arXiv:2012.09163v1 [cs.CR] 16 Dec 2020

Intertwining ROP Gadgets and Opaque Predicates for Robust Obfuscation

Fukutomo Nakanishi*
King’s College London

Abstract

Software obfuscation plays a crucial role in protecting in-
tellectual property in software from reverse engineering at-
tempts. While some obfuscation techniques originate from the
obfuscation-reverse engineering arms race, others stem from
different research areas, such as binary software exploitation.

Return-oriented programming (ROP) gained popularity as
one of the most effective exploitation techniques for memory
error vulnerabilities. ROP interferes with our natural percep-
tion of a process control flow, which naturally inspires us to
repurpose ROP as a robust and effective form of software
obfuscation. Although previous work already explores ROP’s
effectiveness as an obfuscation technique, evolving reverse
engineering research raises the need for principled reason-
ing to understand the strengths and limitations of ROP-based
mechanisms against man-at-the-end (MATE) attacks.

To this end, we propose ROPFuscator, a fine-grained ob-
fuscation framework for C/C++ programs using ROP. We
incorporate opaque predicates and constants and a novel in-
struction hiding technique to withstand sophisticated MATE
attacks. More importantly, we introduce a realistic and unified
threat model to thoroughly evaluate ROPFuscator and provide
principled reasoning on ROP-based obfuscation techniques
that answer to code coverage, incurred overhead, correctness,
robustness, and practicality challenges.

1 Introduction

Software has been transforming the fabric of our society for
decades. It is now virtually impossible to imagine any ac-
tivity that does not involve software components to some
extent. As such, software is widely recognized as an impor-
tant intellectual property to protect from reverse engineering
attempts [1-3].

In this context, obfuscation represents the de-facto standard
when it comes to protecting software from being disclosed.
However, although useful, there is no clear winner in the
obfuscation-reverse engineering arms race [4]. Thus, relying

Giulio De Pasquale,
*King’s College London and Toshiba Corporation

Daniele Ferla] Lorenzo Cavallaro

TUniversita di Bologna

on an arsenal of obfuscation techniques seems to be the only
effective way to counteract attempts to break such confiden-
tiality requirements. Dummy code insertion [3], control flow
flattening [2], self-modifying code [5], opaque predicates [6],
virtualization [7], and anti-debugging [8] are well-known soft-
ware obfuscation techniques. They all exploit assumptions
that challenge—one way or another—the logic of reverse en-
gineering algorithms. For instance, the insertion of dummy
code and opaque predicates interferes with the attempt to di-
rectly reconstruct the semantics of an underlying algorithm.
In contrast, control flow flattening breaks the ability to under-
stand a program’s execution flow, which challenges further
reasoning to identify properties of interest.

While advances in reverse engineering spin the creation of
more sophisticated obfuscation techniques, others result from
intriguing leaps from different research areas. In this context,
return-oriented programming (ROP) gained popularity as one
of the most advanced memory error exploitation technique [9].
Core to this is the ability to chain the invocation of chunks
of code (gadgets) to execute arbitrary (often malicious) code.
As such, ROP builds its working logic on threaded code [10],
changing the usual interpretation we have of code execution
centered on the instruction pointer, for one pivoted on the
stack pointer.

This observation naturally suggests ROP can be repurposed
to represent a robust and effective form of software obfus-
cation. First, threaded code changes our understanding of
control flow graphs, de-facto breaking subsequent data-flow
analysis that relies on them. Second, ROP provides fine con-
trol on the granularity of obfuscation, being able to operate at
the level of individual assembly instructions. Third, an obfus-
cated piece of code would see its semantics as the result of the
execution of code gadgets scattered potentially throughout
the entire process address space.

Prior work already explores the effectiveness of ROP as
an obfuscation technique. For instance, Mohan et al. [11]
and Borrello et al. [12] repurpose ROP to challenge malware
detection tasks. Conversely, Mu et al. [13] apply ROP to ob-
fuscate a program’s control flow graph at a coarse granularity,

ignoring fine-grained obfuscation of individual assembly in-
structions. Despite being promising, they all fail at exploring
the assumptions and the extents to which ROP represents a
viable solution for obfuscation techniques to withstand man-
at-the-end (MATE) reverse engineering attacks [14], where
reverse engineering attempts tailored at ROP-based obfusca-
tion [15, 16] or dynamic symbolic execution [17] still under-
mine its effectiveness.

These challenges highlight the need for principled reason-
ing to understand the strengths and limitations of ROP-based
obfuscation mechanisms against MATE attacks. We propose
ROPFuscator, a framework to obfuscate C/C++ programs. At
its core, ROPFuscator relies on ROP micro-gadgets [18] to
obfuscate arbitrary C/C++ programs at the granularity of indi-
vidual assembly instructions. To withstand MATE attacks of
increasing sophistication, ROPFuscator relies on opaque pred-
icate and constants [19] and a novel approach to intertwine
ROP gadgets of arbitrary length with such opaque constructs,
thus challenging the ability to distinguish between the two
and thus reconstruct the original program’s semantics. We
present a thorough evaluation of ROPFuscator across 5 dimen-
sions, which support our principle reasoning with evidence
on completeness (code coverage), incurred overhead, correct-
ness, robustness to MATE attacks, and practicality. We release
ROPFuscator to further support the need for principled rea-
soning in domains characterized by endemic attack-defense
arms-race.

In summary, we make the following contributions:

* We introduce a unified threat model that ROP-based ob-
fuscation techniques must address to assess their robust-
ness to increasingly sophisticated MATE attacks (§2.1).
This helps us to provide a principle reasoning to identify
and justify the design choices that avoid brittle arms-race
that are anyway endemic to the software obfuscation
domain, and instead of providing researchers and practi-
tioners with a clear and contextualized understanding of
strengths and limitations (§2.2.1-2.2.3).

* We present ROPFuscator, a framework for fine-grained
obfuscation of C/C++ programs with ROP (§3.2). To
withstand sophisticated MATE attacks, we equip ROP-
Fuscator with opaque predicates and constants (§3.3),
and we build a novel instruction hiding technique that
intertwines ROP gadget of arbitrary length in opaque
predicates to challenge analysis in distinguishing be-
tween the two and thus the semantics of the obfuscated
code against code to withstand analyses (§3.4).

* We present a thorough evaluation of ROPFuscator along
5 dimensions to support our principled reasoning and
provide the opportunity to understand its effectiveness
in practical contexts (§4).

2 ROPFuscator

We aim at providing principled reasoning on the use of ROP
to obfuscate real-world programs. Particular care is placed on
the description of a realistic threat model, which drives the
design choices of ROPFuscator and identifies the research
questions one must answer to understand the assumptions and
extents to which we can consider ROP as a realistic technique
for programs obfuscation.

2.1 Threat Model

Our threat model considers MATE attacks of increasing so-
phistication [14]. In particular, we assume attackers can rely
on static ROP-agnostic and ROP chain disassembly analyses
as well as dynamic symbolic execution and ROP-specific dy-
namic analyses. In doing so, we adopt metrics similar to the
one used in [3,20].

For simplicity and ease referencing these threats to moti-
vate the design choices and support the underlying principled
reasoning and evaluation, we refer to the following threats
as Threat A-D. However, they should not be seen as indi-
vidual and disconnected threat models. On the contrary, they
represent a realistic and unified threat model that explores
how robust ROPFuscator is in facing adaptive attacks that are
aware of ROPFuscator inner working mechanisms.

Threat A: ROP-agnostic Static Analysis. The core to
static analysis of binary programs is disassembly. Linear
sweep and recursive traversal are two main static disassembly
algorithms that aim to recover a program’s assembly instruc-
tions by analyzing a sequence of bytes linearly (linear sweep)
or following the expected execution flow (recursive traversal).
Decompilation is often built on a successful disassembly to
convert assembly code into high-level program constructs.

Threat B: Static ROP Chain Analysis. Itis perhaps unsur-
prising that ROP chains’ introduction in a program naturally
breaks traditional disassembly algorithms. In fact, they as-
sume an IP-centric code execution model, whereas ROP, built
on threaded code, focuses on an SP-centric one. A more re-
alistic threat model here should thus consider the ability of
statically analyzing ROP chains to reconstruct the obfuscated
program original control flow one can leverage to build more
insightful data-flow and decompilation analyses on.

Threat C: Dynamic Symbolic Execution. Static ROP
chain analysis requires to identify the address of ROP gad-
gets. Address-agnostic ROP gadgets, therefore, challenge this
analysis effectively. The mechanism to build ROP chains to
hide ROP gadgets is not straightforward but is discussed thor-
oughly in the next sections. Here, it is enough to assume this is
a possibility. Therefore, our threat model must include attacks
that rely on dynamic symbolic execution (DSE) to identify
such information. Once successful, one can rely on the above
analyses to recover the original program’s semantics.

Threat D: Dynamic ROP Chain Analysis. This analysis
takes advantage of runtime information in a context in which
the attacker knows ROP is a core building block for program
obfuscation. Instruction traces collected from a running pro-
cess are passed to a CPU emulator, which executes the ROP
chains, extracting the original code from the gadgets [16,21].

