k

j=1 ρ j

and compute the optimal decomposition for each block. Typically, the composite decom-

position will be suboptimal for n-qubit state, but will be a valid quasiprobability distribu-

tion that can be used in the algorithm. Importantly, this also ensures that the probability

distribution {|qk|/‖q‖1} is a product distribution so can be efficiently sampled from. In

this case the runtime of the algorithm will be O
(

Πk
j=1R(ρ j)

2
)

. Since RoM is submulti-

plicative, it is beneficial to make b as large as is tractable for numerical optimisation.

The framework naturally extends to a subclass of non-stabiliser circuits: those that
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may be implemented by deterministic state injection [34, 103], including all gates from

the third level of the Clifford hierarchy (recall Section 1.4). For such cases, the non-

Clifford gate is replaced by a sequence of stabiliser operations taking a resource state ρ

as input. This admits classical simulation using the method described above, and each

consumed resource ρ contributes a factor R(ρ)2 to the runtime. It has recently been

shown [134] that gadgetisation can be extended to third level diagonal gates subject to

depolarising noise. By modifying the state injection gadget, the n-qubit pure resource

state is replaced by a noisy 2n-qubit resource state. Taking the T -gate as an example, the

resource state |T 〉 is first replaced by a two-qubit ideal resource |T+〉 = |T 〉⊗ |+〉 state

with modified injection circuit. Depolarising noise is then simulated by applying Pauli

errors to ideal resource state ρT = |T+〉〈T+|, that is,

ρ =

(
1− 3p

4

)
ρT +

p
4
(Z1ρT Z1 +Z2ρT Z2 +Z1Z2ρT Z1Z2). (2.26)

The cost of simulation then scales with R(ρ), exploiting the reduced robustness of the

noisy resource state. However, more generally, magic channels cannot necessarily be

implemented using deterministic state injection, and in this case it is not clear that the

robustness of some resource state is the appropriate measure. Recall from Section 1.3

that a channel E is completely stabiliser-preserving if and only if its Choi state ΦE is

a stabiliser state. It follows immediately that the RoM of the Choi state is faithful in

the sense that R(ΦE) = 1 only for stabiliser channels, and is strictly larger otherwise.

One might wonder whether this quantity is suitable as a measure of magic for channels.

It turns out that it fails to be a well-behaved measure of magic, for reasons that will

become clear when we make precise the notion of a channel monotone in Chapter 4. For

completeness, we prove some properties in Appendix C.1.

The quasiprobability simulation method of Howard and Campbell [103] is clearly

similar in spirit to that of Pashayan et al. [124]. It is natural to ask whether decomposition

over stabiliser projectors can be understood through the formalism of frames. Recall that

given a fixed frame and a dual frame, a unique quasiprobability distribution is computed

for any ρ . This is not the case for robustness of magic, where many possible decomposi-

tions are possible, and the optimal decomposition must be found by linear optimisation.

Therefore if there exists a frame {F(λ )} that leads to the function Wρ(λ ) = Tr[F(λ )ρ]
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such that ‖Wρ‖1 =R(ρ), the choice of frame must be state-dependent. For the interested

reader, in Appendix C.2 we show how such an optimal frame can be found starting from

any known stabiliser projector frame [135]. However, it is not clear whether much insight

or practical advantage is gained by viewing stabiliser projector decompositions from this

perspective. One may ask if there exists a more natural phase space picture which pro-

vides a suitable frame for the n-qubit case. In the next section we argue that while there

are ways to modify the phase space construction to this end, their usefulness with respect

to practical classical simulation of quantum circuits is limited.

2.4 Phase space picture for qubits

At this point the reader may ask why the elegant phase space construction has direct

application in quasiprobability simulators for qudits [101, 102, 124], whereas for even

dimension we must resort to overcomplete bases such as the set of stabiliser state pro-

jectors [103]. Fully understanding the differences between odd- and even-dimension

systems is a field of active research [110, 129, 130] outside our scope, but we will sketch

some of the issues pertaining to classical simulation. One useful perspective is via con-

textuality [130]. Given the set of binary observables O = {O j} j that can be measured on

a given system, we call a subset S ⊆ O non-contextual if one can simultaneously make

an assignment λ (O j) ∈ ±1 for all O j ∈ S that is consistent with respect to compatible

observables. That is, λ (O j)λ (Ok) = λ (O jOk) for all commuting O j,Ok,O jOk ∈ S. If

such an assignment is not possible, then the presence of contextuality is indicated. Con-

textuality has often been proposed as a signature of non-classicality, and can be studied

in a state-dependent or -independent setting [130, 136–139].

For qudits, a non-contextual value assignment is possible for any subset of the

Heisenberg-Weyl operators by setting λ (Tu) = 1 for all u. This follows from the compo-

sition law TaTb = ω2−1〈a,b〉Ta+b, which reduces to TbTb = Ta+b for any pair of compat-

ible Heisenberg-Weyl operators, 〈a,b〉 = 0. In this sense, there is no state-independent

contextuality in stabiliser computation for odd d qudits. Indeed, for odd dimension the

emergence of state-dependent contextuality has been shown to align with Wigner func-

tion negativity and hardness of classical simulation [140, 141]. This argument fails for

qubit systems due to the non-existence of 2−1 in F2. In fact, state-independent contex-

tuality can be demonstrated for Pauli measurements n-qubit systems with n≥ 2; this can
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be proved for two qubits, for example, via the Mermin square [137, 138]. This prob-

lematises efforts to portray contextuality as a resource for quantum speedup in the qubit

case. It has also been proved that for any definition of the Wigner function following

the framework of Gibbons et al. [119], there always exist stabiliser states with negative

Wigner function [130]. Several authors have shown that one can recover a consistent pic-

ture connecting contextuality, Wigner function positivity and classical simulability for

qubits, but only by imposing strict restrictions on the free states and operations in some

way. For example, Delfosse et al. [129] introduced a model of computation restricted

to rebits at all steps of the quantum circuit, while Raussendorf et al. constrain the free

measurements to those preserving positivity [130].

Recent work by Raussendorf et al. [110] has attempted to re-align Wigner function

positivity with classical simulability for all stabiliser states by modifying the definition of

phase point operators. Standard phase point operators are sums over all Heisenberg-Weyl

operators, and differentiated by a phase assignment on each term. The altered definition

involves a sum over so-called closed non-contextual (cnc) subsets of the phasespace.

Thus the new phase point operators are labelled by a subset and a phase assignment. It

turns out that since a non-contextual assigment is always possible in the qudit operators,

the only non-trivial cnc set comprises the whole phase space, and the associated Wigner

function coincides with the standard definition. In stark contrast, in even dimension there

is an explosion in the number of maximal cnc sets, leading to a complicated constellation

of new phase point operators. The new basis is massively overcomplete, so that the cor-

responding Wigner function is non-unique and must be optimised. Raussendorf et al. de-

fine a robustness measure for this set analogous to the RoM, and show that their measure

is strictly smaller. However, their new definition of phase point operators is not closed

under tensor product, which means one cannot easily construct product quasiprobability

distributions as was the case in the RoM simulator [103] (Section 2.3). It is therefore not

known how to use the modified phase space picture to obtain more than a small constant

factor speedup over Howard and Campbell, and the optimisation problem appears to be

strictly harder.
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2.5 Simulating CPTP maps

While the set of operations accessible in the Pashayan simulator [124] is universal, the

natural choice of frame for qudits does not carry over to qubits, where the optimal choice

of stabiliser frame is state-dependent. This leads to ambiguity when considering a se-

quence of unitary operations, as the frame that is optimal for a given state or gate is

suboptimal for others. Meanwhile, the RoM simulator [103] is able to admit univer-

sal quantum circuits by gadgetisation, since, for example, any Clifford+T circuit can be

simulated by a stabiliser circuit with injected magic states. From the point of view of

classical simulation, this may lead to inefficiency, since typically synthesis of an arbi-

trary single-qubit rotation requires multiple T gates. It is likely advantageous to simulate

each single-qubit gate more directly. Below we review quasiprobability techniques ex-

tended to deal with general CPTP maps. In addition to the goal of driving down the

simulation cost for arbitrary gates, this is motivated in part by the need to simulate noisy

quantum devices, which may involve imperfect gates, intermediate measurements and

non-stabiliser noise models.

2.5.1 Clifford and Pauli-reset decomposition

In Ref. [45], Bennink et al. proposed an algorithm, which we will call the Oak Ridge sim-

ulator, which takes an approach similar in spirit to Howard and Campbell [103]. In this

simulator initial states are decomposed as an `1-norm-optimised linear combination of

stabiliser states, just as in Ref. [103]. However, the Oak Ridge simulator admits a larger

class of quantum circuit, since magic-increasing CPTP maps can be directly decomposed

without gadgetisation, as a quasiprobability distribution over stabiliser channels from a

class we will refer to as CPR. This is the set of Clifford gates, supplemented by Pauli

reset channels. The latter are stabiliser-preserving CPTP maps that perform the follow-

ing sequence of adaptive operations (i) measure the Pauli observable P; (ii) if outcome is

“−1”, perform a Clifford correction to map the state to the “+1” eigenspace, otherwise

do nothing. For a single qubit, the Pauli reset channels are simply the stabiliser circuits

that prepare the six pure stabiliser states. Bennink et al. show that the affine span of

CPR contains all CPTP maps, so for any quantum channel E it is always possible to write

E = ∑k qkTk, where qk ∈ R and Tk ∈ CPR. We can define a cost function analogous to
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RoM,

RCPR(E) = min
q

{
‖q‖1 : ∑

k
qkTk = E , Tk ∈ CPR

}
(2.27)

In practice the linear program to find an optimal decomposition is only tractable for up

to two qubits. The authors therefore assume an n-qubit quantum circuit E is specified

as a composition of L two-qubit circuit elements E j, E = EL ◦ EL−1 ◦ . . . ◦ E2 ◦ E1. A

quasiprobability decomposition is found for each circuit element E j = ∑k q( j)
k Tk, and for

the initial state ρ = ∑k q(0)k |φk〉〈φk|. This gives an overall quasiprobability distribution

for the output state E(ρ) = ∑k qkTk
(∣∣φk0

〉〈
φk0

∣∣), where k is an (L+ 1)-element vector

labelling an initial stabiliser state and trajectory through the circuit,

qk =
L

∏
j=0

q( j)
k j
, and Tk = TkL ◦TkL−1 ◦ . . .◦Tk1 . (2.28)

Renormalising this quasiprobability distribution gives us a product probability distribu-

tion which can be sampled from in the same way as for RoM, but the sample cost is now

proportional to ∏
L
j=1[RCPR(E j)]

2. This is consistent with the notion that the simulation

cost should be exponential in the number of gates, but also captures the fact that some

channels can be represented more efficiently than others.

The caveat here is that CPR is a strict subset of the stabiliser operations; indeed, Ben-

nink et al. acknowledge that they do not consider general adaptive stabiliser operations

[45]. We will show explicitly later in this thesis (Section 5.3.1) that there exist stabiliser

channels that are not in the convex hull of CPR. ThereforeRCPR cannot be considered a

measure of magic, as it is not faithful with respect to the set of stabiliser operations, and

there is no guarantee that a given stabiliser circuit can be efficiently simulated with the

Oak Ridge algorithm.

2.5.2 Pauli propagation

We close this chapter by discussing a pair of complementary simulation algorithms pro-

posed by Rall et al. [142]. These make use of quasiprobability techniques, but are also

reminiscent of the non-Clifford simulator due to Aaronson and Gottesman [31] (Section

1.5), as they involve expansion in the Pauli basis. Rall et al. treat the Pauli expansion

of a generic operator A as a quasiprobability distribution. The normalising factor is the

stabiliser norm introduced earlier as a lower bound for RoM. That is, we can always
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write A = ∑P∈P+
qPP, where qP = Tr[PA]2−n, and P+ is the set of unsigned Pauli op-

erators. Recalling that the stabiliser norm is defined ‖A‖ st = 2−n
∑P∈P+

|Tr[PA]|, it is

clear that we can normalise the coefficients form a probability distribution. There are

two variants of the technique. The first samples a Pauli operator from the distribution,

and then propagates it through a sequence of channels E = E (T ) ◦ . . . ◦ E (T ), sampling

a new Pauli operator whenever it is mapped to a linear combination of more than one.

Finally a sample value for a target observable is obtained, and the process is repeated

many times, as usual. In the second variant of the method, an observable is propagated

backward through the circuit, and each sample is obtained by evaluating the transformed

observable with the initial state. Observables need not be Pauli operators in general, but

are assumed to have tensor product structure. The algorithms admit general CPTP maps

on bounded number of qubits, subject to overhead related to the stabiliser norm. Rall

et al. call the forward and backward propagation variants Schrödinger and Heisenberg

propagation, respectively.

For both variants, the algorithm leads to an unbiased estimator for the quantum

mean value. Since ‖ρ‖ st is a loose lower bound on the RoM for any density operator ρ ,

one might imagine the associated algorithm improves on the RoM simulator. However,

the simulators have some unusual properties that mitigate against this. In both cases, the

worst-case runtime depends on the overall stabiliser norm maximised over all trajectories.

Considering Schrödinger propagation first, note that |Tr[EP]| can be as large as 2n if E

is a Pauli observable. If E is a local observable acting on k qubits, E ′⊗1n−k then the

runtime will be O
(
2n−k), even if E is a stabiliser projector. It therefore seems that the

Schrödinger variant is likely only practically useful when all but a constant number of

qubits are measured. In addition,when E is an adaptive (i.e. non-unital) channel, such as

a state injection gadget, ‖E(P)‖ st can be larger than 1, even for stabiliser operations.

The Heisenberg variant does not suffer from limitations as severe as Schrödinger

propagation. Remarkably, the sampling cost is independent of the input state, since

Tr[Pρ] ∈ [−1,+1] for any normalised state ρ . In this respect, the hardness of simulating

magic states is sidestepped in the Heisenberg variant by back-propagating observables to

meet the initial magic state, which is assumed to have tensor product structure. It is still

in general inefficient for non-unital stabiliser maps, but the possibility is left open that the

Heisenberg simulator may perform better than the RoM simulator for certain circuits, for
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example circuits comprised solely of unitary gates and unital stabiliser-preserving noise

channels. Hakkaku and Fujii have recently compared Heisenberg propagation with the

RoM simulator for random Clifford + T circuits subject to depolarising noise of strength

p [134]. It was found that the technique based on RoM tends to perform better for modest

amounts of noise, but there is a crossover where Heisenberg propagation gains the ad-

vantage for circuits with large p. For random Clifford +T circuits for example, the RoM

simulator has the advantage for circuits with error rate smaller than p≈ 0.06−0.11, de-

pending on the precise configuration. Broadly speaking, the RoM simulator appears to

gain the advantage for noisy random circuits where the amount of magic per unit cell is

higher, either due to higher density of T gates, or lower error rates.

2.6 Summary and outlook

We have reviewed prior work on quasiprobability distributions over “free” elements, and

saw that the negativity of such decompositions can be viewed both as a well-behaved

measure of magic resource and a quantifier of hardness of classical simulation. We argued

that the phase space approach that has been applied successfully for odd-dimension qudits

is unsuitable for the study of magic resource and classical simulation in the qubit case.

Instead, the robustness of magic was proposed as a magic monotone for general n-qubit

states [103]. The RoM simulator admits universal quantum circuits via gadgetisation, but

this restricts the gate set to Cliffords supplemented by third-level hierarchy gates such as

the T gate. This may introduce unnecessary classical simulation overhead, as multiple,

and sometimes many, third-level gates are required to synthesise each generic single-

qubit rotation, and each state injection gadget requires the initialisation of at least one

auxiliary qubit. In the last section of the chapter, we discussed direct decomposition of

general CPTP maps, avoiding the cumbersome gadgetisation step. Both the Oak Ridge

[45] and Pauli propagation [142] methods were efficient only for a restricted subclass

of stabiliser operation, however. This hints at the possibility that further performance

improvements can be gleaned by expanding the class of simulable operations.

In Part II of this thesis, we will present novel work showing how faithful measures

of magic can be defined for quantum channels, linking these to classical simulation over-

head for non-stabiliser circuits. We will also introduce generalisations of the quasiproba-

bility methods reviewed in this chapter leading to provable performance gains [2]. Before
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presenting this novel work, in the next chapter we will review a class of simulators based

on stabiliser rank [3, 59, 60]. Whereas quasiprobability simulators can provide additive

error estimates for individual Born rule probabilities, stabiliser rank simulators allow the

estimation of Born rule probabilities up to multiplicative error. This makes them suit-

able for emulating the ability of a quantum computer to randomly draw a bit-string from

the full distribution. We will see that classical simulation cost can be linked to a magic

resource monotone in this context as well.
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Stabiliser rank methods

3.1 State vector decompositions
Just as a density operator can be decomposed as a linear combination of pure stabiliser

state projectors [103], any state vector can be expressed as a superposition of stabiliser

states [143]. The exact stabiliser rank χ(ψ) [3, 59, 60] for a given state ψ is the small-

est number of stabiliser terms needed to specify the state. Loosely speaking, stabiliser

rank simulators work by combining Clifford simulation results computed separately for

each stabiliser term, so that the runtime is a function of the number of terms χ . Various

techniques have been proposed for reducing this runtime by replacing the exact decom-

position with a sparsified proxy [3, 60]. In particular, Bravyi et al. [3] introduced a

sparsification technique that leads to a classical simulation algorithm where the runtime

is quantified by a well-behaved continuous monotone called stabiliser extent. We will re-

fer back to Ref. [3] many times throughout this thesis, especially in Chapter 5, where we

extend the sparsification techniques, so we will use the shorthand BBCCGH to denote

this paper (after the authors Bravyi, Browne, Campbell, Calpin, Gosset and Howard).

In this chapter, we first review work on stabiliser decompositions of pure magic states,

before turning to the associated simulators.

3.2 Exact stabiliser rank
The question of whether arbitrary pure states on n qubits can be written as a subexpo-

nential superposition of quantum states was posed by Garcia, Markov and Cross [143],

motivated by the fact that while the dimension of Hilbert space grows as 2n, the number

of n-qubit stabiliser states grows faster (Ω(2n2/2)). However, they found that one can
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construct families of tensor product states |Ψ〉 = |ψ〉⊗n, such that the overlap with any

polynomial-sized superposition of orthogonal stabiliser states vanishes as n→ ∞. For

these “stabiliser-evading” families of states, |Ψ〉 cannot be expressed with a polynomial

number of terms in any stabiliser basis, even approximately. However, whether the num-

ber of terms could be reduced by allowing superpositions of non-orthogonal stabiliser

states was left an open question. Bravyi, Smith and Smolin used this idea to define a

quantifier of non-stabiliserness.

Definition 3.1 (Stabiliser rank). Given an n-qubit pure state |ψ〉, the stabiliser rank is

defined:

χ(ψ) = min

{
k : |ψ〉=

k

∑
j=1

c j
∣∣φ j
〉
,
∣∣φ j
〉
∈ STABn

}
. (3.1)

Since stabiliser rank is defined only for pure states, the notion of monotonicity is

only well-defined for purity-preserving operations. Purity-preserving stabiliser opera-

tions such as Clifford gates will update each stabiliser term, but will not increase the

number of them, so in this sense stabiliser rank is a pure-state magic monotone. It is also

submultiplicative, since given exact decompositions of states ψ and φ , with χ(ψ) and

χ(φ), we can always form a valid, but possibly sub-optimal decomposition of |ψ〉⊗ |φ〉
with χ(ψ)χ(φ) terms, so that χ(ψ⊗φ)≤ χ(ψ)χ(φ).

Upper bounds for the stabiliser rank can be obtained by finding explicit decomposi-

tions for given states. In Ref. [59], Bravyi, Smith and Smolin give a numerical method

for finding stabiliser decompositions. The method is based on a random walk over k-

tuples of stabiliser states, (φ1, . . . ,φk). If a state is left invariant by projection onto the

subspace spanned by some k-tuple, then k must upper bound the stabiliser rank. Upper

bounds for tensor powers |H〉⊗n of the Hadamard state |H〉= cos(π/8) |0〉+sin(π/8) |1〉
(Clifford-equivalent to the T state), were initially found up to the n = 6 case [59]. This

was extended to n = 7 by BBCCGH [3], where numerical searches were also carried out

for tensor products of Haar random single qubit states |ψ〉⊗n (Table 3.1). Much more

recently Kocia [144] found an improved upper bound for the n = 12 case. Computing

stabiliser rank exactly becomes intractable for many-qubit states, but one can compute

upper bounds by breaking tensor product states up into blocks of m or fewer qubits, where

|ψ〉⊗m has a known decomposition. For example, using Kocia’s 12-qubit upper bound

χ(|H〉⊗12) ≤ 47, then for n = 12m one obtains χ(|H〉⊗n) ≤ χ(|H〉⊗12)
n

12 = O
(
20.463n).
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Number of qubits, n Hadamard state |H〉⊗n Generic n-qubit magic state |ψ〉⊗n

1 2 2
2 2 3
3 3 4
4 4 5
5 6 6
6 6 8
7 12 14
8 12 -

12 47 -

Table 3.1: Selection of known upper bounds for stabiliser rank for tensor products of Hadamard
states and Haar random states. [3, 59]

However, Qassim et al. [145] have very recently discovered a method for directly obtain-

ing decompositions for m-qubit product states, giving the state-of-the-art upper bound

of χ(|H〉⊗m) = O
(
20.3963m). BBCCGH obtained an analytic upper bound for generic

nm-qubit states of the form |ψ〉⊗m for m≤ 5, and where |ψ〉 is an n-qubit state

χ(|ψ〉⊗m)≤

2n +m−1

m

 . (3.2)

In their recent paper, Qassim et al. gave a new asymptotic upper bound for the n = 1

case, χ(|ψ〉⊗m) =O
(
(m+1)2

m
2
)
.

Tight lower bounds have proved difficult to obtain. Bravyi, Smith and Smolin [59]

previously showed that χ(|H〉⊗m) = Ω(m1/2), and Peleg et al. [146] have recently im-

proved this bound to Ω(m). However, it is expected that in the limit of large m the

stabiliser rank should scale superpolynomially. In Section 3.5 we explain how one can

simulate sampling from a stabiliser circuit with magic state injection in time O(χ(ψ)),

where |ψ〉 is the injected magic state [3, 60]. Since this class of circuits is universal for

quantum computation, polynomial scaling of stabiliser rank would imply BQP = BPP

[3]. In any case, the presently known suboptimal stabiliser decompositions for m copies

of the Hadamard state described above lead to a simulation method for Clifford + T cir-

cuits with runtime O(χ) = O
(
20.3963m), where m is the number of T-gates [59]. The

desire to drive down simulation overhead for these circuits has motivated several authors

to address the question of whether and to what extent the number of stabiliser terms can

be reduced by relaxing the requirement for an exact decomposition, and instead allowing
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superpositions of stabiliser states that approximate the target state. We discuss this next.

3.3 Approximate stabiliser rank and stabiliser extent
The notion of an approximate stabiliser rank was first introduced by Bravvi and Gosset

[60], and developed further by BBCCGH [3]. Bravyi and Gosset [60] gave a randomised

algorithm for generating an approximation |L∗〉 to the magic state |H〉⊗n up to arbi-

trary error δ in the fidelity,
∣∣〈L∗|H〉⊗t∣∣2 ≥ 1−δ . The method is based on writing |H〉⊗t

as a summation over terms |x̃1⊗ . . .⊗ x̃t〉 in a non-orthogonal basis, where |0̃〉= |0〉 and

|1̃〉= |+〉. The exact summation is over all 2t elements of the linear space Ft
2; the approx-

imation strategy is to randomly generate k-dimensional subspaces L ⊂ Ft
2 until one with

the desired fidelity is found. They showed that an approximation of rank O
(
20.23tδ−1)

can be obtained in time O
(
(cos

(
π

8

)
)−2tδ−2). In Ref. [3], BBCCGH defined the approx-

imate stabiliser rank for the general case.

Definition 3.2 (Approximate stabiliser rank [3]). Given n-qubit state ψ , and precision

parameter δ > 0, the approximate stabiliser rank χδ is defined,

χδ (ψ) = min
ψ̃

{χ(ψ̃) : ‖ψ− ψ̃‖ ≤ δ}. (3.3)

Note that this differs slightly from an earlier definition due to Bravyi and Gosset

[60], where the error δ was specified with respect to fidelity rather than norm ‖ψ− ψ̃‖.
In Section 3.4 we will see that the revised definition is convenient for a sparsification pro-

cedure introduced by BBCCGH, applicable to generic pure states with known stabiliser

decomposition [3]. Computing the approximate stabiliser rank exactly is hard, but it can

be upper bounded using sparsification. Using this method, for a pure state with decom-

position |ψ〉= ∑c j
∣∣φ j
〉
, for

∣∣φ j
〉
∈ STABn the approximate stabiliser rank satisifies,

χδ (ψ)≤ 1+
‖c‖2

1
δ 2 , (3.4)

where ‖c‖1 = ∑ j
∣∣c j
∣∣ is the `1-norm of the vector of coefficients c. This motivates the

definition of stabiliser extent, a continuous pure-state measure of magic that turns out to

be easier to work with than stabiliser rank.

Definition 3.3 (Pure-state stabiliser extent [3]). Given an n-qubit pure state |ψ〉, the
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pure-state stabiliser extent ξ is given by

ξ (ψ) = min{‖c‖2
1 : ∑

j
c j |φ j〉= |ψ〉 , |φ j〉 ∈ STABn} (3.5)

The stabiliser extent is invariant under Clifford operations, and can be computed as

a convex optimisation problem. By strong duality, we can recast the problem in terms of

witnesses. We must first define stabiliser fidelity, the maximum fidelity between a target

state and any stabiliser state [3], F(ψ) = max|φ〉∈STABn |〈ψ|φ〉|
2. The dual form of the

problem can then be expressed as

ξ (ψ) = max
|ω〉
|〈ψ|ω〉|2

F(ω)
(3.6)

This immediately leads to a lower bound; for any ψ we must have ξ (ψ) ≥ F(ψ)−1.

Solving the optimisation problem directly is tractable only for a few qubits. In contrast

to robustness of magic, however, this is ameliorated greatly by the multiplicativity of

stabiliser extent for an important class of states, as follows.

Theorem 3.4 (Multiplicativity of pure-state stabiliser extent [3]). Suppose |ψ〉=⊗L
j=1
∣∣ψ j
〉

is a tensor product state such that each
∣∣ψ j
〉

is a state on at most three qubits. Then:

ξ (ψ) =
L

∏
j=1

ξ (ψ j). (3.7)

This means that the stabiliser extent can be efficiently computed for any product

state, provided each tensor factor is on no more than three qubits. For example, we

can exactly compute the extent for the magic resource state needed to implement any

Clifford + T circuit. This is all the more remarkable, since it has recently been proven

that stabiliser extent cannot be multiplicative in general [147]; the property must vanish

at some number of qubits greater than three.

Importantly, a number of the tools developed in Ref. [3] can be carried over to

decompositions of unitary operations. This will be useful when we consider stabiliser

rank simulation techniques for general quantum circuits, as it means that gadgetisation

can often be avoided, eliminating the need to re-synthesise arbitrary qubit rotations in

terms of T gates, and potentially reducing simulation overhead. The extent for unitary
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operators is defined in terms of Clifford gates rather than stabiliser states.

Theorem 3.5 (Stabiliser extent for unitary operators [3]). Given an n-qubit unitary U,

the unitary stabiliser extent is defined,

ξ (U) = min{‖c‖2
1 : ∑

j
c jVj =U, Vj ∈ Cln}. (3.8)

This can be connected to the stabiliser extent for resource states |V 〉 = V |+t〉 for

diagonal gates V , via the lifting lemma.

Lemma 3.6 (Lifting lemma [3]). Let |V 〉 be the resource state for a diagonal t-qubit

unitary V , with decomposition |V 〉 = ∑ j c j
∣∣φ j
〉

over equatorial stabiliser states
∣∣φ j
〉
=

Wj |+t〉, where W j are diagonal Clifford gates. Then V = ∑ j c jWj, so that ξ (V )≤ ‖c‖2
1.

If ‖c‖2
1 = ξ (|V 〉) then ξ (|V 〉) = ξ (V ).

This allows stabiliser rank simulation methods to be applied directly to circuits in-

volving arbitrary phase gates, without the need for Clifford + T compilation and gadgeti-

sation. We will shortly discuss these classical simulation techniques, but first we consider

the sparsification procedure already mentioned.

3.4 Sparsification
In the context of stabiliser rank methods, sparsification refers to techniques for reducing

the number of terms in a stabiliser decomposition. We already discussed the method of

approximating |H〉⊗t by randomly sampling linear subspaces of dimension smaller than t,

introduced by Bravyi and Gosset [60]. That method was tailored to the specific structure

of that particular type of magic state. Other classes of state lend themselves to similarly

tailored approximation techniques. For example, consider tensor product states |θ〉⊗t ,

where |θ〉 = cos(θ/2) |0〉+ sin(θ/2) |1〉. If θ is sufficiently close to zero, a reasonable

approximation strategy is to expand |θ〉⊗t in the standard basis and truncate amplitudes

below a certain cutoff. This yields an upper bound for approximate stabiliser rank of

order 2h2(cos2(θ/2)), with h2 being binary entropy [3].

We will now discuss a sparsification method, introduced by BBCCGH [3], which

can be applied to any known exact decomposition, and is particularly effective when

used with decompositions that are optimal with respect to the stabiliser extent. The spar-

sification procedure is described in Algorithm 3.



3.4. Sparsification 95

Algorithm 3 BBCCGH sparsification procedure. [3]

Input: Decomposition of n-qubit pure state |ψ〉= ∑ j c j
∣∣φ j
〉
, where

∣∣φ j
〉
∈ STABn; tar-

get number of terms k.
Output: Sparsified vector |Ω〉 with k terms.

1: function SPARSIFY(|ψ〉,k)
2: for α ← 1 to k do
3: Sample index jα from probability distribution {Pj =

∣∣c j
∣∣/‖c‖1}

4: |ωα〉 ← (c jα/
∣∣c jα

∣∣) ∣∣φ jα
〉
.

5: end for
6: |Ω〉 ← (‖c‖1/k)∑

k
α=1 |ωα〉

7: return |Ω〉
8: end function

Thus the subroutine SPARSIFY outputs randomised k-term vectors |Ω〉, which may

in general be unnormalised. The utility of this procedure as an approximation method is

established by the sparsification lemma [3], which we restate here.

Lemma 3.7 (BBCCGH sparsification lemma). Given an n-qubit state with known de-

composition |ψ〉 = ∑ j c j
∣∣φ j
〉

where
∣∣φ j
〉
∈ STABn, the distribution of random vectors

|Ω〉 output by SPARSIFY(|ψ〉 ,k) satisfies:

E(‖|ψ〉− |Ω〉‖2)≤ ‖c‖
2
1

k
(3.9)

In Chapter 5 we show how sparsification can be extended to density operators, and

for comparison it is intructive to evaluate error with respect to the trace-norm. In Ap-

pendix E.1 we prove the following simple corollary to Lemma 3.7.

Corollary 3.8 (BBCCGH sparsification trace-norm error). Given a normalised n-qubit

state |ψ〉 = ∑ j c j
∣∣φ j
〉
, for any k > 0, one can sample from a distribution of sparsified

vectors |Ω〉 using the procedure SPARSIFY(|ψ〉 ,k), such that:

E(‖|ψ〉〈ψ|− |Ω〉〈Ω|‖1)≤ 2
‖c‖1√

k
+
‖c‖2

1
k
. (3.10)

Lemma 3.7 implies that the average squared norm error in vectors output from

SPARSIFY can be made arbitrarily small by choosing a large enough number of terms

k. Specifically, E(‖|ψ〉− |Ω〉‖2) ≤ δ 2 can be satisfied for any δ > 0 by setting

k = d(‖c‖1/δ )2e. This immediately yields the upper bound for approximate stabiliser

rank χδ (ψ) given in equation (3.4). With the above choice for k, Lemma 3.7 guar-
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antees that there exists at least one |Ω〉 such that ‖|ψ〉− |Ω〉‖ ≤ δ . It follows that

χδ (ψ) ≤ k ≤ 1 + ‖c‖2
1δ−2. This is true for any decomposition optimal with respect

to extent, so χδ (ψ) ≤ 1+ ξ (ψ)δ−2. This provides a computable upper bound for the

approximate stabiliser rank, though it is known not to be tight in all cases [3]. Since we

will use similar proof techniques in Section 5.2.3.1, it is useful to reproduce the proof of

the sparsification lemma [3] here.

Proof. Given a state with decomposition ∑ j c j |φ j〉, which we assume to be normalised,

the for-loop of Algorithm 3 generates i.i.d. random vectors |ωα〉 such that Pj =

Pr
(
|ωα〉= (c j/

∣∣c j
∣∣) ∣∣φ j

〉)
=
∣∣c j
∣∣/‖c‖1. This vector has expected value,

E(|ωα〉) = ∑
j

Pj
c j∣∣c j
∣∣ ∣∣φ j

〉
= ∑

j

c j

‖c‖1

∣∣φ j
〉
=
|ψ〉
‖c‖1

. (3.11)

Then for a random sparsification , E(|Ω〉) = ‖c‖1
k ∑

k
α=1E(|ωα〉) = |ψ〉. We want to com-

pute the expected value of

‖|ψ〉− |Ω〉‖2 = 〈ψ|ψ〉−〈ψ|Ω〉−〈Ω|ψ〉+ 〈Ω|Ω〉 . (3.12)

Since |ψ〉 is normalised, E(〈ψ|ψ〉) = 1. We also have E(〈ψ|Ω〉) = 〈ψ|E(|Ω〉) =
〈ψ|ψ〉= 1. To evaluate E(〈Ω|Ω〉) we expand,

〈Ω|Ω〉= ‖c‖
2
1

k2

k

∑
α=1

k

∑
β=1

〈
ωα

∣∣ωβ

〉
(3.13)

=
‖c‖2

1
k2

k

∑
α=1
〈ωα |ωα〉+

‖c‖2
1

k2

k

∑
α=1

∑
β 6=α

〈ωα |ωβ 〉 (3.14)

Since |ωα〉is normalised, the first summation contributes a constant value of ‖c‖2
1/k. In

the second term, |ωα〉 and |ωβ 〉 are independent, so

E(〈ωα |ωβ 〉) = E(〈ωα |)E( |ωβ 〉) =
〈ψ|ψ〉
‖c‖2

1
=

1
‖c‖2

1
. (3.15)

Since there are k(k−1) terms in the second summation, we obtain

E(〈Ω|Ω〉) = ‖c‖
2
1

k
+

k(k−1)
k2 =

‖c‖2
1

k
+1− 1

k
. (3.16)
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Then we have:

E(‖|ψ〉− |Ω〉‖2) =−1+E(〈Ω|Ω〉) = ‖c‖
2
1

k
− 1

k
≤ ‖c‖

2
1

k
(3.17)

This completes the proof.

The BBCCGH sparsification lemma shows that sparsified vectors are close to a tar-

get state on average. In itself, this does not preclude the possibility of occasionally ob-

taining |Ω〉 that are poor estimates for |ψ〉. One can check numerically that this is rare,

but it is preferable to analytically bound the probability of obtaining such outliers, not

least because we need to understand how this could affect the accuracy of simulation

algorithms using a sparsification step. Bravyi et al. addressed this issue with the sparsi-

fication tail bound [3].

Lemma 3.9 (Sparsification tail bound [3]). Suppose we set the number of terms k in

SPARSIFY so that k ≥ ‖c‖2
1/δ 2. Then the following inequalities hold.

E(〈Ω|Ω〉−1)≤ δ
2 (3.18)

Pr
{
‖|ψ〉− |Ω〉‖2 ≤ 〈Ω|Ω〉−1+δ

2
}
≥ 1−2exp

(
− δ 2

8F(ψ)

)
(3.19)

Here F(ψ) = max|φ〉∈STABn |〈ψ|φ〉|
2 is the stabiliser fidelity.

Note that the usefulness of the tail bound depends on 〈Ω|Ω〉 being close to (or

smaller than) 1. Though equation (3.18) makes 〈Ω|Ω〉 � 1 rather unlikely, in princi-

ple it can be as large ‖c‖2
1. Normalising |Ω〉 does not solve the problem, as the BBCCGH

sparsification results only give guarantees about the closeness of the unnormalised vector.

The issue can be avoided by a post-selection step where we estimate 〈Ω|Ω〉 (e.g. using the

techniques described below in Section 3.5) and then discard if we find 〈Ω|Ω〉−1� δ 2.

A second difficulty can arise in cases where the stabiliser fidelity F(ψ) is not small.

According to inequality (3.19), for fixed δ , the probability of failure (that is, of obtain-

ing |Ω〉 that fails to satisfy the condition in braces in (3.19)) is at most 2e−
1

O(F) . This

upper bound can become non-negligible if the stabiliser fidelity is not sufficiently small.

Bravyi et al. [3] argue that for important classes of states, the stabiliser fidelity is expo-

nentially small in the number of qubits n. Let us unpack this by considering a specific
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case. Assume that 〈Ω|Ω〉 ≈ 1, so that the expression in square brackets in (3.19) is

‖|ψ〉− |Ω〉‖2 . δ 2. From (3.19), a target error δ is compatible with a given success

probability p only if the stabiliser fidelity satisfies

F(ψ)≤ δ 2

8log
(

2
1−p

) . (3.20)

To make this concrete, let us use the modest assumptions that we want error δ no larger

than 0.1, and success probability better than 1/2. This can be achieved only when

F(ψ) . 0.0009. For t-fold tensor products of the T -state |T 〉, stabiliser fidelity is mul-

tiplicative [3], so F(|T 〉⊗t) ≈ (0.854)t . It follows that (3.20) is satisfied only when we

have at least 45 copies of |T 〉. The minimum value of t needed to satisfy (3.20) in-

creases for more stringent δ and p. Curiously, the sparsification tail bound also seems

to suggest worse performance for states containing less magic, as quantified by stabiliser

fidelity. For example, if instead of the π/8-state |T 〉 we consider t-fold tensor prod-

ucts of the π/32-state |π/32〉 = (|0〉+ eiπ/16 |1〉)/
√

2, we need at least t ≈ 1200 before

(3.19) gives a non-trivial lower bound on p. Therefore there is a large class of interest-

ing intermediate-sized quantum circuits for which the BBCCGH sparsification tail bound

cannot be applied. In Chapter 5, Section 5.2.3.1, we will show how to sidestep these diffi-

culties by considering the difference in the trace norm between |ψ〉〈ψ| and the ensemble

ρ1 = ∑Ω Pr(Ω) |Ω〉〈Ω|〈Ω|Ω〉 from which sparsified vectors are drawn, rather than fidelity of the

|ψ〉 with any particular sampled |Ω〉.

3.5 Inner products, exponential sums and norms

We next review methods that take advantage of stabiliser rank decompositions to simulate

quantum processes involving non-stabiliser resources, at the cost of some overhead. In

Section 3.6 we discuss integration of these techniques into quantum circuit simulations.

Here, we first consider methods that have been developed for estimating inner products

and norms for states with stabiliser decompositions.

Bravyi, Smith and Smolin [59] proposed an algorithm for classically simulating

Pauli-based computations (PBC), a model where a system is initialised with an m-fold

product magic state |H〉⊗m, and a sequence of adaptive Pauli measurements are car-

ried out. Polynomial-time classical processing is applied to the measured eigenvalues
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to output a single bit. They showed that any n-qubit Clifford + T circuit with m T-

gates can first be converted into an n+m-qubit generalised PBC initialised in the state

|0〉⊗n |H〉⊗m. This PBC can in turn be simulated by repeating a PBC on m qubits sup-

plemented by classical processing. The stated aim of Ref. [59] was to show that an

(n+ k)-qubit quantum circuit can be simulated by an n-qubit quantum circuit with ad-

ditional classical processing taking time 2O(k)poly(n), but our main interest here is in

their algorithm for simulating a PBC using classical computation alone, which is able

to simulate any m-qubit PBC in time 2αmpoly(n), where α ≈ 0.94. Given a χ-term

stabiliser decomposition of the initial state, |ψ〉= ∑
χ

j=1 c j
∣∣φ j
〉
, one can express the prob-

ability of obtaining a string of measurement outcomes {o1, . . . ,ot}, where oi = ±1, as

Pr(o1, . . . ,ot) = ∑ j,k c∗jck
〈
φ j
∣∣Πo1...ot

∣∣φk
〉
, where Πo1...ot is a product of t Pauli projectors.

Since there are χ2 terms in the summation, the total runtime will be O
(
χ2τ
)
, where τ

is the time to evaluate each
〈
φ j
∣∣Πo1...ot

∣∣φk
〉
. It was already known that a stabiliser inner

product could be evaluated in O
(
n3) time. Bravyi, Smith and Smolin [59] gave a proce-

dure to compute
〈
φ j
∣∣Πo1...ot

∣∣φk
〉

with same n3 scaling, but avoiding having to simulate all

t Pauli projections explicitly. Instead they used the affine space formalism developed by

Dehaene, De Moor and Van den Nest [54, 61] to show that for a pair of stabiliser states

|φ〉 and |φ ′〉, and a stabiliser group S, one can write 〈ψ|ΠS |φ〉 = 2−n+t
∑x∈Fn

2
ωF(x),

where F is a degree-two polynomial which depends only on parameters specifying ΠS ,

ψ and φ . They showed that the sum is equal to either 0 or 2p/2ωm, for m ∈ F8 and

p ∈ {n,n+1, . . . ,2n}, and that this can be computed in timeO
(
n3). The time to compute

the outcome probability for a single string will beO
(
χ2n3). The probability of obtaining

a given outcome at the t-th step of a PBC is conditional on the t−1 previous outcomes,

so to exactly simulate one run of a PBC requires computingO(n) probabilities, with total

runtimeO
(
χ2n4). In practice the exact stabiliser rank of |ψ〉= |H〉⊗n will not be known,

so a sub-optimal decomposition can be used. Using the result of Qassim et al. [145], the

runtime to simulate a PBC with n copies of |H〉 will be O
(
(20.3963n)2n4)≈O(20.79nn4).

The algorithm just described computes probabilities exactly. Bravyi and Gosset

[60] showed that the runtime for computing the probability 〈ψ|Π|ψ〉= ‖Π |ψ〉‖2 can be

reduced from quadratic to linear in stabiliser rank χ , by tolerating a multiplicative error

ε . The error can be made arbitrarily small, at the cost of runtime factor O
(
ε−2). Since

the runtime for circuits with significant magic resource will typically be dominated by the
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expected exponential scaling of χ , in many scenarios O
(
χε−2) scaling will be cheaper

than the O
(
χ2) scaling for exact computation, even at relatively high precision. Bravyi

and Gosset exploit the fact that stabiliser states form a projective 2-design [148, 149],

1
|STABn| ∑

|φ〉∈STABn

|φ〉〈φ |⊗2 =
∫

dµ(ψ) |ψ〉〈ψ|⊗2 , (3.21)

where µ denotes the Haar measure. It follows that, if we let |φi〉 denote a stabiliser state

drawn uniformly at random from STABn, we have:

E(|〈φi|ψ〉|2) =
‖|ψ〉‖2

2n , E(|〈φi|ψ〉|4) =
2‖|ψ〉‖4

2n(2n−1)
. (3.22)

One can therefore estimate the norm ‖|ψ〉‖2 by randomly sampling stabiliser states |φi〉 to

generate the random variable η = 2n

L ∑
L
i=1 |〈φi|ψ〉|2 . From (3.22), it follows that E(η) =

‖|ψ〉‖2 and Var(η) < ‖ψ‖4

L . Using Chebyshev’s inequality, by choosing L = d4ε−2e the

following holds with probability at least 3/4.

(1− ε)‖ψ‖2 ≤ η ≤ (1+ ε)‖ψ‖2. (3.23)

One can then amplify the success probability by taking the median of means. Taking M

estimates {η1,η2, . . . ,ηM}, the median satisfies equation (3.23) with probability at least

1− pfail, provided we choose M = O(log(1/pfail)) [150]. In total we need to compute

LM =O
(
ε−2 log

(
p−1

fail

))
terms |〈φi|ψ〉|2. Assuming a k-term decomposition of |ψ〉, this

means computing O
(
kε−2 log

(
p−1

fail

))
stabiliser inner products 〈φa|φb〉. Bravyi and Gos-

set proposed another exponential sum method for doing so, outputting a triple of integers

(r,s, t) such that 〈φa|φb〉 = r · 2s/2 · eiπt/4 in time O
(
n3). They also gave a method for

choosing stabiliser states uniformly at random using the affine space description, tak-

ing time O
(
n2) on average, but O

(
n3) in the worst case. Overall, the total worst-case

runtime for the fast norm estimation procedure is given by

τFN =O
(
kMLn3)=O(kn3

ε2 log
1

pfail

)
. (3.24)

If the exact stabiliser rank decomposition were used (k = χ(ψ)) the runtime would be

O
(

χn3

ε2 log 1
pfail

)
.
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BBCCGH refined this procedure in two ways [3]. First, they showed that it is un-

necessary to sample from the full set of stabiliser states, as one can use the restricted

set of equatorial states. These are the stabiliser states with full support in the standard

basis. That is, they can be written |φA〉 = 2−n/2
∑x∈Fn

2
ix

T Ax |x〉, where A ∈ An, and An

is the set of n× n symmetric matrices with off-diagonal entries in F2 and diagonal en-

tries in F4. Sampling uniformly from this subset is significantly more straightforward

than sampling from STABn, as it amounts to uniformly sampling a matrix of An. This

always takes O
(
n2) time, rather than only on average, as was the case in the previous

procedure. BBCCGH [3] that if we define a random variable ηA = 2n|〈φA|ψ〉|2, where

|φA〉 is sampled uniformly from the equatorial state |ψ〉 is any unnormalised state vector,

then E(ηA) = ‖ψ‖2 and Var(η)≤ ‖ψ‖4 which allows the same norm estimation routine

as before, but with a simplified sampling step.

BBCCGH also improved the inner product subroutine [3]. Again, an exponential

sum algorithm is employed, but the method is adapted for the CH-simulator (see Section

1.2.1). The modified subroutine has the same asymptotic n3-scaling as in Ref. [60], but

turns out to perform significantly better for intermediate sized systems. For example,

benchmarking on a Linux PC with 3.2GHz i5-6500 CPU, the BBCCGH algorithm was

shown in Ref. [3] to have average runtime 0.036ms for n= 60, compared with 1.72ms for

the method due to Bravyi and Gosset [60]. In combination with the improved sampling

step, this leads to significant improvement to the fast norm estimation technique.

3.6 Emulating quantum circuits
There are two main paradigms for simulating quantum circuits within the stabiliser rank

literature: the gadget-based model where non-Clifford gates are implemented by state

injection [3, 59, 60], and gate decomposition methods [3], where each non-Clifford gate

is itself decomposed in some way. We will first describe these simulation models, and

then sketch how each of these methods can be used to simulate sampling from the output

distribution of a quantum circuit.

With respect to gadget-based techniques, two strategies can be identified, referred

to as fixed-sample and random-sample in BBCCGH [3]. For both strategies assume an

n-qubit circuit U = CtUtCt−1 . . .C1U1C0 initialised in the state |0n〉 with t non-Clifford

gates Ui interleaved with Clifford layers Ci. First each non-Clifford gate Ui is replaced
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by a state injection gadget consuming a corresponding resource state |Ui〉. We assume

for simplicity that each gate acts on a single qubit, but in general this assumption is

not required. The initial state is now an (n + t)-qubit state |0n〉 ⊗ |ψ〉, where |ψ〉 =
⊗t

i=1 |Ui〉. The first strategy, the fixed-sample method, is to bypass the adaptivity inherent

to gadgetisation by post-selecting on the “+1" outcome of each measurement, so that

the circuit corresponds to a well-defined Clifford unitary C, up to a normalising factor,

U |0n〉= 2t/2(1n⊗〈0t |)C |0n〉 |ψ〉 . By using an exact decomposition of |ψ〉 and applying

phase-sensitive Clifford simulation with post-selection and normalisation, one obtains a

stabiliser decomposition of the final state of the circuit, |ψ ′〉= ∑ j c j
∣∣φ j
〉

for some vector

of coefficients c. One can then estimate Born rule probabilities as described earlier.

BBCCGH [3] noted that sparsification cannot be used in this fixed-sample method, as any

error in the initial state decomposition may be magnified by the normalisation factor 2t/2.

The runtime for norm estimation will be at least Ω(χ(ψ)ε−2). In practice the optimal

decomposition will not be known, so the runtime will typically be O
(
ε−2

∏m χ(ψm)
)
,

where |ψ〉=⊗m
∣∣ψ j
〉

is a suitable partitioning of |ψ〉 into few-qubit blocks for which the

exact stabiliser rank can be computed.

The random-sample strategy [3, 60] can be applied in the case where each non-

Clifford gate is taken from the third level of the Clifford hierarchy. As discussed in

the last chapter, when this holds, state injection can be performed deterministically us-

ing Clifford corrections alone, so that the necessary correction can be efficiently simu-

lated for any outcome. For each run of the circuit, an outcome is chosen at random for

each gadget. Then one simulates the circuit U |0n〉 = 2t/2(1n⊗〈x|)Cx |0n〉 |ψ〉 where x

is the vector of outcomes sampled for each gadget and Cx is the Clifford circuit adapted

with the corresponding Clifford corrections. Repeating this sampling many times, pro-

vided a δ -close approximation is used for |ψ〉, the error in the outcome distribution is

O(δ ) on average [60]. Using sparsification followed by norm estimation, the runtime is

O
(
ξ (ψ)δ−2ε−2), where ξ is stabiliser extent and δ is the sparsification error. Repeated

sampling cannot be avoided, as any individual sample x would suffer from the same error

amplification as the fixed-sample method. Aside from the reduced number of terms, a

second advantage of sparsification is that, by Theorem 3.4, ξ is exactly multiplicative,

provided each resource state injected is on no more than three qubits. Therefore, one can

employ a decomposition that is provably optimal.
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Gadgetisation can be avoided altogether by employing direct decomposition meth-

ods. BBCCGH introduced the sum-over-Cliffords method [3]. As discussed earlier, one

can decompose non-Clifford gates as a linear combination of Cliffords V = ∑ j c jK j. As-

sume a circuit U = CtUtCt−1 . . .C1U1C0, where Ci are Clifford gates and Ui are not. By

repeated use of the lifting lemma (Lemma 3.6) for each Ui, this translates to stabiliser

decomposition of the final state of the circuit. There are two key advantages over gad-

getisation. First, the t-qubit auxiliary system on which resource states are prepared is

not needed, so Clifford simulation subroutines take poly(n) time instead of poly(n+ t).

More importantly, sum-over-Clifford admits gates outside the Clifford hierarchy, so re-

compilation for a specific gate set is not necessary. Typically multiple third-level gates

are needed to synthesise an arbitrary rotation, so the number of non-Clifford gates t can

be significantly reduced if the circuit can be decomposed directly. Indeed, optimal de-

compositions are known for some important cases. Arbitrary single-qubit Z-rotations

Uẑ(θ) = exp[−iθZ/2] can be decomposed as [3],

Uẑ(θ) =

[
cos
(

θ

2

)
− sin

(
θ

2

)]
1+
√

2sin
(

θ

2

)
S. (3.25)

Using the lifting lemma, this can be shown to be optimal, so that ξ (Uẑ(θ)) =

ξ (Uẑ(θ) |+〉) =
[
cos
(

θ

2

)
+ tan

(
π

8

)
sin
(

θ

2

)]2
. BBCCGH [3] also gave an optimal decom-

position for the CCZ-gate, showing that ξ (CCZ) = ξ (CCZ
∣∣+3〉) = 16/9. This leads to

runtime ∝ ∏
t
i=1 ξ (Ui). This can lead to very significant savings compared to the case

where gates must be recompiled for the Clifford+T set.

Before closing this section, we sketch how we can perform simulated bit-string sam-

pling from the output of a quantum circuit in time O(ξ ) [3]. We will defer consideration

of the full technical details until Chapter 5, where we develop our own sampling algo-

rithms. Consider the setting where we have an n-qubit quantum circuit U with initial

state |φ〉, and final computational basis measurement on a subset of w qubits. Without

loss of generality we can assume that the first w qubits are measured. If we represent the

output of the circuit as a bit-string x of length w, then the circuit outputs x with proba-

bility P(x) = ‖ΠxU |φ〉‖2, where Πx = |x〉〈x| ⊗1n−w. Suppose we want a “black box”

classical algorithm that approximately emulates the operation of the quantum circuit, so

that it outputs a string x with probability Psim(x), such that ‖P−Psim‖1 ≤ δ , for δ > 0.
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Computing each Psim(x) individually and sampling from the resulting distribution is in-

efficient, as in general this will involve 2w calculations. Instead, the strategy is to sample

each bit one by one by a chain of conditional probabilities. Let x j be the j-bit string

obtained by truncating the last w− j bits of x; we use x0 to denote an empty string. Let

Pr
(
y j|x j−1

)
=

Pr
(
[x j−1,y j]

)
Pr
(
x j−1

) (3.26)

be the probability of sampling the j-th bit to be y j, having sampled x j−1 for the first j−1

bits. Here [x j−1,y j] means the concatenation of x j−1 with y j to form a j-bit string. Then

the probability of obtaining string x can be decomposed as

Pr(x) = Pr(xw|xw−1)Pr(xw−1|xw−2) . . .Pr(x2|x1)Pr(x1) (3.27)

Let |ψ〉=U |φ〉 be the final state of the circuit, and assume we have obtained a stabiliser

decomposition of this state by one of the methods outlined earlier, with `1-norm equal to√
ξ (ψ). Let SPARSIFY be the sparsification subroutine described in Algorithm 3, and

let FASTNORM be the fast norm estimation method described in Section 3.5. To sample

a string of measurement outcomes, we first perform one call to SPARSIFY to obtain a

decomposition with k = O
(
ξ (ψ)δ−2

S

)
terms, where δS is the sparsification error. Then

we call FASTNORM to estimate the marginal distribution for the first qubit, and flip a

biased coin to select either x1 = 0 or x1 = 1. Next, we use FASTNORM and the relation

(3.26) to compute Pr(x2 = 0|x1) and Pr(x2 = 1|x1) and sample from this distribution. We

repeat this process for each conditional probability in the chain (3.27) until all qubits

have been “measured”. There are w calls to FASTNORM, each of which has runtime

O
(
kε
−2
FNn3), where εFN is the relative error. Therefore the total runtime to generate one

w-bit string isO
(
wkε

−2
FNn3). It can be shown that to achieve an `1-norm error of no more

than δ in the final distribution we must set both εFN and δS proportional to δ/w, and that

this leads to the runtime given in the following theorem.

Theorem 3.10 (BBCCGH bit-string sampling algorithm [3]). Given an n-qubit pure state

with decomposition |ψ〉 = ∑ j c j
∣∣φ j
〉
, for stabiliser states

∣∣φ j
〉
, there is a classical algo-

rithm that samples from a distribution Psim(x) that is δ -close in `1-norm to the quantum

distribution P(x) = ‖Πx |ψ〉‖2, with probability at least (1− pfail), for any pfail,δ > 0.
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The runtime of this algorithm is given by

τ =O
(
‖c‖2

1δ
−4w3n3 log

(
wp−1

fail

))
. (3.28)

If the decomposition of |ψ〉 is optimal with respect to stabiliser extent, the runtime is

proportional to ξ (ψ).

In this sketch we have neglected several technical details, but we will give a full

analysis when we introduce our improved algorithm in Chapter 5.

3.7 Summary and outlook
We have seen in this chapter that decomposing magic states as superpositions of sta-

biliser states can lead to fast classical algorithms that are able to simulate sampling from

the output of near-Clifford quantum circuits. The runtime of these algorithms can be re-

duced dramatically by approximating the target state vector by one with fewer stabiliser

terms. Of particular relevance to our work in later chapters are the sum-over-Clifford and

sparsification techniques introduced by BBCCGH [3]. For ideal quantum circuits, these

methods are typically much faster than the quasiprobability simulators discussed in the

previous chapter. For example, the robustness of magic R can be shown to be strictly

larger than stabiliser extent ξ for magic states, often by a significant margin [2]. Fur-

thermore, the runtime of the Howard and Campbell simulator scales with R2, while for

fast norm estimation the scaling is only linear. Quasiprobability simulators also have the

disadvantage that they are not suitable for simulated sampling as they can only estimate

Born rule probabilities up to additive error.

The main limitation of the stabiliser rank techniques described so far is that whereas

the Howard-Campbell simulator is able to simulate noisy stabiliser operations applied

to imperfect magic states, and the Oak Ridge [45] simulator admits noisy non-stabiliser

operations, stabiliser rank methods have previously only been defined for ideal circuits

initialised with pure states. While the stabiliser extent and robustness of magic are some-

what similar in flavour as they are both defined in terms of the `1-norm of a decomposition

into stabiliser states, the decompositions are of different type, and the simulation tech-

niques appear to be unrelated, save for their use of Gottesman-Knill-like subroutines. The

precise connection between the two classes of simulator and their associated monotones
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has previously not been fully understood. In Chapter 4 we will show that by relaxing

the definition of robustness of magic on the one hand, and redefining stabiliser extent for

density operators on the other, the connections between these two avenues of research

start to be revealed. In the process, we can obtain improved performance for both types

of simulator.
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Chapter 4

Quantifying magic for qubit states and

operations

In this chapter we develop a comprehensive framework for quantifying the magic of

general n-qubit states and operations, which encompasses and extends the quasiproba-

bility and stabiliser rank approaches reviewed in Chapters 2 and 3. In Chapter 5 we will

make use of this framework to design improved algorithms for performing various clas-

sical simulation tasks. For this chapter, we instead focus on resource-theoretic aspects.

We first introduce a triplet of new magic monotones for states, which are efficiently com-

putable for important classes of many-qubit states, and elucidate connections between the

stabiliser rank and quasiprobability pictures. In Section 4.2, we introduce well-behaved

monotones that quantify the magic embodied by quantum channels outside SPn,n, the set

of completely stabiliser-preserving maps. Finally, Section 4.4 provides techniques for

more easily calculating these quantities for the case of diagonal channels.

4.1 Magic monotones for states
In this section we define three new magic monotones for states: density-operator extent,

generalised robustness of magic, and dyadic negativity. These monotones were first in-

troduced for magic theory in our article Ref. [2]. We will argue that each can be seen as

an extension of the stabiliser extent, previously only defined for state vectors, to general

density operators. Meanwhile, two of the new monotones can be cast as relaxations of

the definition of robustness of magic. In Chapter 5, we will show that each of these magic

monotones characterises the performance of a different simulation task. In this way we

find that there is a deep connection between the previously disparate stabiliser rank and
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quasiprobability simulation methods. For now, we will define the monotones, give some

important properties, and show how they are related formally.

4.1.1 Stabiliser extent for density operators

Recall that the pure-state extent [3] is defined in its primal formulation as,

ξ (ψ) := min{‖c‖2
1 : |ψ〉= ∑

j
c j
∣∣φ j
〉

;
∣∣φ j
〉
∈ STABn}, (4.1)

or in the dual formulation, ξ (ψ) := max
{
| 〈ω|ψ〉 |2 : | 〈ω|φ〉 | ≤ 1 ∀|φ〉 ∈ STABn

}
. We

extend this definition to density operators ρ via the convex roof extension [151, 152],

which yields the average pure-state extent minimised over all ensemble decompositions.

Definition 4.1 (Density-operator stabiliser extent). Given an n-qubit density operator ρ ,

the density-operator extent Ξ is defined,

Ξ(ρ) := min

{
∑

j
p jξ (ψ j) : ρ = ∑

j
p j
∣∣ψ j
〉〈

ψ j
∣∣ , p j ≥ 0

}
. (4.2)

When there exists an optimal decomposition such that ξ (ψ j) = Ξ(ρ) for all ψ j, we say

that the decomposition is equimagical.

In general, the convex roof extension is difficult to compute, but we will see that

an exact optimal decomposition can be found for any single-qubit state. In combination

with the multiplicativity properties discussed in Section 4.1.5, this means that the density-

operator extent can be computed efficiently for any product state ρ = ⊗ jρ j, where each

ρ j is either a single-qubit state, or a pure state on up to three qubits. We note that the

density-operator extent is manifestly a direct extension of pure-state extent to the domain

of general density operators, since trivially the density operator for any pure state |ψ〉
has a unique ensemble decomposition ρ = |ψ〉〈ψ|. It then follows immediately that

Ξ(|ψ〉〈ψ|) = ξ (ψ).

4.1.2 Generalised notions of robustness

Recall that robustness of magic (RoM) [103] was defined using projectors,

R(ρ) := min
q

{
‖q‖1 : ρ = ∑

j
q j
∣∣φ j
〉〈

φ j
∣∣ ; ∣∣φ j

〉
∈ STABn

}
, (4.3)
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or alternatively in terms of a pair of mixed stabiliser states,

R(ρ) := min
{

2p+1 : ρ = (1+ p)ρ+− pρ−;ρ± ∈ STABn, p≥ 0
}
. (4.4)

We obtain two new monotones by relaxing these definitions in two different ways. First,

in place of the projectors in equation (4.3), we allow decomposition in terms of outer

products |L〉〈R|, which we call stabiliser dyads, where |L〉 and |R〉 can be different sta-

biliser states, and the coefficients for each dyad are allowed to be complex. We call this

new quantity the dyadic negativity.

