
Scaling a hippocampus model with GPU
parallelisation and test-driven refactoring

Jack Stevenson and Charles Fox

School of Computer Science, University of Lincoln, UK

Abstract. The hippocampus is the brain area used for localisation,
mapping and episodic memory. Humans and animals can outperform
robotic systems in these tasks, so functional models of hippocampus
may be useful to improve robotic navigation, such as for self-driving cars.
Previous work developed a biologically plausible model of hippocampus
based on Unitary Coherent Particle Filter (UCPF) and Temporal Re-
stricted Boltzmann Machine, which was able to learn to navigate around
small test environments. However it was implemented in serial software,
which becomes very slow as the environments and numbers of neurons
scale up. Modern GPUs can parallelize execution of neural networks.
The present Neural Software Engineering study develops a GPU acceler-
ated version of the UCPF hippocampus software, using the formal Soft-
ware Engineering techniques of profiling, optimisation and test-driven
refactoring. Results show that the model can greatly benefit from par-
allel execution, which may enable it to scale from toy environments and
applications to real-world ones such as self-driving car navigation. The
refactored parallel code is released to the community as open source
software as part of this publication.

1 Introduction

The hippocampus [2] is an important area of the brain involved in spatial mem-
ory. It is known to represent self-location and views of high-level objects, and
to compute with them for current, replayed, and predicted times, forming an
ego-centric map, planner, and episodic memory. These are tasks also required by
mobile robots such as self-driving cars as they localise, map, and plan around
their environments [2]. Hippocampal models might thus be used to improve
these robots’ abilities beyond current Simultaneous Localisation and Mapping
(SLAM) systems towards more human levels.

A recent model of the hippocampus is the Unitary Coherent Particle Filter
(UCPF) [6], [7]. This model maps the wake-sleep algorithm [9] in a Temporal
Restricted Boltzmann machine [12] onto biologically plausible structures and
processes of hippocampal areas. The model is notable for predicting the need
for after-depolarisation potential (ADP) to be found and used in region CA3
(sub-field 3 of the cornu ammonis), as occurs in the biology, to enable the wake-
sleep phases via the theta rhythm. The model also makes use of a cholinergic

2 Jack Stevenson and Charles Fox

Subiculum-Septum (Sub-Sep) pathway to detect and correct for lostness of lo-
calisation. The model architecture is reviewed in more detail below.

The UCPF model was then scaled up [11], on a serial CPU, to perform a
robotic navigation task shown in fig. 1b. Here a simulated agent random walks
around 13 discrete locations, with four possible orientations at each, and each
having a pre-computed bag of SURF (Speeded Up Robust Features) visual fea-
tures taken from a real world mobile robot environment. Simulated odometry is
also computed and used to create grid cell activations. Entorhinal Cortex (EC)
thus contains visual and grid cell inputs. The UCPF model was able to suc-
cessfully learn and navigate around this environment in the presence of realistic
sensory noise and visual ambiguity, including recovering from loss of localisation
using the Sub-Sep system.

However, at the software implementation level, this serial software becomes
slow as the environments and numbers of neurons scale up. The plus maze task
1b was limited to 13 locations and 86 CA3 neurons for this reason. Modern
GPU architectures [10] can massively parallelize execution of neural networks.
This is usually done to accelerate backpropagation of multilayer perceptrons
for non-biologically plausible machine learning [3]. But they similarly offer the
possibility of speeding up more realistic biological networks such as the UCPF
hippocampus.

We here use GPUs, together with the formal software engineering techniques
of profiling, optimisation and test-driven refactoring [5], to parallelise the learn-
ing process of the UCPF hippocampus software. By parallelising, we enable the
easy horizontal scaling of the model by reducing the workload on a given process-
ing unit. The software engineering techniques used to ensure compatibility with
the original model and to guide optimisation are intended as a case study for
similar accelerations of other neurally plausible models. The newly engineered
fast and scalable code is released to the community as open source software
as part of this publication, as may be useful to applied robotics researchers in
self-driving and similar fields.

