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Abstract

Diabetes is a chronic disease which affects the glucose homeostasis system

and its prevalence is rapidly increasing around the globe. Presently, the coro-

navirus disease 2019 (COVID-19) pandemic is a major issue for those with

diabetes as the disease leads to more severe symptoms of the novel severe

acute respiratory syndrome coronavirus 2 infection. In this study, mathemat-

ical models were developed and analysed to understand diabetes pathways.

Dynamical systems theory were used to determine mathematical properties of

the models and establish threshold quantities. Numerical simulations were

performed to confirm the results of traditional mathematical analysis along

with machine learning based sensitivity analysis to ascertain robustness of

results. Sensitivity analysis was used to determine parameters influencing

the dynamics of the glucose homeostasis system for the models. Analytical

results of the first model showed three equilibrium points, a stable physio-

logical, stable pathological (Type 1 diabetes state) and an unstable Type 2

diabetes state, thus confirming known biological characteristics of the glucose

homeostasis system. The model exhibits a backward bifurcation phenomenon

when the model threshold quantity is less than unity, where an individual

transit from unstable Type 2 diabetes state to a stable physiological state.

This result demonstrates that Type 2 diabetes is reversible when acting on

risk factors, and this is also true for biological findings. Sensitivity analysis

identified all parameters that make up the threshold quantity as influential

in determining model dynamics. The second model was developed to focus on

Type 1 diabetes dynamics. The results showed two stable states, a physiologi-

cal and pathological state, in line with known biological findings. Sensitivity

analysis highlighted key parameters that determine the dynamics of the glu-

cose homeostasis system and confirmed mathematical analysis findings. The

two glucose homeostasis models developed were then fitted to published data

on experimental mice with Type 1 diabetes using a Bayesian approach in order
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to determine a suitable model framework for Type 1 diabetes. The results

from model selection suggest that the model with no β -cells is more suitable

in predicting Type 1 diabetes dynamics. Overall, the research highlights the

importance of both traditional mathematical modelling and parameter based

sensitivity analysis approaches in understanding important model parameters

and establishing diabetes pathways. Further, the study provided insights on a

suitable model framework for understanding Type 1 diabetes.
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Chapter 1

Introduction

1.1 Epidemiology of diabetes

Diabetes is a chronic disease with rapidly increasing prevalence worldwide

[Ampofo and Boateng, 2020; Wild et al., 2004]. There are two main forms of

diabetes, Type 1 and Type 2. Diabetes affects blood glucose use in the body

causing faults in the glucose homeostasis system [MayoClinc, 2021a]. The

complications that come with diabetes, if not treated correctly or in time, are

severe and costly. Therefore developing effective disease management and

treatment strategies would improve the life of a diabetic patient and in turn

reduce cost. The aim of this research is to outline the current management and

treatment methods and models that represent the disease then use mathemat-

ical modelling techniques to better understand pathways leading to diabetes.

This section will outline the current epidemiology trends of the disease.

In 2019, approximately 463 million people were living with diabetes and

the number is expected to rise to 700 million by 2045. Approximately 4.2

million deaths were caused by diabetes in 2019 [IDF-Diabetes-Atlas, 2021].

The number of deaths among diabetic individuals has increased due to the

ongoing coronavirus disease 2019 (COVID-19) [Liu et al., 2021]. Over the

years, diabetes prevalence has grown rapidly, with 88% increase of people

living with diabetes in the period from 2000 to 2009 (see Figure 1.1).
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Figure 1.1 Estimated people living with diabetes globally in each year and predicted
results for future years in millions. Source [IDF-Diabetes-Atlas, 2021].

The growing global trend of diabetes shown in Figure 1.1 illustrates the need

for immediate action to contain a rapidly growing public health burden. The

yearly increase in the number of people with diabetes is attributed to a combi-

nation of demographic, environmental and genetic factors [IDF-Diabetes-Atlas,

2021; Wing et al., 2001]. The growing disease burden is mainly from increasing

Type 2 diabetes due to risk factors being elevated. The risk factors which are

causing the increase are processed foods and unhealthy diets, lack of physi-

cal activity due to more sedentary lifestyle, which in turn increases obesity

[IDF-Diabetes-Atlas, 2021; Wing et al., 2001; Zheng et al., 2018]. Diabetes

disease increase will lead to increase in health costs, as a result of treatment
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of individuals living with diabetes disease. In 2019, $760 billion US dollars

was spent on treating the disease and its complications (50% of that total cost)

globally [Arokiasamy et al., 2021; IDF-Diabetes-Atlas, 2021]. The costs are

only expected to continue to increase and a staggering $845 billion US dollars

is expected to be spent on treatment in 2045 (see Figure 1.2).

Figure 1.2 Health expenditure on diabetes globally. Source [IDF-Diabetes-Atlas,
2021].

In order to reduce diabetes costs, diagnosis and correct treatment must be done

quicker to avoid heavy costs associated with disease complications. In 2019

it was highlighted that 232 million people were undiagnosed and at least an

additional 374 million had impaired glucose tolerance, which means they were

on the path to Type 2 diabetes, if appropriate measures such as working on

minimising risk factors (obesity, exercise and diet) were not taken. Prevalence

estimates of the disease are shown globally and for each region in Figure 1.3.
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Figure 1.3 Geographic view of prevalence of diabetes in adults (20-79 years) over
the globe. Source [IDF-Diabetes-Atlas, 2021].

Figure 1.3 shows the Middle East and North Africa region has the highest

prevalence of diabetes, at 12.2% in 2019 [IDF-Diabetes-Atlas, 2021]. The

region with the lowest prevalence was Africa, which was at 4.7% in 2019 [IDF-

Diabetes-Atlas, 2021]. This could be explained by malnutrition in Africa and

therefore less obesity [IDF-Diabetes-Atlas, 2021]. However, 86% of people in

Africa who have Type 2 diabetes had no access to insulin treatment even though

it was necessary [IDF-Diabetes-Atlas, 2021]. This is what usually leads to

complications and eventually death. The global mapping of diabetes burden in

Figure 1.3 shows that, the country with most people having diabetes (in adults)

was China, followed by India and USA respectively [IDF-Diabetes-Atlas, 2021].

Severity of diabetes is a result of several complications. Complications of

diabetes are heart disease, kidney failure, nerve damage, comas and even-

tually death [Boutayeb et al., 2015]. A recent concern of diabetes is related

to the COVID-19 pandemic. COVID-19 is known for attacking the immune

system and individuals with diabetes are extremely vulnerable to contract-

ing the highly infectious virus, having already compromised immune systems

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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[IDF-Diabetes-Atlas, 2021; Peric and Stulnig, 2020; Singh et al., 2020]. Several

studies have linked diabetes to increased severity of COVID-19 infection and

hindering quick recovery [American-Diabetes-Association, 2021; IDF-Diabetes-

Atlas, 2021; Peric and Stulnig, 2020; Singh et al., 2020; Vepa et al., 2021].

1.2 Diabetes and glucose homeostasis system

Diabetes has two main types: Type 1 (insulin dependent diabetes) and Type 2

(non-insulin dependent diabetes). The symptoms that can occur with Type 1

and Type 2 are increased thirst and urination, weight loss, increased hunger

and food intake, blurred vision and extreme fatigue [Cantley and Ashcroft,

2015]. Complications occur if diabetes is not treated (i.e. heart disease, kidney

failure, nerve damage, comas and eventually death) [Boutayeb et al., 2014].

Due to the high cost of insulin in other countries, such as the United Arab

Emirates, several individuals do not treat their diabetes and this results in

amputations or death. Diabetes disease has a chronic nature, as noted earlier

and a common feature amongst all forms of diabetes is persistent elevation of

blood glucose [Cantley and Ashcroft, 2015].

In a non-diabetic person, glucose homeostasis (the balance of insulin and

glucagon) is maintained. As the blood glucose rises (hyperglycaemia), it trig-

gers insulin secretion from β -cells. The β -cells then take up the glucose and

stimulate insulin release. In contrast, as the blood glucose falls (hypogly-

caemia), insulin secretion is then switched off [Cantley and Ashcroft, 2015].

Concurrently, α-cells secrete glucagon (a hormone), which travels to the liver.

This hormone triggers the release of glucose into the blood [Hughes and Naren-

dran, 2014]. This process is blood glucose homeostasis, thus the β -cells play a

vital role in blood glucose homeostasis and in the development of diabetes. They

are unique cells located in the pancreas, specifically the islets of Langerhans

[Diabetes-Digital-Media, 2019] that produce, store and release the hormone

insulin.

Also located in the pancreas are the α-cells [Hughes and Narendran, 2014],

which are involved in the process of regulation of glycaemia [Quesada et al.,
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2008]. Type 1 diabetes is usually due to excess glucose in the blood due to

over-secretion of glucagon [Hughes and Narendran, 2014]. The level of control

on glycaemia is mainly dependent on the coordinated secretion of glucagon and

insulin by α and β -cells respectively [Quesada et al., 2008]. Type 1 diabetes is

an autoimmune disease as the body’s immune system attacks and destroys the

β -cells resulting in no insulin being produced [Boutayeb et al., 2014; Diabetes-

Digital-Media, 2019]. The absence of insulin secretion from the β -cells means

the blood glucose levels cannot be reduced [Cantley and Ashcroft, 2015]. Ele-

vated blood glucose levels is called hyperglycaemia and, if this continues over

many weeks and months due to lack of insulin, complications of diabetes will

occur [Cantley and Ashcroft, 2015]. Type 1 treatment requires external insulin

to be in injected, as there are no β -cells in the body to enable insulin secretion.

Daily insulin injections are administered dependent on the blood glucose levels

therefore constant monitoring of these levels are vital [Diabetes-Digital-Media,

2019]. The amount of injections per day and timings vary depending on the

choice of insulin selected [Pathak et al., 2019].

Type 2 diabetes is a polygenic disease [Cantley and Ashcroft, 2015] and it

is usually associated with people who are overweight, 80% of people diagnosed

with Type 2 are overweight [Boutayeb et al., 2014]. Unlike Type 1, Type 2

diabetics do have β -cells present in their body. Instead, this type of diabetes is

due to an insufficient secretion of insulin from β -cells and insulin resistance

occurs [Cantley and Ashcroft, 2015]. Insulin resistance is when the body pro-

duces insulin but is unable to effectively use it [Ajmera et al., 2013]. Therefore,

the body becomes resistant to its own insulin and attempts to compensate by

producing higher quantity of insulin [Diabetes-Digital-Media, 2019]. When in-

sulin resistance occurs, hyperglycaemia appears [Cantley and Ashcroft, 2015].

Persistent chronic hyperglycaemia can eventually lead to β -cells wearing out

(β -cell burnout) [Diabetes-Digital-Media, 2019]. However, lack of insulin is

not the only cause for this type of diabetes, as impaired glucagon secretion

from α-cells also plays an important role as well [Ajmera et al., 2013]. Several

studies suggest these faults are caused by a strong genetic component and

are increased by other risk factors such as; obesity, diet and decreased level

of physical activity [Boutayeb et al., 2014]. The management and control
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methods currently for Type 2 are balanced diet and exercise. If these methods

are not successful, it can lead to oral medications and eventually daily insulin

injections [Cantley and Ashcroft, 2015].

1.3 Motivation

There are many drugs available to control symptoms of diabetes, but cur-

rently there is no reliable way to replace β -cells and cure the disease [Mo-

hammadRidha et al., 2015]. Mathematical models play an important role as

tools to understand blood glucose regulatory system dynamics and designing

effective strategies for disease treatment and management using data from

clinical trials. If we can understand the dynamics of the glucose homeostasis

system, we are then able to know what is required to prevent the evolution to

diabetes or treat those with diabetes more efficiently. Most of Type 2 diabetes

can be reversed and nearly most prevented. Hence, understanding of the blood

glucose homeostasis is key in determining when evolution of the disease may

be occurring.

However, Type 1 diabetes can only be treated through insulin injections and

complications can happen if it is not managed well. The major problem with

diabetes is the fatal complications that can occur if not treated correctly

or diagnosed in time. This is why understanding the disease and finding

ways to prevent/treat it is extremely important. Diabetes is a growing public

health challenge in the Gulf region [Barclay, 2021; Cantley and Ashcroft, 2015;

Diabetes-Digital-Media, 2019; Quesada et al., 2008], six of the top ten countries

with highest prevalence of diabetes are in the Middle East region - with the

United Arab Emirates reporting 19.2% prevalence [Barclay, 2021]. As a citizen

of the United Arab Emirates, the alarming statistics of diabetes prevalence in

the county and Gulf region as a whole drove my interest into diabetes research.

With my background in mathematics, I decided to use mathematical models to

understand the disease.

The cost of insulin hinders treatment of several diabetic individuals and this

impacts the insurance/government as costs to deal with the complications
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that occur due to the lack of treatment of diabetes are very high. Therefore,

understanding the glucose regulatory system/counter-regulatory system is

vital in showing the pathways to diabetes and/or for providing information on

future treatment methods and prevention of the disease.

Many of the existing mathematical models, that have been developed mostly

based on the revolutionary Topp model [Topp et al., 2000] have described the

glucose regulatory system to a reasonable extent. However, there are certain

limitations of the current models, and enhancements can be made by incor-

porating certain parameters that have not yet been considered in order to

explain other biological processes. Such modifications are necessary to better

understand the complications associated with prolonged hyperglycaemia. In

turn, this information of added biological processes to the system will be able

to be used to help minimise/stop the occurrence of prolonged hyperglycaemia.

Understanding all the biological dynamics and interactions is extremely tricky

as many parameters that are involved are rarely measured such as β -cells

and the growth hormone, for example, hence only more recently have studies

[Al Ali et al., 2019a,b; Holly et al., 1988; Kim and Park, 2017] been done on

these variables, despite their pivotal role in the glucose homeostasis system.

1.4 Research aim and objectives

The overall aim of this thesis was to develop new glucose homeostasis math-

ematical and data-driven models to understand diabetes pathways. This

research was achieved through a set of objectives.

1. Firstly, we conducted a thorough literature review of current mathemat-

ical models of glucose homeostasis system with pathways to diabetes,

in order to identify gaps and requirements to improve existing diabetes

models.

2. Next, we developed a new mathematical model for glucose homeostasis

and investigated on mathematical properties, disease pathways, and

determine the model threshold quantities and key parameters.
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3. We then developed a novel mathematical model framework for Type 1

diabetes with insulin injection.

4. Finally, we confronted the models developed in objectives 2 and 3 with

experimental data in order to determine their suitability in modelling

Type 1 diabetes.

1.4.1 Research novelty

After reviewing several existing diabetes models [Bergman, 1989; Bergman

et al., 1979a; Bolie, 1961; Boutayeb et al., 2014, 2015; De Gaetano and Arino,

2000; Farhy and McCall, 2009; Hernandez et al., 2001; Kovatchev, 2018; Li and

Johnson, 2009; Li and Kuang, 2009; McDonald et al., 2000; MohammadRidha

et al., 2015; Shimoda et al., 1997; Song et al., 2014; Tarin et al., 2005; Voden

et al., 2001; Wang et al., 2017; Wilinska et al., 2004], as well as the revolution-

ary models [Bergman et al., 1981; Bolie, 1961; Topp et al., 2000], there is a

clear need to improve mathematical models for diabetes. A detailed review of

diabetes models is in Chapter 2 of the thesis. Many of the current models use

minimal models and a system of differential equations to describe the glucose

homeostasis system. However, this means that solutions of these systems

are difficult to obtain and sometimes mathematical analysis is not done in

depth due to the complicated nature of solutions. We propose to use parameter

based sensitivity analysis approaches to overcome this, as they can provide

insight into dynamical systems and determine important model parameters

controlling the glucose homeostasis system. Another setback of traditional

mathematical analysis is that simplifying assumptions are made to avoid more

complicated results.

The novelty and new areas we cover in this thesis are developing and exploring

comprehensive mathematical analysis of diabetes models using dynamical sys-

tems theory approaches. We introduce an additional variable into the system,

the growth hormone, due to recent biological findings on its importance in the

glucose homeostasis system [Holly et al., 1988; Kim and Park, 2017]. Finding

the analytical solutions and conducting comprehensive analysis is vital for

understanding important parameters and the dynamics of the model and the
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factors that determine diabetes pathways. Another part of the analysis will

involve finding threshold quantities of the model which give us rules of thumb

on the factors determining the dynamics of the model, something not yet stud-

ied on diabetes models. We also blend in dynamical systems and machine

learning approaches to explore the importance of each input parameter on

the model output as well as investigating the importance of these methods in

understanding the key components of the model. Usually glucose homeostasis

models are evaluated and analysed using basic mathematical analysis and

substituting sets of parameters values. This is insufficient, as it means the

results could only be valid for a certain set of points in a local attractor. Using

different methods is important in ascertaining the robustness of results. It is

also important as it may provide additional results that may have not been

able to be achieved from traditional mathematical analysis methods.

Based on available scientific evidence on diabetes, we explore on the impor-

tance of growth hormone in the glucose homeostasis system. The reason for

incorporating this variable is that many studies suggest that this is an impor-

tant component in diabetes but has been neglected in existing diabetes models

due to its indirect and direct effects being hard to model. We also determine the

appropriate mathematical model structure for modelling short-term diabetes

injection using two candidate models. Data driven approaches to modelling

are important in evidence based mathematical modelling to enhance model

predictions capabilities and evaluate disease control measures.

We summarise these novelties in a list form for ease of understanding:

1. Introducing a new biological process, growth hormone, into the glucose

homeostasis system in order to explore its biological importance.

2. Carrying out an in depth mathematical analysis of glucose homeostasis

models.

3. Adopting dynamical systems theory analysis to diabetes models and

deriving threshold quantities for glucose homeostasis models. This is

never been done for diabetes models and provides important information

in understanding diabetes pathways.
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4. Blending parameter based learning analysis and traditional mathemati-

cal analysis to provide a novel framework for analysing Type 1 diabetes

models.

5. Providing a new basis for modelling Type 1 diabetes, using parameters

which can be measured instead of intermolecular dynamics.

1.5 Methodology

In this thesis we use dynamical systems techniques, sensitivity analysis meth-

ods and data-driven approaches. In Chapter 2, a literature review is conducted

to identify modelling gaps and limitations. We use PubMed and Google Scholar

to search for articles related to diabetes modelling by selecting keywords in

the search engine and going through other previous consolidated reviews on

these models. Chapter 3 uses mathematical modelling, dynamical systems

techniques and numerical analysis. Dynamical systems theory approach will

be used to explore on the mathematical properties of the model using analytical

and numerical approaches. Bifurcation, linear stability and threshold anal-

ysis will also be conducted. R/Matlab/Mathematica programming platforms

will be used for this analysis. Sensitivity analysis approaches, such as Sobol′

indices are also used to validate results from the dynamical system obtained

using mathematical analysis. Chapter 4 also makes use of mathematical

modelling and dynamical systems techniques applied to a different model.

Sensitivity analysis of the model will be conducted using Latin hypercube

sampling methods to determine parameters with the most effect on the model.

Parameter based sensitivity analysis will include using Gaussian processes to

generate data to be able to test on the robustness of the model and improve

our understanding of the biological processes. Chapter 5 presents data driven

approaches to mathematical modelling. The methods include fitting models

using Bayesian approaches and model selection techniques in R programming

environment.

Dynamical systems theory is an approach used to understand complex dy-

namical systems with a set of differential equations, such as the glucose

homeostasis system. The focus of this approach is to determine and describe
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the steady states of the system. Bifurcation theory enables us to study the

qualitative changes to the state of a dynamical system as parameters are

varied. We also evaluate the fixed and steady states of dynamical systems

using local and global stability, along with threshold analysis. For this reason

we introduce some basic theories in the following section. We then move on to

briefly discuss, sensitivity analysis and Gaussian process based methods.

1.5.1 Mathematical preliminaries

In this section, we present some of the main mathematical theories which

are key in analysis of dynamical systems. We demonstrate use of dynamical

systems theory and methods using a generic systems of equations.

Consider the system of ordinary differential equation (ODE) below,

ẋ = f (x, t) x(0) = x0, (1.1)

where f : U ×R+ → Rn with x ∈ U ⊂ Rn, t ∈ R+, n ∈ N and U open in Rn. The

system (1.1) is autonomous if the function f is explicitly independent of time.

All of our study is restricted to the autonomous systems, hence for x ∈U ⊂ Rn,

ẋ = f (x), x(0) = x0. (1.2)

Definition 1. By a solution of (1.2), we mean a continuously differentiable

function x : I(X)→ Rn such that x(t) satisfies (1.2), where I(X) is an interval of

R+ containing the origin [Stuart and Humphries, 1998].

Definition 2. System (1.2) defines a dynamical system in a subset E of Rn if for

every X ∈ E, there exist a unique solution of (1.2) which is defined and remains

in E ∀ t ∈ R+ [Stuart and Humphries, 1998].

Definition 3. Let U be an open subset of Rn. A function f : U → Rn is Lipschitz

if ∀ x,y ∈U , there is a K called Lipschitz constant such that

|| f (x)− f (y)|| ≤ K||x− y||.
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Here ||.|| stands for the Euclidean norm in Rn. If f is Lipschitz on every bounded

subset of Rn, then f is said to be globally Lipschitz [La Salle, 1976].

Theorem 1.1. Let f : Rn → Rn be globally Lipschitz on Rn. Then there exist a

unique solution x(t) to (1.2) ∀ t ∈ R+. Therefore the system defines a dynamical

system in Rn [Stuart and Humphries, 1998].

Theorem 1.2. Let C ⊂ U ⊆ Rn ×R+ be a compact set containing (x0, t0). The

solution x(t, t0,x0) can be uniquely extended forward in t up to the boundary of

C [Wiggins et al., 1990].

Definition 4. An equilibrium (stationary) point of (1.2) is a point x̄ ∈ Rn such

that x0 = x̄ and f (x̄) = 0. Clearly, the constant function x(t) = x̄ is a solution of

(1.2) and by uniqueness of solutions, no other solution curve can pass through x̄

[Wiggins et al., 1990].

Theorem 1.3. Gronwall’s Lemma. Let x(t) satisfy

dx
dt

≤ px+q, x(0) = x0,

for p, q constants. Then ∀ t ≥ 0

x(t)≤ eptx0 +
q
p
(ept −1), p ̸= 0

and

x(t)≤ x0 +qt, p = 0,

[Stuart and Humphries, 1998].

Hartman-Grobman theorem

Let x̄ ∈ Rn be an equilibrium point of a dynamical system in E defined by (1.2).

Then x̄ is said to be:

(i) Stable if for any ε > 0, there exist δ = δ (ε)> 0 such that if ||x̄− y(0)||< δ ,

then ||x̄− y(t)||< ε, ∀ t ≥ 0,
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(ii) Locally attractive if ||x̄− y(t)|| → 0 as t → ∞ for all ||x̄− y(0)|| sufficiently

small,

(iii) Locally asymptotically stable if x̄ is stable and locally attractive. For any

asymptotically stable equilibrium point x̄ of (1.2), the set of all initial

data x(0) such that

lim
t→∞

Φ(t)x(0) = x̄

is said to be the basin of attraction of x̄,

(iv) Globally attractive if (ii) holds for any x(0) ∈ E, i.e. the basin of attraction

of x̄ is E,

(v) Globally asymptotically stable if (i) and (iv) hold,

(vi) Unstable if (i) fails.

The system representing glucose homeostasis in the body is complicated. There-

fore, most modelling studies have not conducted thorough analysis of the sys-

tems, as mentioned in the outline of literature gaps. In order to adequately

understand the mathematical properties and parameters that drive the system

we will conduct this analysis. In infectious disease modelling, the mathemati-

cal models are analysed to help determine the spread and control of the disease

[Hethcote, 2000]. The analysis provides results such as thresholds and basic

reproduction numbers [Hethcote, 2000]. The main threshold for epidemiology

models is the basic reproduction number, R0, defined as the average number

of secondary infections produced when one infected individual is introduced

into a host population where everyone is susceptible [Hethcote, 2000]. Usually

the criteria required for an infectious disease to invade a population is R0 > 1

[Hethcote, 2000]. R0 is the next generation of the dominant eigenvalue of the

system. For mathematical modelling of diabetes, as this is not an infectious

disease, application of this would be different. We believe this threshold value

can be used instead to understand diabetes pathways.

1.5.2 Sensitivity analysis

In constructing mathematical models of systems, sensitivity analysis is an

important tool which helps identify important parameters determining the
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behaviour of a system. Ultimately, having a model which is less complex and

where we can understand and quantify any uncertainties in the parameters is

important for prediction and evaluating treatment strategies. Many parame-

ters in models are estimates and quantifying their uncertainty is an important

factor in modelling real life situations and evaluating different scenarios. Sen-

sitivity analysis also allows us to propose new hypotheses as well as prove

previous ones. There are two main types of sensitivity analysis, local and

global sensitivity analysis, and it is clear from previous studies [Draper, 2002;

Zheng and Rundell, 2006] that global sensitivity analysis is more suited to

biological models [Marino et al., 2008; Sumner et al., 2012].

Mathematical modelling is a tool used to better understand a system, it pro-

vides a system of equations describing the mechanistic process of the system.

The purpose of this, in particular in modelling of the glucose regulatory system,

is it allows us to improve current treatment methods and predict the states of

the disease and highlights areas where intervention can prevent the disease

occurring. This is why a model which is accurate is vital as it allows us to also

validate old hypothesis or suggesting new ones which help prevent/treat the

disease [Sumner, 2010].

However, modelling biological systems comes with challenges. This is due

to the fact biological systems usually contain a large number of parameters

and interactions between these parameters which all need to be considered to

get the most accurate model possible [Sumner, 2010]. In order to describe a

system, we must focus on understanding the structure and dynamics of the

system so that we can understand the behaviour of a system. In doing so, it is

important to consider which of the parameters in the model have greater effect

on the output of the model in order to understand the behaviour [Sumner,

2010]. Another challenge that occurs is that these parameters are usually

estimated and have a large degree of uncertainty [Sumner et al., 2012]. For

example the values of α and β cells, which are part of the glucose regulatory

model, are not components that are collected easily nor on regular check ups.

To collect this data from a patient is nearly unfeasible as it would require

extremely invasive methods, therefore it is often estimated from experimental
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data in vitro or by model fitting [Sumner et al., 2012]. These uncertainties in

parameter values will have an effect on the model. This uncertainty effect on

the model behaviour needs to be understood so that we can successfully apply

the model as the results may drastically affect the outputs of the model.

To address these challenges sensitivity analysis can be used. This method of

analysis allows us to explore the effects of the uncertainties on the model be-

haviour as well as helping to locate the model parameters that affect/drive the

system outputs most [Sumner et al., 2012]. By identifying the most influential

parameters and those which may have no effect, this can also be used as a tool

to construct a better model to represent the system, therefore improving predic-

tive capability of model and reducing model complexity [Sumner, 2010]. This

identification of important parameters in controlling the systems behaviour is

also useful in both understanding and suggesting hypotheses about important

mechanisms in the system, which is the main goal of modelling [Sumner,

2010]. One major benefit of sensitivity analysis is that understanding the

effects of complex systems is not obvious and this method allows for systematic

investigation of the effects of perturbations [Sumner, 2010].

1.5.3 Gaussian process based sensitivity method

Current sensitivity analysis methods used to quantify uncertainty of model

predictions in order to understand components driving system behaviour, con-

siders individual time points and this may result in missing important features

in the output when applying standard sensitivity analysis [Sumner et al., 2012].

Secondly, the computational cost of global sensitivity analysis methods can be

very expensive and inefficient if there is a large number uncertain parameters.

It would require an iterative cycle and this would mean a long run time [Sum-

ner et al., 2012].

A current sensitivity analysis method that exists is a combination of global

sensitivity analysis techniques with functional principal components analysis.

It transforms model outputs into alternative format that captures most impor-

tant features and then use global sensitivity analysis techniques to identify

parameters which are important in generating these features, hence driving
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system behaviour [Sumner et al., 2012]. Another method is to use a variance

based methods, such as Sobol′ and the Morris method [Sumner et al., 2012].

The problem with models that are implemented on a computer program is that

they are usually complex and the model responses to changes in input are not

easily seen [Oakley and O’Hagan, 2004a]. There is also an added burden of

a long running time such as the Monte Carlo method [Oakley and O’Hagan,

2004a], as mentioned before.

It is clear that most common used sensitivity analysis methods are ones that

are based on formulating uncertainty in model inputs by joint probability dis-

tribution and analysing the induced uncertainty outputs. A type of sensitivity

analysis like this is the popular Monte Carlo method, however it requires sev-

eral runs and ends up being costly and time consuming without generating all

quantities of interest. This is why a new method of global sensitivity analysis,

which is computationally efficient and can be used to identify key parameters

and interactions, which drive the dynamic behaviour of model, is needed. A

suggested technique is a combination of functional principal component analy-

sis with global sensitivity analysis [Oakley and O’Hagan, 2004a]. It was run

and tried on an insulin signalling pathway, which is the major cause of Type

2 diabetes when there are defects in the pathway [Sumner et al., 2012]. The

results of this technique are promising as it managed to highlight a number of

important parameters in the model whilst also managing to support existing

theories which were displayed by experimental studies. Not only did it manage

to prove already known results, it also managed to identify different sets of

parameters which affected different aspects of model output. Thus, allowing

us to gain further insight into the models behaviour [Sumner et al., 2012].

However the current methods of global sensitivity analysis do have limitations,

such as the large run times and large costs. This is why a study by [Oakley and

O’Hagan, 2004a] suggested a probabilistic method to overcome this challenge.

Their method was a Bayesian approach, which is computationally efficient

and also allows for effective sensitivity analysis to be achieved using smaller

numbers of model runs than Monte Carlo methods. Additionally this method

allows for all the measures of interest to be computed from single set of runs
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[Oakley and O’Hagan, 2004a].

This probabilistic approach also allows one to avoid the challenges that occur

with picking a range [Oakley and O’Hagan, 2004a]. The novelty of this method

is that it enables users to define regression fits and corresponding sum of

squares as properties of a model without involving any particular sample of

model runs [Oakley and O’Hagan, 2004a]. Another attractive feature is that it

unifies a variety of current approaches and provides a deeper understanding

of the model and its dependence on certain model inputs [Oakley and O’Hagan,

2004a]. The parameter based sensitivity analysis methods we will use in

this study are partial rank correlation coefficient (PRCC) and Sobol′ methods.

The reason we use these methods is because of their capability to quantify

parameter uncertainty with minimal costs and time.

1.6 Thesis layout

This thesis is made up of six chapters and has an Appendix included. Chapter

1 of the thesis is an introduction to epidemiology of diabetes, background

information and the biology of the disease. It also provides the motivations, sig-

nificance and novelty of the study as well as the aims and objectives. Chapter

2 provides a literature review on current mathematical models of the glucose

homeostasis and diabetes models. Chapter 3 presents a new model for the

glucose homeostasis system and conducts mathematical analysis along with

machine learning techniques to understand diabetes pathways. In Chapter

4, we developed a mathematical model for Type 1 diabetes for short term

injection and explored mathematical properties of the glucose homeostasis.

In Chapter 5, we use data driven techniques to determine the best model for

modelling Type 1 diabetes using two candidate models produced in Chapters

3 and 4. In this chapter we fit published Type 1 diabetes data on mice to the

candidate models. Chapter 6 rounds up the thesis with conclusions and it

summaries the overall results of the thesis. It also makes recommendations

and suggestions for future studies. This thesis also has an Appendix with

supplementary figures and tables. The schematic presentation of the thesis is

shown in Figure 1.4.
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Figure 1.4 Structure of thesis
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Chapter 2

Literature review

2.1 Mathematical models

2.1.1 Introduction

We begin by recapping on some of the relevant biological material in order to

understand how the glucose homeostasis system is modelled. There are two

types of diabetes; Type 1 (insulin dependent diabetes) and Type 2 (non-insulin

dependent diabetes). Diabetes disease has a chronic nature and most models

do not include this factor [Barclay, 2021]. In a non-diabetic person, glucose

homeostasis is maintained by secretion of insulin from β -cells when blood

glucose rises from external energy sources such as during exercise or eating.

Another factor which can affect the glucose homeostasis, indirectly, is the

growth hormone (GH), which has up to date been overlooked when modelling

the glucose homeostasis system. The growth hormone, a glucose counter-

regulatory hormone, is secreted by the somatotropic cells, located in the pi-

tuitary gland [Holly et al., 1988; Kim and Park, 2017]. When hypoglycaemia

occurs, growth hormone increases accordingly [Holly et al., 1988]. This is

because the growth hormone increases the glucose production by gluconeoge-

nis and glycogenolyisis whilst also reducing glucose circulating in the blood

stream uptake in the adipose tissues [Kim and Park, 2017; Olarescu et al.,

2019]. Indirectly, growth hormone affects the role of insulin, it stimulates

protein synthesis and increases fat breakdown to provide energy for tissue

growth which results in an increase of free fatty acid (FFA) from the adipose
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tissues circulating [Kim and Park, 2017].

The increase in FFA can induce insulin resistance by inhibition of the insulin

receptor cells. Insulin resistance is a major problem in controlling diabetes,

hence the importance of including the increased insulin resistance due to the

growth hormone [Holly et al., 1988]. In detail, growth hormone increases the

production of insulin-like growth factor (IGF-I) which has receptors with many

structural similarities to insulins receptors. This means that IGF-I and insulin

can bind with each others receptors, so IGF-I can have an effect on the insulin

response to glucose which could result in glucose homeostasis being harder to

achieve [Holly et al., 1988; Kim and Park, 2017; Olarescu et al., 2019]. It has

also been suggested that high FFA levels may cause β -cells toxicity resulting

in increased β -cells death rates [Kim and Park, 2017; Olarescu et al., 2019].

The role of growth hormone in the glucose homeostasis system is illustrated in

Figure 2.1.

Figure 2.1 Schematic flow diagram illustrating the role of growth hormone (GH) in
the glucose homeostasis system. FFA denotes free fatty acids.

In this review of diabetes models, we categorise the models into clinical and

non-clinical models depending on their purpose. The main two models this re-

view will focus on are minimal models and minimal control networks. However

my research will only focus on minimal models.
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2.1.2 Clinical models

A clinical model, is a model that incorporates the stages of a disease and

makes predictions. These types of models are used for evaluating diagnostics

tests, developing glucose controllers, understanding disease progression and

predicting risk for complications [Ajmera et al., 2013]. For example, evaluation

of the diabetic and pre-diabetic conditions in an individual are done by glucose

tolerance tests (GTT) and are used to obtain an estimate of insulin sensitivity,

glucose effectiveness, insulin secretion and β -cell function [Ajmera et al., 2013].

Hence, earlier models focused on diagnostic tests to produce models for insulin-

glucose systems such as Bolie’s [Bolie, 1961] and Topp’s [Topp et al., 2000]

models.

2.1.3 Minimal models

One clinical model which is widely used is the minimal model. The initial

purpose of the model was to interpret clinical data. The basis of most minimal

models was determined by Bolie [Bolie, 1961] and is a simple linear model con-

sisting of a set of ordinary differential equations [Boutayeb et al., 2014]. Later

this led to the official minimal model, introduced by Bergman and colleagues

[Bergman, 1989]. It is a series of mathematical models showing insulin-glucose

dynamics and was a major breakthrough in modelling with the development of

physiological model for glucose disappearance following Intravenous Glucose

Tolerance Test (IVGTT) [Ajmera et al., 2013]. Both these models [Bergman,

1989; Bolie, 1961] are pivotal and revolutionary in modelling the glucose home-

ostasis system.