Definition 4.2 (Dyadic negativity (primal form)). Given an n-qubit density operator ρ ,

the dyadic negativity is defined:

Λ(ρ) := min

{
‖α‖1 : ρ =∑

j
α j
∣∣L j
〉〈

R j
∣∣ ; ∣∣L j

〉
,
∣∣R j
〉
∈ STABn,α j ∈ C

}
. (4.5)

Similar quantities have been defined for other resource theories; for example the pro-

jective tensor norm in the theory of entanglement [153, 154], and the `1-norm of coher-

ence [155]. Since projectors are a special case of stabiliser dyads, the dyadic negativity is

optimised over a strictly larger set than RoM, so it is always the case that R(ρ)≥ Λ(ρ).

Indeed, we will see that the gap is often significant. The dual formulation of the dyadic

negativity [95] can be defined in terms of a class of witnessesWΛ.

Definition 4.3 (Dyadic negativity (dual form)). Given an n-qubit state ρ , the dyadic

negativity is given by:

Λ(ρ) = max{Tr[Wρ] : W ∈WΛ}, (4.6)

where WΛ = {W : |〈L|W |R〉| ≤ 1 ∀ |L〉 , |R〉 ∈ STABn, W Hermitian}. (4.7)

The final monotone we define in this section is the generalised robustness of magic

(gRoM). Analogous generalised robustness quantities have previously been defined for

the resource theory of entanglement and others [156, 157]. The generalised robustness is

a relaxation of the definition (4.4), up to a change in variable. Whereas in equation (4.4)

both ρ+ and ρ− were required to be mixed stabiliser states, here we only require this of

the positive part of the decomposition.
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Definition 4.4 (Generalised robustness of magic (primal form)). The generalised robust-

ness Λ+ for an n-qubit state ρ is defined:

Λ
+(ρ) := min{λ ≥ 1 : λρ+− (λ −1)ρ− = ρ, ρ+ ∈ STABn}, (4.8)

= min{λ : ρ ≤ λρ+, ρ+ ∈ STABn}, (4.9)

where ρ− can be any normalised density operator.

For a given state ρ , comparing the optimal λ = λ∗ in equation (4.8) with the op-

timal p = p∗ for equation (4.4), and noting that we obtained the gRoM by relaxing the

constraints on the optimisation, it must be the case that λ∗ ≤ p∗+1. Then since we have

Λ+(ρ) = λ∗ andR(ρ) = 2p∗+1, the standard and generalised RoM are related by

R(ρ)≥ 2Λ
+(ρ)−1≥ Λ

+(ρ) (4.10)

The dual form of the gRoM is obtained by restricting the set of witnesses WΛ to be

positive semidefinite, which has the effect of simplifying the condition | 〈L|W |R〉 | ≤ 1 to

〈φ |W |φ〉 ≤ 1 for stabiliser states |φ〉 ∈ STABn. LetW+ be this class of witnesses. We

can then give the dual formulation as follows.

Definition 4.5 (Generalised robustness of magic (dual form)). Given an n-qubit state ρ ,

its generalised robustness Λ+ can be defined:

Λ
+(ρ) = max{Tr[Wρ] : W ∈W+}, (4.11)

where W+ = {W : 〈φ |W |φ〉 ≤ 1,W ≥ 0}. (4.12)

Note thatW+ is strictly contained inWΛ. Therefore the maximal value of Tr[Wρ]

over W ∈W+ can be no larger than that over W ∈WΛ, so Λ+(ρ) ≤ Λ(ρ). Both gRoM

and dyadic negativity are computable in the sense that they can be formulated as stan-

dard convex optimisation problems, but the optimisation quickly becomes intractable for

more than a few qubits, due to the super-exponential increase in the number of n-qubit

stabiliser states. However, we will see that the results of Section 4.1.5 make both quan-

tities efficiently computable for n-fold tensor products of single-qubit states. This differs

from the standard RoM, where we can construct non-optimal decompositions for n-fold
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tensor products, but optimal decompositions achieving `1-norm equal to R are hard to

compute.

4.1.3 Generic monotone properties

Results due to Regula on generalised resource theories [95] imply that each monotone

M defined earlier in this section satisfies the following properties:

1. faithfulness:M(ρ) = 1 if and only if ρ ∈ STABn;

2. monotonicity:M(ρ)≥M(O(ρ)) for any O ∈ SPn,n, and any qubit state ρ;

3. strong monotonicity (monotonicity on average under selective free measurements):

M(ρ)≥∑
i

piM
(

KiρK†
i

pi

)
, (4.13)

where ρ is an n-qubit state, and {Ki}i are the Kraus operators of a quantum

channel such that each Kraus operator is completely stabiliser-preserving, i.e.

Ki |φ〉 ∝ |φ ′〉 ∈ STAB2n ∀ |φ〉 ∈ STAB2n, and pi = Tr
(

KiρK†
i

)
;

4. convexity:M(∑ j p jρ j)≤ ∑ j p jM(ρ j);

5. submultiplicativity:M(⊗ jρ j)≤∏ jM(ρ j).

We also have the following relations between the monotones. For the special case of pure

states, the connection between the monotones is crystallised as follows.

Lemma 4.6 ([95]). For any pure state ψ , Λ+(|ψ〉〈ψ|) =Λ(|ψ〉〈ψ|) =Ξ[|ψ〉〈ψ|] = ξ (ψ).

This result was already proved by Regula in the context of generalised resource

theories [95], but here we reproduce the proof given in the Appendix of Ref. [2], which

is more intuitive for our setting.

Proof. By definition Ξ(|ψ〉〈ψ|) = ξ (ψ). We will prove that Λ(|ψ〉〈ψ|) = Ξ(|ψ〉〈ψ|),
then argue that the same proof strategy holds for Λ+. For any state |ψ〉, there exists a

decomposition optimal with respect to pure-state extent:

|ψ〉= ∑
k

ck |φk〉 s.t. Ξ(|ψ〉〈ψ|) = ξ (ψ) =

(
∑
k
|ck|
)2

. (4.14)
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Expanding |ψ〉〈ψ|, we obtain a (possibly non-optimal) decomposition over stabiliser

dyads, |ψ〉〈ψ|= ∑ j,k c∗jck
∣∣φ j
〉〈

φk
∣∣, so that

Λ(|ψ〉〈ψ|)≤∑
j,k
|c j| |ck|= ∑

j
|c j|∑

k
|ck|= (∑

j
|c j|)2 = ξ (ψ). (4.15)

Now we prove the inequality Λ(|ψ〉〈ψ|) ≥ ξ (ψ). From the dual formulation of pure-

state extent, there exists some unnormalised witness |ω〉 such that |〈ω|ψ〉|2 = ξ (ψ),

and | 〈ω|φ〉 | ≤ 1 for all |φ〉 ∈ STABn. But in the dual formulation of Λ, we have that

Λ(ρ) = maxW∈WΛ
{Tr[Wρ]}, where the witnesses in W ∈WΛ satisfy | 〈L|W |R〉 | ≤ 1 for

all |L〉 , |R〉 ∈ STABn. In particular this condition is satisfied by W = |ω〉〈ω| for the

ω-witness optimal w.r.t. ξ (ψ). So |ω〉〈ω| ∈ WΛ but in general this might not be the

maximal witness w.r.t. the dyadic negativity. So,

Λ(|ψ〉〈ψ|)≥ Tr[|ω〉〈ω| |ψ〉〈ψ|] = | 〈ω|ψ〉 |2 = ξ (ψ). (4.16)

Combined with inequality (4.15), this proves Λ(|ψ〉〈ψ|) = Ξ(|ψ〉〈ψ|) = ξ (ψ).

Now, by definition the witness classW+ appearing in the dual form of generalised

robustness is a restriction of WΛ, so Λ+(ρ) ≤ Λ(ρ), as we argued when defining the

monotones. Thus immediately we have Λ+(|ψ〉〈ψ|) ≤ ξ (ψ). Nevertheless we still find

that |ω〉〈ω| ∈ W+, so by the same argument as above we have Λ+(|ψ〉〈ψ|) ≥ ξ (ψ).

Hence Λ+(|ψ〉〈ψ|) = Ξ(|ψ〉〈ψ|) = ξ (ψ) and equality between all four quantities has

been established for the case of pure states.

An ordering of the monotones is established by the following theorem.

Theorem 4.7 ([95]). For any density operator ρ on any number of qubits, we have

Λ
+(ρ)≤ Λ(ρ)≤ Ξ(ρ). (4.17)

Proof. The first inequality we have immediately by comparing the dual forms of Λ and

Λ+, as discussed above. Proving the second inequality requires convexity and the result

of Lemma 4.6. Any state ρ has some optimal decomposition ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, such

that Ξ(ρ) = ∑ j p jξ (ψ j). Now using the convexity of the dyadic negativity, Λ(ρ) ≤
∑ j p jΛ(

∣∣ψ j
〉〈

ψ j
∣∣). But from Lemma 4.6, we know that for pure states Λ(

∣∣ψ j
〉〈

ψ j
∣∣) =
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ξ (ψ), so we have, Λ(ρ)≤ ∑ j p jξ (
∣∣ψ j
〉〈

ψ j
∣∣) = Ξ(ρ) which completes the proof.

4.1.4 Optimal decompositions for single-qubit states

Beyond the generic properties that hold for other resource settings, in Ref. [2] we proved

results for single-qubit states specific to magic theory. These take the form of three

lemmata leading to the following theorem.

Theorem 4.8. For any single-qubit state ρ , we have Λ+(ρ) = Λ(ρ) = Ξ(ρ), and further-

more ρ admits an optimal equimagical decomposition.

The first lemma establishes the equality of the monotones for density operators in

the convex hull of certain subsets of pure states. The second and third lemmata will show

that any single-qubit density operator lies within such a convex hull.

Lemma 4.9 (Monotone equality lemma). For any ω-witness |ω〉, we define the set Bω to

be the convex hull of all pure states ψ for which |〈ω|ψ〉|2 = ξ (ψ). It follows that for all

ρ ∈ Bω we have Λ+(ρ) = Λ(ρ) = Ξ(ρ) = 〈ω|ρ|ω〉.

We omit the proof of this version of the lemma, as we will shortly prove a variant

generalised to other classes of witness. For now we consider the other two lemmata

required to prove Theorem 4.8. It remains to show that for any single-qubit density

operator ρ , we can find a suitable set of pure states and witnesses such that ρ ∈ Bω .

The second lemma gives an explicit form for all optimal single-qubit witnesses. This

is achieved with the aid of the Bloch sphere, which can be divided into eight octants,

defining the positive octant as follows.

Definition 4.10. The positive octant is the set P := {ρ : 〈X〉,〈Y 〉,〈Z〉 ≥ 0}. We further

subdivide the positive octant as follows:

PX := {ρ : ρ ∈ P,〈X〉 ≤ 〈Y 〉,〈X〉 ≤ 〈Z〉}, (4.18)

PY := {ρ : ρ ∈ P,〈Y 〉 ≤ 〈X〉,〈Y 〉 ≤ 〈Z〉},

PZ := {ρ : ρ ∈ P,〈Z〉 ≤ 〈X〉,〈Z〉 ≤ 〈Y 〉]}.

where we use the shorthand 〈M〉 := Tr[ρM].

The region PY is shown within the positive octant in Figure 4.1. The strategy is to

prove the results for all states in the region PY . This is sufficient to prove Theorem 4.8
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mixed
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q = 2/3
q > 2/3

Figure 4.1: Region PY within positive octant of the Bloch sphere. The variable q specifies the
optimal witness for pure states, as defined in Lemma 4.11. In the orange region of
the surface, all states share the same witness, with q =

√
2/3. In the green region q

varies continuously between
√

2/3 and 1. Image by Earl Campbell, reproduced from
Ref. [2] under CC-BY 4.0 license.

for all single-qubit states, since any point in the Bloch ball is Clifford-equivalent to some

point in PY , and our monotones are Clifford-invariant. We can now state the second

lemma.

Lemma 4.11. Let |ψ〉 be any pure, single-qubit magic state in the set PY . Then the

ω-witness |ω〉 that achieves | 〈ψ|ω〉 |2 = ξ (ψ) has an operator representation,

|ω〉〈ω|= 1+qH +
√

1−q2Y
1+q/

√
2

, (4.19)

where
√

2/3≤ q≤ 1 and H = (X +Z)/
√

2. Furthermore, if |ψ〉 is in the set PY ∩PX or

PY ∩PZ then q =
√

2/3 and the ω-witness takes the form

|ω〉〈ω|= 1+(X +Y +Z)/
√

3
1+1/

√
3

. (4.20)

The form of the optimal ω-witness established here is used in Lemma 4.12, below,

to prove that any single-qubit state is in the convex hull of a set of pure states sharing the

same optimal witness. Combined with the equality lemma, (Lemma 4.9), this completes

the proof of Theorem 4.8.

Lemma 4.12. For any single-qubit non-stabilizer state ρ , there exists an ω-witness |ω〉

https://creativecommons.org/licenses/by/4.0/
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such that ρ ∈ Bω (as defined in Lemma 4.9).

The proofs of these lemmata are due to Earl Campbell, so we omit the full technical

details for Lemmata 4.11 and 4.12; the interested reader can find these in Ref. [2]. Below

we instead sketch the proofs, as the intuition from these arguments will later be useful

as a stepping stone toward understanding decompositions of noisy single-qubit rotations.

Note that while Lemma 4.11 and Lemma 4.12 relate specifically to the single-qubit case,

Lemma 4.9 holds for general n-qubit systems. Before sketching the arguments we state

and prove a slightly more general version of the lemma than that given in Ref. [2], which

applies for any Hermitian witness, rather than just those of the form |ω〉〈ω|.

Lemma 4.13 (Generalised monotone equality). For any Hermitian witness W ∈ W we

define the set BW to be the convex hull of all pure states ψ for which 〈ψ|W |ψ〉 =
Λ(|ψ〉〈ψ|). It follows that for all ρ ∈ BW we have

Λ(ρ) = Ξ(ρ) = Tr[Wρ]. (4.21)

Similarly, for positive witnesses W+ ∈ W+, if BW+ is the convex hull of all pure states

such that 〈ψ|W+|ψ〉= Λ+(|ψ〉〈ψ|), then for all ρ ∈ BW+:

Λ
+(ρ) = Λ(ρ) = Ξ(ρ) = Tr

[
W+

ρ
]
. (4.22)

Proof. If ρ ∈ BW there exists a decomposition ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, such that〈

ψ j
∣∣W ∣∣ψ j

〉
= Λ(|ψ〉〈ψ|) for all j. Then by the definition of density-operator extent,

Ξ(ρ)≤∑
j

p jξ (ψ j) = ∑
j

p jΛ(ψ j) (4.23)

= ∑
j

p j Tr
[
W
∣∣ψ j
〉〈

ψ j
∣∣]= Tr[Wρ], (4.24)

where we used the fact that the monotones are all equal for pure states. But since W is

a feasible witness, the dyadic negativity of ρ is lower bounded by Tr[Wρ] ≤ Λ(ρ), so

Ξ(ρ) ≤ Λ(ρ). Whereas by Theorem 4.7 we always have Λ(ρ) ≤ Ξ(ρ). This proves the

statement for witnesses W ∈W . An identical argument holds if we replaceW withW+

and Λ with Λ+, proving the second statement.

We can then give the following immediate corollary:
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Corollary 4.14 (Monotone inequality). Suppose ρ is an n-qubit state such that Λ+(ρ)<

Λ(ρ), i.e. there is a gap between the generalised robustness and dyadic negativity. Then

for any set of pure states B′ such that ρ ∈ conv(B′), the elements |ψ〉 ∈B′ cannot all share

the same optimal witness |ω〉 for the pure-state extent, and neither can they share the

same optimal witness W+ ∈W for generalised robustness. Similarly, if dyadic negativity

and density-operator extent are gapped, Λ(ρ) < Ξ(ρ), then for any set B′ as defined

above, |ψ〉 ∈ B′ cannot all share the same ω-, W- or W+-witness.

We now sketch the proofs for Lemmata 4.11 and 4.12. The first step to prove

Lemma 4.11 is to notice that, given a pure state with optimal decomposition |ψ〉 =
∑ j c j

∣∣φ j
〉
, we can equate the primal and dual solutions for the stabiliser extent to ob-

tain the relation (∑ j
∣∣c j
∣∣)2 =

∣∣∑ j c j
〈
ω
∣∣φ j
〉∣∣2, where |ω〉 is an optimal witness. Since

every valid ω-witness satisfies |〈ω|φ〉| ≤ 1 for any |φ〉 ∈ STAB1, it follows from this

relation that the optimal witness must be tight against every state in the decomposition,∣∣〈ω∣∣φ j
〉∣∣= 1. Next we express the unknown witness |ω〉〈ω| in the Pauli basis,

|ω〉〈ω|= λ (1+qxX +qyY +qzZ). (4.25)

To find the unknown variables, one can apply the following constraints: |ω〉〈ω| is rank-1

so q2
x +q2

y +q2
z = 1; it is positive so λ > 0; and qx = qz, which follows from membership

of PY and the tightness of the witness against |+〉 and |0〉. This leads to the witness form

given in equation (4.19). Specialising to states in the intersections PY ∩PZ and PY ∩PX ,

one finds that qx = qy = qz, resulting in equation (4.20).

To prove Lemma 4.12 we consider slices S f through the positive octant (Figure 4.2)

parameterised by a constant f = Tr[ρσF ], where σF = (X +Y + Z)/
√

3 . Notice that

every state in the positive octant must lie in one of these slices. The states ψX
f , ψY

f and

ψZ
f are the unique pure states that lie at the intersections between S f and PY ∩PZ , PZ ∩PX

and PX ∩ PY respectively. By Lemma 4.11, these all share the same optimal witness

|ω∗〉〈ω∗| (equation (4.20)). Then by Lemma 4.9, for all states ρ in the purple shaded

region, the three monotones are all equal to 〈ω∗|ρ|ω∗〉, since they are in the convex hull

of {ψX
f ,ψ

Y
f ,ψ

Z
f }. States outside the triangle can be expanded ρ = (1+ rAσA + rBσB +

f σF)/2 (see Figure 4.2). One can show that any such ρ is a convex mixture of a pair of

pure states |Φ±ρ 〉〈Φ±ρ |= (1+ rAσA±
√

1− r2
A + f 2σB+ f σF)/2, which share an optimal
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ψZ
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ψY
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PY ∩ PX ∩

PZ ∩

Φ+
ρ
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ρ
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Sf Sf
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Figure 4.2: Slice S f through the Bloch sphere, labelled by parameter f = Tr[ρσF ], where σF =
(X +Y +Z)/

√
3. The axes shownare defined by the coordinates rA = Tr[ρσA] and

rB = Tr[ρσB], where σA = (X +Z−2Y )/
√

6, and σB = (X−Z)/
√

2. Figure by Earl
Campbell, reproduced from Ref. [2] under CC-BY 4.0 license.

witness. This completes the argument.

4.1.5 Multiplicativity and comparison with robustness

In Chapter 2 we discussed the fact that the robustness of magic is submultiplicative and

cannot be computed efficiently for many-qubit states. In contrast, we next prove that our

monotones are multiplicative for tensor products of single-qubit states.

Theorem 4.15. Let σ j be single-qubit states. Then

Λ(⊗ jσ j) = Ξ(⊗ jσ j) = Λ
+(⊗ jσ j) = ∏

j
Λ
+(σ j), (4.26)

and furthermore ρ = ⊗ jσ j admits an optimal equimagical decomposition, ρ =

∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, where Ξ(ρ) = ξ (ψ j) for all j.

Proof. It is clear from the definition of density-operator extent Ξ that it is submulti-

plicative, since a decomposition for ρ = ⊗ jσ j can always be constructed from opti-

mal decompositions of the single-qubit states σ j. Then, since Theorem 4.8 showed that

Λ+(σ j) = Ξ(σ j) for all j, we have the upper bound Ξ(⊗ jσ j)≤∏ j Ξ(σ j) = ∏ j Λ+(σ j).

To prove equality, we need to show that ∏ j Λ+(σ j) ≤ Ξ(⊗ jσ j). Another consequence

of Theorem 4.8 is that every single-qubit state σ j has an optimal W+ witness of the

https://creativecommons.org/licenses/by/4.0/
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Thm. 3.14

Thm. 3.15

Eq. (3.11)

Figure 4.3: Comparison of robustness of magic with new magic monotones for many copies of
the noisy Hadamard eigenstate ρ . Straight grey line shows the exact multiplicative
scaling for our monotones, Λ+(ρ⊗n) = Λ(ρ⊗n) = Ξ(ρ⊗n). Dots show robustness of
magic R computed exactly, up to 5 qubits. For larger n, R can only be bounded
(shaded region). The upper bound (red line) is based on submultiplicativity, relative
to known decompositions. Two lower bounds are shown: (i) R≥ 2Λ+− 1 given in
equation (4.10), tighter for low numbers of qubits (blue line); and (ii) exponential
bound from Theorem 4.16, which is tighter for larger numbers of qubits (lower red
line). Adapted from Fig. 1 in Ref. [2] under CC-BY 4.0 license.

form
∣∣ω j
〉〈

ω j
∣∣, so that Λ+(σ j) =

〈
ω j
∣∣ρ∣∣ω j

〉
. It was shown by Bravyi et al. [3] that if

{
∣∣ω j
〉
} are valid witnesses, then so is |Ω〉=⊗ j

∣∣ω j
〉
. This gives us a lower bound for the

generalised robustness of ρ =⊗ jσ j. Therefore,

∏
j

Λ
+(σ j) = ∏

j

〈
ω j
∣∣σ j
∣∣ω j
〉
= 〈Ω|⊗ j σ j |Ω〉 ≤ Λ

+(⊗ jσ j). (4.27)

But it is always the case that Λ+(⊗ jσ j)≤ Ξ(⊗ jσ j) (see Theorem 4.7). This gives us the

equality (4.26). To see that the n-qubit state admits an optimal equimagical decomposi-

tion, recall that Theorem 4.8 guarantees an optimal equimagical decomposition for any

single-qubit state. This naturally gives a decomposition for the n-qubit state, where each

term has the form ∏ j
∣∣ψ j
〉〈

ψ j
∣∣, where ξ (ψ j) = Ξ(σ j). It was already shown by Bravyi et

al. [3] that the pure-state extent is multiplicative for single-qubit states (recall Theorem

3.4 in Section 3.3). It follows that for each pure-state term ⊗ j
∣∣ψ j
〉〈

ψ j
∣∣ in the decom-

position of ρ , we have ξ (∏ j
∣∣ψ j
〉〈

ψ j
∣∣) = ∏ j ξ (ψ j) = ∏ j Ξ(σ j), so the decomposition is

equimagical.

The discussion of Theorem 4.8 showed how to obtain an optimal decomposition

analytically for any single-qubit state. We have just seen that the monotones are multi-

https://creativecommons.org/licenses/by/4.0/
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plicative for single-qubit states. These two results combined show that our monotones

can be computed efficiently for tensor products of single-qubit states. Robustness of

magic is submultiplicative, but in Section 2.3 we saw that it has a multiplicative lower

bound, namely the stabiliser-norm, ‖·‖ st. In Ref. [2] we used this to show that there is an

exponential gap between our new monotones and the robustness of magic. We state the

theorem here but omit the full proof, which can be found in our paper [2].

Theorem 4.16. Given any single-qubit magic state ρ , there exist positive real constants

α and β where α > β and

2αn ≤R(ρ⊗n) (4.28)

2βn = Λ(ρ⊗n) = Λ
+(ρ⊗n) = Ξ(ρ⊗n), (4.29)

As a concrete example, for the Hadamard |H〉 state this holds with α = 0.271553

and β = 0.228443. Figure 4.3 shows how the monotones scale for many copies of a noisy

Hadamard state. There is a significant gap for all values of n.

4.2 Measures of magic for quantum channels
So far, we have largely considered monotones that measure magic resource for n-qubit

states. These monotones are useful in the setting of quantum circuits where all opera-

tions are in SPn,n, but the initial state of the system is non-stabiliser. This is the case,

for example, when all non-Clifford gates in a circuit are implemented by magic state in-

jection (recall Section 1.4), as in the Clifford + T model. However gadgetisation is not

necessarily the optimal strategy for simulating gates outside the Clifford hierarchy such

as small-angle rotations, since the number of magic states required can be much larger

than the number of non-Clifford gates. This motivates the development of measures for

quantifying the magic of quantum channels directly, without recourse to gadgetisation. In

this section we introduce several well-behaved magic monotones for quantum channels.

Channel robustness is an analogue of robustness of magic, and relates to quasiproba-

bility decompositions of channels over maps from SPn,n. Generalised channel robustness

is defined analogously to the generalised robustness Λ+ introduced earlier in this chapter.

Next, we define dyadic channel negativity, based on generalised quasiprobability distri-

butions over a class of linear maps we call dyadic stabiliser channels, DSPn,n, which
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contains SPn,n as a strict subset. Though it is not clear that computing dyadic channel

negativity is tractable in general, we discuss methods for computing upper and lower

bounds. We also introduce channel extent by analogy with density-operator extent. This

last quantity is not strictly a full channel monotone, but we find application for it in later

chapters. Each quantity we define is associated with overhead for at least one classical

simulation task that we will describe and discuss in detail in Chapter 5. In this section

we state and prove their properties. First, however, we discuss desiderata for channel

monotones.

4.2.1 Channel monotone properties

For states, the key feature of a monotone is that it is non-increasing under completely

stabiliser-preserving operations. For a channel monotone, the equivalent property is that

the value of the monotone for a particular channel E should not increase if the channel

is pre- or post-composed with a completely stabiliser-preserving channel. Thus, for a

map M from channels to real numbers, if we are to call M a channel monotone, at a

minimum we require the following property.

Definition 4.17 (Monotonicity for channels). Let M be a function that assigns a real

number to every n-qubit CPTP map. We say thatM is a channel magic monotone, if and

only if, for any n-qubit map E:

(P0) M(E ◦ESP)≤M(E) and M(ESP ◦E)≤M(E) (4.30)

for all completely stabiliser-preserving maps ESP ∈ SPn,n.

Typically though, for a useful channel monotone there are several other properties

that are desirable. These are as follows:

(P1) Faithfulness: If E is a CPTP channel, thenM(E) = 1 if E is completely stabiliser-

preserving (E ∈ SPn,n), and strictly larger than 1 otherwise;

(P2) Convexity:M(∑ j q jE j)≤ ∑ j
∣∣q j
∣∣M(E j);

(P3) Invariance under extension:M(E ⊗1m) =M(E), for any m> 0.

(P4) Submultiplicativity under tensor product:M(EA⊗E ′B)≤M(EA)M(E ′B);
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(P5) Submultiplicativity under composition:M(E2 ◦E1)≤M(E2)M(E1).

Properties (P1), (P2) and (P4) are familiar from the study of magic state monotones,

but (P5), submultiplicativity under composition, is specific to the channel picture. Note

that property (P3), invariance under extension, is a distinct condition from (P4), as while

submultiplicativity under tensor product (P4) combined with faithfulness (P1) entails

M(E ⊗1m) ≤M(E), they do not imply the inequality holds in the other direction. In

practice it is usually straightforward to prove (P3) if the monotone has been defined with

care, but we include it as a separate monotone property since it is useful as a stepping

stone to prove submultiplicativity under tensor product.

Once faithfulness and submultiplicativity under composition are proven, channel

monotonicity (P0) follows as a special case, because for any ESP ∈ SPn,n, and any CPTP

map E , we then have:

M(E ◦ESP)≤M(E)M(ESP) =M(E), (4.31)

since M(ESP) = 1 for faithful M, and similarly M(ESP ◦ E) ≤M(E). Therefore we

consider properties (P1)-(P5) sufficient to identify a well-behaved channel monotone.

4.2.2 Channel robustness

In Chapter 2, we discussed the Oak Ridge simulator [45], where general quantum chan-

nels were decomposed as quasiprobability distributions q over elements from the set

CPR, which comprises the Clifford gates supplemented by Pauli-reset channels, and the

simulation overhead was quantified by the `1-norm squared of the decomposition ‖q‖2
1.

The associated cost function is RCPR(E) = minq{‖q‖1 : E = ∑ j q jE j,E j ∈ CPR}. Ben-

nink et al. acknowledged in [45] that CPR does not give a comprehensive enumeration

of adaptive stabiliser channels. The upshot is that its convex hull CPR is strictly con-

tained in SPn,n. Consequently, not all stabiliser channels can be positively represented in

terms of CPR elements. This means that RCPR is neither a faithful measure of magic,

nor monotone under composition with stabiliser operations. While Bennink et al. did not

set out to design a well-behaved channel monotone, the fact thatRCPR is not a monotone

directly impacts the performance of their simulator. We will discuss these implications

further in Chapter 6. Our goal for now is to define a well-behaved, computable channel

monotone based on quasiprobability distributions over stabiliser channels. We define the
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channel robustness as follows:

Definition 4.18 (Channel robustness ). Given an n-qubit CPTP map, the channel robust-

ness R∗ is the optimal `1-norm minimised over quasiprobability decompositions of E in

terms of completely stabiliser-preserving CPTP channels.

R∗(E) = min
q
{‖q‖1 : ∑

j
q jE j = E ,E j ∈ SPn,n} (4.32)

= min{2p+1 : (1+ p)E+− pE− = E , p≥ 0,E± ∈ SPn,n}. (4.33)

We will see below that the channel robustness is a well-behaved channel monotone.

First we address its computability. CPR-decompositions are computed by minimisation

over a finite set of Clifford gates and Pauli-reset channels. Similarly, we need a finite

set of vertices in order to compute R∗ in practice. We can do this using the Choi state

characterisation of completely stabiliser-preserving maps. Recall that an n-qubit linear

map T is trace-preserving if and only if its Choi state satisfies TrA(ΦT ) = 1n/2n, and is

in SPn,n if and only if ΦT is a stabiliser state. Therefore an equivalent definition is

R∗(E) = min
ρ±∈STAB2n

{
2p+1 : (1+ p)ρ+− pρ− = Φ

AB
E , p≥ 0,TrA(ρ±) =

1n

2n

}
.

This can be calculated by linear program given access to a list of all stabiliser states (see

Appendix D.1). Note that we sidestep the problem of explicitly finding the vertices of

the set SPn,n by including the constraint on the partial trace. If we omit this condition,

we recover R(ΦE), the RoM of the Choi state. We will show later in this chapter that

for gates U from the third level of the Clifford hierarchy, R∗(U) = R(ΦU). This does

not hold for more general quantum channels, and it can be shown that R(ΦE) is not

a well-behaved channel monotone since it is not submultiplicative under composition

(see Appendix C.1). Nevertheless, we will see later that R(ΦE) can be useful for lower

bounding other monotones that are harder to compute.

Returning to the channel robustness, we note that for diagonal channels E , the prob-

lem is equivalent to a decomposition of the state E(|+〉〈+|⊗n) of the form,

E(|+〉〈+|⊗n) = (1+ p)ρ+− pρ−, (4.34)
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where ρ± ∈ STABn, and the condition on the partial trace for the general case is replaced

by the requirement that all diagonal elements of the states ρ± are equal to 1/2n. In

the special case where ρ± are pure, this implies they are diagonal Clifford-equivalent to

graph states [158], though more generally they may be mixtures of states that individually

do not have full support in the standard basis. Reduction to an n-qubit problem is advan-

tageous for computation, since the number of vertices of the stabiliser polytope grows

super-exponentially with n. Full technical details of this simplification will be discussed

in Section 4.4.

We now prove that the channel robustness is faithful (P1), convex (P2), invariant

under extension (P3) and submultiplicative under tensor product (P4) and composition

(P5).

(P1) Faithfulness: Suppose E is an n-qubit CPTP map. There are two cases:

(i) E ∈ SPn,n. In this case, ΦE is itself a mixed stabiliser state, and since E is trace-

preserving it satisfies Tr(ΦE) = 1n/2n. So ΦE is already trivially a decomposition of the

correct form, with p = 0, so that R∗(E) = 1+2p = 1.

(ii) E /∈ SPn,n. Then by faithfulness of robustness of magic (Section 2.3[103]), ΦE

has R(ΦE) > 1. Since the definition of R∗(E) is a restriction of R(ΦE), it must be the

case thatR(ΦE)≤R∗(E). ThereforeR∗(E)> 1.

(P2) Convexity: Take a set of Choi states ΦE j corresponding to channels E j, with op-

timal decompositions ΦE j = (1+ p j)ρ j+ − p jρ j−,, where each ρ j± separately satisfies

TrA(ρ±) =
1n
2n , so that R∗(E j) = 1+ 2p j. Now take a real linear combination of such

channels,

E = ∑
i

qiEi = ∑
j∈P

q jE j + ∑
k∈N

qkEk, (4.35)

where P is the set of indices such that q j ≥ 0, and N is the set such that qk < 0. We

assume that ∑i qi = 1 so that Tr(ΦE) = 1. Then the Choi state for E is

ΦE = ∑
j∈P

q j
[
(1+ p j)ρ j+− p jρ j−

]
− ∑

k∈N
|qk|
[
(1+ pk)ρk+− pkρk−

]
(4.36)

=

(
∑
j∈P

q j(1+ p j)ρ j+ + ∑
k∈N
|qk|pkρk−

)
−
(

∑
j∈P

q j p jρ j−+ ∑
k∈N
|qk|(1+ pk)ρk+

)
.

Note that the terms inside the brackets are all non-negative, so can be renormalised to
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obtain a probabilistic mixture over stabiliser states. We define

ρ̃+ =
∑ j∈P q j(1+ p j)ρ j+ +∑k∈N |qk|pkρk−

1+ p̃
, (4.37)

and ρ̃− =
∑ j∈P q j p jρ j−+∑k∈N |qk|(1+ pk)ρk+

p̃
, (4.38)

where p̃ = ∑ j∈P q j p j +∑k∈N |qk|(1+ pk). This allows us to rewrite the Choi state as

ΦE = (1+ p̃)ρ̃+− p̃ρ̃−. Since ρ̃± are convex combinations of stabiliser states satisfying

TrA(ρ j±) = 1n
2n , they must satisfy the same condition. Given that p̃ ≥ 0, it is clear that

the decomposition is in the required form, except that it is not necessarily optimised to

minimise 1+2p̃. So,

R∗
(

∑
j

q jE j

)
≤ 1+2 p̃ = ∑

j∈P
|q j|(1+2p j)+ ∑

k∈N
|qk|(1+2pk) (4.39)

= ∑
i
|qi|R∗(E j). (4.40)

(P3) Invariance under extension: We want to show that

R∗(1A
m⊗EB) =R∗(EA⊗1B

m′) =R∗(E). (4.41)

Recall from Lemma 1.4 that tensor product channels have product Choi states,

Φ
AA′|BB′

E⊗1m
= Φ

A|B
E ⊗Φ

A′|B′
1m

= Φ
A|B
E ⊗|Φm〉〈Φm|A

′|B′ . (4.42)

The state Φ
A|B
E will have some optimal decomposition Φ

A|B
E = (1+ p)ρAB

+ − pρAB
− , where

TrA(ρ
AB
± ) = 1n/2n, with channel robustness R∗(EA) = 1+2p, whereas |Φm〉〈Φm|A

′|B′ is

itself a stabiliser state so that:

Φ
AA′|BB′

E⊗1m
= (1+ p)ρAB

+ ⊗|Φm〉〈Φm|A
′|B′− pρ

AB
− ⊗|Φm〉〈Φm|A

′|B′ . (4.43)

This is a valid stabiliser decomposition satisfying the trace condition, (since TrAA′[ρ
AB
± ⊗

|Φm〉〈Φm|A
′|B′] = TrA(ρ

AB
± )⊗TrA′(|Φm〉〈Φm|A

′|B′) so we have

R∗(E ⊗1m)≤R∗(E). (4.44)
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We now show that R∗(E) ≤ R∗(E ⊗1m). Consider an optimal decomposition for

Φ
AA′|BB′

E⊗1m
= (1 + p′)ρ ′+ − p′ρ ′−, such that R∗(E ⊗ 1m) = 1 + 2p′, where TrAA′(ρ±) =

1n+m/2n+m. Here we do not assume that ρ ′± are products across the partition AB|A′B′,
as was the case in equation (4.43). However, we have just seen that ΦE⊗1m factorises, so

that by tracing out systems A′B′ we obtain

ΦEA = (1+ p′)TrA′B′(ρ
′
+)− p′TrA′B′(ρ

′
−). (4.45)

Partial trace of a stabiliser state remains a stabiliser state, so this is a stabiliser decompo-

sition. We need to check that the condition on partial trace condition holds,

TrA(TrA′B′(ρ
′
±)) = TrAA′B′(ρ

′
±)

?
=
1n

2n , (4.46)

but this is clearly the case from the fact that ρ ′± were constrained such that

TrAA′(ρ±) = 1n+m/2n+m. So we again have a valid optimal decomposition and

R∗(EA)≤ 1+2p′ =R∗(EA⊗1B). Combining with the inequality in the other direc-

tion, (4.44), we obtain the equalityR∗(E ⊗1) =R∗(E) =R∗(1⊗E).

Next, we prove submultiplicativity under composition (P5) before tensor product

(P4) as the former is useful in proving the latter.

(P5) Submultiplicativity under composition: R∗(E2 ◦E1) ≤R∗(E1)R∗(E2). The

channels E1 and E2 will each have an optimal decomposition E j = (1+ p j)E j,+− p jE j,−,

where R∗(E j) = 1+2p j and E j,± are CPTP maps and completely stabiliser preserving.

We obtain E2 ◦E1 = (1+q)E ′+−qE ′−, where

E ′+ = (1+q)−1[(1+ p2)(1+ p1)E2,+ ◦E1,++ p2 p1E2,− ◦E1,−], (4.47)

E ′− = q−1[p2(1+ p1)E2,− ◦E1,++(1+ p2)p1E2,+ ◦E1,−], (4.48)

and q = p1 + p2 +2p1 p2. (4.49)

The set SPn,n is closed under composition and convex, so both E ′± are in this set. There-

fore, we have a valid decomposition for E2 ◦ E1 that entails R∗(E2 ◦ E1) ≤ 1+ 2q. One

finds 1+2q = (1+2p1)(1+2p2) =R∗(E1)R∗(E2) which completes the proof.

(P4) Submultiplicativity under tensor product: R∗(E ⊗E ′)≤R∗(E)R∗(E ′). We
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treat tensor product as a special case of composition. For n-qubit E and m-qubit E ′:

R∗(E ⊗E ′)≤R∗(E ⊗1m)R∗(1n⊗E ′). (4.50)

But by the invariance under extension property,

R∗(E ⊗1m)R∗(1n⊗E ′) =R∗(E)R∗(E ′). (4.51)

This completes the proof.

Notice that the proof of submultiplicativity under tensor product (P4) followed im-

mediately from submultiplicativity under composition (P5) and invariance under exten-

sion (P3), and did not depend on any specific features of channel robustness. Therefore,

for other monotones we omit the proof of (P4).

4.2.3 Stabiliser extent for unital channels

We next define a quantity somewhat analogous to density-operator extent. Recall that

stabiliser extent for unitaries [3] (Section 3.3) was defined as

ξ (U) = min

{
‖c‖2

1 : U = ∑
j

c jK j,K j ∈ Cln

}
(4.52)

where Cln is the set of Clifford gates. We can also define this using Choi states, ξ (U) =

min
{
‖c‖2

1 : |U〉= ∑ j c j
∣∣K j
〉}
, where |W 〉 = W ⊗1 |Φ〉, for maximally entangled state

|Φ〉, and the minimisation is over the Choi states of Clifford gates. It could be the case

that ξ (|U〉)< ξ (U), because there are many pure stabiliser states that do not correspond

to Cliffords. By analogy with the move from pure-state to density-operator extent, we

introduce the stabiliser channel extent.

Definition 4.19 (Stabiliser channel extent). Let Un = {V = V (·)V † : V ∈U(2n)}. Let E
be a CPTP map in the convex hull of Un, E ∈ conv(Un). The stabiliser channel extent

Ξ∗ is defined

Ξ∗(E) = min

{
∑

j
p jξ (Vj) : E = ∑

j
p jV j, V j ∈ Un

}
(4.53)

= min

{
∑

j
p jξ (Vj) : ΦE = ∑

j
p j
∣∣Vj
〉〈

Vj
∣∣ , V j ∈ Un

}
, (4.54)
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where ΦE and
∣∣Vj
〉〈

Vj
∣∣ are the Choi states for E and V j respectively.

Again, the definition based on the Choi-Jamiolkowski isomorphism is restricted so

that the minimisation is only over those
∣∣Vj
〉

that represent unitary operations. Note that

the stabiliser channel extent is not a monotone in the general sense, as it is defined only for

unital channels. Nervertheless, restricting to channels in the convex hull of Un, Ξ∗ is non-

increasing under composition with Clifford gates and convex mixtures thereof. Channel

extent can therefore be considered a monotone with respect to this restricted set. This

includes important noise models such as the depolarising or dephasing channel. Despite

this limitation, in Chapter 5 we will show that decompositions of the form (4.53) lend

themselves to classical simulation, and we give techniques for finding decompositions in

Chapter 6.

4.2.4 Generalised channel robustness

In this section we introduce a monotone which extends the generalised robustness Λ+

(Section 4.1.2) to the channel picture. In the late stages of preparing this thesis we were

made aware of parallel work by Saxena and Gour in which generalised channel robust-

ness is defined in a similar way [159].

Definition 4.20 (Generalised channel robustness). Let E be an n-qubit CPTP map. Then

the generalised channel robustness of E is given by:

Λ
+
∗ (E) = min{λ ≥ 1 : E = λE+− (λ −1)E−, E+ ∈ SPn,n, E− ∈ CPTP} (4.55)

= min
{

λ : ΦE ≤ λσ ,σ ∈ STAB2n,TrA[σ ] =
1n

2n

}
, (4.56)

where ΦE is the Choi state for E .

First we show that the two definitions are equivalent. Fix the channel of interest E ,

and consider the set of feasible stabiliser states {σ} such that ΦE ≤ λσ for some λ , with

TrA[σ ] = 1n
2n . From Theorem 1.11 in Section 1.3, we know that σ must be the Choi state

for some stabiliser channel E+ ∈ SPn,n. Now consider the Hermitian operator ρ− defined

ρ− =
λσ −ΦE

λ −1
(4.57)

By construction, Tr[ρ−] = 1, and since ΦE ≤ λσ , we have ρ− ≥ 0. Therefore ρ− is a
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valid density operator, so corresponds to some CP map E−. Moreover by linearity we

have TrA(ρ−) = 1n/2n, so E− is also trace-preserving. So,

λE+−E
λ −1

= E− =⇒ E = λE+− (λ −1)E−, (4.58)

where E± are both CPTP, and E+ ∈ SPn,n. Minimising λ in in this decomposition, subject

to λ ≥ 1, is therefore equivalent to the minimisation in equation (4.56). Next we will

prove the standard channel monotone properties.

(P1) Faithfulness. Suppose that E ∈ SPn,n. Then trivially, E = λE , with λ = 1. Con-

versely, suppose that E ′ /∈ SPn,n. Then in any decomposition E ′ = λE+− (λ − 1)E−,

where E+ ∈ SPn,n, it cannot be the case that λ = 1, otherwise E ′ = E+, which is a contra-

diction. Therefore all feasible solutions have λ strictly larger than 1.

(P2) Convexity. Consider a CPTP map of the form E = ∑k qkEk, where qk are real, and

each Ek is itself a CPTP map. For each Ek, there exists some λk ≥ 1 and σk ∈ SPn,n,

TrA[σk] = 1n/2n, such that ΦEk ≤ λkσk, where Λ+
∗ (Ek) = λk. Then,

∑
k
|qk|λkσk ≥∑

k
|qk|ΦEk ≥∑

k
qkΦEk = ΦE . (4.59)

Now since σk are all normalised stabiliser states, the operator

σ
′ = ∑

k
pkσk, where pk =

|qk|λk

∑ j
∣∣q j
∣∣λ j

(4.60)

is also a normalised stabiliser state. Moreover, TrA[σ
′] = ∑k pk TrA[σk] = 1n/2n. Then

letting λ ′ = ∑k |qk|λk, we have:

λ
′
σ
′ = λ

′
∑
k

|qk|λk

λ ′
σk = ∑

k
|qk|λkσk ≥ΦE . (4.61)

This is a feasible solution to the optimisation problem for the state ΦE , so λ ′ ≥ Λ+
∗ (E).

But recall that λk = Λ+
∗ (Ek), so we have:

Λ
+
∗ (∑

k
qkEk)≤ λ

′ = ∑
k
|qk|Λ+

∗ (Ek). (4.62)

(P3) Invariant under extension. To show Λ+
∗ (E)≤ Λ+

∗ (E ⊗1m) for n-qubit E , consider
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the solution optimal for E , i.e. ΦAB
E ≤ λσ for λ = Λ+

∗ (E) and some σ ∈ STAB2n, such

that TrA[σ ] = 1n/2n. Then the Choi state for E ⊗1m is

Φ
AA′|BB′

E⊗1m
= Φ

A|B
E ⊗Φ

A′|B′
1m
≤ λσ ⊗Φ1m = λσ

′. (4.63)

where σ ′ = σ ⊗Φ1m ∈ STAB2(n+m). But,

TrAA′[σ
′] = TrA[σ ]⊗TrA′[Φ1m ] =

1n+m

2n+m , (4.64)

so that Λ+
∗ (E ⊗1m)≤ λ = Λ+

∗ (E).

Now to prove the other direction, suppose we have the solution optimal for (E⊗1m),

so that Φ
AA′|BB′

E⊗1m
≤ λ ′σ for some σ ∈ STAB2(n+m), with TrAA′[σ

′′] = 1n+m/2n+m and

λ ′ = Λ+
∗ (E ⊗1m). So ρ = λ ′σ −Φ

AA′|BB′

E⊗1m
≥ 0 is some unnormalised density operator ρ ,

with trace Tr[ρ] = λ ′−1 with partial trace over AA′ proportional to 1n+m/2n+m. Tracing

out the subsystem A′B′, we obtain:

ρ
′ = TrA′B′[ρ] = λ

′
σ
′−ΦE ≥ 0 (4.65)

where σ ′ = TrA′B′[σ ]. But tracing out subsystem A, on the left-hand side:

TrA[ρ
′] = TrB′(TrAA′[ρ]) = (λ ′−1)TrB′

[
1n+m

2n+m

]
= (λ ′−1)

1n

2n . (4.66)

Whereas, on the right-hand side, TrA[λ
′σ ′−ΦE ] = λ ′TrA[σ

′]−1n/2n, so that TrA[σ
′] =

1n/2n. Since σ ′ is a stabiliser state satisfying the trace criterion, we have a feasible

solution ΦE ≤ λ ′σ ′, so that we must have Λ+
∗ (E) ≤ λ ′ = Λ+

∗ (E ⊗1m). Having proved

the inequality in both directions, we have Λ+
∗ (E) = Λ+

∗ (E ⊗1m) for any CPTP map E
and any m> 0.

(P5) Submultiplicativity under composition. Consider E = E2 ◦ E1, where E1 and E2

are CPTP. Let λ1 = Λ+
∗ (E1) and λ2 = Λ+

∗ (E2). Then there exists some stabiliser state σ1,

such that:

λ1σ1−ΦE1 ≥ 0, TrA[σ1] =
1n

2n . (4.67)

First we deal with the special case where E2 is a completely stabiliser-preserving channel,
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so that Λ+
∗ (E2) = 1. In this case, since E2 is completely positive,

λ1(E2⊗1n)(σ1)− (E2⊗1n)(ΦE1)≥ 0 =⇒ λσ
′−ΦE2◦E1 ≥ 0 (4.68)

where σ ′ = (E2⊗1n)(σ1). This gives us a feasible solution for E = E2 ◦E1, so Λ+
∗ (E)≤

Λ+
∗ (E1) = Λ+

∗ (E2)Λ
+
∗ (E1).

Now we deal with the general non-stabiliser case, where λ2 = Λ+
∗ (E2) > 1. Then

there exists some CPTP completely stabiliser-preserving channel E2+, and CPTP map

E2− such that E2 = λ2E2+− (λ2−1)E2−. Rearranging, we obtain a map,

T = (λ2−1)E2− = λ2E2+−E2. (4.69)

But λ2−1> 0, so T is a completely positive map. Now let:

A = (E2⊗1n)(λ1σ1−ΦE1)≥ 0, (4.70)

where the inequality follows because E2 is a completely positive map. Let:

B = (T ⊗1n)(λ1σ1) = (λ2E2+⊗1n)(λ1σ1)− (E2⊗1n)(λ1σ1)≥ 0 (4.71)

where the inequality again follows from the fact that T is completely positive. Com-

binining the inequalities (4.70) and (4.71), we obtain:

0≤ A+B (4.72)

= (E2⊗1n)(λ1σ1)− (E2⊗1n)(ΦE1)+(λ2E2+⊗1n)(λ1σ1)− (E2⊗1n)(λ1σ1)

= λ1λ2(E2+⊗1n)(σ1)− (E2⊗1n)(ΦE1). (4.73)

But (E2⊗1n)(ΦE1) = ΦE2⊗E1 = ΦE , and E2+ is a completely stabiliser-preserving CPTP

map, so that (E2+⊗1n)(σ1) = σ ′ is a normalised stabiliser state such that TrA[σ
′] =

1n/2n. Then we have λ1λ2σ ′ ≥ΦE , which gives us a feasible solution for the composed

channel, so

Λ
+
∗ (E2 ◦E1)≤ λ1λ2 = Λ

+
∗ (E1)Λ

+
∗ (E2). (4.74)
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4.2.5 Dyadic channel negativity

Next we define a channel monotone analogous to the dyadic negativity defined for states.

It can also be viewed as a dyadic variant of the channel robustness. Although stabiliser

dyads do not represent physical states, they can be represented and updated efficiently

using stabiliser techniques, and so are useful for classical simulation, as we will discuss

in detail in Chapter 5. Unphysical maps such as the dyadic Clifford maps, defined below,

can be similarly useful.

Definition 4.21 (Dyadic Clifford maps). We say that an n-qubit linear map U is dyadic

Clifford if it can be expressed U(·) =UL(·)U†
R where UL,UR ∈Cln are Clifford operators.

Channel robustness R∗ was defined with respect to maps that were (i) CPTP and

(ii) completely stabiliser-preserving. Dyadic maps are in general neither positive, trace-

or Hermiticity- preserving. Nevertheless, they can be efficiently simulable under certain

conditions. To show this, we first define a notion of completeness for dyadic maps. We

then specialise to those that also preserve stabiliser structure.

Definition 4.22 (Complete dyadic maps). We say that a linear n-qubit map T is a com-

plete dyadic map if we can write it in the form T (·) = ∑ j L j(·)R†
j , where {L j} j and {R j} j

separately form complete sets of Kraus operators,

∑
j

L†
jL j = 1, ∑

j
R†

jR j = 1. (4.75)

We use CDn to denote the set of maps satisfying this condition. We now define the

subset of maps in CDn that are completely stabiliser-preserving. We will call this set the

dyadic stabiliser channels, DSPn,n.

Definition 4.23 (Dyadic stabiliser channels). We say that the n-qubit map T (·) =
∑ j L j(·)R†

j is a dyadic stabiliser channel, T ∈ DSPn,n if it is a complete dyadic map,

and each L j and R j is individually a completely-stabiliser-preserving operator, i.e.

L j⊗1n |φ〉 ∝ |φ ′〉, where |φ ′〉 ∈ STAB2n, ∀ |φ〉 ∈ STAB2n, and likewise for all R j.

Definition 4.23 is chosen so as to ensure a well-behaved monotone, but also so that

we can exploit the structure of these dyadic channels for classical simulation in Chapter

5. A key property in this respect is that such maps are contractive with respect to the

Schatten 1-norm (see Appendix D.3). We now define our monotone.
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Definition 4.24 (Dyadic channel negativity, Λ∗). Let E be a CPTP map on n qubits. The

dyadic channel negativity Λ∗ is defined as

Λ∗(E) = min{‖α‖1 : E = ∑
k

αkTk, Tk ∈ DSPn,n}. (4.76)

We can immediately see that this quantity is upper bounded by the channel robust-

ness R∗, since the CPTP maps in SPn,n are a subset of DSPn,n. Next, we show that

the dyadic negativity of the Choi state lower bounds Λ∗. Given any decomposition of

the form above, we can write the Choi state ΦE = ∑k αkΦTk . The Choi state for each

sub-map Tk can be written

ΦT = ∑
j
(L j⊗1n) |Φ〉〈Φ|(R†

j ⊗1n) = ∑
j

v jw j
∣∣L j
〉〈

R j
∣∣ . (4.77)

where, e.g. ∣∣L j
〉
=

(L j⊗1n) |Φ〉∥∥(L j⊗1n) |Φ〉
∥∥ =

(L j⊗1n) |Φ〉
v j

, (4.78)

and similarly w j =
∥∥(R j⊗1n) |Φ〉

∥∥, so each
∣∣L j
〉〈

R j
∣∣ is a normalised stabiliser dyad. By

the Cauchy-Schwarz inequality, for each Tk, we have ∑ j v(k)j w(k)
j ≤ 1 (see Appendix D.3).

So we can write ΦE = ∑ j,k αkv(k)j w(k)
j

∣∣L j,k
〉〈

R j,k
∣∣ . The `1-norm of this distribution is

∑
j,k

∣∣∣αkv(k)j w(k)
j

∣∣∣= ∑
k
|αk|v(k) ·w(k) ≤ ‖α‖1. (4.79)

Therefore, for any channel distribution of the above form, ‖α‖1 ≥ Λ(ΦE), and in par-

ticular this is true of the optimal channel decomposition w.r.t the definition (4.76), so

Λ(ΦE)≤ Λ∗(E).

Faithfulness (P1). If E is a CPTP map in SPn,n, then it can be written E(·) =
∑ j K j(·)K†

j , where K j are all completely stabiliser-preserving. Then E ∈DSPn,n, so there

exists a trivial decomposition with `1-norm equal to 1, so Λ∗(E)≤ 1. But the Choi state

negativity lower bounds Λ∗, and Λ(ΦE) = 1 for E ∈ SPn,n, so Λ∗(E) = 1.

Conversely suppose E is CPTP but not stabiliser-preserving. Then its Choi state is

not a stabiliser state, so Λ∗(E)≥ Λ(ΦE)> 1.

Convexity (P2). Suppose we have E =∑k βkEk. There exist optimal decompositions

for the sub-channels Ek = ∑ j α j,kT j,k, such that Λ∗(Ek) = ∑ j,k
∣∣α j,k

∣∣. Then the channel E
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can be decomposed E∑ j,k βkα j,kT j,k. The `1-norm of this decomposition is

∑
j,k

∣∣βkα j,k
∣∣= ∑

k
|βk|∑

j

∣∣α j,k
∣∣= ∑

k
|βk|Λ∗(Ek). (4.80)

So Λ∗(E)≤ ∑k |βk|Λ∗(Ek).

Invariance under extension (P3). It is straightforward to show Λ∗(E ⊗1m)≤ Λ∗(E).
Given a valid optimal decomposition E = ∑k αkTk, with Tk(·) = ∑ j L j,k(·)R†

j,k, and

Λ∗(E) = ‖α‖1 we can always extend it with the m-qubit identity map:

E ⊗1m = ∑
k

αkTk⊗1m(·) = ∑
k

αkT ′k (·), (4.81)

So that the individual Kraus operators are extended as L′j,k = L j,k⊗1m, and R′j,k =

R j,k⊗1m. Moreover, a completely stabiliser-preserving Kraus operator remains so when

tensored with the identity. Therefore, the extended maps T ′k = Tk⊗1m satisfy all the

necessary criteria, so that T ′k ∈ DSPn+m,n+m. So the `1-norm of the distribution is an

upper bound for the dyadic channel negativity of E ⊗1m,

Λ∗(E ⊗1m)≤ ‖α‖1 = Λ∗(E). (4.82)

Now to prove the other direction, suppose an optimal decomposition of the channel

extended by the identity map can be written EA ⊗ 1A′
m = ∑k αkT AA′

k , where the maps

Tk = ∑ j L j,k(·)R†
j,k are in DSPn+m,n+m. We have Choi state decomposition ΦEA⊗1A′

m
=

∑k αkΦk, where

Φk = (T AA′
k ⊗1BB′

n+m)(|Φn+m〉〈Φn+m|AA′|BB′) = ∑
j
|L j,k〉〈R j,k| (4.83)

where |L j,k〉= (LAA′
j,k ⊗1BB′

n+m) |Φn+m〉AA′|BB′ are sub-normalised pure stabiliser states, and

similarly for |R j,k〉. Since the Choi state for a tensor product channel factorises, ΦE⊗1m =

ΦE ⊗Φ1m , to obtain ΦE , we trace over subsystems A′B′,

ΦE = TrA′B′[ΦEA⊗1A′
m
] = ∑

k
αk TrA′B′Φk. (4.84)

Using stabiliser bases {|p〉} for A′ and {|q〉} for B′, and using the shorthand
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|p,q〉= |p〉⊗ |q〉,
TrA′B′Φk = ∑

j
∑
p,q

〈
p,q
∣∣L j,k

〉〈
R j,k
∣∣p,q〉 . (4.85)

For a single bra-ket:

〈
p,q
∣∣L j,k

〉
= 〈p|A′ 〈q|B′ LAA′

j,k ⊗1BB′
n+m |Φn+m〉AA′|BB′ (4.86)

=
(
〈p|A′ LAA′

j,k ⊗1B
n

)
|Φn〉AB⊗〈q|B′ |Φm〉A

′B′ (4.87)

=
1

2
m
2
〈p|A′ LAA′

j,k |q〉A
′⊗1B

n |Φn〉AB . (4.88)

Similarly,
〈

p,q
∣∣R j,k

〉
= 2−

m
2 〈p|R j,k |q〉⊗1n |Φn〉. For each k, we use the form of the

above decomposition to define new sets of n-qubit Kraus operators labelled by indices

( j, p,q),

L′( j,p,q),k =
1

2
m
2
〈p|A′ LAA′

j,k |q〉A
′
, R′( j,p,q),k =

1
2

m
2
〈p|A′ RAA′

j,k |q〉A
′
. (4.89)

Then the (pure), Choi state for each Kraus operator, e.g. L′( j,p,q),k⊗1m |Φn〉=
〈

p,q
∣∣L j,k

〉
,

is a sub-normalised stabiliser state, since L j,k was completely stabiliser-preserving, and

|p〉, |q〉 were stabiliser states. Therefore L′( j,p,q),k are completely stabiliser-preserving,

and likewise for R′( j,p,q),k. Moreover, for each k,

∑
j,p,q

L′†
( j,p,q),kL′( j,p,q),k = 2−m

∑
j,q
〈q|L†

j,k ∑
p
|p〉〈p|L j,k |q〉 (4.90)

= 2−m
∑
q
〈q|∑

j
L†

j,kL j,k |q〉 (4.91)

= 2−m
∑
q
〈q|1n+m |q〉= 2−m

∑
q
〈q|q〉1n = 1n (4.92)

where we used 1n⊗∑p |p〉〈p| = 1n+m in line (4.90), and in the last line the fact that

|q〉 are basis vectors for an m-qubit subsystem, so there are 2m terms in the summation.

Therefore, {L′( j,p,q),k} j,p,q (and likewise {R′( j,p,q),k} j,p,q) form a complete set of stabiliser

Kraus operators, so that we can define reduced maps:

T ′k (·) = ∑
j,p,q

L′( j,p,q),k(·)R′†( j,p,q),k (4.93)

such that T ′k ∈ DSPn,n, and comparing with equations (4.85) and (4.88), we see that
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TrA′B′Φk = Φ′k, where Φ′k is the Choi state for T ′k . Combined with equation (4.84), this

implies that there exists a feasible decomposition of the n-qubit channel, E = ∑k αkT ′k .

Then by the usual argument, Λ∗(E)≤ ‖α‖1 = Λ∗(E ⊗1m) for any m> 0. Having proved

the inequality in both directions, we have Λ∗(E) = Λ∗(E ⊗1m), for any CPTP map E and

any m> 0.

Submultiplicativity under composition (P5) Suppose T1,T2 ∈ DSPn,n, having de-

compositions Tk(·) = ∑ j L j,k(·)R†
j,k. Then:

T2 ◦T1(·) = ∑
j, j′

L j,2L j′,1(·)R†
j,1R†

j′,2. (4.94)

If we define L j, j′ = L j,2L j′,1, then we immediately see that

∑
j, j′

L†
j, j′L j, j′ = ∑

j′
L†

j′,1 ∑
j

L†
j,2L j,2L j′,1 = ∑

j′
L†

j′,1L j′,1 = 1n, (4.95)

and similarly for R j, j′ . Each Kraus operator is also completely stabiliser-preserving, since

it is the composition of two completely stabiliser-preserving Kraus operators. Therefore

for any T1,T2 ∈ DSPn,n the composed map T ′ = T2 ◦T1 is also in DSPn,n.

