

Riding House, Wolfeton House, Charminster Dorset Tree-ring analysis of further oak timbers Martin Bridge and Cathy Tyers

Discovery, Innovation and Science in the Historic Environment

Research Report Series 236-2020

RIDING HOUSE WOLFETON HOUSE CHARMINSTER DORSET

Tree-ring analysis of further oak timbers

Martin Bridge and Cathy Tyers

NGR: SY 67851 92254

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

236-2020

SUMMARY

Previous dendrochronological work at the Riding House, Wolfeton House, established that three original floor beams were from trees felled in the late sixteenth, or early seventeenth century and that timbers from the replacement roof were all from trees felled in, or around, AD 1720. As this could potentially be the earliest riding house in the country, further work was undertaken to attempt to refine these dates. Unfortunately, complete sapwood present on some original timbers did not survive sampling, but did allow further refinement of the date ranges previously obtained. Four floor beams appear likely to have all been felled before AD 1603 and most likely in the AD 1590s, whilst felling dates ranging from spring AD 1720 to winter AD 1720/21 have been obtained for roof timbers.

CONTRIBUTORS

Martin Bridge and Cathy Tyers

ACKNOWLEDGEMENTS

This additional study was commissioned by Shahina Farid (then of English Heritage, now Historic England) and we are grateful to her for her assistance. We would like to thank Philip Hughes (Philip Hughes Associates) for arranging site work, his assistance on site, and also for permission to reproduce drawings used in this report. We thank Peter Marshall (HE) for his useful comments on earlier drafts of this report.

The front cover photo shows the exterior view of the north elevation (DP034595 ©Historic England Archive).

ARCHIVE LOCATION Dorset Historic Environment Record Dorset Council County Hall Dorchester Dorset DT1 1XJ

DATE OF INVESTIGATION 2013–2020

CONTACT DETAILS Martin Bridge UCL Institute of Archaeology 31-34 Gordon Square London WC1H 0PY martin.bridge@ucl.ac.uk

Cathy Tyers Historic England Cannon Bridge House 25 Dowgate Hill London EC4R 2YA cathy.tyers@historicengland.org.uk

CONTENTS

Introduction	1
Methodology	2
Ascribing felling dates and date ranges	3
Results and Discussion	3
References	5
Figures	7
Tables	13
Appendix	18

INTRODUCTION

The Riding House (List Entry Number 1119102) is situated a little more than 100m north of Wolfeton House which originates from the fifteenth century, and forms part of a farm complex, near the village of Charminster (Fig 1). The building measures 33.5m by 9.1m externally, and 31.4m by 7.5m (103 feet by 24 feet 6 inches) internally, has a basic rectangular shape, a show-front and an entrance (in the south elevation) large enough for a horse and originally had two ranges projecting at right angles to the north wall (Drury 1985; Rodwell 1986; Worsley 2003). Although latterly used as a barn, it was not until the RCHME applied the terms 'Riding House' and 'Riding School' to the building (RCHME 1970), that its historical and architectural significance were re-evaluated.

In 1985, Paul Drury, English Heritage Assistant Inspector of Historic Buildings, described the structure as 'A building of c1590-1610 intended for recreational use, perhaps a purpose-built riding house, constructed in a predominantly gothic style. Later converted to a barn, then a cowhouse; now virtually derelict (Drury 1985, 1). As the building was 'rather narrow' to be a purpose-built riding house Drury concluded it was probably a multi-functional recreation building possibly used for activities such as tennis, bowls, archery and banqueting.

In 1985 English Heritage commissioned Kirsty Rodwell to undertake a detailed archaeological investigation of the Riding House to better understand the function of the building. The work published in the Archaeological Journal (Rodwell 1991) alongside research on a similar building, the Hospice at Ansty in Wiltshire, concluded that the building at Wolfeton was a purpose-built riding house, and that the building at Ansty functioned as a lodge to Old Wardour with both designed by the Somerset mason-architect William Arnold (Rodwell 1991). The date of construction of the riding house was suggested to be between *c* AD 1610 and AD 1620, and therefore to post-date the riding house at St James's Palace (Rodwell 1991, 288).

In 2003, Giles Worsley, concluded that the building at Wolfeton 'would be uncomfortably narrow for a riding house' and further supported Drury's suggestion that it was not a purpose-built riding house, but a 'multi-purpose recreational building similar to 'The Hospice' at Ansty Manor, Wiltshire' (Worsley 2003, 88)

The interior has an inserted floor made from coniferous wood. Eight large floor beams, 0.3m square, of which the second from the west was represented by only a stump in the north wall, removed during works after 2005, are set nearly 1m below wall plate level. These broadly align with the roof trusses above where present, but are not found associated with all trusses. Each of these supported 21 ceiling joists, represented by mortices in the east underside of each beam. On the west side a continuous pulley mortice enabled the joists to be inserted after the beams had been set in position. At least one slot in the south-east corner suggests that the wall may have been built around an upper east-west joist.