The minimal model contains two parts, a glucose minimal model (accounts

for glucose uptake) and an insulin minimal model (insulin release) [Bergman,

1989]. The simplicity of the structure and the parameters involved makes it

easier to evaluate hence it became a basis for many studies [Ajmera et al.,

2013; Al Ali et al., 2019a,b; Boutayeb et al., 2014, 2015; McDonald et al., 2000;

Topp et al., 2000; Voden et al., 2001]. This led to many adaptations of the

model since Bergman and colleagues model [Bergman, 1989] to overcome the

initial limitations of the basic model [Ajmera et al., 2013; Boutayeb et al.,
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2014]. Some of the limitations of the minimal model include overestimation of

glucose effectiveness - combined effect of glucose to enhance glucose uptake

and suppress endogenous glucose production at basal insulin levels and under-

estimation of insulin sensitivity (i.e insulin’s role to accelerate glucose uptake

and suppress glucose production) [Ajmera et al., 2013; McDonald et al., 2000].

Hence extensions were made to improve the model and provides justification

on the importance of this revolutionary model in shaping diabetes research

and modelling. For example, an additional compartment for glucose kinetics

was added along with IVGTT experiments. This allowed precise estimation

of insulin sensitivity and glucose effectiveness. However, the additional cost

and technology involved using IVGTT make it impractical to be applied to

the general population [Ajmera et al., 2013]. Another improvement was the

inclusion of data of healthy people [Ajmera et al., 2013]. This model led to the

formation of Topp and colleagues minimal model, another key model that we

use in our research as a basis [Topp et al., 2000].

Understanding of the underlying dynamics and defects that cause a disease

is of extreme importance in order to inform on prevention and treatment ap-

proaches. Studies [Ferrannini et al., 2003; Group et al., 1998; Tersey et al.,

2012] have shown that abnormality in β -cells occur with both types of the

disease therefore it is a relevant component in understanding the dynamics of

the glucose regulatory system and the pathways to the disease. These findings

led to the inclusion of β -cells dynamics in Topp and colleagues model [Topp

et al., 2000] extension of the well used Bergman and colleagues minimal model

[Bergman et al., 1981]. The model produced in [Topp et al., 2000] is a system

of three non-linear ordinary differential equations, each equation in the sys-

tem represents a key component in the glucose homeostasis system, insulin,

glucose and β -cells dynamics. Previously, models based on the minimal model

only included the dynamics of glucose and/or insulin as a single variable [Topp

et al., 2000]. This new system allowed the investigation of normal behaviour

of the glucose regulatory system and pathways to diabetes [Topp et al., 2000].

Specifically this model evaluated the β -cell response and process in the re-

duction of β -cell mass under certain physiological conditions [Ajmera et al.,

2013]. It also allowed for the determination of parameters causing defects in
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the feedback loops by providing a platform to change parameter values and

analysing the results [Topp et al., 2000].

The feedback loops are a result of how the blood glucose homeostasis is main-

tained in the body, regulation of the blood glucose levels requires two negative

feedback loops [Topp et al., 2000]. The negative feedback loops consist of one

short term and one long term. The short term negative feedback loop occurs

when mild hyperglyceima occurs which causes a release of insulin from the

β -cells and results in blood glucose levels being reduced (by decrease produc-

tion and increased uptake of glucose) [Bergman et al., 1985]. The long term

negative feedback loop occurs when chronic hyperglycemia causes an increase

in the β -cells mass, this is due to changes in the replication and death rate of

β -cells [Bonner-Weir et al., 1989; Efanova et al., 1998; Hoorens et al., 1996;

Hügl et al., 1998; Swenne, 1982]. The results of the model were that blood

glucose levels are regulated by two negative feedback loops and Type 2 diabetes

has been associated with defects in the components of both long and short term

and chronic negative feedback loops [Topp et al., 2000].

It is important to note these defects can also occur in non-diabetic individuals,

such as individuals with obesity or during ageing, puberty and pregnancy

[Topp et al., 2000]. The model’s behaviour was consistent with known biologi-

cal processes and provided an extremely good basis for continued work. Other

important noted model behavior was that glucose and insulin dynamics were

relatively faster compared to β -cell dynamics. In order to mimic the observed

trends, the model was improved by changing the time scale from minutes to

days. Further results of the model explained that mild cases of hyperglycaemia

show an increase in β -cell mass and therefore producing a negative feedback.

However, extreme cases of hyperglycaemia lead to a decrease in β -cell mass

and a positive feedback instead. In prolonged hyperglycaemia, the model

predicted three pathways to the disease. [Topp et al., 2000].

Limitations of this model are that all known physiological effects such as,

effects of hyperglycaemia on neogensis, insulin sensitivity, β -cell heterogeneity

are not included. Moreover, it does not incorporate the effects of insulin and
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incretin hormones on β -cell mass dynamics and possible adaptation of insulin

clearance rates to insulin resistance and elevation in free fatty acids. One

reason could be due to the fact that, the effects of biological processes have

not been sufficiently quantified experimentally. Thus, parameter values on

the rates and magnitudes of these processes would be guessed in modelling.

Primary analysis and simulations indicated that these physiological responses

affect the quantitative not qualitative behaviour [Topp et al., 2000]. Overall,

the model provides a theoretical base for indirect measurement of β -cell mass

in vivo, which eliminates the need for removing the pancreas [Topp et al.,

2000]. It also allows for longitudinal studies of β -cell mass dynamics without

complicated procedures to understand and quantify the β -cell dynamics in

individuals [Topp et al., 2000].

Type 2 diabetes can be characterised by high blood glucose [Hernandez et al.,

2001] and in turn leads to chronic insulin resistance. This results in significant

β -cell mass reduction and/or glucose toxicity [Hernandez et al., 2001]. This

β -cell mass reduction is characteristic of Type 2 diabetic individuals. In com-

parison to a healthy individual, Type 2 individuals have approximately 50%

less β -cell mass [Weir and Bonner-Weir, 2004]. Thus the secretion of insulin is

reduced due to insulin resistance occurring [Voden et al., 2001]. Hernandez

and colleagues [Hernandez et al., 2001], following on [Topp et al., 2000] work,

realised the importance of the accuracy in these modelling equations and

included insulin receptor dynamics as a new parameter. The reasoning for this

extension was that it was shown that chronic insulin resistance is associated

with down-regulation of the insulin receptors at the surface of muscle cells

and therefore it provides justification for experimentally observed receptor

behaviour and was important to improve the current modelling frameworks

[Voden et al., 2001].

It is important to note that, insulin resistance is classified as defects in ei-

ther or both insulin secretion and or insulin action [Hernandez et al., 2001].

The findings [Backer et al., 1989; Burgess et al., 1992; Fehlmann et al., 1982;

Huecksteadt et al., 1986a,b; Klein et al., 1987; Marshall et al., 1981; McClain

et al., 1987; Morgan and Roth, 1987; Sonne and Simpson, 1984] that led to the
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inclusion of insulin receptors dynamics were the following. The rate of insulin

clearance plateaus as plasma insulin concentration rises, insulin clearance is

linked with the insulin receptors, which are at the surface of the muscle cells.

The insulin receptors bind with insulin and then they can take up glucose

and transport it [Hernandez et al., 2001]. Once the process is complete, the

receptors will be recycled (return back to the surface of the cell membrane)

[Hernandez et al., 2001]. Another important fact for the inclusion of this

insulin receptor parameter is that insulin resistance was demonstrated in

skeletal muscle and adipose tissue. The skeletal muscle accounts for about

75% of whole body glucose disposal therefore insulin resistant subjects have

decreased muscle glucose uptake which accounts for most of the reduction on

whole body glucose disposal [Hernandez et al., 2001].

Before the inclusion of insulin receptors, the model in [Topp et al., 2000]

provides two stable physiological points and a saddle point, however there

is one point quantitatively unreasonable (β -cells value was extremely high

and biologically unfeasible) hence [Hernandez et al., 2001] adjusted some

parameters to obtain more realistic physiological steady state. Similar to the

model in [Topp et al., 2000], results of [Hernandez et al., 2001] provided three

equilibrium points when solved for average health parameters, however the

points were more reasonable in a physiological sense [Hernandez et al., 2001].

Although these results are a good basis, and improvement of the results in

[Topp et al., 2000] there is still room for improvement such as including an

upper limit on β -cell mass. This is because, when simulating the model at

different values, the results of β -cell do not always give reasonable values.

For example, a β -cell mass of 2179.38 mg is physiologically nearly impossible

(Range is usually between 600-1000 [Boutayeb et al., 2014]). This would mean

diabetes will prevail due to lack of insulin not being able to counter the rise in

blood glucose [Hernandez et al., 2001]. Another improvement could be consid-

ered such as the inclusion of other parameters such as α-cells and δ -cells to

provide even more realistic equilibrium points and disease pathways.

One current method to prevent or manage Type 2 diabetes, is through in-

creased exercise and improved diet, suggesting that obesity may lead to dia-
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betes. This could be due to the association of obesity with insulin resistance

and therefore is a major risk factor for diabetes [Boutayeb et al., 2014]. Fol-

lowing on this important finding, Boutayeb and colleagues [Boutayeb et al.,

2014] further improved the minimal model [Topp et al., 2000] by including the

effect of genetics on β -cell dynamics. The importance of genetics was included

in the relationship between obesity and diabetes [Boutayeb et al., 2014]. The

system was also modelled by three differential equations, however it improves

previous models [Bergman et al., 1981; Hernandez et al., 2001; Topp et al.,

2000; Voden et al., 2001] by including a genetic parameter ε , which specifically

represents the genetic predisposition to diabetes. Where, ε = 1 is a predispo-

sition to diabetes and ε = 0 is the absence of predisposition. This factor had

not yet been considered and is vital in understanding the dynamics of the

glucose regulatory system. The results of this model yield similar findings to

those in [Topp et al., 2000] when ε = 1, using healthy individuals parameters.

However, with no genetic predisposition, the model yields only two pathways

to the disease. These results are an improvement of those in [Topp et al., 2000]

as they match actual clinical findings better and also highlights that there is a

difference in the behaviour of the parameters when predisposition effect is in-

volved. The results also showed that, the inclusion of the predisposition effect

parameter is important in displaying all the pathways to diabetes [Boutayeb

et al., 2014].

It is important to note that although minimal models are well studied, we are

still yet to understand fully the dynamics of the glucose regulatory system

and the disease. There are still many parameters and factors that have not

been explored in the current models which could lead to new results and better

understanding of the disease. This is why we continue work on these minimal

models.

2.1.4 Non-clinical models

Non-clinical models are used for the stage before the clinical purposes. This

also means that they are more complex as they must provide a description of

the biological systems so that they can be used safely for clinical purposes. One

important type of non-clinical model is the minimal control network, which is
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used for understanding the glucagon dynamics. Glucagon, a counter-regulatory

hormone of glucose, is an important factor which affects hyperglycaemic and

hypoglycaemic levels in an individual and either of these states when chronic

individuals are classified as diabetic.

2.1.5 Minimal control networks

Glucose counter-regulation is also involved in the maintenance of blood glu-

cose homeostasis, one main parameter that is involved in this process are the

α-cells, without this counter-regulation, diabetes would prevail [Ajmera et al.,

2013]. The α-cells, which secrete glucagon are important yet limited research

has been done to understand their involvement with diabetes. The role of the

α-cells is in maintaining the blood glucose homeostasis (preventing chronic

hyperglycaemia) by working together with the β -cells [Ajmera et al., 2013].

The hormone produced by the α-cells has the opposite effect of the insulin

produced by the β -cells yet the inclusion of glucagon and α-cells functions are

comparatively sparse as with the β -cell roles [Ajmera et al., 2013]. Recognising

the importance of the α-cells and glucagon in hypo/hyper-glycaemia [Farhy

and McCall, 2009] contributed to this area of research by introducing a min-

imal control network model which incorporated the α-cells as a new parameter.

The representation of glucose counter-regulation by models is aimed to identify

the role of delayed feedback from the α-cells in glucagon counter-regulation

mechanism and are entirely made by components that are clinically measur-

able [Ajmera et al., 2013]. Previously, glucose counter-regulation axis was

described by a complex network, this can now be replaced with a minimal

control network model that explains the issues in diabetic patients [Farhy and

McCall, 2009]. The model is of a pancreatic network combines interactions

between different β -cell, α-cells, δ -cells and blood glucose [Farhy and McCall,

2009]. Specifically, the following, β -cell inhibition of the α-cells, δ -cells inhi-

bition of α-cells, α-cells stimulation of δ -cells, glucose stimulation of β and δ -

cells and lastly glucose inhibition of α-cells. Note that δ -cells produce a hor-

mone called somatostatin. In the original complex model [Quesada et al., 2008],

somatostatin is included implicitly [Farhy and McCall, 2009]. This model is

formulated using a system of non-linear ordinary differential equations. The
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ordinary differential equations approximate the glucagon and somatostatin

concentration rate of change under the control of switch-off signals and blood

glucose [Farhy and McCall, 2009]. However somatostatin cannot be measured

accurately in humans, thus a limitation of this is that the rates and parameters

related to somatostatin are estimated. This hinders their use in clinical studies

as validation of the model for human glucose counter-regulation control axis

cannot be done [Farhy and McCall, 2009]. Farhy and colleagues [Farhy and

McCall, 2009] proposed a model to deal with this problem, the model only

includes somatostatin implicitly and in addition is a less complex network.

Both models predicted reduced insulin secretion leads to decrease and delays

in the glucose counter-regulation and other results also confirmed that the

model is sufficient to replace the older complex network as it produces similar

findings [Farhy and McCall, 2009]. The advantages of this model, is that all

components that are explicitly involved can be clinically measured. Therefore,

the glucose counter-regulation abnormalities can be studied through the appli-

cation of this model to the human pancreas [Farhy and McCall, 2009].

However, other limitations still exist, such as the evaluation of the systems

behaviour, due to the relative contribution of each interaction not being ex-

plicitly stated. Additionally, the system describes relationships acting on one

after the other and the individual approach with feedback is not optional

or representative of the system. The model requires improvement by time

varying interaction of several components such as the capability to oscillate

and respond with rebound to switch-off. Other studies [Bergsten et al., 1994;

Bergsten and Hellman, 1993a,b; Hellman et al., 1994; Porksen et al., 1995;

Pørksen et al., 1997; Ritzel et al., 2001; Storch et al., 1993] showed that the

secretion of insulin by the β -cells is oscillatory which could suggest this is also

true for α-cells [Ajmera et al., 2013]. This feature led to [Sturis et al., 1991]

suggesting a nonlinear ordinary differential equation model demonstrating

the ultradian oscillation of secretion to understand the effects of insulin on

glucose utilisation and production.

Other advantages of the minimal control network model is that the com-

ponents cannot be studied in isolation as no information would be gained
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on the dynamics of the network, hence this minimal control network model

[Farhy and McCall, 2009] which collates the key components is vital. This

model allows us to simulate the interplay between multiple relationships in

the network and understand the whole body insulin-glucose-α-cells dynamics.

Finally the minimal control network, defines the components involved more

precisely and suggests an auto feedback for the α-cells, which are key in the

glucose counter-regulation system.

Modelling of the somatostatin raises the question why growth hormone, was

not considered in existing diabetes models. Somatostatin is a growth inhibit-

ing hormone and is included in the model in [Farhy and McCall, 2009]. The

somotropic cells in the pituitary gland secrete growth hormone, a factor that

has not been included and would be of importance to include as changes in

somatostatin results in changes in the growth hormone concentration. Al-

though inclusion of growth hormone components has been indirectly done

using somatostatin in [Farhy and McCall, 2009], explicit modelling of the

growth hormone would be more informative.

The whole body dynamics feature of the minimal control network led to other

types of models that incorporate multi-scale hierarchical and compartmental

modelling approach [Ajmera et al., 2013]. These methods are new and increas-

ingly important as they could eventually lead to better control and treatment

methods for diabetes [Ajmera et al., 2013]. The significance of modelling

studies describing the mechanisms that the led to progression of diabetes

complications and the disease, as well as show the possible intervention points

in self management procedures would be life changing to many [Ajmera et al.,

2013]. The importance of a model or network is vital in leading to the pathways

of diabetes and provides ways to potentially prevent and/or control the disease.

For this purpose, a model that can accurately represent the system, predict

the pathways to the disease and improve prior results is needed.

Accurate models to successfully describe the glucose homeostasis system can

be used in devices such as an artificial pancreas, providing a new improved

treatment to the disease. An artificial pancreas is an automated device which
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consists of a blood glucose sensor or a continuous glucose monitor (CGM),

an insulin pump, a control algorithm for injecting appropriate insulin dose

[MohammadRidha et al., 2015]. Currently the most common control for the

disease is by subcutaneous injection or insulin through insulin pumps. To use

these mathematical models in an artificial pancreas, its important to evaluate

β -cells function and insulin secretion for use as controllers to mimic the natural

phenomenon. An example of this maximal model was developed by [Grodsky,

1972; Grodsky et al., 1969] and showed the detailed cellular processes involved

in pancreatic insulin response to glucose stimuli [Ajmera et al., 2013]. Since

maximal models focus on cellular processes unlike minimal models, it means

studies are confined to computer simulation as extraction and quantification

of the cells are invasive and complex.

Another important use of these mathematical models, is in an automated

glucose controller. This requires models that link the input and output data re-

sults with a mathematical formula in order to predict plasma glucose levels in

individuals, this is what makes it automated [Ajmera et al., 2013]. Hence, sev-

eral different approaches (such as algorithms, stochastic and artificial neural

network) have been applied towards devising such models which is the main

purpose of producing a validated model [Ajmera et al., 2013]. Hovorka and

colleagues [Hovorka et al., 2004] developed a nonlinear predictive controller

model to maintain normal glucose level during fasting conditions in Type 1

diabetes patients by using a previous model [Hovorka et al., 2002] for glucose

kinetics along with Bayesian parameters estimation techniques. Currently

models exist for insulin-glucose dynamics in Type 1 diabetes that can efficiently

be used to design glucose feedback control algorithms for artificial pancreas

and can be validated using clinical data [Ajmera et al., 2013]. Separate to using

models with systems of equations, there is a model-free method which can be

used in treating diabetes. The model-free control and intelligent proportional

controller are used to control an artificial pancreas [MohammadRidha et al.,

2015]. Proportional–integral–derivative control and model based predictive

control are often used. Problems that occur with proportional integral deriva-

tives are tuning, which is extremely difficult and sensitive to disturbances

such as meals stress. In order for tuning to be achieved successfully, a math-
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ematical model is required along with optimisation procedures to be applied

[MohammadRidha et al., 2015].

A wearable, automated, bihormonal, bionic pancreas that improves mean

glycemic levels with less frequent hypoglycaemic episodes is required urgently.

Model-free control [MohammadRidha et al., 2015], was successfully applied

and gets closer to real artificial pancreas. A control algorithm has many bene-

fits such as, the tuning of intelligent controllers is straightforward and there is

no requirement for any modelling which is usually difficult to do for diabetes.

Additionally a controller is easily implemented on a non costly programmable

device and is robust [MohammadRidha et al., 2015]. Other advantages of

model-free over model-based algorithm are that, it requires an accurate model

(special and costly physiological studies of the process in glucose regulation).

Whereas, a control free algorithm uses simple data from patients that is rou-

tinely and easily collected [MohammadRidha et al., 2015]. Its practicality, not

being dependant on a specific patient, means no modifications/recalculations

are required to the parameters when it is applied to different patients [Moham-

madRidha et al., 2015]. The proposed methods and model-free models have

been tested in silico and has been observed to have a long term fit with clinical

data [MohammadRidha et al., 2015] which is an important step to treatment of

diabetes. However there still are a few problems such that, it has not yet been

tested on a US Food and Drug Administration (FDA) approved simulator (UVa

simulator - produced by University of Virginia originally) and it has only been

applied to small cohort of diabetes patients [MohammadRidha et al., 2015].

The FDA approved simulator is approved to be used as a substitute to animal

trials. However, there is a need for application of this simulator on unstable

diabetic individuals.

As noted earlier, the most common control for the disease is by subcutaneous

injection of insulin or insulin through insulin pumps. Some of the models

proposed were to estimate the plasma insulin concentration following such

administration. One major concern is heterogeneity associated with insulin

injections absorption kinetics when administration of the insulin is done ex-

ternally. To address this concern, a model clearly showing the relationship
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between different insulin polymers and their absorption kinetics was devised.

Following this success, several quantitative models for external insulin injec-

tions absorption were developed such as [Wang et al., 2017] insulin therapy

model for both types of diabetes which showed that external insulin infusion

can effectively mimic pancreatic insulin secretion [Ajmera et al., 2013]. These

models that are using simulation or virtual-patient models representing input

and output relationship between external inputs like insulin delivery, meal, or

exercise and corresponding glucose response form an essential part of compu-

tational simulators.

Different complications occur from diabetes such as wound healing, obesity,

retinopathy, foot ulcer, heart disease hence models have been produced to pre-

dict and understand these complications [Ajmera et al., 2013]. Other models

that are risk-predictive population-based models are used to describe diabetic

retinopathy, nephropathy and coronary heart disease however the complexity

of these models explains why a few of them exist. These models assume that

at certain threshold level of glucose, insulin-filled granules are stored and

reserved in β -cells. These granules then secrete insulin which corresponds to

first and second phase of insulin secretion. These models were later extended

to include updated knowledge on insulin secretion and β -cell function [Hen-

quin, 2009; Henquin et al., 2002; Rorsman et al., 2000].

There are many variations of different types of models. The minimal model

is one area where lots of work have been done and many adaptations have

been applied to overcome its initial limitations, based on the original model by

Bergman and colleagues [Bergman, 1989]. This minimal model, that has been

improved over many years, is vital along with the minimal control network,

which successfully mimics the glucose counter-regulation axis. The models

previously assume a constant state of disease, this was not realistic as diabetes

is a chronic progressive disease. This means more efforts focusing towards

understanding the glucose counter-regulation and glucose-insulin dynamics is

vital in developing new anti-diabetic agents which can alter diabetes progres-

sion [Ajmera et al., 2013; Nauck et al., 2021].
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In summary, current literature shows some gaps in diabetes research and

more work could be done to better improve the current models. For example,

the lack of research done on α cells and glucagon in comparison with β -cells

as well as growth hormone effect. Less work has also been done on models

that considers obesity as a factor, for the complications of diabetes due to lack

of experimental data and/or effort in this research area [Ajmera et al., 2013].

The fact that the nature of β -cells is oscillatory leads to a possibility of im-

provement on the current models by using this characteristic in the modelling

equations [Pedersen, 2009]. Lastly the use of delay equations could provide

essential flexibility in the current generation of diabetes models.

2.2 Machine learning models

An artificial pancreas is highly demanded to treat those with Type 1 diabetes.

In order to achieve this, a model which can predict and respond efficiently

to changes in the blood glucose level due to daily factors such as physical

activity, food and many other factors is required. Understanding the effects of

these factors can help improve treatment methods and in turn decrease risks

of complications which arise with diabetes. The development of predictive

control devices (artificial pancreas) is constantly improving. Its purpose is to

effectively control the blood glucose variations in individuals with diabetes au-

tomatically [Zhang et al., 2016]. However, development of such devices require

a model that can successfully describe the relationship between glucose and

insulin and food intake [Zhang et al., 2016]. Therefore, development of realistic

mathematical models for the glucose regulatory system and its dynamics is

important for improving diagnosis, management and predictive capabilities of

such devices. Finding a method to do this, in the simplest, least complicated

way remains extremely challenging due to limited access to quality data, high

cost of equipment for data collection process and complexity of the underlying

system dynamics [Zhang et al., 2016]. The complexity of these systems leads to

models with several parameters intended to accurately represent the system

and making it too complicated for use in practice. One solution to the problem

is data driven methods. We will discuss data driven models in Section 2.2.2.
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The purpose and importance of artificial pancreas is to control blood glu-

cose levels in a fully automated way so that a Type 1 diabetic (and some Type

2 who are on intensive daily insulin therapy) can use this method of treatment

every day of their life [Chen et al., 2015a]. The artificial pancreas directly

impacts the daily life of a Type 1 individual by providing a simpler, easier,

more efficient and accurate method of treatment. Usually Type 1 patients are

treated with subcutaneous injections however this requires the patient to be

aware when to inject, which allows for errors. Another way for Type 1 therapy

is using a pump and a continuous glucose monitor however, this also has issues

such as the bolus dosage (high dose of insulin, on demand to deal with meals,

[Paoletti et al., 2017]) is determined by the patient, again a danger of incorrect

dosing can occur [Paoletti et al., 2017].

The need to control blood glucose levels in an individual with Type 1 dia-

betes gave rise to a closed loop control device, also known as an artificial

pancreas which is a device able to control blood glucose levels and keep the

system in homeostasis. If an artificial pancreas is fully automated then it

would successfully manage the disease more easily, effectively and accurately.

It would also be less reliant on the patients themselves and will improve the

quality of life of a Type 1 diabetic individual [Trevitt et al., 2016].

2.2.1 Artificial pancreas

An artificial pancreas system is made up of three components, blood glucose

sensor or a continuous glucose monitor (CGM), an insulin pump and a control

algorithm for injecting appropriate insulin dose [Cobelli et al., 2011; Moham-

madRidha et al., 2015]. It is an externally worn device [Trevitt et al., 2016].

Currently most artificial pancreases that exist are only partly automated,

however the aim is to have them fully automated (i.e fully closed loop control).

The current existing devices that are used for the management of Type 1 dia-

betes [Trevitt et al., 2016] are continuous glucose monitors and insulin pumps

which deliver continuous subcutaneous insulin infusion [Trevitt et al., 2016].

Two types of not fully automated artificial pancreas devices exist, low glucose

suspend and predictive glucose suspend devices. Research has shown that, in

terms of reduced frequency, better overnight control and increased time within
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target blood glucose range [Trevitt et al., 2016], the artificial pancreas systems

may be better than basic continuous subcutaneous insulin infusion therapy

(CSII) alone [Trevitt et al., 2016]. The most accepted mode of insulin pump

therapy currently, is the continuous subcutaneous insulin infusion (CSII).

In 1974, the first commercial artificial pancreas device was produced, the

Biostator [Pfeiffer et al., 1974], then quickly followed by the Nikkiso STG -22

which is still in use in Japan and has a updated model, STG-55 Blood Glucose

Controller [Cobelli et al., 2011; NIKKISO, 2021]. However these devices re-

quire intravenous glucose sensing and insulin infusion which is not suitable for

outpatient use [Cobelli et al., 2011]. This led to further studies into the ability

to replace the intravenous methods with subcutaneous methods. The initial

models of artificial pancreas systems produced had issues in outpatients use

hence more development and progress was required, leading to later models

[Pickup and Keen, 2002; Tamborlane et al., 2008; Trevitt et al., 2016]. The

studies [Pickup and Keen, 2002; Tamborlane et al., 2008] showed that this

subcutaneous method has the ability to deliver continuous insulin [Cobelli

et al., 2011]. Following on these findings [Pickup and Keen, 2002; Shichiri

et al., 1982; Tamborlane et al., 2008] tested a wearable artificial pancreas pro-

totype which continued to be worked on by [Hashiguchi et al., 1994; Shichiri

et al., 1998]. An implantable system was introduced using intravenous glucose

sensing and intraperitoneal insulin infusion [LeBlanc et al., 1986] which led

to further developments and clinical trials [Renard, 2002; Renard et al., 2010].

However work on this system stopped due to the extensive surgery procedures

required for sensing and pump implant [Cobelli et al., 2011].

One essential part of an artificial pancreas system is the control algorithm used

in the controller [Trevitt et al., 2016]. Early artificial pancreas systems used

proportional-integral-derivative controllers as their closed loop algorithms

however these controllers have several limitations [Cobelli et al., 2011]. The

limitations occur when these proportional-integral-derivative controllers are

used in subcutaneous systems, it leads to time lags that occur in subcutaneous

glucose sensing and the insulin secretion [Cobelli et al., 2011]. One type of con-

troller that’s relatively new in comparison is the model-predicative control. It
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manages to overcome the limitations that the proportional–integral–derivative

controllers incur by modelling the metabolic system of the person being con-

trolled [Cobelli et al., 2011]. Many of these model-predictive controller algo-

rithms are based on the revolutionary minimal model [Bergman et al., 1979b].

However this has still not fully managed to produce a fully automated con-

troller due to several challenges which we outline in the next few paragraphs.

The diagram in Figure 2.2 gives a timeline of the advances towards a closed

loop artificial pancreas system.

Figure 2.2 Timeline of key achievements towards an artificial pancreas [Cobelli
et al., 2011]. We define the abbreviations in the timeline; continuous subcutaneous
insulin infusion (CSII), subcutaneous (SC), continuous glucose monitoring (CGM),
artificial pancreas (AP), Europe (EU), intraperitoneal (IP), National Institutes of
Health (NIH). In 2000, the European commission funded a 3 year ADICOL project
which showed feasibility in model-predictive control strategies to make closed loop
systems. In 2006, Juvenile Diabetes Research Foundation International (JDRF)
initiated the artificial pancreas project which funded several centers to carry out
closed loop control research. The Food and Drug Administration (FDA) accepted
the PAdova type 1 simulator as a substitute to animal trials for closed loop control
strategies. This was done by the University of Virginia (UVA). The National Institutes
of Health (NIH), in 2009 funded several artificial pancreas projects. In 2010 AP@Home
project was launched by the European Commission, which included five companies
and seven universities.

Continuous glucose monitors are vital for collecting input data to the artificial

pancreas control algorithm [Cobelli et al., 2011]. Initial continuous glucose

monitors had challenges in performance in hypoglycaemic states [Children-
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Network-DirecNet, 2003; Garg et al., 2006; Kovatchev et al., 2008] however

they have massively improved since the initial models [Cobelli et al., 2011].

Currently, continuous glucose monitors are relatively good however improve-

ments are needed to deal with certain challenges that occur. There are three

main challenges; time lag, errors from random noise and calibration require-

ments. Most continuous glucose monitors measure glucose concentration in the

interstitium compartment but during states when rapid change is occurring

such as, post meal or during a hypoglycaemic episode, thus another blood

sample would be required for calibration. The interstitial glucose and blood

glucose can be different at these times and therefore there is need to cali-

brate using more than one daily blood sample [Cobelli et al., 2011]. A study,

[Children-Network-DirecNet, 2006], investigated this and noted that accuracy

of the continuous glucose monitors increased when calibration is done during

stable periods of glucose [Cobelli et al., 2011]. The time lag occurs in the

blood glucose to interstitial glucose transport and the sensor processing time

and this largely determines the accuracy of the continuous glucose monitors

[Aussedat et al., 2000; Cobelli et al., 2011; Kovatchev and Clarke, 2008]. The

errors that occur from random noise affect the continuous glucose monitor

data thus methods such as filtering and denoising of the data are required

[Children-Network-DirecNet, 2008; Clarke and Kovatchev, 2007; Garg et al.,

2009]. Overall the continuous glucose monitors require several calibrations

with self monitoring of blood glucose and its accuracy is highly dependent on

the calibrations, self monitoring, as well as a filtering technique applied to

remove any noise [Cobelli et al., 2011; Georga et al., 2017]. This is some of the

reasons the current artificial pancreas models are still not fully closed loops

(fully automatic).

Early insulin delivery methods (1972-1990s) were through intravenous and

later developed to be used in an implantable device, as previously noted [Co-

belli et al., 2011]. However, its limitations such as, blood clotting and catheter

complications, overshadowed their effectiveness and caused the halt of in-

sulin delivery through this intravenous method [Cobelli et al., 2011]. Since

the 1990s, the accepted mode of insulin pump therapy is through continuous

subcutaneous insulin infusion (CSII). An issue in the delay of action of subcuta-
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neous insulin delivery due to time needed to absorb the subcutaneous insulin

(something which is vital in controlling the blood glucose levels) leading to late

insulin peaks remains a challenge [Cobelli et al., 2011]. Additionally there is

a risk of insulin under delivery due to the change in absorption speeds of the

insulin that occurs at different delivery sites [Cobelli et al., 2011; Georga et al.,

2017]. Another main property of current insulin pumps is high dependence

on the user/individual. The user must still be involved in the process, by esti-

mating carbohydrate count and approve or modify (if necessary) the systems

suggested bolus dosage [Chen et al., 2015a]. Although it led to better glucose

control and other improvements than previous models, there is no pump that

can successfully deliver boluses accurately [Chen et al., 2015a].

However, it is important to note that the majority of insulin pumps do not

adjust predicted bolous dosage [Chen et al., 2015a]. This suggests the need

for research among patients using the pumps to understand the impact in all

aspects such as physiological or psychological aspects to enable improvement

of the pumps [Chen et al., 2015a]. The model in [Chen et al., 2015b] used an

Eat, Trust, and Correct framework in combination with a clustering algorithm

to learn the behavioural patterns of the user. It successfully provided new in-

sights on the data and allows for the exploration of how switching behavioural

types may impact the patients blood glucose control [Chen et al., 2015a].

Artificial pancreas systems are defined in six categories which is based on

their level of automation, first generation systems which are not closed loop,

second generation which have automated insulin delivery systems and third

generations which are fully automated with multihormonal delivery devices.

See Figure 2.3 for information on the classification of the six stages [Trevitt

et al., 2016]. The current artificial pancreas systems are in stage 5 and stage

6.
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Figure 2.3 The six stages of the artificial pancreas system classified under genera-
tions [Trevitt et al., 2016].

The current artificial pancreas systems in development were classified in

[Trevitt et al., 2016] into four subtypes based on their; level of automation,

hormonal approach, type of control algorithm and glycemic control strategy.

Overall, eighteen closed-loop artificial pancreas systems were found in the

clinical phase of which six were being developed by commercial companies and

some had expected time frames to launch [Trevitt et al., 2016]. Currently, as

of 2021, there are some fully automated artificial pancreas on the market for

certain countries to use but world distribution is still limited [Cairns, 2021;

CamAPSFx, 2021; Inreda, 2021; Leelarathna et al., 2021; Lewis, 2021; Min-

imed, 2021; Tandem, 2021]. For example, the Inreda bihormonal artificial

pancreas is available for distribution to Dutch nationals but not yet for pur-

chase [Inreda, 2021]. The Minimed 770g [Minimed, 2021], is also available

to purchase for certain countries. It is clear from the results of [Trevitt et al.,

2016] that majority of the systems, twelve of them to be specific, were classed

as second generation automation. Then three were classed as second/third

generation and lastly there were three in third generation (fully automated).

There are two main types of hormonal approaches, single hormone (insulin-

alone) and multihormonal [Cobelli et al., 2011; Trevitt et al., 2016]. The

multihormonal approach is better for providing a system that is more like

the natural control of blood glucose levels, and it does this by the inclusion

of glucagon hormone however, there are alternative hormones which can be

included instead [Trevitt et al., 2016]. In addition, it achieves tighter glycemic

control. However, this does come with practical challenges, glucagon is un-

stable in solution therefore requires replacement every 8 hours, thus the

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be found in the Lanchester Library, Coventry University. 
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development of commercial dual infusion pumps would be required [Trevitt

et al., 2016]. Now the results from review in [Trevitt et al., 2016] showed

that majority, again twelve, of the systems were single approach whilst the

remaining six employed the multihormonal approach. The reduced amount of

multihormonal approach in comparison to the single hormone approach could

be due to the simplicity of the single hormone than with the multihormonal

approach however it seems to be worth the complications.