Now consider that for any two CPTP maps E1 and E2, each will have an optimal

decomposition Et = ∑k αk,tTk,t , such that Λ∗(Et) = ∑k
∣∣αk,t

∣∣. Then the composed CPTP

map can be expressed as E2◦E1 =∑ j,k αk,2α j,1Tk,2◦T j,1. This is a feasible decomposition

with `1-norm ∑ j,k
∣∣α j,1

∣∣∣∣αk,2
∣∣=Λ∗(E1)Λ∗(E2). So we have Λ∗(E1◦E2)≤Λ∗(E1)Λ∗(E2).

We have shown that the dyadic channel negativity is a well-behaved channel monotone,

but it is not clear how to compute it exactly for all channels. In Section 4.2.2, we showed

that the condition on the Choi state for trace-preserving maps TrA[ΦE ] = 1n/2n provided

a practical means to compute channel robustness. One might ask whether analogous

conditions can be found for complete dyadic channels as defined by equation (4.75). For

the interested reader, in Appendix D.4 we present partial results towards better charac-

terisation of the set of complete dyadic channels, based on a polar decomposition of the

Choi matrix. We hope that in future work this will lead to improved methods for finding

optimal dyadic decompositions. For the moment, we are in general only able to bound

the dyadic channel negativity. The dyadic negativity of the Choi state provides a lower

bound, and this is tractable for tensor products of single-qubit channels. We next discuss
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decompositions over discrete subsets of DSPn,n, which yield upper bounds.

4.2.5.1 Upper bounds via dyadic Clifford maps

By definition, any unitary operation trivially satisfies U†U = 1, and the Clifford gates are

manifestly completely stabiliser-preserving. Therefore, any map of the form T = L(·)R,

where L and R are Clifford gates, is in DSPn,n. Provided a channel can be written as

a complex combination of such maps, the following quantity upper bounds the dyadic

channel negativity.

ΛCl(E) = min{‖α‖1 : ∑
k

αkLk(·)Rk = E(·), Lk,Rk ∈ Cln}. (4.96)

We call ΛCl the dyadic Clifford negativity, but we note that it is not a well-behaved

channel monotone. While it is convex and submultiplicative under composition, it is

not faithful with respect to maps in SPn,n. We show this in Appendix D.2. However, it is

clearly the case that ΛCl(E) = 1 for any channel E that can be written as a convex mixture

of Clifford operations. In Chapter 6 we will see that ΛCl(E) = Λ∗(E) for certain classes

of noisy single-qubit operations, including noisy T -gates.

Before moving on to a more comprehensive set of dyadic stabiliser channels, we

reflect on the size of the optimisation problem defined by equation (4.96). There are 24

single-qubit Clifford gates, so for the single-qubit channel problem there will be 576 ver-

tices. However, for two qubits, there are 11,520 Clifford gates, and therefore over 132

million vertices, so the problem already looks formidable for two-qubit channels. There-

fore if this technique is to be useful for multi-qubit channels, techniques for reducing the

problem size using symmetry will be important.

4.2.5.2 Upper bounds using dyadic projective channels

When proving submultiplicativity, we showed that the composition of any two maps

in DSPn,n is also in DSPn,n. Therefore we can form a larger subclass of dyadic sta-

biliser channels by composing physical stabiliser channels O with Clifford dyadic maps

U j,k(·) =U j(·)U†
k . Here we consider adaptive stabiliser channels of the form:

O(ρ) = ∑
j

K jρK†
j , (4.97)
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where we assume that the kraus operator has the form K j = VjΠ j for some Clifford Vj

and projector Π j, where
{

Π j
}

are a set of orthogonal projectors. Operationally, these are

channels where a Clifford Vj is carried out conditioned on obtaining the measurement

outcome j associated with the projector Π j. We then form the dyadic stabiliser channel

T = U j,k ◦O◦Ul,m, where U are dyadic Clifford maps. Explicitly, these have the form,

T (·) = ∑
s

UlKsU j(·)U†
k K†

s U†
m. (4.98)

We can compact this notation: consider the operators multiplying the input dyad on the

left. If Ks =VsΠs for some Clifford Vs and projector Πs, then

UlVsΠsU j =UlVsU jU
†
j ΠsU j =V ′s Π

′
s = K′s (4.99)

where V ′s =UlVsU j is some new Clifford gate, and Π′s =U†
j ΠsU j is some new stabiliser-

preserving projector. Since conjugation by a unitary operator preserves orthogonality,

the new projectors {Π′s}s are orthogonal, and {K′s}s remains a complete set of Kraus

operators. We can do the same for the operators multiplying on the right, so that we have

T (. . .) = ∑s K′s(. . .)K
′′†
s , where the Kraus operators on the right are related to those on

the left by

K′′s =UmU†
l K′sU

†
j Uk =UK′sV

†. (4.100)

In the last expression we absorb all the Clifford gates into a pair of Cliffords U and V . We

can therefore fully specify T by a complete set of stabiliser-preserving Kraus operators

{K′s}s and a pair of Clifford gates U and V . We call the class of maps having the form

above the projective dyadic stabiliser channels, PDSP. We can use this class to define a

quantity that upper bounds dyadic channel negativity, which we call the projective dyadic

negativity.

ΛP(E) = min{‖α‖1 : ∑
k

αkTk = E , T ∈ PDSP}. (4.101)

The class PDSP includes as base cases those maps where U = V = 1, i.e. physical

stabiliser channels of the form (4.97). This ensures that important stabiliser-preserving

channels such as state injection gadgets and Pauli-reset channels have ΛP = 1. This also

ensures that any CPTP map can be decomposed using only maps in PDSP, as it was

shown by Bennink et al. that Clifford gates and Pauli-reset channels are sufficient for this
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purpose [45]. We show in Appendix D.5 that projective dyadic negativity is computable

for single-qubit channels, but likely intractable in general for n-qubit channels with n ≥
2. Nevertheless, the scheme could be used, for example, for circuits decomposed into

CNOTs and noisy single-qubit gates. Alternatively the circuit could be decomposed into

single-qubit operations supplemented with a minimal number of multi-qubit operations,

all of which may be non-stabiliser. Single-qubit operations would be decomposed using

the dyadic channel scheme, while multi-qubit operations could be decomposed using

standard channel robustness.

4.3 Magic-increasing capacity of quantum channels
We have so far considered channel monotones based on different types of stabiliser de-

composition of a channel. We now introduce another family of channel monotones that

quantify the ability of a channel to to increase the resourcefulness of an initial state. Each

is defined with respect to a particular magic state monotoneM. It is natural to consider

the largest possible increase inM, over any initial state.

Definition 4.25 (Magic capacity with respect to generic monotones). Given a generic

magic monotoneM, we define the magic capacity CM with respect toM,

CM(E) = max
ρ∈D2n

M[(E ⊗1n)(ρ)]

M(ρ)
. (4.102)

where D2n is the set of 2n-qubit density operators.

Analogous quantities have previously been defined for the resource theories of en-

tanglement [160] and coherence [161]. Notice that the maximisation on the right-hand

side must be normalised by the resourcefulness of the initial state,M(ρ). We will show

that when defined with respect to several of the magic state monotones already encoun-

tered, the magic capacity possesses the five standard channel monotone properties (P1)

to (P5), as well as another feature we call stabiliser-saturation (P6). The essence of this

property is that we only need optimise over pure stabiliser states. For mixed states or even

non-stabiliser states, the capacity still captures the largest possible increase in robustness

of magic. We define this as follows.

(P6) stabiliser-saturation: We say that the magic capacity CM is stabiliser-

saturated if for any n-qubit state ρ , which may be non-stabiliser, and for any CPTP
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quantum channel E , the following holds:

M[(E ⊗1n)(ρ)]

M(ρ)
≤M[(E ⊗1n)(|φ∗〉〈φ∗|)], (4.103)

for some pure stabiliser state |φ∗〉 ∈ STAB2n. When this property is satisfied, CM(E) =
M[E ⊗1n(|φ∗〉〈φ∗|)].

The magic capacity CM inherits properties (P1) and (P2) directly from the magic

state monotoneM, as described in the following theorem.

Theorem 4.26. LetM be a magic monotone (non-increasing under channels E ∈ SPn,n),

and let CM be the associated magic capacity as defined in equation (4.102). Then the

following statements hold.

1. Capacity CM is faithful for any faithful monotoneM. (P1)

2. IfM is convex then CM is convex. (P2)

Properties (P3 - P5) then hinge on proving stabiliser-saturation (P6), as follows.

Theorem 4.27. SupposeM is a magic monotone that is convex, faithful, and submulti-

plicative under tensor product, and let CM be the associated magic capacity. Suppose

that CM is stabiliser-saturated (P6); that is, we assume that for any 2n-qubit state ρ and

n-qubit channel the associated magic monotoneM satisfies

M[(E ⊗1n)ρ]

M(ρ)
≤M[(E ⊗1n)(|φ〉〈φ |)] = CM(E), (4.104)

for some pure stabiliser state |φ〉 ∈ STAB2n. Then CM is invariant under extension, and

submultiplicative under tensor product (P4) and composition (P5):

(P3) CM(E ⊗1m) = CM(E), ∀m> 0 (4.105)

(P4) CM(E2⊗E1)≤ CM(E2)CM(E2) (4.106)

(P5) CM(E2 ◦E1)≤ CM(E2)CM(E1). (4.107)

We will next prove Theorems 4.26 and 4.27 for the general case. In the following

subsections we show that CM is stabiliser-saturated when defined with respect to standard

and generalised robustness of magic, and dyadic negativity.
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Proof of Theorem 4.26. To prove statement (1), we note that if M is monotone un-

der completely stabiliser-preserving channels, thenM[(E ⊗1n)(ρ)]/M(ρ)≤ 1 for any

E ∈ SPn,n. But if M is faithful then M(σ) = 1 for all σ ∈ STAB2n. It follows that

the inequality is saturated by stabiliser initial state, M[(E ⊗ 1n)(σ)]M(σ) = 1, and

CM(E) = 1 if E ∈ SPn,n. Conversely, suppose instead that E is non-stabiliser-preserving,

but still CPTP. Then there exists at least one stabiliser state σ ∈ STAB2n such that

(E ⊗ 1)(σ) is not a stabiliser state. Then by faithfulness of M, M[(E ⊗1)(σ)]> 1,

and so CM(E)> 1.

Statement (2) follows straightforwardly from convexity ofM. Suppose a channel

E has decomposition E = ∑k qkEk, for some n-qubit CPTP maps Ek. There exists some

optimal state ρ∗ that achieves CM(E) =M[E ⊗1(ρ∗)]. Then

M[(E ⊗1n)(ρ∗)]
M(ρ∗)

=
M[∑k qk(Ek⊗1n)(ρ∗)]

M(ρ∗)
≤∑

k
|qk|
M[(Ek⊗1n)(ρ∗)]

M(ρ∗)
, (4.108)

where the last line follows by convexity of M. But by definition, each ratio

M[(Ek⊗1n)(ρ∗)]/M(ρ∗) can be no larger than CM(Ek). So we have,

CM(∑
k

qkEk)≤∑
k
|qk|CM(Ek). (4.109)

This proves the second statement.

Proof of Theorem 4.27. By assumption,M is convex, faithful and submultiplicative un-

der tensor product, and CM is stabiliser-saturated. We first prove invariance under exten-

sion (P3). We claim that ifM is faithful and submultiplicative under tensor product, then

for m> 0, for any |φ〉 ∈ STAB2n+m, there exists some state |ψ〉 ∈ STAB2n such that

M
[(
EA⊗1n+m

)
(|φ〉〈φ |AB)

]
=M

[(
EA⊗1n

)
(|ψ〉〈ψ|AB′)

]
. (4.110)

Consider a (2n+m)-qubit stabiliser state |φ〉, with partition A|B between the first n and

last n+m qubits. Ref. [57] shows that the state |φ〉AB is local Clifford-equivalent to

p independent Bell pairs entangled across the partition A|B (here “local” means with

respect to the bipartition rather than per qubit). Since there are n qubits in partition A, p

is at most n. Let B′|B′′ be a partition of B into n and m qubits. Then by local permutation

of qubits within B, we can take these p ≤ n Bell pairs to be entangled across A|B′. So
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|φ〉AB =
(
1n⊗UB) |ψ〉AB′ |ψ ′〉B′′ where UB is a Clifford operation, |ψ〉AB′ ∈ STAB2n and

|ψ ′〉B′′ ∈ STABm. So writing the channel corresponding to UB as UB, for any E on n

qubits, we know that

M
[(
EA⊗1n+m

)
(|φ〉〈φ |AB)

]
=M

[(
1n⊗UB)((EA⊗1n

)(
|ψ〉〈ψ|AB′

)
⊗
∣∣ψ ′〉〈ψ ′∣∣B′′)].

(4.111)

Since 1n⊗UB represents a (reversible) Clifford gate, by monotonicity ofM:

M
[(
EA⊗1n+m

)
(|φ〉〈φ |AB)

]
=M

[(
EA⊗1n

)(
|ψ〉〈ψ|AB′

)
⊗
∣∣ψ ′〉〈ψ ′∣∣B′′]

=M
[(
EA⊗1n

)
(|ψ〉〈ψ|AB′)

]
, (4.112)

where in the last line we used the fact that |ψ ′〉B′′ is a stabiliser state, and hence does not

contribute to the monotone value, sinceM is submultiplicative under tensor product, and

by its faithfulness property,M(|ψ ′〉〈ψ ′|) = 1. The state |ψ〉〈ψ|AB′ is a 2n-qubit state, so

equation (4.110) holds.

So, the maximum M generated by EA⊗ 1n+m over all (2n + m)-qubit stabiliser

states is no larger than that generated by EA⊗1n, and CM(EA⊗1m)≤ CM(EA). The

other direction can be easily proved by noting that for any 2n-qubit state ρ = (E ⊗
1n)(|φ〉〈φ |), where |φ〉 ∈ STAB2n, the monotone value does not change if we form

the tensor product with some m-qubit stabiliser state |φ ′〉 ∈ STABm. That is, M(ρ) =

M(ρ⊗|φ ′〉〈φ ′|), and consequently CM(EA⊗1m) = CM(EA).

Next we prove (P5), submultiplicativity under composition, CM(E1 ◦ E2) ≤
CM(E1)CM(E2). Consider the n-qubit channel E = E2 ◦ E1, where E1 and E2 are CPTP

maps. Suppose σ∗ = |φ∗〉〈φ∗| is an optimal choice of initial stabiliser state, such that

CM(E) =M[(E ⊗1n)(σ∗)]. Then,

CM(E) =M[(E ⊗1n)(σ∗)] =M[(E2⊗1n)(ρ)] (4.113)

=
M[(E2⊗1n)(ρ)]M(ρ)

M(ρ)
. (4.114)
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where ρ = (E1⊗1n) |φ∗〉〈φ∗|. Then, since the relation (4.104) holds by assumption,

CM(E) =M[(E2⊗1n)(ρ)]M(ρ)

M(ρ)
≤M(ρ)CM(E2)≤ CM(E1)CM(E2) (4.115)

where the last inequality follows because by definition,

M(ρ) =M[(E1⊗1n)(|σ∗〉〈σ∗|)]≤ CM(E1). (4.116)

This proves CM is submultiplicative under composition.

Finally, we have already shown for previous channel monotones that invariance un-

der extension (P3) and submultiplicativity under composition (P5) together imply sub-

multiplicativity under tensor product (P4), and the argument does not depend on any

other details of the monotone. This completes the proof.

Taken together, Theorems 4.26 and 4.27 imply that given a magic state monotone

M known to be convex, faithful and multiplicative under tensor product, we need only

prove stabiliser-saturation (P6) to show that CM satisfies properties (P1)-(P5). In the

next three subsections, we prove (P6) holds for capacities with respect to standard and

generalised robustness of magic, and dyadic negativity.

4.3.1 Magic capacity with respect to robustness of magic

Definition 4.28 (Magic capacity with respect to robustness of magic). For any n-qubit

channel, the magic capacity is defined,

CR(E) = max
|φ〉∈STAB2n

R[(E ⊗1n)(|φ〉〈φ |)], (4.117)

whereR is the robustness of magic.

We prove stabiliser-saturation below, so that this definition is equivalent to the def-

inition for the generic case (Definition 4.25). Since R is convex, faithful and submul-

tiplicative under tensor project, by Theorems 4.26 and 4.27, the capacity CR also has

properties (P1-P5). Recall that to prove stabiliser-saturation, we need to show that for

any n-qubit state ρ , including magic states, and for any CPTP quantum channel E , we

have
R((E ⊗1n)(ρ))

R(ρ)
≤ CR(E) =R((E ⊗1n)(|φ∗〉〈φ∗|)), (4.118)
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for some pure stabiliser state |φ∗〉 ∈ STAB2n. We use similar arguments to those deployed

in [160]. Consider an n-qubit channel E . Any 2n-qubit input state ρ will have an optimal

stabiliser decomposition ρ = ∑ j q j
∣∣φ j
〉〈

φ j
∣∣, where ∑ j q j = 1, and such that R(ρ) =

∑ j |q j|. By linearity (E ⊗1n)(ρ) = ∑ j q j(E ⊗1n)(
∣∣φ j
〉〈

φ j
∣∣). Then by convexity of RoM,

R((E ⊗1n)(ρ))≤∑
j
|q j|R

(
(E ⊗1n)(

∣∣φ j
〉〈

φ j
∣∣)). (4.119)

For any stabiliser state
∣∣φ j
〉
, the optimal pure stabiliser state |φ∗〉, satisfies

CR(E) =R((E ⊗1n)(|φ∗〉〈φ∗|))≥R
(
(E ⊗1n)(

∣∣φ j
〉〈

φ j
∣∣)) (4.120)

=⇒ R((E ⊗1n)(ρ))≤R((E ⊗1n)(|φ∗〉〈φ∗|))∑
j
|q j|= CR(E)R(ρ). (4.121)

Rearranging we obtain inequality (4.118).

4.3.2 Magic capacity with respect to generalised robustness

Here we consider the magic capacity CΛ+ with respect to Λ+, the generalised robustness

of magic (gRoM), which we introduced in Definition 4.4.

Definition 4.29 (Magic capacity with respect to generalised robustness of magic). For

any n-qubit channel, the magic capacity is defined,

CΛ+(E) = max
|φ〉∈STAB2n

Λ
+[(E ⊗1n)(|φ〉〈φ |)] (4.122)

The gRoM is convex, faithful, submultiplicative under tensor product, and monotone

under channels in SPn,n. So, once again we complete the proof that capacity with respect

to gRoM, CΛ+ , satisifies all six properties by showing that it is stabiliser-saturated (P6).

Let ρ be any 2n-qubit density operator, and let E be any n-qubit CPTP map. Recall

that the gRoM for 2n-qubit states can be defined:

Λ
+(ρ) = min{λ : ρ ≤ λσ ,σ ∈ STAB2n}. (4.123)

Then there exists some λ∗ ≥ 1 and mixed stabiliser state σ∗ such that λ∗σ∗−ρ ≥ 0, and
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Λ+(ρ) = λ∗. Since E is a CPTP map, it preserves the positivity of the operator λ∗σ∗−ρ:

(E ⊗1n)[λ∗σ∗−ρ]≥ 0 =⇒ λ∗(E ⊗1n)(σ∗)≥ (E ⊗1n)(ρ), (4.124)

where the second line follows by linearity of E . Let ρ ′ = (E ⊗ 1n)(ρ) and

ρ ′′ = (E ⊗1n)(σ∗). In general both operators can be non-stabiliser states. Using the defi-

nition of Λ+ again, there must exist σ ′′∗ ∈ STAB2n such that ρ ′′≤ λ ′′∗ σ ′′∗ for λ ′′∗ =Λ+(ρ ′′).

It follows that ρ ′ ≤ λ∗ρ ′′ ≤ λ∗λ ′′∗ σ ′′∗ . This expression gives us a feasible solution for the

optimisation problem in equation (4.123), with respect to ρ ′ as the state of interest.

Therefore we must have Λ+(ρ ′)≤ λ∗λ ′′∗ = Λ+(ρ)Λ+(ρ ′′). We can rewrite this as

Λ
+[(E ⊗1n)(ρ)]≤ Λ

+(ρ)Λ+[(E ⊗1n)(σ∗)]. (4.125)

Now σ∗ is a mixed stabiliser state so has some ensemble decomposition σ∗ = ∑ j p j
∣∣φ j
〉〈

φ j
∣∣,

where
∣∣φ j
〉
∈ STAB2n, p j ≥ 0 and ∑ j p j = 1. By convexity of Λ+ and linearity of E ,

Λ
+[(E ⊗1n)(σ∗)]≤∑

j
p jΛ

+[(E ⊗1n)(
∣∣φ j
〉〈

φ j
∣∣)] (4.126)

≤∑
j

p jΛ
+[(E ⊗1n)(|φ∗〉〈φ∗|)] (4.127)

= Λ
+[(E ⊗1n)(|φ∗〉〈φ∗|)] (4.128)

where in the second line |φ∗〉 is any stabiliser state that maximises Λ+[(E ⊗1n)(|φ〉〈φ |)]
over |φ〉 ∈ STAB2n. Combining equation (4.128) with (4.125) and rearranging,

Λ+[(E ⊗1n)(ρ)]

Λ+(ρ)
≤ Λ

+[(E ⊗1n)(|φ∗〉〈φ∗|)], (4.129)

proving that CΛ+ is stabiliser-saturated.

4.3.3 Magic capacity with respect to dyadic negativity

For dyadic negativity, it is convenient to define the capacity in terms of the maximum

increase over stabiliser dyads. However, to do this, we must first extend the definition of

dyadic negativity, previously defined for density matrices, to general operators on n-qubit
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Hilbert spaces. For any operator A, we define this as:

Λ(A) = min{‖α‖1 : ∑
j

α j
∣∣L j
〉〈

R j
∣∣= A,

∣∣L j
〉
,
∣∣R j
〉
∈ STABn}. (4.130)

This is always well-defined, since the stabiliser dyads form an overcomplete basis for

the space of n-qubit operators. One can easily check that this quantity remains convex,

so that for any A = ∑ j α jB j, we have Λ(A) ≤ ∑ j |α j|Λ(B j). We can also extend the

notion of faithfulness, using normalisation appropriate for dyads. We treat an operator

as free if Λ(A)/‖A‖1 = 1. This is equivalent to saying that when the operator is nor-

malised, it can be written as a convex combination of stabiliser dyads. Conversely, if

Λ(A)/‖A‖1 > 1, then the operator is non-stabiliser. The extended dyadic negativity is

also submultiplicative under tensor product for any pair of operators. If we have opti-

mal decompositions A = ∑ j α jσ j and B = ∑k βkσk, where σ j are stabiliser dyads, then

A⊗B = ∑ j,k α jβkσ j⊗σk gives a feasible solution since the tensor product of two sta-

biliser dyads remains a stabiliser dyad. Therefore Λ(A⊗B)≤∑ j,k |α j| · |βk|=Λ(A)Λ(B).

We now consider the increase in dyadic negativity under CPTP channels. Given any

n-qubit operator ρ with optimal decomposition ρ = ∑ j α j
∣∣L j
〉〈

R j
∣∣,

(E ⊗1n)(ρ) = ∑
j

α j(E ⊗1n)(
∣∣L j
〉〈

R j
∣∣). (4.131)

Then by convexity,

Λ[(E ⊗1n)(ρ)]≤∑
j
|α j|Λ[(E ⊗1n)(

∣∣L j
〉〈

R j
∣∣)] (4.132)

≤ Λ(ρ)Λ[(E ⊗1n)(|L∗〉〈R∗|)] (4.133)

where |L∗〉〈R∗| is the dyad that maximises Λ[(E⊗1n)(|L〉〈R|)] over all |L〉 , |R〉 ∈ STAB2n.

Therefore we define the magic capacity with respect to Λ, which we call the dyadic magic

capacity, as

CΛ(E) = max
|L〉,|R〉∈STAB2n

Λ[(E ⊗1n)(|L〉〈R|)], (4.134)

so the quantity is stabiliser-saturated in the sense that the maximum increase in negativity

is achieved for a stabiliser dyad. The dyadic magic capacity inherits convexity and faith-

fulness from dyadic negativity as per the arguments in the proof of Theorem 4.26. We
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can confirm that CΛ is invariant under extension by adapting the proof of Theorem 4.27.

We simply need to notice that the dyadic negativity is invariant under Clifford dyadic

maps of the form U(·)V †, where U and V are Clifford gates, since these map stabiliser

dyads to stabiliser dyads. Then the proof can be modified by replacing stabiliser projec-

tors by stabiliser dyads, and conjugation with a single Clifford gate by application of a

map U(·)V †. Similarly we can substitute projectors for dyads in the rest of the proof to

show that CΛ is submultiplicative under composition and tensor product.

4.3.4 Sandwich theorems

The magic capacities defined in the previous sections can be harder to compute than some

of the other channel monotones we have introduced, since without further simplification

they involve evaluating magic state monotones once for each 2n-qubit stabiliser state (or

dyad). We will discuss methods for easing this calculation for diagonal channels in 4.4.

For now, we establish some results that provide rigorous upper and lower bounds for the

magic capacity. We first consider capacity of some channel E with respect to robustness.

The lower and upper bounds are given by the robustness of the Choi stateR(ΦE) and the

channel robustnessR∗(E), respectively.

Theorem 4.30 (Sandwich theorem for R-based monotones). For any CPTP map E , the

following inequalities hold,

R(ΦE)≤ CR(E)≤R∗(E). (4.135)

Moreover, if the unitary operation U is in the third level of the Clifford hierarchy, then we

have equality,R(ΦU) = CR(U) =R∗(U).

Proof. By definition ΦE = (E ⊗1n)(|Φn〉〈Φn|). But |Φn〉 is a stabiliser state, so R(ΦE)

can be no larger than R((E ⊗1n)(|φ∗〉〈φ∗|)) = CR(E), where |φ∗〉 is the stabiliser state

that achieves the capacity, and soR(ΦE)≤ CR(E).
Now suppose E = (1+ p)E+− pE− is the optimal decomposition of E into CPTP

stabiliser-preserving maps, E± ∈ SPn,n, so that R∗(E) = 1 + 2p. Then for any input

stabiliser state σ ∈ STAB2n, we can write down a valid stabiliser decomposition of the

output state,

(E ⊗1n)(σ) = (1+ p)(E+⊗1n)(σ)− p(E−⊗1n)(σ). (4.136)
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In particular this is true for the stabiliser state σ∗ = |φ∗〉〈φ∗| that is optimal with respect to

the capacity. But equation (4.136) could be a non-optimal decomposition, so its `1-norm

1+2p is at least as large asR((E ⊗1n)(σ∗)). So,

CR(E) =R[(E ⊗1n)(σ∗)]≤ 1+2p =R∗(E), (4.137)

completing the proof of the first statement. Having done so, to prove the second statement

it suffices to show thatR(ΦU) =R∗(U).

For any n-qubit unitary channel U = U(·)U† from the third level of the Clifford

hierarchy, deterministic state injection is possible [35, 89]. That is, given a Hilbert space

H =HA⊗HB⊗HC⊗HD, where each subspace is comprised of n qubits, there exists a

completely stabiliser-preserving circuit ESI such that, for any 2n-qubit input state ρ ,

TrBC

[
ESI(Φ

AB
U ⊗ρ

CD)
]
= U ⊗1n(ρ

AD) (4.138)

Where ΦU is the Choi state for U . The circuit ESI comprises a complete Bell measurement

on BC, followed by a Clifford correction on subspace A conditioned on the outcome of

the Bell measurement. It can be represented by Kraus operators,

K j = (CA
j ⊗1BCD

3n )M j, (4.139)

where M j = 1A⊗
∣∣Φ j
〉〈

Φ j
∣∣BC⊗1D are the Kraus operators corresponding to elements of

the Bell basis
∣∣Φ j
〉
, and C j is some unitary Clifford correction. Now consider an optimal

decomposition of the Choi state, ΦU = (1+ p)ρ+− pρ−, such thatR(ΦU) = 1+2p. We

now show that by substitution into equation (4.138) we can obtain a decomposition of

the channel that satisfies the trace-preservation condition required for channel robustness.

We have

Φ
AD
U = U ⊗1n(|Φ〉〈Φ|AD) = TrBC

[
ESI(Φ

AB
U ⊗|Φ〉〈Φ|CD)

]
(4.140)

= (1+ p)ρ̃AD
+ − pρ̃

AD
− , (4.141)

where ρ̃AD
± = TrBC[ESI(ρ

AB
± ⊗ |Φ〉〈Φ|CD)] ∈ STAB2n, since ESI ∈ SPn,n. We want to

show that TrA(ρ̃±) = 1n/2n. First, note that TrA(ρ̃±) is independent of the Clif-



150 Chapter 4. Quantifying magic for qubit states and operations

fords C j, since the partial trace depends only on the Bell measurement outcome prob-

abilities, p j = Tr
[
M j(ρ

AB
± ⊗|Φ〉〈Φ|CD)M†

j

]
. Therefore TrA(ρ̃±) = TrABC(ρ

′
±), where

ρ ′± = ∑ j M j(ρ
AB
± ⊗|Φ〉〈Φ|CD)M†

j is the post-measurement state. Then,

TrA(ρ̃±) = ∑
j

TrABC

[
M j

(
ρ

AB
± ⊗|Φ〉〈Φ|CD

)
M†

j

]
(4.142)

= TrABC

[
∑

j
M†

j M j

(
ρ

AB
± ⊗|Φ〉〈Φ|CD

)]
(4.143)

= TrABC

[
ρ

AB
± ⊗|Φ〉〈Φ|CD

]
(4.144)

= TrC
[
|Φ〉〈Φ|CD

]
=
1n

2n . (4.145)

In going to the second line, we used the fact that the partial trace over BC is cyclic with

respect to operators that act non-trivially only on HB⊗HC. In going from the second

to the third line, we used the fact that {M j} is a complete set of Kraus operators, so

∑ j M†
j M j = 1. We have shown that the decomposition (4.141) satisfies the trace preser-

vation criterion. Since the decomposition may not be optimal, we have that R∗(U) ≤
1+ 2p =R(ΦU). But from the proof of the first statement R(ΦU) ≤ CR(U) ≤R∗(U),
so it must be that equality holds.

We note that the result that R(ΦU) = R∗(U) for third-level gates carries over to

the case of decompositions of U(|+〉〈+|⊗n) for diagonal third-level gates. That is, there

always exists a decomposition satisfying the constraints of equation (4.34) that is optimal

with respect toR(ΦU) =R(U(|+〉〈+|⊗n)). This can be seen by following the argument

of Theorem 4.30, but replacing the full 4n-qubit teleportation circuit with a 2n-qubit state

injection circuit, as discussed in Section 1.4.

Theorem 4.31 (Sandwich theorem for Λ+-based channel monotones). For any CPTP

map E , the following inequalities hold,

Λ
+(ΦE)≤ CΛ+(E)≤ Λ

+
∗ (E). (4.146)

Moreover, if the unitary operation U is in the third level of the Clifford hierarchy, then we

have equality, Λ+(ΦU) = CΛ+(U) = Λ+
∗ (U).

We omit the full proof as it is almost identical to that given for Theorem 4.30, with
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R, CR andR∗ replaced with Λ+, CΛ+ and Λ+
∗ respectively. We can also prove a sandwich

theorem for the channel monotones based on dyadic negativity.

Theorem 4.32 (Sandwich theorem for Λ-based channel monotones). For any CPTP map

E , the following inequalities hold,

Λ(ΦE)≤ CΛ(E)≤ Λ∗(E). (4.147)

Proof. Assume E is an n-qubit channel. The first inequality, Λ(ΦE) ≤ CΛ(E), is proved

using the same steps as for Theorem 4.30, so we omit the details. To prove the second

inequality, recall that there exists a decomposition over stabiliser dyadic channels T j

optimal with respect to dyadic negativity Λ∗, that is,

E = ∑
j

α jT j s.t. Λ∗(E) = ∑
j

∣∣α j
∣∣. (4.148)

Meanwhile, there exists a normalised stabiliser dyad |L∗〉〈R∗| that achieves the dyadic ca-

pacity, CΛ(E) = Λ[(E ⊗1n)(|L∗〉〈R∗|)] (recall that we are using the extended definition of

dyadic negativity given in Section 4.3.3). Then using the dyadic channel decomposition

(4.148) and the convexity of dyadic negativity,

CΛ(E) = Λ

[
∑

j
α j(T j⊗1n)(|L∗〉〈R∗|)

]
≤∑

j

∣∣α j
∣∣Λ[(T j⊗1n)(|L∗〉〈R∗|)]. (4.149)

Now recall that stabiliser dyadic channels take the form T (·) = ∑k Lk(·)R†
k , where {Lk}k

and {Rk}k are both complete sets of completely stabiliser-preserving Kraus operators. Let

lk = ‖Lk⊗1n |L∗〉‖ and let |Lk〉 = Lk⊗1n |L∗〉/lk and likewise for the Kraus operators

acting on the right, i.e. rk = ‖Rk⊗1n |R∗〉‖. Then using convexity again, for any stabiliser

dyadic channel T we obtain

Λ[(T ⊗1n)(|L∗〉〈R∗|)]≤∑
k

lkrkΛ[|Lk〉〈Rk|] = ∑
k

lkrk, (4.150)

where |Lk〉〈Rk| is a normalised stabiliser dyad. But ∑k l2
k = ∑k r2

k = 1 by the complete-

ness of the Kraus operator sets {Lk}k and {Rk}k. Then using the Cauchy-Schwarz

inequality, ∑k lkrk ≤
√

(∑k l2
k ) · (∑k′ r2

k′) = 1, and so Λ[(T ⊗1n)(|L∗〉〈R∗|)]≤ 1 for all
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n NS
1 6
2 60
3 1,080
4 36,720
5 2,423,520
6 315,057,600

Table 4.1: Number of pure stabiliser states NS for number of qubits n.

stabiliser dyadic channels T . Using this fact with the inequality (4.149) we have

CΛ(E)≤ ∑ j
∣∣α j
∣∣= Λ∗(E), completing the proof.

4.4 Computing monotones for diagonal channels
Direct computation of the robustness of magic R for an n-qubit state involves solving

a linear program where the number of vertices is equal to the number of n-qubit pure

stabiliser states, NS [103, 133]. The size of this problem quickly becomes prohibitively

large, since NS increases super-exponentially with n (Table 4.1), and in practice we are

limited to five qubits. Similarly, computing generalised robustness and dyadic negativity

for entangled states is tractable up to three qubits. Typically computing channel mono-

tones is even harder. An n-qubit optimisation problem over channels is equivalent to a

2n-qubit optimisation over states, so naively, direct computation appears impractical for

n > 2. Meanwhile computing projective dyadic negativity is tractable only for single-

qubit operations. This difficulty is aggravated when calculating magic capacities as in

principle we have to repeat the optimisation for every state (E ⊗1n)(|φ〉〈φ |) such that

|φ〉 ∈ STAB2n. The inability to compute monotones exactly in the most general case

does not prohibit the use of sub-optimal decompositions for classical simulation. For

example, given channel decompositions E1 = ∑k pkTk and E2 = ∑k qkTk, we can always

construct decompositions for E1⊗E2 or E2 ◦E1 in the obvious way, such that the `1-norm

will be the product of the two. However, ideally we would like to increase the number of

qubits for which the problem is tractable, so as to optimise simulation costs.

In Ref. [133], Heinrich and Gross used permutation and Clifford symmetries of the

Hadamard and face states states to simplify the problem for multiple copies, e.g. states

of the form |ψn〉 = |ψ〉⊗n. This allowed them to compute R(|ψ〉) exactly for up to 10

copies, and to solve the problem approximately for up to 26 qubits, including determining
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an associated sub-optimal decomposition. However, their method depends on the specific

symmetries of these states, and cannot be applied to more general states. In the channel

picture, in some cases we can ameliorate the difficulty of computation by looking for

Clifford gates that commute with the channel of interest. In the rest of this section, we

present techniques that ease computation of our monotones for diagonal channels.

4.4.1 Reducing the problem size

Consider the case where E is a diagonal channel, meaning it has a Kraus representation

where each Kraus operator is diagonal in the computational basis. This includes diagonal

unitaries as a special case. It is straightforward to see how the problem can be simplified

for standard and generalised channel robustness, R∗ and Λ+
∗ , as well as magic state

monotones for the Choi state. If E is diagonal, the operation E ⊗ 1n commutes with

any sequence of CNOTs targeted on the last n qubits. But the maximally entangled state

|Φn〉 can be written |Φn〉=UC(|+n〉⊗ |0n〉). Here UC =⊗n
j=1U j, where U j is the CNOT

controlled on qubit j and targeted on qubit n+ j. Given any magic state monotoneM,

and letting ρE = E(|+n〉〈+n|),

M[ΦE ] =M[(E ⊗1n)(|Φn〉〈Φn|)] =M[ρE ⊗|0n〉〈0n|] =M[ρE ]. (4.151)

For the channel robustness we aim to decompose ρE in terms of states ρ± ∈ STABn, but

need to take care that the trace condition TrA(ρ
′
±) = 1n/2n is satisfied for the equivalent

2n-qubit Choi states ρ ′±. In Section 4.4.1.1 we show that this holds provided all diagonal

elements of ρ± are equal to 1/2n. So we can write,

R∗(E) = min
ρ±∈Tn

{
1+2p : (1+ p)ρ+− pρ− = E(|+〉〈+|⊗n), p≥ 0,

}
, (4.152)

when E is diagonal and where Tn = {ρ : ρ ∈ STABnand 〈x|ρ± |x〉 = 1/2n,∀x}. The

same argument applies for generalised channel robustness, except that we remove the

constraint that ρ− ∈ STABn. So provided E is diagonal, calculation is tractable up to

n = 5 for R∗(E) and R(ΦE) , and up to n = 3 for Λ+
∗ (E) and Λ+(ΦE). We show in

Section 4.4.2 that computing magic capacities can also be greatly simplified.
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4.4.1.1 Trace condition for diagonal channels

Consider that the Choi state for a diagonal channel has a decomposition

ΦE =UC
(
ρE ⊗|0〉〈0|⊗n)U†

C = (1+ p)ρ+− pρ−, (4.153)

where ρE = E(|+n〉〈+n|) and UC = ⊗n
j=1U j is the tensor product of CNOTs U j that are

controlled on the j-th qubit and targeted on the (n+ j)-th. Then

ρE ⊗|0〉〈0|⊗n = (1+ p)ρ ′+− pρ
′
−, (4.154)

where ρ ′± ∈ STABn since UC is Clifford. Now applying the stabiliser-preserving channel

1n⊗E0 that resets the last n qubits to |0〉〈0|⊗n to both sides we obtain

ρE ⊗|0〉〈0|⊗n = (1+ p)ρ ′′+⊗|0〉〈0|⊗n− pρ
′′
−⊗|0〉〈0|⊗n . (4.155)

So from equation (4.153), we obtain ρ± = UC
(
ρ ′′+⊗|0〉〈0|⊗n)U†

C, and the TP condition

becomes
1n

2n = TrA (ρ±) = ∑
x
〈x|AUC

(
ρ
′′
±⊗|0〉〈0|⊗n)U†

C |x〉
A , (4.156)

where |x〉 are the computational basis states on subsystem A. Recall that UC can be

written as a tensor product of CNOTs UC = ⊗n
j=1U j. The CNOT gate controlled on the

j-th qubit and targeted on the (n+ j)-th qubit can be expressed:

U j = |0〉〈0|⊗1+ |1〉〈1|⊗X =
1

∑
x j=0

∣∣x j
〉〈

x j
∣∣⊗Xx j

n+ j. (4.157)

Then the tensor product of all n CNOT gates can be written:

UC =⊗n
j=1

1

∑
x j=0

∣∣x j
〉〈

x j
∣∣⊗Xx j

j = ∑
x
|x〉〈x|⊗X(x) (4.158)

where x is an n-bit string, and X(x) = Xx1
n+1Xx2

n+2 . . .X
xn
2n . But X(x)B |ψ〉A⊗|0n〉B = |ψ〉A⊗

|x〉B for any |ψ〉. So we have:

UC
(
ρ
′′
±⊗|0〉〈0|⊗n)U†

C = ∑
x
〈x|ρ ′′± |x〉 |x〉〈x|A⊗|x〉〈x|B . (4.159)
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Combined with equation (4.156), the trace-preservation criterion can be expressed as
1n
2n = ∑x 〈x|ρ ′′± |x〉 |x〉〈x|. Therefore, E ′′± are trace-preserving provided that all the diagonal

elements of ρ ′′± are equal to 1/2n.

For a given diagonal channel, there always exists a decomposition that satisfies these

conditions and has `1-norm equal to the channel robustness as defined for the full Choi

state. We do not give the full proof here, but sketch the argument. Given any decomposi-

tion of the full Choi state ΦE = (1+ p)ρ+− pρ− for diagonal E , satisfying the trace con-

dition, one can always find a new decomposition ΦE = (1+ p)EDIAG(ρ+)− pEDIAG(ρ−)

where EDIAG(ρ±) still satisfy TrA(EDIAG(ρ±)), but are now the Choi states for diagonal

channels. Here EDIAG is a stabiliser circuit that maps any stabiliser Choi state ΦT to

some other stabiliser Choi state ΦT ′ , where T ′ is diagonal. Notice that the Choi states

for diagonal maps T have the general form:

ΦT =
1
2n ∑

j,k
c j,k | j〉A | j〉B 〈k|A 〈k|B . (4.160)

In general c j,k can be complex or zero, but terms on the diagonal are constrained. In par-

ticular, trace-preserving diagonal channels cannot change the weight of particular com-

putational basis states, so the probability distribution for measurements in the standard

basis is the same as for |Φn〉, that is, 〈p,q|ΦT |p,q〉= 1
2n δp,q. The circuit EDIAG is defined

by the following steps. For each j from 1 to n:

1. Perform a parity measurement (Z⊗Z) between qubits j and n+ j.

2. If even parity (+1 outcome), do nothing. If odd parity (-1 outcome), perform an X

gate on qubit j.

This stabiliser-preserving channel leaves Choi states for diagonal maps (and crucially, the

target Choi state ΦE ) invariant, but updates general Choi states to have the form (4.160).

One can check that the circuit preserves the property TrA(ρ±) = 1n/2n. We then obtain

a decomposition in the desired form:

EDIAG(ΦE) = ΦE = (1+ p)EDIAG(ρ+)− pEDIAG(ρ−) (4.161)

Where EDIAG(ρ±) = (E±⊗1)(|Φ〉〈Φ|) are Choi states for n-qubit diagonal channels E±.

But as described above, the CNOT sequence UC commutes with diagonal channels acting
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on the first n qubits, so we can obtain n-qubit representatives of these channels:

E±(|+n〉〈+n|)⊗|0〉〈0|⊗n =UC[(E±⊗1)(|Φ〉〈Φ|)]U†
C. (4.162)

Discarding the last n qubits we obtain the desired n-qubit decomposition:

E(|+n〉〈+n|) = (1+ p)E+(|+n〉〈+n|)− pE−(|+n〉〈+n|). (4.163)

Once again, the same arguments apply for generalised robustness, since we only need

discard the constraint that E− is stabiliser-preserving.

4.4.2 Magic capacity in the affine space picture

In this section we will make use of the formalism due to Dehaene and De Moor (Section

1.1.5.3), in which stabiliser states are cast in terms of affine spaces and quadratic forms

over binary vectors [54, 55], to prove the following theorem.

Theorem 4.33 (Magic capacity for diagonal operations). Suppose the n-qubit channel

ED is diagonal. Let

|K〉= 1
|K|1/2 ∑

x∈K
|x〉 , (4.164)

where x ∈ Fn
2 are binary vectors and K ⊆ Fn

2 is an affine space. Then, for any well-

behaved magic state monotoneM, we have CM(ED) = maxKM[ED(|K〉〈K|)].

That is, given an n-qubit channel E , provided the channel is diagonal, the capacity

CM(E) may be calculated by optimisation over only the n-qubit states |K〉 as defined in

equation (4.164), rather than over all 2n-qubit stabiliser states.

Recall that any pure n-qubit stabiliser state can be expressed in the form

|K,q,d〉=
√
|K| ∑

x∈K
id

T x(−1)q(x) |x〉 , (4.165)

where K ⊆ Fn
2 is an affine space, d is some fixed binary vector, and q(x) has the form

q(x) = xT Qx+λ T x. Here Q is a binary, strictly upper triangular matrix, λ is a vector, and

addition is modulo 2. Conversely, any state that can be written in this way is a stabiliser

state. Also recall that every affine space is related to exactly one linear subspace, by

K = L+ h for some shift vector h, and the dimension k = dim(K) of an affine space
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means the dimension of the corresponding subspace. Instead of enumerating all elements

of an affine space, we can specify it by a shift vector h and an n× k matrix where each

column is one of the generators of the corresponding linear space,

G =
(

g1 g2 · · · gk

)
=



g1,1 g1,2 · · · g1,k
...

...
...

g j,1 g j,2 · · · g j,k
...

...
...

gn,1 gn,2 · · · gn,k


. (4.166)

We have freedom in our choice of k independent generators, and we can transform be-

tween equivalent generating sets by adding any two columns of G. We are also free

to swap any two columns. A general transform between generating sets can therefore

be represented by an invertible matrix S of dimension k× k, multiplying on the right

G−→ GS.

Any linear transformation of the affine space can be fully specified by the transfor-

mation of the generators and the shift vector. In particular, we can represent the action

of a single CNOT by multiplication on the left by a matrix C [54, 61]. If the CNOT has

control qubit j and target qubit k, then C has 1s on the diagonal, a 1 in the jth element

of the kth row, and zeroes everywhere else. A sequence for a 2n-qubit system, in which

CNOTs are always controlled on the first n qubits, and targeted on the last n qubits can

be represented in block form as

C =

1 0

M 1

 , (4.167)

where each block has dimension n× n, and M can be any binary matrix. We use this

formalism to prove the following lemma, which leads directly to Theorem 4.33.

Lemma 4.34 (Equivalences for diagonal channels). Suppose ED is a diagonal CPTP

channel, and letM be a well-behaved magic state monotone (faithful, monotone under

completely stabiliser-preserving channels and submultiplicative under tensor product).

Then the following statements hold.

1. All initial stabiliser states with the same affine space K result in the same value of
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M. That is, for any valid q, q′, d and d′,

M[(ED⊗1)(|K,q,d〉〈K,q,d|)] =M[(ED⊗1)(
∣∣K,q′,d′〉〈K,q′,d′∣∣)]. (4.168)

2. Given a 2n-qubit state |φ〉 ∈ STAB2n , there exists some n-qubit |φ ′〉 ∈ STABn such

thatM[(ED⊗1n)(|φ〉〈φ |)] =M[ED(|φ ′〉〈φ ′|)].

Proof. We first prove statement 1. Since any magic monotone must be invariant under

Clifford operations, we need to show that there exists a Clifford unitary U that converts

(ED⊗1)(|K,q,d〉〈K,q,d|) to (ED⊗1)(|K,q′,d′〉〈K,q′,d′|). A suitable choice for U is

one such that U
∣∣φK,q,d〉= ∣∣φK,q′,d′〉, and, crucially, that commutes with the channel ED.

Since ED is given to be diagonal, any diagonal Clifford U will suffice. The affine spaceK
remains unchanged, so we only need show there is always a diagonal Clifford that maps

q→ q′ and d→ d′ for any q, q′, d and d′. That this is always possible is perhaps already

evident from Ref. [54], but for completeness we give the argument here.

We can convert d to d′ using appropriately chosen S j gates, meaning the gate

diag(1, i) acting on the jth qubit. Consider the action of S j on a basis vector:

S j |x〉=

|x〉 if x j = 0

i |x〉 if x j = 1
(4.169)

If we define basis vector e j so that it has 1 in the jth position and zeroes elsewhere,

we can write the action of S j as S j |x〉 = ie
T
j x |x〉. Note that the form of this equation is

independent of the value of x, so we can write:

S j
∣∣φK,q,d〉= 1

|K|1/2 ∑
x∈K

id
T x(−1)q(x)S j |x〉 (4.170)

= ∑
x∈K

i(d
T+eT

j )x(−1)q(x)S j |x〉 . (4.171)

So, we can flip any bit of d by applying the correct S gate, leaving q(x) unchanged.

Now consider q(x) = xT Qx + λ T x, which we must convert to some other

q′(x) = xT Q′x+λ ′T x. We can use the same trick as above to convert any λ to any

other λ ′, by replacing S j with the Z j gate, i.e. diag(1,−1) acting on the jth qubit. For Q

we can use the controlled-Z gate between the jth and kth qubit, which we denote CZ jk.
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This acts on basis states as CZ jk |x〉= (−1)xT M jkx |x〉, where M jk is the n×n matrix with

a 1 in position ( j,k) and zeroes everywhere else. The set of all
{

M jk
}

form a basis for

n× n binary matrices, hence we can convert any Q to any other Q′ by an appropriately

chosen sequence of CZ gates, leaving d and λ untouched. This completes the proof of

statement 1.

Now to prove statement 2. From statement 1 any stabiliser state |φ〉 is equivalent to

|K〉= |K|−1/2
∑x∈K |x〉, up to some diagonal Clifford, for someK. The strategy is to find

a Clifford unitary U that commutes with ED, and converts the 2n-qubit stabiliser state |K〉
to some product of two n-qubit states |K′〉=

∣∣K′A〉⊗|K′B〉. If such a Clifford gate exists,

we would have

M[(ED⊗1n)(|K〉〈K|)] =M
[
(ED⊗1n)(

∣∣K′A〉〈K′A∣∣⊗ ∣∣K′B〉〈K′B∣∣)] (4.172)

=M
[
ED(
∣∣K′A〉〈K′A∣∣)⊗ ∣∣K′B〉〈K′B∣∣]=M[ED

(∣∣K′A〉〈K′A∣∣)],
where the last step follows as |K′B〉 is a stabiliser state so makes no contribution to the

robustness. The state |K′〉=U |K〉 can be factored as
∣∣K′A〉⊗|K′B〉 provided its generator

G′ can be written in diagonal matrix form,

G′ =

G′A 0

0 G′B

 , (4.173)

where G′A and G′B have n rows, representing generators for affine spaces K′A and K′B.

We now show that we can always reach this form by a Clifford UC comprised of

a sequence of CNOTs targeted on the last n qubits. Such a sequence always commutes

with ED⊗1n. Suppose we have some 2n× k generator G for an affine space K with

k = dim(K):

G =

GA

GB

 , (4.174)

where GA and GB are each n× k submatrices. The full matrix G will have rank k, and

GA will have some rank m ≤ k. Either GA is already full rank (m = k), or it can be

reduced to the following form by elementary column operations, which is equivalent to
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n Stabiliser states Total affine spaces Non-trivial affine spaces
2 60 11 7
3 1,080 51 43
4 36,720 307 291
5 2,423,520 2451 2419

Table 4.2: Number of n-qubit stabiliser states compared with number of affine spaces. By triv-
ial affine spaces we mean those comprised of a single element, which correspond to
computational basis states. Diagonal CPTP channels act as the identity on such states.

multiplication on the right by a k× k matrix S:

GA −→ GAS =
(

G′A 0
)
, (4.175)

where G′A is n×m (and hence full column rank), and 0 is n× (k−m). Multiplying G on

the right by S, we interpret as a change in the choice of generating set:

G−→ GS =

GAS

GBS

=

G′A 0

G′′B G′B

 . (4.176)

Now, apply the Clifford UC described by the matrix C in equation (4.167). This trans-

forms the generator to:

G′ =CGS =

1 0

M 1

G′A 0

G′′B G′B

=

 G′A 0

MG′A +G′′B G′B

 . (4.177)

Note that if GA was already full rank, the change of generating set is not necessary. If we

can set the bottom-left submatrix to zero, then UC |K〉 can be factored as described above.

This is possible if there exists a binary matrix M such that MG′A = G′′B. But G′A has full

column rank m, so there exists an m×n left-inverse G′−1
A,left such that G′−1

A,leftG
′
A = 1, where

1 is m×m. Then we can set M = G′′BG′−1
A,left, so that:

MG′A = G′′BG′−1
A,leftG

′
A = G′B1= G′′B. (4.178)

Then G′ =CGS is in the form (4.173), so UC |K〉=
∣∣K′A〉⊗|K′B〉, as required.

Lemma 4.34 shows that if ED is diagonal then for any 2n-qubit stabiliser state |φ〉we

have thatM[(ED⊗1n)(|φ〉〈φ |)] =M[ED(|K〉〈K|)] for some n-qubit affine space K. So,
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the capacity with respect to any well-behaved magic state monotone can be calculated

by maximising over just the representative states |K〉, proving Theorem 4.33. Table 4.2

illustrates the reduction in problem size. For example, whereas naively for a two-qubit

channel we would need to computeM for all 36,720 four-qubit stabiliser states, using

the result above we only need check one stabiliser state for each of the 7 non-trivial two-

qubit affine spaces. The problem therefore becomes tractable up to five qubits for CR and

up to three for CΛ+ .

4.4.3 Dimension of affine space

We next make further observations that will later help interpret numerical results in Chap-

ter 6.

Observation 4.35 (Dimension of initial affine space limits generation of magic). Suppose

U is a diagonal unitary acting on n qubits, and suppose |K〉 is a stabiliser state associated

with some affine space K, k = dim(K). Then for any well-behaved magic state monotone

M, we find thatM(U |K〉) =M(U ′ |φ ′〉) where U ′ |φ ′〉 is a state on only k qubits, and U ′

is some k-qubit unitary. ThereforeM(U |K〉) is upper-bounded by the maximumM(ρ)

achievable for an k-qubit state ρ .

Proof. We prove the result by showing that there is a sequence of Clifford gates that takes

U |K〉 to the product of a k-qubit state and an (n−k)-qubit stabiliser state. We know from

Lemma 4.34 that for diagonal unitaries, all states with same affine space have the same

magic, so it is enough to consider the state |K〉= 1√
|K|∑x∈K |x〉. A diagonal unitary will

map this to some state U |K〉 = 1√
|K|∑x∈K eiθx |x〉, where

{
eiθx
}

will be a subset of the

diagonal elements of U . The affine space K has a generator matrix of rank k. Lemma

4.34 showed that a sequence of elementary row operations on the generator matrix can

be realised by a sequence of CNOT gates. So we can use Clifford gates to transform any

rank k generator matrix as

G−→ G′ = AG =

1
0

 , (4.179)

where 1 is the k× k identity. Each element of K can be written x = ∑ j g j + h, where

∑ j g j is some combination of columns of G, and h is a fixed shift vector. The matrix A

represents a sequence of CNOTs collected in a single Clifford unitary UA, that acts on

n-qubit computational basis states |x〉, where x ∈ K, as UA |x〉 = |y(x)〉⊗ |h′〉, where h′
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is an (n− k)-length vector, and y(x) is a k-length vector given by,

y(x)

h′

= Ax = ∑
j

Ag j +Ah. (4.180)

Note that y(x) is only defined for x ∈K, and that h′ is independent of x. Elements x ∈ Fn
2

that are not inK could be mapped to a vector where the last n−k bits are not h′, but these

never appear as terms of U |K〉. Since UA must preserve orthogonality, each |x〉, where

x ∈ K, maps to a distinct element of the k-qubit basis set {|y〉}. Since y are length k and

there are 2k distinct elements, they must form the k-bit linear space L′ = Fk
2. So we can

write

UAU |K〉= 1√
|L′| ∑

y∈L′
eiθ ′y |y〉⊗

∣∣h′〉= (U ′
∣∣L′〉)⊗ ∣∣h′〉 , (4.181)

where |L′〉 is a k-qubit stabiliser state, and U ′ is the k-qubit diagonal unitary with eiθ ′y(x) =

eiθx as the non-zero elements. The state |h′〉 is a stabiliser state, so does not increase

the monotone value of UAU |K〉, and therefore M(U |L(K)〉) =M(UAU |L(K)〉) =
M(U ′ |L′〉), where U ′ |L′〉 is a k-qubit state.

Finally, consider the special case of multi-control phase gates Mt,n, defined

Mt,n = diag(exp
(
iπ/2t),1,1, . . . ,1), t ∈ Z. (4.182)

By convention, controlled-phase gates typically apply the phase to the all-one state |1n〉,
but the form given above is Clifford-equivalent to the conventional version, and is more

convenient for the arguments below. Notice that Mt,n acts as the identity on states |K〉
unless K contains the zero vector 0n = (0, . . . ,0)T , so if 0n /∈ K, we getR(Mt,n |K〉) = 1.

But if 0n ∈ K, then K is a linear subspace. So for this type of gate, to find all possible

values of R(Mt,n |K〉) > 1 we need only consider linear subspaces. The following theo-

rem implies that we only need solve one optimisation for each possible k ≤ n rather than

one for every linear subspace.

Theorem 4.36. Consider the n-qubit gate Mt,n defined by equation (4.182), and let LA

and LB be linear subspaces such that dim(LA) = dim(LB) = k. Then for any well-
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behaved magic monotoneM,

M[Mt,n |LA〉] =M[Mt,n |LB〉]. (4.183)

Proof. We largely repeat the arguments of Observation 4.35, for the special case where

the phases are given by

θx =

π/2t if x = 0n

0 otherwise.
(4.184)

Since dim(LA) = dim(LB), their generator matrices GA and GB have the same rank. It

follows from the arguments of Observation 4.35 that there exists an invertible C, corre-

sponding to a sequence of CNOT gates, such that GB =CGA, and |LB〉=UC |LA〉, where

UC is a unitary Clifford operation. The state Mt,n |LA〉 can be expressed with precisely

the same basis vectors as |LA〉, but with updated phase. Clearly, since any CNOT acts as

the identity on |0n〉, we obtain

UCMt,n |LA〉=
1

2k/2 ∑
x∈LB

exp(iθx) |x〉= Mt,n |LB〉 (4.185)

Since UC is a reversible Clifford, equation (4.183) follows by monotonicity.

From Theorem 4.36, then, to find CM(Mt,n), we only need calculate M(Mt,n |L〉)
for a single representative subspace for each possible value of dim(L). Recall that for

n-qubit stabiliser states |L〉, k = dimL can take integer values from 0 to n. The states

with k = 0 correspond to single computational basis states without superposition, so are

unaffected by phase gates. That is, for n-qubit multicontrol phase gates we only have to

evaluateM for n distinct states. Compare this to the number of optimisation problems

we would need to solve without using the above observations (Table 4.2).

We can go further. From Observation 4.35, for a subspace with dim(L) = k < n, it

must be the case that Mtn |L〉 is Clifford-equivalent to (U ′ |L′〉)⊗|h′〉 for the k-qubit state

|L′〉 and (n− k)-qubit computational basis state |h′〉, and some diagonal k-qubit unitary

U ′. By inspection of the phases given by equation (4.184), U ′ can only be the k-qubit

multicontrol gate Mt,k. This leads to the following.

Observation 4.37 (n-qubit multicontrol gates). For any fixed t and n-qubit state |L〉
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where dim(L) = k < n, we have:

M(Mt,n |L〉) =M(Mt,k
∣∣L′〉) (4.186)

where |L′〉 is the k-qubit state with L′ = Fk
2, andM is any well-behaved monotone.

We have seen in this section that we can significantly ease the computation of magic

capacities for all diagonal channels, and we can simplify the problem still further for

highly structured gates like the multicontrol gates considered above. Our results showing

Clifford-equivalences between certain magic states of the form E(|K,q,d〉〈K,q,d|) may

also be of interest for the study of state conversion.

4.5 Summary and conclusions
In this chapter we presented several contributions to the resource theory of magic for

states and operations on n-qubit systems. We summarise the measures of magic pre-

sented in the preceding sections in Table 4.3. Of the quantities listed in this table, all are

novel contributions except for robustness of magic R, which was introduced by Howard

and Campbell [103]. All are well-behaved magic monotones in the sense we described

earlier in the chapter, with the exception of channel extent, whose domain restricted to

channels in the convex hull of the unitary operations. The general pattern has been that we

started with state monotones related to decompositions of a particular type, then defined

channel monotones corresponding to analogous decompositions of channels. Finally we

defined magic capacities, based on the maximum increase in magic with respect to one

of the magic state monotones. In the last part of the chapter we showed that computa-

tion of the monotones can be significantly simplified for the case of diagonal channels.

We note that the family of extent-type monotones is incomplete compared to the other

Type State monotone Channel monotone Capacity Sandwich theorem
Robustness R (Ref. [103]) R∗ CR Y

Gen. robustness Λ+ Λ+
∗ CΛ+ Y

Dyadic Λ Λ∗ CΛ Y
Extent Ξ Ξ∗ (restricted) - N

Table 4.3: Families of magic monotones presented in this chapter. “Sandwich theorem” column
indicates whether we were able to prove the chain of inequalitiesM(ΦE)≤M∗(E)≤
CM(E) for each family. Note that the channel extent Ξ∗ is defined only for channels
that can be expressed as a convex combination of unitary operations.



