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Abstract 

Longitudinal progress testing promotes self-directed deep learning across a full spectrum of 

knowledge, enabling early detection of underperformance and opportunities for 

remediation. Computer adaptive testing (CAT), where the difficulty of a test dynamically 

adjusts according to a test taker’s ability, has benefits in a progress testing context, but 

significant resource and experience is required to develop appropriate test materials. This 

study describes how a transnational consortium from eight medical schools in five countries 

across Europe was formed to develop a computer adaptive progress test applicable across 

international curricula. 1,212 students from more than 40 nationalities took part in the 

study, of whom more than 70% were not native English speakers, though nearly all reported 

competence in English. A content map for an international assessment blueprint was agreed 

and a substantial bank of 1127 English language progress test items were successfully 

calibrated after pilot testing to form the computer adaptive progress test (CA-PT) item bank. 

Results from the CA-PT pilot showed reliable convergence to stable estimates of ability, low 

standard errors of measurement and high test reliability for all participants. This study 

shows that an international collaborative consortium approach enables effective 

development of progress testing resources appropriate for computer adaptive testing, with 

potential for application across international borders and in populations where English is 

not the native language. Pooling resources internationally facilitates comparison and 

development of appropriate assessment blueprints and the efficient generation of high-

quality assessment items. 
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1. Introduction 

In 2018, a consortium of medical schools affiliated to the European Board of Medical 

Assessors (EBMA) secured an ERASMUS+ research grant (Strategic Partnerships – Call 2018) 

to develop an Online Adaptive International Progress Test (OAIPT) applicable across national 

borders and curricula. The first phase of the project involved establishing and equipping a 

consortium to develop a calibrated item bank suitable for computer adaptive progress testing 

(CA-PT). The second phase of the project involved developing and implementing a CA-PT 

algorithm appropriate for progress testing, operationalizing this in an accessible online test 

delivery platform, and delivering the test to international participants. 

 

1.1 Background 

An increasingly mobile international healthcare workforce requires quality assurance of 

medical training programmes across international borders to promote equality for 

healthcare workers and to maintain excellence in patient care (Crossley et al., 2002; 

Weggemans et al., 2017; Huang et al., 2019). However, the semi-autonomous 

administration of many medical schools implies substantial variability in assessment systems 

used and little comparability of graduate outcomes, even within countries with regulatory 

authorities (Wijnen-Meijer et al., 2013; Devine et al., 2015), making international 

comparisons complex.  

 

Progress testing, where learners are repeatedly tested from the same comprehensive 

domain of knowledge, has been shown to promote deep learning styles, aid knowledge 

retention and offer opportunities for early identification of learners requiring support, with 

outcomes feasible for international comparisons (Blake et al., 1996; van der Vleuten et al., 
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1996; Verhoeven et al., 2005; Freeman et al., 2010; Chen et al., 2015). However, developing 

good quality items that assess applied medical knowledge requires significant resource 

(Schuwirth et al., 2010). Regional progress test consortia have emerged in some countries 

aiming to pool resources to reduce the burden of test item generation at an institutional 

level and ultimately to improve standards of assessment across members (Wrigley et al., 

2012). Establishing international progress test consortia could be beneficial for equipping 

schools in graduating doctors prepared and confident to work in international healthcare 

settings. 

 

There is evidence that progress testing consortia have been successful and enduring, both 

when organised at faculty level for assessment quality control and standard setting, for 

example in The Netherlands (Schuwirth et al., 2010; Tio et al., 2016), or when driven by 

students for formative learning purposes as in the Progress Test Medizin in Germany and 

Austria (Nouns and Georg, 2010). Previous studies have also shown that the use of progress 

test material from one country can form a basis for developing items in another country 

(Swanson et al., 2010). 