2 Hippocampus review

2.1 Neuroanatomy

The hippocampus is part of hippocampal formation system along with the EC
and Dentate Gyrus (DG) [2]. EC may be divided into superficial layers (ECs) and
deep layers (ECd) The hippocampus is comprised of four main sub-fields: CA1,
CA2, CA3 and CA4. However, the classical view of the hippocampal circuit only
considers the CA1 and CA3 sub-fields, along with the EC and DG. The circuit
accepts sensory input from external sources via ECs. ECs input can include high
level object perception from cortical areas, and an odometric percept encoded
in EC grid cells. ECs output is then passed to the DG which sparsifies the EC
representation. DG and ECs output are passed to the CA3, which has strong
recurrent connections, which are disabled by the presence of Septal acetylcholine

Scaling a hippocampus model 3

(ACh). CA3 then projects its output to CA1, which projects the apparent output
of the system to ECd. ECs and CA1 also project to Subiculum (Sub), which
projects to Septum (Sep) to activate ACh.

2.2 Unitary Coherent Particle Filter model

(a) (b)

Fig. 1: (a) Illustration of the hippocampus model showing data flows and hip-
pocampus regions. SURF features are used in this case as the visual inputs, from
[11]. (b) The plus maze environment the model is learning, from [6].

UCPF models the areas ECs, DG, CA3, CA1, ECd, Sub and Sep as seen in
fig. 1a. Sensor input from any available modality is placed in ECs as input. This
can include biologically realistic sensors such as high level object detectors and
grid cells, and/or machine vision and robotics sensors such as visual SIFT or
lidar features at egocentric locations. As in many hippocampal models [2], DG
is assumed to sparsify this representation using PCA encoding. CA1 is assumed
to be an output using the same sparsified encoding in the same basis as DG,
and ECd a de-sparisfied output encoding in the same basis as ECs.

DG and ECs project to the CA3, which functions in the model as the hidden
layer in a modified Temporal Restricted Boltzmann Machine (TRBM) [9], whose
hidden variable (neurons) have joint probability distribution:

P (xt, xt−1, zt) =
1

Z
exp

∑
t

(−x′
tWx′

tx
′
t
x′
t−1 − x′

tWx′
tz

′
t
z′t), (1)

where z represents a Boolean observation vector from DG and ECs, x represents
the Boolean hidden state vector of CA3, the prime symbol (’) denotes appending
an extra dimension containing bias 1 to a vector, and Wx′

tx
′
t
and Wx′

tz
′
t
are the

weight matrices connecting these vectors.

4 Jack Stevenson and Charles Fox

The hidden variables function similarly to those in a Hidden Markov model
which is most commonly used to fuse sensory input over time with prior mem-
ories in order to de-noise the current input and accurately localise from noise
inputs. They can also be used to replay memories and predict future plans when
disconnected from sensor inputs.

The TRBM is thus a fundamentally serial processing method, with each
successive sample of the CA3 state over time requiring the previous sample’s
result as input. This means that there are limited points of parallelisation in the
learning process. However x is a vector state so within each sequential step, the
computation can be parallized as the individual CA3 neurons.

UCPF uses a modification of the TRBM, computing a deterministic maxi-
mum a posteriori (MAP) estimate x̂t rather than drawing probabilistic samples,

x̂t ← argmaxP (xt|x̂t−1, zt) = {x̂t(i) = (P (xt(i)|x̂t−1, zt) >
1

2
)}i. (2)

This makes CA3 track the MAP states of location and de-noised sensors, in
the sparsified basis, which is decoded by CA1 and placed in ECd as output.

Sub/Sep detect loss of tracking by comparing the input and output sensor
values (including localization estimates), and sending tonic ACh to CA3 when
they differ above a threshold. Thus when tracking is lost, CA3 disables the use
of prior information and uses only the current sensory input to relocalise. This
can occur both when exploring novel environments and when tracking has been
lost by the algorithm in known environments.

The first version of UCPF used hand-set weights throughout, in order to
demonstrate the biological plausibility of localisation. The model was then ex-
tended [7] to replace these with learning of the weights, in a biologically plausible
way. This mapped stages within the 10Hz theta oscillation[2], controlled by pha-
sic ACh, to the inference and learning stages of the wake-sleep algorithm,

∆wij = α(⟨xipopj⟩P (x|pop,b) − ⟨xipopj⟩P (pop,x|b)), (3)

where the input population pop includes all of the CA3 input populations: ECs,
DG and CA3 recurrents, and b are prior biases (detailed in [6]). The UCPF
model thus integrates inference and learning, which are performed in alternating
states of the the theta cycle. There are no distinct ‘offline training’ and ‘on-line
inference’ runs of the model – the two steps always run together, as postulated
in the real, awake hippocampus.1 Software optimisation should thus target both
learning and inferring together.