2.2 Design Choices

The following section provides insights on the design of the
code transformation we realize in the context of program
obfuscation. We first rely on the insertion of ROP chains to
obfuscate the code of interest. In particular, we rely on the
use of ROP micro-gadgets [18] and target obfuscation at a
fine granularity, from individual instructions to basic blocks
and entire functions of interest. This code transformation
addresses Threat A. To withstand Threat B, we rely on the
use of opaque predicates and constants [19]. This helps in
concealing ROP gadgets’ address, challenging any attempt
to reconstruct ROP logics with static analyses. Similarly, we
address Threat C by choosing specific opaque predicates and
constants as thoroughly outlined in §3.3. Finally, we inter-
twine ROP chains and opaque predicates code to withstand
sophisticated attacks that rely on dynamic ROP chain analysis
(Threat D).

2.2.1 ROP Transformation

The first component’s purpose is to convert an arbitrary por-
tion of code into ROP chains. The resulting code has a sig-
nificantly different structure and can already disrupt the auto-
mated analysis performed by decompilers.

The gadgets are extracted from libraries linked by the com-
piler (e.g., libc) or provided by the user. Later, the instructions
are matched with a semantically equivalent set of previously
identified gadgets to finalize the translation. The transfor-
mation is also applied to branch instructions, allowing the
obfuscation of code inside and between basic blocks.

Further details are described in §3.2.

2.2.2 Opaque Predicate Insertion

One of the challenges in adopting ROP as an obfuscation
technique is its relative fragility against static analysis. Once
a ROP chain is identified, it is possible to reconstruct the
original code and defeat the obfuscation [15]. For this reason,
we interpose opaque predicates and opaque constants in the
ROP chain generation to improve its robustness against static
analysis.

The culprit of statically analyzing a ROP chain is to find
its gadget addresses. Therefore, we use opaque constants to
compute and protect the addresses of said gadgets. Besides,
we obfuscate the immediate operands of instructions when
needed.

Original code

Hidden code inserted

Dummy code inserted

mov edx, 0xda598211
mul edx

(Insertion Point)

cmp eax, 0x40527619
setne al

cmp edx, 0xded47238
setne dl

mov edx, 0xda598211
mul edx

mov ecx, 123

cmp eax, 0x40527619
setne al

cmp edx, 0xded47238
setne dl

mov edx, 0xda598211
mul edx

add [esp], 456
cmp eax, 0x40527619
setne al

cmp edx, 0xded47238
setne dl

Figure 1: Assembly code of opaque predicates before/after instructions are
inserted

Finally, opaque predicates are effective in hindering DSE
tools [22,23]. However, the design of the predicates has a sig-
nificant impact on their robustness against symbolic analysis.
In light of this, we evaluated the possible algorithms that best
suit our needs, and we discuss their implementation in §3.3.

2.2.3 Instruction Hiding

The use of opaque predicates and opaque constants alone is
not enough to protect our approach against dynamic analyses.
For example, it is possible to isolate and extract the ROP chain
by tracing the process’s execution.

To avoid full disclosure of the code using instruction trac-
ing, we hide part of the instructions in the code, which cal-
culates the opaque predicates’ output. The predicate’s com-
putation does not interfere with the context needed by the
instruction being hidden, making the opaque predicate a code
cave. Due to the predicate calculation’s code size, it is possible
to hide a few instructions without raising suspicion.

We demonstrate two examples of this technique in Figure 1.
Each opaque predicate has several insertion points, which are
used to store instructions that are not related to the calculation
of the predicate. In these specific examples, we consider the
situation where the user wants to obfuscate the instruction
sequence mov ecx, 123; add edx, ecx while hiding mov
ecx, 123 in opaque predicates. The instruction is inserted
in the allotted insertion point, and a dummy instruction (add
[esp], 456)is placed in a similar predicate to avoid identi-
fication by pattern matching. Using this approach, the ROP
chain will not contain the entirety of the code, thwarting the
analysis if the chain is extracted and analyzed.

Furthermore, this approach has better resilience to dynamic
tracing compared to x86 variable-length instruction steganog-
raphy. In the first case, the instructions of opaque predicates,
gadgets, and dummy code are intertwined, and it becomes
challenging to distinguish which one is which. On the other
hand, once executed, instruction steganography directly re-
veals the hidden instructions, whereas it is only challenging
in identifying them statically.

Source code

"LLVM 1lc i
| I
— ! ROPfuscator Core gbfuscglted BN
I C/C++ | X86 Assembly ssembly = s
L0 ROP Opaque Instruction i
@ ! = Trans- Predicate Hiding =] | Q
| E formation Insertion N bl
clang | =] (§3.2) (§3.4) H Lo
! 3.2 8. Linker
I
o =

Compile

LLVM bitcode = library

: Executable

Figure 2: An architectural view of ROPFuscator

3 System Architecture and Implementation

We present a more detailed view of ROPFuscator to help
understand its obfuscation steps and their interconnection. We
also provide information on implementation pitfalls to help
practitioners and developers working with binary programs.

3.1 Architectural Overview

Our framework obfuscates C/C++ code in x86 assembly level
using LLVM. The source code is compiled to LLVM’s IR
and then processed by our framework. It consists of three
components called in subsequent order, shown in Figure. 2,
named ROP transformation, opaque predicate insertion and
instruction hiding.

ROP transformation (§3.2) converts instructions into ROP
chains. Opagque predicate insertion (§3.3) injects opaque pred-
icates in the ROP chain generation code to protect the gadgets’
entrypoint address. Finally, instruction hiding (§3.4) picks
some instructions and embed them into opaque predicates.

The obfuscation components can be applied selectively
while respecting their invocation order. For example, ROP
transformation can be applied independently, while the
opaque predicates pass cannot be used without first executing
the ROP transformation.

3.2 ROP Transformation

Methods of converting normal code to equivalent gadgets
are proposed in several studies [11,24]. However, instead of
processing native machine instructions, they are transforming
various intermediate representations to ROP gadgets. In our
work, we lift native x86 instructions. An obfuscation trans-
form example is shown in Figure. 3.

The steps are explained in the following paragraphs.

Gadgets extraction The extraction process is based on the
Galileo algorithm [9], and the gadgets are extracted from
a shared library chosen by the user. For design simplicity,

we only rely on microgadgets [18] of length 1 (i.e only one
instruction before the ret instruction) to build ROP chains.

ROP chain generation The use of microgadgets may incur
in the unavailability of gadgets needed to perform operations
on registers. For this reason, we decompose the original in-
struction in smaller computations that use temporary registers
(Step (i) in Figure 3). The temporary registers are found by per-
forming live register analysis [25] for each instruction within
the basic blocks. Once the available registers are enumerated,
we use gadgets to exchange them accordingly, similarly to the
method proposed by Homescu et al. [18], to generate ROP
chains (Step (ii) in Figure 3).

Emitting ROP Generator Code Once the gadgets are ex-
tracted, the ROP chain needs to be built and injected into the
program. This is done by adding rop generator code which
pushes the generated ROP chain onto the stack in reverse
order, followed by a ret instruction (Step (iii) in Figure 3).
To deal with ASLR, a gadget address is calculated by using
the address of a random symbol from the linked library as a
base address. Later, the offset of the gadget address is added
to the base address and then pushed to the stack. We do not
use symbols defined in other linked libraries or the program to
avoid symbol conflicts while computing the gadget addresses.

Instructions support It is important to translate as many
instructions as possible into ROP chains since this directly
affects the obfuscation scheme’s robustness.

To find out which instructions are used the most, we ob-
served the instruction count of various applications and used
it as main metric. The most common instructions include non-
control instructions (mov, add, xor, cmp, lea) and control
instructions (jmp, call, je and jne). We implemented the
support of all the most commonly used instructions in addi-
tion to others in order to achieve an high instruction coverage
as shown in §4.1.

Code with opaque predicate Instruction hidden

__________ mul eax, 0x8123

Available gadgets Symbol table
address instructions address | symbol

Original code 0x10345 |pop ecx; ret 0x10200 | atoi
add edx, 123 0x10700 |xchg eax,edx; ret 0x10a00 | puts

0x109ab |add eax, ecx; ret

o< L

ROP chain generator (code)

jmul eax, 0x8123 !
1
1

I e
xor eax, 0x7412
add eax, atoi

| xor eax, 0x7412 _ |

add eax, atoi

Decomposed code ROP chain (stack)

push atoi+0x500

push eax push eax

eax := OC(0x7ab)

mov ecx, 123 | G(pop ecx) push atoi+0x7ab ad foi
add edx, ecx 123 push puts-0x300 add eax,atol IS AS T ST
M . push eax ROP chain of
(i) G(xchg eax, edx) push 123 (iv) (v) oy ecx. 123 ‘
G(add eax, ecx) push atoi+0x145 JIOV eCx a2,
G(xchg eax, edx) (iii) | ret ret ret

Figure 3: Obfuscation Transformation Example with ROP, Opaque Predicates and Instruction Hiding

Program Semantics Preservation It is crucial to preserve
the semantics of the program while obfuscating. The x86
ISA contains many instructions that modify the flag registers.
Therefore, we use the pushf and popf instructions to save and
restore the flags on necessity. Additionally, LLVM exposes
useful metadata to check whether register flags may be safely
clobbered. This provided us the choice to omit flag saving to
improve performance.

3.3 Opaque Predicate Insertion

This section will discuss how opaque predicates are generated
and later inserted in the ROP generation code. Besides, we de-
tail how static and dynamic analysis affects opaque predicates
and our approach to improving their resilience.