The main algorithms used in the digital controller of the artificial pancreas

systems are, proportional-integral-derivative, fuzzy logic, model-predictive

control and bio-inspired algorithms. The results showed that most systems

used proportional–integral–derivative or model-predictive control algorithms.

Although there are many systems in development using these two algorithms,

they are good and work well for artificial pancreas systems so are not to be

disregarded for future improved artificial pancreas systems. Now the lack of

fuzzy logic and bio-inspired algorithms used in the current artificial pancreas

systems also suggests more work could be done to incorporate their approach

as they potentially provide a better artificial pancreas system [Lewis, 2021;

Trevitt et al., 2016].

In the review [Trevitt et al., 2016], 61% of the systems reviewed use a treat to

target strategy (keep the blood glucose levels as close as possible to a specific

value) whilst 22% used a treat to range strategy (keeping the blood glucose

levels within a personalised range) and the remaining 17% used a combination

of both. The treat to target strategy is already highly researched in comparison

to the treat to range, hence looking at this in the future may provide better

artificial pancreas systems. In particular the fact that the range is person-

alised, which may take time and effort to find can be justified as each person is

unique and having a system that is tailored for that specific person is ideal for

long-term management of the disease.

The artificial pancreas systems have been tested in different settings, mainly it

has been tested on inpatient settings and only for short periods of time [Bekiari

et al., 2018; Leelarathna et al., 2021; Lewis, 2021; Trevitt et al., 2016]. Overall,
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the current artificial pancreas systems reviewed showed that they were safe

over short periods of time and were showing promising results in a variety

of settings in clinical phase and outpatient settings. However, the systems

need to be tested over a long period of time and more efforts are needed to

assess the artificial pancreas systems cost and clinical effectiveness in order

for global commercialisation and distribution [Bekiari et al., 2018; Leelarathna

et al., 2021; Lewis, 2021]. Lastly the goal of this artificial pancreas system it to

better improve the management and life of a Type 1 diabetic individual hence

functionality and design need to meet the users expectations [Leelarathna

et al., 2021; Lewis, 2021; Trevitt et al., 2016].

Finding the correct levels of insulin to maintain blood glucose levels at meal

times is one of the difficulties and main reason a fully automated closed-loop

control has not succeeded. In 2011, all the artificial pancreas trials displayed

a significant post-pandrial glucose peak above the normal range, hence some-

thing that needs to be addressed for success in future models [Bekiari et al.,

2018; Cobelli et al., 2011]. Algorithm choice is dependent on the ability of the

algorithm to successfully cope with delays and inaccuracies that occur in the

glucose sensing and insulin delivery system [Cobelli et al., 2011]. Delays or

too fast time responses can lead to unstable system behaviour and failure to

provide the required response effectively, hence finding the perfect timing is

crucial [Cobelli et al., 2011].

In order to be able to successfully produce a fully automated closed loop

control, a control algorithm that can find the balance in responsiveness speed

to be able to regulate all situations of the patients day/night is needed. The

initial closed loop proportional–integral–derivative algorithms were limited

due to only having reactive characteristics [Cobelli et al., 2011]. Another

importance, is the algorithm must be able to work for all patients, a way of

handling this would be the use a customisable controller tailored to the patient

[Cobelli et al., 2011]. The model predictive control algorithm provides a good

approach for this, it is easily individualised and has the ability to learn [Cobelli

et al., 2011]. The ability to learn is important as the daily meal times of a

patient are mostly routine and information can be gathered and used for more
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informative treatment in response to meals [Bekiari et al., 2018; Cobelli et al.,

2011; Lewis, 2021]. An alternative method, suggested in [MohammadRidha

et al., 2015] is a model-free method that is less complicated and has many

advantages in terms of less and/or easier calculations and costs. There are

two types of model-free methods and combining them improves the current

methods and making tuning easier, as it is too complicated with previous

proportional–integral–derivatives [MohammadRidha et al., 2015]. The method

has been tested in silico and the benefits is that the parameters can be es-

timated easily from standard data. It has a long term fit with clinical data

unlike other models. The method in [MohammadRidha et al., 2015] was able

to improve the blood glucose peak values post meal and average blood glucose

levels overall, a main challenge in Type 1 diabetes. It is less expensive than

other proposed methods and has been proven to work well in silico [Moham-

madRidha et al., 2015].

Another major limitation of success in fully automated control is unavail-

ability of insulin sensors (cannot be measured in real-time). This is extremely

important for glycemic variability and must be properly taken into account in

model formulation as it can compromise proper estimation of plasma insulin

concentration [Avila et al., 2018a; De Paula et al., 2015]. A possible solution

for this, given in [Avila et al., 2018b], is Gaussian-process-Bayesian filtering

methods for model based estimation of plasma insulin concentrations. This

allows for quantification of uncertainty that occurs in the estimation, explicitly

in the prediction step and filtering process [Avila et al., 2018a]. The novelty of

this method is that traditional filtering strategies resort to parametric models

for state estimation instead [Avila et al., 2018a]. However, limitations do

exist with this method such as the time delay from the subcutaneous insulin

injection. This is a challenge occurring in all methods [Avila et al., 2018a].

The second limitation of this method is that it relies on the individual to count

carbohydrates which is extremely inconvenient [Avila et al., 2018a]. Another

solution suggested is an algorithm that combines reinforcement learning with

Gaussian process approximation [De Paula et al., 2015]. This method also

aims to overcome the other limitations that exist with; sensitivity, stability,

calibration and time lag between blood glucose and interstitial glucose concen-
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tration and sensor errors. The results of this method is promising, it is both

safe and efficient for controlling subject-specific variability due to a patient’s

lifestyle and its distinctive metabolic response [De Paula et al., 2015]. However

other error sources still occur with the infusion pump and wireless signals and

they must be taken into consideration to make the artificial pancreas more

robust [De Paula et al., 2015]. Another issue to be addressed is whether to

focus on robustness or optimality as they cannot both be done together to the

best degree as one must be comprised to improve the other [De Paula et al.,

2015]. Lastly clinical evaluation of control policy is required before artificial

pancreas systems can become mainstream [De Paula et al., 2015].

To summarize this section on artificial pancreas systems, the early closed-

loop systems illuminated the difficult carbohydrate counting usually required

by the individual. Instead they rely on a glucose sensor readings, however

this approach does mean prolonged postpandrial hyperglycaemia occurs [El-

Khatib et al., 2010; Weinzimer et al., 2008]. All current systems which are

closed-loop, and are better at managing the diabetes than the pump therapy

still require the individual to input meal carbohydrate count or meal size,

which although is less difficult than previous requirements, is still not fully

automated without user involvement [El-Khatib et al., 2014; Russell et al.,

2014]. A Fiasp-plus-pramlintide fully closed-loop system [Tsoukas et al., 2021]

without full carbohydrate counting has been produced however there were

some limitations and hyperglycaemia did still occur for the first 2 hours post

a meal. The most current approved commercial closed loop systems [Bekiari

et al., 2018; Cairns, 2021; CamAPSFx, 2021; Inreda, 2021; Leelarathna et al.,

2021; Lewis, 2021; Minimed, 2021; Tandem, 2021] that do exist are still limited

to distribution in certain countries as further analysis of long term outpatient

trials are needed before they can be approved to the global market. Further

work is required in order to achieve a fully automated closed loop system

without any episodes of hyperglyecmia and zero user interference.

2.2.2 Data driven models

We usually use mathematical models to understand the complicated dynam-

ics of the glucose regulatory system by formulating systems of differential
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equations to describe a real life system, however there is an alternative data

driven method. There is numerous amount of data that is collected on diabetes

patients, in particular from continuous glucose monitor devices and all this

information is not being used as it should be. The Gaussian method is one type

of data driven method. There is a huge need for these data driven methods,

as the amount of data collected is only growing, and not being used. This

information could be vital in providing us with new, valuable insights and

results of the disease. Data mining, an analysis technique, allows us to use

this information collected for producing new hypotheses and in turn providing

earlier detection of diseases.

A main factor in the glucose regulatory system is insulin sensitivity. Insulin

sensitivity is extremely hard to model and control as it varies periodically (in

a circadian rhythm) [Ortmann et al., 2017]. A time varying feature could be

a potential solution and was proposed in [Ortmann et al., 2017]. The future

effect of the insulin sensitivity is predicated using a Gaussian process (a data

driven method) based on the old data that is constantly updated [Ortmann

et al., 2017]. This also allows for personalised control to an individual and

in turn a more accurate method of control. It uses a combination of model

predictive controllers, Unscented Kalman Filter (UKF) and a Gaussian pro-

cess to learn the effect of the rhythm and incorporates this in a closed loop

controller [Ortmann et al., 2017]. Previous model by [Toffanin et al., 2013],

incorporates just model predictive control methods hence the study in [Ort-

mann et al., 2017] version is an improvement. The Gaussian process model

predictive controller successfully reduces the tracking error and keeps the

blood glucose control entirely in the tighter zone during fasting periods unlike

the model predictive controller method. It also outperforms the older versions

of the model predictive controller. In particular, during meal times, which is

usually the most difficult time to control and prevent a hyperglycaemic event

occurring [Ortmann et al., 2017]. Nevertheless, the model in [Ortmann et al.,

2017] has some limitations such as it is not entirely in the ‘tight’ zone during

meals scenario and with the ‘skipping meals’ scenario [Leelarathna et al., 2021;

Ortmann et al., 2017]. Note the ‘tight’ zone refers to keeping the blood glucose

levels within the optimal ranges of a non diabetic person [Buppajarntham,
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2021], also known as glucose homeostasis. These methods suggested allow

for flexibility in choosing meal times and amounts unlike a model predictive

control so should be considered in future improved models [Ortmann et al.,

2017].

Another data driven approach for analysing the effects of the glucose home-

ostasis system is a physiology based model of blood glucose dynamics that

is converted to a Bayesian network to account for measurement error and

variability in the physiological process [Ewings et al., 2015]. This led to the

stochastic model in [Ewings et al., 2015]. The limitations with the current mod-

els that use this approach is that the data is usually from healthy volunteers

who perform simple, unrealistic exercise protocols that are not representative

of the diabetic individuals who are active. Therefore there is uncertainty on

how these models would cope with free-living data (data where individuals

are not confided to certain protocols). A Bayesian network was produced in

[Ewings et al., 2015] and is aimed to overcome these limitations as well as

provide a more accurate representation of the physiological process. One ex-

ample of the limitation is that the model performance is poor when tested on

free living data [Ewings et al., 2015]. This could be due to the assumption

that post exercise, activity returns to basal levels, proven not always true by

Diabetes UK study [Valletta, 2011]. This led to the model in [Ewings et al.,

2015] giving poor results with glycogenolysis and insulin clearance roles be-

come disproportionally large. Another overlooked factor was that the exercise

was done over a short term and is unlikely to reflect everyday activity in the

life of an individual.

The study in [Ewings et al., 2015] went on to improve this exercise model to

overcome the limitations mentioned. The modified exercise model, by removal

of the rate of decline in glycogenolysis, insulin clearance due to activity and a

renal clearance of blood glucose was included thus produces a physiologically-

viable output [Ewings et al., 2015]. The results of the modified model show a

clear improvement in the handling of free-living data. The reason for using

Bayesian methods is that they facilitate the inclusion of prior information on

parameters so that the model is updated as new data becomes available. To
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validate results of the new Bayesian network [Ewings et al., 2015], Markov

Chain Monte Carlo methods (MCMC) were used for parameter fitting and

prediction of blood glucose concentration. The suitability of the model was

tested in a simulation study where the fixed parameter values were used to

generate a blood glucose concentration profile and MCMC estimates were

derived for known parameters [Ewings et al., 2015]. The overall results were

shown to have good predictive performance on certain scenarios by having limi-

tation credible intervals containing true values and no suggestion of prediction

bias [Ewings et al., 2015]. However, the intervals used are extremely wide

and unrealistic in relation to biological terms. The intervals used for blood

glucose concentration were in the range of (3-2980) mg/dl which means either

hyperglycaemia or hypoglycaemia could be occurring, also physiologically, a

blood glucose concentration level of 2980 mg/dl is unfeasible [Ewings et al.,

2015]. Despite this major concern, the model does provide a new approach for

analysing diabetes models and could be useful in steps towards achieving an

artificial pancreas [Ewings et al., 2015].

Data driven methods have proven to be very useful. However, their shortfall is

that they tend to categorise every poor fit as noise.This issue majorly changes

the deterministic dynamics and therefore not a good representation of the sys-

tem. The study in [Zhang et al., 2016] considered a model of minimal order and

number of parameters whilst still managing to account for nonlinearity and

stochasticity. It has been shown that the dynamics (blood glucose response to

food intake) have strong nonlinear response hence the importance of including

the nonlinear terms into the modelling equations. This data driven nonlinear

stochastic approach model also allows for support of the control strategies in

clinical settings. The stochastic element incorporated in this model [Zhang

et al., 2016] comes into the model in two forms; noise/measurement error from

the device and/or dynamical intrinsic noise resulting from factors other than

food intake such as physical activity and stress. This is a major improvement

to the limitation of previous models which just subjected any poor fitting down

to noise without correct measurement or accounting for the reasons for the

noise. The model in [Zhang et al., 2016] was produced as four models with two

functions, each containing no more than three polynomial terms. The justifica-
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tion for this was four or more polynomials increases probability of overfitting

and may make the system unstable without actually improving the estimation

of the parameters. To decide which of the models is the best description of

the blood glucose dynamics and also identifying the corresponding determin-

istic values of the functions and stochastic parameters, a Bayesian learning

numerical algorithm was applied [Zhang et al., 2016]. A stochastic nature was

observed for the underlying glucose dynamics making the Bayesian algorithm

suitable [Zhang et al., 2016]. Additionally, the algorithm is able to distinguish

between measurement and dynamic noise. As well as it being flexible and

more robust to model misspecification, it produces the model parameters in

a more ideal form, not as fixed values [Zhang et al., 2016]. Therefore the

model in [Zhang et al., 2016] overcomes the issue regarding the uncertainties

of parameter estimates.

Overall the model in [Zhang et al., 2016] is capable of describing the dy-

namics of the glucose regulatory system along with food intake. It shows

suitability in clinical stages for early diagnosis and studying the impact of the

drugs on the stability of the glucose response as well as the control as it can

provide deterministic parameters for individuals with diabetes. It also may be

useful for parameter interpretation in physiological models as it is compatible

with phenomenological models. There are still limitations with this model, as

the study was a small sample of glucose profiles, thus a larger sample size

would be required to provide further evidence and validation of some of the

relationships observed.

2.2.3 Literature gaps

Existing mathematical models have several limitations that hinder their pre-

diction capabilities and have not been comprehensively analyzed to understand

their mathematical properties. Here are some of the current gaps in diabetes

models:

• Existing diabetes mathematical models do not include vital known bio-

logical processes such as the growth hormone.
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• Mathematical analysis of existing diabetes models to explore on dynam-

ical properties and parameter space is limited. By understanding the

dynamical properties and being able to determine threshold quantities

we can understand diabetes development and management.

• Use of machine learning techniques to explore on parameter spaces and

test on the robustness of model predictions is limited. Machine learning

methods are becoming important in understanding model parameter

space and prediction capabilities and provide insight on parameters

that define the system and are important in designing management or

treatment strategies for diabetes.

For progression in this area, the use of computer simulations is also vital,

to avoid the lengthy, costly animal trials, instead in silico is a much better

option [Cobelli et al., 2011]. It allows for much quicker progress to clinical

trials which is crucial in having a commercially used fully automated closed-

loop device (artificial pancreas). Further research needs to be done on long

term prediction capabilities of models among high risk diabetic individuals in

outpatient settings [Bekiari et al., 2018; Leelarathna et al., 2021]. Another

area which needs to be considered in the improvement of current artificial

pancreas systems is the wearability, how easy it is to use, its interface and its

ability to handle unexpected situations as after all it is meant to improve a

Type 1 diabetic’s treatment and quality of life [Cobelli et al., 2011]. Overall,

the improvement required is a digital controller which allows for automatic

control [Trevitt et al., 2016]. It eliminates the need for the patient or the expert

to tell the hormone therapy function (the pump) to make adjustments, instead

the controller acts as a brain [Trevitt et al., 2016] and instructs the pump to

make the adjustment required. This is clearly a much quicker, more efficient

and easier way of managing the disease.

2.3 Chapter summary

Across both sections of the review (Modelling and Machine Learning), the

key studies so far have reviewed previous and current methods of dealing

with diabetes and models that describe the glucose regulatory system. We

systematically reviewed clinical and non-clinical models and also discussed
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machine learning driven models as well as several mathematical modelling

methods (such as the minimal model). We identified gaps in literature and

shed light on where improvement is needed. Most of the models assume a

constant state of disease which is not true for diabetes hence the results are not

realistic [Ajmera et al., 2013]. Therefore the inclusion of disease progression

in a model is important in order to study the long term effects of anti-diabetic

agent at different stages of progression [Ajmera et al., 2013]. To overcome these

limitations, we must determine the non-clinical factors and/or genetic factors

that explain different complications associated with prolonged hyperglycaemia.

This will help us to improve the current models, such as the model by Boutayeb

and colleagues [Boutayeb et al., 2015] by incorporating selected factors as new

variables or parameters into the model equations.



Chapter 3

Using mathematical and

sensitivity analysis approaches

to understand glucose

homeostasis model with growth

hormone

3.1 Introduction

Globally, prevalence of diabetes is on the rise, for example, 2019 prevalence

estimate was at 9.3% and predicted to rise to 10.2% by 2030 [Saeedi et al.,

2019]. Diabetes has two main forms, Type 1 (insulin dependent diabetes)

and Type 2 (non-insulin dependent diabetes). Symptoms of the disease are

increased thirst, hunger, food intake and urination, weight loss, blurred vision

and extreme tiredness [Cantley and Ashcroft, 2015]. If not treated, diabetes

may cause heart disease, kidney failure, nerve damage, comas and eventually

death [Boutayeb et al., 2014]. As discussed in Chapter 2, for better understand-

ing this disease, we need to comprehensively understand the mechanisms of

the glucose regulatory system, which is vital in designing the future treatment

approaches.

As explained in Chapter 2, β -cells role in blood glucose homeostasis and the

development of diabetes is very crucial. The β -cells are unique cells located
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in the pancreas, specifically the islets of Langerhans [Diabetes-Digital-Media,

2019] that produce, store and release the insulin hormone. The level of control

on glycaemia is dependent mainly on the coordinated secretion of glucagon and

insulin by α and β -cells, respectively [Quesada et al., 2008]. In a non-diabetic

individual, glucose homeostasis is maintained by insulin secretion which is

triggered when the blood glucose rises (hyperglycaemia). The β -cells stimulate

insulin release when absorbing the glucose. In contrast, insulin secretion

is switched off as blood glucose falls (hypoglycaemia) [Cantley and Ashcroft,

2015]. Concurrently, α-cells (also located in the pancreas) secrete glucagon (a

hormone) which travels to the liver where it forces the release of glucose into

the blood to generate energy thus maintaining the blood glucose homeostasis

system [Hughes and Narendran, 2014] .

Type 1 diabetes is an autoimmune disease, because β -cells are destroyed by

body’s immune system and therefore can no longer secrete insulin [Boutayeb

et al., 2014; Diabetes-Digital-Media, 2019]. The absence of β -cells means

the blood glucose levels cannot be controlled [Cantley and Ashcroft, 2015].

If the blood glucose is chronically elevated over time due to lack of insulin,

complications of diabetes occur [Cantley and Ashcroft, 2015]. Type 1 diabetes

is treated through insulin injections [Diabetes-Digital-Media, 2019]. Type 2

diabetes can develop at any time in an individual’s life. Individuals who are

overweight are more likely to be diagnosed as Type 2 diabetic [Boutayeb et al.,

2014]. This is due to an insufficient amount of insulin secretion from β -cells

which leads to insulin resistance [Cantley and Ashcroft, 2015]. Insulin resis-

tance occurs when the body produces insulin but is unable to use it efficiently

[Ajmera et al., 2013] and the body attempts to compensate by producing higher

quantities of insulin [Diabetes-Digital-Media, 2019]. When insulin resistance

occurs, hyperglycaemia appears [Cantley and Ashcroft, 2015] and persistent

chronic hyperglycaemia can eventually lead to β -cells wearing out [Diabetes-

Digital-Media, 2019]. However, insulin resistance is also caused by impaired

glucagon secretion from α-cells [Ajmera et al., 2013]. It was suggested that

these defects have a strong genetic component but can be increased by other

factors such as, obesity, lack of physical activity and diet [Ajmera et al., 2013].

Management of Type 2 diabetes requires balanced diet and exercise, if neither
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of these is sufficient, oral medications and insulin injections can be used for

treatment [Cantley and Ashcroft, 2015]. There are many drugs available to

control symptoms of diabetes, but currently there is no cure [MohammadRidha

et al., 2015].

It has been recognised that growth hormone is a glucose counter regulatory

hormone [Holly et al., 1988; Kim and Park, 2017]. The growth hormone has

been shown to increase glucose in the blood, through gluconeogenesis and

glycogenolysis from the liver and the kidney [Kim and Park, 2017; Schwarz

et al., 2002]. The growth hormone also suppresses glucose uptake in adipose

tissue [Kim and Park, 2017]. It has been demonstrated that growth hormone

deficiency is associated with abdominal obesity and insulin resistance [Kilgour

et al., 1995]. The fat stored in the body is reduced due to the growth hormone

stimulation lipolysis. Lipolysis is a mechanism which results in increased flow

of free fatty acids from the adipose tissue. Less adipose tissue will result in

less adipose tissue glucose uptake. The free fatty acids can inhibit the insulin

receptors substrate which can result in decreased insulin thus increased free

fatty acids could induce insulin resistance [Kim and Park, 2017; Vijayakumar

et al., 2011]. Increased free fatty acids uptake has also been shown to result

in increased blood glucose levels [Kim and Park, 2017]. Details on the role of

growth hormone in the glucose regulatory system are illustrated in Figure 3.1.
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Figure 3.1 Flow chart showing the growth hormone (GH) role [Kim and Park,
2017]. The growth hormone is produced in the Somatropic cells which are
located in the pituitary gland. GH increases the production of glucose through
gluconeogenesis and the glycogenolysis from the liver and kidney. GH sup-
presses the uptake of glucose by the adipose tissue resulting in more glucose in
the blood. GH breaks down the adipose tissue and results in a flux of free fatty
acids. Increased free fatty acids results in insulin signalling pathways being
impeded and as a result extra insulin is produced to compensate potentially
causing insulin resistance.

In order to design effective disease management or treatment approaches,

mathematical models can be used as tools to understand the blood glucose

regulatory system. Several mathematical models have been developed to

understand diabetes dynamics [Al Ali et al., 2019a,b; Bergman et al., 1981;

Boutayeb et al., 2014; Huard et al., 2017; Lombarte et al., 2018; Makroglou

et al., 2006; Voden et al., 2001]. Glucose homeostasis models [Bergman et al.,

1981; Boutayeb et al., 2014; De Gaetano and Arino, 2000; Voden et al., 2001]

that have been developed based on the revolutionary model in [Topp et al.,

2000], and these have shed light on the functionality of the glucose regulatory

system. However, these models can be improved to incorporate other impor-

tant biological processes but that brings several challenges such as increasing

model complexity and parameter estimation as some important parameters

involved are rarely measured (e.g β -cells).

In this chapter we extended a mathematical model in [Topp et al., 2000] to in-

clude a novel model variable, growth hormone (based on findings in [Holly et al.,
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1988; Kim and Park, 2017]) and conducted thorough analysis of the resulting

model using classical mathematical approaches centered around threshold

quantities and global sensitivity analysis methods. Threshold quantities for

deterministic models have been widely used to give insights on important

parameters governing model dynamics. In epidemiological modelling, a thresh-

old quantity known as the basic reproductive number (R0) is used to gain

insight on important model parameters and quantifying disease transmissi-

bility [Anderson and May, 1992; Diekmann et al., 1990; Dietz, 1993; Li et al.,

2011; Mukandavire et al., 2011, 2013; Smith et al., 2007]. We used partial

rank correlation coefficient (sampling-based method) [Blower and Dowlatabadi,

1994] and Sobol′ method (variance-based method) [Sobol, 1993] for global sensi-

tivity analysis. This study is motivated by the need to understand the glucose

homeostasis system on a deeper level in order to build suitable algorithms to

use when developing an artificial pancreas and better improve the daily life

of diabetic individuals. The novelty and main differences with other previous

studies, [Anggriani et al., 2019; Ndii et al., 2016], is the in-depth analysis

of the resulting mathematical model by using different sensitivity analysis

methods and applications of threshold quantities in understanding the dy-

namics of a diabetes model. This study makes an interesting first attempt to

comprehensively explore the importance of traditional mathematical analysis

approaches and sensitivity analysis methods in identifying influential model

parameters and establishing factors governing model dynamics.

3.2 Glucose homeostasis system

We developed a glucose homeostasis model system consisting of the following

variables, β -cells (β ), insulin (I), glucose (GL) and growth hormone (GH). The

model variables, parameter values, and their symbols are given in Table 3.1.

The model dynamics are governed by the following system of differential
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equations.
dβ

dt
= (hGL − iG2

L −g)β ,

dI
dt

=
βdG2

L

e+G2
L
− f I,

dGL

dt
= a− (b+ cI)GL + cGH ,

dGH

dt
= ρ −wGH .



(3.1)

We describe each of the model variables and related parameters in sections

3.2.1, 3.2.2, 3.2.3 and 3.2.4.

3.2.1 β -cells dynamics

The β -cells increase, by production or replication at rate h and are reduced

by β -cell exhaustion or natural death at a rate g. β -cells are also reduced

by glucose toxicity when glucose exceeds a certain range, called a glucose

tolerance range, and β -cells are destroyed at a rate i.

3.2.2 Insulin dynamics

Insulin (I) is secreted by the β -cells and is dependent on the levels of glucose

in the body. Insulin levels are reduced by lack of β -cells. When excess glucose

is present, insulin production by the β -cells is increased to counteract rising

blood glucose levels [Diabetes-Digital-Media, 2019]. Insulin is reduced by

natural clearance at a rate f . The net insulin rate was determined to be best

modelled as a sigmoidal function of glucose level [Topp et al., 2000]. The basis

of this hypothesis is through in vitro relationship [Malaisse et al., 1967] and

combined with successful use of insulin secretion rates given by the sigmoidal

function [Cobelli et al., 1989; Rudenski et al., 1991]. Some details on the

relationship with glucose are given in [Topp et al., 2000].

3.2.3 Glucose dynamics

Glucose (GL) levels are increased by the growth hormone. Growth hormone

suppresses glucose uptake by insulin, at a constant rate c, represented by the
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expression cIGL and produces glucose through gluconeogenesis and glycogene-

sis at the same rate c. Parameter a represents total glucose production rate in

the liver. Clearance of glucose occurs at a constant rate b.

3.2.4 Growth hormone dynamics

The growth hormone (GH) in model system (3.1) is increased by the rate of

production by the somatotropic cells in pituitary gland at a constant rate ρ . GH

is decreased at a rate w through absorption by the liver [Taylor et al., 1969]. It

has been demonstrated [Schwarz et al., 2002], that growth hormone increases

glucose production in the blood through gluconeogenesis and glycogenosis

[Holly et al., 1988; Kim and Park, 2017].

Several of these parameters involved are rarely measured, due to the fact

that they require extensive and invasive surgery to be measured. Thus, we as-

sumed several parameters values and other values were taken from published

studies [Boutayeb et al., 2014; Buppajarntham, 2021; MedlinePlus, 2021; Tay-

lor et al., 1969] that quantified these parameters .Our assumed parameters

were guided by estimates from Topps [Topp et al., 2000].
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3.3 Mathematical analysis and results

3.3.1 Model basic properties

The system of equations in model system (3.1) has an initial condition given

by β (0) ≥ 0, I(0) ≥ 0,GL(0) ≥ 0, and GH(0) ≥ 0. Since the model represents

concentrations in the human body, all variables should be non-negative for

biological feasibility. Hence we establish the following results in Theorem 3.1

and 3.2.

Theorem 3.1. Given the initial data be β (0) > 0, I(0) > 0,GL(0) > 0, and

GH(0) > 0. Then solutions (β (t), I(t),GL(t),GH(t)) of model system (3.1) with

positive initial data will remain positive ∀ t > 0.

Proof. Suppose that t1 = sup{t > 0 : β > 0, I > 0,GL > 0,GH > 0,∈ [0, t]}. Under

the given initial conditions it can be shown that solutions of model system (3.1)

are positive for t > 0. We show that this is true ∀ t > 0 by proceeding as follows.

The first equation in model system (3.1) is given by

dβ (t)
dt

= (hGL(t)− iGL(t)2 −g)β (t),

which can be rewritten as

d
dt

lnβ (t)≥−(iGL(t)2 +g) =⇒ β (0)exp

{
−
∫ t1

0

(
iGL(t)2 +g

)
dt

}
> 0.

It follows that the solution to the equation is positive ∀ t > 0. In a similar

fashion, we provide the proof for each equation in model system (3.1) as follows.

For I we have

I′(t) =
βdG2

L

e+G2
L
− f I,

which gives
d
dt

ln I(t)≥− f =⇒ I(0)exp

{
−
∫ t1

0
f dt

}
> 0,

and GL simplifies to,

d
dt

lnGL(t)≥−(b+ cI) =⇒ GL(0)exp

{
−
∫ t1

0

(
b+ cI

)
dt

}
> 0.
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Similarly GH gives

d
dt

lnGH(t)≥−w =⇒ GH(0)exp

{
−
∫ t1

0
w dt

}
> 0.

Thus, solutions for model system (3.1) are positive ∀ t > 0.

3.3.2 Invariant region

Theorem 3.2. Let (β , I, GL, GH) be solutions of model system (3.1) with initial

conditions, (β (0), I(0), GL(0), GH(0)). The compact set

D =

{
(β , I,GL,GH) ∈ R4

+,β ≥ 0, I ≥ 0,
g
h
≤ GL ≤

a+ c ρ

w
b

,GH ≤ ρ

w

}
.

Proof. Consider (β , I, GL, GH) ∈ D . From model system (3.1) we have

dGH

dt
= ρ −wGH ≤ 0, if GH ≥ ρ

w
.

dGL

dt
= a− (b+ cI)GL + cGH ≤ a−bGL + cGH ≤ 0, if GL ≥ a+ cGH

b
≥

a+ c(ρ

w)

b
,

when substituting with GH ≥ ρ

w .

dβ

dt
= (hGL − iG2

L −g)β ≤ βhGL −βg = β (hGL −g)≤ 0, if hGL −g ≤ 0 =⇒ GL ≤ g
h
.

dI
dt

=
βdG2

L

e+G2
L
− f I ≤ βd − f I ≤ 0, if I ≥ βd

f
.

Therefore all solutions (β , I, GL, GH) of model (3.1) are bounded and and

biologically feasible in the following region

D =

{
(β , I,GL,GH) ∈ R4

+,β ≥ 0, I ≥ 0,
g
h
≤ GL ≤

a+ c ρ

w
b

,GH ≤ ρ

w

}
.

3.3.3 Equilibria and stability

Model system (3.1) has three steady states, which are the solutions of the

system when each equation is equated to zero. The states are labelled based

on the their relevance to biology of the disease. The Type 1 disease state is
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characterised by zero insulin and β -cells. The Type 2 and non-diabetic state

are determined by using baseline parameters for numerical values of these

states. Type 2 states show larger values of insulin and of glucose as well as

decreased β -cells present. The steady states are as follows:

1. The Type 1 diabetes (pathological) equilibrium is given by

P0 =
{

β
0 = 0, I0 = 0,G0

L =
aw+ cρ

bw
,G0

H =
ρ

w

}
2. The Type 2 diabetes equilibrium is given by

P1 =



β ∗1 = A1 +A2 +A3, for β > 0,

I∗1 =−b
c
+

(h−A )(aw+ cρ)

2cgw
, for I > 0,

G∗1
L =

h+
√

h2 −4gi
2i

, for GL ≥ 0,

G∗1
H =

ρ

w
.

where

A1 =
− f

2cdg3w

[
bgw(g2H − egi−A eh)

]
A2 = A H (cρ +aw)

A3 = h(H −2egi)(−cρ −aw)

H = g2 + eh2 − egi

A =
√

h2 −4gi

3. The physiological equilibrium state (non-diabetic state) is given

by

P2 =



β ∗2 = B1 +B2 +B3, for β > 0,

I∗2 =−b
c
+

(A +h)(aw+ cρ)

2cgw
, for I > 0,

G∗2
L =

h−
√

h2 −4gi
2i

, for GL ≥ 0,

G∗2
H =

ρ

w
,
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where

B1 =
f

2cdg3w

[
bgw(−g2H + egi−A eh)

]
B2 = A H (cρ +aw)

B3 = h(H −2egi)(cρ +aw).

3.3.4 Stability of equilibria

Linearising model system (3.1) gives the following Jacobian matrix.

J =



−iG∗2
L +hG∗

L −g 0 β ∗(h−2G∗
Li) 0

dG∗2
L

G∗2
L +e

− f 2β ∗dG∗
L

G∗2
L +e

− 2β ∗dG∗3
L

(G∗2
L +e)

2 0

0 −cG∗
L −b− cI∗ c

0 0 0 −w


(3.2)

We use the J to determine local stability of the steady states in the following

sections.

Stability of P0

The equilibrium state P0 is a pathological steady state which represents indi-

viduals with diabetes (I = 0 and β = 0), typical of a Type 1 diabetic. Solving J

(Eq. (3.2)) at the pathological equilibrium P0 gives the following eigenvalues,

λ1 =−g+GL(h− iGL),λ2 =− f ,λ3 =−b and λ4 =−w. Using the dominant eigen-

value λ1 we derive the diabetes threshold by solving for λ1 < 0. This simplifies

to give
hG0

L

[i(G0
L)

2 +g]
< 1.

Therefore, the model threshold quantity is given by

T0 =
hG0

L

i(G0
L)

2 +g
=

hbw(aw+ cρ)

i(aw+ cρ)2 +g(bw)2 . (3.3)

In theory, this threshold governs the movement from a pathological Type 1

state to the physiological and/or Type 2 diabetes state. The biological meaning

of this threshold is that if the threshold is below one, a person has extreme

levels of glucose, hyperglycaemia is occurring, and is in a constant state of
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extreme glucose levels. Individuals in this state are in a pathological Type

1 stable state. However, when the threshold is exceeded, the person is in a

unstable state of Type 2 diabetes and requires immediate action to prevent

entering into a Type 1 state. In Theorem 3.3 we summarise the stability of P0

based on the derivation of T0 using linearisation approach.

Theorem 3.3. The pathological steady state P0 of system (3.1) is locally asymp-

totically stable if T0 < 1 and unstable when T0 < 1.

Stability of P1

We use the Routh-Hurwtiz criterion to investigate the stability of P1 and P2.

We state the Routh-Hurwitz criterion in Lemma 3.1.

Lemma 3.1. Solutions of the algebraic equation P(τ) = 0 have negative real

parts if and only if Di are positive ∀ 1 ≤ i ≤ n where Di is the ith principle

sub-determinant of Ln for 1 ≤ i ≤ n.