 

Computer adaptive testing (CAT) provides opportunities to tailor tests to individual learners 

using an algorithm to dynamically select the difficulty of items based on the learner’s 

performance in previous items, converging on a learner’s true knowledge level (Collares and 

Cecilio-Fernandes, 2019). There is evidence that CAT increases test reliability and improves 

learner motivation and engagement compared to paper-based tests (Martin and Lazendic, 

2018), and CAT has been recommended for the measurement of progress (Shapiro et al., 
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2015; Nelson et al., 2017). Whether these positive effects are generalizable to professional 

programmes of study such as medicine has not been investigated.  

 

The success of CAT depends on a large item bank of calibrated items of varying difficulty 

covering, proportionally, all areas of the underlying test blueprint, with at least 1000 items 

(10 items per blueprint dimension as a rule of thumb) suggested for high-stake assessments 

(Wise and Kingsbury, 2000). To this end, an international collaborative framework for item 

bank development becomes extremely helpful (van der Vleuten et al., 2018). A large item 

bank is also required to counter the potential issue of item overexposure, which can be 

mitigated further by well-developed CAT item selection algorithms. Though CAT based on 

item response theory (IRT) was first proposed over 40 years ago (Lord, 1980), the viability of 

adaptive testing with large item banks was dependent on the speed with which testing 

systems could select relevant test items (Huang et al, 2009).  

 

One of the fundamental considerations in developing any knowledge test is defining the 

universe of knowledge that is to be assessed (Haladyna and Rodriguez, 2013). Content validity 

is a requirement of every evaluation and is achieved when the test content is consistent with 

the learning objectives and the learning experiences (Webb, 2006). A systematic blueprinting 

approach during test development is widely accepted as facilitating validity (Bridge et al., 

2003) and meeting learners experience with their curriculum (Coderre et al., 2009), but 

blueprinting an international medical assessment across curricula, culture and language is 

particularly challenging (Wrigley et al., 2012).  
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Generating high quality assessment items is a critical step to realise an item bank with 

adequate psychometric properties to enable CAT, but it is a complex task (Koller et al., 2017). 

Items need to cover a wide range of sampling characteristics such as content and difficulty 

while maintaining a high degree of discriminatory power. Poor quality items can lead to 

undesirable psychometric proprieties and impact on assessment integrity (Jozefowicz et al., 

2002; Downing, 2005). Reviewing is essential to ensure that items respect the guidelines and 

achieve the high quality that is demanded (van der Vleuten et al., 1996; Wallach et al., 2006). 

 

1.2 Research Objectives 

The objectives of this study are to describe and evaluate the development and 

implementation of the project in terms of: i) the development and reaching of consensus on 

an international assessment blueprint; ii) the generation of high quality test items sampling 

this blueprint; iii) the establishment of a substantial calibrated item bank with stable 

psychometric properties; and iv) the development, delivery and evaluation of the CA-PT. 
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2. Methods 

2.1 Consortium development 

In August 2018, medical educators and assessment specialists from eight medical schools in 

five European countries who were institutional members of the EBMA formed the OAIPT 

consortium. Four schools had extensive experience with progress testing in their own 

undergraduate medical education programmes. The other four schools had little or no 

experience with progress testing.  

 

2.2 OAIPT blueprint and item bank development 

The consortium developed a blueprint and item-bank for the international progress test as 

outlined in figure 1. 

 

Figure 1: OAIPT resource development 
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The consortium partners collaboratively agreed a terminology of disciplines and categories, 

the inclusion/exclusion of country specific content and the clarification of terms with 

regional specificities (e.g. equivalence of family medicine versus primary care). It was agreed 

that a test should consist of 125 items written in English covering 16 disciplines across 12 

categories. A final blueprint design for the OAIPT was achieved. Following the successful 

delivery of item writing workshops at all eight partner institutions, a total of 1938 items 

were generated for the OAIPT item bank. Upon completion of the review processes 1422 

items were considered acceptable for item calibration pilot testing. Figure 2 shows the 

agreed blueprint disciplines and categories for a single progress test, with the distribution of 

the number of items following the item writing and review processes. 

 

Figure 2: OAIPT agreed blueprint and reviewed item bank distribution. 