Eleven roof trusses are set on the walls, though it is clear that the original wall plates have gone, and the principals must have been reset. Pairs of principals were joined by a single tenoned and pegged collar and there were three trenched purlins. A long series of modifications has taken place since, as the roof structure proved inadequate to prevent lateral spread. Additional collars have been added between the lower and middle purlins, the original collars being found between the middle and upper purlins. Trusses four and five, numbered from the west end, have doubled principal rafters immediately adjacent to each other, and it is thought these represent two pairs of original trusses and later repairs. The older principals are highly degraded and one had been truncated before reaching wall plate level.

The dendrochronological investigation in 2005 (Bridge 2005) dated three timbers from the original floor as being from trees most likely felled in the very late sixteenth or very early seventeenth century, with one timber thought to have been from a tree felled *c* AD 1600, confirming that this was indeed an early example of a riding house, but not giving a precise date. Six timbers from the replacement roof were found to have been felled in, or around, AD 1720. Subsequently, as more timbers were made accessible during extensive works at the site, further dendrochronological work was requested by Sarah Ball (Historic Buildings Architect), and suggestions for other timbers, possibly original, but re-used in the eighteenth-century conversion of the building, were made by Philip Hughes. In addition, further early eighteenth-century timbers were thought useful to investigate to learn the extent of new material used at that time, and give further precise dates. The additional fieldwork was carried out in February 2013 prior to the roof being re-covered.

METHODOLOGY

An assessment of the timbers for dendrochronological study sought further accessible oak timbers with more than 50 rings and with sapwood, although slightly shorter sequences were sometimes sampled if it was felt they may provide useful additional information, and on occasion some timbers may be sampled more than once to maximise sapwood information. Those timbers judged to be potentially useful were cored in February 2013 using a 16mm auger attached to an electric drill. The cores were labelled, and stored for subsequent analysis.

The cores were polished on a belt sander using 80–400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their tree-ring sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004). Cross-matching was attempted by a process of qualified statistical comparison by computer, supported by visual checks. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-

value ranges of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values, however, do not preclude same tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring (ie if it has only the spring vessels or early wood formed, or the latewood or summer growth) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem (tpq)* or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 9–41 rings (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

RESULTS AND DISCUSSION

The results from the previous study (Bridge 2005) are included here to give a more complete picture of the evidence gained. Some timbers were resampled in the present study in an attempt to refine the dates obtained by getting more sapwood information, however, the sapwood was found to be very fragile, and often disintegrated. Measurements were made of the amounts of sapwood lost so that better felling date estimates could be made, based for example on the mean ringwidth of the outer rings of the core. A number of timbers in the eighteenth-century roof were thought to be re-used, and possibly to represent primary timbers (highlighted in Figs 2 and 3) and these were assessed, but in most cases found to have too few rings for reliable dating purposes. The exception to this were the principal rafter in trusses 4 and 5 (samples wrh14, wrh15, and wrh16, sampled in the 2005 investigation), but none of these timbers subsequently dated (Table 1). The timbers sampled are located in Figures 2 and 3, whilst Figures 4 and 5 show two of the timbers sampled. The timbers from which samples wlf05 and wlf06 were taken are not shown in Figures 2 and 3 as they are from collars (not visible on drawings) but the trusses they are part of are shown. There are two levels of collar, the lower ones (sampled) being between the lower and middle purlins, the upper between the middle and upper purlins. In addition the floor beam from which

sample wrh07 was taken is not located on the drawings as it is uncertain from the original report (Bridge 2005: Fig 5) whether it was the floor beam associated with truss 9 or truss 10.

Table 1 gives the details of all samples taken in both investigations. Samples with fewer than 45 rings were not measured, although some short sequences of less than 45 rings were measured if they were either the second sample from a timber or they were an inner or outer section of a fractured core. The ring width data for all the measured samples are given in the Appendix. The friable nature of the extant sapwood led to a number of timbers being sampled twice to maximise sapwood information. Each pair of samples from these timbers cross-matched (Table 2a) and were combined to form new series for subsequent analysis. Cross-matching of these new series and the other timber series identified two groups of coeval timbers (Tables 2b and 2c; Figs 6 and 7). Each group was combined resulting in the formation of a four-timber mean of 84 years length, WOLFETN3, which supersedes the WOLFETN1 series from 2005, and dates to the period AD 1503–86 (Table 3a), and WOLFETN4, a ten-timber mean replacing WOLFETN2, a 138-year long series dating to the period AD 1583–1720 (Table 3b).

The additional dated timbers combined with the second cores taken from three timbers originally sampled in 2005 has allowed some refinement of the felling date ranges obtained in 2005. In Table 1 the number of millimetres of sapwood lost from the outer bark edge on coring is shown, and this figure has allowed the likely range of sapwood ring numbers to be determined. In the cases of samples wlf03 and wlf04, the mean ring width of the outermost 10 rings on the core was determined and the amount of sapwood lost (mm) was divided by this value to give a likely number of rings lost. A value of ± 3 rings was then applied to this figure to give a narrow likely felling date range. In the cases of wlf01 and wlf07, the complete sapwood remained intact, but was separated from the heartwood rings on the core. In these cases a felling date range was calculated allowing for a maximum of 6 rings being lost between the heartwood and the detached sapwood.