Several opaque predicates generation algorithms have been
proposed in previous works. They are based on arithmetic
operations, non-determinism [6], one-way functions [26] and
computationally hard programs (e.g. pointer-aliasing [6],
3SAT [19,27]).

We tested the use of integer factorization and the 3SAT
problem for generating opaque predicates.

The algorithm based on integer factorization takes two
32-bit inputs x,y and returns O if xy = C for a fixed 64-bit
prime integer C, returning 1 otherwise. The factorization of
C is needed to force that the output is always 1. This task is
considered difficult if C is very large and it is used as a basis
of the RSA cryptosystem [28].

The second algorithm, Random 3-SAT, is based on Sheri-
dan et al. [27]. We generate a random conjunctive normal
form (CNF) formula which consists of 32N clauses. The
value of the factor N is taken according to the aforementioned
results, which suggest N > 6 in order to have high chances for
the clauses to be unsatisfiable. The formula is then negated,
forcing the output to be always 1.

Based on internal results, opaque predicates that used ran-
dom 3-SAT yield a worse size-to-performance ratio and were
less robust against DSE. For these reasons, we excluded this
algorithm from our final evaluation.

3.3.1 Opaque Gadget Addresses Against Static Analysis

We use opaque predicates to protect gadget addresses and
immediate operands (Step (iv) in Figure 3). An opaque predi-
cate can generate a 1-bit output which is hard to be computed
statically.

For this reason, we concatenate each output bit of 32 dis-
tinct opaque predicate instances to generate a 32-bit constant
(opaque constant). In our work, we focused on the x86 ar-
chitecture, which uses 32-bit registers hence the choice to
use 32 opaque predicates. Naturally, this approach can be
easily extended to different architecture sizes. In this way,
static analysis attacks, whether automated or manual, need to
reverse engineer the appropriate number of opaque predicates
to compute the protected value.

3.3.2 DSE-resistant Opaque Predicates

In the previous section, we discussed the generation of the
opaque predicates and their application to protect the gadget
addresses against static analysis. However, this is not robust
enough against DSE attacks (threat C). In this section, we
focus on the steps we undertook to make the predicates DSE-
resistant. We evaluated our approach with angr [17], but we
believe it can be extended to other DSE engines.

Concolic execution engines can execute code concretely;
therefore, if the input to opaque predicates is statically known,
the execution is deterministic. In this case, the engine can
compute the opaque predicates’ output very efficiently and, as
a result, the gadget addresses. The ROP chain would then be
exposed and executed as if it were not obfuscated in the first
place. However, if the input is not known and concretized,
the symbolic execution engine needs to symbolically evaluate
the opaque predicates. This will force the computation of the
mathematically hard problem on which the opaque predicate
is based on.

Thus, we focused on finding appropriate input that cannot
be easily concretized, imposing additional calculations to the
symbolic execution engine.

Table 1: Example of contextual and invariant opaque predicates with integer
factorization based algorithm

No. type predicate input output
1 Invariant xy =531299 Random 0
2 Invariant xy # 531299 Random 1
3 Invariant xy =531299 Constant (any) 0
4 Invariant xy # 531299 Constant (any) 1
5 Contextual —xy=428711 Constant (577, 743) 1
6 Contextual —xy=428711 Constant (otherwise) 0
7 Contextual — xy # 428711 Constant (577, 743) 0
8 Contextual — xy # 428711 Constant (otherwise) 1

Feeding Symbolic Input to Opaque Predicates DSE
treats several kinds of values as symbolic, such as user in-
put, generated random numbers, or the current timestamp.
We opted to use user input since both random numbers and
the current timestamp can be concretized under certain DSE
exploration strategies. This approach is similar to the range
divider mechanism used to diverge the control flow [22]. This
method operates on user input, and it has been shown to ef-
fective against symbolic analysis.

However, it is challenging to define user input without
having a higher-level view of the program semantics. For
this reason, we compute input values by performing arith-
metic operations on several general-purpose registers. We
aim to hinder valid input inferring by DSE, as shown in the
threat model in §2.1. Therefore, we assume that user input
is used in the obfuscated code and that parts are processed
into general-purpose registers, rendering the input symbolic.
If our assumption is correct, this approach will increase the
running time to an unusable extent.

We confirmed that feeding symbolic input increases DSE
analysis time and memory usage. We evaluate this technique
further in §4.3.

Using Invariant and Contextual Opaque Predicates
There are several methodologies proposed to reverse engi-
neer opaque predicates in order to replace them with O or 1
accordingly [29, 30].

These techniques have been previously classified into four
categories [26]: brute-forcing or mathematical proof, direct
substitution with 0 or 1, probabilistic substitution, and pattern
matching. Building robust opaque predicates is out of the
scope of this work; therefore, we do not define precise attack
models in §2.1. However, we considered these attacks in our
design, and we applied existing techniques to hinder them.

Brute-forcing or mathematical proofs can be impeded by
choosing mathematically difficult problems, as explained
above. To deal with both direct and probabilistic substitutions,
we introduced contextual opaque predicates which change
their output based on preconditions chosen at design-time [31].
Finally, we use crafted and random constants as input to the
contextual opaque predicates to generate O or 1, respectively.

3.4 Instruction Hiding

Instruction hiding consists of three steps. After an instruction
is decomposed into smaller operations, a subset of these in-
structions is marked to be hidden. Subsequently, the marked
code is inserted into opaque predicates along with additional
dummy code. We describe the process in more detail as fol-
lows.

Hidden Code Selection In this step, we decide which part
of the code is to be obfuscated by instruction hiding or by
ROP transformation. It is important to balance the two parts as
an attacker can recover more instructions with execution trac-
ing if ROP transformation is prevalent. On the other hand, the
number of opaque predicates containing hidden instruction
would be lower in the opposite case, leaving such instruc-
tions unprotected. We set a limit on the number of hidden
instructions to be at most half of the total.

Embedding Code into Opaque Predicates The code is
embedded into the opaque predicates through several insertion
points. The insertion points are designed to minimize register
and flag conflicts with the inserted code. However, if there is
a clash, we use temporary registers to preserve semantics, as
explained in §3.2.

Dummy Code Insertion As a final step, we inject dummy
code to the remaining insertion points to diversify the opaque
predicates, avoiding trivial pattern-matching detection. Addi-
tionally, the dummy code is intertwined with code crucial to
the computation of the opaque predicate. The code other than
computing useless operation modifies the predicate’s internal
state along with its variables, leading to added confusion for
the attackers.

4 Evaluation

In this section, we evaluate ROPFuscator by addressing the
following research questions.

* RQ1: Completeness. What is the maximum code coverage
this methodology can achieve?

¢ RQ2: Performance. To what extent this obfuscation tech-
nique affects performance?

* RQ3: Correctness. Are the semantics of the program pre-
served?

¢ RQ4: Robustness. How is robustness of the obfuscation
mechanism in regards to threat model attacks?

* RQS5: Practicality. Is our approach applicable to real-
world use cases?

We address the first question by measuring the coverage
of instructions we successfully obfuscate in §4.1, and answer
RQ2 by measuring obfuscated code’s performance in §4.2.

Table 2: Ratio of instructions obfuscated in SPEC CPU 2017 (SPECrate Integer) C/C++ test cases

Option Status ‘ perlbench gcc mcf omnetpp xalancbmk x264 deepsjeng leela XZ ‘ W.AVG
-00 Obfuscated 74.16% 76.67% 64.79% 65.28% 66.03% 64.75% 68.18% 68.51% 66.23% | 72.20%
Unobfuscated (No gadget / reg) 9.83% 8.59% 11.68% 7.88% 831% 13.50% 11.38% 6.59% 11.86% 8.90%
Unobfuscated (Other) 16.01% 14.74% 23.53% 26.84% 25.66% 21.75% 20.44% 24.90% 21.91% | 18.90%
-03 Obfuscated 4041% 42.41% 29.08% 43.20% 39.34% 26.89% 33.14% 4229% 32.02% | 40.33%
Unobfuscated (No gadget / reg) 10.50% 771% 13.33% 7.41% 9.53% 11.22% 13.33% 947% 11.73% 8.74%
Unobfuscated (Other) 49.09% 49.88% 57.59% 49.38% 51.14% 61.89% 53.54% 48.24% 56.25% | 50.93%
=] 200 20
g _
S 150 |- 15
B —
S = 100 - : g4 -
A g £
< 50 - - : : B 5 ;
£ = 8-z
s 0 @ e o0
~ o NSRRI X & A v}
= Q@& § & &\QQ ao& Q‘o é\é\ \z‘q} Q@&' & @'&Q & W‘o Q \‘Z’
A & N > 0 o
(g} o& $®® be’z Qé $\® 606 O@

Figure 4: Runtime slowdown and code size of obfuscated programs for SPEC CPU 2017 (SPECrate Integer)

During the test runs, we also observe if the program is exe-
cuted correctly (RQ3). Then we evaluate robustness (RQ4)
against attacks (defined in §2.1) in §4.3. Finally, we discuss
practicality (RQS5) with a case study applying it to an open-
source program in §4.4.