Proof. Let P(τ) = τn +a1τ(n−1)+a2τ(n−2)+ ...+a(n−1)τ +an be a polynomial with

real coefficients. Let Ln be an n-dimensional square matrix whose coefficients

a(l,m) are given by a(l,m) = a(2l−m) for 0 < 2l −m ≤ n,a(l,m) = 1 for 2l = m and

a(l,m) = 0 for 2l < m or 2l > m+n. We remark that Di > 0 for 1 ≤ i ≤ n if and only

if Di > 0 for 1 ≤ i ≤ n−1 and an > 0, because Dn = D(n−1)an. For example if n = 3,

then the conditions a1 > 0,a3 > 0,a1a2 −a3, should be satisfied.

The characteristic equation associated with JP1 is said to be stable if

a1a2 −a3 > 0, a1 > 0, and a3 > 0 are all satisfied. We derived Theorem 3.4 for

stability of P1.

Theorem 3.4. The Type 2 steady state P1 of system (3.1) is unstable whenever

it exists.

Proof. The characteristic equation at P1 is given by,

λ
3 +a1λ

2 +a2λ +a3 (3.4)
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We obtain

a1 = b+ cI∗2 + f +R3,

a2 = b f +bR3 + c f P− cG∗2
L R1 + cPR3 + f R3,

a3 = b f R3 −2B∗2c(G∗2
L )2iR2 +B∗2cG∗2

L hR2 + c f I∗2R3 − cG∗2
L R1R3,

where

R1 =
2B∗2d(G∗2

L )3(
e+(G∗2

L )2
)2 −

2BdG∗2
L

e+(G∗2
L )2 ,

R2 =
d(G∗2

L )2

e+(G∗2
L )2 ,

R3 = g−G∗2
L h+(G∗2

L )2i.

Due to the complicated nature of the coefficients in the characteristic equation

(3.4) we proceeded to numerically compute the values of the coefficients in

Mathematica 11.3 [Wolfram-Research-Inc., 2019]. Numerical analysis of the

coefficients gives, a1 = 271.37, a2 = 34977.30, a3 =−4497.49. Thus P1 is unstable

whenever it exists since condition a3 > 0 is not satisfied. This result remained

consistent using model parameter values and feasible ranges that are given in

Table 3.1. This informs us that this Type 2 state is unstable and therefore is

reversible to a non-diabetic state.

Stability of P2

Similarly, we used the Routh-Hurwtiz criterion to determine the stability of P2.

The results are stated in Theorem 3.5.

Theorem 3.5. The physiological steady state P2 of system (3.1) is locally asymp-

totically stable whenever it exists.

Proof. Proceeding as in the proof of Theorem 3.4 we obtained a1 = 983.96,

a2 = 496994, a3 = 4608.92. This satisfies the Routh-Hurwtiz criteria for stability,

a1a2 − a3 > 0 and a3 > 0, thus P2 is locally asymptotically stable whenever it

exists. These results remained consistent when using model parameter values

in Table 3.1.
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3.3.5 Numerical simulations

In order to illustrate some of the analysis results on mathematical analysis,

numerical simulations of model system (3.1) are conducted using a code in R

programming environment [R Core Team, 2013] and parameter values in Table

3.1. Figures 3.2 and 3.3 illustrate the time series plots based on simulating the

model with different initial conditions. Figure 3.2 shows the solution profiles

for the concentration of β , I, GL and GH for T0 < 1. Simulation results in Figure

3.2 show that solutions will converge to the Type 1 diabetic steady state (as in

Theorem 3.3). Figure 3.3 shows the solution profiles for the concentration of

β , I, GL and GH for T0 < 1 and this confirms existence of two steady states in

the solution profiles for β , I, GL and GH . A backward bifurcation confirming

bi-stability is given in Figure 3.4. The bifurcation diagram illustrates two

stable states, a non-diabetic state (blue) and a Type 1 diabetic state (black),

along with a Type 2 unstable state (red) (as in Theorems 3.3, 3.4 and 3.5).

Type 1 diabetic stable state with extremely low levels of glucose, regardless of

β -cell tolerance range (h) and a potential hypoglycemic episode occurs when

glucose homeostasis is not being controlled. Non-diabetic stable state occurs

when β -cell tolerance range (h) and glucose levels increase in non-diabetic

individuals.
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Figure 3.2 Simulations of model system (3.1) with different initial conditions for
T0 = 0.2311 < 1. The initial conditions are different by varying GL from 50−10000 in
steps of 1 with β , I and GH remaining constant (β = 50, I = 100,GH = 10). Parameter
values used are as in Table 3.1 with h = 1× (5.727×10−4.2) and i = 2.523×10−6. Note
that the x and y-axis scale for the figures are different in order to make figures clearer.



Using mathematical and sensitivity analysis approaches to understand glucose
homeostasis model with growth hormone 71

Figure 3.3 Simulations of model system (3.1) with different initial conditions for
T0 = 0.4621 < 1. The initial conditions are different by varying GL from 50−10000 in
steps of 1 with β , I and GH remaining constant (β = 50, I = 100,GH = 10). Parameter
values used are as in Table 3.1 with h = 2× (5.727×10−4.2) and i = 2.523×10−6. Note
that the x and y-axis scale for the figures are different in order to make figures clearer.

Figure 3.4 Bifurcation diagram for T0 and G∗
L obtained by varying parameter h in

the range 0.0-0.6 in steps of 1×10−5 and with other parameters given in Table 3.1. The
black and the blue represents stable states and the red line represents an unstable
state.
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3.4 Sensitivity analysis and results

In this section, we conducted sensitivity analysis (SA) of glucose (GL) and

growth hormone (GH) to assess the relative importance of associated input

parameters when they are varied and assess their uncertainty over a wide

range. Here we mainly focus on the SA of blood glucose concentration (GL)

because it is the most important component in the glucose homeostasis system

and in managing diabetes. We also explored SA of the growth hormone (GH) to

determine its importance as a new addition to the glucose homeostasis model

as discussed in Chapter 2 (see also [Debbouche et al., 2021; Topp et al., 2000]).

Additionally, SA is crucial for determining parameters governing the dynamics

of model system (3.1). We also conducted SA for β and I and presented results

in the Appendix Figure A1.1. In this thesis, we have considered two main SA

methods: partial rank correlation coefficient (PRCC) method (run in Matlab

statistics and machine learning toolbox (R2019b) [MATLAB, 2019]), and the

probabilistic SA methods by computing the Sobol′ index and other variance-

based SA methods. We used tgp package libraries in R [Gramacy, 2007] to

compute probabilistic SA methods. Sensitivity analysis was conducted at time

point t = 210 minutes as this is of interest in diabetic individuals. At this time

point, an individual should have achieved glucose homeostasis and if this is

not achieved we need to understand parameters influencing the dynamics of

the system.

3.4.1 Partial rank correlation coefficient

PRCC and their corresponding p-values are used to evaluate input parameters

importance on the model outputs. The method is combined with Latin hyper-

cube sampling to explore the entire space of each input parameter [Blower

and Dowlatabadi, 1994; Marino et al., 2008]. The PRCC values illustrate the

correlation between each model output (β , I, GL, GH) and the input parame-

ters. PRCC will give the singular effect of each input parameter on the model

output of interest. The corresponding p-values highlight the level of uncer-

tainty of each input parameter on the model output. The input parameters

with larger PRCC values are those which have more impact on the model

output. It was also shown that these parameters will also contribute more
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on the output variance, which means they have more impact on the model

output (see [Blower and Dowlatabadi, 1994; Malunguza et al., 2018] for similar

analysis). Additionally, it is important to note that parameters which are

regarded insignificant by the PRCC method may have significant joint effect

which cannot be identified using PRCC method, but could be computed and

considered using the probabilistic SA methods, discussed in Section 3.4.2. The

input parameters with p < 0.05 are regarded to have significant impact on the

model output. Scatter plots were also generated to visually illustrate the rela-

tionship between input parameters and model outputs at time t = 210 minutes.

This is the time point at which exploring the relationship between glucose

homeostasis and affecting input parameters is more appealing. Figure 3.5

illustrates scatter plots showing sensitivity analysis results of selected input

parameters (a, b, c, d, e, f ) against GL. The remaining input parameters (g, i, h,

ρ, w,) are presented in Figure A1.1, Appendix A.1.

The PRCC results and corresponding p-values for all the parameters against

GL are shown in Table 3.2 and illustrated in Figure 3.7 (a). The results suggest

that the parameters that are most influential on GL were a,b,e, f , i,w, these

parameters have large absolute PRCC values and very small corresponding p-

values. Parameters a, i and w have positive PRCC values suggesting that these

parameters have positive effect on glucose concentration thus are important

in maintaining glucose homeostasis. These results also show the importance

of growth hormone in the glucose homeostasis system as parameter w has

shown to influence GL. Figure 3.6 illustrates scatter plots showing sensitivity

analysis results of selected input parameters ( f , g, h, i, ρ, w, selected based

on correlation) against GH . The remaining input parameters (a, b, c, d, e,) are

presented in Figure A1.2, Appendix A.1.

The PRCC results and corresponding p-values for all the parameters against

GH are shown in Table 3.3 and illustrated in Figure 3.7 (b). The results suggest

that the parameters that are most influential on GH were ρ and w. The scatter

plots showing sensitivity analysis results against β and I are shown in Figures

A1.3, A1.4, A1.5 and A1.6, Appendix A.1. The PRCC results and corresponding

p-values for all the parameters against β and I are shown in Tables A1.1 and
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A1.2, Appendix A.1 and illustrated in Figure A1.7, Appendix A.1, respectively.

The results show that the parameters that are most influential against I were

b and f and none of the parameters have a significant and dominating impact

on β .

(a) (b)

(c) (d)

(e) (f)

Figure 3.5 Scatter plots showing sensitivity analysis results of each parameter
against GL using PRCC method for selected parameters a, b, c, d, e, f . Scatter plots
showing sensitivity analysis results for parameters g, h, i, p, w are shown in Figure
A1.1, Appendix A.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6 Scatter plots showing sensitivity analysis results of each parameter
against GH using PRCC method for selected parameters f , g, h, i, ρ, w. Scatter plots
showing sensitivity analysis results for parameters a, b, c, d, e are shown in Figure
A1.2, Appendix A.1.
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Parameter p-values PRCC
a p < 0.0001 0.9157
b p < 0.0001 -0.9795
f p = 0.0072 -0.2670
i p = 0.0121 0.2501
e p = 0.0270 -0.2211
w p = 0.0477 0.1985
h p = 0.0823 0.1746
c p = 0.0823 0.1746
d p = 0.1012 0.1649
ρ p = 0.7528 -0.0319
g p = 0.9556 0.0056

Table 3.2 PRCC sensitivity analysis of
parameters ranked in terms of importance
to model variable GL.

Parameter p-values PRCC
ρ p < 0.0001 0.9789
w p < 0.0001 -0.9525
f p = 0.0020 0.3051
h p = 0.0663 -0.1844
i p = 0.1044 0.1634
g p = 0.2445 0.1175
b p = 0.2612 0.1134
e p = 0.3428 -0.2211
d p = 0.4701 -0.0731
a p = 0.8743 -0.0160
c p = 0.9458 -0.0069

Table 3.3 PRCC sensitivity analysis of
parameters ranked in terms of importance
to model variable GH .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

PRCC Index

h

i

g

d

e

f

a

b

c

w

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

PRCC Index

h

i

g

d

e

f

a

b

c

w

(b)

Figure 3.7 Plot (a) shows a tornado plot of the parameters with their PRCC values
showing the effect of input parameters on GL and (b) is a tornado plot of the parameters
with their PRCC values showing the effect of input parameters on GH . Note the legend
remains the same for both figures.

3.4.2 Probabilistic sensitivity analysis

In addition to the PRCC method, we employ the variance-based SA methods

as more efficient global SA methods to evaluate the relative importance of

input parameters when they are altered extensively. This would allow us to

take into account inputs uncertainty as they vary over a wide range. One

of the motivations to using these probabilistic SA methods is that they are

computationally more efficient in comparison to the sampling based methods

(e.g., Markov Chain Monte Carlo) to evaluate SA of the complex systems, at

which there exist extreme non-linear relationships between the inputs and
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output. In addition, PRCC, as the common regression analysis-based global

SA, assumes that there must be a monotonic relationship between the output

and each input parameter of interest, which is often violated by the underlying

input-output relationship exhibited by the system of interest in this study

(see also [Chen et al., 2019; Zi, 2011] for similar argument). Furthermore, the

PRCC-based approach is not capable to evaluate the uncertainty levels of each

input parameter affecting the model outputs. Finally, the variance-based SA

methods are able to allocate the variance of the output and quantify the effect

of high-order interactions between input parameters, but PRCC method is not

able to evaluate the impact of the interactions between inputs.

The probabilistic global SA methods of interest in this study is based on

the analysis of variance of the model response variable [Sobol, 1993]. The

approach can capture the fraction of the model response variable variance

explained by model input on its own or by a group of model inputs. In addition,

it can also provide the total contribution to the output variance of a given input

(i.e. its marginal and cooperative contribution). The main challenge of this

approach, for the costly system under study, is in computing the Sobol′ method,

and other variance-based SA measures, including main effects, the variance

contributions of each input parameter to the model output, and corresponding

uncertainty levels. There are different computational techniques to perform

Sobol′ SA method [Saltelli et al., 1999; Sobol, 1993; Sudret, 2008]. This study

reports the final results of sensitivity indices computed using the emulator-

based method [Batsch et al., 2021; Daneshkhah and Bedford, 2013; Oakley

and O’Hagan, 2004b], which will be briefly discussed in Section 3.4.2.2.

To perform the variance-based SA methods, we will examine how a func-

tion f (x) depends on its input variables. For the case of this study, f (.) will

typically be the function that computes β , I, GL and GH as a function of a vector

of biological input parameters illustrated in Table 3.1. Important notations

that will appear in the next sections are introduced in the following. We denote

a d-dimensional random vector as X = (X1, . . . ,Xd), where Xi is the ith element of

X, the subvector (Xi,X j) is shown by Xi, j. In general, if p is a set of indices, then

Xp can be written for the subvector of X whose elements have those indices.
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X−i is defined as the subvector of X containing all elements except Xi. Similarly,

x = (x1, . . . ,xd) denotes the corresponding observed random vector X. Here, X

is considered as an input vector consists of all biological input parameters

discussed in Table 3.1. The output, denoted by Y , represents either β , I, GL or

GH variables.

3.4.2.1 Variance-based sensitivity analysis methods

In this section, we briefly introduce the variance-based SA methods of interest.

These methods generally measure the sensitivity of model output, Y (i.e., β , I,

GL or GH), to the variation of an individual input Xi. In other words, they

measure the sensitivity of model output, when the model inputs are varied

over a wide range, in terms of reduction in the variance of Y .

We start by introducing the main and interaction effects. Following Sobol′

[Sobol, 1993], it can be shown that any quadratically integrable function f (·)

can be decomposed in terms of its main effects and interactions as follows:

y = f (x) = z0 +Σ
d
i=1zi(xi)+Σi< jzi, j(xi, j)+ . . .+ z1,2,...,d(x) (3.5)

where f (.) is a function of uncertain quantities x, and its expected value is

denoted by z0 = E[ f (X)]. The function zi(xi) presented in equation(3.5) is so-

called the main effect of the ith variable, xi. The main effect, zi(xi) is the function

of xi that best approximates f (.) in terms of minimizing the variance (calculated

over the other variables) [Daneshkhah and Bedford, 2013; Daneshkhah et al.,

2017b]. It is defined as:

zi(xi) = E[ f (X) | xi]−E[ f (X)] (3.6)

The first order interaction between xi and x j, which is denoted by zi, j(xi, j) in

equation (3.5), and is given in equation (3.7).

zi, j(xi, j) = E[ f (X) | xi, j]− zi(xi)− z j(x j)−E[ f (X)]. (3.7)

Similarly the second order interaction between xi and x j is denoted by zi, j,k(xi, j,k),

and so on. The details of higher order interactions given in equation (3.5) can be
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found in [Daneshkhah and Bedford, 2008, 2013; Oakley and O’Hagan, 2004b].

The main effects, the first-order interaction and their plots can be considered

as a powerful visual tool to investigate how the model output responds to

each individual input, and how those inputs interact in their influence on the

model output. The variance of main effect can be interpreted as the amount by

which the overall variance of f (.) would be reduced if we knew Xi. A useful SA

measure which is given in equation (3.8), can be considered as the expected

amount by which the uncertainty in Y will be reduced if we learn the true

value of Xi.

Vi = var{E(Y | Xi)}. (3.8)

It should be also noted that Vi given in equation (3.8) can be written as

Vi = var(zi(Xi)) which is a function of the main effect of Xi.

The second measure, proposed in [Homma and Saltelli, 1996], can be written

as:

VTi = var(Y )− var{E(Y | X−i)} (3.9)

which is the remaining uncertainty in Y that is unexplained after everything

has been learnt except Xi.

These two measures, given in equations. (3.8) and (3.9), can be converted

into scale invariant measures by dividing by var(Y ) as follows:

Si =
Vi

var(Y )
, STi =

VTi

var(Y )
= 1−S−i (3.10)

where Si can be considered as the main effect index of Xi, and STi is the total

effect index of Xi.

3.4.2.2 Emulators-based sensitivity analysis

To compute the variance-based methods in previous sections, we use an emu-

lator to reduce computation costs. The reason we do this is that the function

f (x) (the Type 1 model) is a complex case as the outputs must be computed

by solving the nonlinear model hence computation is costly if done without an
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emulator ([Farsi et al., 2017]).

If f (x) is not complex (computationally cheap), the standard Monte Carlo (MC)

methods would be sufficient to estimate var(Y ) and other SA measures de-

scribed in Section 4.2. The computation techniques proposed in [Saltelli et al.,

1999; Sobol, 1993] require many function evaluations meaning they are not

suitable with complex, costly functions. We use a further developed methodol-

ogy based on the Bayesian paradigm that was proposed in [Daneshkhah et al.,

2017a,b; Oakley and O’Hagan, 2004b] in order to overcome the computational

complexity. By using Bayesian method we are able to estimate all the quanti-

ties of interest required to examine the SA in modelling diabetes.

The functional relationship, f (.), is unknown for any particular input con-

figuration x until the model is run for those inputs, therefore we specify a prior

distribution for the values taken by f (x) at different values of x within the

Bayesian setting. This prior is then updated according to the usual Bayesian

paradigm, using the generated data, D = {(xi,yi) : yi = f (xi), i = 1, . . . ,n}, from

a set of runs of the model. The result will be then a posterior distribution for

f (.), which is used to make formal Bayesian inferences about the SA measures.

Although we are still uncertain about the function f (·) at parameter values

where it was not evaluated, the uncertainty can be further reduced by taking

into account the correlation of function values from one point to another. The

expected value of the posterior distribution is used as a point estimate for f (·).

There are two different distributions being used in the SA computation. The

first is the distribution of input parameters which represents the uncertainty

in the model parameters x, and which is propagated to the output values

through the function f (·), the second is the posterior distribution on f (·) which

plays a pure computational role, and can be reduced as much as required by

computing the function f (·) by increasing the training points x, and does not

have any operational interpretation.

3.4.3 Gaussian process emulators

Gaussian processes are a class of supervised machine learning algorithms,

that describe a functional relation as a multivariate Gaussian distribution and
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can thus be used for non-linear regression and classification problems. The

key requirement to use the Gaussian process is that f (·) should be a smooth

function, so if we know the value of f (x) we should then have some idea about

the value of f (x′) for x close to x′. The advantages of the Gaussian process

assuming a smooth, continuous function is that it is computationally much

quicker and cheaper than using the standard MC methods. This approach

usually ignores the expected proximity of the function values evaluated at

close by points.

The mean of f (x) conditional on the hyper-parameters, β , is modelled as

E[ f (x)|β ] = h(x)T
β (3.11)

where h(·) is a vector of q known functions of x, and β is a vector of coefficients.

The choice of h(·) is arbitrary, but it should be chosen to incorporate any beliefs

that we might have about the form of f (·). The covariance between f (x) and

f (x′) is given by:

cov( f (x), f (x′)|σ2) = σ
2c(x,x′) (3.12)

where c(·, ·) is a monotone correlation function on R+ with c(x,x) = 1, and

decreases as |x−x′| increases. Furthermore, the function c(·, ·) must ensure

that the covariance matrix of any set of outputs {y1 = f (x1), . . . ,yn = f (xn)} is

positive semi-definite. Throughout this study, we use the following correlation

function which satisfies all the conditions mentioned above and is widely used

for its computational convenience,

c(x,x′) = exp{−(x−x′)T B(x−x′)}, (3.13)

where B is a diagonal matrix of positive smoothness parameters, {(
√

2bi)
−2}d

i=1,

and d is the dimension of x. Note, bi represents the elements of the matrix

B. The matrix B has the effect of re-scaling the distance between x and x′.

Thus B determines how close two inputs x and x′ need to be such that the

correlation between f (x) and f (x′) takes a particular value.

Oakley and O’Hagan [Oakley and O’Hagan, 2004b] suggested that, for fixed
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hyper-parameters z,V,a and d, the following conjugate prior, the normal in-

verse gamma distribution, for (β ,σ2) is

p(β ,σ2) ∝ (σ2)−
1
2 (d+q+2) exp{−{(β −z)TV−1(β −z)+a}/(2σ

2)}

The output of f (·) is observed at n design points x1, . . . ,xn to obtain y =

{ f (x1), . . . , f (xn)} considered as data. It should be noticed that these points,

in contrast with MC methods, are not chosen randomly but are selected to

give good information about f (.). The design points will usually be spread

to cover X , the input space of X. Since X is unknown, the beliefs about X is

represented by the probability distribution G(X). Therefore, the choice of the

design points will also depend on G(.) (the choice of design points is discussed

in [Sacks et al., 1989]). The standardised posterior distribution of f (·) given

y = { f (x1), . . . , f (xn)} is:

f (x)−m∗(x)
σ̂
√

c∗(x,x′)
| y ∼ td+n (3.14)

where td+n is a student t random variable with n+d degrees of freedom and d

is the dimension of x, the posterior mean is given by

m∗(x) = h(x)T
β̂ + t(x)T A−1(y−Hβ̂ ), (3.15)

the updated correlation function described in equation (3.13) given the ob-

served data can be written as:

c∗(x,x′) = c(x,x′)− t(x)T A−1t(x′)+(h(x)T

− t(x)T A−1H)(HT A−1H)−1(h(x′)T − t(x′)T A−1H)T (3.16)

and

t(x)T = (c(x,x1), . . . ,c(x,xn)), (3.17)

HT = (hT (x1)
T , . . . ,hT (xn)

T ),



Using mathematical and sensitivity analysis approaches to understand glucose
homeostasis model with growth hormone 83

A =


1 c(x1,x2) . . . c(x1,xn)

c(x2,x1) 1
...

... . . .

c(xn,x1) . . . 1

 (3.18)

β =V ∗(V−1z+HT A−1y),

σ̂
2 =

{a+zTV−1z+yT A−1y− β̂
T
(V ∗)−1β̂}

(n+d −2)

V ∗ = (V−1 +HT A−1H)−1.

The outputs corresponding to any set of inputs will now have a multivariate

t-distribution, with covariance between any two outputs given by equation

(3.14). Note that the t-distribution arises as a marginal distribution for f (.)

after integrating out the hyper-parameters β and σ2. In practice, further

hyper-parameters, the smoothness parameters B, will be associated with the

modelling of the correlation function, c(·, ·). It is not practical to give B a fully

analytical Bayesian treatment, as it is nearly always impossible to integrate

the posterior distribution analytically with respect to these further parameters.

We can keep B fixed as the simplest option. An alternative approach is to

use a numerical method to integrate the posterior distribution. It is possible

to integrate numerically, in particular, by using Markov chain Monte Carlo

(MCMC) sampling however it is a highly intensive computational task. We

can estimate the hyper-parameters of c(·, ·) from the posterior distribution

and then to substitute these estimates into c(·, ·) wherever they appear in

the above formulae, this is a more robust approach proposed in [Oakley and

O’Hagan, 2004b]. These estimates can be obtained by using the posterior mode

in combination with a cross validation approach [O’Hagan et al., 1998]. In

addition to codes developed in this thesis by benefiting the libraries provided

in tgp package in R, we also use the GEM-SA [Kennedy and Petropoulos, 2017]

software, which is capable of estimating the smoothness parameters using

both methods.
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3.4.4 Sobol′ method

The Sobol′ method differs from the PRCC method in that, it does not assume

the relationships between the inputs and the outputs of the model are mono-

tonic [Zi, 2011]. This is one of most efficient global SA methods, which is based

on the analysis of variance of the model response variable [Sobol, 1993]. The

approach can capture the fraction of the model response variable variance ex-

plained by model input parameters. We are using the emulator-based method

(discussed in Section 3.4.2.2) to compute Sobol′ indices.

In order to compute the emulator-based SA measures, we first evaluated

the outputs of model system (3.1) for a reasonable sample size of 100 data-

points selected over a range of input parameters in Table 3.1 using the Latin

hypercube sampling [Daneshkhah and Bedford, 2013] which is a space fill-

ing design originally proposed in [Sacks et al., 1989]. We then compute first

and total order variance-based sensitivity indices using the Gaussian process

emulator. The details of the derived results are presented in the next section.

3.4.5 Sobol′ method results

The first plot in Figure 3.8 and Table 3.4 illustrate the first order variance-

based sensitivity indices and the total effect sensitivity indices for GL. The

figure shows parameters a and b are critical in influencing GL. Parameter b is

the most influential with a total order index of 0.8091 and this is followed by

parameter a, other model parameters are not significant in determining GL.

Both a and b have little interaction with other parameters because their total

order indices are close to the first order indices. The results that a and b are

most influential parameters confirm that these biological parameters are the

most important ones for glucose production in liver and clearance of insulin

from the liver.

The second plot in Figure 3.8 and Table 3.5 illustrate the first order variance-

based sensitivity indices and the total effect sensitivity indices for GH . Sen-

sitivity analysis results show that ρ is the most influential parameter (with

total order index of 0.5764) on GH followed by w. The total order and first order
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indices for these parameters are similar, suggesting that these parameters

have no interaction with other parameters. The key parameters influencing

growth hormone (i.e., ρ and w) are well aligned with the biological perspec-

tive. The growth hormone concentration is largely influenced by the growth

hormone production and clearance rate. Sensitivity analysis results based on

Sobol′ method for β and I are shown in Figure A1.8, Table A1.3 and Table A1.4

of Appendix A.1. The results showed that all the parameters for β and I have

first order indices close to zero (< 0.05) but have a strong interaction effect

(> 80%) with other parameters. Using both PRCC and Sobol′ method sensitiv-

ity analysis was also conducted at different times and similar conclusions were

reached.

Figure 3.8 The first plot shows first order and total effects sensitivity indices
of the model parameters (h, i, g, d, e, f , a, b, c, ρ and w) on glucose for model
system (3.1) using Sobol′ method. Similarly the second plot shows first order
sensitivity indices and total effects sensitivity indices of the model parameters
on growth hormone.
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Parameter First order Total order

b 0.7583 0.8091

a 0.1908 0.2335

ρ 0.0004 0.0080

d 0.0014 0.0088

g 0.0011 0.0081

f 0.0010 0.0077

c 0.0009 0.0083

i 0.0008 0.0075

e 0.0006 0.0076

w 0.0005 0.0084

h 0.0004 0.0080

Table 3.4 First order and Total order
Sobol′ indices of each model parameter for
model variable GL.

Parameter First order Total order

ρ 0.5532 0.5746

w 0.4266 0.4473

h 0 0.0087

i 0 0.0083

a 0 0.0080

f 0 0.0080

e 0 0.0078

d 0 0.0076

g 0 0.0076

b 0 0.0075

c 0 0.0075

Table 3.5 First order and Total order
Sobol′ indices of each model parameter for
model variable GH .

3.5 Discussion

Mathematical models of the glucose homeostasis system [Bergman et al., 1981;

Bolie, 1961; Boutayeb et al., 2014, 2015; De Gaetano and Arino, 2000; Huard

et al., 2017; Lombarte et al., 2018, 2013; Makroglou et al., 2006; Srinivasan

et al., 1970; Toffolo et al., 1980; Topp et al., 2000; Voden et al., 2001] have

been developed to understand diabetes pathways and as experimental tools to

inform the designing of disease treatment approaches. Several mathematical

modelling studies [Boutayeb et al., 2014, 2015; Lombarte et al., 2018, 2013;

Makroglou et al., 2006; Topp et al., 2000; Voden et al., 2001] have successfully

identified disease equilibrium states and related these to types of diabetes.

However no rigorous mathematical and sensitivity analysis was carried out in

these studies. In this study, we determined and comprehensively analysed the

stability of glucose homeostasis system equilibria and deduced their biological

interpretation (i.e pathological Type 1, physiological non-diabetic and Type

2). We investigated the effects of growth hormone in the glucose homeostasis

system and demonstrated its importance (Table 5.1) in line with the findings

in [Barbour et al., 2004; Holly et al., 1988; Kim and Park, 2017].
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The results of the mathematical analysis showed that the model has three

steady states, with two stable and one unstable. This agrees with the biolog-

ical characteristics of the disease as both Type 1 diabetes and non-diabetic

are stable states and Type 2 is a state that can be reversed thus it is unsta-

ble. The model threshold quantity T0 was derived and it was shown that the

pathological equilibrium was local asymptotically stable for values of T0 < 1.

The importance of the threshold T0 is that it determines important parame-

ters governing the dynamics of the glucose homeostasis system. Numerical

analysis of the model showed backward bifurcation (Figure 3.4), confirming

bi-stability results illustrated by the time series plots in Figure 3.3, thus the

model dynamics are also determined by initial conditions. The implication of

the backward bifurcation on the diabetes dynamics shows reversibility in the

Type 2 disease state to a non-diabetic state.

Sensitivity analysis was conducted to systematically evaluate key param-

eters influencing the model using PRCC and Sobol′ methods. The two methods

concurred but showed some differences. Both methods identified the impor-

tance of glucose production rate (a) and glucose clearance rate (b) as influential

parameters in determining glucose concentration (see Figure 3.7(a), Table 5.1

for PRCC, Figure 3.8, Table 3.4 for Sobol′ indices). The methods also confirmed

growth hormone production rate (ρ) and clearance rate (w) as influential pa-

rameters in growth hormone concentration dynamics (see Figure 3.7(b), Table

3.3 for PRCC, Figure 3.8, Table 3.5 for Sobol′ indices). These findings suggest

that growth hormone is an important variable to include in modelling glucose

homeostasis. Sensitivity analysis also showed that individual model parame-

ters had no direct influence on the concentration of β -cells but their interaction

was important. For insulin concentration PRCC method showed that the most

influential parameters were glucose production rate (a) and whole body insulin

clearance rate ( f ) (see Figure A1.7(b) and Table A1.2 in Appendix A.1) and

the Sobol′ sensitivity analysis showed that the parameters have no direct

individual effect (see Figure A1.8 and Table A1.4 in Appendix A.1). It was clear

that sensitivity analysis insights on important model parameters varied by

method [Iooss and Lemaître, 2015; Iooss and Prieur, 2019; Wu et al., 2013].

Other studies [Brevault et al., 2013; Wu et al., 2013] have highlighted the need
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to select SA methods to use based on model complexity, characteristics and

research question.

Our results suggest that, classical mathematical methods of understanding

important model parameters based on the model threshold quantity should

be complemented with sensitivity analysis methods to completely determine

parameters influencing model dynamics or parameters that could be targeted

in simplifying/optimising the model structure. For instance, parameters e

and f identified as being important in determining glucose concentration

by PRCC method are not in the T0 mathematical expression. However, our

results showed that most of the parameters identified being influential in

the sensitivity analysis make up the model threshold quantity T0. Mathe-

matical and sensitivity analysis methods could not equally identity the same

model parameters but gave useful information on important model parameters.

This study has several limitations, the model is parameterised using esti-

mates in [Topp et al., 2000], however there might be a need to calibrate the

model using data on glucose and insulin concentration to establish realistic

parameter ranges for sensitivity analysis. We only considered sensitivity anal-

ysis using PRCC and Sobol′ indices however it would be interesting to see

how these results vary when other sensitivity analysis approaches are used or

if different model structures are adopted. Nevertheless, this study presents

the first step linking mathematical and sensitivity analysis approaches in

exploring the importance of model parameters for nonlinear models.

3.6 Chapter summary

In this chapter we developed a new mathematical model, based on the novel

minimal model. We introduced growth hormone as a new variable to the

model. Traditional mathematical methods and parameter based sensitivity

analysis approaches were used to understand model dynamical properties

and importance of model parameters. This chapter provided a novel way of

analysing diabetes models by combining classical analytical mathematical

approaches with parameter based sensitivity analysis techniques. The param-
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eter based sensitivity analysis techniques were used to confirm findings from

traditional dynamical system approaches and provided further insights on

inter-variable/parameters relationships.



Chapter 4

Exploring dynamical properties

of a Type 1 diabetes model using

sensitivity approaches

4.1 Introduction

As of 2019, a total of US$760 billion had been spent on diabetes, representing

10% of total global health expenditure [IDF-Diabetes-Atlas, 2021]. This is set

to increase as global prevalence increases [Saeedi et al., 2019] and recently

due to COVID-19 infection which makes diabetes treatment difficult due to

fluctuations in blood glucose levels [IDF-Diabetes-Atlas, 2021]. Diabetes, has

two main forms that are, Type 1 (insulin dependent diabetes) and Type 2 (non-

insulin dependent diabetes). Globally, the number of people with diabetes in

2019 was 463 million, of which 10% had Type 1 diabetes [IDF-Diabetes-Atlas,

2021].

We begin by recapping on some of the characteristics of the disease and avail-

able treatment options. As noted in the previous chapters, Type 1 diabetes

is classified as an autoimmune disease (a disease where the immune system

mistakenly attacks the body [Watson, 2021]). The immune system attacks

the β -cells, which are responsible for producing insulin, therefore preventing

production of insulin [Boutayeb et al., 2014; Diabetes-Digital-Media, 2019;

IDF-Diabetes-Atlas, 2021]. Thus as the β -cells are destroyed, very few (if any)

β -cells remain in the body, resulting in little or no insulin available in the
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body. Therefore, biologically it is assumed that a Type 1 diabetic individual has

negligible β -cells in their body [Cantley and Ashcroft, 2015; Diabetes-Digital-

Media, 2019]. As blood glucose levels rise due to food uptake, insulin plays a

significant role in controlling the blood glucose levels back to normal levels

[Cantley and Ashcroft, 2015]. Symptoms of the disease are increased thirst,

hunger, food intake, urination, weight loss, blurred vision and extreme tired-

ness [Cantley and Ashcroft, 2015]. If not treated, diabetes may cause heart

disease, kidney failure, nerve damage, comas and eventually death [Boutayeb

et al., 2014; IDF-Diabetes-Atlas, 2021]. Chronic evaluation of blood glucose

levels (hyperglycaemia) over long periods of time due to lack of insulin results

in complications such as cardiovascular disease [MayoClinic, 2021]. Individ-

uals with Type 1 diabetes therefore need daily exogenous insulin dosages

in order to control their blood glucose levels. Without the administration of

insulin, the individual would die [Cantley and Ashcroft, 2015; IDF-Diabetes-

Atlas, 2021]. Insulin injections can be delivered as insulin bolus or continuous

insulin injections. Alternatively an insulin pump can also be used [Li and

Johnson, 2009]. Insulin pumps are open loop devices and are not automated.

Recently, an artificial pancreas providing an automated insulin delivery and

eliminating the need for human intervention to calculate dosages has gone

into trial [Brown et al., 2019; Haidar et al., 2020].

