

On the Implementation of
Cylindrical Algebraic Coverings for
Satisfiability Modulo Theories
Solving

Kremer, G, Abraham, E, England, M & Davenport, JH
Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Kremer, G, Abraham, E, England, M & Davenport, JH 2022, On the Implementation of
Cylindrical Algebraic Coverings for Satisfiability Modulo Theories Solving. in 2021
23rd International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC). 2021 23rd International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), IEEE, pp. 37-39, 23rd International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing ,
Timisoara, Romania, 7/12/21.
https://doi.org/10.1109/synasc54541.2021.00018

DOI 10.1109/synasc54541.2021.00018

Publisher: IEEE

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://doi.org/10.1109/synasc54541.2021.00018

On the Implementation of Cylindrical Algebraic Coverings
for Satisfiability Modulo Theories Solving

Gereon Kremer
Stanford University

gkremer@cs.stanford.edu

Erika Ábrahám
RWTH Aachen University

abraham@cs.rwth-aachen.de

Matthew England
Coventry University

Matthew.England@coventry.ac.uk

James H. Davenport
University of Bath

J.H.Davenport@bath.ac.uk

Abstract—We recently presented cylindrical algebraic cov-
erings: a method based on the theory of cylindrical algebraic
decomposition and suited for nonlinear real arithmetic theory
reasoning in Satisfiability Modulo Theories solvers.

We now present a more careful implementation within cvc5,
discuss some implementation details, and highlight practical
benefits compared to previous approaches, i.e., NLSAT and
incremental CAD. We show how this new implementation sim-
plifies proof generation for nonlinear real arithmetic problems
in cvc5 and announce some very encouraging experimental
results that position cvc5 at the very front of currently available
SMT solvers for QF_NRA.

I. INTRODUCTION

The Satisfiability Modulo Theories (SMT) problem is
concerned with deciding satisfiability or unsatisfiability of
first-order formulae over a given theory, or a combination
of multiple theories. One theory of considerable interest
is nonlinear real arithmetic (NRA), where atoms are sign
constraints on polynomials with rational coefficients. This
theory had already been studied extensively in the literature
before the advent of SMT solving and a variety of methods
exists. The only complete decision procedures that have
found their way to practical use are all based on cylindrical
algebraic decomposition (CAD) [6], although CAD has a
worst-case running time that is doubly exponential in the
number of variables [8].

All SMT solvers that treat nonlinear real arithmetic in a
complete way are based on CAD: yices [10] and z3 [9]
both use NLSAT [12] while SMT-RAT [7] implements
both NLSAT and an incremental variant of CAD [14],
[15]. Unfortunately, both these approaches have issues. The
NLSAT framework is sufficiently different from the tradi-
tional CDCL(T) framework to make a seamless integration
into an existing CDCL(T)-style SMT solver virtually impos-
sible: NLSAT is mostly separated from the rest of the solver
in SMT-RAT, yices, and z3. Meanwhile, implementing CAD
in an incremental fashion [15] requires a great deal of
machinery that may be prohibitive to implement.

A new decision procedure for NRA called cylindrical
algebraic coverings was recently presented in [1]. It is
heavily inspired by CAD and inherits its theoretic properties:
it is complete, but also has doubly exponential worst-case

running time. It can easily be used as a theory solver in the
CDCL(T) framework (in contrast to NLSAT), but is consid-
erably simpler to implement compared to the incremental
CAD approach from [15]. It has also been observed that a
trace of its computation for UNSAT is much closer to human
reasoning compared to CAD [2], which makes it easier to
understand and also simplifies the automatic generation of
proofs of unsatisfiability.

Contribution

This paper presents an implementation of the cylindrical
algebraic coverings method within cvc5 (the new succes-
sor to CVC4 [4]), its ability to generate proofs, and its
performance compared to the approaches implemented in
SMT-RAT, yices and z3. In the following, we assume some
familiarity with [1].

II. IMPLEMENTATION

We have presented an initial implementation of the cylin-
drical algebraic coverings method within SMT-RAT in [1],
which was still in an experimental state. Since then, we
have produced a more stable implementation within cvc5
based on the algebraic routines from libpoly [13]. The
new implementation directly follows the description in [1]
with a few extensions: generation of infeasible subsets,
partial theory checks, several variable ordering strategies,
and dynamic exclusion of non-integral sample points for
mixed-integer problems.

Most notably, though, we do not use our implementation
as a self-contained theory solver but combine it with a linear
arithmetic solver in the spirit of [5]: our method is only
executed when the linearization of the input is satisfiable and
a “linear model” for this linearization has been found. This
not only avoids calling this comparably expensive method
in many cases, but also allows for novel techniques like
using the linear model as a seed for the nonlinear model we
aim to construct. An extension to allow for an incremental
processing of consistency checks is currently being worked
on, but is still in an early experimental state.

Infeasible subsets: Generating small infeasible subsets
is known to be an effective technique to speed up SMT
solvers. The aim is to identify a small subset of the input

constraints that is already unsatisfiable. We store all con-
tributing constraints for every interval and simply collect all
constraints for the intervals that cover the first dimension
to obtain an infeasible subset. By checking constraints
against sample points in a fixed order and regularly pruning
redundant intervals, we hope to reduce this set of constraints.
It is conceivable to perform an a-posteriori analysis to obtain
an even smaller set of constraints, but this has not been done
yet. Note that this task seems to be more involved than for
a regular CAD as refuting a sample point by a different
constraint most likely changes the generated interval and
everything it was then used for.