We evaluate several obfuscation configurations through-
out the section. We use words ‘ROPonly’, ‘ROP+OPpggic’,
‘ROP+OPpgg’, ‘ROP+OPpsg+Hiding’ to denote ROP trans-
formation (§2.2.1) only, ROP transformation + basic opaque
predicates (§2.2.2), ROP transformation + DSE-resistant
opaque predicates, and ROP transformation + opaque predi-
cates + instruction hiding (§2.2.3) respectively. We also use
‘Baseline’ for non-obfuscated binary.

Test Sets and Experiment Environment: We evaluate cover-
age, execution speed (throughput), and code size in two test
sets: 1) SPEC CPU2017 (SPECrate Integer) C/C++ tests 2)
custom workload using binutils. We evaluated the robustness
with a custom simple program that behaves like a program.
Unless explicitly stated, the following evaluations are done
with the following conditions: the program is compiled with
optimization option -00 (no optimization), and gadgets are
extracted from 32bit libc version 2.27-3ubuntul. Programs
are executed in Ubuntu 18.04 x86-64. We acknowledge that
an evaluation in a virtual environment is affected by VMM
overhead and noisy neighbors, but as described below, the
numbers are about 10-1000x, and we are only interested in
the order of magnitude so that the deviation would be negligi-
ble.

4.1 Completeness: Obfuscation Coverage

We first evaluate a ratio of instructions obfuscated by ROP
transformation. Since static disassemblers translate binary

code into assembly, it cannot directly disassemble the trans-
lated ROP chain into the original code. Thus ROPFuscator is
more robust if more instructions are transformed.

Table 2 shows ratio of obfuscated instructions in SPEC
CPU test cases, with optimization options -00 (not optimized)
and -03 (highly optimized). The result shows that with op-
timization option -00, around 60-80% of the instructions
can be obfuscated into ROP chains. On the other hand, only
40% instructions on average can be obfuscated when com-
piled with -03 option. Since x86 is a Complex Instruction
Set Computer (CISC) architecture, optimization can turn a
program into more complex instructions that are hard to ex-
press as a combination of simple ROP microgadgets. This
result suggests that it is better to use ~00 when applying this
obfuscation mechanism. Although this causes performance
degradation, performance loss due to obfuscation is much
larger than the optimization option’s loss. We discuss about
performance further in §4.2.

About 7-12% of the total instructions were not obfuscated
in both cases because no free registers or gadgets are available.
We believe that this would not be practically a problem since
the attacker cannot understand the meaning of the exposed
instruction solely without knowing the rest of the instructions.
Also, we would be able to obfuscate these instructions by
1) saving and restoring registers to allocate free temporary
registers and 2) create our own library that includes gadgets.

Next, we observe the obfuscation coverage difference due
to library versions. Table 3 shows the ratio of instructions ob-
fuscated for two programs in binutils 2.32. With libc version
2.27-3ubuntul (on Ubuntu 18.04), the result shows similar
numbers to SPEC CPU (70-80%), but if we use libc version
2.27-3ubuntul.2, numbers decrease to 20—40%, while no gad-
get error raises to about 50-60%. We investigated the reason,

Table 3: Ratio of instructions obfuscated in binutils for different
libc versions

Table 4: Runtime slowdown and code size of obfuscated programs for binutils for each
obfuscation algorithm

absolute value ratio (Baseline=1) ratio (Roponly=1)

libc version Status readelf — c++filt
. metric obfuscation readelf c++filt readelf c++filt readelf c++ilt
2.27-3 Obfuscated 77.24% 74.99% - -
ubuntul Unobfuscated (No gadget /reg) 11.80% 11.70% time Baseline 0.39s 0.30s 1.0 1.0 0.09 0.01
Unobfuscated (Other) 10.96% 13.31% ROPonly 4.23s 30.6s 11.0 102 1.0 1.0
ROP+OPgygic 41.1s 337s 107 1118 9.7 11.0
2.27-3 Obfuscated 36.02% 26.07% ROP+OPpsg 66.4s 761s 172 2527 15.7 24.8
ubuntul.2 Unobfuscated (No gadget /reg) 53.02% 60.62% ROP+OPpsg+Hiding 57.1s 611s 148 2030 13.5 19.9
Unobfuscated (Other) 10.96% 13.31% size Baseline LIMB LIMB 10 10 010 007
2.31-0 Ofuscated 82.69% 80.93% ROPonly 10.5MB 15.7MB 9.6 14.1 1.0 1.0
ubuntu9 Unobfuscated (No gadget /reg) 6.35% 5.77% Egg*‘ggﬁﬂsic 122%3 ;i??xg lifg 522 8&2 8195-1
Unobfuscated (Oth 10.96% 13.31% +OPpse b
nobfuscated (Other) © 0 ROP+OPpsp+Hiding 1283MB 2063MB 1188 1861 124 132

and the reason was the second library does not have gadget
xchg eax, edx; ret.As described earlier, we convert sin-
gle instruction to a combination of microgadgets [18], and in
this process, we heavily rely on exchange (xchg) gadgets. If
the above gadget is not available, we cannot exchange edx and
other registers, and many other microgadgets which involve
edx register cannot be used unless the original code is exactly
using edx register. This result shows that ROP transformation
is very sensitive to ROP gadget availability, so we should
carefully choose which library we use for gadget extraction.
However, if we can choose library version arbitrarily, the ratio
of no gadgets and registers error can be as low as 5-7% (us-
ing libc version 2.31-Oubuntu9). Alternatively, we can use a
custom library where all required gadgets are embedded into,
as explained above.

Takeaway—RQ1: Completeness.

On average, ROPFuscator obfuscates about 60-80% of
the instructions with ROP transformation. The number
depends on the compiler optimization option and shows
better coverage without optimization. The number also
depends largely on the library version from which the ROP
gadgets are extracted, and selecting an appropriate library
version ensures high coverage.

4.2 Performance and Correctness

Secondly, we evaluate run-time slowdown and code size bloat
up introduced by ROPFuscator. We obfuscate the entire SPEC
CPU 2017 benchmark programs as well as some of the binu-
tils programs with optimization disabled and compare the
result with original programs.

The result for SPEC CPU is shown in Figure 4. With ROP
transformation, execution time is about 140x longer on the ge-
ometric mean (109-189x), and size is 13x larger on weighted
average (10-16x). It takes too long to run SPEC CPU test
cases obfuscated with opaque predicates, so we evaluate per-
formance and code size with custom workload with binutils.
The result in Table 4 shows that opaque predicate obfuscation
increases execution time by about 10x (without DSE counter-

measure) or 20x (with DSE countermeasure), and code size
by about 90x (without DSE countermeasure) or 150x (with
DSE countermeasure), compared to ROP transformation only.
Instruction hiding decreases the number of ROP gadgets and
performs slightly better (execution time is about 16x longer,
size is about 130x larger than ROP transformation only).

According to both measurements, the execution time will
be 10-200x with ROP transformation only, 200—4000x with
ROP together with DSE-resistant opaque predicates, and 150-
3000x with full obfuscation. The executable size will be 10—
16x with ROP transformation only, 1500-2500x with ROP
and DSE-resistant opaque predicates, and 1200-2000x with
full obfuscation.

We would also like to note that we do not observe any
behavioral differences with the original programs during the
above run. We designed every obfuscation transformation
very carefully as described in §3.2. Though it is not formally
proven to be correct, these test programs are large and practi-
cal, and the result is enough to convince us that ROPFuscator
can preserve program semantics accurately.

Takeaway—RQ2-RQ3: Performance and Correctness.

ROP transformation imposes about 10-200x of execution
time overhead and 10—15x of code size overhead. DSE-
resistant Opaque predicates imposes further 20x (total 200—
4000x) of execution time overhead and further 150x (total
1500-2500x) of code size overhead. These numbers may
seem huge, but it is possible to control performance loss
by choosing where to strongly obfuscate, as discussed later
in §4.4 and §5. A summary is shown in Table 6 together
with robustness evaluation.

ROPFuscator preserves original semantics of programs
throughout obfuscation transformations.

4.3 Robustness

We evaluate robustness with respect to the threat model de-
fined in §2.1. To make the discussion clearer, we use two
variations of simple input validation programs shown in Fig-
ure. 5. They are intended as a simpler form of product code

(a) early-exit function (b) late-exit function

int check (const char *s) { int check (const char *s) {
int i = 0;
if (s[0] != 'H') return 0; i += (s[0] == 'H');
if (s[1] != 'e') return 0; 1 += (s[1l] == "'e');
if (s[2] != ’1") return 0; i += (s[2] == "1");
if (s[12] != '\0’') return 0; i 4= (s[12] == "\0");
return 1; return i == 13;

} }

int main (int argc, char **argv) {
if (check(argv[1l])) puts ("OK");
return 0;
}
Figure 5: Example source code to be obfuscated, which implements input
validation

checking function.

In this section, we evaluate each threat model defined in
§2.1: threat A (decompiler), B (static ROP analysis), C (dy-
namic symbolic execution) and D (dynamic ROP analysis).

A: Decompilation We evaluate robustness against Threat
A: decompilers by decompiling simple function listed in Fig-
ure. 5 with or without obfuscation and comparing the results.
We used open-sourced state-of-the-art decompilers to reverse-
engineer binaries: Ghidra', retdec? and r2dec’. As a result, all
decompilers can reconstruct functions without obfuscation,
but none of them reconstruct the original code structure with
ROP transformation. This is likely because the decompilers
do not understand the ROP chain structure nor correctly rec-
ognize function boundary. Even though some of them can
decompile opaque predicates, the analysis requires extensive
human intervention.