Amongst the primary timbers, three floor beams were found to have been felled before AD 1603, and most likely in the AD 1590s, with a fourth floor beam being likely to be coeval (Fig 6). This is a clear confirmation of the conclusion from the 2005 investigation as it demonstrates the early origin of the building, which if built as a riding house would make it the earliest example in the country.

The replacement roof was thought to contain some re-used, possibly primary timbers, but many such timbers were found to be unsuitable for dendrochronological study, having too few rings, and no evidence could be found to support this hypothesis. Ten timbers were however dated from this roof structure. Felling dates for four of the timbers range from spring AD 1720 to winter AD1721/22 with the remaining six timbers appearing likely to be coeval. This indicates that construction of this replacement roof occurred in the early AD 1720s shortly after felling.

The trees used in both phases are likely to have come from relatively local sources, the wider geographical extent of the eighteenth-century matches probably reflecting the distribution of dated reference material in this period, rather than actual differences in the geographical origin of the trees.

REFERENCES

Arnold, A J, Howard, R E, and Litton, C D, 2005 *Tree-ring analysis of timbers from Poltimore House, Poltimore, Devon*, English Heritage Centre for Archaeol Rep, **37/2005**, Portsmouth

Arnold, A J, Howard, R E, and Tyers, C, 2008 *Tree-ring analysis of timbers, Apethorpe Hall, Apethorpe, Northamptonshire*, English Heritage Res Dept Rep Ser, **87/2008**, Portsmouth

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Bridge, M C, 2002 *Tree-ring analysis of timbers from the roof of St Leonard's Chapel, Farleigh Hungerford Castle, Norton St Philip, Somerset*, English Heritage Centre for Archaeol Rep, **55/2002**, Portsmouth

Bridge, M C, 2005 *Tree-ring analysis of timbers from Wolfeton Riding House, Wolfeton House, Charminster, Dorset*, English Heritage Centre for Archaeol Rep, **55/2005**, Portsmouth

Bridge, M C, Roberts, E, and Miles, D, 2011 Tree Ring Dating Lists, *Vernacular Architecture*, **42**, 107

Drury, P J 1985 The 'Riding House' (Wolfeton Barn), Charminster, Dorset, unpublished report.

Fletcher, J M, 1984 Tree-ring dates, Vernacular Architecture, 15, 69

Groves, C, 1994 *Tree-ring analysis of oak timbers from Lodge Farm, Kingston Lacy Estate, Dorset*, Anc Mon Lab Rep, **16/94**, London

Haddon-Reece, D, Miles, D H, and Munby, J T, 1989 Tree-ring dates, *Vernacular Architecture*, **20**, 46-9

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architecture*, **28**, 40–56

-, 2005 *The Dating of the Nave Roof at Salisbury Cathedral, Wiltshire*, English Heritage Research Dept Rep, **58/2005**, Portsmouth

-, 2007 The Tree-Ring dating of the White Tower, HM Tower of London (TOL99 and TOL100), London Borough of Tower Hamlets, English Heritage Res Dept Rep Ser, **35/2007**, Portsmouth

Miles, D H, and Worthington, M J, 2000 Tree-ring dates, *Vernacular Architecture*, **31**, 90-113

-, 2002 Tree-ring dates, *Vernacular Architecture*, **33**, 81-102

Miles, D H, Worthington, M J, and Bridge, M C, 2004 Tree-ring dates, *Vernacular Architecture*, **35**, 95-113

-, 2005 Tree-ring dates, Vernacular Architecture, 36, 87-101

RCHME, 1970 An Inventory Of Historical Monuments In The County Of Dorset Volume Three Central Dorset Part I, Royal Commission On Historical Monuments England

Rodwell, K A, 1986 *The Riding House, Charminster, Dorset: an investigation of its structural archaeology*, unpubl report

Rodwell, K A, 1991 The architecture of entertainment: two examples of a late sixteenth-century building type, *Archaeological Journal*, **148**, 269–95

Tyers, C, Hurford, M, Arnold, A, Howard, R, Thorp, J, and Waterhouse, R, forthcoming *Dendrochronological Research in Devon: Phase II*, Historic England Res Rep Ser, Portsmouth

Tyers, I, 1996 *Tree-ring analysis of timbers from Longport Farmhouse, Kent,* ARCUS Report, **279**, Sheffield

Tyers, I, 2001 *Dendrochronological spot-dates of samples from Abbey Road, Barking, London (AYR99)*, ARCUS Report, **575d**, Sheffield

Tyers, I, 2004 *Dendro for Windows Program Guide* ,3rd edn, ARCUS Report, **500b**, Sheffield

Tyers, I, and Groves, C, 1997 *Dendrochronological analysis of timbers from Poole's Wharf, Hotwells, Bristol,* ARCUS Report, **303**, Sheffield