1 The ‘wake-sleep’ algorithm is a machine learning structure which is here unrelated
to night time sleep behaviour of the hippocampus. Night time slow wave sleep is
thought to be involved in consolidating memories from hippocampus to cortex so is
outside the scope of the UCPF model.

Scaling a hippocampus model 5

3 Experiment design

We would like to locate each of the bottlenecks in the serial implementation
and then optimise them with TensorFlow parallelizations. Our first experiment
thus consists of an iterated process of profiling and parallalization refactoring in
response to each bottleneck found. It is of general interest to report the sequence
of bottlenecks found as they may be common to other biologically realistic neural
models and give some insight into what optimisations could be useful in this class
of models. Many algorithms have some inherently serial component in addition to
parallelizable components, so when the bottleneck becomes an inherently serial
component we stop doing refactorings.

Second, we would then like to know and report what total speedup is created
once all parallelizable optimisations have been made, and how it varies as a
function of the size of the hippocampus simulated, i.e. the number of neurons in
CA3. While currently available GPUs are limited in size, trends observed here
may suggest how real-time simulation will be able to grow as GPUs become
larger.

4 Methods

4.1 Task configuration

For all experiments, we run the UCPF model in the same configuration. The
plus maze environment of fig. 1b was simulated, and a random walk paths for
the agent within this environment simulated for 3000 steps per epoch over 10
epochs, as in [11]. Times were recorded using the Python time function on an
i5-8700@3.20GHz, 24GB DDR4 RAM@2600Mhz and an 11GB NVidia Geforce
1080TI. Open source code is available from github.com/A-Yakkus/hclearn/.

4.2 TensorFlow

For each refactoring step, we rewrite the top bottleneck model using TensorFlow
[1], a data flow library that performs low level math operations in parallel on
GPU. This level is suitable for mimicking biological models in software, at the
level of modelling particular biological characteristics of individual neurons. In
TensorFlow is it possible to define a function to represent a neurons’s mapping
from its inputs to its output, then make many parallel copies of this function
to make a population of neurons and deploy them on the GPU. This method is
used here.

4.3 Formal refactoring process

At each refactoring step, we wish to speed up the top bottleneck whilst keeping
the code’s behaviour the same. A well known challenge of refactoring is ensuring

6 Jack Stevenson and Charles Fox

that each modified version retains the same external behaviour as its predeces-
sors. To ensure this, we apply Fowler’s formal refactoring methodology [5]. This
consists of three stages for each refactoring:

First we profile the code, this tells us which functions are using the most
amount of time to run, in terms of the total time spent running the function
and the cumulative time, which includes the run time of external functions. This
provides the list of program bottlenecks to refactor, which we can rank based on
the total time spent in the function.

Second, we write a suite of unit tests around the top bottleneck of the code.
This is done by running the original units with various inputs, observing their
outputs, and writing tests which assert these outputs follow from these inputs.

Third, we refactor the code in the bottleneck unit using TensorFlow, and
rerun the refactored version through the unit tests. These identify any bugs in
the new version which can be fixed. A refactoring is only considered complete
when it passes the unit tests.

5 Results

We present two types of result from the above experiments. First, we report on
what bottlenecks were found and how each was optimised away. These results
may be of interest to authors of other neural models as they may suggest similar
bottlenecks in them.

Second, we test the performance of the final optimised system as a function
of CA3 size. This shows how the speedups scale with larger models, and sug-
gests how they might continue to scale with larger future GPUs beyond what is
currently available.

5.1 Bottleneck locations

The profiling results for the original, unoptimised serial code, are shown in fig.
2a. These show that there were three main bottlenecks, each taking similar total
time: computation of the Boltzmann probabilities functions; the Kronecker outer
product between vectors; and Bayesian fusion of probabilities.