B: Static ROP Chain Analysis Here we evaluate the ro-
bustness of ROPFuscator against Threat B: static ROP chain
analysis.

First, we implemented a deobfuscator to convert the ROP
chain back to the original code, using a similar technique
to deRop [15]. We identify ROP gadgets and combine un-
derlying code into original instructions. Instead of directly
processing ROP chain in memory, our deobfuscation approach
statically detects ROP chain generator code by looking for
stack manipulating instructions (push, pop and ret). Then
we simulate the stack content and locate ROP gadgets and
concatenate the underlying instructions.

We applied this deobfuscator to binaries obfuscated with
two configurations: ROPonly and ROP+OPpgg. We obfus-
cated the early-exit function shown in Figure. 5 (a), applied
our deobfuscator, and decompiled with Ghidra. When de-
obfuscated ROPonly binary, the recovered instructions are
slightly different from the original code, but Ghidra success-
fully recovered almost the same control structure as the orig-

"https://ghidra-sre.org/
2nttps://retdec.com/
3https://github.com/radareorg/r2dec-js

inal C source code. On the other hand, ROP+OPpgsg binary
cannot be deobfuscated by this approach since opaque pred-
icates use many kinds of instructions that our deobfuscator
cannot handle. This result shows that the ROP transformation
itself can be broken by static ROP chain analysis but can be
hardened by opaque predicates.

Secondly, we analyze immediate operands that appear in
ROP chains. In the example shown in Figure. 5, byte com-
parison instructions cmp eax,0x48; cmp eax, 0x65;
are used periodically. Those instructions are converted to a
pattern like push 0x48; push G(pop ecx); . in ROP
chain, and by looking at pushed constant, it is possible to ex-
tract string constant. We wrote a script to automate extracting
data from these patterns (periodic occurrence of immediate
operands with various intervals) and successfully recovered
string constant in both non-obfuscated binary and obfuscated
binary (ROPonly). On the other hand, we could not recover im-
mediate operands from binary obfuscated with opaque predi-
cates (ROP+OPpgg). This result shows that it is important to
protect immediate operands using opaque predicates.

C: Dynamic Symbolic Execution As noted in §2.1, we
consider Threat C: DSE for an input finding attack which
computes input value that passes the validation functions. We
created a script based on angr to find a possible input that will
cause the program shown in Figure. 5 to output ‘OK’.

We applied this script to programs with each obfuscation
configuration. We also change some DSE (angr) execution
strategy parameters: depth-first vs. breadth-first search and
symbolic vs. tracing. We ran the script with a memory thresh-
old of 8GB and measured the time and memory needed to
compute the input. The result is shown in table 5.

The result shows that DSE can crack non-obfuscated
(Baseline) and ROPonly binaries within 10 seconds and
ROP+OPg,sic binary in 1 minute, while it cannot crack
ROP+OPpsg and ROP+OPpsg+Hiding binaries because of
memory overflow. It shows that ROP, combined with DSE-
resistant opaque predicates, will almost nullify input finding
attacks with DSE, even for a straightforward program like
this. Applying ROP solely or using opaque predicates with-
out user input is not a good defense against DSE; it does
not increase analysis time/memory very much compare to its
runtime slowdown.

This experiment also shows the effectiveness of using user
input value as input to opaque predicates; we looked into
the compiled example code and found that each input byte
goes into eax register when comparing it against an expected
value. This verifies our intuition that registers contain user
input, suggested in 3.3.

D: Dynamic ROP Chain Analysis Lastly, we evaluate
the robustness of ROPFuscator against Threat D: dynamic
ROP chain analysis. As noted in the previous experiment,
static analysis has a limitation that we cannot analyze all

https://ghidra-sre.org/
https://retdec.com/
https://github.com/radareorg/r2dec-js

Table 5: DSE analysis time and consumed memory for different obfuscation configurations and exploration strategies

DSE exploration strategy in angr

Program Obfuscation config Symbolic/BFS Symbolic/DFS Tracing/BFS Tracing/DFS

Time Memory Time Memory Time Memory Time Memory
~ Baseline 5.4s 170MB 5.5s 173MB 4.5s 170MB 4.4s 169MB
Early-exit ~ ROPonly 9.5s 168MB 8.0s 164MB 9.5s 173MB 7.4s 176MB
ROP+OPgysic 85.3s 417MB 57.4s 365SMB 85.7s 413MB 56.1s 368MB

ROP+OPpsg Out of Memory Out of Memory Out of Memory Out of Memory

ROP+OPpsg+Hiding Out of Memory Out of Memory Out of Memory Out of Memory
) Baseline 4.5s 130MB 4.5s 130MB 3.7s 130MB 3.7s 130MB
Late-exit ~ ROPonly 7.1s 138MB 7.3s 134MB 7.0s 141MB 7.0s 141MB
ROP+OPgysic 69.7s 324MB 68.2s 326MB 74.1s 342MB 74.0s 345MB

ROP+OPpsg Out of Memory Out of Memory Out of Memory Out of Memory

ROP+OPpsg+Hiding Out of Memory Out of Memory Out of Memory Out of Memory

opaque predicates’ instructions. We used an approach similar
to [16,21] to emulate the ROP chain building code to imple-
ment a dynamic ROP deobfuscator. Given a code range, the
deobfuscator executes the code range with a CPU simulator
and collects the execution trace.

We applied this dynamic ROP deobfuscator to the
early-exit function shown in Figure. 5 (a) to both
ROP+OPpsg and ROP+OPpsg+Hiding. This deobfusca-
tor successfully extracted the code which is semantically
equivalent to the original one, from ROP+OPpsg obfus-
cated binary. However, it can only extracted partial code
from ROP+OPpgg+Hiding obfuscated binary. For exam-
ple, mov ecx,0x48; xchg eax,edx; mov eax,edx; sub
eax,ecx; xchg eax,edx are extracted from ROP+OPpsg
binary, while only mov eax,edx; sub eax,ecx; xchg
eax, edx are extracted from ROP+OPpgsg+Hiding binary,
which means the first two instructions are hidden in the
opaque predicates. This means that opaque predicates are
not robust against the dynamic tracing attack, but instruction
hiding can be used to prevent the attack from revealing the
entire code.

Takeaway—RQ4: Robustness.

ROP transformation is robust against threat A (disassem-
bler and decompiler) but not robust against threat B (static
ROP), C (DSE), and D (dynamic ROP). Introducing opaque
predicates fortifies obfuscated programs against B (static
ROP) and C (DSE). Introducing instruction hiding further
inhibits full disclosure of code by threat D (dynamic ROP),
making it hard to decompile the obfuscated binary to the
original code. A summary is shown in Table 6.

4.4 Practicality: Case Studies

In §4.2, we evaluated the performance of ROPFuscator with
hypothetical workloads, and the impact was significant. Such

10

Out of Memory: force stopped after exceeding 8000MB

overhead is not compatible with any real-world application of
our obfuscation technique. For this reason, we considered al-
ternative options that retained a better performance overhead.
We assume that functions that produce or operate on sensitive
data and, therefore, subject to obfuscation interest take up a
small portion of the total execution time. To balance robust-
ness and performance, we considered to selectively obfuscate
such functions and we later verify our assumptions in the rest
of this section.

We apply ROPFuscator to two widespread use cases: mul-
timedia copyright protection and software license protection.
We explain how obfuscation mechanisms can be applied to
protect critical assets in the program, balancing robustness
and performance.

4.5 Multimedia Copyright Protection

Digital rights management (DRM) [32] is a mechanism to pro-
tect commercial media content such as DVD videos against
digital piracy. It uses an encryption (or scrambling) mecha-
nism to protect media content, but attackers try to retrieve the
keys to decrypt the content to bypass protection and copy the
material illegally. Obfuscation has played an important role
in preventing attackers from retrieving the keys by reverse
engineering.

First, we adopt ROPFuscator to an open-source video
player VLC Media Player” together with DVD descrambling
library libdvdcss’. Upon VLC Media Player’s request, libdvd-
css library derives the content decryption key (title key) from
the protected DVD media and decrypt (descramble) the DVD
content, which is further decoded by VLC Media player to be
played on-screen.

Though the final goal is to protect media content, it is more
important to protect the title keys and key derivation pro-

“https://www.videolan.org/vlc/
5https://www.videolan.orq/developers/libdvdcss.html

https://www.videolan.org/vlc/
https://www.videolan.org/developers/libdvdcss.html

Table 6: Robustness and performance of each algorithm in ROPFuscator against attacks

Robustness against Attack Algorithm

Performance

Obfuscation Algorithm

A) Decompiler B) Static ROP C) DSE D) Dynamic ROP Slowdown ratio Size ratio
Baseline O O O O 1 1
ROPonly o O O O 10-200 10-16
ROP+OPgysic [J [J O O 100-2000 900-1500
ROP+OPpsg ([[J [J O 2004000 1500-2500
ROP+OPpgg+Hiding ([J ([J [J [~ 150-3000 1200-2000

Table 7: Execution time, code size and behavior of VLC media player using
libdvdcss obfuscated with various options

Config Time CPU Played Size

[s] Usage Smoothly? [MB]
Baseline 302 12.4% Yes 0.034
ROPonly 30.2 23.3% Yes 0.38
ROP+OPpsg 110.2 97.0% No 48.5
ROP+OPpsg+Hiding 120.7 95.3% No 41.3
Balanced 302 232% Yes 18.4

cess. Therefore, we prioritized the obfuscation of title key
derivation functions than content decryption functions in the
balanced configuration below.