Worthington, M, and Miles, D, 2006 *Tree-ring analysis of timbers from the Old Clarendon Building, Oxford, Oxfordshire*, English Heritage Res Dept Rep Ser, **67/2006**, Portsmouth

Worthington, M J, and Miles, D, 2007 *The Tree-ring dating of the timber roof to the dome, the Radcliffe Camera, Oxford, Oxfordshire*, English Heritage Res Dept Rep Ser, **97/2007**, Portsmouth

Worsley, G, 2003 A history and catalogue of the British riding house, *Transactions* of the Ancient Monuments Society, **47**, 48–92

FIGURES

Figure 1: Maps to show the location of the Riding House, Wolfeton House, Charminster, Dorset. Top right: Scale 1:20,000. Bottom: Scale 1:2000 © Crown Copyright and database right 2020. All rights reserved. Ordnance Survey Licence number 100024900. © British Crown and SeaZone Solutions Ltd 2020. All rights reserved. Licence number 102006.006. © Historic England

Figure 2: Drawing of the interior elevation of the south wall and roof (looking south) showing the timbers sampled for dendrochronology, (floor beam 8, wrh07 is not shown) adapted from an original by Philip Hughes Associates. The timbers marked in green were thought possibly to be re-used primary timbers

 ∞

Figure 3: Drawing of the interior elevation of the north wall and roof (looking north) showing the timbers sampled for dendrochronology, adapted from an original by Philip Hughes Associates. The timbers marked in green were thought possibly to be re-used primary timbers

9

Figure 4: The ex situ floor beam 2 sampled as wlf01, photo Martin Bridge

Figure 5: Floor beam 7, sampled as wrh06 and wlf03, photo Martin Bridge

Figure 6: Bar diagram showing the relative positions of overlap of the dated series from primary timbers, with their associated 11 likely felling date ranges. Samples wrh06 and wlf03 are both from floor beam 7; samples wrh03 and wlf04 are both from floor beam 4. White bars represent heartwood rings, yellow hatched bars represent sapwood, and narrow bar sections represent additional unmeasured rings

Figure 7: Bar diagram showing the relative positions of overlap of the dated timbers from the replacement roof, with their associated likely felling date ranges. Samples wrh09 and wlf09 are both from principal rafter 10 south. White bars represent heartwood rings, yellow hatched bars represent sapwood, and narrow bar sections represent additional unmeasured rings

TABLES

Table 1. Details of the samples taken from timbers in the Riding House, Wolfeton House. Samples prefixed wrh are from the 2005 investigation and wlf from the 2013 fieldwork. Floor beams and trusses are numbered from the west end

Sample No	Location	Number	Date of	Sapwood	Mean ring	Mean	Felling date
		of rings	sequence (AD)		width (mm)	sensitivity	range (AD)
Primary timbe	rs						
wrh01	Floor beam 1	70	1516-85	h/s	3.36	0.31	1594–1626
wlf01	Floor beam 2 <i>ex situ</i>	77	1503-79	1 (+11C NM)	2.41	0.25	1590–96*
wrh02	Floor beam 3	135	-	h/s	1.63	0.34	-
wrh03wlf04	Floor beam 4	78	1509-86	1 (+29mmC)	2.97	0.22	1596–1602Ω
wrh03	ditto	72	1509-80	h/s	2.94	0.28	ditto
wlf04	ditto	54	1533-86	1 (+29mmC)	2.89	0.16	ditto
wrh04	Floor beam 5	33	-	h/s	NM	-	-
wrh05i	Floor beam 6 (inner)	45	-	-	2.95	0.21	-
wrh05ii	ditto (outer)	29	-	h/s	1.71	0.20	-
wrh06wlf03	Floor beam 7	64	1513–76	h/s (+27C NM)	2.09	0.21	1592–98 ^Ω
wrh06i	ditto (inner)	22	-	-	2.67	0.14	ditto
wrh06ii	ditto (outer)	46	1525-70	h/s (+27C NM)	2.25	0.19	ditto
wlf03	ditto	64	1513-76	h/s (+27mmC)	2.00	0.22	ditto
wrh07	Floor beam 8	33	-	h/s	NM	-	-
wlf02	Lintel over window in south wall bay	78	-	h/s (+7C NM)	1.60	0.21	-
	2–3						
Possible prima	ry timbers						
wrh16	Principal rafter 4 south (east)	<45	-	h/s	NM	-	-
wrh14	Principal rafter 5 north (east)	<45	-	h/s	NM	-	-
wrh15	Principal rafter 5 north (west)	51	-	-	2.36	0.31	-
wlf05	Collar, truss 4 (re-used?)	45	-	?h/s (+18mmC)	2.14	0.19	-
wlf06	Collar, truss 5 (re-used?)	63	-	h/s (+23mmC)	1.84	0.24	-
wlf08	Wall plate, bay 10-11 north	<45	-	-	NM	-	-