4.5. Summary and conclusions 165

monotones we studied. In addition to the fact that it is not clear how to define an appro-

priate extent monotone for general CPTP maps, we did not discuss capacity with respect

to density-operator extent Ξ. In part this is because computing this capacity would likely

be intractable. Although computing Ξ is a solved problem for tensor products of single-

qubit states due to the results of Section 4.1, it remains hard in general for multi-qubit

states. Consequently we do not expect the associated magic capacity to be computable in

the general case. Nevertheless, if a generalised channel extent could be defined, it may

be possible to bound the capacity using a sandwich theorem. We leave these matters as

open questions for future work.

In the next chapter we will show that for every one of the magic monotones we have

presented, there exists a classical simulation algorithm where the monotone quantifies

the performance in some respect. We will see that the different types of decomposition

used in the definition of each monotone lead to simulators that are useful for distinct

simulation tasks.





Chapter 5

Classical simulation algorithms for

non-stabiliser circuits

We next introduce several improved classical algorithms, addressing previously unre-

solved questions on the classical simulation of stabiliser circuits supplemented by magic

resources. We first introduce an efficient subroutine for updating a stabiliser state subject

to a completely stabiliser-preserving CPTP map. Surprisingly, while the Gottesman-Knill

theorem is well known, and various extensions have appeared in the literature, to our

knowledge the classical simulability of general completely stabiliser-preserving CPTP

maps SPn,n has not previously been studied.

Having shown in Chapter 4 that the connection between stabiliser extent and robust-

ness of magic can be understood formally via three new magic monotones for states, in

Section 5.2 we show that each monotone is associated with a different classical simulator

for stabiliser circuits with magic state inputs. We demonstrate how stabiliser rank meth-

ods, previously limited to pure state evolution under unitary gates and projective Pauli

measurements, can be extended to the density operator picture, admitting mixed magic

state inputs and noisy stabiliser channels. In the process we obtain a significant improve-

ment in performance. We also present a generalisation of the quasiprobability sampling

method discussed in Chapter 2, improving the exponent in the exponential scaling of the

runtime with magic resources.

We then present a suite of simulation algorithms for circuits that involve general

magic channels as well as magic states. Each simulator is linked with one of the channel

monotones defined in Chapter 4. These can broadly be classed into static simulators,

based on precomputed channel decompositions, and dynamic simulators, which call op-
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timisation subroutines during the simulation. In this sense the Oak Ridge simulator [45]

discussed in Section 2.5.1 was an example of a static simulator, though its performance

was not related to a true magic monotone, and its efficiency was limited by a restricted

set of free operations. We show how it can be generalised so that is efficient for all

CPTP completely stabiliser-preserving maps on bounded number of qubits SPn,n, with

runtime measured by the channel robustness. This yields reduced runtime for certain

non-stabiliser channels. We go on to present static simulators with performance quanti-

fied by generalised channel robustness and dyadic channel negativity. We also introduce

a bit-string sampling algorithm for noisy non-stabiliser circuits restricted to unital chan-

nels, with the simulation cost of each circuit element given by its channel extent.

Next we present a family of dynamic channel simulators associated with magic ca-

pacity monotones. These can lead to reduced sample complexity, at the cost of having to

solve few-qubit optimisation problems on the fly during the simulation. In Chapter 6, we

will combine the insights from the resource theory of magic with the understanding of

classical simulation overhead developed in this chapter to estimate simulation costs for

specific classes of channel, so as to compare the performance of our various simulators

in different contexts. For now, we introduce an efficient stabiliser-Kraus subroutine that

functions as a key part of several of our algorithms.

5.1 Stabiliser-Kraus subroutine

The original Gottesman-Knill algorithm showed that the update of stabiliser states under

Clifford operations, and the computation of both the outcome probabilities and post-

measurement states after a Pauli measurement can be done efficiently. Efficient update

rules for certain composite stabiliser operations can be devised straightforwardly. In

particular one can efficiently simulate the channel E = ∑ j p jE j provided the update rule

for each E j is known and {p j} j can be efficiently sampled from. Indeed, the Oak Ridge

simulator [45] can efficiently simulate convex combinations of elements in CPR, the

set of Clifford operations supplemented by Pauli reset channels. However, there exist

completely stabiliser-preserving channels outside the convex hull of CPR, and for these

the algorithm as stated in Ref. [45] is not efficient. Here we present a subroutine for

probabilistically performing the update of an n-qubit stabiliser state for any CPTP map

in SPm,m, m≤ n. This allows efficient simulation of any completely stabiliser-preserving
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CPTP map, subject to modest assumptions about the channel decomposition. We present

two versions of the subroutine, one of which first appeared in our article Ref. [1], the

other being a variant introduced in our pre-print Ref. [2]. To our knowledge, a result for

the efficient simulation of general stabiliser-preserving CPTP maps had not previously

appeared in the literature prior to Ref. [1].

Both variants use the fact that the Choi state for any completely stabiliser-preserving

CPTP map E ∈ SPm,m is a mixed stabiliser state, so can be decomposed as a convex

combination ΦE = ∑ j p j |φ j〉〈φ j|, where |φ j〉 ∈ STAB2m are pure stabiliser states. In

turn, each pure stabiliser state corresponds to a completely stabiliser-preserving Kraus

operator in the decomposition of the channel, |φ j〉 = K j⊗1m |Φm〉. In general K j may

not preserve trace, so that transition probabilities for each operator depend on the initial

state ρ . However, the total channel E is trace-preserving, which means that the final state

E(ρ) will be some probability distribution over pure stabiliser states. Given initial state

|φ〉, the probability of obtaining the outcome corresponding to the j-th Kraus operator is

given by Pj = p j
∥∥K j |φ〉

∥∥2, where |Ωm〉= 2−m/2
∑ j | j〉⊗| j〉. This probability can always

be computed efficiently and exactly (up to machine precision in the coefficient p j). The

full probability distribution can then be computed efficiently provided the number of

Kraus operators is not too large. We will make this precise shortly. The first version of

the subroutine is given in Algorithm 4. We assume that the channel is supplied as an

NK-length list of couples L= {(p1,φ1), . . . ,(pNK ,φNK)}, where each couple corresponds

to the coefficient p j and pure stabiliser state φ j from the j-th term of ΦE = ∑ j p j |φ j〉〈φ j|.
For concreteness, we assume that the description of the initial state ψ and each φ j is given

in stabiliser tableau format [31], requiring O
(
m2) classical bits to describe each Kraus

operator, and O
(
n2) for the initial state. Without loss of generality we assume that E is

applied to the first m qubits.
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Algorithm 4 Stabiliser Kraus update subroutine (Teleportation scheme)

Input: Initial n-qubit stabiliser tableau for state |ψ〉, length NK list L with entries (p j,φ j)
describing the Choi state decomposition for m-qubit channel E .

Output: Updated n-qubit tableau for state |ψ ′〉.
1: for r← 1 to NK do
2: Prepare tableau Tr for (2m+n)-qubit state |φr〉AB⊗|ψ〉CD.

3: Use Tr to compute Pr← pr

∥∥∥(1AD
n ⊗|Φm〉〈Φm|BC) |φr〉AB⊗|ψ〉CD

∥∥∥2
.

4: end for
5: Sample index s from distribution {Ps}.
6: Prepare tableau Ts for |φs〉AB⊗|ψ〉CD.
7: Update tableau T ′s after projection (1AD

n ⊗|Φm〉〈Φm|BC).
8: Find reduced tableau T ′′s after discarding subsystem BC.

We call this the teleportation scheme, since the Choi state is employed as a resource

state for gate teleportation [89]. Recall that for an m-qubit linear map T ,

T (ρA) = 〈Φm|BC
Φ

AB
T ⊗ρ

C |Φm〉BC . (5.1)

Here, the Choi state ΦKr = |φr〉〈φr| is a pure state, and the map acts on the partition A

which comprises the first m qubits, so that partition D contains the last (m− n) qubits.

We can then write the state update as

∣∣ψ ′〉= KA⊗1D |ψ〉AD = (1A
m⊗〈Φm|BC⊗1D

n−m) |φr〉AB⊗|ψ〉CD . (5.2)

Thus the input state |ψ〉 is first prepared on the partition CD, and the resource state |φr〉
is prepared on partition AB. In our algorithm, this corresponds to preparing the (n+2m)-

qubit tensor product tableaux Tr and Ts in steps 2 and 6, which takes O
(
(n+2m)2)

steps (Section 1.2). We then perform a post-selected Bell measurement on the 2m-qubit

partition BC. This corresponds to a projector,

|Φm〉〈Φm|=
m

∏
j=1

(1+Z jZm+ j)(1+X jXm+ j)

4
. (5.3)

So, evaluating each probability Pr in step 3 and performing the update in step 7 amounts

to simulating a sequence of 2m weight-2 Pauli measurements using a tableau of size

(n+ 2m), which takes time O
(
m(n+2m)2), (see Section 1.2). In step 8 we need to

discard the unwanted partition BC. It follows from the Gottesman-Knill theorem and
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Ref. [57] that if we know that an (n + 2m)-qubit stabiliser state is in product form,

we can prepare the tableau for one of the tensor factors in time O
(
(n+2m)2). In all,

since we need to evaluate NK probabilities Pr and then perform the final update, the

algorithm divides into 2NK + 3 computations, each taking time O
(
m(n+2m)2). Since

m≤ n, the whole subroutine is completed in time O
(
NKmn2), so the runtime is efficient

in n provided NK ≤ poly(n).

We call the second variant of the subroutine the polar scheme (Algorithm 5), as it

relies on the fact that the Kraus operator corresponding to a normalised 2m-qubit pure

stabiliser Choi state |φ〉 can be written in a canonical polar form K = 2h/2UΠ, where U

is a Clifford gate, and Π is a stabiliser projector of rank 2m−h [63]. This scheme may

reduce the runtime in some cases, at the cost of requiring polar decomposition of each

Kraus operator. The channel description is supplied as a list of triples (p j,U j,Π j,h j),

where
∣∣φ j
〉
= 2h j/2U jΠ j⊗1m |Φm〉. For fixed initial state, the probability 2h j p j

∥∥Π j |ψ〉
∥∥2

depends only on the projector Π j and coefficient 2h j p j, since U leaves the norm invariant.

K j corresponds to a unitary Clifford operation when Π j = 1m. In this case, h j = 0 and∥∥K j |ψ〉
∥∥2

= 1, so the probability for sampling this Kraus operator is simply p j. One

can therefore reduce the overhead by splitting L into a unitary part LU = {(p j,U j)} j

and non-unitary part LNU = {(p′j,U
′
j,Π j,h j)} j, with NU and NNU entries, respectively,

so that NK = NU +NNU . Assuming one can efficiently compute PU = ∑
NU
j=1 p j, where

the sum is over all coefficients for Clifford operations, one can then flip a biased coin

to randomly choose the unitary or non-unitary branch of the channel. If we select the

unitary branch, we simply read off the probability for selecting the j-th Clifford, and

transition probabilities for non-unitary terms need not be computed.

To analyse the runtime, consider that the rank 2m−hr stabiliser projector may be writ-

ten as the product of hr Pauli projections, so computing ‖Πr |ψ〉‖2 takes time O
(
hrn2).

Since hr ≤m, the for-loop starting in step 4 is completed in runtimeO
(
NNU mn2). Mean-

while any m-qubit Clifford gate can be decomposed as a sequence of O
(
m2/ logm

)
elementary Clifford operations from the set {H,S,CNOT}, each simulable in time

O
(
n2), so step 14 takes time O

(
NNU mn2). If we suppose that NK ≤ poly(n), then

NU ,NNU ≤ poly(n), and step 1 completes in time poly(n). The worst-case runtime is

then poly(n) as for the teleportation scheme. However, for certain channels the polar

scheme may perform better on average, since computing transition probabilities is only
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Algorithm 5 Stabiliser Kraus update subroutine (Polar scheme)

Input: Initial n-qubit stabiliser tableau T for state |ψ〉, description of the channel E in
the form of a length-NU list LU list of Clifford operations (p′j,U

′
j), and length-NNU

list of non-unitary operations (p j,U j,Π j,h j).
Output: Updated n-qubit tableau for state |ψ ′〉.

1: Compute PU = ∑ j p′j.
2: Set PATH← “U” with probability PU , else PATH← “NU”
3: if PATH = “NU” then
4: for r← 1 to NNU do
5: Compute Pr← 2hr pr‖Πr |ψ〉‖2/(1−PU)
6: end for
7: Sample index s from distribution {Ps}.
8: U ←Us; Π←Πs.
9: Compute tableau T ′ for |ψ ′〉= Π |ψ〉/‖Π |ψ〉‖

10: else
11: Sample index s from distribution {ps/PU}NU

s=1.
12: U ←U ′s; T ′← T ;
13: end if
14: Update tableau T ′′ for state following Clifford, |ψ ′′〉=U |ψ ′〉.

necessary if the non-unitary path is sampled.

The restriction to poly(n) Clifford terms can be relaxed if we modify Algorithm 5 to

allow that, rather than an explicit list, we have access to a function that efficiently returns

the description of a Clifford gate U j with probability p j. For example, consider a random

sequence of t Clifford gates, each chosen from a library of at most b elements. This is a

product distribution, so sampling a gate sequence is efficient in t despite the fact that the

total number of Clifford terms NU in the channel decomposition isO(bt). This motivates

the following definition.

Definition 5.1 (Simulable channel decompositions). Suppose an n-qubit completely

stabiliser-preserving CPTP map E ∈ SPn,n has Kraus decomposition,

E(·) =
NU

∑
j=1

p jU j(·)U†
j +

NNU

∑
k=1

qkKk(·)K†
k (5.4)

where p j,qk ≥ 0, U j are Clifford operators and Kk is a non-unitary completely stabiliser-

preserving Kraus operator. We call this a simulable decomposition if:

1. The number of non-unitary operators is bounded by NNU ≤ poly(n);

2. There exists a procedure that can compute PU = ∑ j p j, sample from {p j/PU} j and
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compute a description of the unitary U j, all in poly(n) time.

By ensemble ambiguity, this definition of simulability refers to a specific decompo-

sition (e.g. described by a data structure L), rather than being a property of the map E
itself, though there can exist channels that do not admit a simulable decomposition. The

class of simulable channel decompositions encompasses a wide range of practically im-

portant stabiliser operations, including the random Clifford circuits already mentioned.

Simulable decompositions can also be found for any channel of the form E = E ′⊗1n−b,

where E ′ ∈ SPb,b and b is a small constant [1]. This follows because by Carathéodory’s

theorem, the Choi state ΦE ′ can be expressed as a convex combination of at most 42b

pure stabiliser states. For circuit families where b has a fixed upper bound, NK does not

grow with n. This restriction is not too onerous, since practical quantum algorithms are

typically synthesised in terms of one-, two- and three-qubit gates, and noise channels

are often assumed to act locally. Moreover, sparse stabiliser decompositions are often

known for important channels. T -gate injection gadgets and the single-qubit depolar-

izing channel can be decomposed with only two and four Kraus operators respectively.

Analogously, a decomposition of a stabiliser state is called simulable if we can sample a

pure state from the ensemble in poly(n) time. Having defined simulable decompositions,

we can state the following.

Theorem 5.2 (Gottesman-Knill for CPTP maps). Given a sequence of n-qubit CPTP

maps E = ET ◦ . . .◦E1 of length T , where each Et ∈ SPn,n has a known simulable decom-

position, and initial stabiliser state with simulable decomposition ρ = ∑ j p j
∣∣φ j
〉〈

φ j
∣∣,

then the following procedures are possible.

1. Sampling of a pure stabiliser state |φ ′〉 from an ensemble ρ ′ = ∑ j p′j |φ ′j〉〈φ ′j|, such

that ρ ′ = E(ρ), in worst-case runtime T ·poly(n).

2. Sampling of a bit-string x of length w from a distribution Pr(x) = Tr[ΠxE(ρ)],
where Πx = |x〉〈x|⊗1n−w in worst-case runtime (T +w) ·poly(n).

3. Estimation of the expected value of a stabiliser observable O (meaning a gener-

alised Pauli operator or the Born rule probability for a stabiliser measurement),

such that the estimate µ satisfies ‖µ−Tr[OE(ρ)]‖ ≤ ε with probability at least

(1− p). The estimate is computed in worst-case runtime T ·poly(n) · 2
ε2 log

(
2
p

)
.
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Proof. The validity of this theorem follows by application of the stabiliser-Kraus update

subroutine. Procedures 2 and 3 both take procedure 1 as a starting point. Let Et =

∑ j q(t)j K
(t)
j be the decomposition of the t-th circuit element into maps corresponding to

conjugation with a single Kraus operator, K(t)
j = K(t)

j (·)K(t)†
j . Then the final state ρ ′ can

be decomposed as an ensemble:

ρ = ∑
j

p j0qjKj |φ j0〉〈φ j0 |K†
j (5.5)

where j is a vector of length T +1 representing a trajectory through the circuit and choice

of initial state, so that qj = p j0 ∏
T
t=1 q(T )jt and Kj = ∏

t
t=1 K(t)

jt . It is possible that Kj
∣∣φ j0
〉
=

0 for some j. Let P denote the set of trajectories such that Kj
∣∣φ j0
〉
6= 0. Then let |φj, j0〉

be the normalised final state for a trajectory j ∈ P,

∣∣φj
〉
=

√qjKj
∣∣φ j0
〉√

Pj
, where Pj = qj

∥∥Kj
∣∣φ j0
〉∥∥2

. (5.6)

Then the final state ρ ′ can be written as an ensemble over pure stabiliser states,

ρ
′ = E(ρ) = ∑

j∈P
Pj
∣∣φj
〉〈

φj
∣∣ . (5.7)

Let jt denote the trajectory up to the t-th circuit element. Let |φjt−1〉 be the normalised

pure state at step t− 1. Then let |φjt 〉 be the pure state renormalised after applying the

t-th Kraus operator,

|φjt 〉=
K(t)

jt |φjt−1〉
‖K(t)

jt |φjt−1〉‖
. (5.8)

But we can also write |φjt 〉 = Kjt |φ j0〉/‖Kjt |φ j0〉‖ , and Kjt = K(t)
jt Kjt−1 . Combining this

with equation (5.8), we obtain the recurrence relation,

‖Kjt

∣∣φ j0
〉
‖ = ‖K(t)

jt |φjt−1〉‖ · ‖Kjt−1 |φ j0〉‖ . (5.9)

Then by induction, using equation (5.6) we can factorise the probabilities Pj as,

Pj = p j0

T

∏
t=1

q(t)jt ‖K
(t)
jt |φjt−1〉‖

2
. (5.10)
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But q(t)jt ‖K
(t)
jt |φjt−1〉‖

2
is precisely the probability of sampling the pure state

∣∣φjt

〉
using

the stabiliser-Kraus subroutine described above. So by sampling an initial state |φ j0〉with

probability p j0 , and sampling a new pure state update for each circuit element Et using

the stabiliser-Kraus subroutine, we reproduce the statistics for the ensemble in equation

(5.7). Each of the T subroutine calls takes poly(n) time, so the total runtime for procedure

1 is T ·poly(n).

The statements on the other two simulation procedures follow almost immediately.

To perform procedure 2, having sampled a tableau describing a pure state |φ ′〉 from the

ensemble ρ ′ = E(ρ) using procedure 1, we can sample a bit string of length w by simu-

lating a Z-basis measurement on each of the first w qubits in turn [60], each taking time

poly(n). There are w of these measurements so the total runtime is (T +w) · poly(n).

Then the probability of sampling the string x given state |φ ′〉 is Pr(x|φ ′) =Tr[Πx |φ ′〉〈φ ′|].
The probability obtaining state |φj〉 from procedure 1 is Pr

(
φj
)
=Pj, so the marginal prob-

ability ∑j Pr
(
x|φj

)
Pr
(
φj
)

for sampling x is given by Tr
[
Πx ∑j Pj

∣∣φj
〉〈

φj
∣∣]= Tr[ΠxE(ρ)],

as required.

Finally to perform procedure 3, assume for simplicity that we want to estimate some

Pauli observable O; a near-identical argument holds for Born rule probabilities. First we

sample a pure stabiliser state |φj〉 using procedure 1, then evaluate µ =
〈
φj
∣∣O∣∣φj

〉
using

the standard tableau method. Repeating this sampling procedure M times and taking the

mean yields an unbiased estimator for 〈O〉, as E(µ) = ∑j Pj Tr
[
O
∣∣φj
〉〈

φj
∣∣]= Tr[OE(ρ)].

Then using Hoeffding’s inequalities, to obtain additive precision ε with probability at

least (1− p) we require M =
⌈

2
ε2 log

(
2
p

)⌉
samples. Sampling each pure state from the

channel and evaluating µ takes time T ·poly(n), so this gives us the stated runtime.

We end this section by defining the notion of a simulable circuit decomposition.

Definition 5.3 (Simulable circuit decomposition). Let E ∈ SPn,n be a CPTP, completely

stabiliser-preserving map, with a decomposition into a sequence of T circuit elements

E = ET ◦ . . .E1. Let D be a data structure describing E , constructed as follows. Let

D= {L1, . . . ,LT}, such that for each j, L j is a list describing a circuit element E j ∈ SPn,n,

in the format described earlier in this section. Since D describes a sequence of T circuit

elements, we say that it is a decomposition of length T . We say that D is a simulable

circuit decomposition if T ≤ poly(n) and each L j describes a simulable decomposition



176 Chapter 5. Classical simulation algorithms for non-stabiliser circuits

(as per Definition 5.1) of the channel E j.

The efficient simulability of such decompositions is the starting point for the main

results of this chapter, which deal with the classical overhead involved in simulating

resourceful states and operations. Before considering general magic-generating channels,

we first consider the case where all operations are stabiliser-preserving, but the circuit has

mixed magic state inputs.

5.2 Algorithms for stabiliser circuits with magic state in-

puts
We now present three classical simulation algorithms associated with the new magic

monotones for states introduced in Section 4.1, which first appeared in our article Ref.

[2]. Recall that the generalised robustness (gRoM) Λ+ and dyadic negativity Λ can be

considered relaxations of robustness of magic (RoM)R [103], while the density-operator

stabiliser extent Ξ is closely related to pure-state extent [3] and stabiliser rank [59, 60].

All three monotones coincide for pure states, and for n-fold tensor products of n-qubit

mixed states. We will shortly introduce three very different simulation algorithms, whose

classical simulation overhead is respectively quantified by one of the three monotones.

The dyadic frame and constrained path simulators are descendants of quasiprobability

methods [103, 124], whereas the density operator stabiliser rank simulator generalises

stabiliser rank methods [3, 59, 60] which previously only admitted pure state evolution.

In this way the magic monotone framework presented in Chapter 4 provides the formal

link between previously unconnected simulation methods.

We first introduce two quasiprobability-like simulators. The first is the constrained

path simulator, associated with gRoM. In standard quasiprobability methods, the runtime

needed to achieve any fixed precision with high probability is a function of the `1-norm of

the distribution. The constrained path technique trades the ability to estimate to arbitrary

precision for efficient runtime; the maximum precision is a function of the monotone

Λ+, while the runtime is not. The second quasiprobability simulator we call the dyadic

frame simulator. This improves on previous quasiprobability simulators by using a novel

choice of frame, namely the set of stabiliser dyads, so that “free” operators are those in the

convex hull of eiφ |L〉〈R|, where |L〉 , |R〉 ∈ STABn. In contrast with a conventional choice
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of frame elements, dyads are not guaranteed to be Hermitian or positive semidefinite, and

can be traceless. We show that these technical issues can be circumvented, and in doing

so we can reduce the sampling overhead.

The third simulator will be the density operator stabiliser rank simulator. We ex-

tend the method of Ref. [3] to deal with general density operators (and therefore mixed

states). This enables powerful stabiliser rank methods to be applied to the simulation

of noisy circuits with imperfect magic state inputs. In Ref. [3], it was shown that us-

ing sparsification, the runtime for their simulator can connected to the pure-state extent.

We present a refinement to the sparsification procedure that allows us to sidestep some

technical issues with the results of Ref. [3] (see Section 3.4), and obtain a significant

improvement in performance.

5.2.1 Constrained path simulator

Recall that in standard quasiprobability method, a target state ρ is expressed as an affine

combination of elements of some frame F . The frame is chosen so that free operations

can be efficiently simulated when applied to elements in the frame. In Ref. [103] Howard

and Campbell took the frame to be the set of pure stabiliser state projectors, so that the

target state is expressed ρ = ∑ j q j
∣∣φ j
〉〈

φ j
∣∣, where

∣∣φ j
〉
∈ STABn. We can always com-

bine all the positive and negative terms of the decomposition into convex combinations

σ+ and σ− respectively, to write ρ = λσ+− (λ − 1)σ− , where λ = ∑q j≥0 q j ≥ 1, so

that ‖q‖1 = 2λ − 1. Recall from Chapter 2 that Tr[EE(ρ)] for simulable E ∈ SPn,n and

stabiliser observable E can be estimated to arbitrary additive precision ε > 0 in time

O
(
‖q‖2

1ε−2) using the standard quasiprobability sampling procedure. The procedure for

each sample can be split into two steps: (i) randomly sample the positive or negative

path with probability λ/‖q‖1 or (λ −1)/‖q‖1 ; (ii) sample an individual frame element

|φ〉〈φ | ∈ F from the selected convex combination σ±, and then compute Tr[EE(|φ〉〈φ |)].
Since step (ii) is efficient, any increased runtime for simulating magic states arises in

step (i) rather than step (ii). In other words, sampling a frame element from the convex

combination σ± does not incur additional overhead, once we have taken into account the

renormalisation of the distribution in step (i).

The alternative strategy we present here is to constrain sampling to the positive path

so that step (i) is avoided. This is equivalent to making the approximation ρ ≈ λσ+, and

comes at the cost of an unavoidable systematic error of size |(λ − 1)Tr[EE(σ−)]|. The
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λ < 2/(1+ c) λ ≥ 2/(1+ c)

|Pσ | ≤ |λ (1+ c)−2| ∆ = λ (1+ c)−1 “FAIL”

|Pσ |> |λ (1+ c)−2| ∆ = λ (1+c)−|Pσ |
2

Table 5.1: Error bounds for constrained path simulator (Algorithm 6) in different parameter
regimes, for input state such that ρ ≤ λσ , where σ ∈ STABn. The output from the
algorithm depends on the parameter λ , and a variable Pσ ∈ [−λ ,λ ] which is computed
in the course of the algorithm, and satisfies |Pσ −λ Tr[Pσ ]| ≤ δ with high probability.
When |Pσ | is large (bottom row), the algorithm always outputs non-trivial bounds. If
|Pσ | is small (top row), the algorithm returns a meaningful estimate if λ < 2/(1+ c),
but returns the “FAIL” flag otherwise.

advantage to this approach is that since Tr[EE(σ−)] is no longer evaluated explicitly, σ−

need not be an efficiently simulable state. It is natural to connect this strategy with primal

solutions for the gRoM problem,

ρ = Λ
+(ρ)σ − (Λ+(ρ)−1)ρ−, (5.11)

where σ is a mixed stabiliser state, but ρ− can be any density operator. Since systematic

error is unavoidable, the first term need not be estimated to high precision. We will prove

the following theorem.

Theorem 5.4 (Constrained path simulator). Let ρ be an n-qubit density matrix s.t. ρ ≤
λσ , where σ ∈ STABn, let E ∈ SPn,n be a completely stabiliser-preserving CPTP map

with a simulable circuit decomposition D, and let P be a Pauli observable. Then for any

c, pfail there exists an efficient classical algorithm, terminating in runtime τ , that either

outputs an estimate P̂ and error bound ∆, such that
∣∣∣P̂−〈P〉∣∣∣ ≤ ∆ with probability at

least 1− pfail, or returns a flag “FAIL” indicating that with high probability it is not able

to do so given the provided inputs. The runtime τ for the algorithm is bounded by

τ ≤ 2
1
c2 log

(
2

pfail

)
·poly(n). (5.12)

The size of ∆, and whether the algorithm returns “FAIL” depends on λ and a variable

Pσ ∈ [−λ ,λ ] computed by the algorithm (see Table 5.1). When λ ≤ 2/(1+ c) the algo-

rithm outputs a non-trivial estimate with probability at least 1− pfail.

Proof. To prove the theorem we give the algorithm, show that the error bounds are satis-
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fied for each case, and then analyse the runtime. We rely on the stabiliser-Kraus subrou-

tine (see Section 5.1). Let STABILISERCIRCUIT(A,D,P,δ , pfail) be a function that takes

as input a quasiprobability decomposition of operator A, a simulable circuit decompo-

sition D of stabiliser channel E , Pauli observable P, and parameters δ , pfail, and, using

the procedure described in the proof of Theorem 5.2, outputs an estimate Pσ such that

|Pσ −Tr[PE(A)]| ≤ δ with probability at least 1− pfail. Pseudocode for our simulator is

given in Algorithm 6.

Algorithm 6 Constrained Path Simulator

Input: Target state ρ; real numbers λ ,c, pfail > 0, and stabiliser state σ ∈ STABn s.t.
ρ ≤ λσ and c, pfail � 1; Pauli observable P and channel E ∈ SPn,n with known
simulable decomposition D.

Output: Estimate P̂ and error bound ∆, s.t. |P̂−Tr(PE [ρ])| ≤ ∆ with probability 1−
pfail.

1: δ ← cλ

2: Pσ ← STABILISERCIRCUIT(λσ ,D,P,δ , pfail).
3: Pmax←min{1,Pσ +δ +λ −1}
4: Pmin←max{−1,Pσ −δ −λ +1}
5: if Pmax−Pmin < 2 then
6: P̂← (Pmax +Pmin)/2
7: ∆← (Pmax−Pmin)/2
8: return P̂,∆
9: else

10: return “FAIL”
11: end if

Choosing Pmax and Pmin to be given by the expressions in steps 3 and 4 ensures that

for all λ and Pσ , |P̂−Tr(PE [ρ])| ≤ ∆ holds with probability 1− pfail. The major caveat

is that there are certain regimes (for large λ and small Pσ , as shown in Table 5.1), where

the algorithm fails by determining bounds that are trivially true, −1 ≤ Tr[PE(ρ)] ≤ 1.

Nevertheless, in some regimes we efficiently obtain a biased but non-trivial estimate. We

first briefly explain the rationale for the min and max expressions given in steps 3 and 4,

before analysing the error bound and runtime.

For target state ρ , when there exists λ > 0 and σ ∈ STABn such that ρ ≤ λσ , then

there exists some density matrix ρ− such that ρ = λσ − (λ −1)ρ−. Step 2 estimates Pσ

such that |Pσ −λ Tr(PE [σ ])| ≤ δ with probability 1− pfail. We use this to place bounds
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on Tr(PE [ρ]),

Tr(PE [ρ]) = λ Tr(PE [σ ])− (λ −1)Tr(PE [ρ−]) (5.13)

≤ Pσ +δ +(λ −1) (5.14)

Here we have used the fact that ρ− is a density operator, E is a CPTP map, and P has

eigenvalues ±1, so |Tr(PE [ρ−])| ≤ 1. Similarly one obtains Tr(PE [ρ])≥ Pσ −δ − (λ −
1). Trivially, |Tr(PE [ρ])| ≤ 1, so in case either expression exceeds this (for example if Pσ

is close to±1) we simply take either Pmax = 1 or Pmin =−1 as necessary. If both Pmax = 1

or Pmin = −1, then the procedure gives the trivial result that −1 ≤ Tr(PE [ρ]) ≤ 1, so in

this case we have the algorithm return “FAIL”. We now show how to obtain the non-

trivial bounds in Table 5.1.

Case 1: |Pσ |> |λ (1+ c)−2|.

If |Pσ |> |λ (1+ c)−2| then either Pσ > 0 or Pσ < 0. Assume first that Pσ > 0. Then

Pσ > |λ (1+ c)−2| > 2−λ (1+ c) and Pσ > λ (1+ c)− 2. Recalling that δ = cλ , we

have Pσ + δ +λ − 1 > 1 and Pσ − δ −λ + 1 > −1. Therefore step 3 sets Pmax = 1 and

step 4 sets Pmin = Pσ −δ −λ +1. Then with probability at least 1− pfail we know that,

−1< Pσ −δ −λ +1≤ Tr[PE(ρ)]≤ 1. (5.15)

So in steps 6 and 7, we obtain

P̂ =
Pσ −λ (1+ c)+2

2
, ∆ =

λ (1+ c)−|Pσ |
2

. (5.16)

In the case when |Pσ |> |λ (1+ c)−2| and Pσ < 0, by the same argument,

−1≤ Tr[PE(ρ)]≤ Pσ +δ +λ −1< 1. (5.17)

It follows that P̂ = (Pσ + δ +λ − 2)/2 and ∆ has the same value as in equation (5.16).

So in Case 1 the estimation error is at most λ (1+ c)/2, and tends to δ/2 = cλ/2 as

|Pσ | → λ .

Case 2: |Pσ | ≤ |λ (1+ c)−2| and λ < 2/(1+ c).
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Combining these conditions we have ±Pσ ≤ 2−λ −δ , so that

Pσ +δ +λ −1≤ 1, and Pσ −δ −λ +1≥−1. (5.18)

Then the algorithm sets Pmax = Pσ + δ + λ − 1 and Pmin = Pσ − δ − λ + 1. We have

Pmin ≤ Tr[PE(ρ)]≤ Pmax with probability at least 1− pfail, and we obtain:

P̂ = Pσ , ∆ = λ (1+ c)−1. (5.19)

So if |Pσ | is small, we obtain less information about Tr[PE(ρ)], but we still have a non-

trivial estimate as long as λ < 2/(1+ c).

Case 3: |Pσ | ≤ |λ (1+ c)−2| and λ ≥ 2/(1+ c).

Here we have that |λ (1+ c)−2|= λ (1+c)−2, so |Pσ | ≤ |λ (1+ c)−2|. Following

the same argument as for Case 2 but with inequalities reversed, we find:

Pσ +δ +(λ −1)≥ 1, (5.20)

Pσ −δ − (λ −1)≤−1. (5.21)

But this means that the algorithm must set Pmax = 1 and Pmax =−1. In this case estimat-

ing λ Tr[PE(σ)] yields no useful information, so we return the “FAIL” flag.

Runtime analysis: The runtime is dominated by the estimation of λTr(PE [σ ]) using the

stabiliser-Kraus subroutine, as the other steps are trivial to evaluate, and can be computed

in constant time. Since σ ∈ STABn, and by assumption D provides a simulable circuit

decomposition for E ∈ SPn,n, there is no additional sampling overhead due to negativity.

The prefactor λ increases the variance of the estimator, but we compensate by setting

the precision to δ = cλ , where 0 < c� 1, so that δ � λ . The rationale for this is that

the systematic error due to our ignorance of ρ− is unavoidable, and this error is of size

λ−1. Therefore there is a limit to the precision we can achieve by increasing the runtime

of the sampling step, and we should set the precision commensurate with the size of λ .

By the Hoeffding inequality the smallest number of samples M sufficient to achieve this

precision is

M = d2λ
2
δ
−2 log

(
2p−1

fail

)
e= d2c−2 log

(
2p−1

fail

)
e. (5.22)
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Each sample is obtained in poly(n) time (Theorem 5.2), yielding (5.12).

Our explicit algorithm for estimating Pauli expectation values easily adapts to es-

timate Born rule probabilities for stabiliser projectors Π by replacing the assumption

|Tr(PE(ρ))| ≤ 1 for any ρ with 0 ≤ Tr(ΠE(ρ)) ≤ 1. We emphasise that the runtime

for the constrained path simulator is constant with respect to λ (i.e. the generalised ro-

bustness Λ+(ρ) when the decomposition is optimal), depending only on the parameters

c and pfail. In this sense, we achieve efficient runtime by trading off against precision

in the estimate; it is the error ∆ which scales with the magic monotone rather than the

runtime. We envisage the constrained path algorithm having application as a fast observ-

able estimation method for circuits with a relatively small amount of magic, or where

high precision is not required. For example, it may be of use for the simulation of noisy

near-term devices. The fact that the simulator can often return a “FAIL” outcome when

λ > 2/(1+ c) limits its application to large-scale circuits with significant amounts of

magic. However, a surprising feature is that even when λ is large, the simulator can still

efficiently return non-trivial estimates provided Tr[PE(ρ)] is sufficiently close to either

+1 or−1. This suggests it may be useful for the study of highly structured circuits where

a final measurement is expected to take the value either +1 or −1 with near certainty.

5.2.2 Dyadic frame simulator

Next we introduce a new simulator for estimation of stabiliser observables up to arbi-

trary additive precision, with runtime that scales with a generalised notion of negativity,

namely the dyadic negativity defined in Chapter 4. By generalising the notion of frame

as defined by Pashayan et al. [124], the dyadic frame simulator can outperform all previ-

ously known n-qubit quasiprobability simulators.

Recall that the RoM simulator was based on decompositions ρ = ∑ j q j
∣∣φ j
〉〈

φ j
∣∣

where q j ∈ R and ∑ j q j = 1. When ρ is a magic state, some of the q j must be negative,

so that ‖q‖1 > 1. The runtime of the associated Monte Carlo simulator scales with ‖q‖2
1,

so that the optimal runtime for the simulator is quantified by RoM,R(ρ)2 = (min‖q‖2
1).

The simulator can be related to the formalism of Pashayan et al. [124] by allowing the

specification of frame and dual frame to be state-dependent, so that making the optimal

choice recovers the robustness of magic (See Appendix C.2). In Ref. [124], it is im-

plicitly assumed that frame elements are Hermitian. We show that this requirement can
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be relaxed, so that we can supplement stabiliser frames with non-Hermitian stabiliser

dyads. The runtime of the resultant simulator scales with the square of the dyadic neg-

ativity Λ(ρ)2. Dyadic negativity is often significantly smaller than RoM, dramatically

improving the performance in some cases. Operators are now considered free if they are

in the convex hull of the dyads eiφ |L〉〈R|, where |L〉 , |R〉 ∈ STABn and φ ∈ R. In par-

ticular, because dyadic negativity is faithful, a density operator ρ is free if and only if

ρ ∈ STABn.

There are two technical issues to be overcome in designing our dyadic frame sim-

ulator. The first relates to the fact when a stabiliser projector is updated by conjuga-

tion with a stabiliser Kraus operator, any global phase is cancelled, so the sign of terms

in the quasiprobability distribution remains invariant under these updates. This is not

the case for dyads since, for example, the same Clifford operator can result in a dif-

ferent phase depending on the input state. The second difficulty relates to the com-

putation of intermediate transition probabilities. For the stabiliser-Kraus updates de-

scribed in Section 5.1, the transition probability for a Kraus operator K was computed as

Pr(K|φ) = Tr
[
K |φ〉〈φ |K†]. This strategy fails for non-Hermitian dyads, since they are

not normalised by trace, but we will see that the subroutine can be amended to recover an

unbiased estimator. We first illustrate the basic algorithm with a simplified version, where

the stabiliser circuit elements are restricted to be convex mixtures of Clifford gates. We

subsequently generalise to cover all completely stabiliser-preserving circuits with magic

state inputs, in particular showing how the stabiliser-Kraus subroutine can be updated

to appropriately compute transition probabilities for Kraus operators applied to general

stabiliser dyads.

For the simplified algorithm we assume the following restricted simulation setting.

The input to the algorithm will consist of (i) a known dyadic decomposition of a mixed

magic state ρ = ∑ j α j
∣∣L j
〉〈

R j
∣∣; (ii) a circuit description comprising a list of T quantum

operations {O(1), . . . ,O(T )}; and (iii) a stabiliser observable P. We stipulate that each O(t)

must be a convex mixture of Clifford channels, O(t) = ∑k p(t)k Uk(·)U†
k , and we assume

this decomposition is known and simulable as per Definition 5.1. We use the term mixed

Clifford circuit to describe the class of circuits satisfying these conditions. The output of

the algorithm is again an estimate for a stabiliser observable 〈P〉 = Tr[PE(ρ)]. For sim-

plicity we assume P is a Pauli operator, but the procedure can be easily adapted for sta-
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biliser projectors. Here E = O(T ) ◦ . . .◦O(1). The restriction on O(t) means that the whole

circuit can be expressed as an ensemble over unitary Clifford gates E(·) = ∑k pkUk(·)U†
k ,

where k = (k1,k2, . . . ,kT ) is a vector that represents a Clifford trajectory through the cir-

cuit Uk =UkT . . .Uk2Uk1 , and pk is a product distribution and so can be efficiently sampled

from. The simulator (Algorithm 7) proceeds by sampling elements from the initial dis-

tribution, computing an estimate, and averaging over many samples.

Algorithm 7 Dyadic Frame Simulator - Mixed Clifford circuits

Input: Initial state with known decomposition ρ = ∑ j α j
∣∣L j
〉〈

R j
∣∣, where

∣∣L j
〉
,
∣∣R j
〉
∈

STABn; simulable decomposition D for mixed Clifford circuit E(·) = ∑k pkUk(·)U†
k

of length T ; target Pauli P; number of samples M.
Output: Estimate P̂ for Tr[PE(ρ)].

1: for m← 1 to M do
2: Randomly sample index j with probability |α j|/‖α‖1.
3: Randomly sample k with probability pk.
4: eiθ ′j,k |L′j,k〉〈R′j,k| ← eiθ jUk

∣∣L j
〉〈

R j
∣∣U†

k

5: P̂m←‖α‖1Re{eiθ ′j,k〈R′j,k|P|L′j,k〉}
6: end for
7: P̂← ∑m P̂m/M
8: return P̂

In step 4, eiθ ′ is a final global phase taking into account the initial phase eiθ j =

α j/
∣∣α j
∣∣ and the action of the sampled unitary circuit on

∣∣L j
〉

and
∣∣R j
〉

respectively.

Whereas the RoM simulator dealt with projectors |φ〉〈φ |, so that any global phase on

|φ〉 is unimportant, here
∣∣L j
〉

and
∣∣R j
〉

can represent different stabiliser states and the

combined phase can affect both the magnitude and sign of the real-valued sample P̂. The

standard stabiliser tableau method [30] (Section 1.2) cannot track this global phase, but

subsequent extensions can [3, 59, 60]. For concreteness, we assume that we use the CH-

simulator of Ref. [3] (Section 1.2.1). For step 5, recall that any Pauli operator is also a

Clifford gate, so to compute any 〈R′|P|L′〉 for |L′〉 , |R′〉 ∈ STABn we can perform the up-

date |L′′〉= P |L′〉, then compute the the complex inner product 〈L′|R′′〉. Both these steps

are efficient using the CH-simulator [3, 59, 60]. Thus steps 3 and 4 are efficient. Note that

the two parts of the dyad Uk
∣∣L j
〉

and
〈
R j
∣∣U†

k = (Uk
∣∣R j
〉
)† are updated independently.
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We can check that the method gives an unbiased estimator,

E(P̂) = ∑
j,k

|α j|
‖α‖1

pk

(
‖α‖1Re{eiθ ′j,k〈R′j,k|P|L′j,k〉}

)
(5.23)

= Re{∑
j,k

eiθ j |α j|pk Tr
[
PUk

∣∣L j
〉〈

R j
∣∣U†

k

]
} (5.24)

= Re{Tr

[
P∑

k
pkUk(∑

j
α j
∣∣L j
〉〈

R j
∣∣)U†

k )

]
}= Tr[PE(ρ)]. (5.25)

We can apply Hoeffding’s inequality in the same way as for the standard quasiprobabil-

ity technique. Using the fact that each P̂ is in the range [−‖α‖1,+‖α‖1], we find that

the total number of samples needed to achieve additive error ε and success probability

1− ppfail is M = d2‖α‖2
1ε−2 log

(
2p−1

fail

)
e. When the decomposition of ρ is optimal with

respect to dyadic negativity as per Definition 4.2, we have that ‖α‖1 =Λ(ρ). In this case,

the worst-case runtime will be O
(
Λ(ρ)2).

This simplified algorithm can be used only in the case where the stabiliser circuit is a

convex mixture of unitary Clifford operations, so channels are restricted to be unital. Our

main goal, however, is to admit more general stabiliser channels. In particular, extending

to adaptive Clifford circuits with mixed magic state inputs allows for universal quantum

computation [35]. We will shortly show how appropriate transition probabilities can be

computed efficiently even when the input operator is not a state but a dyad, provided that

we restrict to simulable channel decompositions as set out in Definition 5.1. This leads

to the following theorem.

Theorem 5.5. Let ρ = ∑ j α j
∣∣L j
〉〈

R j
∣∣, be a known stabiliser dyadic decomposition of

an initial n-qubit state, where α j ∈ C and the probability distribution {|α j|/‖α‖1} can

be efficiently sampled. Let E = O(T ) ◦ . . . ◦O(1) be a sequence of completely stabiliser-

preserving channels with simulable circuit decomposition. Then, given a stabiliser ob-

servable E, one can estimate 〈E〉= Tr(EE [ρ]) within additive error ε , with success prob-

ability at least 1− pfail and worst-case runtime

τ =
‖α‖2

1
ε2 log

(
2

pfail

)
T poly(n). (5.26)

Furthermore, if the dyadic decomposition of ρ is optimal then ‖α‖1 = Λ(ρ).

To prove Theorem 5.5, we give pseudocode for the dyadic frame simulator and
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prove its validity and runtime. For brevity the pseudocode assumes that each channel

O(t) is specified by a list of at most poly(n) Kraus operators. Once we have proved the

validity of this algorithm, we will argue it can be extended to general simulable circuit

decompositions. The algorithm has two subroutines: (i) Algorithm 8, which is a variant

of the stabiliser-Kraus subroutines, adapted to probabilistically update stabiliser dyads;

and (ii) Algorithm 9, which is an outer quasiprobability sampling routine that samples

an initial dyad from the initial non-stabiliser state and propagates the dyad through the

circuit.

Algorithm 8 Stabiliser Kraus update subroutine (dyadic scheme)

Input: Initial stabiliser dyad σ = |L〉〈R|; length-NK list of pairs L with entries
(q j,U j,Π j,h j) representing Kraus operators √q jK j =

√q j2h j/2U jΠ j, where q j > 0
are weights, U j are Clifford gates, and Π j are stabiliser projectors of rank 2n−h j .

Output: Updated dyad σ ′ = |L′〉〈R′|.
1: function DYADUPDATE(σ ,L)
2: for r← 1 to NK do
3: Pr←‖qrΠrσΠ†

r‖1
4: end for
5: P0← 1−∑

NK
r=1 Pr

6: Sample s from {0, . . . ,NK} with probability Ps
7: if s = 0 then
8: σ ′← 0
9: else

10: σ ′← |L′〉〈R′|= qsUsΠs |L〉〈R|Π†
sU†

s . Computed with CH-simulator.
11: end if
12: return σ ′

13: end function

In Algorithm 8, we use the trace norm, ‖A‖1 = Tr
[√

A†A
]
, rather than the trace

used in the usual Born rule to calculate the transition probabilities for propagating

with a particular Kraus operator. While Tr(Πρ) = ‖ΠρΠ†‖1 for physical states ρ ,

this does not hold for all dyads |L〉〈R|. We illustrate that the trace norm is the appro-

priate choice with a toy example. Consider the scenario where the penultimate dyad

is σ (T−1) = |+0〉〈−0|, the final stabiliser channel O(T ) is defined by Kraus operators

K1 = 1⊗ |0〉〈0| and K2 = U ⊗ |1〉〈1| for some Clifford U , and the observable E to be

evaluated is the stabiliser projector E = |1〉〈1|⊗1. Now, the channel O(T ) leaves σ (T−1)

unchanged, O(T )(|+0〉〈−0|) = |+0〉〈−0|. It is therefore clear that the correct contribution
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Algorithm 9 Dyadic frame simulator

Input: Initial state ρ with known dyadic stabiliser decomposition ρ = ∑ j α j
∣∣L j
〉〈

R j
∣∣;

number of samples M; set of channel decompositions {L(1), . . . ,L(T )} describing the
completely stabiliser-preserving circuit E = O(T ) ◦ . . .◦O(1); stabiliser observable E.

Output: Estimate Ê for Tr[EE(ρ)], where E = O(T ) ◦ . . .◦O(1).

1: Let Pj = |α j|/‖α‖1 define a probability distribution.
2: for m← 1 to M do
3: Sample r with probability Pr.
4: σ (0)← |L(0)〉 〈R(0)|= |Lr〉〈Rr|, eiθr ← αr/|αr|.
5: for t← 1 to T do
6: σ (t)← DYADUPDATE(σ (t−1), L(t))
7: if σ (t) = 0 then . Terminate trajectory if “zero” selected.
8: σ (T )← 0
9: break

10: end if
11: end for
12: Em← Re

{
‖α‖1eiθr Tr

[
Eσ (T )

]}
. Computed with CH-simulator.

13: end for
14: return Ê← ∑m Em/M

to the expectation value estimate (line 12 in Alg. 9) should be

Em = ‖α‖1Re{Tr
[
Πσ

(T )
]
} (5.27)

= ‖α‖1Re{Tr[(|1〉〈1|⊗1) |+0〉〈−0|]} (5.28)

= ‖α‖1Re{〈−|1〉〈1|+〉}=−‖α‖1/2, (5.29)

where we used cyclicity of the trace, and neglect the phase eiθr for brevity. We must en-

sure that the transition probabilities computed in line 3 of Algorithm 8 produce statistics

that converge to this contribution. Supposing we were to naively use the trace to compute

transition probabilities, PTr, j = Tr
[
K jσ

(T−1)K†
j

]
, we would obtain

PTr,1 = Tr[(1⊗|0〉〈0|) |+0〉〈−0|(1⊗|0〉〈0|)] = 〈−|+〉= 0, (5.30)

PTr,2 = Tr
[
(U⊗|1〉〈1|) |+0〉〈−0|(U†⊗|1〉〈1|)

]
= 〈−|U†U |+〉 | 〈1|0〉 |2 = 0.

Here we have a problem, because both paths evaluate to zero, preventing Em from making

any non-zero contribution to our estimate. By contrast, in our algorithm we use the
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Schatten 1-norm to compute transition probabilities,

P1 = ‖(1⊗|0〉〈0|) |+0〉〈−0|(1⊗|0〉〈0|)‖1 = ‖|+0〉〈−0|‖1 = 1 (5.31)

P2 = ‖(U⊗|1〉〈1|) |+0〉〈−0|(U†⊗|1〉〈1|)‖1 (5.32)

= | 〈1|0〉 |2‖(U |+〉) |1〉〈1|(〈−|)U†‖1 = 0. (5.33)

This method correctly tells us that we should select Kraus operator K1 with certainty,

resulting in the correct contribution Em =−‖α‖1/2.

Below we prove that this strategy leads to an unbiased estimator for 〈E〉, where

each individual sample is bounded as |Em| ≤ ‖α‖1. As per standard quasiprobability

simulators (see Chapter 2), to estimate an observable within additive error of ε with

success probability psuc ≥ 1− pfail, we require M ≥ 2‖α‖
2
1

ε2 log
(

2
pfail

)
samples from our

algorithm [103, 124]. The total runtime given in Theorem 5.5 is the product of M and

the runtime to compute each sample. To prove the validity of our algorithm we must:

(i) explain how the probabilistic stabiliser dyad update σ → qrKrσK†
r can be carried

out efficiently, (ii) show that the values Pr in steps 2-5 of Algorithm 8 form a proper

probability distribution, and (iii) show that Ê returned by Algorithm 9 is an unbiased

estimator for 〈E〉= Tr[EE(ρ)].

(i) Efficient stabiliser update with Kraus operators. In Algorithm 8 we must

compute the trace norm ‖qrKr |L〉〈R|K†
r ‖1, where Kr = 2hr/2UrΠr for all NK entries

(qr,Ur,Πr,hr) ∈ L, and then perform the update |L〉〈R| → |L′〉〈R′|. Any accumulated

phase is tracked throughout, but here we absorb this factor in |L′〉〈R′| for brevity. Unlike

the trace, the trace norm does not depend on the overlap between Kr |L〉 and Kr |R〉, and

their vector norms can be calculated separately. Since Ur leaves the norm invariant, the

transition probability depends only on the initial dyad, projector and normalisation,

‖qrKr |L〉〈R|K†
r ‖1 = qr‖Kr |L〉‖ · ‖Kr |R〉‖= qr2h‖Πr |L〉‖ · ‖Πr |R〉‖. (5.34)

The projection of each pure state onto a stabiliser subspace can be computed using stan-

dard stabiliser simulation techniques in time O(hn2) [31], as we did for the stabiliser-

Kraus subroutine discussed in 5.1. We must compute the norm for 2NK projected sta-

biliser states, so the total runtime for computing all transition probabilities for a single
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step t is O(hNKn2).

Once all N transition probabilities are computed, the algorithm randomly selects

some Ks ∝ UsΠs , and in step 10 computes |L′〉〈R′| ∝ UsΠs |L〉〈R|ΠsU†
s . Assume we use

the phase-sensitive CH-simulator [3] (Section 1.2.1). It was shown in Ref. [3] that the

update corresponding to the projection (1+Q)/2, where Q is a Pauli operator, can be

carried out in O(n2) steps. A rank 2n−h stabiliser projector can be decomposed as a

product of h Pauli projections, so the projective part of the update takes time O(hn2).

Meanwhile, any n-qubit Clifford operation can be written in canonical form comprising

O(n2/ log(n)) gates from the standard gate set {CNOT,H,S} [31]. CNOT and S updates

can be performed in time O(n), and H in time O(n2) [3], so the Clifford update for

Ur can be completed in time O(n4/ log(n)). Since h ≤ n and we have assumed that

NK ≤ poly(n), the time taken is poly(n).

Combining all steps, the total time for a single call to DYADUPDATE will be

O(h(NK +1)n2)+O(n4/ log(n)). Since h ≤ n and for simulable decompositions NK ≤
poly(n), the call is completed in poly(n) time in the general case. In the special case

where we restrict each O(t) to act on at most b qubits, for some fixed b, the runtime for

a single call can be improved considerably. In that case, NK ≤ 42b and the worst-case

runtime will be O(b(42b +1)n2)+O(b2n2/ log(b)).

(ii) Valid probability distribution. From the definition of P0 in step 5 of Algo-

rithm 8, it is clear that ∑
N
r=0 Pr = 1 and P1, . . . ,PN ≥ 0. Hence, to show that {Pr} is

a probability distribution, it suffices to show that P0 ≥ 0. It is given that the channel

O(t) is a CPTP map, so its Kraus representation O(t) = ∑r qrKr(·)K†
r must be complete,

∑
NK
r=1(
√

qrKr)
†(
√

qrKr) = 1. Then for any pure state |ψ〉,

1 = Tr[O(|ψ〉〈ψ|)] =
NK

∑
r=1

Tr
[√

q′rKr |ψ〉〈ψ|K†
r

√
q′r
]
=

NK

∑
r=1

∥∥∥√q′rKr |ψ〉
∥∥∥2

. (5.35)

Let QQQ(ψ) be the NK-element real vector where the r-th entry is Q(ψ)
r =

∥∥√q′rKr |ψ〉
∥∥.

From equation (5.35), we have that
∥∥∥QQQ(ψ)

∥∥∥ ≤ 1. Then for any normalised dyad |L〉〈R|
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we can express ∑r=1 Pr as a scalar product between QQQ(L) and QQQ(R),

NK

∑
r=1

Pr = ∑
r=1
‖√qrKr |L〉‖ · ‖

√
qrKr |R〉‖ (5.36)

= ∑
r=1

Q(L)
r Q(R)

r = QQQ(L) ·QQQ(R) ≤
∥∥∥QQQ(L)

∥∥∥ ·∥∥∥QQQ(R)
∥∥∥≤ 1, (5.37)

where in the last line we used the Cauchy-Schwarz inequality to show that ∑r≥1 Pr ≤ 1,

as promised. We note that the strategy of using an ‘abort’ outcome P0 was deployed in

the appendix of Ref. [142] to simulate post-selective channels, that is, maps that do not

have a complete Kraus representation. In our case each map does have a complete set of

Kraus operators; the fact that Pr for r ≥ 1 can sum to less than 1 instead arises from the

non-Hermiticity of the initial dyad σ .

(iii) Unbiased estimator. Finally we show that the expected value of Ê in Al-

gorithm 9 is Tr[EE(ρ)]. Let the (T + 1)-element vector r = (r0,r1, . . . ,rT ) label a

particular trajectory through the circuit, in the following sense. The first entry r0 la-

bels the initial dyad σ
(0)
r = |Lr0〉〈Rr0| selected in steps 3-4. For t ≥ 1, the entry rt

gives the index of the Kraus operator chosen at the t-th circuit element and we write

K(t)
r (·) = K(t)

rt (·)K(t)†
rt , and use q(t)r to denote the corresponding prefactor. Let σ

(t)
r de-

note the current dyad updated up to the t-th Kraus operator along the trajectory r, so that

σ
(t)
r = q(t)r K(t)

r (σ
(t−1)
r )/P(t)

r , where P(t)
r is the probability of obtaining the outcome cor-

responding to the map K(t)
r . The probability Pr of choosing the trajectory r is given by

Pr = ∏
T
t=0 P(t)

r , where P(0)
r = |αr0|/‖α‖1 is the probability of sampling the initial dyad

σ
(0)
r . For t ≥ 1, P(t)

r = ‖q(t)r K(t)
r (σ

(t−1)
r )‖1 is calculated in the t-th call to Algorithm 8.

Then the final dyad σ
(T )
r for trajectory r is

σ
(T )
r =

qrKr(σ
(0)
r )

Pr/P(0)
r

, (5.38)

where Kr(·) = K(T )
r ◦ . . . ◦K(1)

r (·) and qr = ∏
T
t=1 q(t)r . This dyad satisfies ‖σ (T )

r ‖1 = 1,

but is only defined for those trajectories with P(t)
r > 0 for all t. We write P to denote the

set of all such non-zero probability trajectories.

Now, there are two mutually exclusive possibilities for a given iteration of Algorithm

9: either we pick rt > 0 at each circuit element, so that r ∈ P, and we obtain normalised

σ
(T )
r , or rt = 0 for some step t, and the iteration terminates with σ

(T )
r = 0. Since these
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are the only possible outcomes, the total probability of terminating must be Pterm = 1−
∑r∈PPr. The expectation value of the random variable Em in step 12 can now be explicitly

written as

E(Em) = Pterm ·0+ ∑
r∈P

PrRe{‖α‖1eiθr0 Tr
[
Eσ

(T )
r

]
} (5.39)

= ∑
r∈P

P(0)
r Re{‖α‖1eiθr0 Tr

[
EqrKr(σ

(0)
r )
]
}, (5.40)

where in the second line we have cancelled the factors P(t)
r for t ≥ 1 with those in

the denominator of equation (5.38). The real vectors r /∈ P are never chosen when

running the algorithm, since they correspond to paths where P(t)
r = 0 for some t, and

hence K(t)
r (σ

(t−1)
r ) = 0. Since Kr(σ

(0)
r ) = 0 for all r /∈ P, we can freely add these zero-

probability trajectories to the summation (5.40). Thus

E(Em) = ∑
r

P(0)
r Re{‖α‖1eiθr0 Tr

[
EqrKr(σ

(0)
r )
]
} (5.41)

= ∑
r0

P(0)
r Re{‖α‖1eiθr0 Tr

[
E ∑

r1,...,rT

qrKr(|Lr0〉〈Rr0|)
]
},

where in the second line P(0)
r is taken outside the inner sum since it is independent of rt

for t ≥ 1. The inner summation is over all Kraus trajectories, and by linearity

∑
r1,...,rT

qrKr = ∑
rT

q(T )r K(T )
r ◦ . . .◦∑

r1

q(1)r K(1)
r = O(T ) ◦ . . .◦O(1) = E . (5.42)

Hence, using P(0)
r eiθr0 = αr0/‖α‖1,

E(Em) = ∑
r0

P(0)
r Re{‖α‖1eiθr0 Tr[EE(|Lr0〉〈Rr0|)]} (5.43)

= Re{Tr

[
EE(∑

r0

αr0 |Lr0〉〈Rr0|)
]
}= Tr[EE(ρ)], (5.44)

We have proved that E(Ê) = Tr[ΠE(ρ)], so Ê is an unbiased estimator, with each sam-

ple satisfying |Em| ≤ ‖α‖1. This implies we need d2‖α‖2
1ε−2 log

(
2p−1

fail

)
e samples.

To compute each sample, we need to make T calls to STABILISERUPDATE, and we

showed in part (i) that each call takes poly(n) time. Therefore the total runtime is
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‖α‖2
1ε−2 log

(
p−1

fail

)
T poly(n), as stated in Theorem 5.5.

We have proved the statement of the theorem for circuit decompositions {E =O(T )◦
. . .◦O(t)}, where each O(t) is specified by poly(n) Kraus operators. Recall that simulable

channels (Definition 5.1) are those with at most poly(n) non-unitary Kraus operators, but

where the number of unitary Kraus operators could be larger than poly(n) provided they

could be efficiently sampled from. Since unitary operations U j leave the Schatten 1-norm

invariant, for any normalised dyad σ we always have Pj = ‖q jU jσU†
j ‖1 = q j in step 3 of

Algorithm 8, so the transition probability can be read off from the coefficient. Therefore,

we can modify Algorithm 8 to include a unitary path where transition probabilities do

not need to be computed in a dyad-dependent fashion (see Algorithm 5 in Section 5.1).