We obfuscate libdvdcss with four configurations and com-
pare performance: 1) obfuscating all function with ROP
only (ROPonly) 2) obfuscate all functions with ROP +
opaque predicates (ROP+OPpsg) 3) obfuscate all func-
tions with ROP + opaque predicates and instruction hiding
(ROP+0OPpge+Hiding) 4) obfuscate title key derivation func-
tions with ROP+OPpgg+Hiding and the rest of the library
with ROPonly (Balanced). We identified title key derivation
functions with function name containing key or Key, and
function AttackPattern.

Then we ran VLC media player to play a commercial DVD
title for 30 seconds, with each libdvdcss.so loaded. The per-
formance result is shown in Table 7. In the table, Baseline
shows the result without obfuscation, and the other three rows
show the time, average CPU usage, and if it played smoothly.
The average CPU usage is calculated by dividing CPU utiliza-
tion time by total execution time, i.e. (Tyser + Tsystem)/ Treal -
Without obfuscation, the program plays DVD video smoothly,
and CPU usage is around 10%. When we apply ROP transfor-
mation, it still plays video smoothly, but CPU usage is raised
by about 10 %points. If we apply opaque predicate upon ROP
transformation, the decryption process is not in time for real-
time playing, and the player frequently stops to buffer movie
content, showing CPU usage at almost 100%. When we obfus-
cate the library with a balanced configuration, it plays almost
in the same performance as ROP transformation only.

This result seems to support our assumption: a confiden-
tially critical part of the program is not executed many times,
and obfuscating it does not have a great performance impact.

11

O: Breakable, @: Robust, @: Mostly Robust

Table 8: Execution time and code size of a License++ program obfuscated
with various options

Obfuscation Time[s] Size[MB]
Baseline 0.005 3.2
ROPonly 0.055 17.0
ROP+OPDSE 37.0 2157
ROP+OPpsg+Hiding 29.1 1866
Balanced 0.158 115

We measured the number of function calls and instructions
using Valgrind [33]. libdvdcss accounts for about 5.5% of
total instructions executed. Among libdvdcss, DVD decryp-
tion function (dvdcss_unscramble) accounts for 99.88% of
instructions (15091 out of 15970 function calls), while key
derivation functions only account for 0.028% of instructions
(63 function calls). Using slower (more robust) obfuscation
for only 0.0015% of overall instructions (0.028% of libdvdcss)
does not greatly impact performance; total overhead would
be about 6% even if execution speed overhead is 4000x.

4.6 Software License Protection

We test software license protection use case with an open-
source program License++°. It utilizes an open-source C++
cryptography library to verify the cryptographic signature of a
license file. We obfuscate the license check algorithm together
with encryption algorithms to see the entire performance.

The result is shown in Table 8. In ‘opaque’ and ‘full’ con-
figuration, most overhead in execution time is caused by the
program loading process since the executable program size is
about 2GB, and there are many relocations in the executable.
This means that we should shrink executable size for practical
use. Since most of the code consists of unused functions in the
cryptographic library, we apply strong obfuscation only to the
entire license checking algorithm and related cryptographic
functions. As a result, the overhead is about 0.15 seconds in
execution time and 112MB in code size. We believe less than
0.5 seconds of overhead within startup time is negligible.

6https://qithub.com/amrayn/licensepp

https://github.com/amrayn/licensepp

Takeaway—RQS5: Practicality.

We applied ROPFuscator to two real-world typical use
cases, protected multimedia player, and software license
verifier. It is possible to select sensitive functions which
should be strongly protected to achieve robustness for ac-
ceptable performance loss. We also give examples of how
we prioritize such functions to balance robustness and per-
formance.

5 Discussion

In the previous section, we evaluated our work’s performance,
robustness, coverage, and correctness and demonstrated a real-
world application of our technique.

We also demonstrated that ROPFuscator is robust against
modern reverse engineering methodologies as defined in the
threat model and, on average, can protect 70% of the code
(specifically, 60%—80% according to §4.1). Our experiments
highlighted the trade-off between the performance and ro-
bustness of our approach (Table 6). However, this can be
balanced on a per-function basis by tuning the obfuscation
layers (§4.4).

Although ROPFuscator is not specifically designed for
data obfuscation, it can be used to protect constant values by
leveraging opaque constants (§2.2.2). Moreover, users can
embed and protect sensitive data such as constants used in
whitebox cryptography [34].

Next, we have evaluated our method against other obfusca-
tion techniques.

Resistance to Other Obfuscation Approaches There are
several reverse engineering techniques which have been pro-
posed recently: opaque predicate identification [29, 30], virtu-
alization [35] and program-synthesis [36] deobfuscation. This
section discusses the applicability of these methodologies
against our model and how our approach performs countering
each of them.

First, we implemented a countermeasure to opaque pred-
icate identification attacks [29, 30]. We could not test the
aforementioned works for different reasons. We encountered
technical issues in compiling the project by Ming et al. [29]
that promptly offered us support. Unfortunately, the issues
persisted. Differently, we could not evaluate against the work
by Ming et al. [29] due to the code being unavailable. For
these reasons, we designed the opaque predicates so that their
output cannot be easily inferred even if identified (§3.3.2).

Later, we evaluated a virtualization deobfuscation approach,
VMHunt [35]. Xu et al. claim their method is also compat-
ible with ROP chains since they consider gadgets as VM
instructions. Unfortunately, VMHunt was unable to identify
any ROP gadgets in our experiments.

12

Finally, we tested our technique against Syntia, a deobfus-
cation framework based on program synthesis. Syntia syn-
thesizes the semantics of a program from its input-output
relation. According to our experiments, it can recover the
semantics of simple functions (e.g. f(x,y) = 2x—y), but re-
gardless of obfuscation, it could not recover more complex
functions (e.g. f(x,y) = 4x+y). Considering that the func-
tions we encountered in our experiments were more complex
than the aforementioned examples, Syntia could not properly
address our approach.

A common dynamic analysis task is to debug a process;
therefore, we considered a scenario where the attacker has
complete knowledge of ROPFuscator and its mechanics. In
this case, we are aware that it is impossible to inhibit an at-
tacker from setting a breakpoint before a ret instruction to
then single step and trace the ROP chain execution. However,
instruction hiding (§2.2.3) offers some protection by corrupt-
ing the execution trace, which satisfies our goal of increasing
the analysis time cost.

6 Related Work

This section briefly discusses the related studies on obfus-
cation and ROP. Moreover, we explain their relation to our
approach.

ROP-based obfuscation ROP is applied in various ways
to protect software. The most common is its application by
malware authors to evade detection from signature-based soft-
ware such as anti-virus solutions. Frankenstein [11] extracts
ROP gadgets from benign binaries and combines them to gen-
erate ROP chains that execute malicious actions. However,
this approach is not robust enough in countering an attack in a
MATE scenario since it is not designed to withstand targeted
ROP analyses. ROP needle [12] uses a similar technique to
evade anti-virus detection by encrypting and decrypting the
ROP chains on-the-fly using an externally supplied encryp-
tion key. ROP needle fits more a malicious scenario where
malware authors intend to protect their work from analysts for
a determined time-frame (e.g., the duration of a malware cam-
paign). However, there is no specified time limit for reverse
engineering in commercial software protection, exposing the
encryption key to an eventual disclosure to malicious analysts.

Another application is software tampering. Parallax [37]
proposes a mechanism to embed ROP gadgets into sensitive
code regions. Modifying these code regions leads the ROP
chain to be corrupted hence impeding its proper execution.
This can deceive debuggers when setting software breakpoints
since they inherently change the program code. Therefore,
Parallax focuses on protecting software integrity and not its
confidentiality.

In conclusion, several mechanisms protect software in
MATE scenarios, sharing the objectives defined in our

work [13,38]. RopSteg [38] proposes an instruction steganog-
raphy algorithm. It injects ROP chains in code regions along
with extra bytes. As an effect, this causes disassemblers to
disassemble instructions erroneously. However, this considers
only static analyses (Threat A) hence excluding a targeted
ROP chain analysis executed through dynamic tracing (Threat
D). ROPOB [13] exclusively obfuscates the control flow of a
program, leaving non-control instructions unobfuscated, and
its threat model does not consider targeted ROP analyses
(Threat B and D).

ROP Chain Generation Q [24] proposes an approach to
generate ROP chains. It defines semantic operations for
branches, memory load/store, and arithmetic calculations.
Later, it extracts and lifts the gadgets into an intermediate
language that is finally compiled to a ROP chain as a result.

This technique is effective in generating ROP chains. We
share this trait due to our ROP transformation pass, although
its final goal is not obfuscation and thus has no discussion
about preventing reverse engineering.

Opaque Predicates and Opaque Constants We use
opaque predicates based on previous work. There is a multi-
tude of algorithms proposed to generate them, that span across
various calculations including arithmetic operations, non-
determinism [6], one-way functions [26], and computation-
ally hard problems (e.g. pointer-aliasing [6] or 3SAT [19,27]).
Furthermore, three main types of opaque predicates are doc-
umented in literature: invariant, contextual, and dynamic
opaque predicates. Invariant opaque predicates always eval-
uate to the same value, decided a-priori by the obfuscator.
Contextual opaque predicates change their output based on
preconditions chosen at design-time [31]. Dynamic opaque
predicates introduce the idea of correlated predicates that
maps the output of a predicate to the input of subsequent
one [39].