Modelling is an important tool to better understand insulin and its analogues

in vivo dynamics in order to design future treatment approaches for individ-

uals with Type 1 diabetes [Li and Johnson, 2009]. Several types of models

have been formulated for Type 1 diabetes, depending on the forms of insulin

delivery. Currently there are models for depot injections of insulin analogs,

compartmental and systemic models [Kraegen and Chisholm, 1984; Li and

Kuang, 2009; Mukhopadhyay et al., 2004; Nucci and Cobelli, 2000; Puckett

and Lightfoot, 1995; Rossetti et al., 2003; Shimoda et al., 1997]. Most of exist-

ing models are based on [Li and Kuang, 2009] who hypothesised that insulin

absorption is inversely proportional to concentration of insulin in the body [Li

and Johnson, 2009]. Systems made up of nonlinear differential equations with

non-autonomous insulin dosages would be of interest to provide a different

perspective on current models [Kraegen and Chisholm, 1984; Li and Johnson,
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2009; Li and Kuang, 2009; Mukhopadhyay et al., 2004; Nucci and Cobelli,

2000; Puckett and Lightfoot, 1995; Rossetti et al., 2003; Shimoda et al., 1997;

Tarin et al., 2005; Wilinska et al., 2004]. Existing models on diabetes do not

capture important biological processes. For example, only one mathematical

model has so far incorporated the role of the growth hormone [Al Ali et al.,

2019b] and most of the other models represent insulin molecules rather than

the system as a whole (i.e glucose, insulin and growth hormone). In addition,

existing mathematical models on diabetes have not fully modeled Type 1 dia-

betes pathway, which describes the zero insulin steady state [Li and Johnson,

2009; Mukhopadhyay et al., 2004; Nucci and Cobelli, 2000; Tarin et al., 2005;

Wilinska et al., 2004]. In this chapter, we propose a simple Type 1 diabetes

model with an insulin bolus injection component. Exploring mathematical

properties of such a model is important in understanding important param-

eters for insulin management [Li and Johnson, 2009]. Glucose homeostasis

models which are sometimes used to model Type 1 diabetes do not take into

account the fact that Type 1 diabetic individuals have no β -cells [Al Ali et al.,

2019b] and this is a major drawback of such models.

In this study rigorous analysis of the model is conducted using classical mathe-

matical analytic approaches and global sensitivity analysis methods. Following

our approach in Chapter 3, we use the concept of threshold quantities to provide

insights on the important parameters [Anderson and May, 1992; Diekmann

et al., 1990; Dietz, 1993; Li et al., 2011; Mukandavire et al., 2011, 2013; Smith

et al., 2007]. Global sensitivity analysis methods used in this study are partial

rank correlation coefficient (sampling-based method) [Blower and Dowlatabadi,

1994] and Sobol′ method (variance-based method) [Sobol, 1993].

4.2 Model formulation

We developed a Type 1 diabetes model consisting of the following variables,

insulin (I), glucose (GL) and growth hormone (GH). Insulin (I) is secreted by

the β -cells and is dependent on the levels of glucose in the body therefore if

there is no β -cells, no insulin is produced [Medline, 2021]. We thus included a

subcutaneous insulin injection term, I0, which represents a bolus value. The
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injection term is to be injected up to 3 times a day (15-30 minutes before meals

depending on blood glucose levels) [Pathak et al., 2019]. The insulin levels in

the blood are a product of the amount of insulin externally injected and the

absorption rate, ψ. The insulin injection term, I0, is hypothesised to have an

inversely proportional relationship with insulin concentration in the blood (I)

[Koutny, 2017; Li and Kuang, 2009; Magdelaine et al., 2015; Sanofi-Aventis,

2021]. We model this relationship using the term
I0

1+ I
. The choice of the func-

tion is a new formulation term to clearly capture the state with zero-insulin.

The 1 mIU/ml in the term is a hypothesized shape value to model a zero-insulin

state. Overtime blood insulin level drops as glucose is absorbed by muscle, fat

and liver cells and clears at a constant rate δ . Glucose (GL) levels are increased

by the growth hormone through suppression of glucose uptake by insulin, at a

constant rate c. The parameter a represents total glucose production rate in

the liver. The growth hormone (GH) in model system (4.1) is increased by the

rate of production by the somatotropic cells in the pituitary gland at a constant

rate ρ. The growth hormone is decreased at a rate w through of absorption

by the liver [Taylor et al., 1969]. It has been demonstrated [Schwarz et al.,

2002], that growth hormone increases glucose production in the blood through

gluconeogenesis and glycogenosis [Holly et al., 1988; Kim and Park, 2017].

The model variables, parameter values and their symbols are given in Table

4.1. The model dynamics are governed by the following system of differential

equations.

dI
dt

=
ψI0I
1+ I

−δ I,

dGL

dt
= a− (b+ cI)GL + cGH ,

dGH

dt
= ρ −wGH .


(4.1)

A summary description of model variables and parameter values is given in

Table 4.1.
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4.3 Mathematical analysis and results

4.3.1 Model basic properties

The model system (4.1) has an initial condition given by I(0) ≥ 0,GL(0) ≥ 0,

and GH(0)≥ 0. Since the model represents fluid concentrations in the human

body, all variables should be non-negative for biological feasibility. Hence we

establish the following results in Theorem 4.1 and 4.2.

Theorem 4.1. Given the initial data be I(0)> 0,GL(0)> 0, and GH(0)> 0, then

solutions (I(t),GL(t),GH(t)) of model system (4.1) with positive initial data will

remain positive ∀ t > 0.

Proof. Suppose that t1 = sup{t > 0 : β > 0, I > 0,GL > 0,GH > 0,∈ [0, t]}. Under

the given initial conditions it can be shown that solutions of model system (4.1)

are positive for t > 0. We show that this is true ∀ t > 0 by proceeding as follows.

The first equation in model system (4.1) is given by

I′(t) =
ψI0I
1+ I

−δ I,

which gives
d
dt

ln I(t)≥−δ =⇒ I(0)exp

{
−
∫ t1

0
δ dt

}
> 0.

It follows that the solution to the equation is positive ∀ t > 0. In a similar

fashion, we provide the proof for each equation in model system (4.1) as follows.

For GL we have

d
dt

lnGL(t)≥−(b+ cI) =⇒ GL(0)exp

{
−
∫ t1

0

(
b+ cI

)
dt

}
> 0.

Similarly GH gives

d
dt

lnGH(t)≥−w =⇒ GH(0)exp

{
−
∫ t1

0
w dt

}
> 0.

Thus, solutions for model system (4.1) are positive ∀ t > 0.
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4.3.2 Invariant region

Theorem 4.2. Let (I,GL,GH) be solutions of the model system (4.1) with initial

conditions (I(0), GL(0), GH(0)). The compact set

D =

{
(I,GL,GH) ∈ R3

+, I ≤
ψI0

δ
,GL ≤

a+ c ρ

w
b

,GH ≤ ρ

w

}
.

Proof. Consider (I, GL, GH) ∈ D . For model system (4.1) we have

dI
dt

=
ψI0I
1+ I

−δ I ≤ ψI0 −δ I ≤ 0 if I ≥ ψI0

δ
.

dGL

dt
= ρ −wGH ≤ 0, if GH ≥ ρ

w
.

dGH

dt
= a− (b+ cI)GL + cGH ≤ a−bGL + cGH ≤ 0 if GL ≥ a+ cGH

b
≥

a+ c(ρ

w)

b
.

Thus all solutions (I(t), GL(t), GH(t)) of model system (4.1) are bounded and

biologically feasible in the following region.

D =

{
(I,GL,GH) ∈ R3

+, I ≤
ψI0

δ
,GL ≤

a+ c ρ

w
b

,GH ≤ ρ

w

}
.

4.3.3 Model equilibria

Model system (4.1) has two steady states which are as follows:

1. The Type 1 diabetes (pathological) equilibrium is given by

P0(I∗,GL
∗,GH

∗) =
{

0,
aw+ cρ

bw
,

ρ

w

}
.

2. The physiological equilibrium state (non-diabetic state) is given

by

P1(I∗∗,GL
∗∗,GH

∗∗) =

{
ψI0

δ
−1,

cρδ +awδ

ψcI0w+bwδ − cwδ
,

ρ

w

}
.

From the equation above, the physiological state exists if I0ψ

δ
−1 > 0 implying

that I0ψ

δ
is the threshold parameter, T0. The point when T0 = 1 becomes a

bifurcation point above which a diabetic individual has control of their diabetes
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or no diabetes and below which, an individual is diabetic and not managing

the disease as they are in a state of hyperglycaemia. There are two solutions

for I,

I∗ = 0 and I∗∗ =
I0ψ

δ
−1 = T0 −1.

When I∗ = 0, we obtain a Type 1 pathological state (no insulin) and when I∗∗ =

T0 −1 we get the physiological equilibrium state. Solutions can be expressed

graphically in a bifurcation diagram of I∗ against T0 (Figure 4.1). Figure 4.1

shows that, two stable states will occur, one below the threshold quantity, T0,

and one above the model threshold.

Figure 4.1 Bifurcation diagram showing a forward transcritical bifurcation occurring.
The bold blue line represents a Type 1 diabetic, the dashed blue line represents a
unstable diabetic equilibrium and the red represents a stable non-diabetic equilibrium.
The parameter values are the same as those given in Table 4.1 and only ψ is varied
between 0−0.97 in steps of 0.0001.

The solution for I∗ = 0 is given by the bold blue/dashed line and a Type 1

diabetic. The second solution for I∗∗ = T0 −1 is given by the red line and is a

non-diabetic state.

4.3.4 Stability of equilibria

We use the threshold parameter T0 to investigate the stability of both P0 and

P1.
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Local stability of P0

Linearising model system (4.1) gives the following Jacobian matrix.

J =


ψI0

I∗+1
− ψI∗I0

(I∗+1)2 −δ 0 0

−cG∗
L −b− cI∗ c

0 0 −w

 (4.2)

We use the J to determine local stability of the steady states in the following

sections. The equilibrium state P0 is a pathological steady state as the individ-

ual has Type 1 diabetes (I∗ = 0). Solving J at the pathological equilibrium P0

gives the following eigenvalues, λ1 =−b,λ2 =−w and λ3 =
ψI0
(1)2 −δ . This matrix

is defined as stable if λ3 < 0 which is relised if T0 < 1.

Lemma 4.1. The pathological state P0 is locally stable for T0 < 1 and unstable

when T0 > 1.

Theorem 4.3. The physiological steady state P1 of system (4.1) is locally asymp-

totically stable when T0 > 1

This means the P1 state which represents the non-diabetic or managed diabetic

state is locally stable when T0 > 1.

Proof. Linearising the system at P1 we obtain the following eigenvalues at P1;

λ1 =−b− cT0 + c < 0, λ2 =−w < 0 and λ3 = δ

(
δ

ψI0
−1
)

. Therefore for P1 to be

stable, λ3 < 0. We can rewrite λ3 as the following, λ3 = δ

(
1
T0

−1
)

. On solving

λ3 < 0 we obtain T0 > 1.

Global stability of P0 and P1

Theorem 4.4. If T0 < 1, the pathological state P0 is globally asymptotically

stable.

Proof. Define a Lyapunov function

L (I(t),GL(t),GH(t)) = I + k1GL + k2GH
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with constants k1 and k2 to be defined such that the derivative of L (t) is

negative definite. Let

k1 =
bw(ψI0 −δ )

aw+ cp
and k2 =

w(ψI0 −δ )

p
.

L (I∗,G∗
L,G

∗
H) = 0+

bw(ψI0 −δ )

aw+ cp

(
aw+ cp

bw

)
+

w(ψI0 −δ )

p

( p
w

)
= 2(ψI0 −δ )

Thus L (I,GL,GH) = L (I∗,G∗
L,G

∗
H) = 0 if and only if ψI0 = δ i.e the insulin

absorption bolus will be equal to the clearance rate and L (I,GL,GH)> 0 hence

L (I,GL,GH)≥ 0 in P0

Then

d
dt

L (t) =
d
dt

I(t)+ k1
d
dt

GL(t)+ k2
d
dt

GH(t),

=

(
ψI0

1+ I
−δ

)
I +

bw(ψI0 −δ )

aw+ cp
d
dt

GL(t)+
w(ψI0 −δ )

p
d
dt

GH(t),

≤
(

ψI0

1+ I
−δ

)
I +(ψI0 −δ )

[(
bw

aw+ cp

)
GL(t)+

(
w
p

)
GH(t)

]
,

≤ (ψI0 −δ ) I +(ψI0 −δ )

[(
bw

aw+ cp

)
GL(t)+

(
w
p

)
GH(t)

]
,

= (ψI0 −δ )

[
I +
(

bw
aw+ cp

)
GL(t)+

(
w
p

)
GH(t)

]
,

= δ (T0 −1)
[

I +
(

bw
aw+ cp

)
GL(t)+

(
w
p

)
GH(t)

]
,

≤ 0, when T0 ≤ 1.

Using the Lyapunov stability theorem L̇ (t) is negative definite. The ω-limit set

of each solution is the largest invariant set for which I = I∗, GL = G∗
L and GH =

G∗
H for which P0 is a singleton. By LaSalle’s invariance principle [La Salle,

1976], the pathological state P0 is globally asymptotically stable in D .

Theorem 4.5. The physiological state P1 is globally asymptotically stable for

T0 > 1.

Proof. Let I = x1 ,GL = x2 and GH = x3 and consider a possible Lyapunov function

V (x)=

(
x1 − x∗∗1 − x∗∗1 ln

[
x1

x∗∗1

])
+

(
x2 − x∗∗2 − x∗∗2 ln

[
x2

x∗∗2

])
+

(
x3 − x∗∗3 − x∗∗3 ln

[
x3

x∗∗3

])
.
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At steady state x∗∗3 =
p
w
⇒ p = wx∗∗3 . Thus

V̇ =

(
ψI0

1+ x1
−δ

)
(x1 − x∗∗1 )+ [a+ cx3 − (b+ cx1)x2]

(
1−

x∗∗2
x2

)
+ p− p

x∗∗3
x3

−wx3 +wx∗3,

=

(
ψI0

1+ x1
−δ

)
(x1 − x∗∗1 )+ [a+ cx3 − (b+ cx1)x2]

(
1−

x∗∗2
x2

)
− w

x3
(x∗∗3 − x3)

2 ,

≤ 0

since the expressions
(

ψI0

1+ x1
−δ

)
and [a− (b+ cx1)x2 + cx3] are positive by

definition of diabetes model system (4.1) and xi ≤ xi
∗∗ everywhere in D . We used

the Lyapunov stability theorem to show that V̇ < 0 for all (I∗∗,GL
∗∗,GH

∗∗)> 0 ∈

D and the strict equality V̇ = 0 holds only for I = I∗∗,GL = GL
∗∗ and GH = GH

∗∗.

The only equilibrium state P1 is the only positively invariant set of the non-zero

solution for model system (4.1) contained entirely in D . By the asymptotic

stability theorem in [La Salle, 1976], the physiological state P1 is globally

asymptotically stable.

4.3.5 Numerical simulations and results

In order to illustrate some of the mathematical analysis, numerical simula-

tions of model system (4.1) are conducted using a code in R programming

environment, and parameter values in Table 4.1. Figures 4.2 and 4.3 illustrate

the time series plots based on simulating the model with different initial con-

ditions. We used different initial conditions in order to depict the bifurcation

as the dynamics of the system are also governed by initial conditions. Figure

4.2 shows the solution profiles for the concentration of I, GL and GH for T0 < 1.

Simulation results in Figure 4.2 show that solutions will converge to the Type

1 diabetic steady state (as stated in Lemma 4.1). The glucose levels are ap-

proximately 500 mg
dl and insulin levels are at zero, known as a hyperglycaemic

state. Figure 4.3 shows the solution profiles for the concentration of I, GL and

GH for T0 > 1 and this also confirms the non-diabetic steady state which is

also stable (as mentioned in Theorem 4.3). The glucose and insulin levels

are within the normal range, and no hyperglycaemic state is occurring. Both

results in Figures 4.2 and 4.3 agree with the biology of the disease, that the



102 102

Type 1 is a non-reversible stable state in the form of the forward bifurcation

and shown in Figure 4.1.

Figure 4.2 Simulations of model system (4.1) with different initial conditions
for T0 = 0.049837 < 1. The initial conditions are given by I0 =

j1
2 , GL = 50 ∗ j1

and GH = 0.05∗ j1 where j1 is the step value which is varied in the range 1−200.
Parameter values used are as in Table 4.1 with I0 = 5 and ψ = 2.143× 10−4.
Note that the y-axis scale for the figures are different in order to make figures
clearer.
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Figure 4.3 Simulations of model system (4.1) with different initial conditions for
T0 = 4.983721 > 1. The initial conditions are given by I0 =

j1
2 , GL = 50 ∗ j1 and GH =

0.05 ∗ j1 where j1 is the step value which is varied in the range 1− 200. Parameter
values used are as in Table 4.1 with I0 = 5 and ψ = 2.143×10−2. Note that the y-axis
scale for the figures are different in order to make figures clearer.

4.4 Sensitivity analysis and results

In this section, different sensitivity analysis (SA) methods were used to assess

the relative importance of the input parameters, when they are varying over

the wide ranges (as given in Table 4.1) to the model outputs (I, GL, GH) which

are derived by solving model system (4.1). Here we mainly focus on the SA

of GL and I because they are the most important components in the glucose

homeostasis system and in managing diabetes. We will begin by conducting

SA using the partial rank correlation coefficient (PRCC) and then proceed to

use probabilistic SA methods similar to the ones discussed in details in Sec-

tion 3.4.2. The PRCC values for each input parameter and their corresponding
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p-values are computed in Matlab Statistics and Machine Learning toolbox

(R2019b). Furthermore, several probabilistic SA methods, including main

and interaction effects and Sobol′ index are efficiently evaluated using the

Gaussian process based computational algorithm discussed in Section 3.4.2.

The SA measures using this computational algorithm are computed using tgp

package in R [Gramacy, 2007].

4.4.1 Partial rank correlation coefficient

PRCC and their corresponding p-values are used to evaluate parameter

importance on the model outputs. The method is combined with Latin

hypercube sampling and explores the entire space of each parameter [Blower

and Dowlatabadi, 1994]. The PRCC values illustrate the correlation between

the model outputs (I, GL, GH) and the input parameters. PRCC will give

the singular effect of each input parameter on the model output of interest.

The corresponding p-values highlight the level of uncertainty of each input

parameter on the model output. The input parameters with larger PRCC

values have more impact on the model output, and the ones with relatively

insignificant values could be removed from the model as they are regarded of

being less important (see [Blower and Dowlatabadi, 1994; Malunguza et al.,

2018] for similar analysis). The input parameters with p < 0.05 are regarded to

have significant impact on the model output. Scatter plots were also generated

to visually illustrate the relationship between input parameters and model

outputs at time t = 210 minutes. Scatter plots showing sensitivity analysis

results of input parameters (a,b,c,δ , I0,ψ,ρ,w) against I (see Figures A2.1 and

A2.2 given in Appendix A.2). The PRCC results for the entire time period and

corresponding p-values for all parameters against I are shown in Table 4.2 and

illustrated in Figure 4.4 (a). The results suggest that the parameters that are

most influential on I were δ , I0 and ψ (i.e, insulin clearance rate, insulin bolus

and insulin absorption rate). In exploring most influential parameters on I we

calculate the PRCC and p-values at different time points. Initial time point

(t = 5 minutes), is called the “fasting" levels in an individual and is usually

observed in the morning. However, it can also represent 3 hours post food

as the system should reach homeostasis within 3-4 hours. The second time

period of interest is immediately after food, when glucose should be high due
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to the ingested source of glucose entering the blood stream. This is at t = 10

minutes, where we hypothesize that, the meal is taken within 5-10 minutes

after waking up. The third time is t = 60 minutes, an hour postpandrial. This

is when glucose levels should be reducing towards homeostasis levels. Time

points t = 90 and 180 minutes, corresponds to 2 and 2.30 hours postpandrial

meaning if an individual is not diabetic or has good management of their

diabetes the glucose, insulin and growth hormone levels should be nearly at

homeostasis levels. Finally t = 210 minutes is when blood glucose should be at

normal levels. The remaining PRCC tables for each time point are in Tables

A2.1-A2.31 of Appendix A.2. Results show that regardless of time point, the

parameters which are significant remain significant. Parameters identified

as influential are parameters that make up the Type 1 diabetes threshold

quantity.

Scatter plots showing sensitivity analysis results of input parameters

(a,b,c,δ , I0,ψ,ρ,w) against GL are given in Figures A2.3 and A2.4 in Appendix

A.2. The PRCC results and corresponding p-values for all the parameters

against GL are shown in Table 4.3 and illustrated in Figure 4.4 (b). The results

suggest that the parameters that are most influential on GL are δ ,ψ, I0,ρ,w

(i.e, insulin clearance rate, insulin absorption rate, insulin bolus, growth

hormone production rate and growth hormone clearance rate). Parameters

δ and ρ have positive PRCC values suggesting that these parameters have

positive effect on glucose concentration thus are important in maintaining

glucose homeostasis. These results also show the importance of growth

hormone in the glucose homeostasis system as parameter w has shown

to influence GL. Model parameters which have shown to be significant

remain significant at different time points, however before t = 90 minutes,

two extra parameters are highlighted as significant and these are ρ and w.

The remaining PRCC tables can be seen in Tables A2.32-A2.61 in Appendix A.2.

The scatter plots showing sensitivity analysis results for GH are shown in

Figures A2.5 and A2.6 in Appendix A.2. The PRCC results and corresponding

p-values for all the parameters against GH are shown in Tables A2.62-A2.91 in
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Appendix A.2 and illustrated in Figure A2.7 in Appendix A.2. The results show

that the parameters that are most influential against GH were ρ and w.

Parameter p-values PRCC

ψ p < 0.0001 0.7758

I0 p < 0.0001 0.8550

δ p < 0.0001 -0.8009

w p = 0.3003 0.0629

c p = 0.4578 0.0422

ρ p = 0.5555 -0.0654

a p = 0.8186 -0.0634

b p = 0.8397 0.0278

Table 4.2 PRCC sensitivity analysis
of parameters ranked in terms of im-
portance to model variable I for entire
time period.

Parameter p-values PRCC

ψ p < 0.0001 -0.8307

I0 p < 0.0001 -0.8795

δ p < 0.0001 0.8816

ρ p < 0.0001 0.4534

w p < 0.0001 -0.3081

c p = 0.0104 -0.0238

b p = 0.9627 0.2222

a p = 0.9856 0.2869

Table 4.3 PRCC sensitivity analysis
of parameters ranked in terms of im-
portance to model variable GL for en-
tire time period.

(a) (b)

Figure 4.4 Plot (a) shows a tornado plot of the parameters with their PRCC values
showing the effect of input parameters on I and (b) is a tornado plot of the parameters
with their PRCC values showing the effect of input parameters on GL.

4.4.2 Sobol′ method results

In order to compute the emulator-based SA measures, we first evaluated the

outputs of model system (4.1) for 100 data-points selected over a range of input

parameters in Table 4.1 using the Latin hypercube sampling [Daneshkhah

and Bedford, 2013] which is a space filling design originally proposed in
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[Sacks et al., 1989]. We then compute first and total order variance-based

sensitivity indices using the Gaussian process emulator at significant time

points. Parameters with sensitivity greater than 0.05 were considered to be

significant [Zhang et al., 2015]. The Sobol′ indices are analysed for the insulin

bolus injection term, I0, to investigate if model influential parameters are

affected by the amount of insulin injected. It should be noted the insulin

bolus injection (I0) is a dosage level such as I0 = 5 and remains a parame-

ter, it should not be confused with the output variable insulin concentration (I).

Figure 4.5 and Table 4.4 illustrates the first order variance-based sen-

sitivity indices for insulin bolus level of I0 = 5 for insulin concentration (I).

Results were produced for different insulin bolus levels at I0 = 10,15,20,25,30

and are presented in Tables A2.93-A2.97 of Appendix A.2. Total effect

sensitivity indices for I at different insulin bolus levels (I0 = 5,10,15,20,25,30)

are given in Tables A2.109-A2.114 of Appendix A.2. The figure shows that,

parameters δ and ψ are critical in influencing I. Parameter δ is the most

influential with a total order index of 0.9127 (at t = 60 minutes) and this

is followed by parameter ψ, other model parameters are not significant in

determining I. Additionally, parameter δ has an extremely high total order

index in comparison with its first order, implying there is lots of interaction

with other parameters demonstrating the importance of using global methods

or SA methods that evaluate parameter relationships between each other. The

first order and total order indices did show some change at different time

points, nevertheless the parameters which are influential stayed significant.

The Sobol′ indices are also analysed for the parameters when the insulin

bolus injection term, I0, is varied within its range (4.1). Results showed that

regardless of bolus amount injected, δ remains significant and significance

increases over time points. The explanation for this increase in clearance

term δ is given by the fact the increased insulin bolus I0 injected requires

higher clearance to maintain the glucose levels once homeostasis is reached.

Conversely, indices for ψ and I0, although remain significant, they reduce over

time when t > 60 minutes. This can be explained by the fact I0 is highest when

first injected and gradually decreases as its used up and the absorption term,

ψ, is therefore less significant due to clearance of insulin.
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Figure 4.6 and Table 4.5, illustrates the first order variance-based sen-

sitivity indices at insulin bolus level I0 = 5 for GL. The remaining values of

I0 within the range of values given in Table 4.1 on first order variance-based

sensitivity indices for GL are in Tables A2.98-A2.102 of Appendix A.2. Total

effect sensitivity indices for GL are illustrated in Tables A2.115-A2.120 of

Appendix A.2. Sensitivity analysis results show that parameters δ (with total

order index of 0.3126 at t = 60 minutes), c and ψ are the most influential on

GL. The total order and first order indices for these parameters are similar,

suggesting that these parameters have no interaction with other parameters.

Sensitivity analysis results based on Sobol′ method for GH are shown in Figure

A2.8 and Tables A2.103-A2.108, A2.121-A2.126 in Appendix A.2. Results

also show the change in variance of each parameter on the variable over the

different time points converges. Parameters which have the most influence at

a certain time, have shown the most effect. Results of the Sobol′ method for

different insulin bolus injection terms, I0, showed that significant parameters

remained significant throughout variations in insulin injection term. The

insulin induced glucose uptake rate (c) is not substantially affected by changes

in the insulin bolus term I0. Parameter c clears the insulin therefore as

bolus levels increase the parameter performs its role at an increased rate

(i.e. up-taking the glucose). At 10 minutes, the significance of the absorption

rate (ψ) is increased as this is when the bolus is injected. The significance

of δ increases over time. However, after 180 minutes, δ importance begins

to decrease and this is linked to the need to clear insulin once glucose level

is maintained. The process is usually achieved in 2 hours and consequently

insulin clearance is reduced as homeostasis is maintained.

The results showed that all the parameters for GH have first order in-

dices close to zero (< 0.05) with the exception of ρ and w. Using both PRCC

and Sobol′ method sensitivity analysis was also conducted at different times

and similar conclusions were reached.
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(a) (b)

Figure 4.5 Plots showing first order and total effects sensitivity indices for parame-
ters (a, b, ψ , c, I0, δ , ρ and w) on insulin in model system (4.1) using Sobol′ method (a)
at time t = 210 and (b) at time t = 60.

(a) (b)

Figure 4.6 Plot showing first order and total effects sensitivity indices for parameters
(a, b, ψ, c, I0, δ , ρ and w) on glucose in model system (4.1) using Sobol′ method (a) at
time t = 210 and (b) at time t = 60.
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0040 0.0003 0.0017 0.0012 1.92×10−5 0.0051

b 0.0051 0 0.0003 0.0050 0.003 0.0351

ψ 0.2335 0.1485 0.0938 0.0299 0.0196 0.0034

c 5.21×10−5 0 0.0002 0.0007 0.0004 0.0036

I0 0.2312 0.1619 0.0574 0.0028 0.0132 0.0278

δ 0.3431 0.4957 0.6084 0.2149 0.7357 0.0352

ρ 0 0 0.0006 0.0038 0.0216 0.0359

w 0.0097 0 0.0002 0.1024 0 0.0241

Table 4.4 First order Sobol′ indices of each model parameter for model variable I at
significant time periods with I0 = 5.

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0951 0.0498 0.0610 0.0599 0.0803 0.0246

b 0.0073 0.0346 0.1043 0.0386 0.0457 0.0049

ψ 0.0389 0.1470 0.1140 0.1328 0.1531 0.0296

c 0.2080 0.3535 0.1863 0.3190 0.1706 0.0429

I0 0.0990 0.1027 0.0557 0.0699 0.1120 0.1383

δ 0.0676 0.1337 0.1140 0.1807 0.2157 0.0162

ρ 0.0045 0 0.0020 0.0007 0 0.0009

w 0.0150 0.0008 0.0105 0.0036 0 0.0102

Table 4.5 First order Sobol′ indices of each model parameter for model variable GL at
significant time periods with I0 = 5.

4.4.3 Comparison with PRCC results

In this section, we compare the results obtained from PRCC method with the

variance-based methods used in this study. We note that the PRCC highlighted

more influential parameters (more parameters are shown to affect the model

outputs; insulin, glucose and growth hormone). Sobol′ method identified a

smaller set of influential parameters than the PRCC method, similar to find-

ings in other studies [Chen et al., 2019; Marino et al., 2008]. The explanation
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for this could be that the PRCC assumes a monotonic input and output re-

lationship, unlike the Sobol′ method. However, the Sobol′ method is able to

quantify the effect of the high-order interactions between input parameters,

providing us with further insight on the model system [Chen et al., 2019]. The

results from the Sobol′ method showed consistently the parameters that are

influential against I and GL were δ and ψ, these parameters were also iden-

tified as influential by the PRCC method. The PRCC method identified I0 as

significant constantly, however Sobol′ method only highlighted its significance

at one time point. However, the Sobol′ method identified the high interaction of

δ with other parameters, something PRCC method was unable to show. Both

methods concurred completely on the influential parameters against GH and

the parameters were ρ and w.

4.5 Discussion

Mathematical models of a Type 1 diabetes system [Kraegen and Chisholm,

1984; Li and Johnson, 2009; Li and Kuang, 2009; Mukhopadhyay et al.,

2004; Nucci and Cobelli, 2000; Puckett and Lightfoot, 1995; Rossetti et al.,

2003; Shimoda et al., 1997; Tarin et al., 2005; Wilinska et al., 2004] have

been developed to understand Type 1 diabetes and produce more effective

treatment methods in order to provide better lifestyles for diabetes patients.

Current treatment methods are invasive, inconvenient and require constant

monitoring. Presently the treatment methods include daily self injections,

constant recording of blood glucose levels, carbohydrate counting and even

transplant of islets [Pathak et al., 2019]. Several diabetes models [Brown

et al., 2019; Kraegen and Chisholm, 1984; Li and Johnson, 2009; Li and

Kuang, 2009; Mukhopadhyay et al., 2004; Nucci and Cobelli, 2000; Puckett

and Lightfoot, 1995; Rossetti et al., 2003; Shimoda et al., 1997; Tarin et al.,

2005; Wilinska et al., 2004] have managed to describe the molecular dynamics

in a Type 1 diabetic and lead to the development of open-loop insulin pumps

based on algorithms. However, the current mathematical models of diabetes

do not consider the condition with zero insulin concentration in the blood as

expected in a Type 1 diabetic [Li and Kuang, 2009; Mosekilde et al., 1989].

In light of this limitation, we developed a new mathematical model to fully
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capture Type 1 diabetes dynamics.

The results of the mathematical analysis showed that the model has

two stable steady states. The model threshold quantity T0 was derived and

it was shown that the pathological equilibrium was locally asymptotically

stable for values of T0 < 1. The importance of the model threshold T0 is in

determining key parameters governing the dynamics of the Type 1 glucose

homeostasis system. Further, pathological equilibrium was determined

to be globally stable. The physiological equilibrium was determined to be

globally stable for values of T0 > 1. Numerical analysis of the model showed

a transcritical bifurcation (Figure 4.1), confirming results illustrated by the

time series plots (Figures 4.2 and 4.3).

Sensitivity analysis was conducted to systematically evaluate key pa-

rameters influencing the model at different time points using PRCC and Sobol′

methods. PRCC method identified all the key parameters which appeared in

the Type 1 diabetes threshold quantity as important. The parameters which

were significant remained so for different time points. However for glucose

concentration, at time t = 90 minutes two additional parameters, growth

hormone clearance rate and growth hormone production rate, were identified

as significant. The growth hormone role in affecting glucose concentration

is most important at 2 hours postpandrial. The PRCC and Sobol′ methods

concurred in many scenarios but showed some differences. Both methods

identified the importance of insulin clearance rate (δ ) and insulin absorption

rate (ψ) as influential parameters in determining insulin concentration (see

Figures 4.4(b), Figures A2.1, A2.2, Table 4.2, Appendix Tables A2.1-A2.31

in Appendix A.2 for PRCC, Figure 4.5 and Table 4.4, Tables A2.93-A2.97,

A2.109-A2.114 in Appendix A.2 for Sobol′ indices). However, for the Sobol′

method the insulin bolus term (I0) was only shown to be significant at time

t = 60 minutes unlike in the PRCC method where it was highlighted as

significant throughout all time points. Furthermore, the difference of the total

order and first order indices for δ against insulin concentration was large

implying there was interaction with other parameters. Global sensitivity

analysis methods which allow us to explore relationships between parameters
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are important in understanding the overall influence of each parameter in

a model. PRCC method also showed that the most influential parameters

on blood glucose concentration are insulin clearance rate (δ ) and insulin

absorption rate (ψ) (see Figures 4.4(b), Figures A2.3, A2.4, Table 4.3, Tables

A2.32-A2.61 in Appendix A.2). Sobol′ method also confirmed these findings

and highlighted that these parameters have little interactions with other

parameters (see Figure 4.6, Table 4.5, Tables A2.98-A2.102 and A2.115-A2.120

in Appendix A.2).

Our results showed that, PRCC method managed to identify all key

parameters in glucose and insulin concentration dynamics. However,

Sobol′ method managed to provide insights on parameter interaction, thus

demonstrating the importance of using other global SA methods along with

the PRCC method. One advantage of using variance based methods such as

Sobol′ method is that it is computationally more efficient and suitable for

complex models. It is clear that classical mathematical analysis alone is not

sufficient in understanding model dynamics and parameter interaction thus

SA methods should be used to fill this gap. Sensitivity analysis insights on

important model parameters varied by method [Iooss and Lemaître, 2015;

Iooss and Prieur, 2019; Wu et al., 2013]. As noted in Chapter 3, other studies

[Brevault et al., 2013; Wu et al., 2013] have proposed selection of SA methods

to use based on model complexity, characteristics and research question.

Findings from this study have some similarities and differences from

those in Chapter 3. Both models, although different, highlighted the

significance of using both PRCC and Sobol′ methods as these methods can

offer different but important model insights. For example in this study its

clear PRCC provided further influential parameters and identified all the

parameters in the threshold, T0. However, Sobol′ method provided insights on

interaction between model parameters. In Chapter 3, both methods managed

to identify all the parameters in the threshold quantity but similarly revealed

that Sobol′ method provided more insights on parameter interaction.

The results of this study are important in informing the building of
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suitable mathematical algorithms to use in an artificial pancreas. This model

provides an open-loop algorithm framework which captures a zero-insulin

state, a case which occurs frequently in those with Type 1 diabetes but has

so far not been been considered in previous models. An artificial pancreas

is vital to ease the life of a Type 1 diabetic and offers better treatment to

those suffering with the disease. However, the building of suitable artificial

pancreases requires efficient mathematical algorithms.