 

                Category

Discipline
Respiratory system

Musculoskeletal 

system

Mental Health 

Care

Reproductive 

system

Blood, lymph, heart 

and circulation

Hormones and 

metabolism

Skin and 

connective tissue

Personal, social 

and prevention 

aspects

Digestive system
Kidneys and 

urinary tract

Nervous system 

and senses

Knowledge about 

skills
Total

Accepted Items 

after Review

Anatomy 1 1 1 2 1 1 1 1 9 97

Biochemistry, molecular 

and cellular biology and 

genetics

1 1 2 2 1 1 1 1 2 12 115

Surgery 1 2 1 1 1 1 2 1 1 11 129

Dermatology, ENT, 

ophthalmology
1 4 1 3 1 10 100

Epidemiology, 

methodology and 

statistics

3 3 40

Pharmacology 1 1 1 1 1 1 1 7 87

Physiology 1 1 1 2 1 1 1 1 9 108

Geriatrics 1 1 1 3 47

Obstetrics and 

gynaecology
2 1 1 4 44

Family medicine 1 1 1 2 1 1 1 1 1 3 13 172

Internal medicine 3 1 4 1 1 1 2 2 1 1 17 194

Paediatrics 1 1 1 1 1 1 1 1 1 9 102

Meta-medical aspects 1 1 7

Neurology 1 3 4 46

Pathology 1 1 1 1 1 1 1 1 8 86

Psychiatry and medical 

psychology
3 1 4 38

Social medicine 1 1 10

Total 12 10 4 9 17 8 8 11 10 11 14 11 125

Accepted Items after 

Review
117 121 56 86 214 105 92 110 143 110 154 114 1422
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2.3 Pilot testing for item bank calibration 

The initial plan was for three non-adaptive pilot tests for item-bank calibration in the first 

year of the project but owing to the Covid-19 pandemic one pilot test had to be removed. 

As such, two non-adaptive pilot tests (pilot 1 and pilot 2) were administered in January 2020 

(pilot 1) and January 2021 (pilot 2) at all partner institutions and data from these pilots were 

analysed by the project psychometricians. Items which could not be validated in pilot 1 were 

either retired or entered into the pool of items for pilot 2 tests.  Data from the two pilot 

tests were then combined for item parameter calibration. 

 

A non-equivalent groups with anchor test (NEAT) equating design was employed where 

common anchor items were embedded across test forms to enable linkage for concurrent 

calibration of items across test forms (Raykov, 2010; Von Davier, 2011). Using the NEAT 

design enables all the item parameters to have the same metrics across all groups, i.e. the 

item parameters in one sample are directly comparable with item parameters in all other 

samples. Eight separate test forms of 125 items were constructed each covering one full 

progress testing blueprint. A subset of 35 items representative of the blueprint was chosen 

to form a common anchor item set to be included in all test forms. Each test form also 

included two pairwise anchor sets of 20 items. This equating design allowed for the 

administration of 595 items in pilot 1, distributed across test forms as shown in table 1. 

 

For pilot 1, students were recruited by each partner institution from all stages of medical 

study, and tests were scheduled and delivered online under locally invigilated exam 

conditions using the TestLife platform hosted by Maastricht University. Students were asked 
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to answer all items in the pilot tests and were given the opportunity (within the software) to 

make comments on any items that they wished to query during the test. Any items which 

were flagged with student comments during the pilot tests were reviewed by the local partner 

responsible for the item, and where necessary, either removed or reworked and administered 

again in pilot 2.  

 

Since one of the planned calibration pilots had to be cancelled due to the Covid-19 pandemic, 

the equating design was revised between pilot 1 and pilot 2 to enable the inclusion of more 

items in the calibration study. Eight test forms of 125 items each were constructed for use in 

pilot 2. The number of items in the full anchor item sets (in all papers) was reduced, and 

anchor items were distributed across the test forms, with more unique items used in each 

test. Consequently, 715 items were administered across all pilot tests in pilot 2 (table 1).  