)	Table 1.	(continued)
---	----------	-------------

Sample No	Location	Number	Date of	Sapwood	Mean ring	Mean	Felling date
_		of rings	sequence (AD)	_	width (mm)	sensitivity	range (AD)
Replacement	roof timbers		·				
wrh17	Principal rafter 2 south	63	1605-1707	4	4.74	0.35	1712–44
wrh13	Principal rafter 6 south	42	-	h/s	NM	-	-
wlf07	Principal rafter 7 north	67	1626–92	h/s (+23C NM)	2.02	0.18	1715-21*
wrh11	Principal rafter 8 north	49	1628–76	-	4.43	0.28	after 1685
wrh10	Principal rafter 9 north	115	1583-1697	6	2.86	0.22	1700-32
wrh09wlf09	Principal rafter 10 south	114	1606-1719	27¼C	2.04	0.19	spring 1720
wrh09	ditto	88	1606-93	1	2.42	0.19	ditto
wlf09	ditto	107	1613-1719	27¼C	1.88	0.21	ditto
wrh08	Principal rafter 11 south	120	1595-1714	19 (+5 NM)	2.29	0.23	1719–36
wrh12	Common rafter bay 7–8 north	96	1624–1719	16½C	1.42	0.26	summer 1720
wrh12a	ditto	96	1624-1719	16½C	1.43	0.25	ditto
wrh12b	ditto	23	1697-1719	16½C	1.46	0.20	ditto
wlf13	Middle purlin, bay 5–6 south	83	1638-1720		1.85	0.26	winter 1720/21
wlf13a	ditto	76	1635-1713	22	1.89	0.26	ditto
wlf13b	ditto	28	1693-1720	28C	1.27	0.23	ditto
wlf12	Middle purlin, bay 6–7 south	51	1651-1701	h/s (+9 NM)	1.68	0.19	1710-42
wlf11i	Middle purlin, bay 7–8 south	20	-	-	2.10	0.17	-
wlf11ii	ditto	50	-	16½C	1.50	0.24	-
wlf10	Middle purlin, bay 8–9 south	72	1649-1720	16C	2.35	0.24	winter 1720/21
wlf10a	ditto	58	1663-1720	16C	2.26	0.25	ditto
wlf10b	ditto	68	1649-1716	12 (+4C NM)	2.33	0.26	ditto

Key: h/s = heartwood/sapwood boundary; NM = not measured; C = complete sapwood, felled in winter; $^{1}\!4C$ = complete sapwood, felled the following summer; $^{1}\!xx$ NM = rings present in detached sapwood; $^{+}\!xxC$ NM = rings present in detached complete sapwood; $^{+}\!xxmmC$ = amount of complete sapwood lost on coring; * = range calculated allowing a likely maximum of 6 rings to have been lost between the measured core and the detached sapwood; $^{\Omega}$ = range calculated by taking the mean ring-width of the last 10 measured rings, dividing the amount of sapwood lost by this mean figure, and then taking a range of ± 3 around this date (calculated for wlf04 and applied to the combined wrh03wlf04; similarly, the range for wlf03 is applied to the combined wrh06wlf03)

Table 2a. Cross-matching between the pairs of samples taken from the same timber 3, values of t of 3.5 or over are considered significant, shaded cells show same timber pairs from resampled timbers

t-value (years overlap)

	<i>t</i> -value (years overlap)
Sample	wlf04
wrh03	7.0 (48)

wlf13b

4.9 (21)

Sample wlf13a

	<i>t</i> -value (years overlap)
Sample	wlf03
wrh06ii	5.3 (46)

	<i>t</i> -value (years overlap)
Sample	wfl09
wrh09	11.2 (81)

t-value (years overlap)

	<i>t</i> -value (years overlap)
Sample	wlf10b
wlf10a	20.0 (54)

wrh12b

10.6 (23)

Sample wrh12a

Table 2b. Cross-matching between the dated timber series making up the site chronology WOLFETN3, values of t of 3.5 or over are considered significant

15

<i>t</i> -value (years overlap)							
Sample	wrh03wlf04	wrh06wlf03	wlf01				
wrh01	5.7 (70)	3.5 (61)	2.1 (64)				
wrh03wlf04		8.5 (64)	3.2 (71)				
wrh06wlf03			5.6 (64)				

Sample	wrh09wlf09	wrh10	wrh11	wrh12	wrh17	wlf07	wlf10	wlf12	wlf13
wrh08	5.3 (109)	7.6 (103)	5.0 (49)	4.8 (91)	3.9 (63)	3.9 (67)	4.2 (66)	2.5 (51)	6.0 (77)
wrh09wlf09		3.1 (92)	3.5 (49)	4.3 (96)	3.3 (63)	9.4 (67)	3.1 (71)	2.3 (51)	5.1 (82)
wrh10			4.2 (49)	2.6 (74)	3.3 (53)	1.8 (67)	3.3 (49)	1.0 (47)	4.7 (60)
wrh11				3.9 (49)	4.7 (32)	2.0 (49)	3.5 (28)	1.6 (26)	3.2 (39)
wrh12					2.8 (63)	3.1 (67)	3.7 (71)	3.9 (51)	4.8(82)
wrh17						0.9 (48)	5.2 (59)	3.2 (51)	3.2 (63)
wlf07							1.4 (44)	2.9 (42)	2.8 (55)
wlf10								7.3 (51)	6.6 (72)
wlf12									4.8 (51)