Consequently the result also holds for completely stabiliser-preserving channels with

simulable decomposition (Definition 5.1). This completes the proof of Theorem 5.5.

5.2.3 A stabiliser rank simulator for density operators

In Chapter 3 we reviewed the development of stabiliser rank simulators [3, 59, 60]. For

circuits to which they are applicable, namely those involving pure initial states and stan-

dard stabiliser operations such as Clifford gates and Pauli measurements, they typically

perform better than quasiprobability simulators. Indeed, the sparsification and fast norm

estimation procedures presented in Ref. [3] allow computation of Born rule probabilities

up to multiplicative error in time linear in the pure-state stabiliser extent of the initial

magic state. This enables simulated sampling of the output from small-to-intermediate

size quantum computers. However, the method has previously only been applied to cir-

cuits with pure state inputs, preventing a direct comparison with simulators for more

general noisy states and operations such as the RoM simulator [103], or the Oak Ridge

simulator [45] which can simulate any few-qubit CPTP map, subject to additional run-

time dependent on the negativity.

In this section we extend the method of Ref. [3] (which we call the BBCCGH simu-

lator) from the state vector picture to general density operators, allowing the application

of stabiliser rank techniques to mixed states and noisy circuits. Through the lens of the

density operator picture, we are able to recast the sparsification technique as a procedure

which samples from an ensemble. This leads to a refinement of the sparsification lemma

upon which the BBCCGH simulator rests, avoiding some technical obstables and signifi-

cantly improving performance. We first present and prove our new sparsification results,
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before introducing our bit-string sampling simulator for noisy quantum circuits.

5.2.3.1 Sparsification lemma for density operators

Stabiliser rank simulators exploit the fact that any state vector |ψ〉 can be expressed

as a linear combination of stabiliser states, |ψ〉= ∑
k
j=1 c j

∣∣φ j
〉
, where c j are complex.

Recall that the stabiliser rank χ(ψ) is the smallest number of terms k needed for a

given state |ψ〉 [3, 59, 60]. The runtime for computing stabiliser observables using an

exact decomposition is lower bounded by χ(ψ). Computing the exact stabiliser rank

is intractable for many-qubit states, and known upper bounds can be large. Instead,

the strategy of BBCCGH is to approximate |ψ〉 with a sparsified k-term vector |Ω〉 of

smaller stabiliser rank, using the subroutine SPARSIFY (see Section 3.4). To recap, BBC-

CGH [3, Lem. 6]) showed that for any pure state |ψ〉 and any integer k > 0, one can use

SPARSIFY to generate random (un-normalised) states |Ω〉 with k stabiliser terms such

that E(‖|ψ〉− |Ω〉‖2) ≤ ‖c‖2
1/k. In Appendix E.1 we present a simple corollary of [3,

Lem. 6]), which implies that

E(‖|ψ〉〈ψ|− |Ω〉〈Ω|‖1)≤ 2
‖c‖1√

k
+
‖c‖2

1
k
≈ 2
‖c‖1√

k
. (5.45)

For any target precision δS > 0, choosing k ≥ 4‖c‖2
1/δ 2

S ,

E(‖|ψ〉〈ψ|− |Ω〉〈Ω|‖1)≤ δS +O(δ 2
S ). (5.46)

We call this the BBCCGH sparsification lemma [3]. With high probability and

subject to some technical caveats (see Section 3.4), by combining sparsification with

fast norm estimation, BBCCGH simulates sampling from the quantum distribution

P(x) = | 〈x|ψ〉 |2 up to trace-norm error δS in runtime ‖c‖2
1δ
−4
S poly(n,w). So, assum-

ing an optimal decomposition (ξ (ψ) = ‖c‖2
1), the runtime scales linearly with extent ξ .

Below we improve on this algorithm in three main respects: (i) we extend the simulator

from pure to mixed magic state inputs, so that the average-case runtime is proportional

to the density-operator extent Ξ (Definition 4.1); (ii) we show that important cases ad-

mit decompositions such that Ξ yields the worst-case runtime; and (iii) we derive a new

sparsification lemma that, with minor caveats, improves the runtime over the BBCCGH

simulator by a factor of 1/δS. Our new sparsification lemma also removes some lim-
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Algorithm 10 BBCCGH sparsification procedure. (Bravyi et al. [3])

Input: n-qubit state decomposition |ψ〉= ∑ j c j
∣∣φ j
〉
, where

∣∣φ j
〉
∈ STABn; k ≥ 0.

Output: Sparsified vector |Ω〉 with k terms.
1: function SPARSIFY(|ψ〉,k)
2: for α ← 1 to k do
3: Sample |ωα〉 ← (c jα/

∣∣c jα
∣∣) ∣∣φ jα

〉
with probability

∣∣c jα
∣∣/‖c‖1.

4: end for
5: |Ω〉 ← (‖c‖1/k)∑

k
α=1 |ωα〉

6: return |Ω〉
7: end function

itations that made certain parameter regimes problematic for the original simulator(see

Section 3.4). In Section 5.2.3.2 we present the algorithm in detail. First we state and

prove our improved lemma.

For convenience we restate the BBCCGH sparsification procedure in Algorithm 10.

Given an integer k and state vector with known decomposition |ψ〉= ∑
k
j=1 c j

∣∣φ j
〉
, the

SPARSIFY subroutine outputs a random k-term vector,

|Ω〉= ‖c‖1

k

k

∑
α=1
|ωα〉 , where Pr

(
|ωα〉=

c j∣∣c j
∣∣ ∣∣φ j

〉)
=

∣∣c j
∣∣

‖c‖1
, (5.47)

so that each term is i.i.d sampled stabiliser state. It follows that E(|ωα〉) = |ψ〉/‖c‖1, and

in turn E(|Ω〉) = |ψ〉.

Since the sparsification |Ω〉 is a random superposition of non-orthogonal terms, it

need not have unit norm. In Ref. [3], after obtaining a state |Ω〉 from SPARSIFY, one

estimates its Euclidean norm, and discards the state if its norm is not close to 1. A state

post-selected in this way will be close to the target state with high probability, given some

assumptions (recall Section 3.4). In our extended simulator, we instead use a sampling

strategy that avoids the post-selection step. After SPARSIFY returns a random |Ω〉, we

estimate ‖Ω‖, and normalise the vector. Then, instead of bounding the error between an

individual sample and the target state |ψ〉, we bound the error between |ψ〉 and the whole

ensemble as captured by the density matrix

ρ1 := E
[ |Ω〉〈Ω|
〈Ω|Ω〉

]
= ∑

Ω

Pr(Ω)
|Ω〉〈Ω|
〈Ω|Ω〉 . (5.48)

Intuitively, this is advantageous because coherent errors in each sample smooth out to
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a less harmful stochastic error. Similarly, randomising coherent errors improves error

bounds in the setting of circuit compilation [162–165]. Our refinement to the BBCCGH

sparsification lemma is summarised in the following theorem.

Theorem 5.6. Let ρ1 be the mixed state in equation (5.48). Let |ψ〉 be an input state

with known decomposition |ψ〉= ∑ j c j
∣∣φ j
〉
, where

∣∣φ j
〉

are stabiliser states, let c be the

vector whose elements are the coefficients c j, and let

Cψ,c = ‖c‖1 ∑
j
|c j||

〈
ψ
∣∣φ j
〉
|2. (5.49)

Then there is a critical precision δc = 8(Cψ,c−1)/‖c‖2
1 such that for every target preci-

sion δS for which δS ≥ δc, we can sample pure states from an ensemble ρ1, where every

pure state drawn from ρ1 has stabiliser rank at most d4‖c‖2
1/δSe and

‖ρ1−|ψ〉〈ψ|‖1 ≤ δS +O(δ 2
S ). (5.50)

When |ψ〉 is a Clifford magic state (see below) [3], the critical precision is δc = 0, and

sampled pure states in ρ1 have stabiliser rank at most d(2+
√

2)‖c‖2
1/δSe.

Notice that the theorem sets a critical precision δc above which we can achieve the

promised 1/δS improvement in the runtime over BBCCGH [3]. For δS� δc, our runtime

has the same leading order δS-scaling as BBCCGH but with a much smaller constant

prefactor, yielding improved performance. Clifford magic states were defined in Ref. [3]

as those states |ψ〉 that are stabilised by a group Q of Clifford unitary operators with

generators UX jU†, where X j is the Pauli X operator that acts on the j-th qubit and U is

unitary. This includes the important case of T states |T 〉 = T |+〉. For Clifford magic

states the improvement holds for arbitrarily small δS.

We first argue that Theorem 5.6 follows from two lemmata. We will then prove the

lemmata. First, Lemma 5.7 captures the idea that the ensemble (5.48) can be made close

in the trace norm to the target state |ψ〉〈ψ| by choosing sufficiently large k, up to a term

that depends on the variance of 〈Ω|Ω〉. The second lemma then bounds this variance in

terms of Cψ,c, ‖c‖1 and k.

Lemma 5.7 (Ensemble sampling lemma). Given a state |ψ〉= ∑ j c j
∣∣φ j
〉

where φ j are

stabiliser states, we can sample from an ensemble of pure states ρ1 such that every sam-
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pled pure state has stabiliser rank no larger than k and

‖ρ1−|ψ〉〈ψ|‖1 ≤
2‖c‖2

1
k

+
√

Var[〈Ω|Ω〉] (5.51)

where |Ω〉 is the random sparsified vector defined in equation (5.47).

We will show that this can be proved by splitting ‖ρ1−|ψ〉〈ψ|‖1 into two terms via

the triangle inequality, then showing that they are upper bounded by
√

Var[〈Ω|Ω〉] and

2‖c‖2
1/k respectively. With this established, it remains to bound the variance.

Lemma 5.8 (Sparsification variance bound). Using the notation of Lemma 5.7 the

variance of 〈Ω|Ω〉 satisfies the bound

Var[〈Ω|Ω〉]≤ 4(C−1)
k

+
2‖c‖4

1
k2 +O

(
C
k3

)
, (5.52)

where C = Cψ,c is as given in equation (5.49). When |ψ〉 is a Clifford magic state as

defined in Ref. [3],

Var[〈Ω|Ω〉]≤ 2‖c‖4
1

k2 +O
(

1
k3

)
. (5.53)

We will prove Lemma 5.8 by expanding Var[〈Ω|Ω〉] as a series of terms of the form

E(
〈
ωα

∣∣ωβ

〉〈
ωλ

∣∣ωµ

〉
), treating the cases where the indices α , β , λ and µ are all distinct,

then where α = β , but (α,λ ,µ) are all distinct and so on. Assuming these lemmata to

hold, we can prove Theorem 5.6.

Proof of Theorem 5.6. Substituting k = 4‖c‖2
1/δS and δS ≥ 8(C− 1)/‖c‖2

1 into equa-

tion (5.52) from Lemma 5.8, we obtain

Var[〈Ω|Ω〉]≤ δ 2
S
4

(
1+O

(
δS

‖c‖4
1

))
, (5.54)

and hence, using
√

1+ x≤ 1+ |x|,

√
Var[〈Ω|Ω〉]≤ δS

2
+O(δ 2

S ). (5.55)

Using Lemma 5.7 with k = 4‖c‖2
1/δS and (5.55), we obtain the main result of Theo-

rem 5.6, that ‖ρ1−|ψ〉〈ψ|‖1 ≤ δS +O(δ 2
S ). When |ψ〉 is a Clifford magic state, equa-
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Figure 5.1: For the target state |ψ〉 = (cos(θ) |0〉+ sin(θ) |1〉)⊗100 with two choices of θ , we
plot the trace norm error δS when using a k-term sparsification. EB (Exact Bound)
refers to equation (5.51) and is valid for all δS, with the variance exactly bounded
by equation (5.93). LO (Leading Order) refers to our Theorem 5.6 expression k =
4‖c‖2

1/δS, and is valid provided δS ≥ δc with δc highlighted by a vertical line. Note
θ = π/8 corresponds to the Clifford magic state |H〉, for which δc = 0. PA (Prior Art)
shows the cost of Ref. [3]. The exact stabiliser rank is χ (see Theorem 2 of Ref. [3])
and this is upper bounds PA. When C 6= 1 and δS < δc, then EB shows that there is still
a large saving even though LO is not valid in this regime. To better understand the
deviation of the leading order expression from the exact bound, we refer the reader
to the proof of Lemma 5.8 and in particular Fig. 5.2, and to the discussion below
following equation (5.56). Plot produced by Earl Campbell, reproduced from Ref.
[2] under CC-BY 4.0 license.

tion (5.53) combined with Lemma 5.7 gives

‖ρ1−|ψ〉〈ψ|‖1 ≤
(2+
√

2)‖c‖2
1

k
+O

(
1
k2

)
. (5.56)

We then obtain the second statement of the theorem by setting k = d(2+
√

2)‖c‖2
1/δSe.

Theorem 5.6 tells us that provided the target error δS is no smaller than a critical

precision δc, one can sample from an ensemble of sparsified states ρ1 that is δS-close

in the trace norm to |ψ〉, where the number of stabiliser terms is k = d4‖c‖2
1/δSe. This

gives a factor 1/δS improvement over the BBCCGH [3] sparsification lemma, where

k = d4‖c‖2
1/δ 2

S e. When δS < δc, one can compute C and obtain a sharp bound on the

trace-norm error by using Lemmas 5.7 and 5.8 directly. In this case, the δ
−2
S scaling of

k is recovered, but with a prefactor often much smaller than in the original BBCCGH

sparsification lemma. This is because one typically finds that (C− 1)/‖c‖2
1 � 1 for

many-qubit magic states. We illustrate this in Fig. 5.1, where we compare our sharpened

trace-norm bound with that of Ref. [3] for states of the form |ψN〉 = |ψ〉⊗N , where

https://creativecommons.org/licenses/by/4.0/
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|ψ〉 are single-qubit magic states, and N = 100. While δS ≥ 8(C− 1)/‖c‖2
1 we have a

quadratic improvement over equation (5.45), but even in the high-precision regime, we

find a significant reduction in k. We now prove Lemmata 5.7 and 5.8, upon which the

above proof of Theorem 5.6 rests.

Proof of Lemma 5.7. Given target state |ψ〉= ∑ j c j
∣∣φ j
〉
, we must bound the error δS =

‖ρ1−|ψ〉〈ψ|‖1 where ρ1 is defined

ρ1 = E
[ |Ω〉〈Ω|
〈Ω|Ω〉

]
= ∑

Ω

Pr(Ω)
|Ω〉〈Ω|
〈Ω|Ω〉 . (5.57)

Here |Ω〉= (‖c‖1/k)∑α |ωα〉 are the random sparse vectors returned by SPARSIFY (Al-

gorithm 10) with probability Pr(Ω). First we introduce the operator ρ2 = 1
µ
E [|Ω〉〈Ω|],

where µ = E[〈Ω|Ω〉]. Then using the triangle inequality,

δS = ‖ρ1 +ρ2−ρ2−|ψ〉〈ψ|‖1 ≤ ‖ρ1−ρ2‖1 +‖ρ2−|ψ〉〈ψ|‖1. (5.58)

For the first term,

‖ρ1−ρ2‖1 = ‖E
[
|Ω〉〈Ω|

(
1

〈Ω|Ω〉 −
1
µ

)]
‖1. (5.59)

Using Jensen’s inequality, that is, E( f (X))≤ f (E(X))) for random variable X and convex

function f , we can bring the expectation value outside the norm,

‖ρ1−ρ2‖1 ≤ E
∣∣∣∣〈Ω|Ω〉( 1

〈Ω|Ω〉 −
1
µ

)∣∣∣∣= 1
µ
E|µ−〈Ω|Ω〉 |.

That µ = E[〈Ω|Ω〉] = 1+(‖c‖2
1−1)/k was shown in Ref. [3], and explained in Section

3.4. Loosening (5.60) with µ−1 ≤ 1 gives ‖ρ1−ρ2‖1 ≤ E|µ−〈Ω|Ω〉 |, which is simply

the average deviation from the mean. Using Jensen’s inequality,

E|µ−〈Ω|Ω〉 | ≤
√

E|µ−〈Ω|Ω〉 |2 =
√

Var[〈Ω|Ω〉], (5.60)

=⇒ ‖ρ1−ρ2‖1 ≤
√

Var[〈Ω|Ω〉]. (5.61)

Next, we bound ‖ρ2− |ψ〉〈ψ|‖1, by first finding an explicit form for ρ2. Observe that

|Ω〉〈Ω| = ‖c‖2
1k−2

∑α,β |ωα〉〈ωβ |. Recall from Algorithm 10 that |ωα〉 = c j
∣∣φ j
〉
/|c j|
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with probability |c j|/‖c‖1, so that E(|ωα〉) = |ψ〉/‖c‖1 [3]. Then,

E(|Ω〉〈Ω|) = µρ2 =
‖c‖2

1
k2 ∑

α,β

E[
∣∣ωα

〉〈
ωβ

∣∣]. (5.62)

Let σ := E[ |ωα〉〈ωα |]. We split (5.62) into two summations as follows:

µρ2 =
‖c‖2

1
k2

[(
∑

α 6=β

E[
∣∣ωα

〉〈
ωβ

∣∣])+

(
∑
α

E[ |ωα〉〈ωα |]
)]

, (5.63)

=
‖c‖2

1
k2

[(
∑

α 6=β

|ψ〉〈ψ|
‖c‖2

1
]

)
+

(
∑
α

σ

)]
, (5.64)

=
1
k2

(
∑

α 6=β

|ψ〉〈ψ|
)
+
‖c‖2

1
k2 ∑

α

σ .

In the first contribution, we used the independence of ωα and ωβ when α 6= β , so that

E[ |ωα〉〈ωβ |] = E( |ωα〉)E(〈ωβ |), and that E[|ωα〉] = |ψ〉/‖c‖1. Next, there are k(k−1)

terms and k terms in the first and second summations respectively, so

µρ2 =
(
1− k−1) |ψ〉〈ψ|+ ‖c‖2

1
k

σ . (5.65)

Using this form for ρ2, we have that

‖ρ2−|ψ〉〈ψ|‖1 = µ
−1‖µρ2−µ |ψ〉〈ψ|‖1, (5.66)

= µ
−1‖(1− k−1−µ) |ψ〉〈ψ|+‖c‖2

1k−1
σ‖1.

Substituting in the value of µ we find 1− k−1−µ =−‖c‖2
1/k and so

‖ρ2−|ψ〉〈ψ|‖1 =
‖c‖2

1
kµ
‖σ −|ψ〉〈ψ|‖1 ≤ 2

‖c‖2
1

k
, (5.67)

where we have used the triangle inequality, ‖σ‖1 and µ−1 ≤ 1. Substituting equa-

tion (5.61) and equation (5.67) into equation (5.58), we obtain

δS = ‖ρ1−|ψ〉〈ψ|‖1 ≤
2‖c‖2

1
k

+
√

Var[〈Ω|Ω〉], (5.68)

completing the proof.



200 Chapter 5. Classical simulation algorithms for non-stabiliser circuits

Proof of Lemma 5.8. In Ref. [3] it was shown that

µ = E[〈Ω|Ω〉] = ‖c‖
2
1

k
+
‖c‖2

1
k2 E(B) , (5.69)

where B = ∑α ∑β 6=α〈ωα |ωβ 〉. Since |ωα〉 and
∣∣ωβ

〉
are independently sampled for dis-

tinct α and β , we get

E
(
〈ωα |ωβ 〉

)
= E(〈ωα |)E(

∣∣ωβ

〉
) =
〈ψ|ψ〉
‖c‖2

1
. (5.70)

We use similar proof techniques to bound E[〈Ω|Ω〉2], and in turn bound the variance. We

begin with

〈Ω|Ω〉2 = ‖c‖
4
1

k4

(
∑
α,β

〈
ωα

∣∣ωβ

〉)2

, (5.71)

=
‖c‖4

1
k4

(
∑
α

(
〈ωα |ωα〉+ ∑

β 6=α

〈
ωα

∣∣ωβ

〉))2

, (5.72)

=
‖c‖4

1
k4 (k2 +2kB+B2), (5.73)

since there are k terms in the sum over α . Whereas from equation (5.69) we have

E[〈Ω|Ω〉]2 = ‖c‖
4
1

k4 (k2 +2kE(B)+E(B)2). (5.74)

Comparing these expressions, for the variance we obtain

Var[〈Ω|Ω〉] = E[〈Ω|Ω〉2]−E[〈Ω|Ω〉]2 = ‖c‖
4
1

k4 (E(B2)−E(B)2). (5.75)

By counting terms in the summation B, and using the relation (5.70), we find

E(B)2 =
(
k(k−1)E[〈ωα |ωβ 〉]

)2
=

k2(k−1)2

‖c‖4
1

. (5.76)
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Expanding B2, we get

B2 =

(
∑
α

∑
β 6=α

〈
ωα

∣∣ωβ

〉)(
∑
λ

∑
µ 6=λ

〈
ωλ

∣∣ωµ

〉)
(5.77)

= ∑
(α,β ,λ ,µ)∈A

〈
ωα

∣∣ωβ

〉〈
ωλ

∣∣ωµ

〉
+B′ (5.78)

where A is the set of all possible combinations (α,β ,λ ,µ) where all four indices are

distinct, and B′ denotes the remaining terms where at least two of the indices are equal.

Now, if (α,β ,λ ,µ) are all distinct, then
〈
ωα

∣∣ωβ

〉
and

〈
ωλ

∣∣ωµ

〉
are i.i.d. variables, so

E(
〈
ωα

∣∣ωβ

〉〈
ωλ

∣∣ωµ

〉
) = E(

〈
ωα

∣∣ωβ

〉
)E(
〈
ωλ

∣∣ωµ

〉
). This yields

E(B2) =
k(k−1)(k−2)(k−3)

‖c‖4
1

+E(B′). (5.79)

Substituting the expressions (5.76) and (5.79) back into (5.75), we obtain

Var[〈Ω|Ω〉] = ‖c‖
4
1

k4 E(B′)− k(k−1)(4k−6)
k4 . (5.80)

We must now consider terms
〈
ωα

∣∣ωβ

〉〈
ωλ

∣∣ωµ

〉
in the expansion of B2 where

(α,β ,λ ,µ) are not all distinct. We use the notation B j=k to indicate the sum of

all terms where indices j and k are equal but all others are distinct, e.g. Bλ=α =

∑α,β ,µ

〈
ωα

∣∣ωβ

〉〈
ωα

∣∣ωµ

〉
, where the summation is over terms such that α , β and µ

are all distinct, and so on. There are k(k− 1)(k− 2) terms in each summation of

this type. Similarly for the terms sharing two pairs of indices, we use the notation

Bλ=α;µ=β = ∑α 6=β

〈
ωα

∣∣ωβ

〉〈
ωα

∣∣ωβ

〉
, and these have k(k − 1) terms. From equa-

tion (5.77), we never have terms where α = β or λ = µ . We then have

B′ = Bλ=α +Bµ=α +Bλ=β +Bµβ +Bλ=α;µ=β +Bµ=α;λ=β . (5.81)

One can check that E[B∗
λ=α

] = E[Bµ=β ] and E[B∗µ=α ] = E[Bλ=β ]. Therefore

E[B′] = 2Re{E[Bλ=β ]+E[Bµ=β ]}+E[Bλ=α;µ=β +Bµ=α;λ=β ]. (5.82)
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Next we note that

E[Bλ=β ] = ∑
α

∑
β 6=α

∑
α 6=µ 6=β

E[
〈
ωα

∣∣ωβ

〉〈
ωβ

∣∣ωµ

〉
] (5.83)

= k(k−1)(k−2)E[〈ωα |]E[
∣∣ωβ

〉〈
ωβ

∣∣]E[∣∣ωµ

〉
]

=
k(k−1)(k−2)

‖c‖2
1

〈ψ|σ |ψ〉 , (5.84)

where σ = E[
∣∣ωβ

〉〈
ωβ

∣∣] = ∑ j(|c j|/‖c‖1)
∣∣φ j
〉〈

φ j
∣∣, since the probability of sampling∣∣ωβ

〉〈
ωβ

∣∣ = ∣∣φ j
〉〈

φ j
∣∣ is defined as p j = |c j|/‖c‖1. Next we consider E[Bµ=β ]. Taking

the modulus and using the triangle inequality we obtain

|E[Bµ=β ]| ≤∑
α

∑
β 6=α

∑
α 6=λ 6=β

E[|
〈
ωα

∣∣ωβ

〉〈
ωλ

∣∣ωβ

〉
|] (5.85)

= k(k−1)(k−2)E[
〈
ωα

∣∣ωβ

〉〈
ωβ

∣∣ωλ

〉
] (5.86)

=
k(k−1)(k−2)

‖c‖2
1

〈ψ|σ |ψ〉 . (5.87)

Similarly, for the last two terms B′′ = Bλ=α;µ=β +Bµ=α;λ=β , we obtain

|E[B′′]| ≤∑
α

∑
β 6=α

E[|
〈
ωα

∣∣ωβ

〉〈
ωα

∣∣ωβ

〉
|]+∑

α

∑
β 6=α

E[
〈
ωα

∣∣ωβ

〉〈
ωβ

∣∣ωα

〉
]

= 2∑
α

∑
β 6=α

E[
〈
ωα

∣∣ωβ

〉〈
ωβ

∣∣ωα

〉
]. (5.88)

By cyclicity of the trace, E[
〈
ωα

∣∣ωβ

〉〈
ωβ

∣∣ωα

〉
] = E[Tr

[
|ωα〉〈ωα | |ωβ 〉〈ωβ |

]
], so

E[
〈
ωα

∣∣ωβ

〉〈
ωβ

∣∣ωα

〉
] = Tr

[
E[|ωα〉〈ωα |]E[

∣∣ωβ

〉〈
ωβ

∣∣]]= Tr
[
σ

2], (5.89)

=⇒ |E[B′′]| ≤ 2k(k−1)Tr
[
σ

2]≤ 2k(k−1). (5.90)

Combining the results (5.82), (5.84), (5.87) and (5.90) gives us

E[B′]≤ 4
k(k−1)(k−2)

‖c‖2
1

〈ψ|σ |ψ〉+2k(k−1). (5.91)

Writing

C = ‖c‖2
1 〈ψ|σ |ψ〉= ‖c‖1 ∑

j
|c j||

〈
ψ
∣∣φ j
〉
|2 (5.92)
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and substituting the expression for E(B′) into equation (5.80) we obtain

Var[〈Ω|Ω〉]≤4
k3−3k2 +2k

k4 C+2
‖c‖4

1
k2

(
1− 1

k

)
− 4k3−10k2 +6k

k4 , (5.93)

which to leading order in 1/k gives us the general bound appearing in Lemma 5.8,

Var[〈Ω|Ω〉]≤ 4(C−1)
k

+2

(
‖c‖2

1
k

)2

+O
(

C
k3

)
. (5.94)

For Clifford magic states stabilised by a group Q of Clifford operators, there exists [3]

an optimal decomposition

|ψ〉= ∑
q∈Q

cq
∣∣φq
〉
=

1
|Q|〈ψ|φ0〉 ∑

q∈Q
q |φ0〉 , (5.95)

where |φ0〉 is some stabiliser state that maximises | 〈ψ|φ0〉 |. Then

‖c‖1 = |Q| · (|Q|| 〈ψ|φ0〉 |)−1 = | 〈ψ|φ0〉 |−1 (5.96)

and σ = ∑q∈Q pqq |φ0〉〈φ0|q†, where pq = |Q|−1. This yields

〈ψ|σ |ψ〉= ∑
q∈Q

pq 〈ψ|q |φ0〉〈φ0|q† |ψ〉 (5.97)

= ∑
q∈Q

pq 〈ψ|φ0〉〈φ0|ψ〉= | 〈ψ|φ0〉 |2 =
1
‖c‖2

1
, (5.98)

where we used the Hermiticity of q and q |ψ〉= |ψ〉. This shows that for optimal decom-

positions of Clifford magic states, C = 1, and leads to the simplified bound

Var[〈Ω|Ω〉]≤ 2
(‖c‖2

1
k

)2

+
2
k3 , (5.99)

completing the proof.

Finally, we comment on the effect of the constant C when |ψ〉 is not a Clif-

ford magic state. Recall that C can be written in terms of the expected overlap,

C = ‖c‖2
1E
[
| 〈ψ|ω〉 |2

]
, and enters into Theorem 5.6 via the critical precision δc = 8(C−

1)/‖c‖2
1. Consider |ψ〉 = |ψ ′〉⊗N where |ψ ′〉 are pure states. When |ψ〉 is a product of



204 Chapter 5. Classical simulation algorithms for non-stabiliser circuits

0.1 0.2 0.3 0.4

1.001

1.002

1.003

1.004

1.005

1.006

θ

:= (cos(θ)|0 + sin(θ)|1 )|θ

C = θ|σθ|θ ||c||21

π

8

1

0
.11

87

Figure 5.2: The variable C as introduced in equation (5.92), plotted as a function of the angle
θ for a class of single-qubit states. This is the C value for one copy of the state,
for n copies we must raise to the nth power. The prefactor C− 1 appearing in equa-
tion (5.93) is key to the behaviour of the bound, as when C = 1, the variance scales
asymptotically asO(1/k2). We highlight two specific angles θ = {π/8,0.1187} that
correspond to angles used in Fig. 5.1. For θ = π/8, we have C− 1 = 0 and so the
O(1/k2) is exact as can be seen in Fig. 5.1. For θ = 0.1187, we have the maximal
possible value of C and Fig. 5.1 shows the maximal deviation from O(1/k2) scaling.
Plot generated by Earl Campbell, reproduced from Ref. [2] under CC-BY 4.0 license.

N pure states, we can write each randomly sampled stabiliser state as |ω〉=⊗N
α=1 |ωα〉,

where |ωα〉 are i.i.d. random vectors. It follows that E
[
| 〈ψ|ω〉 |2

]
= (E

[
| 〈ψ ′|ωα〉 |2

]
)N .

Since |ωα〉 are always stabiliser states, when |ψ ′〉 are non-stabiliser states, we have

| 〈ψ ′|ωα〉 |2 < 1. Therefore the threshold precision δc < 8C/‖c‖2
1 = 8(E

[
| 〈ψ ′|ωα〉 |2

]
)N

vanishes for large N when |ψ〉 is a tensor product of N pure states. Moreover, in Figure

5.2 we plot values of C for a class of single-qubit states, showing that C− 1 is close to

zero even when N is not large.

5.2.3.2 Bit-string sampling algorithm

We next show how to simulate sampling from the output distribution of a circuit with

noisy magic state inputs. Assume we measure the first w qubits. Let Πx = |x〉〈x|⊗1n−w

be the projector representing the outcome where we obtain bit-string x. The probabil-

ity of obtaining the string x is given by the Born rule, P(x) = Tr[Πxρ]. We call P the

quantum probability distribution. Here we deal with the simulation task of classically

sampling from a probability distribution Psim(x) over w-bit strings x such that Psim is δ -

close in `1-norm to P, with high probability. We saw in Section 5.1 that this can be done

efficiently for poly-sized stabiliser circuits. The BBCCGH algorithm introduced in Ref.

[3] performs this task for pure magic states |ψ〉, with runtime that scales linearly with the

https://creativecommons.org/licenses/by/4.0/
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Algorithm 11 Bit-string sampling algorithm (simplified)

Input: n-qubit density operator ρ =∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, with known decompositions

∣∣ψ j
〉
=

∑ j c( j)
r |φr〉; number of bits w; target precision δ > δψ j,c,∀ j, where δψ j,c is the critical

precision for state ψ j (see Theorem 5.6).
Output: w-bit string x.

1: Randomly draw ψ j with probability p j.
2: k← d12‖c( j)‖2

1/δe
3: |Ω〉 ← SPARSIFY(ψ j,k)

4: Estimate Pr(x1 = 0) = ‖Π0|Ω〉‖2

‖|Ω〉‖2 using FASTNORM [3]. x← (x1)

5: x1← 0 with probability Pr(x1 = 0), x1← 1 otherwise.
6: for b← 2 to w do
7: Estimate Pr(xb = y|x) = Pr[(x,y)]

Pr[x] =
‖Π(x,y)|Ω〉‖2

‖Πx|Ω〉‖2 using FASTNORM.

8: Sample xb← 0 or xb← 1 accordingly and concatenate, x← (x,xb).
9: end for

pure state extent ξ (ψ).

The algorithm presented in this section allows sampling from mixed magic states ρ

in average runtime linear in density-operator extent Ξ(ρ). The simulator is closely related

to the BBCCGH simulator [3], differing in two key respects: (i) whereas BBCCGH deals

only with pure states, our variant admits general mixed states; and (ii) we employ our

improved sparsification lemma to reduce runtime. We also avoid a post-selection step

needed for the BBCCGH algorithm (recall Section 3.4). We give simplified pseudocode

showing the key steps in our procedure (Algorithm 11), for the case where the target error

δ is greater than the critical value δc introduced in Theorem 5.6. Full pseudocode for the

case of arbitrary precision is given in Appendix E.2, where we also prove the validity and

runtime for the general case. The main steps in the algorithm are (1) the sampling of a

random pure state
∣∣ψ j
〉

from the ensemble ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, (2) a call to SPARSIFY

to generate the k-term approximation |Ω〉, and (3) computation of a chain of conditional

probabilities using at most 2w+1 calls to the subroutine FASTNORM which estimates the

norm of a given vector (see Section 3.5 and Refs. [3, 60]). Here we first sketch the proof

before discussing the runtime improvement over BBCCGH [3]. We initially assume that

δ > δc, returning to the δ ≤ δc case at the end of the section.

We want to show that the classical probability distribution Psim satisfies the inequal-

ity ‖Psim−P‖1 ≤ δ +O(δ 2), where P is the quantum distribution. We split the proof

into two parts. First, we consider an idealised algorithm EXACT where the calls to FAST-
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NORM are replaced by an oracle that can compute ‖Πx |Ω〉‖ exactly given k-term spar-

sification |Ω〉. Let Pex(x) be the probability of obtaining the string x as the output of

EXACT. We will first show that Pex is δS-close to the quantum distribution P in `1-norm,

and then show that Psim is ε-close to Pex. We then split the error budget so that δ = δS+ε .

In Appendix E.2 we show that the optimal strategy is to set δS = δ/3 and ε = 2δ/3.

Let xm = (x1, . . . ,xm) be the bit string comprising the first m bits of x, and let

|Ωm〉 = Πxm |Ω〉 be the projection of the first m qubits of |Ω〉. We can obtain the proba-

bility Pr(x|Ω) = Pr(x1)Pr(x2|x1) . . .Pr(xw|xw−1) of sampling x from EXACT given fixed

sparsification |Ω〉 by multiplying the conditional probabilities Pr(xb|xb−1) computed in

step 7 of Algorithm 11,

Pr(x|Ω) =
‖|Ω1〉‖2

‖|Ω〉‖2
‖|Ω2〉‖2

‖|Ω1〉‖2 . . .
‖Πx |Ω〉‖2

‖|Ωw−1〉‖2 =
‖Πx |Ω〉‖2

‖|Ω〉‖2 = Tr
[

Πx
|Ω〉〈Ω|
〈Ω|Ω〉

]
. (5.100)

Thus EXACT simulates sampling from the quantum state |Ω〉/‖|Ω〉‖ exactly; any error

arises solely from the sparsification procedure. Now consider that randomly choosing

a pure state ψ j from ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, generating a random approximation |Ω〉 using

SPARSIFY and then normalising is equivalent to sampling a pure state from the ensemble,

σ = ∑
j

p j ∑
Ω

Pr
(
Ω|ψ j

) |Ω〉〈Ω|
〈Ω|Ω〉 = ∑

j
p jρ

( j)
1 (5.101)

where Pr
(
Ω|ψ j

)
is the probability of SPARSIFY outputting the vector |Ω〉 , and ρ

( j)
1 is

the expected projector E(|Ω〉〈Ω|/〈Ω|Ω〉) as defined in equation (5.48), both conditioned

on the input to SPARSIFY being
∣∣ψ j
〉
. From our argument above it follows that Pex(x) =

Tr[Πxσ ]. A key conceptual difference between our method and that of Ref. [3] is that

while the BBCCGH sparsification results are concerned with the distance ‖ψ−Ω‖2 for

a particular random sparsification Ω, here we compare the target state ρ with the full

ensemble over sparsifications σ . From our sparsification lemma (Theorem 5.6), for each

pure state
∣∣ψ j
〉
, we have that ‖ρ( j)

1 −
∣∣ψ j
〉〈

ψ j
∣∣‖1 ≤ δS +O(δ 2

S ). It follows that ‖σ −
ρ‖1 ≤ δS +O(δ 2

S ), and so,

‖Pex−P‖1 ≤ δS +O(δ 2
S ). (5.102)

Next we argue that Pex is ε-close to Psim, the distribution arising from our full classi-
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cal algorithm, including the calls FASTNORM. Recall from Section 3.5 that FASTNORM

is able to output an estimate η for ‖Ωm‖2 up to some multiplicative error εFN with prob-

ability (1− pFN), which we can set arbitrarily small, such that

(1− εFN)‖Ωm‖2 ≤ η ≤ (1+ εFN)‖Ωm‖2, (5.103)

and that each call takes time O(kn3ε
−2
FN log

(
p−1

FN
)
) when the vector |Ωm〉 has k stabiliser

terms. One can show (see Appendix E.2) that estimating the chain of w conditional

probabilities (5.100) using FASTNORM leads to a total multiplicative error 3wεFN in the

distribution sampled from, i.e.

(1−3wεFN)Pex(x)≤ Psim(x)≤ (1+3wεFN)Pex(x), (5.104)

so to achieve multiplicative error ε we must set εFN = ε/3w. One can similarly show

that to achieve overall success probability at least 1− pfail, it is necessary to set the

parameters for FASTNORM so that pFN = pfail/(2w). This governs the runtime of each

call to FASTNORM. By combining this result with equation (5.102) we have ‖Psim−
P‖1 ≤ δ +O(δ 2).

To analyse the runtime of our simulator, we define Ξ̃=∑ j p j‖c( j)‖2
1,where c( j) is the

vector of coefficients in the decomposition
∣∣ψ j
〉
= ∑r c( j)

r
∣∣φ j
〉
. Recall that for an n-qubit

state vector with k terms, the runtime of FASTNORM is O(kn3ε
−2
FN ). From the previous

discussion, if we selected the j-th pure state in the decomposition of ρ , we will have set

k ∝ ‖c( j)‖2
1δ−1 and εFN ∝ δw−1. In a single run of the full algorithm, FASTNORM is

called O(w) times. Therefore the runtime to generate a single w-length bit string is T =

O(‖c( j)‖2
1w3n3δ−3) with probability p j. So the average-case runtime is O(Ξ̃w3n3δ−3).

Through Ξ̃, this average-case runtime is sensitive to the particular decomposition of ρ

supplied to the simulator. In the case where the decomposition is optimal with respect to

the density-operator extent Ξ (Definition 4.2), we have Ξ̃=Ξ(ρ), so that the average-case

runtime is linear in Ξ(ρ). Recall from Theorem 4.8 in Section 4.1.4 that all single-qubit

states admit an equimagical decomposition that naturally extends to all tensor products

of single-qubit states. In that case ‖c( j)‖2
1 = Ξ(ρ) for all j, so that we can give the worst-

case runtime as O(Ξ(ρ)).

The runtime scaling of O(δ−3) holds provided that the sparsification error δS is not
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smaller than the critical threshold δc = 8(C− 1)/‖c‖2
1, where C is defined in equation

(5.49). However, the algorithm is still valid for the case of arbitrary precision, δS < δc. In

this case we recover the same leading order scaling as Bravyi et al., namely O(δ−4) [3],

but typically with a prefactor improved by several orders of magnitude (see Figure 5.1).

A detailed technical analysis is provided in Appendix E.2, including explicit proof of the

following theorem, which captures the results discussed above.

Theorem 5.9. Let ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣ be an n-qubit state where every pure state

has a known stabiliser decomposition
∣∣ψ j
〉
= ∑r c( j)

r |φr〉. For every
∣∣ψ j
〉
, let

C j = ‖c( j)‖1 ∑r |c( j)
r || 〈ψ|φr〉 |2. Let Ξ̃ = ∑ j p j‖c( j)‖2

1, and let D = max{(C j −
1)/‖c( j)‖2

1}. Then for any pfail > 0, and δ ≥ 24D there exists a classical algorithm

that, with success probability (1− pfail), samples a bit-string x of length w with proba-

bility Psim(x) such that:

‖Psim−P‖1 ≤ δ +O(δ 2), (5.105)

where P(x) = Tr(Πxρ), and Πx = |x〉〈x|⊗1n−w is a projector. The algorithm returns x

with random runtime T where the average runtime is

E(T ) =O(w3n3
Ξ̃δ
−3 log(w/pfail)). (5.106)

If the decomposition of ρ is optimal with respect to the definition (4.2), then the expected

runtime is O(Ξ(ρ)). Moreover, if the state decomposition is equimagical, then the right

side of (5.106) also bounds the worst-case runtime.

If arbitrary precision δ ≤ 24D is required, this can be achieved at the cost of an

increased runtime:

E(T ) =O(w3n3
Ξ̃(δ−3 +3Dδ

−4) log(w/pfail)). (5.107)

Finally we note that the method can be adapted to classically estimate Born rule

probabilities. In this case, rather than drawing a single sparsified state |Ω〉〈Ω|/〈Ω|Ω〉
from the ensemble and computing a chain of conditional probabilities, we generate a

large number of sparsifications |Ω〉, compute ‖Π |Ω〉‖2/‖|Ω〉‖2, and take the mean, using

the Hoeffding bound [128] to determine the number of samples needed to achieve given

precision. For technical details see Appendix E.3. This procedure outputs an estimate η
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satisfying

|η−Tr[Πρ]| ≤ 3εFN Tr[Πρ]+δ +O
(
δ

2) (5.108)

with probability (1− p) in average runtime

E(τ) =O
(

Ξn3
ε
−2
FN δ

−3 log
(

2
p

))
. (5.109)

Note that the error in the estimate includes both a multiplicative error contribution due

to fast norm estimation, and an additive error contribution arising from sparsification and

Hoeffding sampling. While the linear scaling with Ξ suggests the method might perform

better than quasiprobability methods, whose performance scales with the square of the

associated monotone, the scaling with δ is worse for the present method, so care must be

taken in choosing the optimal strategy. We discuss this further in Section 6.3 of Chapter

6.

5.3 Algorithms for magic-generating channels
In this section we present classical simulation algorithms for non-stabiliser circuits,

where the runtime is quantified by an associated channel magic monotone, so that the

simulators always deal efficiently with completely stabiliser-preserving circuit elements.

In all simulators considered here, we assume a circuit composed from a sequence of chan-

nels {E1,E2, . . . ,EL} acting on an initial stabiliser state, which without loss of generality

we take to be |0n〉. The circuit ends with some final state ρ = EL . . . ◦E2 ◦ E1(|0n〉〈0n|),
and we simulate measurements performed on this final system state. We typically assume

that each channel acts non-trivially on a bounded number of qubits (e.g. 2 or 3). This

setting allows the (inefficient) classical simulation of universal quantum circuits with-

out the need for cumbersome gadgetisation. Our algorithms are not restricted to discrete

gate sets such as Clifford + T, and therefore admit more direct simulation of arbitrary

non-Clifford gates, leading to reduced overhead in many cases.

We first introduce a class of simulators we call static simulators, as they make use

of precomputed, and therefore static, quasiprobability distributions for each element of

the circuit. Our first static simulator works by sampling a trajectory of CPTP maps in

SPn,n from a quasiprobability decomposition of a non-stabiliser circuit, and its runtime

is directly related to the channel robustness of each circuit element. The constrained
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path channel simulator, dyadic channel simulator and stabiliser rank simulator for noisy

rotations that follow have performance quantified by one of our measures of magic for

channels, and employ related channel decompositions. In contrast, the class of simulation

algorithms we call dynamic channel simulators recompute magic state decompositions at

each step in the circuit, leading to subtle trade-offs in the runtime complexities. For

example, the dynamic simulator associated with magic capacity (w.r.t. robustness of

magic) can reduce sample complexity compared to the static channel simulator associated

with channel robustness, at the cost of increased runtime per sample.

We will make repeated use of the stabiliser-Kraus subroutines described earlier (Sec-

tion 5.1), which guarantee that simulation of circuits built from few-qubit stabiliser chan-

nels is efficient, as well as helping to reduce overhead for the simulation of non-stabiliser

operations. For example, we will show that our quasiprobability simulators always per-

form at least as well as the Oak Ridge algorithm [45] in terms of sample complexity, and

give examples of specific cases where we obtain a speedup. For most of the simulators

we discuss, the precise variant of the stabiliser-Kraus subroutine used is unimportant;

we simply assume that we have access to a procedure STABILISERKRAUS defined as

follows.

Definition 5.10 (Generic stabiliser-Kraus function). Let E(·) = ∑ j K j(·)K†
j be a com-

pletely stabiliser-preserving CPTP map, specified by a simulable channel decomposition

L, where the j-th element represents the Kraus operator K j. Then let STABILISERKRAUS

be a procedure that takes as input a representation of a stabiliser state |φ〉, and a chan-

nel decomposition L and probabilistically outputs a representation of an updated pure

stabiliser state,

|φ ′〉 ← STABILISERKRAUS(|φ〉 ,L), (5.110)

such that with probability p j =
∥∥K j |φ〉

∥∥2 the updated state is chosen to be |φ ′〉 =
K j |φ〉/√p j. The update is completed in poly(n) time.

5.3.1 Static channel simulator

Here we present the static channel simulator. This can be viewed as a generalisation of the

Oak Ridge simulator [45] (Section 2.5.1), differing in two important ways; firstly in the

set of operations treated as “free”, and secondly in the way sampling over free operations

is performed. Whereas the Oak Ridge algorithm employed the Cliffords and Pauli-reset
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channels (CPR) as free operations, in our simulator we optimise channel decompositions

with respect to SPm,m, so that all stabiliser channels are represented non-negatively. This

includes CPR as a strict subset. While the Oak Ridge simulator sampled over a discrete

set of operations where each was itself a CPTP stabiliser channel, we first sample ei-

ther the positive or negative path of the decomposition, before using the stabiliser-Kraus

subroutine from Section 5.1 to sample individual Kraus operators.

We assume that each circuit element E j in the circuit decomposition E = E (T ) ◦ . . .◦E (1)

acts non-trivially on at most m qubits, and is decomposed,

E ( j) = (1+ p j)E ( j)
0 − p jE ( j)

1 , where E ( j)
0 ,E ( j)

1 ∈ SPm,m and CPTP. (5.111)

We quantify the negativity of the decomposition by defining Q j = 1+2p j. Recall that the

channel robustness R∗ (Definition 4.18) is the optimal value of Q j, that is, R∗(E ( j)) =

minQ j. The runtime to precompute decompositions is bounded since we restrict E ( j) to

be m-qubit circuit elements. We then assume that a description of each E ( j)
0,1 is provided

to the main simulator as a list L( j)
0,1, in one of the formats described in Section 5.1. One

can define a composite quasiprobability distribution,

qk = ∏
j:k j=0

(
1+ p j

)
∏

j:k j=1

(
−p j

)
, (5.112)

where k∈FL
2 is a vector representing a choice of either E ( j)

0 or E ( j)
1 at each circuit element

E j. We can renormalise this to obtain a product probability distribution.

pk = ∏
j:k j=0

(
1+ p j

)
Q j

∏
j′:k j′=1

(
p j′
)

Q j′
. (5.113)

Hence we can write the density operator for the final state of the circuit as follows,

E(|φ0〉〈φ0|) = Q∑
k

pkλkEk(|φ0〉〈φ0|) (5.114)

where each Ek = E (L)kL
◦ . . .◦E (1)k1

gives a trajectory of SPm,m channels through the circuit,

λk = sign(qk), and Q = ∏
T
j=1 Q j. As usual, we give pseudocode for the static channel

simulator (Algorithm 12), before arguing for its validity and analysing runtime. The
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Algorithm 12 Static channel simulator

Input: Circuit description
{
E (1),E (2), . . . ,E (T )

}
, where each E ( j) has a known decom-

position with `1-norm Q j as per equations (5.111), and each stabiliser sub-channel
E ( j)

0,1 ∈ SPm,m is specified by a simulable channel decomposition L( j)
0,1; stabiliser ob-

servable E; initial stabiliser state |φ0〉; number of samples M.
Output: Estimate Ê for expectation value 〈E〉= Tr[EE(|φ0〉)].

1: Set Ẽ← 0 and Q←∏
T
j=1 Q j

2: for i = 1 to M do
3: Sample vector k according to the distribution {pk}.
4: Prepare representation of initial state |φ0〉.
5: for j = 1 to T do
6:

∣∣φ j
〉
← STABILISERKRAUS(

∣∣φ j−1
〉
,L( j)

k j
)

7: end for
8: Ẽi← sign(qk)Q〈φT |E|φT 〉
9: Ẽ← Ẽ + Ẽi

10: end for
11: return Ê← Ẽ/M

expectation value 〈E〉 at the end of the circuit is given by

Tr[EE(|φ0〉〈φ0|)] = Q∑
k

pkλk Tr[EEk(|φ0〉〈φ0|)]. (5.115)

This decomposition yields a quasi-probability distribution with `1-norm

||q||1 = ∑
k
|pkλkQ|= ∑

k
|pk|Q = ∏

j
Q j. (5.116)

where q is a 2T -element vector with entries qk. By sampling a vector k in step 3, we

randomly choose a stabiliser-preserving trajectory through the circuit. Crucially, (5.113)

gives a product distribution, so this first sampling step is efficient. If we could effi-

ciently compute the mean value 〈E〉k = λkQTr[EEk(|φ0〉〈φ0|)] for any given stabiliser

sub-channel, we would have an unbiased estimator for 〈E〉= Tr[EE(|φ0〉〈φ0|)]. The vari-

ance is increased by Q > 1, but by the standard arguments [45, 103, 124]any fixed addi-

tive error ε > 0 in the estimate could be achieved with high probability by repeating the

sampling procedure M = O
(
ε−2||q||21

)
times. However, computing each 〈E〉k exactly

cannot always be done efficiently in the depth of the circuit, since if each channel E ( j)
k j

has NK Kraus operators, then (without further knowledge of its structure), the Kraus de-

composition of the trajectory Ek has NT
K terms. So even when NK is bounded, the time to
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compute all contributions 〈E〉k would be exponential in T .

Instead, the simulator tracks the evolution of a probabilistically updated pure sta-

biliser state through the sampled trajectory Ek. In each iteration of step 6, the algo-

rithm selects the channel decomposition L( j)
k j

for either the positive (k j = 0) or nega-

tive (k j = 1) part of the decomposition of non-stabiliser channel E ( j). This is passed to

the STABILISERKRAUS subroutine, which then probabilistically selects a Kraus operator

with which to update the stabiliser state. Because L( j)
k j

represents a CPTP completely

stabiliser-preserving map, it in effect has `1-norm 1, so the internal sampling carried out

by STABILISERKRAUS does not increase the variance, and the sample complexity of the

simulator depends only on Q = ∏ j Q j. The end result is that by combining the outer

quasiprobability sampling routine, with the inner sampling routine, we have an unbiased

estimator for 〈E〉. To generate a single sample, there are T calls to STABILISERKRAUS.

Since we stipulate that each E ( j) acts non-trivially on no more than m qubits, the number

of Kraus operators is bounded, so each call to STABILISERKRAUS completes in poly(n)

time. Therefore to generate M samples the total runtime τ is

τ = M ·T ·poly(n) =
⌈

2
ε
‖q‖2

1 ln
(

2
pfail

)⌉
·T ·poly(n), (5.117)

where M is chosen to achieve additive error ε with probability at least 1− pfail, using a

Hoeffding inequality in the usual way [124, 128]. Recalling that ‖q‖2
1 = ∏

T
j=1 Q j, and

thatR∗(E ( j)) optimises Q j, we see that when we have access to optimal decompositions

for each circuit element E ( j) the runtime is quantified by the channel robustness. Our

arguments above lead to the following result.

Theorem 5.11 (Static channel simulator). Suppose E is an n-qubit non-stabiliser circuit

that can be decomposed as a sequence of circuit elements, E = E (T ) ◦ . . . ◦ E (1), where

each E ( j) acts non-trivially on at most m qubits, so that the channel robustness can be

computed. Then for any stabiliser state |φ0〉 and stabiliser observable E, and parameters

δ , pfail > 0, there is a classical algorithm that outputs an estimate Ê for the expectation

value 〈E〉= Tr[EE(|φ0〉〈φ0|)] in time:

τ =

⌈
2
ε

ln
(

2
pfail

)⌉
·T ·poly(n) ·

T

∏
j=1

[R∗(E ( j))]2, (5.118)
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where the estimate satisfies: ∣∣∣Ê−〈E〉∣∣∣≤ ε (5.119)

with probability at least 1− pfail.

To compare our runtime with that of the Oak Ridge simulator [45], recall that their

algorithm has cost function

RCPR(E) = min
Λ j∈CPR

{
||p||1 : ∑ p jΛ j = E

}
, (5.120)

so that simulating a given circuit element E ( j) contributes a factor RCPR(E ( j))2 to the

runtime. Since CPR⊆ SPn,n, it must be the case that R∗ ≤RCPR, potentially leading to

lower simulation sample complexity if there exist channels with R∗ < RCPR. We now

give a toy example demonstrating a significant advantage to our simulator. Consider the

single-qubit CPTP map EH defined by a Z-measurement followed by a Hadamard gate

conditioned on the “-1” outcome. This has Kraus representation K1 = |0〉〈0|, K2 =

|−〉〈1|. This is clearly a completely stabiliser-preserving map, so has channel robustness

R∗(EH) = 1. For a single qubit, CPR consists of the 24 Clifford gates, and 6 Pauli-reset

channels. We find that RCPR(EH) = 2. Since ΛH ∈ SP1,1, this confirms that CPR is a

strict subset of the completely stabiliser-preserving channels, and indicates that RCPR

is not a monotone under stabiliser operations. We also note that the calculated value is

larger than the robustness of magic for any single-qubit state, despite ΛH being a stabiliser

operation. For a circuit containing T uses of the channel ΛH , the samples required for a

CPR simulator would be proportional to RCPR(EH)
2T = 4T . Whereas, for our simulator

R∗(ΛH)
2T = 1, so simulation of this circuit element is efficient.

While the above example is quite artificial, a reduction in sample complexity is also

achieved for channels whereRCPR(E)>R∗(E)> 1. Given a circuit with L non-stabiliser

elements E ( j) , the sample complexity for the CPR simulator would be proportional to

∏
L
jRCPR(E ( j))2. Since R∗(E ( j)) ≤RCPR(E ( j)) for any channel, the sample complexity

for our simulator will never be greater. While our simulator sometimes incurs a modest

increase in the runtime per sample, this must be weighed against a reduction in runtime by

a factor exponential in the number of circuit elements whereR∗(E ( j))<RCPR(E ( j)). The

obvious next question is whether there are any natural non-trivial examples where this

happens. In Chapter 6 we will show that gate sequences subject to amplitude-damping
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noise provide one such case.

Finding optimal CPR decompositions is only tractable for one- and two-qubit cir-

cuit elements, as the three-qubit case already involves a linear program with nearly 93

million variables [45]. For general channels, our simulator suffers from a similar prob-

lem, as three-qubit channel decompositions are optimised over six-qubit stabiliser states.

However, the problem can be greatly simplified for diagonal channels (Section 4.4), and

remains tractable for five-qubit operations. This allows our algorithm to take advantage

of the submultiplicativity of channel robustness. When R(E⊗n) <R(E)n, it is advanta-

geous to decompose the composite channel E⊗n, provided the linear program is tractable.

In Chapter 6 we consider this strategy for sequences of single-qubit Z-rotations.

5.3.2 Static constrained path channel simulator

We have seen that the gRoM Λ+(ρ) for states lower bounds the additive error sustained

by a fast but noisy simulator (Section 5.2.1), which admits stabiliser circuits with magic

state inputs. We now show how this constrained path simulator can be extended to admit

magic channels, so that the performance is quantified by generalised channel robust-

ness Λ+
∗ . Recall that for a channel E , this quantity is the minimum λ ≥ 1 such that E =

λE+−(λ−1)E−, where E+ is a CPTP, completely stabiliser-preserving map, whereas E−
can be non-stabiliser. Equivalently, in the Choi state picture, Λ+

∗ (E) = minλ : ΦE ≤ λσ ,

where σ is a normalised stabiliser state such that TrA[σ ] = 1n/2n. We showed in Section

4.2.4 that given two channels E1 and E2, if feasible solutions for the above optimisation

problem are given by ΦE1 ≤ λ1σ1 and ΦE2 ≤ λ2σ2, then a feasible solution for the com-

posed channel E = E2 ◦E1 is given by ΦE ≤ λ1λ2σ ′ for some stabiliser state σ ′ satisfying

TrA[σ
′] = 1n/2n. This can be extended to a sequence of circuit elements of length T .

That is, suppose we are given a circuit E = E ( j) ◦ . . .◦E (1) where for each E ( j) we have

a known solution ΦE( j) ≤ λ jσ j, such that σ j = (E ( j)
+ ⊗1n)(|Ωn〉〈Ωn|) is the Choi state

for some completely stabiliser-preserving channel E ( j)
+ . We called E ( j)

+ the constrained

sub-channel of E ( j). It follows that there exists a decomposition:

E = λE+− (λ −1)E− (5.121)

where λ =
T

∏
j=1

λ j, E+ = E (T )+ ◦ . . .◦E (1)+ . (5.122)
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Algorithm 13 Constrained path channel simulator

Input: Simulable constrained path decomposition D = {(λ j,L( j))}T
j=1 for a circuit E ;

initial stabiliser state σ ; stabiliser observable E; number of samples M; parameters
c, pfail > 0.

Output: Estimate Ê and error bound ∆, s.t. |Ê −Tr(E |φ0〉〈φ0|)| ≤ ∆ with probability
1− pfail.

1: λ ←∏
T
j=1 λ j

2: δ ← cλ

3: D′←{L( j)}T
j=1 . Extract sequence of stabiliser channels.

4: Eσ ← STABILISERCIRCUIT(λσ ,D′,E,δ , pfail).
5: Emax←min{1,Eσ +δ +λ −1}
6: Emin←max{−1,Eσ −δ −λ +1}
7: if Emax−Emin < 2 then
8: Ê← (Emax +Emin)/2
9: ∆← (Emax−Emin)/2

10: return Ê,∆
11: else
12: return “FAIL”
13: end if

We can use this to extend the constrained path simulator for magic states to non-stabiliser

channels. We say that the circuit E = ET ◦ . . .E1 has a simulable constrained path decom-

position D if there is a feasible solution for each E ( j), such that the constrained stabiliser

sub-channel E ( j)
+ has a simulable decomposition L j as per Definition 5.1. The simula-

ble constrained path decomposition can be specified as a list of coefficients paired with

channel decompositions, D = {(λ j,L j)}T
j=1. As usual, a simulable decomposition can

always be found when each circuit element acts on a small bounded number of qubits.

Pseudocode is given in Algorithm 13. In principle the initial state can be a magic state

as in Algorithm 6, but for brevity we assume that the initial state is a stabiliser state.

As in the original constrained path simulator, the runtime is dominated by the procedure

STABILISERCIRCUIT in step 4. This subroutine uses the techniques of Section 5.1 to

simulate the evolution of the stabiliser state σ through the stabiliser circuit D′, outputting

an additive error estimate for the mean value of the observable E with high probability.

Since D′ comprises a sequence of T simulable decompositions of stabiliser channels, this

subroutine completes in time τ = T ·2 1
c2 log

(
2

pfail

)
·poly(n).

Once again, the algorithm is efficient with respect to system size, and it is the error

bound ∆ that increases with magic. The analysis of the error bound is identical to that

summarised in Table 5.1 for the constrained path simulator, except that here the vari-
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able λ is the product of λ j for the composed channels (step 1), rather than arising from

decomposition of the initial state. In the case where we are able to find an optimal de-

composition for each circuit element, then λ = ∏
T
j=1 Λ+

∗ (E ( j)), so that the accuracy of

the estimator is governed by the generalised channel robustness. As mentioned in Sec-

tion 4.2.4, where we defined Λ+
∗ , late in the preparation of this thesis we became aware

of complementary work on the generalisation of channel robustness by Saxena and Gour

[159]. They also propose a constrained path channel simulator which differs in some

details. In particular, we note that their algorithm may have wider application than the

one presented here, as it allows precision to be improved at the cost of greater runtime.

5.3.3 Static dyadic channel simulator

The channel robustness monotone associated with the static channel simulator [1] intro-

duced in Section 5.3.1 is closely related to RoM, so that the static simulator can be seen as

the counterpart in the channel picture to the RoM simulator for magic states [103] (Sec-

tion 2.3). By extending the frame to include non-Hermitian stabiliser dyads, the dyadic

frame simulator of Section 5.2.2 was able to achieve the same simulation tasks as the

RoM simulator with significantly reduced runtime [2], since by Theorem 4.16, we have

R(ρ⊗n)/Λ(ρ⊗n)≥ 2γn for some γ > 0 any single-qubit magic state ρ . We can improve

on the static channel simulator in an analogous manner by expanding the set of free op-

erations from the completely stabiliser-preserving channels SPn,n to the dyadic stabiliser

channels DSPn,n introduced in the previous chapter (see Definition 4.23 in Section 4.2.5).