This study has several limitations, the model is parameterised using

estimates in [Topp et al., 2000] and other assumed parameters and only

considered sensitivity analysis using PRCC and Sobol′ indices. However,

it would be interesting to see how these results vary when the model is

calibrated using experimental data and if other global sensitivity analysis

approaches are used. Additionally the model is based on a short term injection

whereas it would be interesting to see if having a long-term injecting term

instead would affect the results. In light of the current COVID-19 pandemic

and increased risk of developing COVID-19 complications among diabetic

individuals, it would be interesting to develop an in-vivo model to understand

COVID-19 infection and diabetes dynamics. Despite the limitations, this

study presents a new way of modelling Type 1 diabetes and provides an

important framework for understanding nonlinear model parameters using a

combination of mathematical and sensitivity analysis approaches.

4.6 Chapter summary

In this chapter we provided a new mathematical model of the glucose home-

ostasis system of a Type 1 diabetic. Unlike in previous models [Kraegen and

Chisholm, 1984; Li and Johnson, 2009; Li and Kuang, 2009; Mukhopadhyay

et al., 2004; Nucci and Cobelli, 2000; Puckett and Lightfoot, 1995; Rossetti

et al., 2003; Shimoda et al., 1997; Tarin et al., 2005; Wilinska et al., 2004], we

modeled different variables rather than intermolecular dynamics. We consid-

ered the glucose homeostasis system for an individual and eliminated β -cells

from the set of equations, based on scientific evidence that Type 1 diabetics

have no/negligible β -cells. Similar to our approach in Chapter 3, we blended
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parameter based sensitivity analysis with dynamical systems techniques in

order to determine a threshold quantity and find the parameters that are key

in driving and influencing the model system. The findings from this chapter

provide insights on key parameters to focus on in order to control Type 1

diabetes.



Chapter 5

Analysing Type 1 diabetes models

using experimental data

5.1 Introduction

Diabetes, a global epidemic, has two main forms which are Type 1 and Type 2

diabetes as noted in previous chapters. Approximately 463 million adults were

living with diabetes in 2021, and this is expected to rise to 700 million by 2045

[IDF-Diabetes-Atlas, 2021]. The disease can affect any individual regardless

of size, age or gender and there are many factors which can increase risk

of having diabetes. Diabetes can be considered as the irregularities in the

glucose homeostasis system where homeostasis is not able to be maintained or

controlled [Cantley and Ashcroft, 2015]. Symptoms of all forms of diabetes are,

increased thirst, urination, hunger, tiredness, weight lost and blurred vision

[Cantley and Ashcroft, 2015; IDF-Diabetes-Atlas, 2021]. The severity of the

disease arises when complications appear. Complications of diabetes are heart

disease, kidney failure, nerve damage, comas and eventually death [Boutayeb

et al., 2014]. A recent concern of diabetes is related to the COVID-19 pandemic.

COVID-19 is known for attacking the immune system and individuals with

diabetes are extremely vulnerable to contracting the highly infectious virus,

having already compromised immune systems [IDF-Diabetes-Atlas, 2021].

Several studies have linked diabetes to increased severity of COVID-19

infection and hindering quick recovery [IDF-Diabetes-Atlas, 2021; Peric and

Stulnig, 2020; Singh et al., 2020].
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Type 1 diabetes (i.e insulin dependent diabetes) usually occurs from a

young age and is classified as an autoimmune disease [IDF-Diabetes-Atlas,

2021]. Type 1 diabetes occurs due to an autoimmune reaction from the

body, destroying the β -cells in an individual [Diabetes-Digital-Media, 2019;

IDF-Diabetes-Atlas, 2021]. Without β -cells an individual cannot produce

insulin, which is required to reduce blood glucose levels back within the normal

range [Cantley and Ashcroft, 2015]. Without control of the blood glucose

levels, diabetes complications arise and eventually will lead to death [Cantley

and Ashcroft, 2015; IDF-Diabetes-Atlas, 2021]. Treatment and management

of Type 1 diabetes requires daily injections of insulin and constant blood

glucose monitoring, healthy diet and exercise [Diabetes-Digital-Media, 2019;

IDF-Diabetes-Atlas, 2021].

Type 2 diabetes (i.e non-insulin dependent diabetes) is present more

frequently in individuals who are overweight, 80% of individuals diagnosed

with Type 2 are overweight [Boutayeb et al., 2014]. It is reversible and

can develop over time if risk factors such as being overweight, unhealthy

diet, high blood pressure manifest and constitutes 90% of diabetes cases

[IDF-Diabetes-Atlas, 2021]. Unlike Type 1 diabetes, individuals with Type 2

diabetes do have β -cells present, but insufficient insulin secretion to control

glucose levels [Cantley and Ashcroft, 2015]. As noted in previous chapters, this

is caused by insulin resistance, which occurs when the body produces insulin

but fails to effectively use it [Ajmera et al., 2013]. The body therefore becomes

resistant to its own insulin and attempts to compensate by producing higher

quantity of insulin [Diabetes-Digital-Media, 2019]. This in turn leads to β -cells

wearing out or β burnout [Diabetes-Digital-Media, 2019]. Management of

Type 2 diabetes is through diet, exercise and a healthy lifestyle although oral

medications may be given if an individual is not able to control their glucose

levels with diet and exercise [Cantley and Ashcroft, 2015; IDF-Diabetes-Atlas,

2021]. In some cases, insulin injections may also be given however this is

usually administered to individuals with Type 1 diabetes [IDF-Diabetes-Atlas,

2021].

Treatment and management for diabetes is becoming increasingly im-
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portant especially with the current COVID-19 pandemic. Most of Type 2

diabetes cases can be reversed and nearly most prevented but Type 1 diabetes

is irreversible, thus treatment and management of the disease in this form

is very important. In 2020, more than 1.1 million children and adolescents

were living with Type 1 diabetes globally [IDF-Diabetes-Atlas, 2021]. Thus

increasing the urgent need to establish efficient treatment and management

strategies of the disease. Although manageable, the major challenge with

diabetes is the fatal complications that can occur if its not managed correctly

[IDF-Diabetes-Atlas, 2021].

Previous mathematical models of the glucose homeostasis system that

were confronted with data considered models with different components, such

as amount of glucose in the digestive system as a separate entity and the

amount of glucose present in urine [Lombarte et al., 2018, 2013]. In our models

studied in Chapter 3 and 4, we hypothesized that, glucose concentration in the

system is accounted for in one equation rather than breaking down the glucose

concentration in different parts of the body and separating it into different

equations. Other glucose homeostasis models that were fit to data, use models

where plasma insulin and glucose levels are considered as separate equations

to exogenous insulin and the effect of insulin on glucose levels [Aradóttir

et al., 2018]. Delay differential equations consisting of a system of equations

to model different parts of insulin, glucose concentration and plasma levels

were used to model diabetes and fitted to data in [Asadi and Nekoukar, 2018].

Further, the use of time delays has been common in modeling glucose-insulin

regulatory system [De Gaetano and Arino, 2000; Li et al., 2001; Panunzi

et al., 2007; Shi et al., 2017] because of the time delay in insulin secretion in

response to elevated blood glucose concentration.

Developing of suitable mathematical models to understand glucose

homeostasis system in a diabetic individual is urgent and key in developing

automatic insulin pumps for disease treatment, management and control.

Several mathematical models are used as algorithms in continuous glucose

monitoring devices, insulin-pumps and artificial pancreas [Kovatchev, 2018;

Song et al., 2014; Wang et al., 2017] and these devices require accurate
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predictive models. Model comparison and selection plays an important role

in identifying the best model from a set of candidate models for data-driven

modelling and system identification problems [Gu et al., 2018]. In this chapter,

we adapted two mathematical models, one with β -cells studied in Chapter 3

and one without β -cells component studied in Chapter 4 to determine their

capability in predicting blood glucose concentration levels and identifying Type

1 diabetes pathways using published experimental data from mice studies

[Xu et al., 2019]. In [Xu et al., 2019] this data was fitted to a model which

partly considers glucose in the digestive system but in our case we explore the

performance of the two models for whole body glucose dynamics to understand

diabetes pathways. Both models describe the glucose homeostasis system of

an individual, glucose, insulin and growth hormone concentrations levels. The

main difference between the models studied in Chapters 3 and 4 is that, one

has a β -cells component and the other has no β -cells, as it was designed to

describe the glucose homeostasis system of a purely Type 1 diabetic individual.

Type 1 diabetics have zero or relatively low β -cells, thus we assumed that

the second model has no β -cells component [Diabetes-Digital-Media, 2019] to

adequately capture this characteristic. Penalised model selection approach

is commonly used for model comparison and selection. In this study, we use

the Akaike Information Criterion [Akaike, 1974] and Bayesian Information

Criterion [Schwarz, 1978] which are common penalised model selection

criteria used in several disciplines.

5.2 Methods

5.2.1 Data

We used published data on mean blood glucose concentration levels for four

small experimental groups of mice (i.e., sample sizes of 5-6) [Xu et al., 2019].

The four groups of mice used in this study were, from various times, exposed

to Bisphenol S, a chemical that hinders glucose homeostasis in individuals and

accelerates type 1 diabetes [Xu et al., 2019]. Further details on the mice used

and their protocols can be found in [Xu et al., 2019]. Mathematical models

to predict diabetes pathways in humans are usually tested using data from

experimental studies in rodents [Bowe et al., 2014]. Many of the studies are
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in vitro but it is also essential to have in vivo studies. Rats and mice are the

most commonly used animals to study the glucose homeostasis system [Bowe

et al., 2014]. Most importantly, glucose homeostasis in humans and rodents is

maintained by the same factors (i.e., finding the balance between glucose and

insulin concentration in the blood); hence, it is acceptable to use data from ro-

dents and apply the results to understand diabetes dynamics in humans [Yang

et al., 2020]. The data are based on four groups of experimental mice with

diabetes, were manually extracted from [Xu et al., 2019], and are presented in

Figure 5.1. We numbered the four groups as Mice Groups 1-4, depending on

diabetes severity, with Mice Group 1 having a hyperglycaemic episode peaking

at 400 mg/dL and Mice Group 4 maintaining glucose concentration within the

expected ranges of 70−200 mg/dL [MayoClinic, 2021]. The blood glucose data

for all four groups of mice in Figure 5.1 illustrate some biological characteris-

tics of the groups of mice. Mice Group 1 had a hyperglycaemic episode with

extremely high levels of glucose concentration appearing rapidly. In Figure

5.1, Mice Group 2 started within normal glucose concentration ranges and

rapidly became hypoglycaemic (glucose concentration is dangerously low). This

suggests that Mice Groups 1 and 2 may not have been able to control their

glucose homeostasis systems. Mice Group 1 showed a hyperglycaemic episode,

where excess glucose was in the blood, but not enough insulin was injected to

control it. On the other hand, Mice Group 2 showed a hypoglycaemic episode,

where the glucose levels were too low in the blood and less insulin needed to be

injected to control the system. Mice Group 1 likely experienced several symp-

toms, such as nausea, dizziness, feeling faint, weakness, and possibly death

if the glucose levels did not decrease to within normal ranges [MayoClinic,

2021]. Similarly, Mice Group 2 likely experienced the same severe symptoms;

remaining in dangerously low levels of glucose and death could occur if the

levels of glucose do not normalise [MayoClinic, 2021]. We note that Mice Group

3, although diabetic, was within expected blood glucose concentration ranges

(< 260 mg/dL) [MayoClinic, 2021] and showed slightly higher levels than that

of non-diabetics. Mice Group 4 appears to have been within the expected

glucose concentration ranges, showing the glucose homeostasis system to be

under good control.
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Figure 5.1 Glucose concentration data for 4 experimental mice. The blue line
represents Mice Group 1 glucose concentration level data, Mice Group 2 is denoted
by the orange line, Mice Group 3 is denoted by the dark red line and Mice Group 4 is
denoted by the grey line.

5.2.2 Diabetes candidate models

We use two mathematical models which represent the pathways to diabetes,

one specifically describes Type 1 diabetes studied in Chapter 4 and another

which can represent both forms of diabetes (Type 1 and Type 2) studied in

Chapter 3. The models in Chapters 4 and 3 will be referred to as Model 1

and 2 respectively, from here onwards. Models 1 and 2 both simulate insulin

concentration, glucose concentration and growth hormone concentration in an

individual and their formulation details are presented in Chapters 4 and 3

respectively. The models were parameterised using experimental data from

mice studies which was extracted from published literature [Topp et al., 2000;

Xu et al., 2019]. Models 1 and 2 are respectively given in model equations (5.1)

and (5.2), their model input parameters and response variables are presented

in Table 5.1. Both models are reduced to the minimal ones which was proposed

by [Bergman, 1989; Bergman et al., 1979b; Toffolo et al., 1980] and is widely

used in the intravenous glucose tolerance test. Minimal models are the basis

for most glucose homeostasis models due to their revolutionary modelling

abilities and practicality.

Model 1 (a purely Type 1 diabetes model) consists of the following re-
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sponse variables, insulin (I), glucose (GL) and growth hormone (GH) and

incorporates a insulin injection term, I0. Insulin concentration level in the

blood has been hypothesised to be inversely proportional to injected insulin [Li

and Kuang, 2009]. Model 1, given in (5.1), is governed by the following system

of differential equations, and studied in details in Chapter 4.

dI
dt

=
ψI0I
1+ I

−δ I,

dGL

dt
= a− (b+ cI)GL + cGH ,

dGH

dt
= ρ −wGH .


(5.1)

Model 2, given in (5.2), is the glucose homeostasis model and consists of β -cells

(β ), insulin (I), glucose (GL) and growth hormone (GH). Model 2 is governed

by the following system of differential equations, and studied in details in

Chapter 3.

dβ

dt
= (hGL − iG2

L −g)β ,

dI
dt

=
βdG2

L

e+G2
L
− f I,

dGL

dt
= a− (b+ cI)GL + cGH ,

dGH

dt
= ρ −wGH .



(5.2)

5.2.3 Model calibration

We fitted the models to experimental data on mice published in [Xu et al.,

2019]. We manually extracted values of blood glucose concentration levels

from the figures presented in [Xu et al., 2019]. A Markov Chain Monte Carlo

(MCMC) based on a Bayesian framework was used to fit the diabetes models

to blood glucose concentration level data. The Flexible Modelling Environment

(FME) package in R [Soetaert and Petzoldt, 2010], was used to implement an

MCMC algorithm based on the delayed rejection and adaptive Metropolis

procedure [Haario et al., 2006]. A similar approach was also applied in



124 124

modelling infectious diseases [Magombedze et al., 2015; Mukandavire et al.,

2020]. We systematically varied the parameters which were previously shown

to be influential through mathematical analysis conducted in Chapter 3 and 4

and used these to guide our fitting for each model. In fitting Model 1, we varied

insulin clearance rate (δ ) and insulin absorption rate (ψ). We deduced through

systematic analysis that Model 2 required more parameters to be varied in

order to fit the glucose concentration data. We varied glucose production rate

(a), glucose clearance rate (b), whole body insulin clearance rate ( f ) and the

β -cell glucose tolerance range factor (i).
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In the fitting, glucose concentration (GL) was estimated by varying parameters

a, δ , b, ψ, b, f and i, whilst other parameters remaining fixed as given in

Table 5.1. We assumed a uniform prior for each varied parameter estimates

and parameters were sampled within lower and upper values of assumed

values and published literature given in Table 5.1 and previously presented

in Chapters 3 and 4. When fitting the models to blood glucose levels, we

assumed the observations to be identically and independently distributed

with additive Gaussian noise and unknown variance. Thus, for a nonlinear

model M with model parameters, θ , which need to be estimated from the

observed data, including x denoting the system input vector (i.e., the biological

input parameters shown in Table 5.1) and y standing for the output vector

(i.e., GH ,GL, I,β ). Let us denote the data D associated to the model, M by

D = {xi,yi)|i = 1, . . . ,n}. We also assume the mapping between the input xi to yi

can be represented as

y = f (x,θ)+ ε,

where it is assumed that the observed values y differ from the function values

f (x,θ) by additive noise, ε, and we will further assume that this noise follows

an independent, identically distributed Gaussian distribution with zero mean

and variance, σ2

ε ∼ N(0,σ2)

The parameters of model M are estimated using the Bayes estimates which are

computed by implementing the MCMC algorithm. The posterior distribution

of the parameters, (θ ,σ2) is given by,

p(θ |y,σ2) ∝ exp
(
−0.5× SS(θ)

σ2

)
ppri(θ),

where SS is the sum of squares function (SS(θ) = ∑(yi − f (x,θ)i)
2) and ppri(θ)

is the prior distribution of the parameters. For non-informative prior dis-

tributions, ppri(θ) will be constant for any values of θ . However, for the

error variance, σ−2, as nuisance parameter, and prior distribution needs to

be determined. The following Gamma distribution (adopted from Gelman et

al. [Gelman et al., 1995]), is proposed as prior:

ppri(σ
−2)∼ Γ

(n0

2
,
n0

2
S2

0

)
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where n0 and S0 are known, and they can be easily defined in the FME package

to compute the posterior distribution for σ−2. The posterior distribution is

calculated using the function modMCMC. At each MCMC step, the error

variance σ−2 will be sampled from the following Gamma distribution as the

posterior:

p(σ−2|(y,θ))∼ Γ

(n0 +n
2

,
n0S2

0 +SS(θ)
2

)
.

The MCMC chain was generated with at least 100000 runs for the final model

fitting. Chain convergence was examined visually and using the Coda R

package. Extended runs were carried out in cases in which convergence

was not evident. Uncertainty of each estimated parameter was evaluated by

analysing the MCMC chains and calculating the 2.5% and 97.5% quantiles to

obtain the 95% credible interval (Crls). We used Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) to compare and then identify

the best model that describes blood glucose concentration levels in a Type 1

diabetic. We use two types of information criterion to confirm consistence of

results. The AIC evaluates the relative fit of the models given by calculating a

prediction error using the following formula.

AIC = n log
(

L̂
n

)
+2k.

Where n represents the number of data points used, k is the number of param-

eters fitted (which for our fitting is 2 and 4 respectively for Model 1 and Model

2), and L̂ is the maximized value of the likelihood function of the model. BIC

also evaluates the prediction error of the models using a different penalty term

for increased parameters involved and is given by the following formula.

BIC = k ln(n)−2ln(L̂).

Where n represents the number of data points used, k is the number of

parameters estimated by the model (fitted).

Each diabetes model system of differential equations is solved and fit-

ted to experimental data using a code in R programming environment (with

FME and Coda packages) following the algorithm below:
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1. Select a dataset and candidate model.

2. Use functions modFit and modCost to find the best-fit parameters using

least squares fit.

3. Use Gaussian likelihood to draw model parameter posteriors for a set

of varied parameters (i.e for each candidate model) assuming uniform

non-informative priors.

4. Use the function modMCMC to perform MCMC simulations assuming

Gaussian likelihood and visually examine chain convergence.

5. Store the model estimates in a table.

6. Compute uncertainty range for each parameter estimate and calculate

AIC/BIC values.

7. Plot relevant model output.

8. Repeat steps 1-7 for each dataset and candidate model.

5.3 Results

5.3.1 Parameter estimation and uncertainty

MCMC chain convergence when fitting Model 1 to blood glucose concentration

levels for Mice Group 1 is shown in Figure 5.2 and MCMC chain convergence

when fitting to Mice Groups 2-4 data are shown in Figures A3.1-A3.3 in Ap-

pendix A.3. MCMC chain convergence when fitting Model 2 to blood glucose

concentration levels for Mice Group 1 is shown in Figure 5.3 and MCMC

chain convergence when fitting to Mice Group 2-4 data are shown in Figures

A3.4-A3.6 in Appendix A.3. The traces of the MCMC chain (shown by the

grey line in the figures) show that the chains have converged (i.e. there is no

apparent drift). The results for fitting Model 1 to blood glucose level data for

Mice Group 1, 2, 3 and 4 are shown in Figures 5.4 (a), 5.5 (a), 5.6 (a) and 5.7

(a). The corresponding estimates of the insulin clearance rate (δ ) and insulin

absorption rate (ψ) are presented in Table 5.2.
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Figure 5.2 First panel shows MCMC chain convergence for parameter ψ and second
panel shows MCMC chain convergence for parameter δ when fitting Model 1 to Mice
Group 1 data. The black lines represent the MCMC chain and the grey line represents
traces of the chain.

Figure 5.3 First top panel shows MCMC chain convergence for parameter a and
second top panel shows MCMC chain convergence for parameter b. The first bottom
panel shows MCMC chain convergence for parameter f and the second bottom panel
shows MCMC chain convergence for parameter i. These MCMC convergences are for
Model 2 when fitted to Mice Group 1 data. The black lines represent the MCMC chain
and the grey line represents traces of the chain.



130 130

P
ar

am
et

er
M

ic
e

G
ro

up
1

M
ic

e
G

ro
up

2
M

ic
e

G
ro

up
3

M
ic

e
G

ro
up

4
δ

0.
38

3[
0.

30
3
−

0.
39

7]
×

10
−

1
0.

16
[0
.1

5
−

0.
20
]

0.
42
[0
.4

0
−

0.
45

]×
10

−
1

0.
79
[0
.7

0
−

0.
80
]×

10
−

1

ψ
0.

82
[0
.6

3
−

0.
96
]

8.
11
[5
.6

7
−

11
.8

4]
1.

21
[0
.9

3
−

1.
60
]

2.
44

[1
.6

5
−

3.
16
]

Ta
bl

e
5.

2
M

od
el

1
pa

ra
m

et
er

s
es

ti
m

at
es

w
it

h
m

ed
ia

ns
an

d
95

%
C

rl
s.

P
ar

am
et

er
M

ic
e

G
ro

up
1

M
ic

e
G

ro
up

2
M

ic
e

G
ro

up
3

M
ic

e
G

ro
up

4
a

45
.2

79
[3

6.
02

−
49

.7
2]

37
.2

9[
34

.4
5
−

97
.2

4]
86

.1
1[

51
.7

9
−

97
.0

5]
30

.7
5[

21
.2

1
−

51
.5

6]
b

0.
13

[0
.0

8
−

0.
14

]
0.

11
0[

0.
06

−
0.

49
]

0.
37

[0
.2

0
−

0.
41

]
0.

12
[0
.0

3
−

0.
20

]
f

72
.1

9[
22

.2
6
−

76
.4

9]
0.

27
56

[0
.1

1
−

0.
30

]
10

2.
81

[2
4.

87
−

24
3.

27
]

10
.0

5[
3.

77
−

13
.7

6]
i

1.
91

−
6 [

1.
90

−
1.

95
]×

10
−

6
2.

91
[2
.9

0
−

3.
00

]×
10

−
6

22
.7

6[
22

.7
5
−

22
.7

8]
×

10
−

7
1.

18
[0
.5

1
−

1.
19

]×
10

−
6

Ta
bl

e
5.

3
M

od
el

2
pa

ra
m

et
er

s
es

ti
m

at
es

w
it

h
m

ed
ia

ns
an

d
95

%
C

rl
s.



Examining Type 1 diabetes mathematical models using experimental data 131

In Table 5.2, we note that Mice Group 2 has the highest estimates for both

δ = 0.16 and ψ = 8.11. Mice Group 1 has the lowest estimated value of δ among

all four mice. We also notice the same trend for ψ . The results for fitting Model

2 to glucose concentration data for Mice Group 1, 2, 3 and 4 are presented

in Figures 5.4 (b), 5.5 (b), 5.6 (b) and 5.7 (b). The corresponding estimates

for glucose production rate (a), glucose clearance rate (b), whole body insulin

clearance rate ( f ) and glucose tolerance range (i) are presented in Table 5.3.

In Table 5.3, we note that most of the fitted parameters for Mice Group 3 have

the highest estimates, except for i, for which Mice Group 2 has the highest

estimated value. There is no clear trend for the lowest estimated values,

however b and f both had lowest estimated value for Mice Group 2, at 0.11

and 0.28 respectively. It is interesting to note that the whole body insulin

clearance rate ( f ) estimated value varied widely depending on the mice group,

with an estimated minimum value of 0.28 and a maximum value of 102.81. The

results in Table 5.3 demonstrate that the whole body insulin clearance rate ( f )

significantly varies depending on the dataset and therefore plays a large role

in the model fitting.

(a) (b)

Figure 5.4 (a) Fitting Model 1 (with no β -cells) to blood glucose level dataset for Mice
Group 1. (b) Fitting Model 2 (with β -cells) blood glucose level dataset for Mice Group
1. Where the shaded light purple region is the 95% Crls, the dashed dark purple line
is the median model projection and the blue circles are the data points for the glucose
concentration level in Mice Group 1.
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(a) (b)

Figure 5.5 (a) Fitting Model 1 (with no β -cells) to blood glucose level dataset
for Mice Group 2. (b) Fitting Model 2 (with β -cells) to blood glucose level
dataset for Mice Group 2. Where the shaded light purple region is the 95%
Crls, the dashed dark purple line is the median model projection and the blue
circles are the data points for the glucose concentration level in Mice Group 2.

(a) (b)

Figure 5.6 (a) Fitting Model 1 (with no β -cells) to Mice Group 3 dataset. (b) Fitting
Model 2 (with β -cells) to Mice Group 3 dataset. Where the shaded light purple region
is the 95% Crls, the dashed dark purple line is the median model projection and the
blue circles are the data points for the glucose concentration levels in Mice Group 3.
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(a) (b)

Figure 5.7 (a) Fitting Model 1 (with no β -cells) to blood glucose level dataset for
Mice Group 4. (b) Fitting Model 2 (with β -cells) to blood glucose level dataset for
Mice Group 4. Where the shaded light purple region is the 95% Crls, the dashed dark
purple line is the median model projection and the blue circles are the data points for
the glucose concentration levels in Mice Group 4.

In Figure 5.4, we note that when fitting the models to blood glucose concen-

tration level for Mice Group 1, the predicted model trajectories for Model 1

and 2 peak at approximately 525 mg/dl (a dangerously high level which if not

reduced immediately could result in death) and 320 mg/dl (a high value but

not as severe as that predicted for Model 1). Figure 5.4(a), Model 1, shows

a sharp and uncontrollable blood glucose level peak, which is expected of

a Type 1 diabetic. Type 1 diabetics lack control of the glucose homeostasis

system, as they have little or no β -cells to contain the rapid rising of glucose

concentration levels. Figure 5.4(b) shows a controlled blood glucose level

peak, which is representative of either a Type 1 or Type 2 diabetic. The

nature of Model 2, with the presence of β -cells makes it more suitable for

modelling Type 2 diabetes however can also represent Type 1 if the system

evaluates β -cells at zero. However it is clear that Model 2 fails to fit the high,

hyperglycaemic data point, which occurs predominately with diabetics and

is not a good fit for representing Type 1 diabetic mice. There are several

glucose homeostasis models [Kraegen and Chisholm, 1984; Li and Johnson,

2009; Li and Kuang, 2009; Mukhopadhyay et al., 2004; Nucci and Cobelli,

2000; Puckett and Lightfoot, 1995; Rossetti et al., 2003; Shimoda et al., 1997;

Tarin et al., 2005; Wilinska et al., 2004], however the ones which particularly

target Type 1 usually use intermolecular dynamics and deal with processes

within the molecules. Models which are used to represent glucose homeostasis
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models for non-diabetic and diabetic (Type 2 and Type 1) usually use blood

concentrations of the glucose and insulin levels, instead of intermolecular

dynamics [Ajmera et al., 2013]. The advantages of using models with blood

glucose and insulin is that they can easily be measured unlike molecules.

In Figure 5.5, we fitted the models to blood glucose concentration level

data for Mice Group 2. Mice Group 2 is a hypoglycaemic mice group which

manages to return its glucose concentration back to normal levels. Model 1

fitting predicts a higher blood glucose peak at approximately 260 mg/dl and

Model 2 peaks at approximately 120 mg/dl. This is a significant difference in

glucose concentration and shows the difference in management of the disease,

Model 1 is more representative of an uncontrollable glucose homeostasis

system for a Type 1 diabetic. We note that for Model 2 (Figure 5.5 (b)), the

uncertainty range is comparatively very small and fails to fit the final data

point but the model does fit the other data points very well within 95% Crls.

Similarly in Figure 5.6 we note that when fitting both mathematical

models to blood glucose concentration level dataset for Mice Group 3, the

predicted model trajectories for Model 1 and 2 peaks at 370 mg/dl and

265 mg/dl. Both of these are within the feasible range of blood glucose

concentration levels [MayoClinic, 2021]. However, Figure 5.6(a), shows an

extremely high value as would be expected of a Type 1 diabetic mouse with

no control of glucose homeostasis system. We note that, this extreme and

rapid, uncontrollable blood glucose concentration level peak for Model 1 is a

good representation of a Type 1 diabetic [Gingras et al., 2018; News, 2021].

Comparing Figures 5.6(a) and (b), we note that the 95% Crls are much smaller

for Model 1 than that of Model 2 which shows that, there is less variation and

uncertainty in fitting Model 1.

The characteristic of Model 1 in predicting a rapid blood glucose level

peaks is also illustrated in Figure 5.7. The predicted blood glucose level peak

in Figure 5.7 (a) is similar to that in 5.5 (a). The fitting of Model 1 to Mice

Group 4 blood glucose dataset is generally good, regardless of the rapid peak

however fails to cover all data points. Model 2 fitting to Mice Group 4 does fit
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very well and has no rapid uncontrollable peak. Model 2 fits the 95% Crls well

as the uncertainty range covers all data points. A comparison of Figure 5.7 (a)

and Figure 5.7 (b), shows that Model 2 fits better to blood glucose level data

for Mice Group 4.

The computed AIC and BIC values for Model 1 and Model 2 for each

Mice Group are presented in Table 5.4.

Mice Group AIC1 BIC1 AIC2 BIC2 ∆AIC ∆BIC
Mice Group 1 11.73 10.95 15.78 14.21 4.05 3.26
Mice Group 2 11.10 10.32 14.07 12.51 2.97 2.19
Mice Group 3 11.33 10.55 14.21 12.65 2.88 2.10
Mice Group 4 11.48 10.70 12.38 10.82 1.20 0.12

Table 5.4 In the table, AIC j, BICi for j = 1,2 denotes the AIC and BIC values
for Model 1 and 2. Similarly ∆AIC = AIC2 −AIC1 and ∆BIC = BIC2 −BIC1
denotes the difference in AIC and BIC for each model for the same group of
mice.

The results in Table 5.4 show that Model 1 has lower AIC and BIC values

when fitting blood glucose concentration level dataset for all four groups of

mice. Fitting Model 1 to glucose concentration data for Mice Group 2 gave

the lowest AIC of 11.10 and BIC of 10.32. However, the difference ∆AIC and

∆BIC < 3 is not sufficient to reject Model 2 for Mice Group 3 and for Mice

Group 4, the difference ∆AIC and ∆BIC < 0.5 (also see Figure 5.8). Both

models demonstrated equal capability in predicting blood glucose concentration

levels for this data. However, results of ∆AIC and ∆BIC > 2 for Mice Group

1 and Mice Group 2, with ∆AIC=(4.05, 2.97) and ∆BIC=(3.26, 2.19) suggest

substantial differences between the models (see Table 5.4 and Figure 5.8).
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Figure 5.8 A plot of information criteria difference (∆IC) for each Mice Group
and corresponding experimental peak blood glucose concentration level. The
blue triangles denotes ∆AIC and the orange triangle denotes ∆BIC. The red
line denotes ∆IC = ∆AIC or ∆BIC = 2.

We notice a general trend in the differences in AIC and BIC results. The

magnitude of ∆AIC and ∆BIC values in Table 5.4 (illustrated in Figure 5.8) is

dependent on the severity of diabetes of each mice Group, with increased con-

trol of diabetes/decreased severity of diabetes giving lower ∆AIC and ∆BIC < 3,

and mice with increased severity of diabetes giving higher ∆AIC and ∆BIC > 3.

This pattern suggests that Model 1 (no β cells) becomes increasingly suitable

in explaining blood glucose level data as the mice diabetes condition becomes

more severe (i.e., hypoglycaemic and hyperglycaemic episodes are occurring).

The severity of diabetes is also increased when the mice progress from Type 2

to Type 1 diabetes.

5.4 Discussion

Diabetes mismanagement resulting in high blood glucose levels can cause

several secondary diseases [Hadj-Abo et al., 2020] which could lead to death.

Understanding Type 1 diabetes and blood glucose concentration levels in
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individuals at certain significant time points is important in treatment

and management of the disease. Mathematical models are important

tools to understand pathways and threshold blood glucose concentration

levels required to keep the glucose homeostasis system stable. Many of

these models are used as algorithms in continuous glucose monitoring

devices, insulin-pumps and artificial pancreas [Kovatchev, 2018; Song

et al., 2014; Wang et al., 2017]. The correct insulin bolus injection requires

accurate mathematical models in predicting blood glucose concentration

levels. Model comparison and selection constitute an important step in de-

termining accurate model framework for the glucose-insulin regulatory system.

Our results showed that both models (i.e (with β -cells) and (with no β -

cells)) are equally good in fitting blood glucose level dataset for Mice Group 3

and Mice Group 4. However, the estimated values of ∆AIC=(4.05, 2.97) and

∆BIC=(3.26, 2.19), for Mice Group 1 and Mice Group 2 blood glucose level

datasets showed substantial differences suggesting that the model without

β -cells is more suitable in explaining the Type 1 glucose homeostasis biological

processes. Model fitting (see Figures 5.4, 5.5, 5.6 and 5.7) showed that the

model with no β -cells provides a better representation of a Type 1 diabetic

glucose homeostasis system. The rapid rise in glucose concentration levels

simulated in the predictions for the model with no β -cells captures a phase in

which the system is uncontrollable and requires intervention to be managed

and this is achieved by injecting insulin bolus [MayoClinic, 2021]. Our findings

also showed that, as the mice group’s diabetes condition becomes more severe,

the model with no β -cells becomes favourable as shown by large ∆AIC and

∆BIC values (see Table 5.4).

The study has some limitations. Fitting was only conducted using

data for mean blood glucose concentration levels from four groups of mice;

however, data for a larger sample of experimental mice would be necessary

to fully understand diabetes pathways and performance of the candidate

models. It is also important to fit these models to insulin concentration levels

data concurrently for more robust results if such data is available. Another

limitation is that the data was collected at different time points and it would
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be interesting to explore the performance of the models for data collected at

reduced time intervals or following the significant diabetes time steps (30, 60,

90, 180 and 210 minutes). These time steps are of relevance as a diabetic

individual would be required to measure their blood glucose levels at 30

minutes after food, 60 minutes after food. At 210 minutes (approximately 3.5

hours), the blood glucose levels are expected to be back at normal baseline

values as the system achieves homeostasis. The current data only represents

an episode of a diabetic mice group and it is necessary to have continuous

data for more episodes in order to develop robust prediction models for Type 1

diabetes episodes. The current model frameworks could then be modified to

include more realistic time dependent parameters (e.g. seasonality terms) or

consider using a framework with impulsive differential equations. Despite

these shortfalls, our modelling represents an interesting step in developing

data-driven dynamic models for diabetes to improve the prediction of blood

glucose concentration using deterministic compartmental models.