 

Table 1: NEAT equating designs for allocation of items to pilot test forms 

 

 

 

Unique 

Items 

Anchor Item Sets 

Total 

items Common 
Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

Pilot 1 Test 1 50 35  20 20      125 

Test 2 50 35 20   20     125 

Test 3 50 35 20    20    125 

Test 4 50 35  20    20   125 

Test 5 50 35   20    20  125 

Test 6 50 35    20    20 125 

Test 7 50 35     20   20 125 

Test 8 50 35      20 20  125 
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A further impact of the Covid-19 pandemic was that after pilot 1 tests could no longer be 

viably delivered using face-to-face invigilation as planned. Subsequent tests were instead 

delivered on the University of Minho’s QuizOne® (http://quiz.one) testing platform which 

provides video proctoring functionality. Partners received training in remote proctoring and 

administered the pilot tests to their own students. In total 1219 items were administered 

across the two pilot tests including 91 items used in both pilots. 

 

2.3.1 Calibration pilot testing analysis 

 

One of the critical aspects in item-bank construction is that items should work in the same 

way for different populations. Parameter non-invariance is commonly called Differential Item 

Functioning (DIF) when we are considering pairwise comparisons. For group comparisons 

there are other methods available, such as multigroup confirmatory factor analysis and 

multiple indicators multiple causes analysis (MIMIC). For this study, we opted to use the 

 

Pilot 2 Test 1 65 15  10 5 5 5 5 5 10 125 

Test 2 65 15 10  10 5 5 5 5 5 125 

Test 3 65 15 5 10  10 5 5 5 5 125 

Test 4 65 15 5 5 10  10 5 5 5 125 

Test 5 65 15 5 5 5 10  10 5 5 125 

Test 6 65 15 5 5 5 5 10  10 5 125 

Test 7 65 15 5 5 5 5 5 10  10 125 

Test 8 65 15 10 5 5 5 5 5 10  125 

http://quiz.one/
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measurement alignment procedure, because of its approximate measurement invariance 

approach (Kim, 2017; van de Schoot, 2013), which conveniently allows for the use of more 

items while still testing for construct-irrelevant score variance (CIV). CIV was tested using a 

measurement alignment model in Mplus v8.4 (Muthén and Muthén, 2019). 

 

A one parameter Rasch model under joint maximum likelihood (JML) estimation was 

conducted in both Winsteps (Linacre, 2021) and XCalibre (Thompson and Jieun, 2017) to 

estimate item parameters (Baghaei, 2008). Though it has been suggested that a RASCH model 

under marginal maximum likelihood (MML) generates more consistent estimations, JML has 

been shown to be a defensible choice and computationally efficient for large item response 

datasets (Chen et al., 2019), and at the time of the analyses allowed for replication between 

XCalibre and Winsteps (as Winsteps only offered JML estimation).  

 

The Rasch model requires the underlying data to have certain properties one of which is that 

success or failure on any individual item should not depend on the test takers’ performance 

on any other item (conditional or local independence). Item residual correlations were 

calculated using Winsteps to enable testing for local dependence. 

 

The exclusion of items displaying local dependence improves compliance to the Rasch 

model assumption of unidimensionality: that all items measure a single latent construct. 

Unidimensionality was confirmed for both pilot studies using a principal component analysis 

of the residual item correlation matrix of the Rasch model. The large number of items in the 

analysis rendered using the widely accepted threshold for absolute unidimensionality of 

having an eigenvalue of the first residual contrast below 2.0 unfeasible. Instead, a test of 
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“essential unidimensionality” (Strout, 1990) was considered using the criteria that the first 

contrast should not explain more than 5% of the residual variance.  

 

Items which could not be calibrated were flagged for remedial work and administration in 

p2, or where necessary removed from the item bank. In total, 1127 items (92.5% of items 

piloted) were successfully calibrated in phase 1 and formed the item bank for the phase 2 

CA-PT pilot. 