In practice, this strategy may be limited by the fact that it is not clear that computing the

dyadic channel negativity exactly is tractable. Nevertheless, we showed in Section 4.2.5

that it is at least practical to optimise over the projective dyadic stabiliser channels PDSP,

a subset of DSP, for the single-qubit case. Thus by supplementing CPTP stabiliser chan-

nels with single-qubit PDSP maps, there is potential to reduce simulation costs for some

channels.

We must first make a further extension to the stabiliser-Kraus subroutine (Algorithm

14). We assume that the description of the dyadic map is provided analogously to the

simulable channel decompositions we have discussed previously, except that instead of a

single list of Kraus operators, the map is represented by a pair (L,R), where L specifies

the Kraus operators that act on the left and R describes those that act on the right. The

entries of each list have the format (α j,U j,Π j,h j), where 2h j/2U jΠ j is the polar decom-
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position of a stabiliser Kraus operator (see Section 5.1), and α j is a complex coefficient.

We call (L,R) a simulable decomposition if the list has at most poly(n) entries. As in

Algorithm 14 Dyadic stabiliser channel update subroutine

Input: Initial stabiliser dyad σ = |φL〉〈φR|; pair of lists (L,R), representing a map in
DSPn,n, where L is of length NK and has entries (α(L)

j ,U (L)
j ,Π

(L)
j ,h(L)j ) representing

polar-decomposed stabiliser Kraus operators α
(L)
j K(L)

j = α
(L)
j 2h(L)j /2U (L)

j Π
(L)
j , and

similarly for R.
Output: Updated dyad σ ′ = |φ ′L〉〈φ ′R|.

1: function DYADICMAPUPDATE(σ ,(L,R))
2: for j← 1 to NK do
3: Pj← 2(h

(L)
j +h(R)j )/2‖α(L)

j α
(R)
j Π

(L)
j σΠ

(R)†
j ‖1

4: end for
5: P0← 1−∑

NK
r=1 Pr

6: Sample s from {0, . . . ,NK} with probability Ps
7: if s = 0 then
8: σ ′← 0
9: else

10: σ ′← |φ ′L〉〈φ ′R|= 2(h
(L)
j +h(R)j )/2

α
(L)
j α

(R)∗
j UL

s Π
(L)
s |φL〉〈φR|Π(R)†

s U (R)†
s

11: end if
12: return σ ′

13: end function

Section 4.2.5, the transition probabilities in step 3 can be evaluated by computing norms

for each side of the dyad separately,

‖α(L)
j α

R
j Π

(L)
j σΠ

(R)†
j ‖1 = |α(L)

j α
(R)
j | ·

∥∥∥Π
(L)
j |φL〉

∥∥∥ ·∥∥∥Π
(R)
j |φR〉

∥∥∥. (5.123)

This is done in polynomial time using standard stabiliser techniques. Meanwhile the

phase-sensitive state update in step 10 can be carried out efficiently using the CH-

simulator (Section 1.2.1) [3]. The argument to check that the computed values {Pr}NK
r=0

form a proper probability distribution is virtually identical to that given in the proof of

Theorem 5.5. We can define real-valued vectors Q(X), where X = L or X = R, with

entries Q(X)
r = 2h(X)

r /2
∥∥∥α

(X)
r Π

(X)
r |φX〉

∥∥∥. Then, by virtue of the definition of complete

dyadic stabiliser channels (Definition 4.23 in Section 4.2.5), it is always the case that

∑
NK
r=1 2h(X)

r

∥∥∥α
(X)
r Π

(X)
r |φX〉

∥∥∥2
= 1. Then by the same chain of reasoning as in equations
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(5.35) to (5.37), we have that
∥∥∥Q(X)

∥∥∥= 1 and,

NK

∑
r=1

Pr ≤
∥∥∥Q(L)

∥∥∥ ·∥∥∥Q(R)
∥∥∥≤ 1. (5.124)

Then since P0 = 1−∑
NK
r=1 Pr by definition, {Pr}NK

r=0 is a valid probability distribution.

We next modify the static channel simulator of Ref. [1] to admit decompositions

over dyadic channels. Suppose we have a circuit E = E (T )◦ . . .E (1). For the static channel

simulator, we split the quasiprobability decomposition for each circuit element E (t) into a

positive and negative part, each of which constituted a CPTP stabiliser channel (equation

(5.111)). Here the coefficients in the decomposition are complex, so there may be more

than two complete dyadic stabiliser channels in the decomposition,

E (t) = ∑
k

β
(t)
k T

(t)
k where T (t)

k ∈ DSPn,n, B(t) = ‖β (t)‖1. (5.125)

Recall that the dyadic channel negativity Λ∗(E (t)) is the minimal `1-norm ‖β (t)‖1 over

all valid decompositions (Definition 4.24). We present the pseudocode in Algorithm 15.

This algorithm yields an unbiased estimator for 〈E〉. Since the proof repeats arguments

made for previous simulators, and involves some lengthy algebra, we omit it here, giving

full technical details in Appendix F. The performance of the simulator can be stated in

the following theorem, proved in the appendix.

Theorem 5.12 (Dyadic channel simulator). Suppose an n-qubit non-stabiliser circuit E
has decomposition E = E (T ) ◦ . . . ◦ E (1), where each circuit element E (t) has a known

decomposition into simulable dyadic stabiliser channels as per Definition 4.23, with `1-

norm B(t). Then for any initial stabiliser state |φ (0)〉〈φ (0)|, stabiliser observable E and

any constants ε, pfail > 0, an estimate Ê for the mean value 〈E〉= Tr
[
EE( |φ (0)〉〈φ (0)|)

]
can be computed in time

τ =
2
ε

ln
(

2
pfail

)
·T ·poly(n) ·

T

∏
t=1

[B(t)]2, (5.126)

such that with probability at least 1− pfail, we obtain
∣∣∣Ê−〈E〉∣∣∣≤ ε . When the decompo-

sition for each E (t) is optimal with respect to the dyadic channel negativity, the runtime

is O
(

∏t [Λ∗(E (t))]2
)

.
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Algorithm 15 Static dyadic channel simulator

Input: Circuit description {E (1),E (2), . . . ,E (T )}, where each E (t) has known decompo-
sition with `1-norm B(t) as per equation (5.125), with each dyadic stabiliser sub-
channel T ( j)

k ∈ DSP is specified by simulable decomposition (L(t)
k ,R(t)

k ); stabiliser
observable E; initial stabiliser state σ (0) = |φ (0)〉〈φ (0)|; number of samples M.

Output: Estimate Ê for expectation value 〈E〉= Tr
[
EE( |φ (0)〉〈φ (0)|)

]
.

1: Set Ẽ← 0, θ ← 0, B←∏
T
t=1 B(t). . Initialise phase angle θ .

2: for j = 1 to M do
3: Prepare representation of initial state σ (0).
4: for t = 1 to T do
5: Sample kt with probability |β (t)

kt
|/B(t).

6: θ ← θ + argβ
(t)
kt

. Update phase angle.

7: σ (t)← DYADICMAPUPDATE(σ (t−1),(L(t)
kt
,R(t)

kt
))

8: if σ (t) = 0 then . Terminate trajectory if “zero” selected.
9: σ (T )← 0

10: break
11: end if
12: end for
13: Ẽ j← Re

{
Beiθ Tr

[
Eσ (T )

]}
. Computed with CH-simulator.

14: Ẽ← Ẽ + Ẽ j
15: end for
16: return Ê← Ẽ/M

5.3.4 Sampling simulator for non-stabiliser channels

We next sketch how the mixed-state stabiliser rank simulation techniques developed in

Section 5.2.3 can be extended to simulate noisy unital channels, such as non-Clifford

gates subject to dephasing or depolarising noise. Since the bit-string simulator for magic

states was described in detail in Section 5.2.3 and Appendix E.2, we do not give full

pseudocode. Instead, we modify the sparsification method to deal with this simulation

setting, and then outline how the simulator proceeds.

Suppose that the system is initialised with a stabiliser state |φ0〉, and the circuit com-

prises T channels E = E (T ) ◦E (T−1) ◦ . . .◦E (1), so that the final state is ρ = E(|φ0〉〈φ0|).
We assume that for each circuit element E (t) we have a known decomposition:

E (t) = ∑
j

pt, jUt, j, Ut, j(·) =Ut, j(·)U†
t, j, (5.127)

where each Ut, j is a non-Clifford gate, with known sum-over-Clifford decomposition

Ut, j = ∑k ct, j,kVt, j,k for Clifford gates Vt, j,k. We will assume that that the Clifford decom-
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position of Ut, j is optimal with respect to unitary extent, so that ξ (Ut, j) = ‖ct, j‖2
1, where

ct, j is a vector with elements ct, j,k. Then the final state of the circuit can be written as an

ensemble over pure states, ρ = ∑j pj |ψj〉〈ψj|, where j is a vector of indices jt , such that

pj = pT, jT pT−1, jT−1 . . . p1, j1 and

∣∣ψj
〉
=UT, jT UT−1, jT−1 . . .U1, j1 |φ0〉 . (5.128)

In effect, the noisy circuit E is decomposed as a probabilistic mixture of ideal non-

Clifford unitary circuits. In turn, using the Clifford decomposition of each Ut, jt , we can

express each pure state as a superposition of stabiliser states,
∣∣ψj
〉
= ∑k cj,k |φk〉, where

|φk〉 = VT, jT ,kT . . .V1, j1,k1 |φ0〉, and cj,k = cT, jT ,kT . . .c1, j1,k1 . By Theorem 5.6, each pure

state
∣∣ψj
〉〈

ψj
∣∣ can be approximated up to O(δS) error in the trace-norm by an ensemble

ρj of random states |Ω〉〈Ω|/〈Ω|Ω〉, subject to the caveats on the size of δS explained in

Section 5.2.3.1. The random vectors |Ω〉 are defined by

|Ω〉= ‖cj‖1

M

M

∑
α=1
|ωα〉 , where Pr

{
|ωα〉= cj,k |φk〉/|cj,k|

}
=
|cj,k|
‖cj‖1

. (5.129)

Here c is the vector with elements cj,k, and M = d4‖cj‖2
1/δSe. But each coefficient fac-

torises as cj,k = cT, jt ,kT . . .c1, j1,k1 , so we can factorise each `1-norm as

‖cj‖1 = ∑
k

∣∣cj,k
∣∣= ∑

kT ,...,k1

T

∏
t=1

∣∣ct,tt ,kt

∣∣= T

∏
t=1

√
ξ (Ut). (5.130)

Moreover, the probability distribution used to sample the sparsified vectors |Ω〉 is a prod-

uct distribution,

Pr
{
|ωα〉= cj,k |φk〉/|cj,k|

}
=
|cj,k|
‖cj‖1

=
T

∏
t=1

∣∣ct, jt ,kt

∣∣√
ξ (Ut, j)

. (5.131)

We can then approximate the final state of the circuit ρ by an ensemble ρ ′ defined

ρ
′ = ∑

j
pjρj, ρj = ∑

Ω

Pr
(
Ω|ψj

) |Ω〉〈Ω|
〈Ω|Ω〉 (5.132)

satisfying ‖ρ − ρ ′‖1 ≤ δS +O
(
δ 2

S
)
. Here Pr

(
Ω|ψj

)
is the probability of obtaining |Ω〉

from the SPARSIFY subroutine given target pure state
∣∣ψj
〉
. We simulate sampling a bit
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string from the output distribution of the circuit as follows.

1. Sample a unitary non-Clifford trajectory j from the product distribution.

2. Randomly compute a sparsified, unnormalised state vector |Ω〉.

3. Use repeated calls to FASTNORM to sample one bit at a time as per Section 5.2.3

and Appendix E.2.

The rest of the analysis closely follows that for the mixed-state stabiliser rank simulator,

so that given an n-qubit circuit, to sample a bit string of length w with failure probability

at most pfail, the average runtime E(τ) is given by

E(τ) =O(w3n3
Ξ̃(δ−3) log(w/pfail)), (5.133)

where Ξ̃ = ∑
j

pj‖cj‖2
1 = ∑

j
pj

T

∏
t=1

ξ (Ut, jt ). (5.134)

But {pj} is a product distribution, and factorising each pj yields Ξ̃ = ∏
T
t=1 Ξ̃t , where

Ξ̃t = ∑ jt pt, jt ξ (Ut, jt ). So Ξ̃t represents the multiplicative cost factor for simulating each

non-stabiliser channel E (t) in the sequence. This simulation technique depends on the

existence and computability of decompositions E (t) = ∑ j pt, jUt, j. Clearly such decom-

positions do not exist for non-unital channels, for example. However in Chapter 6 we

show that computing optimal decompositions is practical for sequences of single-qubit

rotations subject to commonly used unital noise models. For such optimal decomposi-

tions, Ξ̃t is equal to the channel extent defined in Section 4.2.3.

5.3.5 Dynamic channel simulator

We now introduce a class of algorithmss we call dynamic simulators. In contrast to

the static channel simulator, where all decompositions are assumed to have been pre-

computed, dynamic simulators compute convex optimisations on-the-fly for few-qubit

subsystems as the algorithm steps through the circuit. The additional overhead required

to solve these intermediate optimisations can sometimes be traded with runtime savings

elsewhere. We illustrate this idea with a simulator related to the magic capacity with

respect to RoM, CR. Consider the setting where we have an n-qubit circuit where each

non-stabiliser circuit element acts on at most m qubits, where m� n. Suppose we par-

tition the circuit into an m-qubit subsystem A on which a channel E acts non-trivially,
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and subsystem B containing the other n−m qubits. Naively it is not tractable to update

the quantum state using matrix multiplication, since qubits in A could be entangled with

those B. So, without prior knowledge of the entanglement structure, we have to apply

the channel to the whole n-qubit system, which takes time exponential in n. To overcome

this difficulty, we use the fact that any bipartite stabiliser state is always local Clifford-

equivalent to some number 0 ≤ b ≤ m of independent Bell pairs, tensor product with a

separable state [57], where m is the number of qubits in the smaller partition. Given an

m-qubit circuit element, an n-qubit initial stabiliser state can always be efficiently ma-

nipulated so that the state update can be computed on a subsystem of at most 2m qubits.

After computing a decomposition for the new 2m-qubit magic state, we can sample a new

pure stabiliser state and move to the next circuit element. In Section 6.1 of Chapter 6,

we will show that there exist few-qubit channels E such that CR(E) <R∗(E). For such

channels, and for any stabiliser state ρ , the robustness of the output state E(ρ) will al-

ways be less than the `1-norm of the decomposition of E into stabiliser-preserving CPTP

channels. Our dynamic simulator takes advantage of this.

We will shortly present pseudocode, but first make several definitions. First, let

Q = {(qr,φr)}r denote a stabiliser decomposition of a magic state ρ = ∑r qr |φr〉〈φr|.
Then, let ‖Q‖1 denote the `1-norm ‖q‖1 for the vector of coefficients qr. Let OPTIMISE

be a function that takes as input a density matrix ρ and outputs an optimal stabiliser

decomposition Q and its corresponding norm ‖Q‖1,

(Q,‖Q‖1) = OPTIMISE(ρ), where ‖Q‖1 =R(ρ). (5.135)

Then let QUASISAMPLE be a function that randomly selects a pure stabiliser |ψ〉 from Q

with the appropriate weighting, as well as tracking the sign:

(|ψ〉 ,λ )← QUASISAMPLE(Q) where Pr(|ψ〉 ← |φr〉) =
|qr|
‖Q‖1

, λ = sign(qr)

(5.136)

Fattal et al. showed in Ref. [57] that any bipartite stabiliser state |φ〉A|B can always

be transformed by local Clifford gates V A⊗1B and 1A⊗W B into b independent Bell

pairs, entangled across the partition A|B. If the partition A comprises m qubits, then b

can be at most m. It follows that given a tripartite state |φ〉ABC, we can always find some

Clifford local to subsystem BC such that subsystem AB is disentangled from C, i.e. there
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exists a Clifford gate 1A⊗UBC such that,

1A⊗UBC |φ〉ABC =
∣∣φ ′〉AB⊗

∣∣φ ′′〉C (5.137)

Since the unitary acts as the identity on subsystem A, it commutes with any channel of

the form EA⊗1BC. So, applying the Clifford U , followed by the channel EA⊗1BC and

finally applying the inverse U† is equivalent to applying the channel alone,

(1A⊗U†BC)◦ (EA⊗1BC)◦ (1A⊗UBC) = EA⊗1BC. (5.138)

We can take advantage of this to apply the non-stabiliser channel to the disentangled 2m-

qubit tensor factor instead of the full n-qubit state. We can then decompose the updated

state and sample a new pure stabiliser state from the quasiprobability distribution, before

re-entangling with the global system.

We need to be able to appropriately partition the system prior to applying this dis-

entangling Clifford. We specify each subsystem S by n-bit string s, where ak = 1 if the

k-th qubit is in A, and ak = 0 otherwise. Suppose a enumerates the m qubits on which the

channel E acts non-trivially. Let B be the subsystem containing the first m qubits not in A,

and let b(a) be the string describing this subsystem. Then let o = (1, . . . ,1) be the string

where every entry is 1, and let c(a) = a⊕ b(a)⊕ o, so that c(a) specifies the remaining

n− 2m qubits. The results of Fattal et al. [57] show that an appropriate Clifford can be

found in poly(n) time. Define DISENTANGLE to be the classical procedure that performs

this task, taking as input the stabiliser state |φ〉ABC and vectors specifying the choice of

partition a,b,c and returning the disentangling Clifford and the the tensor factors of the

disentangled state,

(
∣∣φ ′〉AB

,
∣∣φ ′′〉C

,UBC)← DISENTANGLE(|φ〉ABC ,a,b,c). (5.139)

In Algorithm 16 we present pseudocode for the dynamic channel simulator. As

for the static channel simulator, we represent a sampled trajectory through the circuit

by a vector k, such that the output of the true quantum circuit would be ρ = ∑k qkσk.

The major difference is that qk cannot be decomposed as a product distribution, as the

quasiprobabilities for each intermediate decomposition will depend on the stabiliser state
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Algorithm 16 Dynamic channel simulator

Input: Circuit description
{
E (1),E (2), . . . ,E (T )

}
, where each E ( j) acts non-trivially on

a partition comprising at most m qubits, specified by a binary vector a( j) ; stabiliser
observable E; initial stabiliser state |φ0〉; number of samples M.

Output: Estimate Ê for expectation value 〈E〉= Tr[EE(|φ0〉〈φ0|)].
1: Set Ẽ← 0.
2: for i = 1 to M do
3: Prepare representation of initial state |φ0〉.
4: Q← 1 . This variable tracks the sign and overhead due to sampling
5: for j = 1 to T do
6: a,b,c← a( j),b(a( j)),c(a( j)). . Specify qubit partitions
7: ( |φ ′j−1〉AB , |φ ′′j−1〉C ,UBC)← DISENTANGLE(

∣∣φ j−1
〉ABC

,a,b,c).
8: Compute ρAB

j−1← (E ( j)⊗1m)( |φ ′j−1〉〈φ ′j−1|AB)

9: (Q j,‖Q j‖1)← OPTIMISE(ρAB
j−1)

10: ( |φ ′j〉AB ,λ j)← QUASISAMPLE(Q j)

11:
∣∣φ j
〉ABC

= (1m⊗U†BC) |φ ′j〉AB⊗ |φ ′′j−1〉C . Undo the Clifford gate
12: Q← Q×‖Q j‖1×λ j
13: end for
14: Ẽi← Q〈φT |E|φT 〉
15: Ẽ← Ẽ + Ẽi
16: end for
17: return Ê← Ẽ/M

sampled in the previous step. Consider the j-th circuit element. After step 7 of the

algorithm, we have some randomly selected stabiliser state σk j−1 , where k j−1 labels the

trajectory prior to the j-th channel E ( j). We do not assume k j is a binary vector; instead

its elements label the pure stabiliser states sampled in each step. After steps 8 and 9 we

have a magic state ρk j−1 = (EA
j ⊗1BC)(σk j−1), up to a Clifford rotation on subsystem BC.

This state is decomposed as,

ρk j−1 = (EA
j ⊗1BC)(σk j−1) = ∑

k j

qk jσk j . (5.140)

We need to take care here which trajectories are included in the summation. The initial

state that is input to the channel is fixed by the vector k j−1. So by by summing over

the final index k j, we sum over all j-step trajectories k j = (k j−1,k j) consistent with the

previous ( j− 1)-step trajectory labelled by k j−1. Let ‖Qk j−1‖1 = ∑k j

∣∣qk j

∣∣ be the `1-

norm for the computed decomposition of ρk j−1 . We assume that each circuit element

acts on sufficiently few qubits that computing the optimal decomposition is tractable, so



226 Chapter 5. Classical simulation algorithms for non-stabiliser circuits

that ‖Qk j−1‖1 =R(ρk j−1). Then in steps 10 and 12 we sample a stabiliser state σk j with

probability |qk j |/‖Qk j−1‖1, and the variable Q picks up a factor commensurate with norm

‖Qk j−1‖1 and the sign of the sampled element.

Now, compare this with the true evolution of the quantum circuit. The final state of

system prior to measurement may be expressed

ρ = E (T ) ◦E (T−1) ◦ . . .◦E (1)(|φ0〉〈φ0|), (5.141)

where for clarity we omit the the tensor product and partition notation (i.e. E ( j) is

shorthand for E ( j) ⊗ 1BC
n−m). Using the vector notation defined above, we can write

σk0 = |φ0〉〈φ0|, since all trajectories must start with the specified initial state. Then from

the relation (5.140), we can rewrite the state after the first circuit element as a quasiprob-

ability distribution optimal with respect to robustness of magic, so that.

ρ = ∑
k1

qk1E (T ) ◦E (T−1) ◦ . . .◦E (2)σk1. (5.142)

Note that the decomposition (E (1)⊗1)(σk0) = ∑k1 qk1σk1 is simply a rewriting of the

quantum state after the first channel in the circuit has been applied, it is not an artefact of

our algorithm. Applying this rewrite recursively to all circuit elements,

ρ = ∑
k1

. . .∑
kT

(
T

∏
j=1

qk j)σkT = ∑
k

qkσk, (5.143)

where qk = (∏T
j=1 qk j) and σk = σkT . Normalising each coefficient qk j with the appro-

priate norm ‖Qk j−1‖1 =R(ρk j−1), the final state is written,

ρ =∑
k

pkQkσk, where pk =
T

∏
j=1

|qk j |
R(ρk j−1)

, Qk =
T

∏
j=1

sign
(
qk j

)
R(ρk j−1). (5.144)

The true mean value for the observable E given final state ρ can be decomposed:

Tr[Eρ] = ∑
k

pkQkEk, where Ek = Tr[Eσk]. (5.145)

Unlike the static simulator, the full distribution {pk} is never explicitly computed. In-

deed, it is not a product distribution, because each set of quasiprobabilities {qk j}k j and
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the corresponding `1-norm depends on the trajectory k j−1 sampled in earlier steps. Nev-

ertheless, on each iteration, the simulator randomly samples an output QkEk with prob-

ability pk. These probabilities exactly match the weightings in equation (5.145), which

was derived from the quantum evolution of the circuit, so the simulator is an unbiased

estimator for the mean value of observable E. The number of samples needed can there-

fore be computed in the usual way based on max{|Ẽi|}. For any trajectory k, the value is

bounded as |QkEk| ≤ |Qk| ≤∏tR(ρkt−1)≤∏t CR(E (t)), where CR is the magic capacity

with respect to RoM. This leads to the following result.

Theorem 5.13 (Dynamic channel simulator). Suppose E is an n-qubit non-stabiliser cir-

cuit that can be decomposed as a sequence of circuit elements, E = E (T ) ◦ . . . ◦ E (1),
where each E ( j) acts non-trivially on at most m qubits, where m is sufficiently small that

the robustness of magic for a 2m-qubit stabiliser state can be computed in time τR. Then

for any stabiliser state |φ0〉 and stabiliser observable E, and parameters δ , pfail > 0,

there exists a classical algorithm that outputs an estimate Ê for the expectation value

〈E〉= Tr[EE(|φ0〉〈φ0|)] in time

τ =
2
ε

ln
(

2
pfail

)
·T · (poly(n)+ τR) ·

T

∏
t=1

[C(E (t))]2, (5.146)

where the estimate satisfies
∣∣∣Ê−〈E〉∣∣∣≤ ε with probability at least 1− pfail.

Notice that for every sample, T optimisations are performed, as well as T calls to

DISENTANGLE, which has poly(n) runtime. If CR(E) = R∗(E) then we would simply

not use this method, so that the only optimisations are in the preprocessing. On the other

hand, if ∏t CR(E (t))� ∏tR∗(E (t)) then the dynamic simulator can be faster than the

static simulator; here we have a trade-off of increase in per-sample runtime, versus a

multiplicative reduction in sample complexity. Indeed, the sampling cost is likely to be

the bottleneck for highly non-stabiliser circuits. In Chapter 6 we discuss circuits where

the dynamic simulator may have an advantage.

In theorem 5.13, we require that m is small enough that finding optimal decomposi-

tions for 2m-qubit states takes time τR. Since this time grows super-exponentially with

2m, in practice we need m≤ 2 in the general case. However, for the case of diagonal chan-

nels, we can again use the results of Section 4.4 to increase the number of qubits. Lemma

4.34 showed that for diagonal m-qubit channel E and any 2m-qubit state |φ〉, there exists
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a stabiliser state |φ ′〉 on only m qubits such that R[(E ⊗1)(|φ〉〈φ |)] = R[E(|φ ′〉〈φ ′|)].
The proof of the lemma hinged on the stronger result that U |φ〉 = |φ ′〉⊗ |φ ′′〉 for some

Clifford operation U that commutes with E ⊗1. Therefore we can use this Clifford in

the same way as that employed in the DISENTANGLE subroutine in Algorithm 5.3.5. For

diagonal channels a modified DISENTANGLE procedure can be used so that the system

can be put in the form |φ ′j−1〉A⊗ |φ ′′j−1〉B where subsystem A comprises only m qubits.

This in principle allows the simulator to admit diagonal circuit elements on on up to five

qubits.

5.3.6 Dynamic dyadic channel simulator

Here we show how the dynamic channel simulator of the previous subsection can be

adapted to take advantage of the reduction in `1-norm typically obtained by moving to

a dyadic frame. The obvious change is that the optimisation routine used in step 9 of

Algorithm 16 will be over dyads rather than stabiliser projectors, but several other mod-

ifications are needed. First, if the current stabiliser dyad is |L〉〈R|, the Clifford that dis-

entangles subsystems AB from C in step 7 is typically not the same for |L〉 as it is for

|R〉. Therefore we must apply a dyadic Clifford map to the stabiliser dyad, rather than a

unitary Clifford operation. Second, although each circuit element E ( j) is a CPTP map,

the operator it is applied to in step 9 is a stabiliser dyad rather than a density operator.

Therefore the output matrix ν j = (E ( j)⊗ 1n)(|L〉〈R|) can be non-Hermitian and non-

positive. This means we need to make use of the extended definition of dyadic negativity

introduced in Section 4.3.3.

Let OPTIMISEDYAD be a procedure that finds a complex linear decomposition Q

over stabiliser dyads for an input operator ν , minimising `1-norm ‖Q‖1,

(Q,‖Q‖1)← OPTIMISEDYAD(ν) s.t. ‖Q‖1 = Λ(ν). (5.147)

Here Q= {(αk, |Lk〉〈Rk|)}k is returned as a list of complex coefficients αk and stabiliser

dyads |Lk〉〈Rk|, such that ν =∑k αk |Lk〉〈Rk|. Let DYADSAMPLE be a subroutine that takes

as input a distribution over stabiliser dyads Q, and returns a randomly selected stabiliser

dyad |Lk〉〈Rk| and the corresponding phase,

(
∣∣L′〉〈R′∣∣ ,θ)← DYADSAMPLE(Q), (5.148)
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Algorithm 17 Dynamic dyadic channel simulator

Input: Circuit description {E (1),E (2), . . . ,E (T )}, where each E ( j) acts non-trivially on a
partition comprising at most m qubits, specified by a binary vector a( j) ; stabiliser
observable E; initial stabiliser state |φ0〉; number of samples M.

Output: Estimate Ê for expectation value 〈E〉= Tr[EE(|φ0〉)].
1: Set Ẽ← 0.
2: for i = 1 to M do
3: Prepare representation of initial dyad |L0〉〈R0|= |φ0〉〈φ0|.
4: Q← 1, φ ← 0 . Q and φ track sampling overhead and phase respectively.
5: for t = 1 to T do
6: a,b,c← a(t),b(a(t)),c(a(t)). . Specify qubit partitions
7: ( |L′t−1〉AB , |L′′t−1〉C ,UBC)← DISENTANGLE( |Lt−1〉ABC ,a,b,c).
8: ( |R′t−1〉AB , |R′′t−1〉C ,V BC)← DISENTANGLE( |Rt−1〉ABC ,a,b,c).
9: Compute νAB

t−1← (E (t)⊗1m)( |L′t−1〉〈R′t−1|AB)

10: (Qt ,‖Qt‖1)← OPTIMISEDYAD(νAB
t−1)

11: (|L′t〉〈R′t |AB ,θt)← DYADSAMPLE(Qt)

12: |Lt〉ABC = (1m⊗U†BC) |L′t〉AB⊗ |L′′t−1〉C . Undo left Clifford gate.
13: |Rt〉ABC = (1m⊗V †BC) |R′t〉AB⊗ |R′′t−1〉C . Undo right Clifford gate.
14: Q← Q×‖Qt‖1, θ ← θ +θt
15: end for
16: Ẽi← Re{Qeiθ 〈RT |E|LT 〉}
17: Ẽ← Ẽ + Ẽi
18: end for
19: return Ê← Ẽ/M

so that |L′〉〈R′|= |Lk〉〈Rk| with probability |αk|/‖Q‖1, and then θ = arg(α j). We present

pseudocode for the simulator in Algorithm 17. We make use of the same DISENTANGLE

subroutine and partitioning scheme as Algorithm 16. The proof that the random variable

Ẽi in Algorithm 17 is an unbiased estimator for 〈E〉 closely follows that for Algorithm 16.

The key difference is that we express the final state of the quantum circuit as a dyadic

decomposition, rather than in terms of stabiliser projectors (cf. equation (5.144)).

Let k be a vector labelling the full trajectory of stabiliser dyads chosen in the inner

for-loop, and let kt label the trajectory up to and including step t. At the beginning of

loop t the current dyad is
∣∣Lkt−1

〉〈
Rkt−1

∣∣, up to a Clifford dyadic map that commutes with

E (t). Applying circuit element t we obtain a non-stabiliser dyad,

νkt−1 = (E (t)⊗1)(
∣∣Lkt−1

〉〈
Rkt−1

∣∣) = ∑
kt

αk j

∣∣Lk j

〉〈
Rk j

∣∣ . (5.149)

Following the same reasoning as in Section 5.3.5, the final state can be expressed ρ =
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∑k pkeiφkQk
∣∣Lkt−1

〉〈
Rkt−1

∣∣, where

pk =
T

∏
t=1

|αkt |
Λ(νkt−1)

, Qk =
T

∏
t=1

Λ(νkt−1), φk =
T

∑
t=1

φkt , φkt = arg(αkt ). (5.150)

Again, we note that the above quasiprobability distribution is derived by considering the

evolution of the full quantum state through the circuit, but each coefficient pk is precisely

the probability of the simulator selecting the trajectory k, and eiφkQk is the complex

prefactor computed by the algorithm for that trajectory. Therefore the classical simulator

gives an unbiased estimator for the quantum mean value, with each random variable Ẽi

bounded by the product of dyadic magic capacities,

∣∣∣Ẽi

∣∣∣≤ Qk =
T

∏
t=1

Λ(νkt−1)≤
T

∏
t=1
CΛ(E (t)). (5.151)

So, by the standard arguments, the number of samples M required will beO(∏T
t=1CΛ(E (t))2).

We therefore have the following theorem.

Theorem 5.14 (Dynamic dyadic channel simulator). Suppose E is an n-qubit non-

stabiliser circuit that can be decomposed as a sequence of circuit elements, E = E (T ) ◦
. . .◦E (1), where each E ( j) acts non-trivially on at most m qubits, where m is small enough

that the dyadic negativity for a 2m-qubit stabiliser state can be computed in time τΛ.

Then for any stabiliser state |φ0〉, stabiliser observable E, and parameters δ , pfail > 0,

there exists a classical algorithm that outputs an estimate Ê for the expectation value

〈E〉= Tr[EE(|φ0〉〈φ0|)] in time:

τ =
2
ε

ln
(

2
pfail

)
·T · (poly(n)+ τΛ) ·

T

∏
t=1

[CΛ(E (t))]2, (5.152)

where the estimate satisfies
∣∣∣Ê−〈E〉∣∣∣≤ ε with probability at least 1− pfail.

Since the dyadic negativity is typically significantly smaller than the robustness of

magic, for many circuits the dyadic variant of the dynamic channel simulator may offer

a significant reduction in sample complexity. As for the dynamic channel simulator of

Section 5.3.5, the restriction to few-qubit operations can be partially reduced for diago-

nal channels by the addition of a subroutine to find a commuting Clifford gate that can

disentangle each part of the stabiliser dyad. However, we should note that the optimi-
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sation time for dyadic negativity, τΛ, can be significantly larger than that for robustness

of magic, τR, as the number of qubits increases. Therefore the improvement in sample

complexity must be weighed against the increased time to optimise decompositions for

each sample in deciding which simulator to use for a given circuit.

5.4 Summary and conclusions
In this chapter we introduced a suite of classical simulators for magic states and opera-

tions, each of which is associated with one of the magic monotones defined in Chapter

4. We first introduced a triplet of simulators for stabiliser circuits with magic state in-

puts, corresponding to the three magic state monotones discussed in section 4.1. This

completes the strand of work establishing the connection between quasiprobability and

stabiliser rank methods, as we have shown that one can construct simulators of both types

where the performance is quantified by magic monotones which coincide for important

classes of states, namely pure states and tensor products of single-qubit states. Our sta-

biliser rank simulator allows bit-string sampling from circuits with noisy magic state

inputs, with runtime comparable to pure state stabiliser rank simulators. Indeed, we have

shown improved scaling with respect to precision compared to the BBCCGH sparsifica-

tion technique [3]. Meanwhile our dyadic frame simulator enables observable estimation

with runtime significantly reduced compared to prior qubit quasiprobability simulators.

Next we introduced the family of static simulators which make the conceptual move

from decompositions of states to decompositions of channels, and have performance that

scales with some channel monotone. While this move introduces some technical com-

plications, it has the potential to yield faster simulation of certain circuits, as we can

avoid overhead associated with gadgetisation. Moreover, it opens up the possibility of

simulating non-stabiliser noise channels, such as amplitude damping, in a more efficient

manner.

In the last part of the chapter we introduced the class of dynamic channel simulators.

The sandwich theorems proven in section 4.3.4 of the previous chapter established that

magic capacity monotones CM lower bound their associated decomposition-based mono-

tonesM∗. Although the two types of channel monotone can coincide in some cases, in

Chapter 6 we give examples where there is a gap. Our dynamic simulators exploit this

gap to reduce the number of samples needed to achieve a given precision, trading off
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against the need to solve linear programs on-the-fly. A detailed analysis of this trade-off

is left for future work.

Thus far we have focused on establishing the validity of our classical simulators,

and their relationship to well-behaved magic monotones. The performance of our algo-

rithms in practice will depend on the computed monotone value for the particular circuit

decomposition to be simulated. In the next chapter we illustrate how the monotones can

be employed in more realistic settings.



Chapter 6

Resource costs for elements of quantum

circuits

In this final research chapter we investigate simulation overhead for practically relevant

scenarios by numerically or analytically evaluating the magic monotones introduced ear-

lier, or bounding their value when direct computation is not practical. We hope that the

illustrative examples we provide in this chapter suggest regimes in which the algorithms

presented in Chapter 5 may be useful, and point the way toward finer-grained circuit anal-

yses, and indeed practical classical simulations, that could be carried out in future work.

It is beyond the scope of this thesis to conduct a review of the literature on quantum al-

gorithms. Instead we briefly review some basic principles of quantum simulation [10], in

order to motivate our consideration of particular types of operation in this chapter.

The starting point for any quantum simulation using qubits is to fix how the physical

system of interest is to be represented. Systems of spins can be directly identified with

qubit systems, and their Hamiltonians are naturally expressed as a sum of Pauli terms.

However, many important problems in materials science and quantum chemistry are con-

cerned with systems of electrons [11, 166]. For electronic systems it is vital to ensure

that the encoding respects the correct fermionic statistics. The standard approach is to

work in the second quantised picture, and a typical electronic Hamiltonian has the form

H = ∑
i, j

hi, ja
†
i a j +

1
2 ∑

i, j,k,l
hi, j,k,la

†
i a†

jakal, (6.1)

where a†
j (a j) is the creation (annihilation) operator for the j-th fermionic mode, and

hi, j and hi, j,k,l are coefficients. The Jordan-Wigner [167, 168], Bravyi-Kitaev [169] and
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other [170–172] encodings provide a mapping from fermionic to qubit operators while

preserving all fermionic anticommutation relations. In this way the second quantised

Hamiltonian can be re-expressed as a sum of Pauli terms.

Having fixed a representation, a key task is to simulate time evolution under the

Hamiltonian, U(t) = exp(−iHt) for some time t. However, the problem of synthesising

an n-qubit unitary operator using a standard library of gates is a non-trivial task, and

cannot be done efficiently for arbitrary H (recall Section 1.4). One approach is to ap-

proximate the time evolution using a Trotter-Suzuki decomposition [39, 173–177]. For a

Hamiltonian written as a sum of k-local Pauli terms H = ∑ j h jH j, the evolution for the

full time t is written as a product of short time-steps, ∆t, U(t) = (exp(−iH∆t))t/∆t . One

can then use the first-order Trotter formula [168],

U(∆t) = ∏
j

exp
[
−iH j∆t

]
+O

(
(∆t)2), (6.2)

so that for small ∆t, the first term is a good approximation for U(∆t). Then by repeat-

ing the sequence t/∆t we can recover an approximation for the longer time evolution,

U(t) ≈
(
∏ j exp

[
−iH j∆t

])t/∆t . The shorter the time-step ∆t, the more accurate the ap-

proximation, but the greater the number of few-qubit gates exp
(
−iH j∆t

)
that must be

implemented. More sophisticated techniques have been proposed to reduce the number

of gates, such as the use of higher-order Trotter product formulae [175, 176] or random

compilation [165, 178]. The long sequences of small-angle Pauli rotations needed for

this type of algorithm motivates our study of these gates later in the chapter. However,

for such schemes, each logical gate must be executed with extremely high fidelity, as oth-

erwise errors will accumulate and overwhelm the intended computation. High accuracy

digital quantum simulation of the type described above therefore falls within the domain

of error-corrected, fault-tolerant quantum computation, and remains out of reach for the

present.

Recently, approaches better suited to NISQ devices have been proposed, including

classical-quantum hybrid algorithms such as the variational quantum eigensolver (VQE)

[78], illustrated in Figure 6.1a. The method is based on the variational principle that

the energy expectation value for any state |ψ〉 can be no smaller than that of the ground

state of the Hamiltonian |E0〉, 〈ψ|H|ψ〉 ≥ 〈E0|H|E0〉 = E0. A quantum subroutine is
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Classical
optimiser

𝜃1, … , 𝜃𝑀

𝑃 = 𝑃1⊗⋯⊗𝑃𝑛

(a) VQE optimisation loop (b) Hardware-efficient VQE circuit

Figure 6.1: (a) Variational quantum eigensolver. A quantum subroutine is embedded in a clas-
sical optimisation loop. The quantum circuit is parameterised by a set of angles
{θ1, . . . ,θM} which specify an ansatz state, and a set of Pauli observables to be mea-
sured. A classical control computer attempts to minimise H(θ1, . . . ,θM) = ∑P hP 〈P〉,
by varying the parameters {θ1, . . . ,θM} sent to the quantum processor based on the
statistics obtained from each iteration. (b) Illustration of a hardware-efficient lay-
out. Layers of hardware-native entangling gates UENT are interleaved with layers
comprising single-qubit gates U(θt, j). The entangling layers remain fixed, while the
single-qubit layers are parameterised by a set of vectors {θθθ 1, . . . ,θθθ L}.

parameterised by a vector of classical parameters θθθ , so that the circuit prepares an ansatz

state |θθθ〉. The average energy 〈H〉 is estimated by measuring each term in the Pauli

decomposition H. This quantum subroutine is nested in a classical optimisation loop,

which iteratively sends updated θθθ to the quantum processor using a standard method

such as gradient descent.

The ansatz circuit can either be physically motivated [11, 78, 179], or based on a

hardware-efficient construction drawn from the gates that can be easily implemented on

a given quantum device [180]. In the former case, a time evolution operation can be

Trotterised, but with far fewer gates than would be needed for conventional quantum

simulation [11, 179]. Meanwhile, a typical strategy in hardware-efficient schemes is

to interleave layers of fixed entangling gates and parameterised single-qubit gates [180]

(Figure 6.1b), chosen from a hardware-native gate set. In contrast to conventional dig-

ital quantum simulation, VQE circuits are designed to have low depth, and there is no

restriction to small-angle rotations. It has been argued that VQE is robust against certain
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types of noise [11, 181, 182], and techniques have been developed for further mitigating

against errors [49, 79, 181], making it attractive for implementation on NISQ hardware.

In this chapter, the question we are interested in is how far quantum subroutines of

the types described above can themselves be classically simulated using stabiliser tech-

niques. This is relevant both for the verification and benchmarking of prototype devices,

and as an indicator of how large circuits must be to exceed the reach of classical simu-

lation. In addition to long sequences of small-angle rotations motivated by Trotter meth-

ods, and shorter sequences of larger angle noisy rotations motivated by VQE, we will

also consider multi-qubit controlled phase gates, which may be useful in more efficient

synthesis of universal circuits beyond the Clifford + T library [183]. Code to compute

the numerical results presented in this chapter was written in MATLAB [184], using the

package CVX [132] to solve convex optimisation problems, and has been made available

at the public repository Ref. [185]. We also made use of MATLAB code written by Toby

Cubitt, for permuting subsystems and generating Haar-random unitaries [186]. We first

consider resource costs for estimating observables using our robustness-based channel

simulators (Section 6.1), comparing our methods with the Oak Ridge algorithm [45]. We

will then show how certain types of noisy gate can be decomposed for use with the bit-

string sampling simulator introduced in Section 5.3.4. Finally in Section 5.3.4 we look

at the cost of observable estimation using the dyadic frame simulator and compare this

with the sparsification method over a range of parameters.

6.1 Robustness-based channel simulators

6.1.1 Single-qubit rotations with amplitude damping

Consider a sequence of noisy operations, where a noise channel Ep, acts between each

unitary gate U j, and where p is a parameter denoting the error rate,

E = Ep ◦UL ◦ . . .◦Ep ◦U2 ◦Ep ◦U1. (6.3)

This could, for example, model a layer of parameterised single-qubit rotations in a VQE

circuit (Figure 6.1b). Below, we compute the simulation cost for a single step in such a

computation, comprising a single-qubit rotation and an amplitude-damping channel. We

compute the cost with respect to our static and dynamic channel simulators (Algorithms
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Figure 6.2: Comparison of C(E),R∗(E) andRCPR(E), where E is a single-qubit X-rotation U(θ)
composed with an amplitude damping channel Ep for noise p = 0.1. We consider
both possible orderings: noise after unitary (Ep ◦ U(θ)), and noise before unitary
(U(θ)◦Ep). Figure adapted from our article Ref. [1]

12 and 16). Recall that the worst-case overhead factors for these algorithms are given by

the square of the channel robustness E∗ and magic capacity C respectively. Since the static

simulator generalises the Oak Ridge simulator[45] (see Section 2.5.1), we compare with

the analogous cost function for that algorithm, RCPR. We note that amplitude-damping

noise is not stabiliser-preserving, so in general can increase the robustness. This is in

contrast to dephasing and depolarising noise, which we will study in Section 6.2, and

which tend to reduce overhead in our simulators.

In modelling the effect of noise for intermediate steps in the sequence (6.3), we

have a choice of ordering. We can take the circuit elements to be either Ep ◦U j or U j ◦Ep.

These choices are equivalent in the sense that

(Ep ◦U2)◦ (Ep ◦U1)◦Ep = Ep ◦ (U2 ◦Ep)◦ (U1 ◦Ep), (6.4)

but could lead to different sample complexity when Ep and U j do not commute. We

studied circuit elements made up of a single-qubit Pauli X-rotation U(θ) = exp(iXθ)

composed with an amplitude damping channel Ep with noise parameter p, defined by

Kraus operators K1 = diag(1,
√

1− p), K2 =
√

p |0〉〈1|. We computed the respective cost

functions for a range of values of p and θ . For noise p = 0.1 we see that when the noise

channel follows the gate, there is no difference between the three quantities (Figure 6.2).

However, if the noise channel acts before the unitary, both our monotones show a reduced

value, whereasRCPR increases. Recall that the reduction in sample complexity for t uses
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Figure 6.3: Normalised channel robustness [R∗(U⊗n)]1/n plotted for Z-rotations U(θ) =
exp[iZθ ] and for n qubits, up to n = 4. Figure reproduced from our article Ref.
[1].

of the channel is given by (R∗/RCPR)
2t .This suggests that for intermediate-sized circuits

using this noise model, the better strategy with respect to sample complexity would be

to choose the ordering U(θ) ◦ Ep, and either our static or dynamic channel simulator

in preference to the Oak Ridge simulator (with the caveat that the dynamic simulator

requires additional per-sample runtime to compute intermediate decompositions).

6.1.2 Reduced overhead from submultiplicativity

We define normalised channel robustness for single-qubit gates U , defined as

[R∗(U⊗n)]
1/n. This allows us to quantify the per-gate savings in sample complexity

that can be achieved by grouping single-qubit rotations in n-qubit blocks. In Figure

6.3 we present results for qubit Z-rotations U = exp[iZθ ], up to four qubits. We find

that strict submultiplicativity is observed for all values of θ , with significant reductions

between the n = 2 and n = 4 cases for a wide range of angles. For the static channel

simulator there are therefore large performance improvements to be gained by blocking

together gates acting on different qubits in order to obtain an optimal decomposition for

the composite channel.

6.1.3 Multi-qubit controlled-phase gates

Recall from the sandwich theorem for RoM-based monotones (Theorem 4.30) that

R(ΦE) ≤ CR(E) ≤ R∗(E) for any channel E . We found numerically that for all

amplitude-damped Pauli rotations studied, CR(E) = R∗(E) up to solver precision, and

in the absence of noise we had full equality R(ΦE) = CR(E) = R∗(E). Theorem 4.30

also states that all measures are equal for gates from the third level of the Clifford hi-
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Figure 6.4: Comparison of quantities for multicontrol phase gates (see equation 6.5). Left:
Multicontrol-Z gates (t=0). Middle: Multicontrol-S gates (t=1). Right: Multicontrol-
T gates (t=2). Figure reproduced from our article Ref. [1].

erarchy. Under what conditions does this equality persist for more general multi-qubit

operations? In the most general case, our monotones can only be computed for two-qubit

channels, since optimising over all six-qubit stabiliser Choi states is intractable. How-

ever, we showed in Section 4.4 that R∗ and C can be evaluated for diagonal channels on

up to five qubits. As a special case we consider multicontrol phase gates of the form,

Mt,n = diag(exp
(
iπ/2t),1, . . . ,1), t ∈ Z (6.5)

where n denotes the number of qubits. The family includes familiar gates such as CZ

(t = 0, n = 2), CCZ (t = 0, n = 3), multicontrol-S (t = 1) and -T (t = 2).

We find that the inequalities are tight for the n = 2 and n = 3 cases, but that this does

not persist for larger system sizes (Figure 6.4). The t = 0 case (the family of multicontrol-

Z gates) turns out to be a special case (Figure 6.4, left panel). Here we find equality for

all three quantities up to n = 4. For the t = 0, n = 5 case, R
(
ΦM0,5

)
= CR

(
M0,5

)
holds,

but R∗
(
M0,5

)
is strictly greater than both. Note also that for t = 0, all three quantities

increase with each increment in n.

The families of gates with t > 0 follow a pattern qualitatively similar to each other.

The results for the t = 1 (multicontrol-S) and t = 2 (multicontrol-T ) cases are shown in

the middle and right panels of Figure 6.4. For n = 4, t > 0, the same situation holds

as for n = 5, t = 0, as we find R
(
ΦMt,4

)
= CR(Mt,4) < R∗(Mt,4). At n = 5, all three

quantities separate. In contrast with the multicontrol-Z, we see that R
(
ΦMt,n

)
decreases

as we go from four to five qubits, while CR(Mt,n) levels off. We see similar behaviour

for all non-zero values of t investigated numerically. Our current techniques limit us to
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Linear subspace Number of qubits, n
dimension, k 2 3 4 5

1 1.414 1.414 1.414 1.414
2 1.849 1.849 1.849 1.849
3 - 2.195 2.195 2.195
4 - - 2.264 2.264
5 - - - 2.195

Table 6.1: Final robustness after multicontrol-T gate applied to input stabiliser states |L〉 with
k= dim(L). In each column, the maximum robustness (i.e. the capacity) is highlighted
red.

five-qubit gates, but we conjecture that the capacity will remain level for n> 5. This is a

special case of the following conjecture.

Conjecture 6.1. For any fixed t, the maximum increase in robustness of magic for Mt,n

is achieved at some finite number of qubits n = K by acting on the state
∣∣+K〉. Therefore

CR(Mt,n) =R
(
Mt,K

∣∣+K〉) for all n≥ K.

This conjecture is partially justified by Observation 4.37 from Chapter 4, which

stated that for stabiliser states defined by the linear subspace L with dimension k< n, we

haveR(Mt,n |L〉) =R(Mt,k
∣∣+k〉). Consider the maximisation over initial stabiliser states

performed to calculate the capacity C. In Section 4.4, we showed that for the family of

gates Mt,n, we only need to calculate robustness for one representative initial stabiliser

state for each possible dimension of linear subspace; that is, for Mt,n we only need to

compute the final robustness for n initial states. In Table 6.1 we present the relevant

values for the family of multicontrol-T gates (t = 2) and make two observations. First,

notice that in each row of Table 6.1 (i.e. for fixed k = dim(L)), the RoM is constant with

n. Indeed, this is a generic feature of the Mt,n gates as formalised by Observation 4.37.

Second, in the last column of Table 6.1, we see that R(Mt,n |L〉) increases with k for

k≤ 4, but at k = 5 the value drops. With a little thought we can see that this is necessarily

the case ifR
(
ΦMt,5

)
< CR

(
Mt,5

)
; we saw earlier that for diagonal gates U the Choi state

robustness is equal toR(U |+n〉), and |+n〉 is a representative state for the k = n case.

Our current techniques limit us to five-qubit operations, so we are unable to con-

firm numerically whetherR(Mt,n |L〉) continues to decrease with increasing dim(L). An

intuition for why a decrease is plausible goes as follows. A stabiliser state |L〉 with

dim(L) = k will have 2k equally weighted terms when written in the computational basis,

so will have a normalisation factor of 2−k/2. The non-stabiliser state Mt,n |L〉 is identical
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Figure 6.5: Channel robustness against robustness of Choi state for random n-qubit diagonal
gates, up to n = 4. Black line indicates R∗ = R(Φ). Each red dot represents the
data point for an individual gate. Fewer points were calculated for larger n due to the
increased time to calculate each value. 1000 data points were calculated for n = 2,
300 for n = 3, and 60 for n = 4. Reproduced from our article Ref. [1].

to |L〉 apart from the phase on the all-zero term |0 . . .0〉. As k becomes large, the ampli-

tude of the term eiπ/2t

2k/2 |0 . . .0〉 becomes very small, so that Mt,n |L〉 has increasingly large

overlap with the stabiliser state |L〉. We would therefore expect Mt,n |L〉 to have a small

robustness if k is large. In summary, for few-qubit gates, control by additional qubits

tends to increase the magic capacity. For example, CZ is a Clifford gate but CCZ is not.

In contrast, our conjecture suggests that for gates controlled on many qubits, this effect

vanishes.

6.1.4 Random diagonal unitary operations

Next we compute channel monotone values for diagonal gates U = ∑x eiθx |x〉〈x|, with

θx chosen uniformly at random. We are particularly interested in understanding when

R(ΦE) ≤ C(E) ≤ R∗(E) is tight or loose. In Figure 6.5 we compare the Choi state

robustness with the channel robustness. For every 2-qubit gate tested we observed that

R(ΦE) = R∗(E) up to numerical precision. For 3- and 4-qubit gates we typically saw

thatR(ΦE)<R∗(E), though the gap is not often large. While the difference is slight for

a single gate, these quantities influence the rate of exponential scaling when considering

N uses of the gate, and lead to a large gap for modest N.

We compared the RoM of the Choi state with the magic capacity but do not plot this

data as it was equal up to solver precision for every random instance we observed. This is

curious since there exist diagonal gates U for whichR(ΦU)< CR(U). While such gates

exist, our random sampling does not tend to provide examples. We can explain this by

a concentration effect. By Observation 4.35, for an n-qubit stabiliser state |K〉 specified
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by affine space K of dimension k, and for any diagonal U , there exists a k-qubit state

|ψ〉 such that R(U |K〉) =R(ψ). The n-qubit random diagonal gates concentrate (with

high probability) within a narrow range of values for the magic capacity, close to the

maximum possible magic capacity for an n-qubit diagonal gate. Recall that for diagonal

gates, R(ΦU) = R(U |+n〉). If R(ΦU) < CR(U) then by Theorem 4.33 we must have

that C(U) =R(U |K〉〈K|U†) for some affine space K of non-maximal dimension k < n,

since up to phases, |+n〉 is the unique stabiliser state with affine dimension n. However,

U |K〉〈K|U† is Clifford equivalent to some k-qubit state U ′ |φ ′〉, where U ′ is diagonal,

|φ ′〉 is a stabiliser state, and k < n. Then R(U |K〉〈K|U†) would be upper bounded by

the maximum CR(E) for k-qubit diagonal unitary operations. But if CR(E) is close to

the maximum possible for n-qubit diagonal unitary operations, then it is strictly larger

than the maximum magic capacity for k-qubit diagonal gates, so it is impossible for

U |K〉〈K|U† to achieve the magic capacity.

6.2 Channel decompositions for bit-string sampling
The stabiliser channel extent Ξ∗ for unital channels, defined in Section 4.2.3 as

Ξ∗(E) = min{∑
j

p jξ (U j) : E = ∑
j

p jU j}, where U j(·) =U j(·)U†
j . (6.6)

is not a true channel monotone, as it is not defined for non-unital channels. Nevertheless

in Section 5.3.4 we showed that when such decompositions exist, they can be employed

in a classical algorithm which simulates sampling from the output distribution of a quan-

tum circuit. For a sequence of channels E = E (T ) ◦ . . .◦E (1), the average runtime of this

simulator scales with ∏
T
t=1 Ξ∗(E (t)) in the optimal case. Since the optimisation is over all

possible decompositions, and there are an infinite number of unitary operations, comput-

ing the channel extent exactly is not tractable in the general case. However, we can upper

bound the quantity by optimising over a finite set of unitary operations. The following

observation will also be useful.

Lemma 6.2 (Lower bound for channel extent). Suppose E can be written as a convex

mixture of unitary channels. Then the channel extent is lower bounded by the dyadic

channel negativity, Ξ∗(E)≥ Λ∗(E).

Proof. Suppose an optimal decomposition of E is written E = ∑ j p jU j, so that it has
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channel extent Ξ∗(E) = ∑ j p jξ (U j). For each U j there exists an optimal (with respect

to unitary extent) decomposition U j = ∑k c j,kVj,k where Vj,k are Clifford gates, so that

∑k |c j,k| =
√

ξ (U j). Then we can rewrite the decomposition of the channel as:

E = ∑
j

p jU j(·)U†
j = ∑

j,k,m
p jc j,kc∗j,mVj,k(·)V †

j,m. (6.7)

This now has the form of a complex linear combination of dyadic Clifford maps

Vj,k(·)V †
j,m, with `1-norm equal to

∑
j,k,m

∣∣p jc j,kc∗j,m
∣∣= ∑

j
p j ∑

k

∣∣c j,k
∣∣∑

m

∣∣c j,m
∣∣= ∑

j
p jξ (U j) = Ξ∗(E). (6.8)

But recall that the dyadic Clifford maps are a subset of the stabiliser dyadic chan-

nels {T j}, which form the vertices for the dyadic channel negativity problem,

Λ∗(E) = min
{
‖α‖1 : ∑ j α jT j = E

}
(see Definitions 4.21, 4.23 and 4.24 in Section

4.2.5). Therefore Ξ∗(E)≥ Λ∗(E).

Since the dyadic channel negativity is lower bounded by the dyadic negativity of the

Choi state, Λ(ΦE) (Section 4.2.5), this immediately leads to the following.

Theorem 6.3 (Sandwich theorem for channel extent and dyadic channel negativity). Sup-

pose E is a channel where a decomposition E = ∑ j p jU j exists for unitary operations U j.

Then,

Λ(ΦE)≤ Λ∗(E)≤ Ξ∗(E)≤∑
j

p jξ (U j), (6.9)

where each unitary operator has optimal decomposition U j =∑k c j,kVj,k. If ∑ j p jξ (U j)=

Λ(ΦE) then the decomposition is optimal, and

Λ(ΦE) = Λ∗(E) = Ξ∗(E) = ∑
j

p jξ (U j), (6.10)

Moreover, when this holds, the dyadic Clifford decomposition

E = ∑
j,k,m

p jc j,kc∗j,mVj,k(·)V †
j,m (6.11)

is optimal with respect to dyadic channel negativity.

It is also always the case that Ξ∗(E)≥Ξ(ΦE), where Ξ is the density-operator extent,
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since the optimisation on the RHS is over a strictly larger set (all pure states) than the LHS

(restricted to unitary operations). It is not clear whether these quantities are always equal.

Nevertheless if we have some subset of channels S where, for each E ∈ S, we can find

an optimal (w.r.t. density-operator extent) decomposition ΦE = ∑ j p j |ψ j〉〈ψ j| such that

each |ψ j〉 satisfies two conditions: (i) |ψ j〉 corresponds to a unitary U j and (ii) unitary

extent is equal to the pure-state extent of the Choi state, ξ (U j) = ξ (
∣∣U j
〉
); then we can

deploy arguments simular to those used for magic states [2] in Section 4.1 to assist with

the channel problem. We will show that this strategy is successful for single-qubit Pauli

rotations subject to dephasing noise. Subsequently we use heuristic techniques to obtain

decompositions for rotations subject to depolarising noise.

6.2.1 Decompositions for dephased single-qubit Z-rotations

Consider the channel E = Ep◦Uφ , where Uφ (·) =Uφ (·)U†
φ

, for Uφ = exp[−iφZ] and Ep is

the dephasing channel, Ep =(1− p)1+ pZ . Here 1 is the identity map, andZ(·)=Z(·)Z.

Then the composed channel is written:

E = (1− p)Uφ + pZ ◦Uφ = (1− p)Uφ + pUφ+π/2 (6.12)

where we used the fact that Z = iUπ/2. We could simulate the dephased gate operation

using the algorithm of Section 5.3.4 with the same overhead as for the ideal gate, simply

by sampling either Uφ or Uφ+π/2 with probabilities (1− p) and p respectively. However,

we would like to reduce the overhead by finding an optimal decomposition for the noisy

channel. Single-qubit diagonal CPTP maps have a one-to-one mapping with single-qubit

states in the equatorial plane of the Bloch sphere, via the relation ΦT = T (|+〉〈+|). For

our channel we have

ΦE = (1− p)Uφ (|+〉〈+|)+ pUφ+π/2(|+〉〈+|) (6.13)

= (1− p)
∣∣ψφ

〉〈
ψφ

∣∣+ p
∣∣ψφ+π/2

〉〈
ψφ+π/2

∣∣ (6.14)

where

|ψα〉=Uα |+〉=
1√
2

e−iα

eiα

 , |ψα〉〈ψα |=
1
2

 1 e−2iα

e2iα 1

 . (6.15)
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So

ΦE =
1
2

 1 (1− p)e−2iφ + pe−2i(φ+π/2)

(1− p)e2iφ + pe2i(φ+π/2) 1

 . (6.16)

Consider the following ansatz for a decomposition of the Choi state,

ΦE = q |ψθ 〉〈ψθ |+(1−q) |ψπ/4−θ 〉〈ψπ/4−θ | . (6.17)

where 0 < q < 1. We can assume without loss of generality that when ΦE is a magic

state and p > 0, both φ and θ are in the range (0,π/8), as all other cases are equivalent

up to Clifford rotations. This decomposition is equimagical since |ψθ 〉 and |ψπ/4−θ 〉
are Clifford-equivalent. We will show it is optimal with respect to channel extent. The

argument will be similar to that used for density-operator extent [2] (Section 4.1.4), but

the geometry here is somewhat simpler since we only need consider the equatorial plane.