5.5 Chapter summary

This chapter provided two candidate models, which were developed in Chapters

3 and 4, and fitted to glucose concentration data of diabetic mice. We calculated

AIC and BIC values to determine how well the models fit to data. The chapter

employed Bayesian fitting methods to fit the models to data, and the results

suggested that there are significant differences between Model 1 (with no β -

cells) and Model 2 (with β -cells). We concluded that the model with no β -cells

is best suited for modelling Type 1 diabetes.



Chapter 6

Conclusions

6.1 Introduction

This research aimed at developing new mathematical and data-driven models

to understand diabetes pathways. Mathematical models are important tools in

understanding glucose homeostasis system for diabetic individuals in order

to improve treatment strategies of the disease. This study was successful in

achieving its aim through a set of four objectives which are as follows:

• Conducting a comprehensive literature review of current mathematical

models of glucose homeostasis system with pathways to diabetes in order

to identify gaps and requirements to improve existing diabetes models

(Chapter 2).

• Developing a new mathematical model for glucose homeostasis and in-

vestigate on mathematical properties, disease pathways, and determine

model threshold quantities and key parameters (Chapter 3).

• Developing a novel mathematical model framework for Type 1 diabetes

with insulin injection (Chapter 4).

• Determining a suitable model framework for modelling Type 1 diabetes

using experimental data (Chapter 5).

The studied diabetes mathematical models were deterministic systems of dif-

ferential equations and these were parameterised using values from published

literature and other assumed values. Dynamical systems, numerical analysis
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and sensitivity analysis approaches were used to comprehensively and sys-

tematically analyse the models. In Chapters 3 and 4, two separate models

were developed and analysed, while in Chapter 5, these two models were fitted

to experimental data and their prediction capability to Type 1 diabetes was

evaluated. We summarize the results and conclusions for each chapter in the

following section.

6.2 Recommendations

In Chapter 3, a mathematical model for diabetes was developed to understand

the glucose regulatory system and explore the effects of growth hormone.

Mathematical modelling and simulation of the model were conducted to

establish pathways leading to diabetes. The model equilibria, threshold

and stabilities were characterised. Sensitivity analysis (SA) was conducted

using PRCC and the probabilistic SA methods, including Sobol′ indices,

to determine the most influencing model input parameters. The utility

of traditional mathematical analysis approaches and sensitivity analysis

methods in identifying the most important model parameters was examined.

Mathematical analysis demonstrated that the model undergoes a backward

bifurcation where a non-diabetic equilibria co-exists with a stable Type 1

diabetes equilibria when the model threshold quantity is less than unity

(T0 < 1). PRCC and the Sobol′ indices concurred in identifying some of

the influential input parameters and most of the parameters identified

as influential by SA methods were in the mathematical expression of T0

given in (3.3). The results showed that growth hormone is an important

component in the glucose homeostasis system. These findings suggest that

both classical mathematical approaches centered on threshold quantities and

sensitivity analysis methods are key in understanding nonlinear models and

complement each other in identifying important model parameters. Blending

traditional mathematical analysis and SA methods to adequately understand

dynamical properties, parameter importance and interaction constitute a new

perspective in understanding model systems of differential equations. Several

mathematical modelling studies on infectious disease and diabetes models

have either focused on traditional mathematical methods of model analysis.



Conclusions 141

Other models have partially adopted both traditional model analysis and SA

but neither of existing studies have either compared the results from such

analysis and or used different SA methods.

In Chapter 4, a new mathematical model for Type 1 diabetes glucose

homeostasis system was developed to understand pathways leading to

diabetes. The Type 1 pathological state (no insulin) was shown to be globally

asymptotically stable when the model threshold T0 < 1, and exchanges

stability with the physiological equilibrium state (no diabetes) which is

globally asymptotically stable when T0 > 1. Sensitivity analysis was conducted

using partial rank correlation coefficient (PRCC) and Sobol′ indices method

to determine the most influencing model parameters. Sensitivity analysis

was performed at different significant time points relevant to diabetes

dynamics. Our sensitivity analysis was centered on a robust and compre-

hensive investigation of the importance of model parameters for glucose

homeostasis system within 3 to 4 hour interval in which the system returns

back to homeostasis after food uptake. PRCC and Sobol′ method showed

that insulin clearance and absorption rates were influential parameters in

affecting the model response variables at all time points at which sensitivity

analysis was performed. PRCC also demonstrated the model subcontaneous

bolus injection term to be important, thus identified all parameters in

T0 as influential in determining diabetes model dynamics. Sobol′ method

complemented the sensitivity analysis by identifying relationships between

parameters. Sensitivity analysis methods concurred in identifying some

of the influential parameters and concluded that parameters which are

influential remain so at every time point. The concurrence of both PRCC

and Sobol′ methods in identifying influential parameters (in T0) and their

dynamic relationships suggests the importance of statistical and mathematical

analytic approaches to understand the processes modelled by the parame-

ters in the glucose homeostasis system and reinforces the findings in Chapter 3.

Type 1 diabetes requires treatment with insulin injections and moni-

toring glucose levels in affected individuals. In Chapter 5, we explored

the utility of two mathematical model frameworks in predicting glucose
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concentration levels in Type 1 diabetic mice and determine disease pathways.

We adapted two mathematical models, one with β -cells and the other

without β -cells component to determine their capability in predicting glucose

concentration and determining Type 1 diabetes pathways using published

glucose concentration data for four experimental mice. In the analysis, we

numbered the mice 1-4 depending on the diabetes severity. MCMC based

method within a Bayesian framework was used to fit the model to data in order

to estimate parameters. The AIC and BIC model selection criterion were used

to assess the best model framework for Type 1 diabetes. In fitting the model

with no β -cells to glucose level data, we only altered insulin absorption and

insulin clearance rates. However, the model with β -cells required considering

more parameters to match the data, including β -cell glucose tolerance factor,

whole body insulin clearance rate, glucose production rate and clearance rates.

Fitting the models to blood glucose concentration level gave a least difference

in AIC of 1.2 and a difference in BIC of 0.12 for Mouse 4. Estimated AIC and

BIC values were highest for Mouse 1 than all other Mice. The models gave

substantial differences in AIC and BIC values for Mouse 1-3 ranging from

2.10 to 4.05. Our results suggest that the model without β -cells provide a

more suitable framework for modelling Type 1 diabetes and predicting glucose

concentration for hypoglycemic episodes.

Several mathematical modelling studies [Bergman, 1989; Bergman et al.,

1981; Boutayeb et al., 2014, 2015; De Gaetano and Arino, 2000; Hernandez

et al., 2001; Topp et al., 2000] have focused on either analytical approaches

and/or sensitivity analysis approaches in understanding importance of mod-

elling parameters. Accurate mathematical models with robust optimization

procedures are required for successful development of algorithms in artificial

pancreas systems [MohammadRidha et al., 2015]. Our findings in Chapters

3 and 4 emphasise the need to employ both analytical and different types

of sensitivity analysis approaches in order to comprehensively understand

how parameters in the model affect model dynamics and improve on model

accuracy and prediction capabilities. It is also important to note, most

mathematical models developed to describe Type 1 diabetes use intermolecular

dynamics [Li and Johnson, 2009; Li and Kuang, 2009; Nucci and Cobelli, 2000;
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Rossetti et al., 2003; Shimoda et al., 1997; Wilinska et al., 2004]. This can

lead to issues in application as recording rates and parameter values on a

intermolecular scale is tricky and unfeasible in most cases. Thus, a model

which can describe the system with measurable parameters would be more

useful.

Our findings in Chapter 5, emphasise on the need to build suitable

mathematical model structures for diabetes. These models are important

in developing accurate algorithms for building machine learning predictive

models such as an artificial pancreas. The importance of accurate artificial

pancreas machines is essential for diabetes treatment, management and

control. Despite the importance of mathematical models as tools to inform

policy treatment strategies for disease such as diabetes, such mathematical

models have been neglected for diabetes, with a few mathematical modelling

studies on diabetes homeostasis system available in recent literature. This

calls for the need to build this research area forward in order to inform the

building of urgently needed tools to control or treat the disease.

6.3 Limitations and future work

Although this work is novel and contributes to steps towards improving

modelling of the glucose homeostasis system, it has several limitations. Firstly

the models are an extension of the minimal model by introducing the growth

hormone as a new response variable. Although this provides further insight

into the system, the primarily analysis shows it does not substantially affect

the steady states. Potentially adding other vital parameters into the model

could be of interest. In addition, current model frameworks could then be

modified to include more realistic time dependent parameters (e.g. seasonality

terms) or impulsive differential equations. Another limitation is that, models

in Chapters 3 and 4 were parameterised using estimates in [Topp et al., 2000]

and other assumed parameter values. The sensitivity analysis was conducted

using PRCC and the probabilistic SA methods, including Sobol′ indices for the

mathematical models developed in this study. However, it would be interesting

to re-evaluate the SA results when the model is calibrated using good clinical
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data collected from a real-world case study.

The model considered in this study focused on short-term injection

whereas it would be interesting to see if having a long-term injecting term

instead would affect the results of this study. There are several types of

injecting terms and the use of delay equations could be useful in modelling

long-term injection terms.

In Chapter 5, we used data extracted from a published study and fo-

cused on blood glucose concentration levels for only four mice. However,

experimental data for a larger sample of mice would be necessary to fully

understand diabetes pathways and performance of the candidate models. The

data used in Chapter 5, only represents an episode of a diabetic individual

and it is necessary to have more data on several other episodes in order to

develop robust probabilistic models for various episodes of Type 1 diabetes.

Additionally, it would be of interest to fit insulin data concurrently with

glucose data. Despite these shortfalls, our modelling represents an interesting

step in developing dynamic models for diabetes to improve the prediction of

blood glucose concentration using deterministic compartmental models and

inform the building machine learning algorithms.

In light of the current COVID-19 pandemic and increased risk of de-

veloping COVID-19 complications among diabetic individuals, it would be

interesting to develop the mathematical and data-driven models developed

in this study further to construct an in-vivo model to understand better the

relationship between COVID-19 infection and diabetes dynamics. Therefore,

it is necessary to develop a holistic predictive model using machine learning

algorithms (e.g., [Vepa et al., 2021]) to explore the impact of COVID-19

infection and other type of infections on Type 1 diabetes.
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(a) (b)

(c) (d)

(e) (f)

Figure A1.1: Scatter plots showing sensitivity analysis results of each parameter
against GL using PRCC method for selected parameters g, i, h, ρ, w, dummy.
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Figure A1.2: Scatter plots showing sensitivity analysis results of each parameter
against GH using PRCC method for selected parameters a, b, c, d, e, dummy.
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Figure A1.3: Scatter plots showing sensitivity analysis results of each parameter
against β using PRCC method for selected parameters a, b, c, d, e, f .
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Figure A1.4: Scatter plots showing sensitivity analysis results of each parameter
against β using PRCC method for selected parameters g, h, i, rho, w, dummy.
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Figure A1.5: Scatter plots showing sensitivity analysis results of each parameter
against I using PRCC method for selected parameters a, b, c, d, e, f .
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Figure A1.6: Scatter plots showing sensitivity analysis results of each parameter
against I using PRCC method for selected parameters g, h, i, rho, w, dummy.
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Parameter p-values PRCC
g p = 0.1491 0.1453
f p = 0.2120 0.1259
d p = 0.2368 0.1194
c p = 0.2841 -0.1082
h p = 0.2956 0.1056
a p = 0.4716 -0.0728
w p = 0.4970 0.0687
b p = 0.5145 0.0659
ρ p = 0.7590 -0.0311
e p = 0.8789 -0.0154
i p = 0.9996 0.0455×10−3

Table A1.1: PRCC sensitivity analysis
of parameters ranked in terms of impor-
tance to the model variable β .

Parameter p-values PRCC
b p = 0.0341 0.2121
f p = 0.0412 -0.2046
a p = 0.0910 -0.1699
g p = 0.2511 -0.1158
c p = 0.2841 -0.1082
i p = 0.3511 - 0.0942
ρ p = 0.6421 0.0470
w p = 0.7235 -0.0358
d p = 0.8668 -0.0170
e p = 0.8170 -0.0234
h p = 0.9162 0.0107

Table A1.2: PRCC sensitivity analysis
of parameters ranked in terms of impor-
tance to the model variable I.

(a) (b)

Figure A1.7: Plot (a) shows a tornado plot of the parameters with their PRCC values
showing the effect of varying input parameters on the β -cells variable. Plot (b) is a
tornado plot of the parameters with their PRCC values showing the effect of varying
input parameters on the insulin variable.
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Figure S9: The first panel shows first order and total effects sensitivity indices
of the model parameters (h, i, g, d, e, f , a, b, c, ρ and w) on β -cells for model
system (1) using Sobol′ method. Similarly the second panel shows first order
sensitivity indices and total effects sensitivity indices of the model parameters
on insulin.

Parameter First order Total order

b 0.0158 0.9319

c 0.0143 0.9311

w 0.0140 0.9309

h 0.0137 0.9303

ρ 0.0134 0.9304

d 0.0099 0.9262

a 0.0018 0.9221

g 0.0009 0.9190

i 0.0008 0.9213

f 0.0003 0.9207

e 0 0.9178

Table A1.3: First order and Total order
Sobol′ indices of each model parameter for
β at time step t = 210.

Parameter First order Total order

ρ 0.5532 0.5746

w 0.4266 0.4473

h 0 0.0087

i 0 0.0083

a 0 0.0080

f 0 0.0080

e 0 0.0078

d 0 0.0076

g 0 0.0076

b 0 0.0075

c 0 0.0075

Table A1.4: First order and Total order
Sobol′ indices of each model parameter for
GH at time step t = 210.
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A.2 Figures and Tables For Chapter 4

A.2.1 PRCC results

(a) (b)

(c) (d)

Figure A2.1: Scatter plots showing sensitivity analysis results of each parameter
against I using PRCC method for selected parameters a, b, c, δ .
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(a) (b)

(c) (d)

Figure A2.2: Scatter plots showing sensitivity analysis results of each parameter
against I using PRCC method for selected parameters I0, ψ, ρ, w.
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(a) (b)

(c) (d)

Figure A2.3: Scatter plots showing sensitivity analysis results of each parameter
against GL using PRCC method for selected parameters a, b, c, δ .
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Parameter p-values PRCC
ψ p < 0.0001 0.8505
I0 p < 0.0001 0.8898
δ p < 0.0001 -0.8538
w p = 0.4497 0.0793
b p = 0.5270 0.0640
a p = 0.5921 -0.00542
c p = 0.8133 -0.0239
ρ p = 0.9029 0.0124

Table A2.1: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 5, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 0.8375
I0 p < 0.0001 0.9174
δ p < 0.0001 -0.8915
w p = 0.4497 -0.0566
c p = 0.5270 0.1469
b p = 0.5921 0.2487
a p = 0.8133 0.4215
ρ p = 0.9029 0.7200

Table A2.2: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 10, I0 = 5.

(a) (b)

(c) (d)

Figure A2.4: Scatter plots showing sensitivity analysis results of each parameter
against GL using PRCC method for selected parameters I0, ψ, ρ, w.
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Parameter p-values PRCC
ψ p < 0.0001 0.6208
I0 p < 0.0001 0.8646
δ p < 0.0001 -0.7599
ρ p = 0.3352 -0.0974
a p = 0.3785 -0.0890
b p = 0.5016 0.0680
w p = 0.9018 0.0130
c p = 0.9095 0.0115

Table A2.3: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to the model variable I at
time step t = 60, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 0.8202
I0 p < 0.0001 0.8718
δ p < 0.0001 -0.8788
ρ p = 0.3631 -0.0919
b p = 0.3653 0.0915
a p = 0.8175 0.0234
c p = 0.8647 0.0173
1 p = 0.8729 -0.0168

Table A2.4: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 90, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 0.7891
I0 p < 0.0001 0.8199
δ p < 0.0001 -0.8616
ρ p = 0.2443 -0.1219
b p = 0.3142 -0.1017
c p = 0.5064 -0.0672
a p = 0.7391 0.0340
w p = 0.9818 -0.0024

Table A2.5: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 60, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 0.8475
I0 p < 0.0001 0.9090
δ p < 0.0001 -0.8541
w p = 0.1512 -0.1443
ρ p = 0.3280 -0.0988
c p = 0.3489 -0.0946
a p = 0.4426 -0.0076
b p = 0.8812 0.0151

Table A2.6: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 5, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 0.8431
I0 p < 0.0001 0.9157
δ p < 0.0001 -0.8911
a p = 0.1667 0.1394
ρ p = 0.3862 -0.0876
c p = 0.4331 -0.0793
b p = 0.5526 -0.0610
w p = 0.8029 0.0253

Table A2.7: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 10, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 0.7915
I0 p < 0.0001 0.8920
δ p < 0.0001 -0.8592
b p = 0.1273 0.1535
w p = 0.2004 0.1291
c p = 0.2316 -0.1207
ρ p = 0.3412 0.0962
a p = 0.9677 -0.0041

Table A2.8: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 15, I0 = 10.
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Parameter p-values PRCC
ψ p < 0.0001 0.8571
I0 p < 0.0001 0.9102
δ p < 0.0001 -0.8891
w p = 0.2536 0.1152
b p = 0.2589 -0.1140
c p = 0.3711 -0.0904
ρ p = 0.7110 0.0375
a p = 0.8692 0.0167

Table A2.9: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 60, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 0.7874
I0 p < 0.0001 0.8630
δ p < 0.0001 -0.8582
a p = 0.2940 0.1069
ρ p = 0.3049 -0.1036
c p = 0.5564 -0.0595
b p = 0.9510 0.0062
w p = 0.9908 0.0170

Table A2.10: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 90, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 0.7687
I0 p < 0.0001 0.8704
δ p < 0.0001 -0.8622
ρ p = 0.2365 -0.1194
c p = 0.2872 -0.1075
b p = 0.4293 0.0799
a p = 0.6497 -0.0460
w p = 0.6703 -0.0431

Table A2.11: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 210, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 0.8400
I0 p < 0.0001 0.9070
δ p < 0.0001 -0.8318
w p = 0.5425 -0.0616
ρ p = 0.6581 -0.0448
a p = 0.7225 0.0360
b p = 0.9504 -0.0063
c p = 0.9506 -0.0120

Table A2.12: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 5, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 0.7915
I0 p < 0.0001 0.8920
δ p < 0.0001 -0.8592
b p = 0.1273 0.1535
w p = 0.2004 0.1291
c p = 0.2316 -0.1207
ρ p = 0.3412 0.0962
a p = 0.9677 -0.0041

Table A2.13: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 10, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 0.8400
I0 p < 0.0001 0.9070
δ p < 0.0001 -0.8318
c p = 0.4079 -0.0837
b p = 0.4788 -0.0716
w p = 0.4966 -0.0688
ρ p = 0.5539 -0.0599
a p = 0.7494 -0.0324

Table A2.14: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 60, I0 = 15.
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Parameter p-values PRCC
ψ p < 0.0001 0.6634
I0 p < 0.0001 0.8235
δ p < 0.0001 -0.8417
w p = 0.3167 0.1012
c p = 0.4128 0.0828
b p = 0.5735 0.0570
ρ p = 0.6233 0.0497
a p = 0.7659 -0.0301

Table A2.15: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 90, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 0.7685
I0 p < 0.0001 0.8523
δ p < 0.0001 -0.8349
w p = 0.1453 0.1467
a p = 0.1761 -0.1364
ρ p = 0.3159 0.1013
b p = 0.4969 -0.0687
c p = 0.8372 -0.0208

Table A2.16: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 210, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 0.8912
I0 p < 0.0001 0.8893
δ p < 0.0001 -0.8881
ρ p = 0.0305 -0.2165
w p = 0.0373 0.2086
a p = 0.1739 0.1370
c p = 0.2451 0.1173
b p = 0.7270 -0.0353

Table A2.17: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 5, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 0.8403
I0 p < 0.0001 0.8820
δ p < 0.0001 -0.8662
w p = 0.1205 0.1563
b p = 0.2436 0.1177
c p = 0.4292 0.0799
ρ p = 0.6831 -0.0413
a p = 0.8745 -0.0160

Table A2.18: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 10, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 0.8233
I0 p < 0.0001 0.8802
δ p < 0.0001 -0.8770
b p = 0.1321 0.1516
a p = 0.2462 0.1171
c p = 0.5295 -0.0636
w p = 0.6426 -0.0470
ρ p = 0.7634 0.0305

Table A2.19: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 60, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 0.7333
I0 p < 0.0001 0.8151
δ p < 0.0001 -0.8344
ρ p = 0.0392 -0.2069
a p = 0.1151 -0.1586
b p = 0.4606 0.0746
c p = 0.7454 -0.0329
w p = 0.7528 -0.0319

Table A2.20: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 90, I0 = 20.
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Parameter p-values PRCC
ψ p < 0.0001 0.7948
I0 p < 0.0001 0.8406
δ p < 0.0001 -0.8568
a p = 0.1191 0.1569
w p = 0.4323 -0.0794
ρ p = 0.5031 0.0677
c p = 0.9720 0.0036
b p = 0.9810 -0.0024

Table A2.21: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 210, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 0.8770
I0 p < 0.0001 0.9154
δ p < 0.0001 -0.8739
c p = 0.0886 -0.1712
ρ p = 0.1105 -0.1606
a p = 0.2373 0.1192
w p = 0.7872 0.0273
b p = 0.8237 0.0226

Table A2.22: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 5, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 0.8391
I0 p < 0.0001 0.9001
δ p < 0.0001 -0.8713
b p = 0.1429 -0.1476
w p = 0.4266 0.0804
a p = 0.4864 0.0704
c p = 0.4999 -0.0682
ρ p = 0.8856 0.0146

Table A2.23: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 10, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 0.7996
I0 p < 0.0001 0.8877
δ p < 0.0001 -0.8641
b p = 0.2717 -0.1110
c p = 0.4040 -0.0844
w p = 0.6313 -0.0486
ρ p = 0.8089 -0.0245
a p = 0.8817 0.0151

Table A2.24: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 60, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 0.7422
I0 p < 0.0001 0.8351
δ p < 0.0001 -0.8569
b p = 0.0289 0.2186
w p = 0.6725 -0.0428
ρ p = 0.6880 0.0407
c p = 0.9294 -0.0090
a p = 0.9478 0.0066

Table A2.25: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 90, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 0.7842
I0 p < 0.0001 0.8516
δ p < 0.0001 -0.8368
c p = 0.0763 -0.1781
a p = 0.4126 0.0828
w p = 0.4692 0.0732
ρ p = 0.9107 0.0114
b p = 0.9680 -0.0041

Table A2.26: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 210, I0 = 25.
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Parameter p-values PRCC
ψ p < 0.0001 0.8826
I0 p < 0.0001 0.9269
δ p < 0.0001 -0.8764
b p = 0.0714 -0.1811
a p = 0.3511 -0.0942
c p = 0.4471 -0.077
w p = 0.5794 -0.0561
ρ p = 0.8432 0.0200

Table A2.27: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 5, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 0.7842
I0 p < 0.0001 0.8516
δ p < 0.0001 -0.8368
ρ p = 0.0416 -0.2042
a p = 0.1778 -0.1358
c p = 0.2863 0.1077
w p = 0.7119 -0.0374
b p = 0.8935 0.0136

Table A2.28: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 10, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 0.8826
I0 p < 0.0001 0.9269
δ p < 0.0001 -0.8764
w p = 0.3043 -0.1037
b p = 0.3945 0.0861
c p = 0.5194 0.0652
a p = 0.5409 0.0619
ρ p = 0.9913 -0.0011

Table A2.29: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 60, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 0.7274
I0 p < 0.0001 0.8416
δ p < 0.0001 -0.8458
c p = 0.1928 -0.1313
w p = 0.2222 -0.1320
a p = 0.4210 -0.0814
b p = 0.8127 -0.0240
ρ p = 0.9648 0.0045

Table A2.30: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 90, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 0.7530
I0 p < 0.0001 0.8589
δ p < 0.0001 -0.8433
a p = 0.1131 0.1595
b p = 0.6173 0.0506
w p = 0.6272 0.0492
ρ p = 0.7189 -0.0364
c p = 0.9753 -0.0031

Table A2.31: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable I at
time step t = 210, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 -0.8944
I0 p < 0.0001 -0.9267
δ p < 0.0001 0.9070
ρ p < 0.0001 0.6653
w p < 0.0001 -0.6545
b p = 0.0660 0.1846
a p = 0.2996 -0.1048
c p = 0.5291 -0.0637

Table A2.32: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 5, I0 = 5.
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Parameter p-values PRCC
ψ p < 0.0001 -0.8593
I0 p < 0.0001 -0.8943
δ p < 0.0001 0.8657
ρ p < 0.0001 0.6625
w p < 0.0001 -0.6263
b p = 0.0446 -0.2013
c p = 0.2288 -0.1214
a p = 0.3154 0.1014

Table A2.33: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 10, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 -0.8593
I0 p < 0.0001 -0.8943
δ p < 0.0001 0.8657
ρ p < 0.0001 0.4153
w p < 0.0001 -0.3775
a p = 0.2771 0.1097
c p = 0.3103 0.1025
b p = 0.8152 0.10237

Table A2.34: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 60, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 -0.7965
I0 p < 0.0001 -0.8543
δ p < 0.0001 0.8351
ρ p < 0.0001 0.4655
w p = 0.0011 -0.3332
a p = 0.0887 0.1711
c p = 0.1582 -0.1582
b p = 0.0076 0.0076

Table A2.35: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 90, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 -0.7888
I0 p < 0.0001 -0.8303
δ p < 0.0001 0.8469
w p = 0.0011 - 0.3341
ρ p = 0.0035 0.2893
b p = 0.4199 -0.0816
c p = 0.5076 -0.0670
a p = 0.0670 0.0418

Table A2.36: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 180, I0 = 5.

Parameter p-values PRCC
ψ p < 0.0001 -0.8790
I0 p < 0.0001 -0.9219
δ p < 0.0001 0.8877
ρ p < 0.0001 0.8747
w p < 0.0001 -0.8184
c p = 0.0010 -0.3247
b p = 0.2979 0.1051
a p = 0.5569 0.0059

Table A2.37: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 5, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 -0.8154
I0 p < 0.0001 -0.9068
δ p < 0.0001 0.8606
ρ p < 0.0001 0.4726
w p < 0.0001 -0.4092
c p = 0.0206 -0.2313
a p = 0.7370 -0.0340
b p = 0.0321 0.7515

Table A2.38: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 10, I0 = 10.
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Parameter p-values PRCC
ψ p < 0.0001 -0.8117
I0 p < 0.0001 -0.8935
δ p < 0.0001 0.8474
ρ p < 0.0001 0.6387
w p < 0.0001 -0.4963
c p = 0.0010 -0.2218
b p = 0.2979 0.1186
a p = 0.5569 0.0893

Table A2.39: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 60, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 -0.7450
I0 p < 0.0001 -0.8269
δ p < 0.0001 0.8368
ρ p = 0.0006 0.2724
w p = 0.0168 -0.2387
c p = 0.6223 -0.0499
a p = 0.8006 -0.0256
b p = 0.8469 -0.0196

Table A2.40: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 90, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 -0.7380
I0 p < 0.0001 -0.8509
δ p < 0.0001 0.8005
ρ p = 0.0212 0.2303
w p = 0.1661 -0.1581
b p = 0.1304 -0.1523
a p = 0.5268 0.0640
c p = 0.5822 -0.0557

Table A2.41: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 210, I0 = 10.

Parameter p-values PRCC
ψ p < 0.0001 -0.8170
I0 p < 0.0001 -0.8986
δ p < 0.0001 0.8407
ρ p < 0.0001 0.8208
w p < 0.0001 -0.7478
c p = 0.0021 0.3040
b p = 0.2746 -0.1103
a p = 0.8001 0.0256

Table A2.42: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 5, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 -0.8610
I0 p < 0.0001 -0.8943
δ p < 0.0001 0.8774
ρ p < 0.0001 0.6381
w p < 0.0001 -0.4824
c p = 0.0252 -0.2239
b p = 0.7285 -0.0352
a p = 0.8209 0.0229

Table A2.43: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 10, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 -0.8233
I0 p < 0.0001 -0.8801
δ p < 0.0001 0.8383
ρ p = 0.0002 0.3683
w p = 0.0019 -0.3064
c p = 0.1777 0.1359
a p = 0.5483 0.0607
b p = 0.7059 0.0382

Table A2.44: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 60, I0 = 15.
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Parameter p-values PRCC
ψ p < 0.0001 -0.5379
I0 p < 0.0001 -0.7261
δ p < 0.0001 0.7564
ρ p = 0.0006 0.3394
b p = 0.5534 -0.0600
w p = 0.6001 -0.0531
a p = 0.6425 -0.0469
c p = 0.87044 0.0167

Table A2.45: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 90, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 -0.6998
I0 p < 0.0001 -0.8180
δ p < 0.0001 0.8197
ρ p = 0.0002 0.3643
w p = 0.0421 -0.2037
a p = 0.0689 0.1826
b p = 0.5886 0.0547
c p = 0.7478 0.0326

Table A2.46: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 210, I0 = 15.

Parameter p-values PRCC
ψ p < 0.0001 -0.5379
I0 p < 0.0001 -0.7261
δ p < 0.0001 0.7564
ρ p = 0.0006 0.3394
b p = 0.5534 -0.0600
w p = 0.6001 -0.0531
a p = 0.6425 -0.0469
c p = 0.87044 0.0167

Table A2.47: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 5, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 -0.8133
I0 p < 0.0001 -0.8816
δ p < 0.0001 0.8393
ρ p < 0.0001 0.4738
w p < 0.0001 -0.5296
c p = 0.1728 -0.1374
b p = 0.4028 0.0847
a p = 0.7530 0.0318

Table A2.48: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 10, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 -0.8161
I0 p < 0.0001 -0.8712
δ p < 0.0001 0.8420
ρ p < 0.0001 0.4564
w p < 0.0001 -0.4005
c p = 0.0239 -0.2259
a p = 0.7619 -0.0307
b p = 0.9572 0.0054

Table A2.49: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 60, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 -0.5780
I0 p < 0.0001 -0.7518
δ p < 0.0001 0.7183
ρ p = 0.0030 0.2818
w p = 0.0111 -0.3640
b p = 0.2345 -0.0730
a p = 0.6855 0.1708
c p = 0.9513 0.0575

Table A2.50: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 90, I0 = 20.
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Parameter p-values PRCC
ψ p < 0.0001 -0.7269
I0 p < 0.0001 -0.8497
δ p < 0.0001 0.8446
ρ p < 0.0001 0.4998
w p = 0.0042 -0.2842
a p = 0.2236 0.1228
b p = 0.3190 -0.1007
c p = 0.6983 -0.0392

Table A2.51: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 210, I0 = 20.

Parameter p-values PRCC
ψ p < 0.0001 -0.8155
I0 p < 0.0001 -0.8649
δ p < 0.0001 0.8169
ρ p < 0.0001 0.820
w p < 0.0001 -0.7262
c p = 0.0195 -0.2333
b p = 0.2314 -0.1208
a p = 0.6087 0.0518

Table A2.52: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 5, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 -0.7829
I0 p < 0.0001 -0.8794
δ p < 0.0001 0.8623
ρ p < 0.0001 0.5331
w p < 0.0001 -0.1418
b p = 0.2271 -0.1219
a p = 0.2646 0.1126
c p = 0.3674 -0.0911

Table A2.53: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 10, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 -0.7829
I0 p < 0.0001 -0.8794
δ p < 0.0001 0.8623
ρ p < 0.0001 0.5331
w p < 0.0001 -0.1418
b p = 0.2271 -0.1219
a p = 0.2646 0.1126
c p = 0.3974 -0.0911

Table A2.54: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 60, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 -0.5780
I0 p < 0.0001 -0.7518
δ p < 0.0001 0.7183
w p = 0.0002 -0.3540
ρ p = 0.0045 0.2818
a p = 0.0894 0.1708
b p = 0.4707 -0.0730
c p = 0.5701 0.0575

Table A2.55: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 90, I0 = 25.

Parameter p-values PRCC
ψ p < 0.0001 -0.8145
I0 p < 0.0001 -0.8586
δ p < 0.0001 0.8821
w p < 0.0001 -0.4866
ρ p = 0.0229 0.2274
a p = 0.0619 -0.1874
b p = 0.0657 -0.1848
c p = 0.1953 -0.1306

Table A2.56: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 210, I0 = 25.
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Parameter p-values PRCC
ψ p < 0.0001 -0.8139
I0 p < 0.0001 -0.8830
δ p < 0.0001 0.8015
ρ p < 0.0001 0.8302
w p < 0.0001 -0.7954
c p = 0.0061 0.2726
a p = 0.4430 0.0776
b p = 0.5467 -0.0610

Table A2.57: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 5, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 -0.8289
I0 p < 0.0001 -0.8937
δ p < 0.0001 0.8727
ρ p < 0.0001 0.6592
w p < 0.0001 -0.4920
a p = 0.0870 -0.1721
b p = 0.6499 -0.0459
c p = 0.9772 -0.0029

Table A2.58: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 10, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 -0.7796
I0 p < 0.0001 -0.8674
δ p < 0.0001 0.8191
ρ p < 0.0001 0.5505
w p < 0.0001 -0.3760
a p = 0.6624 -0.0442
b p = 0.6925 0.0400
c p = 0.7144 -0.0371

Table A2.59: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 60, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 -0.8173
I0 p < 0.0001 -0.8772
δ p < 0.0001 0.8528
ρ p < 0.0001 0.4516
w p < 0.0001 -0.4466
b p = 0.0791 0.1764
c p = 0.2361 0.1196
a p = 0.3239 0.0996

Table A2.60: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GL at
time step t = 90, I0 = 30.

Parameter p-values PRCC
ψ p < 0.0001 -0.7342
I0 p < 0.0001 -0.7299
δ p < 0.0001 0.7853
w p < 0.0001 -0.4552
ρ p = 0.0002 0.3622
b p = 0.0838 0.1738
a p = 0.3157 -0.1014
c p = 0.5244 -0.0644

Table A2.61: PRCC sensitivity analysis of parameters ranked in terms of importance
to model variable GL at time step t = 210, I0 = 30.
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(a) (b)

(c) (d)

Figure A2.5: Scatter plots showing sensitivity analysis results of each parameter
against GH using PRCC method for selected parameters a, b, c, δ .



Appendix 185

(a) (b)

(c) (d)

Figure A2.6: Scatter plots showing sensitivity analysis results of each parameter
against GH using PRCC method for selected parameters I0, ψ, ρ, w.
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Figure A2.7: A tornado plot of the parameters with their PRCC values showing
the effect of varying input parameters on the growth hormone (GH) variable.
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Parameter p-values PRCC

ρ p < 0.0001 0.9773

w p < 0.0001 -0.9654

a p = 0.1906 0.1320

δ p = 0.2255 -0.1223

I0 p = 0.2676 0.1119

b p = 0.4232 0.0810

ψ p = 0.8186 -0.0232

c p = 0.9407 -0.0075
Table A2.62: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time t = 5, I0 = 5.

Parameter p-values PRCC

ρ p < 0.0001 0.9825

w p < 0.0001 -0.9756

δ p = 0.0765 -0.1780

c p = 0.1945 0.0525

b p = 0.2153 0.1250

ψ p = 0.6144 -0.0510

I0 p = 0.7770 0.0287

a p = 0.8926 -0.0137
Table A2.63: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time t = 10, I0 = 5.