 

2.4 Computer Adaptive Progress Test Pilot 

CAT requires the specification of five core components: the item bank; the starting point - 

an initial theta for individuals taking the test which may be fixed, randomized or evidence-

based from data; the item selection algorithms – including blueprint content distribution, 

item exposure, and enemy items; the scoring algorithms – for example (weighted) maximum 

likelihood (MLE) estimation or Bayesian estimation; the termination criteria – such as a 

target standard error of measurement for an individual (Thompson & Weiss, 2011). 

 

The Computer Adaptive Progress Testing (CA-PT) algorithms for item selection and theta 

estimation were developed using the open source R package catR (Magis & Barrada, 2017; R 

Core Team, 2020) which was embedded into the QuizOne testing platform. While catR 

enables selection of items from specific item sets, it does not currently facilitate item 

selection according to blueprints within an item bank. In order to sample items from across 

the progress test blueprint, we modified the catR algorithms to sequentially select items 

from subsets according to the pre-defined blueprint. Besides improving content validity this 

ensured that enemy items were not included. 
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Because we had no prior information on participants ability, we adopted a modified version 

of the starting rule. All participants in the pilot were presented with the same non-adaptive 

pool of 30 items (selected from items with good discrimination and intermediate difficulty 

parameters (b parameters in the range -1 to 1) at the start of their test to establish 

individual starting thetas for the CA-PT. 

 

Weighted maximum likelihood estimation (WMLE) was used for theta estimation with the 

Maximum Fisher Information (MFI) employed for next item selection according to the 

minimum defined items for each unique dimension of the blueprint. WMLE overcomes to 

some extent the normality assumption constraint of MLE and is in principal more robust 

against non-normality, greatly reducing estimation bias (Warm, 1989). The WMLE with MFI 

method is the most computationally efficient in terms of speed of delivering the next item, 

and it has been shown that for longer tests there is no difference between the choice of 

item selection method in terms of the items the algorithm selects (Sulak and Kelecioğlu, 

2019; Chen et al 2000).  

 

The stopping rule for this pilot was a fixed test length (125 items) to ensure acceptable 

levels of measurement error for all participants regardless of their ability level and also to 

provide a full representation of the progress test blueprint.  

 

The CA-PT pilot was administered on QuizOne using a CA-PT module specifically developed 

for the project. This module included an interface for the test design, a CA-PT engine and a 

test administration interface for students that was similar to a non-adaptive test. The 
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interface for the test design allows for the configuration of title, description, scheduling, 

theta estimator and next item selection models, blueprint categories, initial pool of items 

and the number of items required in a test by unique dimension of the blueprint. Figure 3 

shows the interface for the CA-PT module developed in QuizOne. 
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Figure 3: The CA-PT design interface in QuizOne 
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2.5 Student recruitment, test administration and participant feedback 

Ahead of each pilot test the consortium developed information materials (e.g. 

https://www.youtube.com/watch?v=-epx45BdKyc), test delivery guidelines and short videos 

for participants and test invigilators. These were updated to account for the different delivery 

methods between the pilots. Students who attended the pilot tests were invited to complete 

a feedback questionnaire about their test experience, to provide sociodemographic data, and 

to answer questions relating to their English language competence. Participants received 

individual feedback reports on their performance after each pilot test. 

 

2.6 Student Participation 

1,213 students participated in the study: 889 in the item calibration pilot tests (408 in pilot 1 

and 481 in pilot 2) and 324 in the CA-PT pilot (table 2). The overall response rate to the post-

test feedback questionnaires was 78%. One third of respondents declared English as their first 

language but more than 99% self-reported as proficient in their comprehension of English.  

 

Table 2: Participants in the pilot studies by OAIPT partner country 

Partner Country Finland Netherlands Poland Portugal UK Total 

Pilot 1 Participants 59 156 47 66 80 408 

Pilot 2 Participants 46 182 48 83 122 481 

Pilot 3 (CA-PT) Participants 11 85 41 47 140 324 

Total Participants 116 423 136 196 342 1213 

 

  

https://www.youtube.com/watch?v=-epx45BdKyc
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3. Results and Discussion 

3.1 Item Calibration Pilot Testing Results 

In tests for local independence, item residual correlations above .70 were considered 

unacceptable, as item pairs with higher residual correlation interfere with the validity of test 

scores. In pilot 1 50 items displayed local dependence and another 15 items had zero 

variance (i.e. all students answered correctly or incorrectly) and these items were 

administered again in pilot 2. After pilot 2, 73 items displayed local dependence and five 

items had zero variance and were excluded from the final calibration. Most items removed 

from the calibration owing to local dependence or zero variance were unique items in tests 

with low participant numbers (n<25). 