Any pure state |ψθ 〉 in the equatorial plane is Clifford-equivalent to one in the x-z plane,

via a rotation by π/2 about the X-axis,

∣∣ψ ′θ〉= eiπ/4 exp
[−iXπ

4

]
|ψθ 〉= cos

(
π

4
−θ

)
|0〉+ sin

(
π

4
−θ

)
|1〉 . (6.18)

In BBCCGH [3], it was shown that states of this form have optimal decomposition

∣∣ψ ′θ〉= (cos
(

π

4
−θ

)
− sin

(
π

4
−θ

))
|0〉+

√
2sin

(
π

4
−θ

)
|+〉 , (6.19)

One can check that H |ψ ′α〉= |ψ ′π/4−α
〉, so they have the same extent, and the optimal de-

composition for |ψ ′
π/4−θ

〉 is simply the expression (6.19) with |+〉 and |0〉 interchanged.

So for both states the extent is

ξ (ψθ ) = ξ (ψπ/4−θ ) =

(
cos
(

β

2

)
+(
√

2−1)sin
(

β

2

))2

. (6.20)

Recall from Section 4.1.4 that an optimal witness |ω ′〉 must be tight against each term

in the optimal decomposition, so if |〈ω ′|ψθ 〉|2 = ξ (ψθ ), then |〈ω ′|0〉| = |〈ω ′|+〉| = 1.

We have assumed that 0 < θ ≤ π/8, so both coefficients in equation (6.19) are positive.

It follows that 〈ω ′|0〉 = 〈ω ′|+〉. Then since the optimal decomposition for |ψ ′
π/4−θ

〉 is
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the same but with |0〉 and |+〉 permuted, |ω ′〉 must also be an optimal decomposition

for that state. Rotating back to the equatorial plane, |ψθ 〉 and |ψπ/4−θ 〉 must share an

optimal witness |ω〉. Recall from Lemma 4.9 that since ΦE is in the convex hull of

two states that share the same optimal ω-witness, it follows that Ξ(ΦE) = 〈ω|ΦE |ω〉 =
ξ (ψθ ). Therefore the ansatz is optimal with respect to density-operator extent. But since

Ξ(ΦE)≤ Ξ∗(E), it follows that the corresponding decomposition of the map E is optimal

for channel extent.

It remains to determine the values of q and θ that equations (6.17) and (6.16) are

consistent. In the matrix representation, our ansatz can be written

ΦE =
1
2

 1 qe−2iθ +(1−q)e−2i(π/4−θ)

qe2iθ +(1−q)e2i(π/4−θ) 1

 . (6.21)

By equating the expression (6.16) with (6.21), we find

(1− p)e2iφ + pe2i(φ+π/2) = qe2iθ +(1−q)e2i(π/4−θ) (6.22)

=⇒ (1−2p)e2iφ = qe2iθ + i(1−q)e−2iθ . (6.23)

We then solve for q and θ . Then, using straightforward algebra and trigonometric iden-

tities, one finds that the equation has a unique solution in the range 0< θ < π/8,

θ(φ , p) =
1
2

arcsin[(1−2p)sin(2φ +π/4)]− π

8
. (6.24)

We can use the solution above to check the noise level p that negates all magic for the

rotation Uφ . The extent goes to 1 when θ(φ , p) = 0. So from equation (6.24),

p =
1
2
− 1

2[sin(2φ)+ cos(2φ)]
. (6.25)

In Figures 6.6b and 6.6a we plot channel extent for a range of values of φ and error

rate p. In Figure 6.7 we compute the ratio Ξ(Ep ◦ Uφ )
N/Ξ(Uφ )

N . This quantifies the

factor reduction in runtime for the bit-string simulator that we obtain by using an optimal

decomposition of the dephased rotation, as compared to the naive decomposition given

in equation (6.12).
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Figure 6.6: (a) Channel extent of dephased Z-rotation Ep ◦ Uφ , as a function of φ , plotted for
different values of the noise parameter p: p = 0 (blue), p = 0.005 (brown), p =
0.01 (green), p = 0.05 (red), p = 0.1 (purple). (b) Extent for the same channel as a
function of error rate p, plotted for different values of φ : φ = π/8 (blue), φ = π/16
(brown), φ = π/32 (green), φ = π/64 (red).

0.02 0.04 0.06 0.08 0.10 0.12 0.14
noise

10-5

0.001

0.100

Overhead ratio

Figure 6.7: Here we plot the ratio Ξ(Ep ◦Uφ )
N/Ξ(Uφ )

N against noise parameter p, for N = 100.
That is, we show the ratio of the simulation overhead for N uses of the noisy channel,
to that for N uses of the ideal rotation Uφ . The ratio is plotted against p for φ = π/32
(green), φ = π/16 (brown) and φ = π/8 (blue).

6.2.2 Decompositions for depolarised single-qubit rotations

We now consider Z-rotations subject to the depolarising channel,

Ep = (1− p)1+
p
3
(X +Y+Z), (6.26)

where X (·) = X(·)X for Pauli X , and so on. In this case, the channel Ep ◦Uφ is not diag-

onal, so cannot be modelled using single-qubit states as in the previous case. However,

we find that provided Uφ is a Pauli rotation, optimal decompositions for the noisy chan-

nel can be obtained numerically using a relatively modest library of unitary operations.

Given any finite set of unitary operations S, the following gives an upper bound for the
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Figure 6.8: Channel extent for depolarised Z-rotations E = Ep ◦Uα , where U = exp(−iZα) for
α ∈ {π/8,π/16,π/32,π/64,π/128}. The channel extent Ξ∗(E) is plotted against
error rate p, and is found numerically to be equal to the dyadic negativity of the Choi
state, Λ(ΦE), up to solver precision, for all data points shown.

channel extent.

ΞS(E) = min{∑
j

p jξ (U j) : E = ∑
j

p jU j, U j ∈ S} ≥ Ξ∗(E) (6.27)

We call this quantity the S-extent. By Lemma 6.2, we then have that for any channel in

the convex hull of S, the stabiliser channel extent Ξ∗ is bounded by

Λ(ΦE)≤ Ξ∗(E)≤ ΞS(E). (6.28)

Let Sφ = Cln∪{Uφ}, the set of Clifford operations supplemented by a single noise-

less non-Clifford gate Uφ . We compute the quantity ΞSφ
(Ep ◦Uφ ) for Z-rotation Uφ and

depolarising noise Ep for a range of values of the parameters φ and p. We find that in

all instances evaluated, we have ΞSφ
(Ep ◦Uφ ) = Λ(ΦEp◦Uφ

), up to the precision of the

solver (error of less than 10−9 in the computed quantities). We plot this for a range of

parameters in 6.8. From equation (6.28) this implies that the computed decompositions

are optimal up to solver precision, and provides evidence that Ξ∗(E) = Λ∗(E) = Λ(ΦE)

when E is a depolarised rotation about a Pauli axis. We note this alignment between

Ξ∗(E) and the upper bound computed from the set ΞSφ
is not obtained for rotations about

non-Pauli axes. For example, for the depolarised T HT -gate we find a gap between Ξ

and the upper bound based on the set Cl1 ∪{T HT}. One can obtain tighter bounds by



6.2. Channel decompositions for bit-string sampling 249

0 0.05 0.1 0.15 0.2 0.25 0.3

p

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

E
xt

en
t b

ou
nd

Dyadic negativity
Clifford + THT
Random unitary set

(a) Bounds on channel extent.

0 0.05 0.1 0.15 0.2 0.25 0.3

p

0

2

4

6

8

10

12

14

D
iff

er
en

ce

#10-3

(b) Gap between upper and lower bounds.

Figure 6.9: (a) Bounds on channel extent for depolarised T HT -gate, E = Ep ◦T HT , where p de-
notes the error rate. The channel extent is lower bounded by dyadic negativity of the
Choi state Λ(ΦE) (Dashed blue line). Upper bounds are computed by searching for
optimal convex mixtures derived from finite sets of unitaries. These are (i) the Clif-
ford gates supplemented by the noiseless gate, ST HT = Cl1∪{T HT} (black ×) and
(ii) the union of ST HT , Clifford orbit, and 10000 Haar-random single-qubit unitary
operations (red +). (b) Difference between each upper bound and Λ(ΦE).

optimising over a set of unitary gates generated randomly according to the Haar measure.

In Figure 6.9 we show bounds on channel extent for the depolarised THT state, using (i)

ST HT = Cl1 ∪{T HT}, and (ii) a set of 10000 Haar-random unitaries supplemented by

ST HT and the Clifford orbit of THT. We also computed the bound using the union of

ST HT and the Clifford orbit, but found this does no better than ST HT alone. In contrast

adding Haar-random unitary operations to the set provides a tighter bound. The final set

has 10168 elements, and the linear program remains easily tractable.

Since the decompositions obtained numerically using Sφ are not equimagical, em-

ploying them in the sampling simulator (Section 5.3.4) leads to a random runtime τ .

For a sequence of L depolarised Z-rotations E (t), the mean runtime is proportional to

∏
L
t=1 Ξ∗(E (t)). When drawing a single bit-string, each noisy gate contributes a factor

O(1) to the runtime if a Clifford gate is sampled, or O
(
ξ (Uφ )

)
otherwise. One may

prefer to obtain a guarantee of worst-case runtime smaller than O
(
ξ (Uφ )

)
. To this end,

we propose a heuristic algorithm (Algorithm 18) that searches for (possibly subopti-

mal) equimagical decompositions. The key idea is to construct the Clifford orbit of Z-

rotation Uα with progressively larger extent ξ (Uα), and use standard convex optimisation
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to check whether the target channel E lies within the convex hull of this orbit.

The variable Et tracks a candidate value for the extent, starting with the dyadic

negativity of the Choi state, and for each value of Et , step 5 computes the parameter

α that specifies a Z-rotation Uα such that ξ (Uα) = Et . The formula used in this step

is straightforwardly derived from the analysis of extent given by Bravyi et al. [3]. For

completeness we give the derivation in Appendix E.4. The following step computes the

Clifford orbit Ot of this gate. Since the unitary extent is Clifford-invariant, every element

of Ot has the same extent. In step 7, the quantity Q is in effect the robustness with respect

to Ot . When this evaluates to 1, it means that the target channel is within the convex hull

of the elements of Ot . This step can be formulated as a linear program where the polytope

conv(Ot) has at most 242 = 576 vertices, so can be computed relatively quickly, and it

is practical to choose ∆ to be fairly small. Clearly one could optimise the algorithm by

adaptively changing the interval size close to Q = 1. If in the final iteration one has

Q = 1 and αt < φ , then the algorithm will have found a possibly suboptimal equimagical

decomposition with ∑ j p j,kξ (Vj,k) = ξ (|UαT 〉) = ET < ξ (Uφ ).

We call the quantity ΞO(E) output from Algorithm 18 the equimagical extent bound.

In practice, we find that the technique is successful in finding equimagical decomposi-

tions that are close to optimal. In Figure 6.10a we plot channel extent and the equimagical

bound against the error rate p for noisy T -gates. We find that the discrepancy between the

heuristic bound and the channel extent is small (∼ 10−3) when the error rate is very low

Algorithm 18 Equimagical decomposition search
Input: Target depolarised Z-rotation Ep ◦Uφ , interval ∆> 0.
Output: Equimagical decomposition of the channel E , comprising elements of some set

O. Computed value of the O-extent, ΞO(E).
1: Compute dyadic negativity of the Choi state E0 = Λ(ΦE).
2: t← 0, Q← 2, α ← 0. . We need to initialise Q> 1, the precise value is

unimportant.
3: while Q> 1 AND α ≤ φ do
4: Et ← E0 +∆t
5: α ← arcsin

(√
Et sin

(3π

8

))
.

6: Compute Clifford orbit Ot =
{
V j,k : Vj,k =C jUαCk, C j,Ck ∈ Cl1

}
7: Compute Q = min

{
‖q‖1|∑ j,k q j,kV j,k = E ,V j,k ∈Ot

}
, storing optimal distribu-

tion q.
8: t← t +1
9: end while

10: return Ot−1, Et−1, q.
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(a) Depolarised T -gate.
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(b) Depolarised π/32-gate.

Figure 6.10: Stabiliser channel extent and equimagical upper bound for depolarised single-qubit
gates. Magic measures plotted against error rate p for (a) T -gate subject to depolar-
ising noise Ep ◦T , and (b) noisy π/32-gate, Ep ◦ exp(−i(π/32)Z).

(p≤ 1%) or very high (p≥ 33%), just before the channel becomes stabiliser-preserving).

For intermediate values of p, the gap between Ξ∗ and ΞO was largest (∼ 0.0112) at

p≈ 20%. For small-angle rotations the gap is narrower. Results for depolarised rotations

exp(−i(π/32)Z) are shown in Figure 6.10b. Here the gap is maximised in the range

9% ≤ p ≤ 11%, but only reaches ∼ 0.0026. Since the gap is so narrow, the suboptimal

equimagical decompositions produced by Algorithm 18 may be used in many practical

scenarios with only minor runtime penalties, provided the amount of magic gates is not

very large (for example more than ∼ 200 T -gates or ∼ 700 π/32-gates).

6.3 Runtime comparison between dyadic frame and sta-

biliser rank
In Section 5.2.3.2 we briefly discussed the fact that in addition to bit-string sampling,

sparsification of density-operator extent decompositions can be used to estimate stabiliser

observables (see Appendix E.3 for technical details). Given magic state ρ , completely

stabiliser-preserving channel E and stabiliser projector Π, then with probability at least

(1− pfail), given optimal decomposition of the state ρ we can compute an estimate η for

Born rule probability Tr[ΠE(ρ)] satisfying,

|η−Tr[ΠE(ρ)]| ≤ 3εFN Tr[ΠE(ρ)]+δ
′+O

(
δ
′2). (6.29)
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This estimate is produced in average runtime

E(τSR) =O
(

Ξ(ρ)n3
ε
−2
FN δ

′−3 log
(

2
pfail

))
. (6.30)

For the dyadic frame simulator with additive error δ , the worst-case runtime is

τDF =O
(

Λ(ρ)2

δ 2 n3 log
(

2
pfail

))
. (6.31)

Now assume that ρ is a tensor product of single-qubit magic states, so that Λ(ρ) = Ξ(ρ),

and ρ has an equimagical decomposition, so that the expression (6.30) gives the worst-

case runtime (Theorems 4.8 and 4.15). At first sight, it appears that the stabiliser rank

simulator would perform better, since it depends only linearly on the monotone value

rather than quadratically. However, the stabiliser rank runtime τSR has worse scaling

with target precision in the estimate than the dyadic frame runtime τDF . Despite the

exponential scaling with monotone value, there may be parameter regimes where the

dyadic frame simulator has the advantage.

The optimal choice of algorithm will depend on the fine details of the circuit to be

simulated, and when the runtimes are of the same order of magnitude, constant factors

and lower order terms will play a role. Here we make some simplifying assumptions

to approximately characterise the regimes where one or the other simulator is favoured.

We assume that we have no knowledge of the true value of Tr[ΠE(ρ)], so that it could

take any value between 0 and 1. Then the bound on the estimate for the stabiliser rank

simulator becomes

|η−Tr[ΠE(ρ)]| ≤ 3εFN +δ
′+O

(
δ
′2). (6.32)

Splitting the error budget between the two first order contributions, δ = 3εFN + δ ′, and

optimising the runtime, we find that we should set δ ′ = (3/5)δ and εFN = (2/15)δ . We

can neglect the n3 and log
(
2p−1

fail

)
factors, since these are the same for both algorithms.

Absorbing all constant factors into KSR, to first order we can express the runtime for

the stabiliser rank algorithm as τSR = KSRΞ(ρ)δ−5. Meanwhile making the same sim-

plifications for the dyadic frame simulator, we obtain runtime τDF = KDFΛ(ρ)2δ−2. We

have assumed that ρ is a tensor product state, ρ = ⊗n
j=1ρ j, where each ρ j is a single

qubit state. Then Λ(ρ) = Ξ(ρ), and we can directly compare the runtimes, up to constant
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Figure 6.11: Runtime comparison for dyadic frame and stabiliser rank methods for initial magic
state ρ = ρ

⊗t
M , plotted against number of state copies t and scaled target precision

δ/(KSR/KDF)
1/3. Runtime ratio τDF/τSR is plotted with logarithmic scale. (a) Com-

parison when each state copy is the T -gate resource state ρM = |T 〉〈T |. (b) Compar-
ison for ρM =

∣∣ψπ/64
〉〈

ψπ/64
∣∣, where

∣∣ψπ/64
〉
= cos(π/64) |0〉+ sin(π/64) |1〉.

factors. The ratio of runtimes is

τDF

τSR
=

KDFΛ(ρ)2δ−2

KSRΛ(ρ)δ−5 =
KDF

KSR
Λ(ρ)δ 3. (6.33)

To make the discussion more concrete we study some specific cases. Assume

that the system is initialised in the state ρ = σ ⊗ ρ
⊗t
M , where σ is an (n− t)-qubit sta-

biliser state σ , and ρM are single-qubit magic states. By faithfulness and multiplicativ-

ity of dyadic negativity, we have Λ(ρ) = Λ(ρ⊗t
M ) = Λ(ρM)t . Consider the case where

ρM = |T 〉〈T |, the resource state for the T -gate. Here we have Λ(ρ)≈ (1.1716)t . In Fig-

ure 6.11(a) we plot the runtime ratio for up to up to 300 magic states. The horizontal

axis shows target precision δ , scaled by the ratio of constant factors to the power 1
3 . We

note that the constant factors for each simulator are of similar size, so we can conser-

vatively estimate that 0.1 ≤ (KSR/KDF)
(1/3) ≤ 10. Consequently we can expect that if

we were to compute the runtime exactly, and plot the unscaled error δ , the values on

the horizontal axis would be shifted by no more than one order of magnitude in either

direction. Despite the quadratic scaling of the dyadic frame runtime with Λ, there is a

surprisingly large region where it retains the advantage over the mixed-state stabiliser
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rank simulator. Even for low precision (δ/(KSR/KDF)
1/3 ≈ 0.1), the dyadic frame sim-

ulator is favoured for circuits including up to approximately 44 copies of the T state.

For sharper precision, δ/(KSR/KDF)
1/3 ≤ 0.005, this regime extends to over a hundred

copies. Compare this to the family of circuits where the single-qubit magic states are

ρM =
∣∣ψπ/64

〉〈
ψπ/64

∣∣, where
∣∣ψπ/64

〉
= cos(π/64) |0〉+ sin(π/64) |1〉 (Figure 6.11(b)).

Then the initial state has dyadic negativity Λ(ρ) ≈ (1.0386)t . As we would expect, the

region where the dyadic frame is preferred extends to a significantly greater number of

magic states when the per-state negativity is small; the region reaches hundreds of state

copies for any precision δ/(KSR/KDF)
1/3 ≤ 0.1.

Since the channel extent simulator (Section 5.3.4) works on the same principles as

the mixed-state stabiliser rank simulator, it can be adapted in exactly the same way to

estimate Born rule estimation probabilities, with the same runtime scaling as equation

(6.29), except that the density-operator extent Ξ(ρ) is replaced by the product of the

channel extent for each circuit element, ∏
L
t=1 Ξ∗(E (t)). One can then carry out a similar

comparison with the dyadic channel simulator. We omit a full analysis here, as a sequence

of t Z-rotations exp(−iZα) decomposed individually results in the same numerics as t

copies of |ψα〉= cos(α) |0〉+sin(α) |1〉. We leave more fine-grained analyses of specific

circuit instances for future work.

6.4 Summary and conclusions
We began this chapter by highlighting Pauli axis rotations as an important primitive for

quantum simulation. While long sequences of fault-tolerant logical gates are needed for

conventional quantum simulation methods such as estimation of energy spectra via phase

estimation, recent variational algorithms designed for NISQ-era devices only require low

depth circuits, and errors are mitigated against rather than corrected. The analysis of

noisy rotation gates using our framework is a first step towards classical simulation of

such NISQ-tailored algorithms.

We first evaluated our RoM-based channel monotones for amplitude-damped gates,

showing that our simulators achieve significant speedup over the Oak Ridge simulator

[45]. We computed the same monotones for multi-qubit controlled-phase gates and ran-

dom diagonal gates to investigate the bounds derived analytically in Chapter 4, finding

them to be tight in a number of scenarios. We conjectured that for controlled-phase gates
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Mt,n from the family defined in Section 6.1.3, the capacity to generate magic does not

increase indefinitely as the number of qubits n increases. Instead we expect that the ca-

pacity is capped at some finite n, and we provided arguments and numerical evidence for

this claim.

In Section 6.2 we showed how to obtain optimal decompositions analytically for

dephased Pauli rotations, and using heuristic search methods for depolarised gates. We

showed that both cases also yield Clifford dyadic decompositions that are optimal (up to

solver precision) with respect to the dyadic channel negativity. These channel decom-

positions can be used directly in classical simulations. We then compared the runtime

τSR of the density-operator extent simulator with that of the dyadic frame simulator, τDF,

for estimation of Born rule probabilities. Despite τDF having a poorer scaling with the

amount of magic, the dyadic frame is faster at producing high precision estimates if the

number of qubits is not too high. For large numbers of highly magic states, stabiliser

rank simulators retain the advantage. These results can be straightforwardly generalised

to channel simulators.

There are of course myriad reasons for selecting one simulator over another. The

dyadic frame algorithm is limited to additive error estimates, and as such is unsuitable for

bit-string sampling; stabiliser rank methods are better suited to that task. However, the

stabiliser rank simulator for channels (Section 5.3.4) can be used only when each magic

channel is expressible as a convex combination of unitary operations. So if the task is to

estimate an observable for a circuit involving a non-unital noise model, for example, the

dyadic channel or channel robustness simulator must be used. Since computing optimal

dyadic channel decompositions is difficult in the general case, it may be beneficial to hy-

bridise the method with easier to compute channel robustness decompositions. The two

types of decomposition are fully compatible, since the completely stabiliser-preserving

channels are a strict subset of the dyadic stabiliser channels. We anticipate that the tools

and results presented in this chapter for computing the resource value of elementary op-

erations will be useful for developing highly accurate estimates of classical simulation

overhead for specific circuit instances in future work.





Chapter 7

Conclusions

In the first part of this thesis, we set out the prior state-of-the-art in the resource theory

of magic and stabiliser-based classical simulation techniques for n-qubit circuits, and the

connections between the two. Previous classical simulators were largely divided into

those based on sampling from quasiprobability distributions [45, 103, 124], and those

based on stabiliser rank decompositions of pure states or unitary operations [3, 59, 60].

In the past, some similarities had been noted between the two strands; for example, `1-

minimisation is used to compute resource monotones associated with both quasiproba-

bility and stabiliser rank methods [3, 103]. However, beyond these isolated observations,

the two types of simulator were previously treated as unrelated in the literature, and the

connection between them was not understood. The previous literature also lacked com-

prehensive study of the classical simulation of general quantum channels using stabiliser

techniques. Amongst authors on quasiprobability methods, Bennink et al. [45] and Rall

et al. [142] had designed algorithms that would admit general CPTP maps. A natural

expectation for a stabiliser-based simulator of general n-qubit circuits is that it should

be able to efficiently simulate any sequence of few-qubit stabiliser channels, whereas for

each of these algorithms there exist relatively simple stabiliser operations that can only

be simulated inefficiently. Meanwhile, Bravyi et al. [3] introduced powerful sparsifica-

tion techniques for simulating pure magic states and unitary non-Clifford operations with

reduced runtime, but did not show how the simulator could be extended to noisy circuits.

In the main part of the thesis, we presented our novel techniques and results, ad-

dressing the issues described above. In Chapter 4 we made several contributions to the

resource theory of magic, focusing on resource monotones that quantify the performance

of classical algorithms we introduce later in the thesis. We first discussed a new family of
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magic state monotones, elucidating the link between quasiprobability decompositions of

density operators and stabiliser rank decompositions of pure state vectors. In particular

we saw that for pure states, the generalised robustness and dyadic negativity, which are

closely related to quasiprobability simulators, are equal to the stabiliser extent, which

is directly connected to the sparsification technique introduced by Bravyi et al. [3] for

stabiliser rank simulation. The new state monotones are multiplicative for single-qubit

mixed states, and pure states on up to three qubits, making them efficiently computable

for many important cases. In the rest of the chapter we extended the framework to the

channel picture, defining magic monotones for general CPTP multi-qubit maps. These

can broadly be divided into monotones directly based on channel decompositions of var-

ious kinds, and those that measure the maximum increase in magic over all input states.

We studied the relationships between these monotones and presented techniques for eas-

ing their computation in the case of diagonal channels.

We began Chapter 5 by introducing a subroutine for simulation of completely

stabiliser-preserving channels, showing that they are efficiently simulable subject to rea-

sonable constraints on the number of Kraus operators. This had not previously been

proven in the literature, and recent work due to Heimendahl, Heinrich and Gross has

shown that our result is strictly stronger than the Gottesman-Knill theorem [63]. We then

studied the connection between magic resource theory and classical simulation by de-

veloping a number of algorithms whose performance was measured by the quantifiers of

magic introduced in the previous chapter. We first presented a trio of simulators associ-

ated with the new magic state monotones described in Section 4.1. These lend practical

significance to the fact that the new monotones are significantly tighter than robustness of

magic; for example our dyadic frame simulator is provably faster than previously known

qubit quasiprobability simulators for product states, by a factor exponential in the num-

ber of magic states. In addition, we modified the sparsification technique introduced by

Bravyi et al. [3], yielding a signficant reduction in runtime for bit-string simulation, and

extending the method to mixed states.

We then introduced a suite of simulation methods for CPTP maps on qubits. We

divided these into static simulators, based on stabiliser decompositions of channels that

can be precomputed prior to running the simulation proper, and dynamic simulators, as-

sociated with our capacity monotones, where few-qubit magic state decompositions are
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computed on the fly as the algorithm steps through the circuit. The latter can achieve

reduced sample complexity for circuits with many highly non-stabiliser channels, at the

cost of increased runtime per sample. Our channel simulators open the way for classical

simulation of NISQ-era quantum circuits, including noise models, using stabiliser-based

methods, as well as reducing overhead for non-Clifford operations by avoiding gadgeti-

sation.

A key advantage of classical algorithms associated with computable magic mono-

tones is that one can meaningfully estimate classical simulation overhead for a given

circuit, or family of circuits, without having to run the simulation. This has clear prac-

tical benefits since we can separate circuits into those which are tractable or intractable

given particular classical computing resources, and can provide insight into which types

of circuit are suitable candidates for demonstrating quantum advantage. In Chapter 6

we discussed such estimates for a number of practically important classes of quantum

operation. We showed how to obtain optimal decompositions for Z-rotations subject to

dephasing or depolarising noise, which can be used in simulated sampling scenarios.

We ended the chapter by showing that while performance scaling with monotone

value plays a central role in determining which simulator is the best choice for a given

circuit, other factors such as target precision also come into play. In particular we com-

pared dyadic frame and stabiliser rank techniques for estimating observables for circuits

using many copies of single-qubit magic states. In this setting, the results of Section

4.1 imply that the respective monotones quantifying runtime for each simulator take the

same value. The stabiliser rank simulator is preferred for circuits consuming very large

amounts of magic, since it is quadratically faster in the monotone value. However, we

showed that when high-precision estimates are required, there is nevertheless a signif-

icant parameter regime comprising intermediate-sized circuits where the dyadic frame

simulator will have the advantage, due to its more modest error scaling.

7.1 Outlook and future work
The work presented in Chapters 4 and 5 leaves open a number of directions for future

investigation. In Section 4.2.3 we introduced the stabiliser channel extent, and explained

that while it is defined only for CPTP maps that can be expressed as a convex mixture of

unitary operations, it nevertheless has practical application, for example, in the simulation
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of unitary gates subject to depolarising or dephasing noise, as studied in Chapter 6. This

type of decomposition is of particular interest, as it can be used to simulate sampling

from the output distribution of a quantum circuit (Section 5.3.4). This is in contrast

to the dyadic channel simulator (Section 5.3.3), which is only able to estimate Born rule

probabilities up to additive error. It would be useful to extend the definition of the channel

extent to admit decomposition of general CPTP maps. This would allow simulation of

bit-string sampling for circuits involving non-Clifford gates subject to non-unital noise

models such as amplitude-damping, or those involving non-stabiliser measurements with

adaptivity.

Most of the channel monotones we have discussed can be computed exactly for

general few-qubit CPTP maps, along with the associated channel decompositions. The

channel extent is one exception, and the dyadic channel negativity may be tractable only

for single-qubit maps. We showed in Sections 6.2.1 and 6.2.2 that we can compute op-

timal channel extent solutions for depolarised or dephased phase gates, which also yield

optimal dyadic channel decompositions. However, it is not known how to efficiently com-

pute optimal decompositions for more general channels. In Section 4.2.5 we proposed a

method to upper bound the dyadic channel negativity using dyadic projective channels.

It is an open question whether bounds computed in this way are tight, and evaluating

even this bound becomes intractable for two-qubit channels. Methods to compute these

quantities more efficiently would allow classical simulation of a larger class of quantum

circuit. One route to achieving this could be to use symmetry reduction techniques sim-

ilar to those Heinrich and Gross [133] for the case of RoM; such techniques can likely

also be applied for other magic monotones. For example, dyadic negativity for states can

currently only be computed on a standard desktop or laptop for up to three qubits, and the

channel robustness can only be evaluated for two-qubit channels, unless the channel can

be diagonalised by Clifford gates. Due to the submultiplicativity of the magic monotones

considered, the ability to find optimal decompositions for larger numbers of qubits could

reduce simulation overhead, as it would allow gates acting in parallel or in sequence to

be decomposed in a single block.

Ultimately, stabiliser-based classical simulators will find their main application in

the simulation of realistic intermediate-sized circuits. In this thesis, we have focused on

developing the resource-theoretic foundations upon which simulators can be built, leav-
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ing implementation for future work. During the final stages of the preparation of this the-

sis, several papers have emerged demonstrating how stabiliser-based simulation methods

can be employed in practical settings [187, 188], and pointing the way to new directions

of enquiry for improving performance. This research direction opens up the possibility

of simulating error-correction protocols implemented on real-world quantum computing

hardware where noise may look very different to the depolarising or dephasing noise

model often assumed in earlier work. Other sub-circuits important for fault-tolerance in-

clude magic state distillation and injection protocols based on realistic chip layouts [189]

and these are also amenable to simulation using stabiliser methods. For these reasons, we

believe that stabiliser-based simulation techniques will remain relevant beyond the NISQ

era, and further refinement and optimisation of these techniques will be highly beneficial

in extending their reach. We expect that accurate simulations using realistic noise mod-

els will be invaluable in helping to inform design decisions for the fault-tolerant quantum

computing architectures of the future.





Appendix A

Clifford circuits

A.1 Generating the Clifford group
Let 〈G〉 be the group generated by the gate set, G = {H,S,CNOT} and let 〈Gn〉 be the

restriction to n-qubit circuits. We want to show that 〈Gn〉 ≡ Cln, where Cln is the n-qubit

Clifford group. It is manifestly clear that Gn ⊆ Cln. We now argue that the sets are

equivalent by showing that any U ∈ Cln can be decomposed as a sequence of gates from

G. We first prove a simple lemma for the two-qubit case.

Lemma A.1. For any two-qubit Pauli operator with real sign, P⊗Q ∈ P2,±, (except

P⊗Q = ±12) there exists V ∈ 〈G2〉 such that V (P⊗Q)V † = Z ⊗ 1. Similarly there

always exists V ′ ∈ 〈G2〉 such that V ′(P⊗Q)V ′† = X⊗1.

Proof. First we consider the case that P 6=1 and Q 6=1. From equations (1.37) and (1.38)

we can map HXH = Z and SY S† = X , so we can always map P⊗Q to ±Z⊗Z. Now we

can apply CNOT from 2 to 1, C2→1, to obtain ±Z⊗1.

Next consider the case when Q=1. In this case we can simply apply H or S to obtain

±Z⊗1. Finally, if P = 1, we first map 1⊗Q→±1⊗Z, then apply C1→2 followed by

C2→1 to map ±1⊗Z→±Z⊗Z→±Z⊗1. Now note that S2 = Z, and HS2H = X , so

that X and Z are themselves in 〈G1〉. Then if we have obtained a negative sign on the Z

operator we append X to our sequence of gates to flip the sign,

(X⊗1)(−Z⊗1)(X†⊗1) = (Z⊗1)(X2⊗1) = Z⊗1. (A.1)

This proves the result for Z⊗1. Then we can simply apply the Hadamard to the first

qubit to obtain X⊗1.
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Now we prove the general result.

Theorem A.2 (Generating the Clifford group). The Clifford group is generated by G =

{H,S,CNOT}.

Proof. Since the Pauli operators form a complete operator basis, any unitary transfor-

mation is fully specified (up to a phase) by its action on this basis. But from the earlier

discussion, we know that a Clifford update to any Pauli operator is fixed by how the

unitary operation maps each Z j and X j [30]. We can therefore uniquely (up to a phase)

describe any Clifford unitary U ∈ Cln by a list of Pauli operators,

LU ={P1,P2, . . . ,Pn;Q1,Q2, . . . ,Qn}, (A.2)

where Pj =UZ jU†, Q j =UX jU† (A.3)

Note that since unitary operations preserve hermiticity, Pj, Q j cannot have imaginary

phase. We will show that for any LU for U ∈Cln there exists a circuit V ∈ 〈Gn〉 that maps

each Pj to Z j and each Q j to X j. It then follows that LV † = LU , and hence U = V †, up

to a phase. But V † ∈ 〈Gn〉, which will prove that any U ∈ Cln is in the group generated

from the gate set G.

First, consider P1 =P(1)
1 ⊗P(2)

1 ⊗ . . .⊗P(n)
1 , where P( j)

1 is some single-qubit Pauli op-

erator acting on the j-th qubit. We will consider in turn each pair P( j−1)
1 ⊗P( j)

1 , beginning

with j = n. By Lemma A.1, we can use gates from 〈Gn〉 to map P( j−1)
1 ⊗P( j)

1 → Z⊗1.

Repeating this process for each pair of qubits, we are able to find a sequence of gates

V1 such that P′1 = V1P1V †
1 = Z1. Now this circuit will have mapped Q1 to some other

Pauli operator Q′1 = V1Q1V †
1 , but is constrained by commutation relations. Recall the

commutation relations for Z j and Xk,

[Z j,Zk] = 0, [X j,Xk] = 0, {Z j,X j}= 0 ∀ j,k (A.4)

[Z j,Xk] = 0 j 6= k. (A.5)

That is, Z j and Xk anticommute if and only if j = k. Since unitary operations preserve

commutation relations, analogous relations must hold for the Pj and Q j, and any subse-

quent unitary transformations. Therefore P′1 = Z1 and Q′1 must anticommute. Since Z1

has the identity on every qubit except the first, Q′1 must have either±X or±Y in position
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1. If ±Y , we can simply apply the S gate, which maps Y to X but leaves Z invariant, so

without loss of generality, we can assume that Q′1 =±X⊗Q′(2)1 ⊗ . . .Q′(2)n . Then applying

Lemma 1 repeatedly as we did for P1, we obtain, for some V ′1 ∈ 〈Gn〉,

V ′1Q′1V1 = X⊗X⊗1n−2. (A.6)

Note that since V ′1 acts non-trivially only on the last n− 1 qubits, Z1 is left unchanged.

Then we apply the CNOT from 1 to 2, so that we have,

C1→2Z1C†
1→2 = Z1, C1→2X1X2C†

1→2 = X1. (A.7)

Thus we have found a sequence of gates V ′′1 ∈ 〈Gn〉 that maps P1 to Z1 and Q1 to

X1. Now, all the other Pauli operators in the list LU will have been transformed as well,

Pj→ P′′j , Q j→ Q′′j . But the commutation relations must still hold, so that each P′′j must

commute with both Z1 and X1. This is only possible if they all have the identity in the first

position, P′′j = 1⊗ . . ., and similarly we must have Q′′j = 1⊗ . . .. Therefore any future

operations need only be applied to the last n−1 qubits, leaving Z1 and X1 invariant. We

then follow the same procedure to map P2 → Z2 and Q2 → X2 using only gates from

〈Gn〉. We repeat this iteratively for all qubits until we have found a sequence of gates

V = V ′′n . . .V
′′
2 V ′′1 ∈ 〈Gn〉 that maps all Pj → Z j and Q j → X j. But we earlier argued

that finding such a sequence implies that V † = U up to a phase, so this completes the

proof.

A.2 Canonical forms
Since any stabiliser group can be prepared using Clifford operations, any stabiliser state

can be specified by giving the (non-unique) Clifford circuit U that prepares it from a

standard initial state,

|φ〉=U |0n〉 . (A.8)

It is useful to decompose Clifford circuits [31, 61] in a canonical form. This is clearly

relevant to the synthesis of more general circuits, but also has application in classical

simulation. In Ref. [31], Aaronson and Gottesman showed that any unitary Clifford

operation can be decomposed as an 11-layer circuit of the form H-C-P-C-P-C-H-P-C-P-
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C, where H means a layer of Hadamards, P is a layer of single-qubit phase gates, and

C is a layer of CNOT gates. Hadamard and phase layers contain at most O(n) gates,

since S4 = H2 = 1. It was previously known that for any CNOT circuit on n qubits, there

is an equivalent CNOT circuit consisting of at most O
(
n2/ log(n)

)
CNOT gates [190].

Applying this to Aaronson and Gottesman’s construction, it follows that Clifford circuits

can be put in canonical form comprisingO
(
n2/ log(n)

)
gates from {H,S,CNOT}. While

this asymptotic scaling can be shown to be optimal with respect to gate count, other

authors have sought to improve the construction in various ways [58, 62]. For example,

Maslov et al. [62] reduced the number of layers to 7 by allowing layers of CZ gates,

so that the canonical form is C-CZ-P-H-P-CZ-C, leading to circuits with two-qubit gate

depth of 14n−4. Van den Nest [61] showed that any stabiliser state |φ〉 can be prepared

with a circuit of the form H-C-P-CZ, but did not give an algorithm for computing this

decomposition for an arbitrary |φ〉. Garcia, Markov and Cross [58] gave an explicit

algorithm for computing a 5-layer preparation circuit of form H-C-CZ-P-H, given the

stabiliser generators for |φ〉, leading to an efficient algorithm for computing stabiliser

inner products.

A.3 CH-form and Clifford simulation

Here we review a standard form for representing stabiliser states introduced by Bravyi

et al. in Ref. [3], and sketch how it can be used for classical simulation tasks. The

CH-form builds on the work on canonical Clifford circuits described above, but is geared

toward a compact data format for classical simulation of stabiliser circuits, rather than

Clifford circuit synthesis. Using results from the sequence of papers described in the

previous paragraph, Bravyi et al. note that any n-qubit stabiliser state preparation can

be decomposed as a computational basis state preparation |s〉, followed by a layer of

Hadamard-type (“H-type”) gates, of the form UH =
⊗N

j=1U j, where U j is either the

identity or the Hadamard, and finally a layer of control-type (“C-type”) gates, which

are those Clifford operations satisfying UC |0n〉 = |0n〉. For full generality, Bravyi et al.

include a complex number ω , so that any vector proportional to a stabiliser state can

be expressed |φ〉 = ωUCUH |s〉 . The Hadamard-type gates can be described by a binary
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vector v ∈ {0,1}n specifying on which qubits to apply a Hadamard, so that,

UH = Hv1⊗Hv2⊗ . . .⊗Hvn
. (A.9)

The C-type operators are specified by stabiliser tableaux specifying how UC maps each

single-qubit X and Z operator. Note that since any C-type unitary UC leaves invariant the

state |0n〉, which has stabiliser group S = 〈Z1,Z2, . . . ,Zn〉, Z operators are never mapped

to X or Y operators. If we express the transformations as

U†
CZpUC =

n

∏
j=1

ZGp, j
j , U†

CXpUC = iγp
n

∏
j=1

XFp, j
j ZMp, j

n , (A.10)

then UC can be encoded in a tableau comprising three n× n binary matrices G, F and

M, and an n-element Z4-valued vector γγγ . Therefore any stabiliser state can be specified

by the data format (F,G,M,γγγ,v,s,ω). The space requirement is then 3n2 + 4n+O(1)
classical bits, where the constant term comes from the space needed to store one complex

number to some fixed precision.

An advantage of the CH-form is that the updates for the S, CZ and CNOT gates

are particularly straightforward to compute. If Γ is one of these three gates, then we can

simply write Γ |φ〉= ω(ΓUC)UH |φ〉, so that U ′C = ΓUC, and F , G, M, and γγγ are updated

using tableau operations similar to those already described, in time O(n).

Hadamard gates require a few more steps. First, a Hadamard Hp applied to qubit

p is written in the Pauli basis as Hp = (Xp + Zp)/
√

2. This allows it to be commuted

through the UC layer using the known relations (A.10), eg. ZpUC =UC ∏
n
j=1 ZGp, j

j . Thus

Hp is transformed to a linear combination of two Pauli operators, determined by γp and

the p-th row of F , G and M. Then this operator is commuted through the H-layer us-

ing the somewhat simpler relations ZpHp = HpXp. This first step leaves ω , UC and UH

unchanged, but has the effect of splitting |s〉 into a superposition of two terms,

Hp(ωUCUH) |s〉= ωUCUH

(
(−1)α |t〉+ iγp(−1)β |u〉√

2

)
, (A.11)

where α , β , t and u depend on p and the initial data (F,G,M,γγγ,v,s). For the case where

t = u, any phase is simply absorbed into ω . Bravyi et al. [3] show that when t 6= u, the
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superposition has a CH-form,

UH(|t〉+ iδ |u〉) = ω
′WCWH

∣∣s′〉 (A.12)

where WC is composed only of gates from {S,CZ,CNOT}, and which can be computed

in time O(n). Then WH becomes the new H-layer, and WC is combined into the C-

layer using standard tableau rules. There are at most O(n) elementary gates in WC, and

each tableau update takes O(n) time, so the total time to compute the updated data for a

Hadamard gate is O
(
n2).

To compute the inner product 〈x|φ〉, first note that |x〉= ∏
n
j=1 Xx j

j |0n〉. Then recall

that C-type operators are defined by the relation UC |0n〉= |0n〉, so we can write

〈x|φ〉= 〈0n|(
n

∏
j=1

U†
CX jUC)UH |s〉 , (A.13)

where each U†
CX jUC is known from the initial data (F,G,M,γγγ) (see equation (A.10)).

The problem then reduces to a product of n single-qubit inner products of the form either

iµ j
〈
u j
∣∣s j
〉
, where u j,s j ∈ {0,1}, or iµ j

〈
u j
∣∣±〉. This can be computed in time O

(
n2).

The expression (A.13) can also be used to infer the necessary probabilities to draw a

string x with probability | 〈x|φ〉 |2, but we omit the details here [3].

Finally, a Pauli projection Π = (1n +P)/2 can be commuted through the C- and H-

layers in a similar way to the Pauli decomposition of the Hadamard, again in timeO
(
n2).

This completes the list of stabiliser operations.
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Further results on stabiliser-preserving

maps

In Chapter 1 we defined the set of completely stabiliser-preserving CPTP channels. These

were shown in [1] to be exactly those maps E whose Choi state ΦE is a stabiliser state that

satisfies TrA(ΦE) = 1/d, where d is the dimension of the system. The second condition

is just the generic requirement for a map to be trace-preserving, and by removing this

condition, one is left with the maps that are not necessarily trace-preserving, but com-

pletely stabiliser-preserving in the sense that for all n+k qubit stabiliser states ρ , and for

any k, E ⊗1k(ρ) is proportional to a stabiliser state. In Chapter 4 we defined channel

monotones with respect to the set of completely stabiliser-preserving maps SPn,n, and

the efficient simulability of maps in SPn,n is key to the algorithms presented in Chap-

ter 5. However, alternative perspectives on what constitutes a stabiliser operation have

been proposed, and in this appendix we give some examples and results related to these

approaches.

B.1 SP but not completely SP maps
Beyond the well-known set of standard stabiliser operations (Clifford gates, Pauli mea-

surements and classical co-processing), the simplest notion of a stabiliser map is perhaps

the set SPn,0 first mentioned in Chapter 1. This is the set of maps E that are stabiliser-

preserving on an n-qubit system in the sense that E(ρ) ∈ STABn for all ρ ∈ STABn. It

is well-known that there exist maps T that are positive but not completely positive [4],

so that T (A) remains positive for any positive operator A, while the same does not hold

for T ⊗1(A). Famously, the transpose is one such positive but not completely map, and
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the negative partial transpose can be used as a test for witnessing entanglement [191,

192]. Here we show that there exist analogous stabiliser-preserving but not completely-

stabiliser-preserving maps.

Consider the single-qubit channel ET defined by the Kraus operators {|0〉〈T | , |1〉〈T⊥|},
where |T 〉= T |+〉 and |T⊥〉= T |−〉. Operationally, this channel could be implemented

by measuring in the basis {|T 〉 , |T⊥〉}, then resetting the state to |0〉 or |1〉 conditioned

on the outcome. Clearly, applied to any single-qubit state, the output will be some prob-

abilistic mixture of |0〉 and |1〉, and so must have R = 1, so ET ∈ SP1,0. But if ET is

applied to one qubit in a Bell pair, we obtain:

(ET ⊗1)(|Φ+〉〈Φ+|) =
1
2
(|0T ∗〉〈0T ∗|+ |1T ∗⊥〉〈1T ∗⊥|), (B.1)

where |T ∗〉 = T † |+〉,
∣∣T ∗⊥〉 = T † |−〉. From this output state, we can deterministically

recover a pure magic state on qubit 2 using only stabiliser operations, by making a Z-

measurement on qubit 1 and then performing a rotation on qubit 2 conditioned on the

outcome. The output state has robustnessR((ET ⊗1)(|Φ+〉〈Φ+|))=R(|T 〉)=
√

2. This

example easily extends to show that for any n, there exist maps that are in SPn,0 but not

SPn,1 (and hence not in SPn,n). Strikingly, this example shows that given access to SP1,0

as well as the standard stabiliser operations, we can deterministically prepare a perfect

magic state, and then perform state injection to implement the T gate. This would allow

universal quantum computation. We can summarise the result in the following theorem.

Theorem B.1. The set SPn,0 is strictly larger than SPn,n. Moreover provided we have ac-

cess to a system with at least n+1 qubits, the standard stabiliser operations are promoted

to universality by SPn,0.

Of course, the standard stabiliser operations are themselves contained in SPn,0. For

state injection, we need at least one entangling Clifford gate, which would be contained

in SPn,0 for n≥ 2. Therefore we have the following corollary.

Corollary B.2. For n ≥ 2, access to SPn,0 allows universal quantum computation for

systems with at least n+1 qubits.

It is therefore clear that we should not consider channels in SPn,0 to be free op-

erations from a computational point of view, since they allow stabiliser circuits to be

promoted to universality.
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B.2 Stinespring dilation of stabiliser channels

Some authors have argued that the study of the resourcefulness of unitary operations is

useful as a proxy for more general channels [115], as any CPTP map can be implemented

by performing some unitary operation on a larger system via Stinespring dilation [50].

That is, we can express any channel as E(ρ) = TrR[UAR(ρ⊗|φ〉〈φ |)U†
AR] where A is the

system of interest, R is an m-qubit reference system, UAR is some unitary operation on

the joint system AR, and |φ〉 is some pure state. Note that without loss of generality, we

can assume that |φ〉 is a stabiliser state, since any 1A⊗VR such that V † |ψ〉 ∈ STABm can

be absorbed into UAR.

As an example of how this might be useful, one could seek to quantify the magic of

a quantum channel by employing some well-behaved measure of magicMU defined for

unitaries and minimising this quantity over all minimal dilations,

MS(E) = inf
U,|φ〉
{M(U) : E(·) = TrR[UAR(·⊗ |φ〉〈φ |)U†

AR]}. (B.2)

The operational intuition is that if one had access to such a resourceful U and a large

enough system initialised in a stabiliser state, one could implement E without any further

access to magic resource.

However, we argue that this is problematic as a means to measure magic, as it fails

the test of faithfulness. In this case faithfulness would mean that all completely stabiliser-

preserving channels have a Clifford Stinespring dilation (i.e. the unitary operation UAR

would be a Clifford gate), while all resourceful channels do not. Suppose that the mono-

toneMU is faithful, such thatMU(C) = 1 for any Clifford gate C (for example, this is

true of the unitary extent [3]). Certainly there do exist channels for whichMS = 1, since

trivially this is true for any Clifford gate. Moreover, for any channel E with the ability

to generate magic, it must be the case thatMS > 1, since we assume that the reference

system is initialised as a stabiliser state, and the partial trace preserves stabiliser states, so

the optimal U must be non-Clifford. However, it is not the case thatMS = 1 for arbitrary

completely stabiliser-preserving channels. This is proved by the following theorem.

Theorem B.3. There exist completely stabiliser-preserving channels E ∈ SPn,n for which
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it is impossible to construct a Clifford Stinespring dilation of the form:

ES(ρ) = TrR[UAR(ρ⊗|φ〉〈φ |)U†
AR], (B.3)

such that the reference system |φ〉 is a stabiliser state and UAR is a Clifford gate and

ES = E . Moreover there are stabiliser channels for which it is not possible to do this even

approximately, in the sense that ∃E ∈ SPn,n such that:

‖E −ES‖� ≥
1
2
, (B.4)

for all Clifford Stinespring dilations ES.

Proof. Recall that every completely stabiliser-preserving n-qubit channel E ∈ SPn,n has

a stabiliser Choi state:

ΦE = (EA⊗1B)(|Φ〉〈Φ|AB) ∈ STAB2n, where |Φ〉= 1
2

n
2

2n−1

∑
j=0n
| j〉A | j〉B . (B.5)

and for trace-preserving maps, TrA(ΦE) = 1/2n. Conversely, every normalised state

satisfying the above conditions is the Choi state for some completely stabiliser-preserving

CPTP map. Now, note that |Φ〉 is itself a stabiliser state. Let ES be a generic Clifford

Stinespring implementation of some channel, where we assume that the reference state

|φ〉 is a stabiliser state and the global unitary operation U is a Clifford gate. Then from

equation (B.3), we get

ΦES = TrR[UAR⊗1B(|Φ〉〈Φ|AB⊗|φ〉〈φ |R)U†
AR⊗1B] = TrR[

∣∣φ ′〉〈φ ′∣∣ABR] (B.6)

where |φ ′〉ABR = (UAR⊗1B) |Φ〉AB⊗|φ〉R is a stabiliser state.

Consider the channel E with Choi state:

ΦE = p |0〉〈0|A⊗
1B

2
+(1− p) |1〉〈1|A⊗

1B

2
. (B.7)

This is a completely stabiliser-preserving CPTP map for any p between 0 and 1. If it is

possible to implement this channel as some Clifford Stinespring dilation ES, so that ΦE =

ΦES , then there must exist a pure stabiliser state on some larger system ABR whose partial
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trace over R gives us the RHS of equation (B.7). Comparing measurement statistics, we

see that this cannot be true for arbitrary p. The expectation value for Z1 = ZA⊗1B on the

state in (B.7) is:

Tr[Z1ΦE ] = p− (1− p) = 2p−1. (B.8)

Whereas from equation (B.6), we obtain Tr
[
Z1ΦES

]
= Tr[(ZA⊗1BR)( |φ ′〉〈φ ′|ABR)]. But

Tr
[
Z1ΦES

]
∈ {0,±1} since Z⊗1 is a Pauli operator and |φ ′〉 is assumed to be a stabiliser

state. Conversely, from equation (B.8) 2p−1 can take any real value in the range [−1,1].

Therefore if (2p−1) ∈ (0,1) or (2p−1) ∈ (−1,0), then E 6= ES unless U is non-Clifford

or |φ〉 is a magic state.

Now let us fix the channel E to be the instance with p = 1/4, and consider how well

ES can approximate E . Considering the diamond norm distance, we have:

‖E −ES‖� = sup‖E ⊗1(ρ)−ES⊗1(ρ)‖1 (B.9)

≥
∥∥ΦE −ΦES

∥∥
1 (B.10)

= 2DTr(ΦE ,ΦES) (B.11)

where DTr(·, ·) is the trace-norm distance. But the trace-norm distance upper bounds

differences in measurement statistics, DTr(ρ,σ) = maxΠ |Tr[Π(ρ−σ)]1| where Π are

projectors. Let ΠZ = (12+Z⊗1)/2 be the projector onto the positive outcome of the Z1

measurements. Above we saw that for E we have

Tr[ΠZΦE ] =
1+(2p−1)

2
= p, (B.12)

whereas for a Clifford Stinespring dilation we must have Tr
[
ΠZΦES

]
= 0, 1/2 or 1.

Therefore for any ES, with p = 1/4,

|Tr
[
ΠZ(ΦE −ΦES)

]
| ≥
∣∣∣∣14 −0

∣∣∣∣= 1
4
. (B.13)

It follows that for E with p = 1/4, we have ‖E −ES‖� ≥ 2DTr(ΦE ,ΦES) ≥ 1/2 for any

Clifford Stinespring dilation ES.

Note that the argument does not rely on the non-unitality of the channel described

in the proof. For example, take the following bit-flip error channel EX : with probability
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(1− p) do nothing, with probability p apply an X gate. This has the Choi state:

ΦEX = (1− p)
∣∣Φ+

〉〈
Φ

+
∣∣+ p

∣∣Ψ+
〉〈

Ψ
+
∣∣ (B.14)

where |Φ+〉 and |Ψ+〉 are Bell states with even and odd parity, respectively. Then if we

replace Z1 with −Z1Z2 = ZA⊗ZB in equation (B.8) and what follows, the argument still

goes through.

We have shown that there exist completely stabiliser-preserving channels E whose

Stinespring dilations cannot be even approximately Clifford. It follows that for these

channels MS(E) must be strictly larger than 1, so this cannot be considered a faithful

measure of magic. This does, however, give us an interesting perspective on the status

of classical randomness and processing as stabiliser operations, compared to the “fully

quantum” stabiliser operations such as Clifford gates and Pauli measurements. The proof

rested on the fact that in setting up the channel E we can set p to be any real number, as

classical randomness with conditioning preserves the stabiliser polytope. On the other

hand, a global Clifford unitary followed by a Pauli measurement cannot reproduce the

same statistics. Therefore classical processing can be seen as a qualitatively different

kind of computational resource that cannot be recovered from Stinespring dilation of

Clifford operations. Nevertheless it is appropriate to include classical operations as part

of the set of free operations, precisely because their effect on stabiliser states can be

efficiently computed.

B.3 Incomplete Kraus representations

Our main focus has been on completely stabiliser-preserving CPTP maps, but one can

similarly define completely stabiliser-preserving maps that are not trace-preserving. In

particular we can define completely positive trace-contractive (CPTC) maps that are also

CSP, i.e maps such that Tr[E(ρ)]≤Tr[ρ]. Just as all n-qubit CPTP maps can be expressed

by some complete set of Kraus operators {K j}, such that ∑ j K†
j K j = 1n, any CPTC map

T can be represented by an incomplete set such that ∑ j K†
j K j ≤ 1. For any CPTC T we

can always find another map T⊥ such that E = T +T⊥ is a CPTP map. In general these

completions to a CPTP map are non-unique, and we say that T⊥ is the complement of T
with respect to E .
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Since finding a complementary T⊥ for a trace-contractive CP map T is always pos-

sible, and there is often considerable freedom in this choice, one might expect that if T is

also completely stabiliser-preserving, we could also find a complementary T⊥ that is also

completely stabiliser-preserving. Here we show that in fact this is not always possible.

Theorem B.4. Let TC be the set of all trace-contractive, completely stabiliser-preserving

and completely positive maps. There exists a map T ∈ TC such that, for any completion

to a CPTP map, E = T + T⊥, the complement T⊥ can never be completely stabiliser-

preserving.

Proof. From the Choi-Jamiolkowski isomorphism, we have a condition on the reduced

state on subsystem B. A map E is trace-preserving if and only if ρB = TrA[ΦE ] =
1
d .

Now let ρB,0 = TrA[ΦT ] and ρB,1 = TrA[ΦT⊥]. The operators ρB,0 and ρB,1 are both

positive semidefinite because T and T⊥ each have a Kraus representation. Using the

Choi-Jamiolkowski isomorphism we have ΦE = ΦT +ΦT⊥ . Taking the partial trace over

subsystem A,
1

d
= ρB,0 +ρB,1, (B.15)

where ρB, j = TrA[ΦT j ] Although there could be many possible maps T⊥ that complete T
to a CPTP channel, the reduced state ρB,1 on subsystem B is unique and fully determined

by ρB,0,

ρB,1 = TrA[ΦT1 ] =
1

d
−ρB,0. (B.16)

If ρB,1 is proportional to a stabiliser state, then we can always find some unnormalised

stabiliser state ΦT1 whose partial trace is ρB,1, which means the CPTP channel ΦE can

be stabiliser-preserving. But since partial trace is stabiliser-preserving, if ρB,1 is not a

stabiliser state, then ΦT⊥ must also be non-stabiliser, meaning T⊥ can generate magic.

By assumption T is a completely-stabiliser-preserving map. ΦT must be propor-

tional to a stabiliser-preserving map, and since it does not represent a complete CPTP

channel it can be unnormalised, but for it to be trace-contractive, it must satisfy certain

constraints. First, we clearly must have Tr[ΦT ] ≤ 1, but the eigenvalues of its reduced

state ρB,0 are also constrained. The map T is trace-contractive if and only if its Choi

state satisfies 1
2 −TrA[ΦT ]

T ≥ 0. For a positive matrix, the eigenvalues are invariant un-

der transpose, so the condition is equivalent to 1
d −ρB,0 ≥ 0. The unnormalised state has

a spectral decomposition over some basis {| j〉}, so using this basis to write 1= ∑ j | j〉〈 j|,
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we have:
1
2 ∑

j
| j〉〈 j|−∑

j
p j | j〉〈 j| ≥ 0 (B.17)

where p j ≥ 0 since ρB,0 ≥ 0. It then follows that (1/d)− p j ≥ 0 for all j, so T is trace-

contractive provided no eigenvalue of ρB,0 is larger than 1/2.

Let ΦT have the form ΦT = c(|00〉〈00|+ |0+〉〈0+|). This is proportional to a mixed

stabiliser state, so corresponds to a completely stabiliser-preserving map. Taking partial

trace:

ρB,0 = c(|0〉〈0|+ |+〉〈+|) = c
2

3 1

1 1

 . (B.18)

Solving this, we find ρB,0 has eigenvalues λ± = c(1± 1√
2
). We can ensure that the con-

straints on trace-contractive maps are satisfied by choosing c so that λ+ ≤ 1
2 , which holds

provided c≤ 1/(2+
√

2). We choose the maximal allowed value, c = 1/(2+
√

2). Then

we have that

TrA[ΦT⊥] = ρB,1 =
1

2
− |0〉〈0|+ |+〉〈+|

2+
√

2
. (B.19)

We can check that this is proportional to a non-stabiliser state. In fact, it turns out to be a

pure magic state, with robustness of magic
√

2. Therefore T⊥ is not completely stabiliser-

preserving. To summarise, the channel T with Choi state ΦT as defined in equation

(B.18) and c = 1/(2+
√

2), is a completely positive, completely stabiliser-preserving

trace contractive map. We have shown that for any CPTP map E of which T is a sub-

channel, the complement of T in E cannot be completely stabiliser-preserving. This

completes the proof.
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Robustness of magic technical details

C.1 Robustness of the Choi state

Here we confirm that the robustness of the Choi state,R(Φ) has the properties convexity

and submultiplicativity under tensor product. We then give an example to show that it is

not submultiplicative under composition.

Convexity: This follows immediately from convexity of robustness of magic. Consider

a real linear combination of n-qubit channels: E = ∑k qkEk. The Choi state for E is

ΦE = ∑
k

qk(Ek⊗1n)(|Ωn〉〈Ωn|) = ∑
k

qkΦEk , (C.1)

where ΦEk is the Choi state for Ek. Then by convexity of robustness of magic:

R(ΦE)≤∑
k
|qk|R

(
ΦEk

)
, (C.2)

which showsR(ΦE) is convex in E .

Submultiplicativity under tensor product: The maximally entangled state |Ωn+m〉AA′|BB′

as defined by equation (1.28) in the main text can be factored as |Ωn+m〉AA′BB′ =

|Ωn〉A|B |Ωm〉A
′|B′ . So the Choi state for a channel EAA′ = EA ⊗ E ′A′ , where EA and

E ′A′ are respectively n-qubit and m-qubit channels, can be written:

ΦE =
(
EA⊗E ′A′⊗1n+m

)
(|Ωn+m〉〈Ωn+m|AA′|BB′) (C.3)

=
(
EA⊗1n

)
(|Ωn〉〈Ωn|A|B)⊗

(
E ′A′⊗1m

)
(|Ωm〉〈Ωm|A

′|B′) = ΦEA⊗ΦE ′A′ . (C.4)
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Then by submultiplicativity of robustness of magic for states, we have:

R
(

ΦEA⊗E ′A′
)
≤R(ΦEA)R

(
ΦE ′A′

)
,

which is the desired property.