Table 2c. Cross-matching between the dated timber series making up the site chronology WOLFETN4, values of t of 3.5 or over are considered significant

Table 3a. Dating evidence for the site chronology WOLFETN3, AD 1503–86

Source region	Chronology	Reference	Filename	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Somerset	St Leonard's Chapel	Bridge 2002	FARLEGH1	1430-1591	84	8.3
Hampshire	Blaegrove Cottage, Up Nately	Bridge <i>et al</i> 2011	BLAEGROV	1347-1610	84	8.2
Hampshire	Kings Worthy	Miles et al 2005	KNGWRTHY	1485-1609	84	8.0
Wiltshire	Dog Kennel Farm	Miles et al 2004	CLRENDN7	1351-1603	84	7.6
London	White Tower, Tower of London	Miles 2007	WHTOWR7	1463–1616	84	7.6
Dorset	Lodge Farm, Kingston Lacy	Groves 1994	KINGLCY2	1470-1568	66	7.5
Hampshire	Chawton House	Miles and Worthington 2002	CHAWTON6	1289-1589	84	7.1
Oxfordshire	Rose Farmhouse	Haddon-Reece et al 1989	ROSE	1543-1613	44	7.0
London	Abbey Road, Barking (AYR99)	Tyers 2001	AYRBRRLS	1314–1599	84	7.0
Berkshire	Shaw House, Newbury	Miles et al 2004	SHAW1	1391-1579	77	6.9

Table 3b. Dating evidence for the site chronology WOLFETN4, AD 1583–1720

Source region	Chronology	Reference	Filename	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Wiltshire	Salisbury Cathedral	Miles 2005	SARUM12	1556-1703	121	9.3
Devon	Poltimore House, Poltimore	Arnold <i>et al</i> 2005	POLBSQ04	1534-1725	138	8.7
Kent	Longport Farmhouse	Tyers 1996	LPH2_T7	1617-1760	104	8.3
Oxfordshire	Radcliffe Camera	Worthington and Miles 2007	RADCLIFF	1660-1740	61	7.3
Oxfordshire	Old Clarendon Building, Oxford	Worthington and Miles 2006	CLRNDNOX	1539–1711	129	7.0
Wiltshire	Bishop's Palace, Salisbury	Miles and Worthington 2000	SARUMBP7	1562-1661	79	6.9
Norfolk	Thrigby Post Mill	Fletcher 1984	THRIGBY	1674-1790	47	6.9
Northants	Apethorpe Hall, Apethorpe	Arnold <i>et al</i> 2008	APTASQ02	1574–1749	138	6.9
Bristol	Pooles Wharf	Tyers and Groves 1997	BPW039	1639–1747	82	6.8
Devon	Pound Farm, Luppit	Tyers et al forthcoming	LPPBT12A	1557–1664	82	6.8

17

APPENDIX

Ring width values (0.01mm) for the sequences measured

1.0	1								
wrnu	1			~					~ ~ -
332	373	486	491	275	608	596	506	486	395
695	761	721	528	607	578	387	483	466	582
377	374	391	500	320	500	332	286	373	305
235	224	297	413	218	244	191	224	362	355
85	253	246	223	256	211	466	215	302	174
145	218	367	296	255	379	138	176	306	186
110	181	114	182	259	170	179	135	190	198
110	101		102	207	1/0	1/2	100	170	170
wrh02									
102	141	232	192	143	154	117	311	374	480
250	21Q	202	308	2/1	112	102	122	165	260
230	210	200	114	241	110	170	70	105	200
110	213	108	114	00	104	143	/0	93	110
213	13/	102	121	213	121	5/	130	1/6	123
	58	125	109	108	220	93	178	122	94
163	309	200	141	140	117	98	124	181	181
211	292	213	255	173	129	106	126	166	180
236	150	122	113	173	177	227	104	224	264
275	184	75	135	104	145	161	112	101	163
90	137	88	137	162	267	106	104	210	103
103	126	170	123	194	162	154	214	193	173
187	127	181	129	163	193	205	112	229	298
193	169	155	158	122	175	177	115	180	129
171	110	114	64	106	1,0	- , ,		200	
1/1	110	111	01	100					
wrh0'	3								
200	367	465	310	257	378	281	173	366	362
220	245	-100 	205	450	020 010	201	1/0	457	512
329	240	332 400	323	409	477	205	441	457	J1J 401
339	303	400	303	313	4//	598 945	000	439	481
612	445	499	168	233	2/8	345	263	220	250
357	272	323	173	203	207	311	182	236	176
181	277	178	273	159	252	237	132	285	173
238	219	208	162	157	215	131	113	152	113
113	234								
wrh0	5i								
260	286	380	359	408	423	259	331	304	368
390	422	380	344	260	260	291	380	240	350
290	225	258	157	176	228	348	393	303	249
334	284	148	191	288	276	408	283	233	283
201	202	217	292	312					
wrh0	ōii								
216	175	231	217	218	178	231	185	188	172
291	155	184	141	174	163	151	233	147	154
150	121	168	116	122	120	114	93	154	201
100	161	100	110	144	120	117	20	104	