 

Anchor items were tested for measurement non-invariance across countries using a 

measurement alignment procedure. Data from partners in the same country (i.e. two 

schools in the UK, Netherlands and Poland) were combined to increase sample size for these 

analyses, as the measurement alignment procedure can lead to “false negatives” when the 

sample size per group is low, even when effect sizes are large. For pilot 1 we tested 

alignment using a fixed and a random factors approach separately. The results in terms of 

the indication of the non-invariant items and the mean scores for each country (group) were 

almost identical from both methods. For the second round we chose the random factors 

approach because the results are more generalisable and the groups are assumed to not be 

inherently different. The measurement alignment procedure explores the patterns of non-

invariance across groups by searching the simplest possible data structure with the least 

number of items with the largest non-invariance which is similar to a rotation in an 

exploratory factor analysis (Kim et al., 2017). 
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The number of participants recruited to the study was lower than expected, but the flexible 

equating design employed enabled a successful and robust calibration of items despite the 

small sample size in some schools. Only 6% of items could not be calibrated owing to low 

pilot test participation rates in one or two partner institutions and less than 2% of piloted 

items were removed from the item bank owing to measurement alignment, local 

dependence or issues identified by test takers. However, the equating design did not enable 

all items to be tested for invariance and it may be that these items will actually show non-

invariance in subsequent recalibrations. 

 

The reasons for non-invariance of some items in the item bank merits further investigation. 

If item non-invariance is a reflection of cultural differences for example, then there is little 

that can be done to make the item applicable internationally. However, if non-invariance is 

attributable to differences in curriculum coverage across partners, there are opportunities 

for partners to work collaboratively to develop teaching and enhance learning 

opportunities. In this way international testing may be a tool for educational development, 

which would be a very important deliverable from the item bank. 

 

Ten items showed CIV in p1 and were reused in p2. With the increased sample size, only two 

items displayed significantly different difficulty parameters across the five participating 

countries in p2 and were excluded from the final calibration. Across both pilot tests 

participants commented on 235 items of which 16 were excluded from the item bank 

following review. 
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Essential but not absolute unidimensionality was evidenced in both pilot studies and in the 

final concurrent calibration using the Rasch model analysis of the 1127 items which 

remained after all exclusions.  The first contrast (residual component) explained just 0.7% of 

the total score variance and none of the residual components explained more than 1% of 

the variance. However, measures (items and persons) only explained about 25% of the 

variance, somewhat lower than the expected from typical Rasch model analyses. It should 

therefore be noted that despite the acceptably low explained variance in the first contrast, 

multidimensionality of the data could not be explicitly ruled out. Cognitive diagnostic 

adaptive testing (see section 3.3 below) seeks to address this potential issue. 

 

Item difficulty parameters ranged from -4.5 to 5.3 with a good distribution of items across 

the latent difficulty score range. Mean-square (MSQ) fit statistics were examined all 1127 

items had acceptable infit MSQ between 0.7 and 1.4. The average person standard error of 

measurement inflated for misfit was acceptably low at 0.218 and was relatively stable 

across the central range of person abilities (figure 4b). Average conditional individual 

reliability was high at 0.892 and also relatively stable across the midrange of the latent scale 

of person ability (figure 4a).  
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Figure 4: Distribution of item and person reliability and standard errors across the latent 

scale 

 

The pool of items developed and reviewed by the consortium are of good quality with stable 

psychometric properties. The fit of the items in the calibration model suggest that the 

estimates of the latent difficulty are a good representation of the response patterns. The 
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robust person standard errors of measurement inflated for misfit were small and did not 

vary greatly across the latent theta scale, which is an important and desirable feature of the 

calibration, providing evidence that the item bank produces reliable tests across 

populations. 