Parameter p-values PRCC

ρ p < 0.0001 0.9737

w p < 0.0001 -0.9614

ψ p = 0.6813 0.0416

δ p = 0.7694 -0.0297

I0 p = 0.8728 0.0162

b p = 0.8863 0.0145

c p = 0.9890 0.0014

a p = 0.9915 -0.0011
Table A2.64: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable GH

at time t = 60, I0 = 5.

Parameter p-values PRCC

ρ p < 0.0001 0.9759

w p < 0.0001 -0.9607

δ p = 0.0091 -0.2595

I0 p = 0.4631 0.0742

b p = 0.5805 0.0559

a p = 0.6245 0.0495

ψ p = 0.6664 -0.0436

c p = 0.7627 0.0306
Table A2.65: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable GH

at time t = 90, I0 = 5.



188 188

Parameter p-values PRCC

ρ p < 0.0001 0.9677

w p < 0.0001 -0.9608

b p = 0.1019 -0.1645

c p = 0.1176 -0.1575

I0 p = 0.6592 0.0446

δ p = 0.8896 -0.0140

a p = 0.9289 0.0090

ψ p = 0.9418 -0.0074
Table A2.66: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable GH

at time t = 180, I0 = 5.

Parameter p-values PRCC

ρ p < 0.0001 0.9673

w p < 0.0001 -0.9522

ψ p = 0.3648 -0.0916

a p = 0.3913 -0.0866

I0 p = 0.4467 -0.0769

b p = 0.5763 -0.0565

c p = 0.7435 0.0331

δ p = 0.7926 0.0266
Table A2.67: PRCC sensitivity anal-
ysis of parameters ranked in terms
of importance to model variable GH

for entire time period, I0 = 5.

Parameter p-values PRCC

ρ p < 0.0001 0.9737

w p < 0.0001 -0.9601

b p = 0.0204 -0.2317

δ p = 0.0260 0.2226

a p = 0.1042 0.1634

c p = 0.4035 0.0845

ψ p = 0.6633 0.0441

I0 p = 0.7274 -0.0353
Table A2.68: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 5, I0 = 10.

Parameter p-values PRCC

ρ p < 0.0001 0.9750

w p < 0.0001 -0.9649

ψ p = 0.0037 -0.2877

I0 p = 0.0132 0.2472

a p = 0.0819 0.1748

b p = 0.4477 0.0768

c p = 0.7632 -0.0305

δ p = 0.9136 -0.0110
Table A2.69: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 10, I0 = 10.
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Parameter p-values PRCC

ρ p < 0.0001 0.99629

w p < 0.0001 -0.9323

a p = 0.0359 -0.2101

c p = 0.2035 0.1283

b p = 0.2785 0.1094

ψ p = 0.3627 0.0920

δ p = 0.6081 -0.0519

I0 p = 0.6687 -0.0433
Table A2.70: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 60, I0 = 10.

Parameter p-values PRCC

ρ p < 0.0001 0.9543

w p < 0.0001 -0.9543

c p = 0.0131 0.2474

b p = 0.0557 -0.1919

ψ p = 0.1379 0.1494

δ p = 0.3406 -0.0963

I0 p = 0.6008 -0.0530

a p = 0.8691 0.0167
Table A2.71: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 90, I0 = 10.

Parameter p-values PRCC

ρ p < 0.0001 0.97783

w p < 0.0001 -0.96842

δ p = 0.0614 0.1877

b p = 0.1110 -0.1604

c p = 0.1131 0.1594

I0 p = 0.3810 -0.8855

ψ p = 0.5008 0.0681

a p = 0.6323 -0.0484
Table A2.72: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 210, I0 = 10.

Parameter p-values PRCC

ρ p < 0.0001 0.9543

w p < 0.0001 -0.9543

b p = 0.1203 0.1564

a p = 0.1195 0.2362

c p = 0.2963 -0.1055

ψ p = 0.5700 -0.0575

I0 p = 0.7785 -0.0285

δ p = 0.9897 0.0013
Table A2.73: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 5, I0 = 15.
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Parameter p-values PRCC

ρ p < 0.0001 0.9832

w p < 0.0001 -0.9772

δ p = 0.1971 -0.1301

I0 p = 0.4007 -0.0850

c p = 0.5413 -0.0618

a p = 0.5647 -0.0583

b p = 0.7907 -0.0269

ψ p = 0.9012 0.0126
Table A2.74: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 10, I0 = 15.

Parameter p-values PRCC

ρ p < 0.0001 0.9861

w p < 0.0001 -0.9723

ψ p = 0.1378 0.1495

δ p = 0.2221 0.1232

a p = 0.4461 -0.0770

c p = 0.5280 -0.0638

I0 p = 0.6528 0.0455

b p = 0.8771 -0.0157
Table A2.75: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 60, I0 = 15.

Parameter p-values PRCC

ρ p < 0.0001 0.9768

w p < 0.0001 -0.9657

I0 p = 0.0087 -0.2605

ψ p = 0.2424 -0.1180

c p = 0.4402 0.0780

δ p = 0.5614 0.0588

b p = 0.9454 -0.0069

a p = 0.9832 -0.0021
Table A2.76: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 90, I0 = 15.

Parameter p-values PRCC

ρ p < 0.0001 0.9811

w p < 0.0001 -0.9714

δ p = 0.0422 0.2036

I0 p = 0.1722 -0.1722

ψ p = 0.2513 0.1158

c p = 0.4590 -0.0748

a p = 0.9337 -0.0084

b p = 0.9877 -0.0016
Table A2.77: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 210, I0 = 15.
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Parameter p-values PRCC

ρ p < 0.0001 0.9689

w p < 0.0001 -0.9561

b p = 0.0549 -0.1926

a p = 0.4003 0.0850

I0 p = 0.4886 -0.0701

c p = 0.6376 0.0477

δ p = 0.8299 -0.0218

ψ p = 0.8620 -0.0176
Table A2.78: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 5, I0 = 20.

Parameter p-values PRCC

ρ p < 0.0001 0.9803

w p < 0.0001 -0.9702

c p = 0.1256 0.1542

b p = 0.2379 -0.1191

I0 p = 0.2846 -0.1081

a p = 0.4232 0.0810

δ p = 0.7607 0.0308

ψ p = 0.8228 -0.0227
Table A2.79: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 10, I0 = 20.

Parameter p-values PRCC

ρ p < 0.0001 0.9753

w p < 0.0001 -0.9614

c p = 0.2367 -0.1194

δ p = 0.2909 0.1067

I0 p = 0.3636 0.0918

ψ p = 0.5273 0.0640

a p = 0.7719 -0.0294

b p = 0.8621 0.0176
Table A2.80: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 60, I0 = 20.

Parameter p-values PRCC

ρ p < 0.0001 0.9710

w p < 0.0001 -0.9576

b p = 0.0095 0.2581

ψ p = 0.1981 -0.1298

c p = 0.6831 -0.0413

δ p = 0.8538 -0.0187

I0 p = 0.8743 -0.0160

a p = 0.9899 0.0013
Table A2.81: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 90, I0 = 20.
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Parameter p-values PRCC

ρ p < 0.0001 0.9773

w p < 0.0001 -0.9606

ψ p = 0.0296 0.2176

b p = 0.2193 -0.1239

c p = 0.2616 0.1133

a p = 0.3727 -0.0901

I0 p = 0.7050 -0.0383

δ p = 0.9482 0.0067
Table A2.82: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 210, I0 = 20.

Parameter p-values PRCC

ρ p < 0.0001 0.9710

w p < 0.0001 -0.9576

δ p = 0.0023 -0.2279

c p = 0.2981 0.1051

ψ p = 0.2253 -0.1223

a p = 0.6218 0.0499

I0 p = 0.8082 0.0246

b p = 0.9769 -0.0029
Table A2.83: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 5, I0 = 25.

Parameter p-values PRCC

ρ p < 0.0001 0.9763

w p < 0.0001 -0.9673

a p = 0.1743 0.1369

b p = 0.2406 0.1184

c p = 0.7062 -0.0382

ψ p = 0.8497 -0.0192

I0 p = 0.8700 -0.0166

δ p = 0.8791 -0.0154
Table A2.84: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 10, I0 = 25.

Parameter p-values PRCC

ρ p < 0.0001 0.9816

w p < 0.0001 -0.9722

b p = 0.1496 -0.1452

I0 p = 0.1903 0.1321

c p = 0.2607 0.1135

δ p = 0.4867 0.0704

ψ p = 0.4901 0.0698

a p = 0.8772 0.0156
Table A2.85: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 60, I0 = 25.
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Parameter p-values PRCC

ρ p < 0.0001 0.9756

w p < 0.0001 -0.9650

b p = 0.0630 0.1866

I0 p = 0.1740 0.1370

ψ p = 0.3219 -0.1001

c p = 0.4412 -0.0779

a p = 0.4673 -0.0754

δ p = 0.5369 0.0625
Table A2.86: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 90, I0 = 25.

Parameter p-values PRCC

ρ p < 0.0001 0.9836

w p < 0.0001 -0.9775

b p = 0.0423 0.2035

c p = 0.4715 0.1990

δ p = 0.0770 0.1777

a p = 0.5550 0.0597

ψ p = 0.6352 0.0480

I0 p = 0.7245 -0.0357
Table A2.87: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 210, I0 = 25.

Parameter p-values PRCC

ρ p < 0.0001 0.9740

w p < 0.0001 -0.9600

a p = 0.0723 0.1805

δ p = 0.0944 0.1682

b p = 0.1617 -0.1410

ψ p = 0.2223 0.1231

I0 p = 0.4347 -0.0900

c p = 0.5239 -0.0645
Table A2.88: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 5, I0 = 30.

Parameter p-values PRCC

ρ p < 0.0001 0.9773

w p < 0.0001 -0.9577

a p = 0.1163 0.1581

I0 p = 0.1816 -0.1347

c p = 0.2596 -0.1138

b p = 0.2936 0.1061

δ p = 0.3825 0.0883

ψ p = 0.9665 -0.0043
Table A2.89: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 10, I0 = 30.



194 194

Parameter p-values PRCC

ρ p < 0.0001 0.9675

w p < 0.0001 -0.9553

b p = 0.2803 0.1090

c p = 0.3370 -0.0970

ψ p = 0.3407 -0.0963

δ p = 0.4525 -0.0760

I0 p = 0.6273 -0.0491

a p = 0.7942 -0.0264
Table A2.90: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 60, I0 = 30.

Parameter p-values PRCC

ρ p < 0.0001 0.9790

w p < 0.0001 -0.9699

b p = 0.2287 0.1071

I0 p = 0.4818 -0.0712

δ p = 0.4823 -0.0711

c p = 0.7144 -0.0371

ψ p = 0.7759 -0.0288

a p = 0.8387 0.0206
Table A2.91: PRCC sensitivity analy-
sis of parameters ranked in terms of
importance to model variable GH at
time step t = 90, I0 = 30.

Parameter p-values PRCC

ρ p < 0.0001 0.9756

w p < 0.0001 -0.9632

I0 p = 0.0113 0.2523

a p = 0.1800 -0.1352

ψ p = 0.2783 -0.1095

b p = 0.5328 -0.0631

δ p = 0.6397 -0.0474

c p = 0.7515 -0.0321
Table A2.92: PRCC sensitivity analysis of parameters ranked in terms of importance
to model variable GH at time step t = 210, I0 = 30.
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A.2.2 Sobol′ method results

(a) (b)

Figure A2.8: Plot (a) shows first order and total effects sensitivity indices of the
model parameters (a, b, ψ, c, I0, δ , ρ and w) on growth hormone for model system
(1)using Sobol′ method at time t = 210. Plot (b) similarly shows first order and total
effects sensitivity indices of the model parameters (a, b, ψ , c, I0, δ , ρ and w) on growth
hormone for model system (1) using Sobol′ method at time t = 60.

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0021 0.0009 0.0254 0.005 0.00063 8.59×10−5

b 0.0025 2.24×10−5 0.0003 0 0.0002 0.0199

ψ 0.1983 0.2029 0.2406 0.0428 0.0361 0.0351

c 0.0007 0.0001 0.0115 0 0 0.0079

I0 0.2212 0.1653 0.0148 0.0472 0.0375 0.0065

δ 0.3682 0.4480 0.1688 0.7394 0.6487 0.4379

ρ 0.0006 0.0009 0.0004 1.14×10−5 0 0.0118

w 0 0 0.0022 0 0.0008 0.0003
Table A2.93: First order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 10 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0029 0.0148 0 0 0.0010 0.0008

b 0.0004 0.0026 0 0.0026 0 0.0012

ψ 0.2423 0.1704 0.0854 0.07721 0.006648 0.0466

c 0 0.0011 2.87×10−5 0 0.0011 0

I0 0.2115 0.1259 0.0843 0.0086 0.0604 0.0344

δ 0.3705 0.5060 0.5401 0.5827 0 0.5799

ρ 0.0028 0.0034 0 0 0 8.16×−5

w 0 0.0008 0 0.0006 0 0.0006
Table A2.94: First order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 15 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0003 5.287×10−5 0.0015 0.0038 0.0010 0.0003

b 0.0002 0 0.0001 0.0054 0.0024 0.0012

ψ 0.2673 0.1895 0.0327 0.0819 0.0442 0.0385

c 0.0018 0 0.0016 0.0189 0.0026 0.0057

I0 0.1658 0.139 0.0402 0.0032 0.0359 0.0209

δ 0.3871 0.4456 0.6424 0.2330 0.0269 0.265

ρ 0 0 0.0081 0.0074 0.0575 0.0046

w 0.0038 0 0 0.0147 0.0018 0.0059
Table A2.95: First order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 20 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 4×10−7 0.0013 0 0.0044 0.0041 0.0053

b 5.41×10−5 0.0021 8.12×10−5 0.0029 3.02×10−5 0.0023

ψ 0.2498 0.1701 0.0695 0.0403 0.0090 0.0319

c 0 1.4×10−6 5.63×10−5 0.0040 0.0045 0.0098

I0 0.2056 0.1426 0.0402 0.0420 0.0249 0.0348

δ 0.395 0.5058 0.6832 0.4862 0.4516 0.1398

ρ 0.0006 0 0 0.0062 0.0068 0.0054

w 0.0004 0.0018 0 0.0030 0.0056 0.0097
Table A2.96: First order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 25 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0020 0.0009 0.0254 0.0005 0.0006 8.59×10−5

b 0.0025 2.24×10−5 0.0003 0 0.0002 0.0199

ψ 0.1983 0.2029 0.2406 0.0428 0.0361 0.0351

c 0.0007 0.0001 0.0115 0 0 0.0079

I0 0.2212 0.1653 0.0148 0.0472 0.0375 0.0065

δ 0.3682 0.4480 0.1688 0.7394 0.6487 0.4379

ρ 0.0063 0.0009 0.0004 1.14×10−5 0 0.0118

w 0 0 0.0022 0 0.0008 0.0003
Table A2.97: First order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 30 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0989 0.0508 0.0451 0.0938 0.0777 0.0428

b 0.0655 0.0747 0.1008 0.0572 0.0230 0.0430

ψ 0.1133 0.1125 0.1261 0.1219 0.1077 0.1054

c 0.3328 0.2650 0.1473 0.2630 0.2310 0.1548

I0 0.0815 0.1034 0.0542 0.0803 0.0553 0.1383

δ 0.1189 0.1532 0.1423 0.2181 0.1711 0.1502

ρ 0.0006 0.0007 0.0024 0.0025 0.0017 0

w 0.0035 0.0009 0.0039 0.0034 0.0011 0
Table A2.98: First order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 10 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0791 0.0615 0.0428 0.0408 0.0854 0.0723

b 0.0504 0.0762 0.0375 0.1004 0.0534 0.0540

ψ 0.0956 0.1281 0.0554 0.1202 0.1099 0.0390

c 0.4357 0.1048 0.3802 0.1862 0.2767 0.1845

I0 0.0632 0.0226 0.0264 0.0703 0.0710 0.0778

δ 0.0787 0.0917 0.1957 0.1201 0.2178 0.1643

ρ 0.0054 0 0 0.0055 0 0.0029

w 0.0005 0.0004 0 0.0018 0 0.0048
Table A2.99: First order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 15 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0357 0.0757 0.0681 0.0687 0.0597 0.0542

b 0.0659 0.0448 0.0739 0.0456 0.0252 0.0663

ψ 0.1606 0.1754 0.1474 0.0979 0.1328 0.1007

c 0.0931 0.2721 0.2187 0.3234 0.3494 0.1829

I0 0.0290 0.0693 0.0738 0.1189 0.0714 0.1014

δ 0.0527 0.1889 0.1649 0.1477 0.1631 0.1523

ρ 0.0161 0.0045 0.0021 0.0027 0 0.0008

w 0.0043 0.0011 0.0180 0.0027 0.0024 0.0008
Table A2.100: First order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 20 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0763 0.0756 0.0453 0.0321 0.0272 0.0088

b 0.0807 0.0683 0.0533 0.0646 0.0282 0.0411

ψ 0.1189 0.1409 0.0372 0.1402 0.0398 0.2045

c 0.3285 0.2992 0.2101 0.2438 0.5048 0.1378

I0 0.0783 0.1030 0.0978 0.0868 0.0259 0.0590

δ 0.1152 0.1309 0.1345 0.1567 0.0638 0.1672

ρ 0 0.0003 6×10−5 0.0038 0 0.0007

w 0.0015 0 0.0007 0 0.0096 0
Table A2.101: First order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 25 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0920 0.0503 0.0701 0.0522 0.0906 0.0772

b 0.0789 0.0765 0.0836 0.0711 0.0443 0.0502

ψ 0.1061 0.1140 0.1527 0.1892 0.1186 0.1662

c 0.2973 0.2805 0.2008 0.1902 0.2128 0.2258

I0 0.0812 0.1211 0.1085 0.1219 0.0677 0.1034

δ 0.0854 0.15192 0.1970 0.1764 0.1473 0.1574

ρ 0.0070 0.0029 0.0014 0.0082 0.0042 0.0026

w 0.0024 0.0010 0.0011 0.0023 0.0018 0.0015
Table A2.102: First order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 30 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0 0.0020 0.0013 0.0008 0 0.0002

b 0 0.0020 0.0014 3.4×10−7 0 0.0002

ψ 0 0.0021 0.009 0.0007 0 0.0001

c 0 0.0020 0.0013 0.0005 0 0.0003

I0 0 0.0023 0.0010 0.0004 0 0.0006

δ 0 0.0020 0.0012 0.0005 0 0.0007

ρ 0.5572 0.5542 0.5561 0.5659 0.5591 0.5576

w 0.4205 0.4286 0.4281 0.4109 0.4195 0.4207
Table A2.103: First order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 5 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0003 0.0007 0.007 0.0012 0.0002 0.0001

b 0.0054 0.0007 0.0010 0.0014 0.0021 0

ψ 6.81×10−6 0.0001 0.0008 0.0009 0.0016 0

c 9.15×10−5 0.0005 0.0004 0.0013 0.0022 0

I0 6.92×10−5 0.0007 0.0005 0.0014 0.0019 0

δ 3.80×10−5 0.0006 0.0007 0.0010 0.0020 4.43×10−5

ρ 0.5545 0.5572 0.5600 0.5577 0.5608 0.5513

w 0.4261 0.4233 0.4219 0.4255 0.4215 0.4309
Table A2.104: First order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 10 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0 0.0007 0 0 4.94×10−5 0.0013

b 0 0.0005 0 0 0.0007 0.0009

ψ 0 0.0002 0 0 0.0006 0.0014

c 0 0.0003 0 0 0.0002 0.0010

I0 0 3.92×10−5 2.31×10−6 0 5.59×10−5 0.0002

δ 0.0002 0.0006 0 0 0 0.0008

ρ 0.5525 0.5679 0.5554 0.5503 0.5507 0.5567

w 0.4226 0.4114 0.4239 0.4292 0.4301 0.4220
Table A2.105: First order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 15 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0 2.47×10−5 0.0004 0.0018 0.0015 0.0002

b 1.59×10−5 3.15×10−5 0.0003 0.0017 0.0010 0

ψ 0 2.34×10−5 0.0001 0.0014 0.0015 0

c 1.29×10−5 0 0.0002 0.0015 0.0007 0.0004

I0 0 0.0002 0.0002 0.0011 0.0009 0

δ 5.52×10−5 0 0.0002 0.0015 0.0014 0

ρ 0.5437 0.5596 0.5555 0.5623 0.5542 0.5617

w 0.4354 0.4215 0.4238 0.4194 0.4279 0.4201
Table A2.106: First order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 20 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0 0.0022 0.0004 0 0 0

b 0 0.0022 0.0049 0 0 0.0002

ψ 0 0.0019 0.0049 0 0 8.34×10−5

c 0 0.0024 2.80×10−5 0 0 0.0004

I0 0 0.0023 0.0006 0 0 0.0004

δ 0 0.0023 0.0002 0 0 0

ρ 0.5692 0.5581 0.5590 0.5561 0.5479 0.5573

w 0.4112 0.4237 0.4213 0.4210 0.4323 0.4215
Table A2.107: First order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 25 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0 0 0.0022 0.0007 0 0

b 0 0 0.0023 0.0006 0 0

ψ 0 0 0.0025 0.0011 0 0

c 0 0 0.0023 0.0008 0 0

I0 0 0 0.0027 0.0007 0 0

δ 0 0 0.0026 0.0007 0 0

ρ 0.5561 0.5599 0.5583 0.5612 0.5565 0.5496

w 0.4241 0.4206 0.4217 0.4177 0.4248 0.4287
Table A2.108: First order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 30 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0540 0.0621 0.0342 0.4054 0.0412 0.5635

b 0.0536 0.0643 0.0965 0.4490 0.0425 0.4792

ψ 0.3183 0.2613 0.1752 0.4399 0.0749 0.1924

c 0.0460 0.0615 0.2960 0.3918 0.0438 0.1492

I0 0.3607 0.3007 0.0445 0.4361 0.0631 0.2887

δ 0.5185 0.6834 0.9058 0.7069 0.9443 0.2590

ρ 0.0432 0.0629 0.0961 0.4004 0.2074 0.7813

w 0.0429 0.0618 0.1199 0.6748 0.0436 0.3861
Table A2.109: Total order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 5 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.06341 0.0532 0.2465 0.0527 0.1081 0.0163

b 0.06907 0.0518 0.0724 0.0398 0.1065 0.2180

ψ 0.3023 0.3323 0.7718 0.1053 0.1806 0.1154

c 0.0608 0.0518 0.1900 0.0357 0.0970 0.0987

I0 0.3788 0.2818 0.0969 0.1697 0.2318 0.0190

δ 0.5648 0.6107 0.4244 0.9074 0.9207 0.9145

ρ 0.0617 0.0540 0.0730 0.0382 0.1032 0.1407

w 0.0617 0.0527 0.0884 0.0361 0.1069 0.0106
Table A2.110: Total order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 10 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0674 0.0668 0.0803 0.1413 0.0688 0.2407

b 0.06900 0.0737 0.0877 0.1564 0.0532 0.2408

ψ 0.35926 0.2974 0.2498 0.3721 0.2139 0.3344

c 0.0695 0.0624 0.0827 0.1383 0.0654 0.2342

I0 0.3362 0.2250 0.2747 0.1461 0.2479 0.3076

δ 0.5301 0.6911 0.8266 0.9088 0.8585 0.9145

ρ 0.0738 0.0768 0.07925 0.1343 0.0531 0.2344

w 0.0663 0.0644 0.0799 0.1398 0.0549 0.2395
Table A2.111: Total order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 15 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0655 0.0629 0.1604 0.1074 0.0738 0.1679

b 0.0657 0.0624 0.1520 0.1131 0.0854 0.1746

ψ 0.3906 0.3426 0.2054 0.5790 0.2952 0.6337

c 0.0697 0.0603 0.1644 0.2239 0.0817 0.2497

I0 0.2579 0.2670 0.2346 0.0881 0.2636 0.2420

δ 0.5445 0.6648 0.9127 0.7974 0.8562 0.8612

ρ 0.0644 0.0605 0.1952 0.1380 0.5162 0.2134

w 0.0765 0.0608 0.1541 0.2063 0.0747 0.2223
Table A2.112: Total order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 20 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0539 0.0909 0.0892 0.0954 0.3441 0.5618

b 0.05268 0.0918 0.0896 0.0897 0.3244 0.3802

ψ 0.3555 0.2995 0.2356 0.1777 0.3367 0.5222

c 0.0528 0.0881 0.0917 0.0903 0.3469 0.4165

I0 0.3084 0.2728 0.1606 0.2014 0.4030 0.5252

δ 0.5195 0.6791 0.8881 0.8988 0.9446 0.8133

ρ 0.0545 0.0877 0.0877 0.1109 0.3612 0.4076

w 0.0544 0.0939 0.0877 0.0858 0.3480 0.6647
Table A2.113: Total order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 25 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0479 0.0290 0.0274 0.1126 0.3546 0.2782

b 0.0495 0.0284 0.0452 0.0986 0.6338 0.2699

ψ 0.3787 0.2662 0.3992 0.2054 0.4372 0.2985

c 0.049 0.0281 0.01443 0.1410 0.4317 0.2851

I0 0.3130 0.2709 0.0395 0.2657 0.3672 0.3309

δ 0.4778 0.6755 0.8957 0.8874 0.7172 0.9486

ρ 0.0470 0.0293 0.04362 0.1034 0.7202 0.2661

w 0.0489 0.0316 0.0515 0.1064 0.3797 0.3112
Table A2.114: Total order Sobol′ indices of each model parameter for I at significant
time periods with I0 = 30 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.2792 0.1575 0.2672 0.1740 0.2038 0.1051

b 0.1387 0.1783 0.4423 0.1834 0.1913 0.0900

ψ 0.2028 0.2540 0.3026 0.2475 0.2852 0.1147

c 0.6366 0.5089 0.3983 0.4780 0.2828 0.8624

I0 0.2392 0.2050 0.2278 0.1728 0.2612 0.1671

δ 0.1955 0.2451 0.2914 0.3165 0.3517 0.1303

ρ 0.1400 0.0955 0.1607 0.1022 0.0924 0.0920

w 0.2257 0.0964 0.2112 0.1138 0.0932 0.1696
Table A2.115: Total order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 5 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.2184 0.1555 0.1294 0.2040 0.3229 0.1861

b 0.2158 0.2593 0.3854 0.1763 0.2052 0.3861

ψ 0.2231 0.2396 0.2363 0.2256 0.3017 0.2709

c 0.4705 0.4190 0.4938 0.4041 0.5262 0.3227

I0 0.1930 0.2166 0.1527 0.1814 0.2317 0.3861

δ 0.2366 0.2837 0.2534 0.3565 0.3739 0.3263

ρ 0.0917 0.1209 0.0917 0.1036 0.1759 0.1328

w 0.0979 0.0979 0.0968 0.1089 0.1836 0.1366
Table A2.116: Total order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 10 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.1795 0.1872 0.1232 0.2214 0.2411 0.2011

b 0.1981 0.2628 0.1734 0.4215 0.2606 0.4359

ψ 0.1964 0.6210 0.1554 0.3053 0.3446 0.1743

c 0.6219 0.4271 0.6160 0.4305 0.3595 0.3818

I0 0.1577 0.1205 0.1086 0.2421 0.2472 0.1964

δ 0.1938 0.2086 0.3100 0.2909 0.3651 0.4214

ρ 0.1087 0.1003 0.0867 0.1986 0.1455 0.1094

w 0.0996 0.0916 0.0678 0.1773 0.1453 0.1264
Table A2.117: Total order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 15 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.1349 0.1873 0.2153 0.1725 0.1634 0.2245

b 0.3003 0.1732 0.2761 0.1556 0.1393 0.3742

ψ 0.3767 0.2829 0.2959 0.2032 0.2378 0.2666

c 0.6118 0.4023 0.3988 0.4838 0.5030 0.3763

I0 0.1312 0.16057 0.2077 0.2262 0.17423 0.2828

δ 0.17003 0.3047 0.3126 0.2532 0.294 0.3777

ρ 0.2260 0.0960 0.1229 0.0862 0.0896 0.2207

w 0.1263 0.0887 0.1223 0.0820 0.0988 0.1654
Table A2.118: Total order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 20 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.2148 0.1691 0.1273 0.1953 0.0873 0.2755

b 0.2560 0.1915 0.1915 0.2793 0.1274 0.2201

ψ 0.2674 0.2391 0.2443 0.3132 0.1231 0.4719

c 0.4908 0.4266 0.6076 0.4679 0.7864 0.2918

I0 0.2174 0.1872 0.2059 0.3310 0.1320 0.3362

δ 0.2646 0.2287 0.2151 0.3310 0.1320 0.3362

ρ 0.1340 0.0765 0.0692 0.16013 0.0539 0.1565

w 0.1291 0.0768 0.1412 0.1445 0.1902 0.1349
Table A2.119: Total order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 25 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.2139 0.1679 0.1832 0.1680 0.2691 0.2246

b 0.2568 0.2294 0.2208 0.2208 0.2523 0.2095

ψ 0.1983 0.2655 0.2689 0.3512 0.4150 0.3189

c 0.5343 0.4222 0.3259 0.3122 0.3641 0.3790

I0 0.1723 0.2582 0.2165 0.2606 0.2055 0.2350

δ 0.1875 0.2828 0.3011 0.3021 0.2903 0.2961

ρ 0.0991 0.1141 0.0902 0.11072 0.1487 0.1180

w 0.0943 0.1118 0.0876 0.1138 0.1397 0.1156
Table A2.120: Total order Sobol′ indices of each model parameter for GL at significant
time periods with I0 = 30 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0020 0.0002 0.0030 0.0009 0.0024 0.0024

b 0.0015 0.0024 0.0033 0.0008 0.0022 0.0023

ψ 0.0014 0.0025 0.0032 0.0012 0.0023 0.0019

c 0.0016 0.0025 .0031 0.0012 0.0025 0.0021

I0 0.0015 0.0027 0.0032 0.0011 0.0022 0.0019

δ 0.0016 0.0024 0.0036 0.0008 0.0022 0.0020

ρ 0.5778 0.5706 0.5737 0.5855 0.5811 0.5800

w 0.4425 0.4466 0.4455 0.4346 0.4401 0.4409
Table A2.121: Total order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 5 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0023 0.0002 0.0027 0.0022 0.0040 0.0012

b 0.0018 0.0025 0.0029 0.0023 0.0039 0.0014

ψ 0.0023 0.0021 0.0029 0.0023 0.0037 0.0089

c 0.0019 0.0020 0.0028 0.0022 0.0037 0.0011

I0 0.0019 0.0026 0.0026 0.0022 0.0039 0.0090

δ 0.0018 0.0024 0.0027 0.0022 0.0039 0.0009

ρ 0.5726 0.5766 0.5788 0.5755 0.5786 0.5694

w 0.4461 0.4444 0.4398 0.4429 0.4388 0.4480
Table A2.122: Total order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 10 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0017 0.0003 0 0.0038 0.0010 0.0003

b 0.0015 0.0005 0 0.0054 0.0024 0.0012

ψ 0.0011 6.81×10−6 0 0.0819 0.0442 0.0385

c 0.0013 9.151×10−5 0 0.0189 0.0026 0.0057

I0 0.0019 6.9151×10−5 0 0.0032 0.0359 0.0209

δ 0.0018 3.797×10−5 0.0024 0.2330 0.0269 0.2650

ρ 0.5775 0.5545 0.5525 0.0074 0.0575 0.0046

w 0.4456 0.4262 0.4226 0.0147 0.0018 0.0056
Table A2.123: Total order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 15 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0 2.47×10−5 0.0004 0.0018 0.0015 0.0014

b 1.59×10−5 3.15×10−5 0.0003 0.0017 0.0010 0.0013

ψ 0 2.34×10−5 0.0001 0.0014 0.0015 0.0010

c 1.29×10−5 0 .0002 0.0015 0.0007 0.0014

I0 0 0.0002 0.0002 0.0011 0.0009 0.0016

δ 5.52×10−5 0 0.0002 0.0015 0.0014 0.0017

ρ 0.5437 0.5596 0.5555 0.5623 0.5542 0.5783

w 0.4354 0.4215 0.4238 0.4194 0.4279 0.4386
Table A2.124: Total order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 20 (t is in minutes).

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0032 0.0003 0 0.0038 0.0010 0.0003

b 0.0035 0.0005 0 0.0054 0.0024 0.0012

ψ 0.0032 6.81×10−6 0 0.0819 0.0442 0.0385

c 0.0035 9.151×10−5 0 0.0189 0.0026 0.0057

I0 0.0035 6.9151×10−5 0 0.0032 0.0359 0.0209

δ 0.0031 3.797×10−5 0.0024 0.2330 0.0269 0.2650

ρ 0.5880 0.5545 0.5525 0.0074 0.05746 0.0046

w 0.4317 0.4262 0.4226 0.0147 0.0018 0.0056
Table A2.125: Total order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 25 (t is in minutes).
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0027 0.0036 0 0.0038 0.0010 0.0003

b 0.0029 0.0033 0 0.0054 0.0024 0.0012

ψ 0.0028 0.0035 0 0.0819 0.04418 0.0385

c 0.0026 0.0032 0 0.0189 0.0026 0.0057

I0 0.0030 0.0030 0 0.0032 0.0359 0.0209

δ 0.0029 0.0034 0.0024 0.2330 0.0269 0.2650

ρ 0.5769 0.5780 0.5525 0.0074 0.0575 0.0046

w 0.442 0.4424 0.4226 0.0147 0.0018 0.0056
Table A2.126: Total order Sobol′ indices of each model parameter for GH at significant
time periods for I0 = 30 (t is in minutes).

A.3 Figures For Chapter 5

Figure A3.1: First panel shows MCMC chain convergence for parameter ψ and second
panel shows MCMC chain convergence for parameter δ when fitting Model 1 to Mice
Group 2 data. The black lines represent the MCMC chain and the grey line represents
traces of the chain.
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Figure A3.2: First panel shows MCMC chain convergence for parameter ψ and second
panel shows MCMC chain convergence for parameter δ when fitting Model 1 to Mice
Group 3 data. The black lines represent the MCMC chain and the grey line represents
traces of the chain.

Figure A3.3: First panel shows MCMC chain convergence for parameter ψ and second
panel shows MCMC chain convergence for parameter δ when fitting Model 1 to Mice
Group 4 data. The black lines represent the MCMC chain and the grey line represents
traces of the chain.
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Figure A3.4: First top panel shows MCMC chain convergence for parameter a and
second top panel shows MCMC chain convergence for parameter b. The first bottom
panel shows MCMC chain convergence for parameter f and the second bottom panel
shows MCMC chain convergence for parameter i. These MCMC convergences are for
Model 2 when fitted to Mice Group 2 data. The black lines represent the MCMC chain
and the grey line represents traces of the chain.
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Figure A4.5: First top panel shows MCMC chain convergence for parameter a and
second top panel shows MCMC chain convergence for parameter b. The first bottom
panel shows MCMC chain convergence for parameter f and the second bottom panel
shows MCMC chain convergence for parameter i. These MCMC convergences are for
Model 2 when fitted to Mice Group 3 data. The black lines represent the MCMC chain
and the grey line represents traces of the chain.
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Figure A4.6: First top panel shows MCMC chain convergence for parameter a and
second top panel shows MCMC chain convergence for parameter b. The first bottom
panel shows MCMC chain convergence for parameter f and the second bottom panel
shows MCMC chain convergence for parameter i. These MCMC convergences are for
Model 2 when fitted to Mice Group 4 data. The black lines represent the MCMC chain
and the grey line represents traces of the chain.
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