wrh06i

245 321	322 297	310 304	319 328	316 198	298 136	260 157	332 225	293 236	316 199
211	247								
wrh0	6ii								
169	267	274	315	257	188	316	252	206	228
309	235	241	221	275	313	356	188	235	181
233	199	218	231	317	245	245	158	179	172
208	168	235	233	242	211	228	222	170	225
161	124	171	169	184	186				
wrh0	8								
417	444	372	377	386	362	481	469	323	273
245	270	328	382	247	292	368	209	344	291
219	144	246	251	190	179	237	187	242	142
236	244	209	295	287	260	246	323	318	217
246	173	266	315	376	361	261	256	144	187
187	276	170	391	210	192	185	168	159	212
277	178	215	240	165	283	271	205	223	212
224	221	141	154	175	166	112	240	267	279
208	111	120	151	151	218	171	254	220	144
128	172	172	236	206	193	181	165	187	181
169	254	232	209	139	183	185	154	266	178
91	79	88	166	180	165	177	153	178	122
wrh0	9								
297	290	286	173	257	246	335	363	317	313
220	255	449	469	449	448	431	448	338	405
264	307	321	425	280	214	310	333	169	312
242	313	353	248	266	236	207	159	167	183
194	160	247	267	205	170	173	185	276	264
247	195	235	174	229	207	222	192	282	166
137	86	142	155	173	167	183	236	225	193
126	153	158	156	170	107	222	151	146	194
197	208	206	277	200	170	185	207	140	127
wrh1	0								
385	431	484	500	364	470	476	179	279	373
368	471	422	466	430	395	357	312	436	406
334	333	247	254	316	303	222	273	298	217
408	342	310	298	335	304	243	288	252	198
279	199	316	355	251	283	320	312	247	370
135	254	326	246	302	405	355	370	284	273
266	247	307	245	211	377	297	281	241	222
251	280	287	204	269	322	191	312	367	282
260	316	280	201	174	296	213	176	204	202
327	262	255	277 155	130	159	100	280	207	346
3227	168	126	252	205	314	250	209	200	165
164	115	0/	200 06	295 195	514	292	22J	2/0	100
104	110	24	90	100					
wrh1	1								
414	326	338	349	515	539	319	416	387	481
740	783	731	582	773	501	585	593	444	372

824	571	501	491	393	583	315	822	456	348
472	254	449	411	326	362	450	357	326	212
462	289	187	195	211	403	330	249	260	
wrh1	2a								
169	157	131	127	170	185	182	108	172	134
109	126	147	183	191	126	148	129	76	53
53	54	81	82	170	150	118	123	140	134
51	129	140	113	113	76	107	129	178	121
147	116	170	81	177	206	207	101	170	209
100	03	130	117	105	128	102	172	226	155
150	90 90	110	202	159	165	132	167	114	176
104	140	117	202	100	160	107	107	175	270
104	149	200 100	205	190	100	12/	182	1/3	2/0
229	1/0	103	108	120	128	120	130	112	106
132	127	149	115	170	155				
wrh1	2b								
188	184	151	128	182	182	267	205	159	98
103	122	136	115	122	110	85	120	126	142
97	169	160	110	122	110	00	120	120	112
<i>)</i> /	107	100							
wrh1	5								
242	190	190	266	402	265	137	152	108	136
271	224	192	165	115	72	120	123	132	450
344	385	349	147	158	214	259	216	116	122
05	135	144	152	317	214	207	110	167	225
20 102	107	401	152	J17 700	230 475	420	450	107	205
120	107	401	3/3	400	4/5	430	450	424	505
202									
wrh1	7								
638	, 557	495	937	619	804	676	440	764	536
893	564	584	485	376	462	215	538	486	842
725	197	305		385	702 291	210	308	703	/62
72J 917	-107 	600	0 1 0 240	205 211	201 570	33∠ 496	590	/03	402 072
200	213	205	340	311 4E6	370 250	420	004 456	401	2/3
308	048	393	408	430	350	5∠5 202	430	048	33U
40/	690	448	382	2/0	282	282	358	484	293
171	263	295							
wlf01									
516	468	247	195	209	250	288	228	361	392
506	405	248	256	296	399	598	371	364	275
171	146	132	200	345	368	332	282	347	236
166	19/	240	190	070 074	10/	002 044	250	303	101
100 014	1/0	2 4 9 102	100	∠/ 1 122	194	244	207	100	101
100	140	102	102	100	105	2/0	207	199	100
100	225	100	10/	22U	10/	212	∠U0	240 200	201
1//	191	199	110	1/1	230	2/5	231	209	239
145	150	153	182	181	117	152			
wlf02)								
389	403	419	228	128	109	108	135	125	148
152	120	160	220	214	270	386	483	242	277
204	726 726	<u>100</u>	100	בוד 10	107	201	157	בדב 190	106
126	∠30 170	202 1/1	17U 911	212 202	12/ 920	201 175	107 100	1/02	190 200
100	1/0	141	411	202	230	1/0	100	140	200