 

3.2 CA-PT pilot testing results 

The sample of participants in the CA-PT pilot, though smaller than expected, covered all 

stages of study. The distribution of scores by year was in line with previous progress testing 

data – showing diminishing rates of growth by seniority of students, with all theta person 

ability estimates between +/- 2 (figure 5). 

 

Figure 5: Distribution of CA-PT theta estimates by academic year of participants 

  

We were able to successfully adapt and develop the open source catR item selection 

algorithms to select items according to our predefined progress testing assessment 

blueprint. These algorithms were built into the QuizOne test delivery platform and 

successfully implemented to deliver adaptive tests which showed convergence to 
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acceptably low standard errors of measurement for all study participants. Figure 6 shows 

data from four example participants with the line plot showing the convergence of 

participants’ theta estimates and the shaded ribbon showing the associated SEM at each 

item. The vertical lines indicate where the adaptive phase of the test starts (item 31) and 

the point in the test where the person SEMs reduce to 0.2 for each student. 

 

Figure 6: CA-PT convergence plots for four example participants 
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The 30 item non-adaptive lead-in enabled an estimation of the initial theta for the adaptive 

testing phase, but also promoted a balanced emotional reaction at the beginning of the test. 

The use of the non-adaptive lead-in and the fixed number of items stopping rule for this CA-

PT pilot ensured a full coverage of the test blueprint whilst enabling the collection of 

comprehensive performance data to enable robust analysis of convergence to true thetas 

and SEMs for all participants. In a longitudinal CA-PT it is anticipated that the stopping rule 

could be determined with fewer items by the convergence to a stable low standard error of 

measurement for each participant, and this is often cited as a key advantage of adaptive 

testing. Indeed, the results of this CA-PT pilot study suggest that on average around 75 

items are required to achieve convergence to a SEM of less than 0.2 (after an initial lead-in 

of 30 non-adaptive items) for this progress test (table 3; figure 6). However, using a variable 

test length stopping rule in practice can prove problematic for tests of knowledge covering a 

large blueprint as some candidates achieve a very low standard error with very few items 

administered using the adaptive algorithm, and hence, their tests do not adequately cover 

the testing domains required. The potential for students to receive different levels of testing 

can be problematic in terms of communicating performance and outcomes. This has 

particular implications in the context of assessment programmes built on the principles of 

assessment for learning, often programmes which adopt a progress testing framework. 

Table 3: CA-PT pilot test results 

 
Year 1  Year 2 Year 3 Year 4 Year 5 Year 6 

Avg Theta @ CA-PT start (Item 31) -.346 -.057 .086 .263 .406 .333 

Avg SEM @ CA-PT start (Item 31) .375 .378 .377 .377 .380 .377 

Avg Theta @ CA-PT end -.523 -.141 .116 .287 .421 .235 

Avg SEM @ CA-PT end .183 .183 .183 .184 .183 .183 

Avg Item Number when SEM < 0.2 104.6 104.6 103.9 104.6 104.3 104.0 
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A major purported advantage of adaptive testing, especially applicable in the context of 

progress testing, is greatly improved individual test reliability of across the spectrum of 

ability. In non-adaptive progress tests of end-point knowledge, students in the earlier stages 

of study often cannot answer many items leading to tests with low reliability. Figure 7 shows 

the person reliability estimates from the CA-PT pilot by academic year of the study 

participants. It can be observed here that CA-PT test reliability is high (over .89) for 

individuals across the theta ability spectrum, representing significant improvements when 

compared with non-adaptive test reliability especially in the extremes of the theta spectrum 

(figure 4a). 