Failure of submultiplicativity under composition: Let E1 be the single-qubit Z-reset

channel defined by Kraus operators {|0〉〈0| , |0〉〈1|}, and let E2 be the conditional channel

defined by {|T 〉〈0| , |1〉〈1|}, where |T 〉 = T |+〉. These channels respectively have Choi

states ΦE1 = |0〉〈0| ⊗ 1
2 , and ΦE2 = 1

2(|T 0〉〈T 0|+ |11〉〈11|), with robustness of magic

R(ΦE1) = 1 andR(ΦE2)≈ 1.207.

The composed channel E2 ◦ E1 has a Kraus representation {|T 〉〈0| , |T 〉〈1|}, and so

has a Choi state ΦE2◦E1 = |T 〉〈T |⊗ 1
2 , withR(ΦE2◦E1)≈ 1.414>R(ΦE2)R(ΦE1). So it is

not the case that the robustness of the Choi state is submultiplicative under composition.

More intuitively, such counterexamples arise for channels E where the stabiliser

state |φ∗〉 that results in maximal final robustness R[(E ⊗1n)(|φ∗〉〈φ∗|)] is not the maxi-

mally entangled state |Ωn〉, as then we can always boost the output robustness by using a

stabiliser-preserving operation to prepare |φ∗〉 before applying E .

C.2 Robustness of magic and stabiliser frames

In this appendix we show how the robustness of magic [103] can be directly related

to a Wigner-function-like quasiprobability decomposition over some frame [124]. We

say that a frame F = {F(λ )} is a stabiliser projector frame if it is paired with a dual

frame G = {G(λ ) = |φλ 〉〈φλ |}λ∈Λ where each λ labels a unique stabiliser state, and

|Λ|= |STABn|. Note that the terminology we use here should not be confused with that

introduced by Garcia, Markov and Cross [58, 193], who use the term stabiliser frame to

refer to an orthornormal basis for a stabiliser subspace. It can be shown that a valid choice

of stabiliser projector frame can be constructed by setting F(λ ) = α |φλ 〉〈φλ |−β1n for a

suitable choice of α and β [194]. Starting from any such valid pairing of frame and dual

frame, then we must have, for any density operator ρ ,

ρ = ∑
λ

G(λ )Tr[F(λ )ρ]. (C.5)
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On the other hand, there exists an optimal decomposition with respect to the robustness

of magic such that [135]

ρ = ∑
λ

qλ G(λ ) (C.6)

where in general qλ can be negative. Then from equations (C.5) and (C.6), we have

0 = ∑
λ

G(λ )(qλ −Tr[F(λ )ρ]). (C.7)

Now let ∆λ = qλ −Tr[F(λ )ρ], and let F ′ = {F ′(λ )}, where F ′(λ ) = F(λ )+∆λ1. We

can check that F ′ is still a valid choice of frame for dual frame G. For any Hermitian

operator A,

∑
λ

G(λ )Tr
[
F ′(λ )A

]
= ∑

λ

G(λ )Tr[F(λ )A]+∑
λ

G(λ )∆λ Tr[1A] (C.8)

= A+Tr[A]∑
λ

G(λ )(qλ −Tr[F(λ )ρ]). (C.9)

But from equation (C.7), the summation in the second term is equal to zero, so A =

∑λ G(λ )Tr[F ′(λ )A] for any A. Now if we consider the state of interest ρ , we have

Wρ(λ ) = Tr
[
F ′(λ )ρ

]
= Tr[F(λ )ρ +∆λ ρ] = Tr[F(λ )ρ]+∆λ = qλ . (C.10)

Therefore F ′ is a valid frame with dual frame G, such that the quasiprobability function

W ′ρ yields the same weight as the decomposition that is optimal with respect to robustness

of magic.
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Additional channel monotone technical

details

D.1 Linear program for channel robustness

In this section we show explicitly how computing the channel robustness may be for-

mulated as a linear optimisation problem, without explicitly enumerating the extreme

points of SPn,n. In Howard and Campbell [103], the optimisation problem for calculating

robustness of magic for states was specified as follows.

minimise ‖q‖1

subject to Aq = b,

where q is a vector of coefficients, b is the vector of Pauli expectation values for the

target state ΦE , and A is a matrix whose columns are the Pauli vectors for the stabiliser

states. For n-qubit channels, we have 2n-qubit Choi states, so the number of generalised

Paulis is NP = 42n, and the number of stabiliser states is NS = 22n
∏

2n
j=1(2

j + 1) [103].

Then b has NP entries, q has NS entries, and the dimension of A is (NP×NS). From this

construction we can recover optimal decompositions of the form ΦE = ∑ j q j
∣∣φ j
〉〈

φ j
∣∣,

where ∑ j q j = 1 and
∣∣φ j
〉

are the pure stabiliser states.

We want to restrict the problem to decompositions of the form ΦE = (1+ p)ρ+−
pρ−, where p ≥ 0 and ρ± correspond to trace-preserving channels, and can in general

be mixed. Rather than enumerating all the extreme points of the set of stabiliser states

corresponding to maps in SPn,n, it is more convenient to retain the same A matrix and
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modify the constraints. We still need to start from a finite set of extreme points, i.e. pure

stabiliser states, so first rewrite as:

ΦE = ∑
j

q j+ρ j +∑
j

q j−ρ j = ∑
j

p j+ρ j−∑
j

p j−ρ j, (D.1)

where q j+ are the positive quasiprobabilities, q j− are the negative quasiprobabilities, and

p j± = |q j±|. In the Pauli vector picture we can write this as b = Ap+−Ap−, where all

the entries of p± are non-negative. We define a new variable vector p which will have

twice the length of the previous q, i.e. 2NS entries:

p =

p+

p−,

 (D.2)

and define a new (NP×2NS) matrix A′ in block form, A′ =
(

A −A
)

. Then we have:

A′p =
(

A −A
)p+

p−

= Ap+−Ap− = b. (D.3)

So now we need to minimise ‖p‖1 = ∑ j p j subject to A′p = b and p≥ 0.

Next, we need the trace-preserving condition. Provided E is CPTP, if one part of the

decomposition is trace-preserving, then the other will be as well, so we only need enforce

the constraint on one of ρ+ or ρ−. Assume that we check ρ+. The condition for a Choi

state ΦAB = EA⊗1B(|Φ〉〈Φ|AB) to be trace-preserving is:

TrA(Φ
AB) =

1

d
, (D.4)

where d is the dimension of the subsystem. We need to convert this to a constraint on the

vector b+ corresponding to φ+, which is given by b+ = Ap+. First, note that all Paulis

are traceless except for the identity P0 = 1, so for the maximally mixed state:

〈Pj〉= Tr
(

Pj
1

d

)
=

Tr
(
Pj
)

d
= δ j,0, (D.5)

so if the first entry in a Pauli vector is always 〈1〉, the maximally mixed state has Pauli
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vector:

bB =

1

~0

 . (D.6)

where~0 is the zero vector. However, we need this to hold just for the reduced state on

B rather than the full Pauli vector. Consider that if the whole state is written ΦAB =

∑ j,k r j,kPj⊗Pk for some set of coefficients r j,k, then the expectation values are given by:

〈Pl⊗Pm〉= ∑
j,k

r j,k Tr
(
PlPj⊗PmPk

)
= ∑

j,k
r j,kd2

δ j,lδm,k = d2rl,m. (D.7)

The reduced state is:

TrA(Φ
AB) = ∑

j,k
r j,kdδ j,0Pk = d ∑

k
r0,kPk. (D.8)

and the entries of the reduced Pauli vector will be:

〈Pm〉= d ∑
k

r0,k Tr{PmPk}= d2r0,m = 〈P0⊗Pm〉. (D.9)

So for condition (D.4) to hold for the reduced state on B, we combine equations (D.5)

and (D.9) to get 〈Pm〉= 〈P0⊗Pm〉= δm,0. That is, we just need to look at the entries of b+

corresponding to Paulis of the form 1⊗Pj. These should all be zero except the first entry,

which corresponds to 〈1⊗1〉. Note that b+ = Ap+ will in general not be normalised, but

this does not matter, since we are only interested in whether or not entries are zero. We

can use a binary matrix M to pick out the values of interest. As an example we consider

the two-qubit case, and assume that the entries are ordered as:

b+ =



〈1⊗1〉
〈1⊗X〉
〈1⊗Y 〉
〈1⊗Z〉
〈X⊗1〉

...

〈Z⊗Z〉


. (D.10)
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Here, we are only interested in the 2nd, 3rd and 4th entries. We form a new vector c by

left multiplying with M:

c = Mb+ =


0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

b+ =


〈1⊗X〉
〈1⊗Y 〉
〈1⊗Z〉

 . (D.11)

Then the condition we need is just c = 0. To convert this to a condition on the 2NS-entry

variable p =

p+

p−

, we first pad A with zeroes: A+ =
(

A 0
)

, where 0 is the (NP×NS)

zero matrix. We then have

b+ = Ap+ = Ap++0p− =
(

A 0
)p+

p−

= A+p, (D.12)

so that c = Mb+ = MA+p. Therefore, ρ+ is trace-preserving when MA+p = 0. We can

therefore specify the new optimisation problem as:

minimise ‖p‖1 = ∑
j

p j

subject to A′p = b,

p≥ 0,

MA+p = 0

where A′ =
(

A −A
)

, and A+ =
(

A 0
)

, with A and b having the same definitions

as previously, 0 is the zero matrix with dimension the same as A, and with M being

the binary matrix that picks out the 〈1⊗Pj〉 entries from the vector A+p. Most of this

is straightforward to implement. The step that requires some care is in correctly con-

structing the matrix M, as it will depend on the choice of ordering of Pauli operators

in the construction of A and b. If the B subsystem has n qubits, then we will need to

constrain 4n− 1 non-trivial 〈1⊗Pj〉 expectation values to zero, so M should have di-

mension ((4n− 1)×NP). If the Paulis are ordered as in the example given above for

2-qubit Choi states, then the construction is just M =
(
~0 1′ ~0 · · · ~0

)
, where 1′ is

the ((4n− 1)× (4n− 1)) identity, and ~0 denotes a column of zeroes. We have imple-

mented this linear program in MATLAB, using the convex optimisation package CVX
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[132], and have made the code available from the repository Ref. [185].

D.2 Dyadic Clifford negativity properties

In Section 4.2.5 we defined the dyadic Clifford negativity, a quantity that can be used to

upper bound the dyadic channel negativity,

ΛCl(E) = min

{
‖α‖1 : ∑

jk
α jkC jk = E

}
(D.13)

where we have use the shorthand C jk to mean C jk(. . .) =C j(. . .)C
†
k , where C j and Ck are

Clifford gates. Here we show that this quantity cannot be a channel monotone; we show

that, while it is convex and submultiplicative under composition on its domain, it cannot

be a faithful monotone for completely stabiliser-preserving CPTP maps.

Convexity: Suppose we have a set of channels with optimal decompositions:

Es = ∑
jk

α
(s)
jk C

(s)
jk , (D.14)

such that ΛCl(Es) = ‖α(s)‖ . Then if we form a linear combination of these,

E = ∑
s

qsEs = ∑
s

qs ∑
j,k

α
(s)
j,kC

(s)
jk . (D.15)

This is a valid decomposition of E over dyadic Clifford elements C(s)jk , with `1-norm:

∑
s, j,k
|qsα

(s)
j,k | = ∑

s, j,k
|qs| |α(s)

j,k | (D.16)

= ∑
s
|qs|∑

j,k
|α(s)

j,k | (D.17)

= ∑
s
|qs|ΛCl(Es). (D.18)

However, this may not be an optimal decomposition for E , so ΛCl(E)≤ ∑s |qs|ΛCl(Es).

Submultiplicativity under composition: For any composition of a pair of dyadic

Clifford elements, we have:

Clm ◦C jk(. . .) =ClC j(. . .)C
†
kC†

m =Cp(. . .)C†
q = Cp,q (D.19)
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for some new pair of Clifford gates Cp and Cq. So when composing two optimal dyadic

Clifford decompositions:

Eα = ∑
j,k

α j,kC j,k, ΛCl(Eα) = ‖α‖1, (D.20)

Eβ = ∑
l,m

βl,mCl,m, ΛCl(Eβ ) = ‖β‖1, (D.21)

we obtain:

Eβ ◦Eα = ∑
j,k

α j,kEβ ◦C j,k = ∑
j,k,l,m

α j,kβl,mC( j,l),(k,m). (D.22)

This dyadic Clifford decomposition has `1-norm given by:

∑
j,k,l,m

∣∣α j,kβl,m
∣∣= ∑

j,k,l,m

∣∣α j,k
∣∣∣∣βl,m

∣∣ (D.23)

= ∑
j,k

∣∣α j,k
∣∣∑

l,m

∣∣βl,m
∣∣ (D.24)

= ΛCl(Eα)ΛCl(Eβ ). (D.25)

Again, this decomposition may not be optimal, so:

ΛCl(Eβ ◦Eα)≤ ΛCl(Eα)ΛCl(Eβ ). (D.26)

Measure is not faithful for stabiliser-preserving CPTP maps: Clearly, we have

that for any Clifford operation U(. . .) =U(. . .)U†, we have ΛCl(U) = 1, since the chan-

nel can be trivially represented by a single dyadic element C j, j, for some j. It immedi-

ately follows that any CPTP map E that can be represented as a probabilistic mixture of

Clifford operations (for example, the depolarising channel) also has ΛCl(E) = 1. How-

ever, numerically we find examples of completely stabiliser-preserving maps that have

ΛCl(E)> 1. In particular we find that the Pauli reset channel EZ defined by Kraus opera-

tors {|0〉〈0| , |0〉〈1|} has ΛCl(EZ) = 2. In contrast, this channel is a free operation for our

static simulator, and even for the more limited Bennink et al. CPR simulator. However

we have also seen numerically that there exist non-stabiliser operations for which the

Clifford dyadic simulator does better than the static simulator.
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D.3 Dyadic stabiliser channels are norm-contractive
Suppose we have a normalised initial dyad |φL〉〈φR|, and a map T ∈ DSPn,n (see

Definition 4.23). Define real-valued vectors v and w such that v j =
∥∥L j |φL〉

∥∥, and

w j =
∥∥R j |φR〉

∥∥. Since {L j} j is a complete set of Kraus operators, we have v · v =

∑ j
∥∥L j |φL〉

∥∥2
= 1, and similarly for w. Now consider the norm of the dyad after T

has been applied:

‖T (|φL〉〈φR|)‖1 = ‖∑
j

L j |φL〉〈φR|R†
j‖1 (D.27)

≤∑
j

∥∥L j |φL〉
∥∥ ·∥∥R j |φR〉

∥∥ (D.28)

= v ·w, (D.29)

where we used the triangle inequality in the second line. Then by the Cauchy-Schwarz

inequality

‖T (|φL〉〈φR|)‖1 ≤ v ·w≤
√

(v ·v)(w ·w) = 1. (D.30)

We can then see that T ∈ DSPn,n are norm-contractive in the more general case. We

can express any n-qubit operator A as the singular value decomposition A = UDV †,

where U and V are unitary, and D = ∑ j σ j | j〉〈 j|, with σ j being the singular values, for

some basis {| j〉}. But then we can express it as A = ∑ j σ jU | j〉〈 j|V † = ∑ j σ j
∣∣ψ j
〉〈

φ j
∣∣

where
∣∣ψ j
〉〈

φ j
∣∣ are normalised dyads, since U and V are unitary. Then T (A) =

∑ j σ jT (
∣∣ψ j
〉〈

φ j
∣∣). So we have:

‖T (A)‖1 ≤∑
j

σ j‖T (
∣∣ψ j
〉〈

φ j
∣∣)‖1 ≤∑

j
σ j = ‖A‖1, (D.31)

where the last step follows since the Schatten 1-norm is the sum of the singular values.

D.4 Towards Choi matrix criteria for dyadic channels
In this appendix, we give a partial characterisation of Choi matrices for dyadic channels

as defined by (4.75) in the main text, restricted to a subset defined as follows.

Definition D.1 (Bifurcated channels). We say that a map T is a bifurcated channel if it

can be written in the form:

T = U ◦E ◦V (D.32)
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where E is a CPTP map, and U and V are dyadic unitary maps, i.e. U(·) =UL(·)U†
R , and

where UL and UR are unitary operators, and similarly for V . We use BCn to denote the

set of n-qubit instances of such channels.

The term bifurcated refers to the fact that a standard CPTP channel has been split

into two asymmetric ‘branches’ by composition with dyadic unitary maps. This class of

maps is a subset of the complete dyadic maps BCn ⊆ CDn, and a strict superset of the

following stabiliser-preserving subclass.

Definition D.2 (Bifurcated stabiliser channels). We say that a map T is a bifurcated

stabiliser channel if it has the form T = U ◦E ◦V , where E is a CPTP map in SPn,n, and

U and V are dyadic Clifford maps. We denote this class of channels BSPn,n.

Notice that BSPn,n is a superset of PDSPn,n defined in Section 4.2.5.2, as we simply

require that E is a CPTP map, making no assumptions about the weight, orthogonality,

or number of Kraus operators. We also have SPn,n ⊆ BSPn,n but it is not clear whether

all dyadic stabiliser channels can be expressed as a convex mixture of maps in BSP. We

can make the following statement about the Choi matrices corresponding to bifurcated

channels T ∈ BCn. This applies to non-stabiliser maps as well as maps in BSPn,n.

Theorem D.3 (Choi matrix criteria for bifurcated channels). Let T be a linear n-qubit

map. Then T is a bifurcated channel, T ∈ BCn, if and only if its Choi matrix ΦAB
T has a

polar decomposition ΦAB
T =WP satisfying:

1. TrA[P] = 1n/2n;

2. W is a tensor product of a pair of n-qubit unitary operators W AB =UA⊗V B.

Note that the first condition is straightforward to check if we know the matrix ΦT ,

since P =
√

Φ
†
T ΦT . In other words it depends only on the unique positive operator P,

and not on the unitary operator W . The second condition may be less easy to check,

since if ΦT is not invertible, W is not unique, and we would need to check whether or not

there exists a suitable W that is non-entangling across the partition A|B. We will prove

Theorem D.3 shortly, but first remark that we can immediately specialise this to criteria

for bifurcated stabiliser channels.
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Theorem D.4 (Choi matrix criteria for bifurcated stabiliser channels). Let T be a linear

n-qubit map. Then T is a bifurcated stabiliser channel, T ∈ BSPn,n, if and only if its

Choi matrix ΦAB
T has a polar decomposition ΦAB

T =WP satisfying:

1. TrA[P] = 1n/2n;

2. W is a tensor product of a pair of n-qubit Clifford operators W AB =UA⊗V B;

3. P is a stabiliser state, P ∈ STAB2n.

Moreover it is also the case that ΦT must be a convex mixture of stabiliser dyads, ΦT =

∑ j p jeiφ
∣∣L j
〉〈

R j
∣∣.

We now prove Theorem D.3.

Proof. By the arguments of Section 4.2.5.2, we can rewrite any map of the form T =

U ◦E ◦V as follows:

T (·) = ∑
j

ULK jVL(·)V †
R K†

j U
†
R (D.33)

= ∑
j

U ′K′jV
′(·)K′†j , (D.34)

where {K′j} is a complete set of Kraus operators for some CPTP map E , and U ′ and V ′

are unitary operators. Therefore without loss of generality, we can assume that maps in

BCn take the form in line (D.34). Henceforth we drop the prime to simplify the notation.

Consider the Choi matrix for a map of this form,

ΦT = ∑
j
(UK jV ⊗1n) |Φn〉〈Φn|(K†

j ⊗1n). (D.35)

Using the fact that (M⊗1n) |Φn〉= (1n⊗MT ) |Φn〉 for any matrix M [46], we have:

ΦT = (U⊗V T )∑
j
(K j⊗1n) |Φn〉〈Φn|(K†

j ⊗1n) = (U⊗V T )ΦE , (D.36)

where it is important to be clear that (U ⊗V T ) is not a map acting on ΦE , but a matrix

multiplying it on the left. But since ΦE is positive semidefinite, and (U⊗V T ) is a unitary
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operator, equation (D.36) is the polar decomposition of ΦT , so:

ΦE =

√
Φ

†
T ΦT . (D.37)

Therefore if E is a CPTP map, it follows that:

TrA

[√
Φ

†
T ΦT

]
=
1n

2n , and Tr
[√

Φ
†
T ΦT

]
= 1. (D.38)

Conversely, suppose T is an n-qubit linear map with Choi matrix ΦT , and suppose

it has a polar decomposition ΦE = WP, where P =
√

Φ
†
T ΦT satisfies TrA P = 1n/2n,

and the unitary W can be written as a tensor product of product of two n-qubit unitary

operators W =U⊗V . We immediately have that Tr[P] = TrB[1n/2n] = 1, and P is always

Hermitian and positive semidefinite by construction, so it is a valid, normalised density

operator. Since it satisfies the condition on the partial trace, it must be the Choi state for

some CPTP map, E , so that P = ΦE . The channel must have some Kraus representation

so:

ΦE = ∑
j
(K j⊗1n) |Φn〉〈Φn|(K†

j ⊗1n) (D.39)

for some complete set of Kraus operators {K j} j. Then if the unitary W is a tensor product,

the Choi matrix for ΦT has the form:

ΦT = (U⊗V )∑
j
(K j⊗1n) |Φn〉〈Φn|(K†

j ⊗1n) (D.40)

= ∑
j
(UK jV T ⊗1n) |Φn〉〈Φn|(K†

j ⊗1n). (D.41)

Then since the Choi matrix is unique, the map T can be written:

T (·) = ∑
j

UK jV T (·)K†
j . (D.42)

Therefore T is a bifurcated channel, T ∈ BCn.

D.5 Counting projective dyadic stabiliser channels
For a single qubit, counting the number of maps in PDSP, the set of projective dyadic

stabiliser channels (recall Section 4.2.5.2) is relatively straightforward. First we include
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the dyadic Clifford elements as a special case. As discussed above, we require that Kraus

operators have the form U jΠ j, where U j are Cliffords and
{

Π j
}

j is a set of orthogonal

projectors. If we take this to be the trivial set containing a single trivial projector 1, then

we have the Clifford operations. By equation (4.100) the operators acting on the right are

also Clifford gates, so we have the dyadic Clifford elements. For a single qubit, there are

576 of these.

Now we count the maps in PDSP corresponding to channels with Kraus rank 2.

For the single-qubit case, there are only three possible sets of orthonormal stabiliser-

preserving projectors (before we include adaptivity),

{
Π

(X)
j

}
=

{
1±X

2

}
= {|+〉〈+| , |−〉〈−|}, (D.43){

Π
(Y )
j

}
=

{
1±Y

2

}
= {|+i〉〈+i| , |−i〉〈−i|}, (D.44){

Π
(Z)
j

}
=

{
1±Z

2

}
,= {|0〉〈0| , |1〉〈1|}. (D.45)

Let us consider the set
{

Π
(Z)
j

}
. The left operators

{
K′j
}
=
{

C jΠ
(Z)
j

}
take the form:

K′0 =C0 |0〉〈0|= |φ0〉〈0| ,K′1 =C1 |1〉〈1|= |φ1〉〈1| (D.46)

where |φ0〉 and |φ1〉 are some pure single-qubit stabiliser states. Clearly there is redun-

dancy among the Clifford gates in terms of how they map |0〉 and |1〉, so we only need

to count all combinations of |φ0〉 and |φ1〉: there are 36 in total (neglecting phase, which

we will consider shortly), but we need to divide these into three cases. For each |φ0〉, we

can have either 〈φ0|φ1〉= 1, 〈φ0|φ1〉= 0 or |〈φ0|φ1〉|= 1/
√

2. For each |φ0〉 there is 1 of

the first case, 1 of the second, and 4 of the third.

Now for each pair of left operators K′0,K
′
1 we need to count the distinct pairs of right

operators taking the form UK′jV
† =

∣∣∣φ ′j〉〈φ ′′j
∣∣∣, recalling that for each map T , we use the

same Clifford gates U and V for both values of j, so that orthogonality must be preserved.

For the case where |φ0〉= |φ1〉, we must have U |φ0〉=U |φ1〉, so once
∣∣φ ′0〉 is chosen from

the 6 possible choices, |φ ′1〉 is already fixed. Similarly, when 〈φ0|φ1〉 = 0, once we fix∣∣φ ′0〉, there is only one stabiliser state |φ ′1〉 orthogonal to it, so there are 6 choices here. In

the case where |〈φ0|φ1〉|= 1/
√

2, for each choice of
∣∣φ ′0〉, we can map |φ ′1〉 to any of the
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four states such that
∣∣〈φ ′0∣∣φ ′1〉∣∣= 1/

√
2. Then for each of the possibilities just mentioned,

we have 6 possible choices for 〈0|V † =
〈
φ ′′0
∣∣. Since we always have

〈
φ ′′0
∣∣φ ′′1 〉= 0, there

is then no further freedom in the choice of |φ ′′1 〉.
We summarise this counting in Table D.1. Following the same counting argument

Case Choices for: Total choices
|φ0〉 |φ1〉

∣∣φ ′0〉 |φ ′1〉
〈
φ ′′0
∣∣

〈φ0|φ1〉= 1 6 1 6 1 6 216
〈φ0|φ1〉= 0 6 1 6 1 6 216∣∣〈φ ′0∣∣φ ′1〉∣∣= 1/

√
2 6 4 6 4 6 3456

3888

Table D.1: Counting the number of elements T corresponding to the set of orthogonal projectors{
Π

(Z)
j

}
, neglecting phase.

for the other stabiliser projector sets given in (D.43) and (D.44), we obtain another 3888

each, so neglecting phase, in total we have 11664 maps T of Kraus rank 2.

What happens if take phase into account? We want to use these maps in the con-

text of a decomposition E = ∑ j c jT j. Clearly for the dyadic Clifford elements, phase is

unimportant as it can be absorbed into the coefficient c j. Similarly for maps with Kraus

rank 2, a ‘global’ phase (i.e. the same phase on both terms K′j(. . .)K
′′
j ) can be absorbed.

However, a ‘relative’ phase between terms K′0(. . .)K
′′
0 and K′1(. . .)K

′′
1 is non-trivial. For

example, the CPTP map EZ defined by Kraus operators |0〉〈0| , |1〉〈1| is clearly not the

same as the dyadic map:

T (. . .) = |0〉〈0|(. . .) |0〉〈0|− |1〉〈1|(. . .) |1〉〈1| (D.47)

which is obtained from EZ by setting, for example, U = Z and V = 1 in equation (4.100).

Let’s assume we fix the phase convention for our matrix representation of the 24 Clif-

ford gates (so that for example the Hadamard gives H |0〉 = |0〉 etc) . Then the global

phases arising from applying a given Clifford to each pure stabiliser state will be of the

form eiπr/4, where r is an integer from 0 to 7. For example, in the standard matrix rep-

resentation, H |0〉= |+〉, but H |+i〉= eiπ/4 |−i〉. Without loss of generality, we can then

assume that for the Kraus rank 2 maps T the first term K′0(. . .)K
′′†
0 in the decomposition

T (. . .) = ∑s K′s(. . .)K
′′†
s has phase +1 (since any phase can be absorbed by the coeffi-

cient), while the second term K′1(. . .)K
′′†
1 has phase eiπr/4, r ∈ Z8. Including this factor
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of 8, this brings the total number of elements T with Kraus rank 2 to 8 ·11664 = 93312.

Including the Clifford dyadic elements, the total number of distinct maps for the single-

qubit case is 93888. Clearly this represents a much larger optimisation problem compared

to considering the 576 dyadic Clifford elements, but it would still be feasible to enumer-

ate these maps and solve the problem on a standard laptop or desktop PC. For two qubit

channels, the number of elements we need to consider would be astronomical, so the

problem is probably not tractable without significant simplification.





Appendix E

Sparsification and bit-string sampling

technical details

E.1 Trace norm error for BBCCGH sparsification

As discussed in Section 3.4, the BBCCGH sparsification lemma [3, Lem. 6] entails that,

given a pure state with exact stabiliser decomposition |ψ〉= ∑ j c j
∣∣φ j
〉
, one can randomly

generate a k-term sparsification |Ω〉, such that

E(‖|ψ〉− |Ω〉‖2)≤ ‖c‖
2
1

k
, (E.1)

where ‖·‖ is the standard vector norm. In order to compare with our new sparsifica-

tion result, which deals with density operators, we need to translate this in terms of the

trace norm. In this appendix we prove the following simple corollary to the BBCCGH

sparsification lemma.

Corollary 3.8 (BBCCGH sparsification trace-norm error). Given a normalised state

|ψ〉 = ∑ j c j
∣∣φ j
〉
, for any k > 0, one can sample from a distribution of sparsified vec-

tors |Ω〉= (‖c‖1/k)∑
k
α=1 |ωα〉, where |ωα〉 are stabiliser states, such that:

E(‖|ψ〉〈ψ|− |Ω〉〈Ω|‖1)≤ 2
‖c‖1√

k
+
‖c‖2

1
k
. (E.2)
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Proof. Let |∆〉= |ψ〉− |Ω〉. Then for any particular |Ω〉 we have,

|ψ〉〈ψ|− |Ω〉〈Ω|= |ψ〉〈ψ|− (|ψ〉〈ψ|+ |∆〉〈∆|

− |∆〉〈ψ|− |ψ〉〈∆|) (E.3)

= |∆〉〈ψ|+ |ψ〉〈∆|− |∆〉〈∆| . (E.4)

Using the triangle inequality,

‖|ψ〉〈ψ|− |Ω〉〈Ω|‖1 ≤ 2‖|∆〉〈ψ|‖1 +‖|∆〉〈∆|‖1 (E.5)

= 2‖|∆〉‖ · ‖|ψ〉‖+‖|∆〉‖2 (E.6)

= 2‖|∆〉‖+‖|∆〉‖2, (E.7)

where the last line follows because |ψ〉 is normalised. Since the above is true for any |Ω〉
taken from the distribution, it follows that,

E(‖|ψ〉〈ψ|− |Ω〉〈Ω|‖1)≤ 2E(‖|∆〉‖)+E(‖|∆〉‖2). (E.8)

For the second term, the BBCCGH sparsification lemma [3, Lem. 6] tells us that we have

E(‖|∆〉‖2)≤ ‖c‖2
1/k.

This leaves the first term. From Jensen’s inequality, for any random variable X , we

have that E(X)≤
√
E(X2). So,

E(‖∆‖)≤
√

E(‖∆‖2) (E.9)

≤ ‖c‖1√
k
, (E.10)

where the second line again follows from Ref.[3, Lem. 6]. Substituting into the inequality

(E.8), we obtain the result.

E.2 Bit-string sampling simulator technical details
In this appendix, we give full pseudocode for the bit-string sampling simulator presented

in Section 5.2.3 (Algorithm 19), prove its validity as a method to classically emulate sam-

pling from the quantum distribution P(x) = Tr[Πxρ], and analyze its runtime. This con-

stitutes a proof of Theorem 5.9. The material in this appendix first appeared in our article
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Algorithm 19 Bit-string sampling for mixed states

Input: Decomposition ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, where for each ψ j we have a known sta-

biliser state decomposition
∣∣ψ j
〉
= ∑r c( j)

r

∣∣∣φ ( j)
r

〉
. Real numbers δS, pFN and εFN.

Number of bits w.
Output: String x of length w, sampled from a distribution P′′(x) = ∑ j p jPj(x), which

approximates P(x) = Tr(Πxρ), where Πx = |x〉〈x|⊗1n−w.
1: Select index j with probability p j.

2: k← d4‖c( j)‖2
1δ
−1
S e

3: |Ω′〉 ← SPARSIFY(
∣∣ψ j
〉
,k)

4: W ← FASTNORM(|Ω′〉,pFN,εFN)
5: |Ω〉 ← |Ω′〉/

√
W

6: x← () (initialise empty string)
7: Px← 1
8: for b← 1 to w do
9: P(x,0)← . (x,0) denoted the b-bit string formed by appending 0 to the

(b−1)-bit string x. FASTNORM(Π(x,0) |Ω〉,pFN,εFN)
10: P(xb = 0|x)← P(x,0)/Px
11: if Pxb=0 < 1/2 then
12: P(xb = 1|x)← 1−Pxb=0
13: else
14: P(x,1)← FASTNORM(Π(x,1) |Ω〉,pFN,εFN)
15: P(xb = 1|x)← P(x,1)/Px
16: P(xb = 0|x)← 1−Pxb=1
17: end if
18: Select y ∈ {0,1} with probability P(xb = y|x), then xb← y.
19: P(x,xb)← Px×P(xb|x)
20: x← (x,xb)
21: end for
22: return x

Ref. [2]. As described in Section 5.2.3, Algorithm 19 draws bit strings x from a classical

distribution Psim(x), using two subroutines from Ref. [3], SPARSIFY and FASTNORM. As

sketched in the main text, our strategy is to define an idealised algorithm EXACT where

calls to FASTNORM are replaced by an oracle which can compute
∥∥Π~y |Ω〉

∥∥ exactly for

any un-normalised |Ω〉 and bit string ~y. The algorithm EXACT draws from a distribu-

tion Pex(x). We first show that Pex is δS-close to the quantum distribution P. We then

argue that the distribution Psim that Algorithm 19 draws from is ε-close to Pex. Finally

we optimise the choice of δS and ε and analyze the runtime.

EXACT is identical to our Algorithm 19, except where our algorithm estimates prob-

abilities
∥∥Π~y |Ω〉

∥∥2 using FASTNORM, EXACT computes them exactly. Therefore EX-
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ACT first samples a state
∣∣ψ j
〉

from the ensemble with probability p j, and chooses a

sparsification |Ω〉=
∣∣Ω j,l

〉
with probability q j,l = Pr

(
Ω j,l|ψ j

)
. Given the selected |Ω〉, a

bit string is sampled by choosing each bit in turn via a series of conditional probabilities:

Pr(x|Ω) = Pr(x1)Pr(x2|x1) . . .Pr(xw|xw−1) (E.11)

=
‖Πx |Ω〉‖2

‖|Ω〉‖2 = Tr
[

Πx
|Ω〉〈Ω|
〈Ω|Ω〉

]
. (E.12)

Here we use the notation xm to denote the string comprised of the first m bits of x, so

that Πxm =
⊗m

j=1
∣∣x j
〉〈

x j
∣∣⊗1n−m. We take x0 to be the empty string, so that Πx0 = 1.

The probability of choosing y ∈ 0,1 for the m-th bit, given m−1 bits already sampled, is

computed as:

Pr(y|xm−1) =
∥∥Π(x1,...,xm−1,y) |Ω〉

∥∥2
/
∥∥Πxm−1 |Ω〉

∥∥. (E.13)

Thus EXACT outputs bit strings X sampled from a distribution:

Pex(x) = ∑
j
∑

l
p jq j,l

∥∥Πx
∣∣Ω j,l

〉∥∥2∥∥∣∣Ω j,l
〉∥∥2 (E.14)

= ∑
j
∑

l
p jq j,l

Tr
[
Πx
∣∣Ω j,l

〉〈
Ω j,l

∣∣]〈
Ω j,l

∣∣Ω j,l
〉

= Tr

[
Πx ∑

j
p j ∑

l
q j,l

∣∣Ω j,l
〉〈

Ω j,l
∣∣〈

Ω j,l
∣∣Ω j,l

〉 ]

= Tr

[
Πx ∑

j
p jE

(∣∣Ω j
〉〈

Ω j
∣∣〈

Ω j
∣∣Ω j
〉 )]= Tr

[
Πxρ

′],
where ρ ′ = ∑ j p jρ

( j)
1 , and each ρ

( j)
1 given by

ρ
( j)
1 := ∑

Ω

Pr
(
Ω|ψ j

) |Ω〉〈Ω|
〈Ω|Ω〉 . (E.15)

In other words ρ
( j)
1 is the expected sparsification given target pure state

∣∣ψ j
〉
, as defined in

Eq. (5.48). In step 2, k is chosen so that by our improved sparsification lemma (Theorem

5.6 in Section 5.2.3.1), we have
∥∥∥ρ

( j)
1 −

∣∣ψ j
〉〈

ψ j
∣∣∥∥∥

1
≤ δS +O(δ 2

S ), provided δS ≥ δc,

where δc is the critical precision. We will return to the δS < δc case at the end of this



E.2. Bit-string sampling simulator technical details 299

appendix. By the triangle inequality we have

∥∥ρ
′−ρ

∥∥
1 =

∥∥∥∥∥∑j
p jρ

( j)
1 −∑

j
p j
∣∣ψ j
〉〈

ψ j
∣∣∥∥∥∥∥

1

(E.16)

≤∑
j

p j

∥∥∥ρ
( j)
1 −

∣∣ψ j
〉〈

ψ j
∣∣∥∥∥

1
(E.17)

≤∑
j

p j[δS +O(δ 2
S )] = δS +O(δ 2

S ). (E.18)

Since Pex(x) = Tr[Πxρ ′] and for the quantum distribution we have P(x) = Tr[Πxρ ′], It

follows that ‖Pex−P‖1 ≤ δS +O(δ 2
S ).

It remains to show that using a sequence of calls to FASTNORM, Algorithm 19

generates probability distributions Psim(x) that well approximate Pex(x), where

Psim(x) = ∑
j

p jq j,lQ j,l(x). (E.19)

Here each Q j,l(x) is the probability of Algorithm 19 returning x given the sparsification∣∣Ω j,l
〉
. We now drop the subscript as we consider a single sparsification |Ω〉. Recall

that FASTNORM takes as input error parameters pFN and εFN, and un-normalised vectors

Π~y |Ω〉 with known k-term stabiliser decomposition. Then with probability (1− pFN) it

returns a random variable η that approximates
∥∥Π~y |Ω〉

∥∥2 to within a multiplicative error

of εFN,

(1− εFN)
∥∥Π~y |Ω〉

∥∥2 ≤ η ≤ (1+ εFN)
∥∥Π~y |Ω〉

∥∥2
. (E.20)

Algorithm 19 approximates the chain of conditional probabilities E.11 by calls to FAST-

NORM. The probability of choosing y ∈ {0,1} for the m-th bit of x, conditioned on the

first m−1 bits being xm−1 is therefore bounded as:

ε−

∥∥Π(xm−1,y) |Ω〉
∥∥2∥∥Πxm−1 |Ω〉
∥∥2 ≤ Pr(y|xm−1)≤ ε+

∥∥Π(xm−1,y) |Ω〉
∥∥2∥∥Πxm−1 |Ω〉
∥∥2 ,

with probability (1− pFN)
2, where

ε± =
1± εFN

1∓ εFN
. (E.21)

So, given a particular sparsification |Ω〉, the w-bit string x is sampled from a distribution
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Q(x) which satisfies

w

∏
m=1

ε−
‖Πxm |Ω〉‖2∥∥Πxm−1 |Ω〉

∥∥2 ≤ Q(x)≤
w

∏
m=1

ε+
‖Πxm |Ω〉‖2∥∥Πxm−1 |Ω〉

∥∥2

with probability at least (1− pFN)
2w. This simplifies to

(1− εFN)
w‖Πx |Ω〉‖2

(1+ εFN)w‖|Ω〉‖2 ≤ Q(x)≤ (1+ εFN)
w‖Πx |Ω〉‖2

(1− εFN)w‖|Ω〉‖2 . (E.22)

One can check that (1 + εFN)
w/(1− εFN)

w ≤ 1 + 3wεFN, whenever εFN ≤ 1/5, and

the analogous result holds for the lower bound. Therefore Q j,l(x) approximates∥∥Πx
∣∣Ω j,l

〉∥∥2
/
∥∥∣∣Ω j,l

〉∥∥2 up to multiplicative error 3wεFN. Comparing (E.14) with (E.19),

we therefore obtain:

(1−3wεFN)Pex(x)≤ Psim(x)≤ (1+3wεFN)Pex(x) (E.23)

If we want to bound the total multiplicative error due to the sequence of calls to

FASTNORM to ε , then we must set εFN = ε/(3w). It then follows that

‖Psim−Pex‖1 ≤ ε. (E.24)

In the first part of the proof we showed that ‖Pex−P‖1 ≤ δS +O(δ 2
S ) (provided we are

above the critical precision threshold δc). Combined with Eq. (E.24), we obtain

‖Psim−P‖1 ≤ ε +δS +O(δ 2
S ), (E.25)

where P(x) = Tr[Πxρ].

Similarly the error bound given above is only obtained with probability (1−
pFN)

2w ≈ 1−2wpFN, so to obtain the above closeness in `1-norm, with failure probabil-

ity at most pfail, we must set pFN = pfail/(2w). If we select the state
∣∣ψ j
〉

in step 1, then

k ≤ 4
∥∥∥c( j)

∥∥∥2

1
δ
−1
S + 1. To return a single bit-string x there are at most 2w calls to FAST-

NORM, so the runtime isO(wkn3ε
−2
FN log p−1

FN) =O(w3n3‖c( j)‖2
1δ
−1
S ε2 log(w/pfail)). Re-

call that the statement of the theorem defined the quantity Ξ̃ = ∑ j p j‖c( j)‖2
1, so that the

time T to obtain a single bit string is non-deterministic. The expected (average-case)



E.2. Bit-string sampling simulator technical details 301

runtime is O(w3n3Ξ̃δ
−1
S ε2 log(w/pfail)). If the decomposition is optimal with respect to

the monotone Ξ, then we have Ξ̃ = Ξ(ρ) and the average-case runtime is O(Ξ(ρ)). For

equimagical states, Ξ(ρ) = ξ (ψ j) for all j, and this expression becomes the worst-case

runtime.

We now optimise the choice of δS and ε . Setting the total error budget δ = δS + ε ,

by inspecting the runtime we find that the best constant is obtained by setting δS = δ/3

and ε = 2δ/3. Substituting the optimal choice of δS and ε into the expected runtime, we

obtain

E(T ) =O(w3n3
Ξ̃δ
−3 log(w/pfail)). (E.26)

The above holds for the case where the sparsification error δS is no smaller than a

critical value δc = 8(C j−1)/‖c( j)‖2
1, where C j =

∥∥∥c( j)
∥∥∥

1
∑r |cr||

〈
ψ j
∣∣φr
〉
|2 is defined for

the randomly chosen pure state
∣∣ψ j
〉
. Therefore, to ensure we are above the critical error

regime for any
∣∣ψ j
〉
, we can require that δS ≥ 8D, where D = max{(C j− 1)/‖c( j)‖2

1}.
This entails δ ≥ 24D for the overall precision.

Now suppose that we want to achieve arbitrary precision, δ < 24D. In this regime,

one can amend the expression for k in step 2 to achieve any desired precision, at the cost

of slightly poorer scaling in the runtime. We first use Lemmata 5.7 and 5.8 to obtain a

sharpened bound on the sparsification error:

δS ≤ 2
‖c( j)‖2

1
k

+

√
‖c( j)‖2

1
k

√
4D+2

‖c( j)‖2
1

k
+O

(
1
k2

)
. (E.27)

When δS� 8D, we can achieve a precision of δS by choosing

k ≈ 4‖c( j)‖2
1

(
D
δ 2

S
+

1
δS

)
+O(1). (E.28)

Substituting the revised expression for k into the expected runtime, with δS = δ/3 and

ε = 2δ/3, we obtain:

E(T ) =O(w3n3
Ξ̃(δ−3 +3Dδ

−4) log(w/pfail)). (E.29)

Here we recover the same asymptotic δ−4 scaling as derived from the original BBC-

CGH sparsification lemma [3]. However, the prefactor from this prior work was two,
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whereas our prefactor D is typically exponentially small in the number of qubits (see

Section 5.2.3.1). Therefore, at intermediate precision, the δ−3 term may still dominate.

When the target precision δ is too small, our bound on the required k exceeds the number

of terms in the exact decomposition of |ψ〉 (i.e. the decomposition achieving the stabiliser

rank χ(ψ)). In this scenario, using a sparsified approximation in both our approach and

in [3] has no benefit, and one should instead use an exact decomposition without any

sparsification.

E.3 Observable estimation for sparsified mixed states

Algorithm 20 Observable estimator using sparsification and fast norm estimation

Input: Decomposition ρ = ∑ j p j
∣∣ψ j
〉〈

ψ j
∣∣, where for each ψ j we have a known sta-

biliser state decomposition
∣∣ψ j
〉
= ∑r c( j)

r |φ ( j)
r 〉; number of samples M; sparsifica-

tion parameter δS; fast norm error εFN and failure probability pFN.
Output: Additive error estimate for Tr[Πρ].

1: η ′← 0
2: for m← 1 to M do
3: Select index j with probability p j.

4: k← d4‖c( j)‖2
1δ
−1
S e

5: |Ω〉 ← SPARSIFY(
∣∣ψ j
〉
,k)

6: W ← FASTNORM(|Ω〉,pFN,εFN)
7: V ← FASTNORM(Π |Ω〉,pFN,εFN)
8: ηm←V/W . Unless W = 0, but this is vanishingly unlikely.
9: η ′← η ′+ηm

10: end for
11: return η ← η ′/M

In this appendix we explain how one can use sparsification and stabiliser rank techniques

to estimate observables rather than sample bit strings from a distribution. Let

ρ
′ = ∑

j
∑
Ω

p j Pr(Ω| j) |Ω〉〈Ω|〈Ω|Ω〉 = ∑
Ω

Pr(Ω)
|Ω〉〈Ω|
〈Ω|Ω〉 . (E.30)

where Pr(Ω| j) is the probability of SPARSIFY outputting the unnormalised vector |Ω〉,
given sampled pure state

∣∣ψ j
〉
, and Pr(Ω) = ∑ j p j Pr(Ω| j) is the total probability of ob-

taining |Ω〉 given target state ρ . Therefore ρ ′ is the ensemble from which our classical

algorithm draws |Ω〉/‖Ω‖. By the same argument as for the bit-string simulator,

‖ρ−ρ
′‖1 ≤ δS +O(δ 2

S ) =⇒
∣∣Tr[Πρ]−Tr

[
Πρ
′]∣∣≤ δS

2
+O(δ 2

S ) (E.31)
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We want to show the algorithm constitutes a (possibly biased) estimator for Tr[Πρ ′],

which is δS-close to the quantum mean value.

There is a complication in that there is a small possibility that fast norm estimation

fails badly. To deal with this, we add the following fix to step 8. We assume that εFN ≤
1/5 so that if ηm > 1+3εFN, we know for certain that FASTNORM has failed for at least

one of ‖|Ω〉‖2 or ‖Π |Ω〉‖2. Therefore if this happens we cap the estimate, ηm = 1+3εFN.

This includes the case where W = 0. This fix may have the effect of biasing the procedure,

but since failure probability is exponentially suppressed, the bias can be made arbitrarily

small with negligible cost.

With this establised, let us check the mean value of the random variable η . Since

all samples are produced in the same way E(η) = E(ηm). In each iteration, we sample

|Ω〉 from the ensemble ρ ′ then compute the fast norm estimate, which is accurate up

to relative error with probability (1− p′) = (1− pFN)
2. Then with probability p′ the

fast norm estimate could be faulty. Let ηΩ be the random variable ηm conditioned on a

particular sparsification |Ω〉. Let ηFAIL be the random variable output when the fast norm

estimation fails. We do not know the mean value of this variable but using our cap we

do know that it satisfies 0 ≤ E(ηFAIL) ≤ 1+ 3εFN. If ηSUCCESS is the random variable

conditioned on success and a particular |Ω〉, then we know that:

1− εFN

1+ εFN

‖Π |Ω〉‖2

‖|Ω〉‖2 ≤ ηSUCCESS ≤
1+ εFN

1− εFN

‖Π |Ω〉‖2

‖|Ω〉‖2 (E.32)

The expected value of the random variable ηΩ is

E(ηΩ) = (1− p′)E(ηSUCCESS)+ p′E(ηFAIL). (E.33)

So we can bound E(ηΩ) as,

(1− p′)
(

1− εFN

1+ εFN

)‖Π |Ω〉‖2

‖|Ω〉‖2 ≤ E(ηΩ)≤ (1− p′)
(

1+ εFN

1− εFN

)‖Π |Ω〉‖2

‖|Ω〉‖2 + p′(1+3εFN).

(E.34)

To bound the expected value of the final output of the algorithm, we write
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E(η) = ∑Ω Pr(Ω)ηΩ. So,

ε−∑
Ω

Pr(Ω)
‖Π |Ω〉‖2

‖|Ω〉‖2 ≤ E(η)≤ ε+

(
Pr(Ω)

‖Π |Ω〉‖2

‖|Ω〉‖2

)
+ p′(1+3εFN) (E.35)

where ε± = (1− p′)(1± εFN)/(1∓ εFN)≈ 1±3εFN.

But,

∑
Ω

Pr(Ω)
‖Π |Ω〉‖2

‖|Ω〉‖2 = ∑
Ω

Pr(Ω)Tr
[

Π
|Ω〉〈Ω|
〈Ω|Ω〉

]
= Tr

[
Πρ
′]. (E.36)

So we have

ε−Tr
[
Πρ
′]≤ E(η)≤ ε+Tr

[
Πρ
′]+ p′(1+3εFN) (E.37)

We can also place bounds on the absolute value of each sample, since if fast norm is

successful, the estimate will always be between 0 and 1+3εFN, and due to our cap, the

same is true for the case when FASTNORM fails. Using the Hoeffding bound,

Pr [|η−E(η)| ≥ ε]≤ 2exp
(
− 2Mε2

(1+3εFN)2

)
(E.38)

Fix a required success probability pH . Then η is ε-close to E(η), provided we set the

number of samples to

M =

⌈
1

2ε2 (1+3εFN)
2 log

(
2

pH

)⌉
(E.39)

Since (1+3εFN)
2 ≤ 4, we can ignore this factor when considering the runtime scaling.

Let us assume that we have an optimal decomposition, so that the average runtime

for each call to SPARSIFY is O
(
Ξδ
−1
S

)
, and average runtime for each call to FASTNORM

is O
(
Ξδ
−1
S n3ε

−2
FN log

(
p−1

FN
)
)
)
. There are M calls in total, so on average the total runtime

is

τ =O
(

Ξn3

ε2ε2
FNδS

log
(

2
pH

)
log
(

1
pFN

))
. (E.40)

This is the runtime to produce an estimate for Tr[Πρ ′]. But from our sparsification lemma

we know that this is δS-close to the quantum mean value. So the output from the algo-

rithm satisfies:

ε−Tr[Πρ]−O(δS)− ε ≤ η ≤ ε+Tr
[
Πρ
′]+ p′(1+3εFN)+O(δS)+ ε (E.41)

Since p′ ≈ 2pFN, the term p′(1+ 3εFN) can be made arbitrarily small with logarithmic
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cost in the runtime. The final step is to balance the error budget between additive errors

δS and ε and the relative error ε±, in order to optimise runtime. We can straightforwardly

combine δS and ε - using similar analysis as for the bit-string simulator, we should set

δS ∝ ε ∝ δ , for target additive error δ . How we balance with the relative error depends

on the size of Tr[Πρ]. If close to 1, it would be optimal to set εFN to the same order as

δ . If Tr[Πρ] is known to be close to zero, the optimal strategy would be to spend more

of the runtime budget on reducing the additive error. Neglecting small error terms that

can be exponentially suppressed, the upshot is that we can use this algorithm to get an

estimate η for Tr[Πρ] satisfying

|η−Tr[Πρ]|/ 3εFN Tr[Πρ]+δ (E.42)

with high probability in average runtimeO
(
Ξn3ε

−2
FN δ−3). This should be compared with

runtime O
(
n3Λ2δ−2) for the dyadic frame simulator, or O

(
n2R2δ−2) for robustness of

magic. The polynomial scaling in n is based on the assumption that we simply estimate

a single Pauli projector for input state ρ . For the fast norm and dyadic frame algorithms,

we always need to compute stabiliser inner products, which take time O
(
n3), whereas

for quasiprobability sampling with stabiliser projectors, we only need to simulate Pauli

measurements for each sampled pure stabiliser state |φ〉〈φ |, which takes timeO
(
n2). For

general stabiliser code projectors we would recover the n3 scaling for the robustness of

magic simulator as well.

E.4 Computing Z-rotation angle for given unitary extent

Suppose we are given the value of ξ (Uα) = ξ (|ψα〉), where Uα = exp(−iZα) and

|ψα〉 = Uα |+〉. Assume we want to find unknown α , satisfying 0 ≤ α ≤ π/8. This

task is relevant for Algorithm 18 in Section 6.2.2, which searches for an equimagical

decomposition for a depolarised qubit rotation. Recall that the pure state extent for the

single-qubit state |ψ〉 has an analytic expression [3],

ξ (|ψα〉) =
(

cos
(

π

4
−α

)
+(
√

2−1)sin
(

π

4
−α

))2
. (E.43)
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Using standard trigonometric identities,

√
ξ (|ψα〉) = cos

(
π

4
−α

)
+(
√

2−1)sin
(

π

4
−α

)
(E.44)

=
2√

2+
√

2

(√
2+
√

2
2

cos
(

π

4
−α

)
+

√
2−
√

2
2

sin
(

π

4
−α

))
(E.45)

=

(
sin
(

3π

8

))−1[
sin
(

3π

8

)
cos
(

π

4
−α

)
+ sin

(
π

4
−α

)
cos
(

3π

8

)]
(E.46)

=

(
sin
(

3π

8

))−1

sin
(

5π

8
−α

)
(E.47)

=

(
sin
(

3π

8

))−1

sin
(

α +
3π

8

)
. (E.48)

Then in the interval 0≤ α ≤ π/8, there is a unique solution for α ,

α = arcsin
(√

ξ (|ψα〉)sin
(

3π

8

))
. (E.49)



Appendix F

Validity and runtime analysis for

dyadic channel simulator

In this appendix we give a full proof of Theorem 5.12, which affirms the validity

and runtime scaling of the static dyadic channel simulator. For convenience we re-

state the pseudocode in Algorithm 21 here. We have assumed in the description of

Algorithm 21 Static dyadic channel simulator

Input: Circuit description
{
E (1),E (2), . . . ,E (T )

}
, where each E (t) has a known decom-

position with `1-norm B(t) as per equation (5.125), and each dyadic stabiliser sub-
channel T ( j)

k ∈DSP is specified by a simulable decomposition (L(t)
k ,R(t)

k ); stabiliser
observable E; initial stabiliser state σ (0) = |φ (0)〉〈φ (0)|; number of samples M.

Output: Estimate Ê for expectation value 〈E〉= Tr
[
EE( |φ (0)〉〈φ (0)|)

]
.

1: Set Ẽ← 0, θ ← 0, B←∏
T
t=1 B(t). . Initialise phase angle θ .

2: for j = 1 to M do
3: Prepare representation of initial state σ (0).
4: for t = 1 to T do
5: Sample kt with probability |β (t)

kt
|/B(t).

6: θ ← θ + argβ
(t)
kt

. Update phase angle.

7: σ (t)← DYADICMAPUPDATE(σ (t−1),(L(t)
kt
,R(t)

kt
))

8: if σ (t) = 0 then . Terminate trajectory if “zero” selected.
9: σ (T )← 0

10: break
11: end if
12: end for
13: Ẽ j← Re

{
Beiθ Tr

[
Eσ (T )

]}
. Computed with CH-simulator.

14: Ẽ← Ẽ + Ẽ j
15: end for
16: return Ê← Ẽ/M
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DYADICMAPUPDATE that the Kraus operators comprising the decomposition (L(t)
k ,R(t)

k )

are supplied in polar form. Here for clarity we simplify the notation and assume that each

dyadic stabiliser channel is decomposed as

T (t)
k = ∑

r
K(t)

k,r. (F.1)

where each K(t)
k,r(·) = L j(·)R†

j is a dyadic map (absorbing any prefactors), which we will

call a Kraus map, that takes stabiliser dyads either to (possibly sub-normalised) stabiliser

dyads, or the zero operator. Then let k = (k1, . . . ,kT ) denote a vector of indices labelling

a sequence of dyadic maps T (t)
kt

through the circuit, and let r = (r1, . . . ,rT ) specify a

choice of Kraus map K(t)
k,r for each step t. Thus a particular trajectory through the circuit

is specified by a pair of vectors (k,r). Note that as for the dyadic frame simulator, some

trajectories would lead to the stabiliser dyad being mapped to zero, so these trajectories

have zero probability of being sampled, and we again let P denote the set of trajectories

(k,r) where Pr(k,r) 6= 0. Let σ
(t)
(k,r) denote the dyad output by DYADICMAPUPDATE after

the t-th Kraus map along the trajectory (k,r). The probability of selecting a trajectory

(k,r)∈ P is the product of the probabilities, at each step t, of selecting the dyadic channel

T (t)
kt

and of DYADICMAPUPDATE then selecting the Kraus map K(t)
kt ,rt

from that channel,

that is:

Pr(k,r) =
T

∏
t=1

Pr(kt)Pr
(

rt |σ (t−1)
(k,r)

)
(F.2)

=
T

∏
t=1

|β (t)
kt
|

B(t)
‖K(t)

kt ,rt
(σ

(t−1)
(k,r) )‖1 (F.3)

=
1
B

T

∏
t=1
|β (t)

kt
|‖K(t)

kt ,rt
(σ

(t−1)
(k,r) )‖1 (F.4)

The set of all outcomes where the algorithm terminating with σ (t) = 0 for some t is the

complement of the set of all trajectories in P. So the probability of the simulator termi-

nating with a zero outcome is Pr
(

σ (T ) = 0
)
= 1−∑(k,r)∈PPr(k,r). Then the expected
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value of the random variable Ẽ j is:

E(Ẽ j) = Pr
(

σ
(T ) = 0

)
·0+ ∑

(k,r)∈P
Pr(k,r) ·Re

{
Beiθk Tr

[
Eσ

(T )
(k,r)

]}
(F.5)

= ∑
(k,r)∈P

(
1
B

T

∏
t=1
|β (t)

kt
|‖K(t)

kt ,rt
(σ

(t−1)
(k,r) )‖1

)
Re
{

Beiθk Tr
[
Eσ

(T )
(k,r)

]}
, (F.6)

where eiθk is the phase accumulated in step 6 along the trajectory (k,r), which depends

only on the indices kt sampled from the quasiprobability distribution in step 5, and fac-

torises as eiθk = ∏
T
t=1

β
(t)
kt

|β (t)
kt
|
, so that:

(
T

∏
t=1
|β (t)

kt
|
)

eiθk =
T

∏
t=1

β
(t)
kt

(F.7)

For non-zero-probability trajectories:

σ(k,r)(T ) =
K(T )

kT ,rT
◦ . . .◦K(1)

k1,r1
(σ (0))

∏
T
t ′=1 ‖K

(t)
kt ,rt

(σ
(t−1)
(k,r) )‖1

(F.8)

The product of 1-norms in the denominator cancels with the same product in equation

(F.6). Then since for zero-probability trajectories (k,r) /∈P, it is also the case that σ
(T )
(k,r)=

K(T )
kT ,rT
◦ . . .◦K(1)

k1,r1
(σ (0)) = 0, we can freely add them to the sum. So,

E(Ẽ j) = ∑
(k,r)

(
T

∏
t=1
|β (t)

kt
|
)

Re
{

eiθ Tr
[
EK(T )

kT ,rT
◦ . . .◦K(1)

k1,r1
(σ (0))

]}
(F.9)

= ∑
k

Re

{(
T

∏
t=1

β
(t)
kt

)
∑
r

Tr
[
EK(T )

kT ,rT
◦ . . .◦K(1)

k1,r1
(σ (0))

]}
(F.10)

= ∑
k

Re

{(
T

∏
t=1

β
(t)
kt

)
Tr

[
E ∑

rT

K(T )
kT ,rT
◦ . . .◦∑

rt

K(t)
kt ,rt
◦ . . .◦∑

r1

K(1)
k1,r1

(σ (0))

]}

= ∑
k

Re

{(
T

∏
t=1

β
(t)
kt

)
Tr
[
ET (T )

k ◦ . . .◦T (t)
k ◦ . . .◦T

(1)
k (σ (0))

]}
(F.11)
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where in the second line we used equation (F.7) to recover the complex quasiprobabilities

β
(t)
kt

. Reuniting these coefficients with the dyadic stabiliser channels T (t)
k we obtain:

E(Ẽ j) = Re

{
Tr

[
E ∑

kT

β
(T )
kT
T (T )

k ◦ . . .◦∑
kt

β
(t)
kt
T (t)

k ◦ . . .◦∑
k1

β
(1)
k1
T (1)

k (σ (0))

]}
(F.12)

= Tr
[
EE (T ) ◦ . . .◦E (t) ◦ . . .◦E (1)(σ (0))

]
(F.13)

= Tr
[
EE(σ (0))

]
= 〈E〉 . (F.14)

This shows that the random variable Ẽ j is an unbiased estimator for the target mean value

〈E〉, and the usual arguments for quasiprobability apply [128]. We have |Ẽ j| ≤ B, so we

obtain the usual `1-norm-dependence for the number of samples required to achieve fixed

precision and success probability. Theorem 5.12 follows.
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