Computation of Boltzmann probabilities is used to calculate the probability
Pon of a single neuron being on given its input vector x and weight vector w,
used in equation 1. The exp(0) term is the probability of the neuron being off,
equal to exp(−(0.w)) = 1, and is here used to compute the normalizing factor
Z in that equation,

Pon =
exp(−(x.w))

exp(−(x.w)) + exp(0)
(4)

The Kronecker outer product x⊗ pop is used in the computation of eqn. 3,
for the expectations in the wake and sleep terms.

Bayesian fusion is used both in inference (eqn. 1) to fuse probabilities com-
puted for sensory and recurrent connections, and also in learning (eqn. 3) to fuse

Scaling a hippocampus model 7

probabilities arising from observations and biases,

f(px1, px2) =
px1px2

(px1px2) + (1− px1)(1− px2)
(5)

(a)

(b)

(c)

Fig. 2: Profile diagrams at each stage of the refactoring process. Each row is one
level of the program call stack, with the top row being the lowest point. Each
bar represents the percentage of time the named function took of the above row,
with the times provided being the cumulative time of each function in the entries
execution. (a) Initial profile of the learning process. (b) Profiling after the first
round of optimisations as described by equations 4 - 6 (c) Final profiling of the
system. This shows that most of the time is spent in passing data between the
CPU and GPU.

An additional bottleneck occurred in computing the sigmoid function for
neuron activations,

f(x) = − log(
1

x
− 1) (6)

8 Jack Stevenson and Charles Fox

We refactored each of these functions using parallel TensorFlow. The Boltz-
mann probabilities and Bayesian fusion are easily parallelized: equations 4 and 5
are functions performed by single, independent neurons. These were thus coded
in TensorFlow then deployed on the GPU as many parallel copies for all the
neurons in each relevant population. TensorFlow does not have a native imple-
mentation of the Kronecker outer product, so we created our own. The sigmoid
functions were changed to be computed for all neurons simultaneously on the
GPU rather than in series on CPU.2 Profiling results after these optimisations
can be seen in fig. 2b.

Interestingly, after refactoring, the time to execute on the original model
first increased by 9x on the original task. This effect comes from the Tensorflow
operation dispatcher, which handles the compilation of the neural graph and
transfers data between the system memory and GPU Memory. Thus at smaller
scales, the refactoring process appears to be detrimental to system performance.
However as we will discuss in section 5.2, the move to Tensorflow shows benefits
as we scale up.

Casting. At this point in the refactoring process, the new bottleneck can be
seen to be in casting between the datatypes used in the CPU and GPU as data
is transferred between them.

This is an issue which had arisen from the introduction of our own new
TensorFlow refactorings rather than from the original code. The original system
loaded weights in CPU as 64-bit floats while TensorFlow initialises variables as
32-bit floats. Bottleneck time was spend converting between them. This lead to
an investigation in how to use a Boolean tensor as a tensor of integers of zeros
and ones for math operations. TensorFlow provides two ways to handle this:
type casting and the where function. Type casting creates a new tensor of the
requested data type and populates it with the original values made to fit into the
requested data type. On the other hand, the where function takes a condition,
and returns one of two values based on if the condition is true or false. Table 1
shows that there is an approximate 33% time reduction when casting to a given
data type to using the where function.

Number of Nodes Time for tf.cast (s) Time for tf.where (s)

10 62.073 43.839

100 62.091 43.934

1000 62.208 44.035

10000 61.614 44.288

Table 1: Timing 100000 invocations of each function over different numbers of
nodes. The times reported are cumulative of all 100000 invocations.

2 Sigmoid functions were found to be a bottleneck in pure machine learning DNNs,
where they are now replaced by rectified linear units (ReLUs) for speed. However
sigmoids are required in UCPF for biological plausibility, and our aim in refactoring
is to preserve neural functionality rather than make such approximations.

Scaling a hippocampus model 9

Profiling results after removing unnecessary casting operations can be seen
in fig. 2c. The bottleneck is now in transferring data between inherently serial
CPU and parallel GPU functions which is not easily further optimised, so we
stop refactoring here.