 

Figure 7: CA-PT Person reliability by year of study 
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3.3 Study constraints and future directions 

The study design planned for three potential rounds of pilot testing in the item calibration 

phase and two adaptive pilot tests. Owing to the Covid-19 pandemic, one full round of pilot 

testing and one stage of adaptive testing could not be realised, and the rates of 

participation in the pilots were much lower than expected in all schools. Required sample 

sizes of around 100 participants per school per pilot test were estimated to ensure good 

coverage of overlapping items in the equating design, and to appropriately power the 

measurement alignment models. Whilst local dependence and measurement alignment 

across countries in the study could be estimated and stable item parameters were 

established, it may be an overgeneralisation at this stage to suggest that this item pool is 

applicable for progress testing internationally or across populations with different native 

languages. 

 

Being exploratory and developmental in nature, the study did not consider item exposure 

control parameters. If the CA-PT were to be fully deployed, item exposure analyses would 

an important consideration, for example to preserve the integrity of the items in the bank 

and to address the issue of item parameter drift over time. 

 

A richer appraisal of the applicability of adaptive testing in a progress testing framework 

would include a longitudinal analysis of psychometric properties, but this was not the 

purpose of the project and was not possible in this study for reasons already identified. In 

future iterations of the adaptive progress test we aim to develop and implement our 

blueprint-based item selection algorithms using cognitive diagnostic modelling (CDM) to be 

able to tailor adaptive progress tests not just based on single time point item difficulty and 
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person ability, but also to take into account previous performance in blueprint domains. In 

this way, the adaptive progress test will have memory and will be able to oversample on 

content areas where students need to grow, whilst endorsing and challenging students in 

content areas where they have previously demonstrated mastery. When compared to 

scores and subscores based on a unidimensional IRT solution, CDM has been shown to 

provide more detailed information on students’ strengths and weaknesses, which seems to 

be particularly applicable in developing tools of assessment for learning. (Kaplan et al, 

2015). 
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3.4 Lessons Learned 
 

To the best of our knowledge this is the first report of a transnational progress testing 

consortium involving multiple countries with different cultural backgrounds and native 

languages. Collaborative approaches to item development and the related potential 

improvements in item quality, standardisation and potential workload benefits are 

increasingly relevant in a pandemic impacted world. The main advantages of establishing 

consortia to develop large item banks are efficiency and complementarity. Notwithstanding 

the relative scarcity of psychometrician know-how, independently, schools would struggle 

to dedicate the significant resource required to develop, review, and calibrate a large 

enough set of items to build a CAT item bank. The creation of this consortium has 

demonstrated that, with the support of an established network and a collaboratively agreed 

framework, even inexperienced institutions are able to rapidly and efficiently adhere to a 

model to develop and deliver quality progress test items.  

 

An exemplar of the benefits of a pooled resource consortium approach has been the 

successful reaction to the COVID-19 pandemic which has impacted medical education across 

Europe since early 2020 (Gill, 2020). In response to varying national lockdowns and 

restrictions, the expertise and resource within the consortium facilitated a move from face-

to-face supervised administrations to remotely proctored online tests during the project. This 

change afforded partners greater flexibility in their local delivery. 

 

It has been suggested that learners may be more accepting of formative progress testing in 

less rigid exam conditions (Karay et al., 2020), and it is anticipated that adaptive progress 
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testing will be well received by learners. This study has demonstrated that adaptive progress 

tests are reliable across the spectrum of participant ability, converging to stable theta ability 

estimates with low levels of measurement error in around a third the length of a traditional 

progress test. Subsequent research from this project will consider student satisfaction with 

and acceptability of the adaptive progress test. 

 

4. Conclusions 

This study has shown that adopting a collaborative institutional approach and appropriate 

methodology facilitates the rapid and effective implementation of computer adaptive 

progress testing, even across international borders and across populations where English is 

not the native language. Pooling resource and expertise encourages collaborative comparison 

and development of appropriate assessment blueprints and high-quality unbiased 

assessment items, even in schools with little or no experience of progress testing. Progress 

testing in this way could be a valuable tool to evaluate the medical knowledge of students 

and graduates from different countries facilitating planning and movement of health service 

workers internationally. 
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