134	134	44	42	35	47	53	72	75	57
77	95	113	99	89	72	84	86	101	122
117	192	122	152	156	89	85	112	149	124
108	129	121	110	105	68	114	86		
wlf03									
434	342	220	100	202	255	339	251	253	258
187	127	135	258	268	308	255	234	277	170
161	199	329	252	267	248	252	233	268	133
166	120	166	142	172	165	266	191	201	189
185	157	235	157	154	126	146	176	147	198
175	186	163	151	234	150	168	151	160	124
134	116	81	110						
wlf04									
454	542	524	526	427	470	517	370	508	331
333	344	344	279	257	270	434	320	331	221
264	290	377	239	248	216	237	264	198	247
201	270	207	170	205	210	207	201	105	100
202	107	207	206	100	160	277	2 1 0 212	100	10/
203	200	262	200	199	109	220	212	190	194
190	290	202	200						
wlf05									
219	235	211	263	202	191	263	490	311	335
340	434	416	394	307	298	294	106	64	74
93	94	104	89	103	108	126	116	130	134
163	192	248	261	308	287	341	311	274	302
95	74	62	76	96					
wlf06									
<i>AA</i> 1	544	225	201	227	300	າຊາ	365	106	43
471 62	5 7 7	223 71	201	122	1/12	137	177	201	т <u>ј</u> 225
02 279	00 004	/1 100	122	120	220	137	270	201	223
270	224	102	133	240 114	420	223	270	307	2/9
2/0	229	2/0	2/4	114	42	00	03 107	89 100	115
90	142	126	151	132	145	188	18/	193	1/5
197	233	265	281	203	206	238	103	93	/5
	75	101							
wlf07									
182	251	271	352	223	177	266	251	134	213
158	221	214	203	172	177	157	153	192	185
221	155	197	222	201	158	183	164	229	154
205	185	204	177	243	227	244	191	240	192
159	113	125	154	188	176	238	299	320	247
186	186	174	185	175	196	193	143	193	160
181	224	253	238	210	212	239			
wlf09									
272	286	297	186	188	349	386	355	272	202
272	277	391	230	210	309	438	267	207	221
234	164	221	197	362	314	179	254	194	182
149	204	180	184	134	164	201	159	132	165
145	221	199	218	182	208	142	184	159	188

236-2020

166	205	164	130	85	124	171	177	162	160
196	205	142	102	148	172	174	219	227	262
215	198	128	228	202	230	210	226	131	185
175	147	127	119	143	117	83	90	95	96
116	151	118	90	100	93	126	120	134	119
121	83	112	165	158	154	173	120	101	11/
161	00	112	100	100	101	1/0			
wlf10)a								
199	282	263	237	228	390	370	197	168	232
419	291	200	259	332	306	173	381	236	381
220	190	155	217	146	202	199	207	144	90
99	126	113	187	158	137	79	128	133	176
253	268	197	271	298	254	309	238	273	260
249	233	215	179	266	235	233	244		
161.0	.1								
wit10)b	0.54	0.40	0.40	0.47	000	0.50	000	0.50
311	285	276	240	262	246	288	272	339	273
194	245	327	336	220	349	301	266	250	359
320	176	136	209	431	266	156	260	337	411
196	378	254	421	226	164	124	180	116	153
141	152	123	80	91	103	87	154	131	119
68	143	126	151	217	234	181	262	281	264
347	296	268	271	303	237	230	203		
wlf11	i								
230	219	272	240	163	181	261	262	259	280
141	231	246	225	226	208	213	180	119	121
140	201	210	220	220	200	210	100	11)	121
110									
wlf11	ii								
160	147	190	197	146	99	80	316	214	211
256	315	253	124	180	148	162	139	210	195
150	182	115	131	152	125	191	188	146	107
155	153	95	135	156	99	94	109	87	94
90	97	98	127	95	140	140	102	130	96
wlf12)								
266	- 244	269	273	287	355	277	244	205	169
1200	211	111	170	167	158	110	110	165	102
20 ³	204	101	122	107	117	120	120	105	162
150	20 200	110	132	120	11/	101	129	107	100
107	110	157	160	172	251	101	200	161	127
127	112	137	109	1/5	201	104	209	101	1/0
155									
wlf13	Ba								
263	353	336	311	252	250	196	261	228	208
269	217	191	246	243	160	263	291	221	217
208	142	223	260	237	128	281	177	181	120
224	227	241	163	212	318	229	163	184	136
177	152	268	203	418	191	210	117	180	167
156	169	202	144	112	170	110	116	159	147
178	97	139	142	96	167	123	108	67	90
90	92	81	101	92	118				

22

wlf13b											
206	105	130	165	166	170	129	144	130	114		
188	115	89	67	85	87	91	102	104	112		
150	108	164	96	151	124	154	121				

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:

Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.