5.2 Final system performance

Fig. 3a shows the total time to run the model as a function of CA3 size on
CPU and GPU. Fig. 3b shows the same GPU time curve zoomed in on the
y-axis to better show its shape. As the size of CA3, measured in number of
neurons, is increased, the GPU implementation’s advantage over the original
CPU implementation increases, reaching a 23x speedup at the maximum 20,000
neurons size CA3 tested. This maximum is the limit of neurons possible to
physically instantiate in parallel on the available GPU hardware.

(a) (b)

Fig. 3: Line graphs showing the time taken to train the model with extra nodes
in steps of 1000 from 1000 to 20000. (a) Comparison between CPU and GPU
models. (b) The same GPU times as in the comparison, shown alone with a
zoomed y-axis.

6 Discussion

If larger GPU’s were available, we would expect the trends in fig. 3a and 3b to
continue to larger CA3s. When comparing the two lines in fig. 3a, the growth
of the GPU line appears to linear, but on further inspection, the growth follows
a more quadratic curve (fig. 3b). This indicates that whilst using a GPU does
provide significant benefits over the CPU, there are still further optimisations
within the training process that can be made. This may be because the UCPF
model assumes that all N CA3 cells are mutually connected by N2 recurrent

10 Jack Stevenson and Charles Fox

connections. While FPGA style parallelism might compute these N2 signals in
O(1) time using N2 physical wires, GPUs do not immediately connect all their
processing elements in this way, and require additional time to move information
around hierarchies of elements. The model could be easily modified to be more
like the biological hippocampus, which is thought to have many but not fully
connected recurrent connections, which could reduce this complexity. (A similar
idea has recently worked well to speed up machine learning DNNs as attention
and transformers.)

The original implementation was designed to run with a CA3 size of 86
neurons, so scaling to 20,000 is a large improvement. For comparison, the real
biological hippocampus in Wistar rats has around 320,000 neurons [4], and in
humans around 2 million [8]. The current GPU used cannot fit these biological
scales of neurons into memory, but is now only one power of ten away from the
rat, and two powers of ten from the human.

The aim of this study is only to show speed gains and the ability to scale up
the number of simulated neurons – not to test for the localisation accuracy of the
larger CA3 systems enabled by the software. We used the same constrained plus
maze task as the original implementation in all tests. This task was designed to
be solvable by a small number (86) of CA3 neurons. It is likely that the larger
CA3s enabled by the new implementation, perhaps in conjunction with larger
GPUs or other neural hardware accelerators such as FGPAs and ASICs will
allow future work to try mapping and localising in larger environments, such as
those of self-driving cars.

References

1. Abadi, M.: Tensorflow: learning functions at scale. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming. pp. 1–1 (2016)

2. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J.: The hippocampus
book. Oxford university press (2006)

3. Bengio, Y., Goodfellow, I., Courville, A.: Deep learning, vol. 1. MIT press Cam-
bridge, MA, USA (2017)

4. Boss, B.D., Turlejski, K., Stanfield, B.B., Cowan, W.M.: On the numbers of neurons
on fields ca1 and ca3 of the hippocampus of sprague-dawley and wistar rats. Brain
research 406(1-2), 280–287 (1987)

5. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Professional (2018)

6. Fox, C., Prescott, T.: Hippocampus as unitary coherent particle filter. In: Neural
Networks (IJCNN), The 2010 International Joint Conference on. pp. 1–8 (2010)

7. Fox, C., Prescott, T.: Learning in a unitary coherent hippocampus. In: Artificial
Neural Networks (ICANN) (2010)

8. Harding, A., Halliday, G., Kril, J.: Variation in hippocampal neuron number with
age and brain volume. Cerebral cortex (New York, NY: 1991) 8(8), 710–718 (1998)

9. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural computation 18((7)), 1527–1554 (2006)

10. Owens, J.: GPU architecture overview. In: ACM SIGGRAPH 2007 courses, pp.
2–es (2007)

Scaling a hippocampus model 11

11. Saul, A., Prescott, T., Fox, C.: Scaling up a boltzmann machine model of hippocam-
pus with visual features for mobile robots. In: 2011 IEEE International Conference
on Robotics and Biomimetics. pp. 835–840 (2011)

12. Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal restricted boltz-
mann machine. Advances in neural information processing systems 21 (2008)