These proposals are diagonal to our approach, i.e., we can
enhance ROPFuscator by integrating them as a component
in our obfuscation. For this reason, we considered the use of
opaque constants to compute gadget addresses [19].

7 Conclusion

Software obfuscation techniques are evolving to challenge
new reverse engineering techniques. Inspired by the advan-
tage of return oriented programming which interferes with
our natural perception of program execution, we present ROP-
Fuscator, a framework for fine-grained obfuscation of C/C++
programs based on ROP (§3.2). Although previous work al-
ready explores the effectiveness of ROP as an obfuscation
technique (§6), our approach deals with evolving reverse en-
gineering attacks by introducing a unified threat model for
ROP-based obfuscation techniques (§2.1). We introduce a

novel instruction hiding technique (§3.4), later integrated with
opaque predicates and constants (§3.3), to provide a config-
urable yet robust framework.

The arms race between software obfuscation and reverse en-
gineering seems to be endless. We introduce an unified threat
model and a thorough evaluation along multiple dimensions
(§4) to help us reason about the decisions involved in de-
signing or choosing obfuscation techniques. This is an effort
to provide researchers and practitioners a better understand-
ing of strengths and limitations of obfuscation mechanisms
(§2.2.1-2.2.3).

References

[1] David Aucsmith. Tamper resistant software: an imple-
mentation. In Proc. IH ’96, pages 317-333, 1996.

[2] Stanley Chow, Yuan Gu, Harold Johnson, and
Vladimir A. Zakharov. An approach to the obfuscation

of control-flow of sequential computer programs. In
Proc. ISC 01, pages 144-155, 2001.

[3] Cullen Linn and Saumya Debray. Obfuscation of exe-
cutable code to improve resistance to static disassembly.
In Proc. CCS ’03, pages 290-299, 2003.

[4] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes
Kinder, Georg Merzdovnik, and Edgar Weippl. Protect-
ing software through obfuscation: Can it keep pace with
progress in code analysis? ACM Comput. Surv., 49(1),
2016.

[5] Y. Kanzaki, A. Monden, M. Nakamura, and K. Mat-
sumoto. Exploiting self-modification mechanism for
program protection. In Proc. COMPSAC 03, pages
170-179, 2003.

[6] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Proc. POPL ’98, pages 184—-196,
1998.

[7] Bertrand Anckaert, Mariusz Jakubowski, and Ramarath-
nam Venkatesan. Proteus: virtualization for diversified
tamper-resistance. In Proc. DRM ’06, pages 47-58,
2006.

[8] Michael N. Gagnon, Stephen Taylor, and Anup K.
Ghosh. Software protection through anti-debugging.
IEEE Secur. Priv., 5(3):82-84, 2007.

[9] Hovav Shacham. The geometry of innocent flesh on
the bone: return-into-libc without function calls (on the
x86). In Proc. CCS 07, pages 552-561, 2007.

[10] James R. Bell. Threaded code.
16(6):370-372, 1973.

Commun. ACM,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Vishwath Mohan and Kevin W Hamlen. Franken-
stein: Stitching malware from benign binaries. In Proc.
WOOT ’12, 2012.

Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia,
and Camil Demetrescu. The ROP needle: hiding trigger-
based injection vectors via code reuse. In Proc. SAC
’19, pages 1962-1970, 2019.

Dongliang Mu, Jia Guo, Wenbiao Ding, Zhilong Wang,
Bing Mao, and Lei Shi. ROPOB: Obfuscating binary
code via return oriented programming. In Proc. Se-
cureComm ’17, volume 238, pages 721-737, 2018.

Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar,
Abdullah Gani, Ejaz Ahmed, Muhammad Shiraz, Steven
Furnell, Amir Hayat, and Muhammad Khurram Khan.
Man-at-the-end attacks: Analysis, taxonomy, human as-

pects, motivation and future directions. J. Netw. Comput.
Appl., 48:44-57, 2015.

Kangjie Lu, Dabi Zou, Weiping Wen, and Debin Gao.
deRop: removing return-oriented programming from
malware. In Proc. ACSAC ’11, pages 363-372, 2011.

Mariano Graziano, Davide Balzarotti, and Alain Zi-
douemba. ROPMEMU: A framework for the analysis
of complex code-reuse attacks. In Proc. ASIACCS ’16,
pages 47-58, 2016.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SOK: (state of) the art of
war: Offensive techniques in binary analysis. In Proc.
S&P ’16, pages 138-157, 2016.

Andrei Homescu, Michael Stewart, Per Larsen, Stefan
Brunthaler, and Michael Franz. Microgadgets: Size does
matter in turing-complete return-oriented programming.
In Proc. WOOT 12, 2012.

Andreas Moser, Christopher Kruegel, and Engin Kirda.
Limits of static analysis for malware detection. In Proc.
ACSAC 07, pages 421-430, 2007.

Mathilde Ollivier, Sébastien Bardin, Richard Bonichon,
and Jean-Yves Marion. How to kill symbolic deob-
fuscation for free (or: unleashing the potential of path-
oriented protections). In Proc. ACSAC ’19, pages 177—
189, 2019.

Daniele Cono D’Elia, Emilio Coppa, Andrea Salvati,
and Camil Demetrescu. Static analysis of ROP code. In
Proc. EuroSec ’19, pages 1-6, 2019.

14

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Sebastian Banescu, Christian Collberg, Vijay Ganesh,
Zack Newsham, and Alexander Pretschner. Code ob-
fuscation against symbolic execution attacks. In Proc.
ACSAC ’16, pages 189-200, 2016.

Hui Xu, Yangfan Zhou, Yu Kang, Fengzhi Tu, and
Michael Lyu. Manufacturing resilient bi-opaque pred-
icates against symbolic execution. In Proc. DSN 18,
pages 666-677, 2018.

Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit hardening made easy. In Proc.
USENIX Security ’11, 2011.

Ariel Tamches and Barton P Miller. Fine-grained dy-
namic instrumentation of commodity operating system
kernels. In Proc. OSDI °99, 1999.

Lukas Zobernig, Steven D. Galbraith, and Giovanni Rus-
sello. When are opaque predicates useful? In Proc.
TrustCom/BigDataSE ’19, pages 168—175, 2019.

Brendan Sheridan and Micah Sherr. On manufacturing
resilient opaque constructs against static analysis. In
Proc. ESORICS 16, volume 9879, pages 39-58, 2016.

R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM, 21(2):120-126, 1978.

Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu.
LOQP: Logic-oriented opaque predicate detection in
obfuscated binary code. In Proc. CCS 15, pages 757-
768, 2015.

Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae,
Philippe Elbaz-Vincent, and Thanh-Ha Le. Defeating
opaque predicates statically through machine learning
and binary analysis. In Proc. SPRO’19, pages 3-14,
2019.

Stephen Drape. Intellectual property protection using
obfuscation. Technical Report CS-RR-10-02, University
of Oxford, 2010.

Qiong Liu, Reihaneh Safavi-Naini, and Nicholas Paul
Sheppard. Digital rights management for content distri-
bution. In Proc. ACSW Frontiers ’03, volume 21, pages
49-58, 2003.

Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In Proc. PLDI °07, pages 89—100, 2007.

Yuan Xiang Gu, Harold Johnson, Clifford Liem, Andrew
Wajs, and Michael J. Wiener. White-box cryptography:
practical protection on hostile hosts. In Proc. SSPREW
’16, pages 1-8, 2016.

[35] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu.
VMHunt: A verifiable approach to partially-virtualized
binary code simplification. In Proc. CCS 18, pages
442-458, 2018.

[36] Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz. Syntia: Synthesizing the semantics
of obfuscated code. In Proc. USENIX Security 17,

2017.

[37] Dennis Andriesse, Herbert Bos, and Asia Slowinska.
Parallax: Implicit code integrity verification using
return-oriented programming. In Proc. DSN ’15, pages

125-135, 2015.

[38] Kangjie Lu, Siyang Xiong, and Debin Gao. RopSteg:
program steganography with return oriented program-

ming. In Proc. CODASPY ’14, pages 265-272, 2014.

[39] J. Palsberg, S. Krishnaswamy, Minseok Kwon, D. Ma,
Qiuyun Shao, and Y. Zhang. Experience with software
watermarking. In Proc. ACSAC’00, pages 308-316,

2000.

A Listings of Obfuscated Code

In this appendix, we exemplify how a program is transformed
in more detail. Throughout the section, we use a simplified
variant of the program shown in Figure 3 as an example:

int check (const char *c) {

if (s[0] == 'A’) return 0;
if (s[l1] == '"B’) return 0;
if (s[2] == 'C’') return 0;
if (s[3] != "\0') return 0;

Compiled Program (Unobfuscated) Figure 6 shows unob-
fuscated program: a) is a (disassembled) view of the program
compiled to x86 instructions, b) is a decompiled code by
Ghidra and c) is the control flow graph generated by Ghidra.
The code a) is easily understood by software engineers who
knows x86 instruction set, and b) is equivalent to the original
code.

15

ROP Transformation Figure 7 shows the program af-
ter ROP transformation (ROPonly). The disassembled code
shown in a) contains many push instructions followed by ret
instruction. Each pushed address is expressed as an offset
from a random libc function symbol. b) and c) shows the
decompiled code and control flow using Ghidra 9.1.2. Ghidra
sequentially analyzes the function from the entry point, and it
stops analysis when it reaches the first ret instruction without
any jumps. Therefore it displays only a single block (the first
ROP chain builder code) as the entire function flow. It does
not compile the code correctly, since only push instructions
are executed and they do not affect return values (normally
stored in eax register).

Opaque predicates Figure 9 shows the program obfus-
cated by ROP+OPpg,gic. Similar to the ROPonly case, Ghidra
only analyzes instructions before the first ret. Ghidra opti-
mizes away the opaque predicates from the decompiled code,
since it does not affect eax when it reaches ret. The control
flow is a single block, similarly to ROPonly but with much
more instructions in the block.

Instruction Hiding Figure 10 shows the program obfus-
cated by ROP+OPpgg+Hiding. The disassembled code is
mostly the same as that of ROP+OPp,gi. except that hidden
instructions and dummy instructions are inserted in-between
opaque predicates. Decompiled code and control flow are
almost the same as ROP+OPg,;. and omitted here.

Deobfuscation with Static ROP Chain Analysis Figure 8
shows the program deobfuscated by Threat B: static ROP
chain analysis in the course of evaluation in §4.3. Although
disassembled code has redundant instructions (e.g. xchg) and
replaced instructions (e.g. cmp with sub), the decompiled
code and control flow look similar to the original ones shown
in Figure 6. We confirmed that static ROP chain analysis is
not applicable to programs obfuscated by opaque predicates,
so the deobfuscation result is not listed here.

check:

.L1:

.Lend:

leec:
lefl:
lef6:
lefb:
1£00:
1£05:
1£07:
1£f0c:
1£0d:
1£f11:
1£12:
1£16:
1flb:
1£20:
1£25:
1f2a:
1f2f:
1£34:
1£38:
1£39:

push eax

mov eax, DWORD PTR [esp+0x8]
mov eax, DWORD PTR [esp+0x8]
movsx eax,BYTE PTR [eax]

cmp eax,0x41

je .L1

mov DWORD PTR [esp],0x0

jmp .Lend

mov eax,DWORD PTR [espt+t0x8]
movsx eax,BYTE PTR [eax+0x1]
cmp eax,0x42

a) disassembled code

undefinedd check (char *param_1
undefinedd local_4;
if (*param_1 == 'A’") {
if (param_1[1] == 'B") {
if (param_1[2] == 'C") {
if (param_1[3] ==
local_4 = 1;
} else {
local_4 = 0;
}
} else {
local_4 = 0;
}
} else {
local_4 = 0;
}
} else {
local_4 = 0;
}
return local_4;
}

b) decompiled code

{

¢) control flow graph

Figure 6: Disassembled / decompiled view of original program

a) disassembled code (comment manually added)

ivarl = (int)*param_l + -0x41;
if (ivarl == 0) {

iVarl = (int)param_1[1] + -0x42;

if (ivarl == 0) {
leec: mov ecx,0x41 iVarl = (int)param_1([2] + -0x43;
lefl: xchg edx, eax if (iVarl == 0) (
lef2: mov eax, edx ivarl = (int)param_1(3];

if (iVarl == 0) {
lefd: sub eax,ecx local_4 = 1;
lefé6: xchg edx, eax } else {
lef7: jmp 1£0d } local 4 = 0;
} else {
1£0d: je 1f5e local_4 = 0;
. . }

1£13: jmp 1f3a | else |

push 0x1f0d # jump to L1

push __strspn_cl+0x644a6 # xchg eax,edx; ret
push _I0_switch_to_get_mode+0xdc4a8 # sub eax,ecx; ret
push strerror_r+0xl0aba # mov eax,edx; ret
push _IO0_getline+0x82bf6 # xchg eax,edx; ret
push 0x41 # (value 0x41)

push vprintf+0x14a664 # pop edx; ret

ret

lea esp, [esp-0x18] $# L1

pushf

lea esp, [espt+0xlc]

push xdr_int32_t+0xfff00c4db # push eax; ret
push vasprintf+0x76b43 # cmove eax,ecx; ret
push 0x1f3a # jump to L2

push _I0_wfile_underflow+0xfffef44s # pop eax; ret

push 0x1f5e # jump to L3

push _IO0_wfile_underflow+0xl4c72a # pop ecx

lea esp, [esp-0x4]

popf

ret

int check (char *param_1)

return (int)*param_1;

b) decompiled code

¢) control flow graph

Figure 7: Disassembled / decompiled view of obfuscated program with ROPonly

undefineds check (char *param_1) {
ivarl;
undefined4 local_d;

int

a) disassembled

}

local_4 = 0;
}
} else {
local_4 = 0;
}
return CONCAT44 (ivarl, local_4);

b) decompiled

¢) control flow

Figure 8: Disassembled / decompiled view of the program (ROPonly), deobfuscated by static ROP analyzer

16

push eax
mov eax
mov eax
movsx eax
lea esp
push eax
push ecx
push edx
lea esp
mov eax
mov edx
mul edx
cmp eax
setne al
cmp edx
setne dl
or al,
shl ecx
or cl,
mov eax
mov edx
mul edx
cmp eax
setne al
cmp edx
setne dl
or al,
shl ecx
or cl,
mov eax
mov edx
mul edx
cmp eax
setne al
cmp edx
setne dl
or al,
shl ecx
or cl,
mov eax
mov edx
mul edx
cmp eax
setne al
cmp edx
setne dl
or al,
shl ecx
or cl,

(snip)
mov eax
mov edx
mul edx
cmp eax
setne al
cmp edx
setne dl
or al,
shl ecx
or cl,
mov eax
mov edx
mul edx
cmp eax
sete al
cmp edx
sete dl
and al,
shl ecx
or cl,
mov eax
mov edx
mul edx
cmp eax
setne al
cmp edx
setne dl
or al,
shl ecx
or cl,
mov eax
xor eax
add eax
push eax
lea esp
pop edx
pop ecx
pop eax
ret

,dword ptr [esp+0x8]
,dword ptr [esp+0x8]
,byte ptr [eax]

, lesp-0xlc]

, lesp+0x28]
,0x6281e212
,0%x3d213e44

,OxedcTatal
,0xb7dc5433

dl
s 1
al
,0x517£01b6
,0x69497d86

,0x7dc83b19
,0xd81f4da3

dl
1
al
,0x57d0le6a
;1 0x207cee30

,0x9f86c923
,0xf36a0983

dl

1

al
,0x69f9alf9
,0x3f918ca

,0x9508b8df
,0xb932e736

dl
1
al

,0x150bdf2a
,0x3e684931

,0xelccebdd
,0x88c417ac

dl
s 1
al
,0x309d4££9
,0x27ed7d5e

,0xb88f7e35
,0xbccb864d

dl
s 1
al
,0x58clbacc
,0xl6cedd9a

,0x548a51al
,0xbadf6397

dl

1

al

secx
,0x48272b13

, fts_children

, lesp-0xc]

a) disassemble code

undefined8 check (undefined4 param_1,

return CONCAT44 (param_2, (int)*param_1_00);

}

undefined4 param_2,
char *param_1_00) {

b) decompiled code

Figure 9: Disassembled / decompiled view of obfuscated program with

ROP+OPgic

¢) control flow

17

mov
mov
mul
xchg
xchg
xchg
cmp
sete
cmp
sete
and
shl
or
mov
mov
mul
add
cmp
sete
cmp
sete
setne
or
mov
xor
add
push

Figure 10:

eax,0x4£f772ed5
edx,0x911add0b
edx

DWORD PTR [esp-0x10],eax # hidden code
DWORD PTR [esp-0xlc],eax # hidden code

DWORD PTR [esp-0x10],

eax,0xd96363ch
al
edx,0x73167dc0
dl

al,dl

ecx,1

cl,al
eax,0x31831£d0
edx,0x179daalb
edx

eax # hidden code

DWORD PTR [esp-0x20],0x749f1b7f # dummy code

eax,0xca2cceal
al
edx,0xf34b29%eb
dl

dl

al,dl

eax, ecx
eax,0x7731540a

eax,gnu_get_libc_release

eax

Disassembled code

ROP+OPpsg+Hiding

of program

obfuscated

with

	1 Introduction
	2 ROPFuscator
	2.1 Threat Model
	2.2 Design Choices
	2.2.1 ROP Transformation
	2.2.2 Opaque Predicate Insertion
	2.2.3 Instruction Hiding

	3 System Architecture and Implementation
	3.1 Architectural Overview
	3.2 ROP Transformation
	3.3 Opaque Predicate Insertion
	3.3.1 Opaque Gadget Addresses Against Static Analysis
	3.3.2 DSE-resistant Opaque Predicates

	3.4 Instruction Hiding

	4 Evaluation
	4.1 Completeness: Obfuscation Coverage
	4.2 Performance and Correctness
	4.3 Robustness
	4.4 Practicality: Case Studies
	4.5 Multimedia Copyright Protection
	4.6 Software License Protection

	5 Discussion
	6 Related Work
	7 Conclusion
	A Listings of Obfuscated Code