Partial checks: The integration with the linear arith-
metic solver was originally intended for an incremental
linearization approach [5]. It is thus sufficient to issue a
lemma that excludes the current linear model instead of
performing a full consistency check. Our method can easily
be adapted as every interval can be formulated as a lemma.
We have implemented the possibility to terminate as soon as
the first interval has been constructed in the first dimension.
If we make sure that we sample the first variable according to
the linear model, this interval yields a lemma suitable for [5].
Note that it seems unlikely that this technique has any
benefits by itself, and an integration with the linearization is
not trivial: the lemmas would need to be linear to actually
help the linear solver, but the lemmas constructed from our
intervals are usually not linear.

Variable ordering: Finding a good variable ordering
is a notorious issue for all CAD-based approaches, as it
has huge impacts on performance, with the right choice
susceptible to slight changes to the input, and existing
heuristics oftentimes not very robust. We implement a static
ordering, as well as the heuristics commonly called “Brown”
and “Triangular” [11]. Additionally, we experimented with
a heuristic based on machine learning techniques, but with
very limited success.

Mixed-integer problems: Most implementations for
CAD-based approaches try to sample integer values when-
ever possible, simply to keep coefficients small. We do the
same, and thus we only select a non-integer sample when the
surrounding interval has no integer. In such a case, we can
simply exclude the interval in between the two neighbouring
integer values and provide corresponding polynomials as
characterization. Let for example x = 1.3 be a sample; then
we exclude (1; 2) and use {x−1, x−2} as characterization.

Incremental consistency checks: Our integration with
the linear solver allows to use the linear model as an
initial model for our method. The hope would be that
the linearization of the input describes the solution space
sufficiently well to direct us into the vicinity of proper
solutions by using the linear model. In practice, however,
seeding our method with the linear model shows no benefit.

Additionally, we have an experimental implementation
that is more in line with the common understanding of

incremental consistency checks. Instead of only collecting
the intervals locally, we maintain the intervals in an explicit
tree that is retained across multiple theory calls. This allows
us to reuse whole subtrees and possibly avoid a lot of work.
In its current experimental state, though, this technique has
not shown a substantial benefit.

III. PROOF GENERATION

There is a new infrastructure in cvc5 to generate formal
proofs for almost every aspect of its solving process. We use
this to generate proofs for cylindrical algebraic coverings
that roughly follow the ideas from [2]. In contrast to proofs
generated in other parts of cvc5, they are not detailed enough
to allow for an automatic verification by, e.g., Isabelle/HOL.
They are already useful, though, in that they decompose
the overall proof into meaningful proof steps and allow
for consistency checks like connectedness and structural
soundness. We intend to make these proofs more detailed
in the future.

Consider the following formula:

(x > 0) ∧ (y < 0) ∧ (x · y = 0).

The proof steps related to our approach are given below,
while the actual proof generated by cvc5 contains a lot of
additional reasoning steps. Note that it makes use of “root
predicates” x ∼ rootk(p) that compare the kth root of p in
x over the current assignment to x, and that the proof does
not contain intervals that were generated, but ultimately are
not necessary to build the proof.

• Consider x > 0, derive x 6∈ (−∞, 0] which is
represented by x > root1(x).

• Guess x = 1 (abstracted by x > root1(x)).
– Consider y < 0, derive y 6∈ [0,∞) which is

represented by y < root1(y).
– Consider x · y = 0, derive y 6∈ (−∞, 0) which is

represented by y ≥ root1(x · y).
– We combine y < root1(y) and y ≥ root1(x · y) to

refute x > root1(x).
• We derive false from x > 0 and ¬(x > root1(x)).

The abstraction of x = 1 (x > root1(x)) is not known when
the solver guesses the value for x: it is computed when x = 1
is refuted and this branch of the proof is closed.

IV. EXPERIMENTS

We have already shown in Section 7 of [1] that a very
preliminary implementation of the cylindrical algebraic cov-
erings approach in SMT-RAT outperforms a rather elaborate
incremental CAD implementation and is almost competitive
with the NLSAT variant from SMT-RAT. We now show that
a more careful implementation of the cylindrical algebraic
coverings method can compete with other state-of-the art
implementations. We use the QF_NRA benchmark set from
SMT-LIB [3] and use Intel Xeon E5-2620 processors with
a timeout of ten minutes.

We compare the current implementation within cvc5 with
z3 4.8.10, yices 2.6.2, the implementation of cylindrical
algebraic coverings within SMT-RAT, the incremental lin-
earization approach for QF_NRA that was already present in
CVC4, and cvc5 without any nonlinear reasoning technique.

Solver sat unsat overall

cvc5 (cdcac) 5021 5377 10398
yices 4904 5437 10341
z3 5093 5195 10288
SMT-RAT 4438 4435 8873
cvc5 (inc. linearization) 3283 5385 8668
cvc5 (no nl reasoning) 2203 3271 5474

Figure 1. Experimental results

Figure 1 shows that the new approach significantly out-
performs the incremental linearization approach, and that it
even has a small lead over both yices and z3, the two best
solvers in the SMT competition 2020. We verify that it is
indeed the new approach that makes cvc5 so powerful for
QF_NRA by comparing to two other configurations of cvc5
for QF_NRA.

V. SUMMARY AND FUTURE

We have described some implementation details for cylin-
drical algebraic coverings in cvc5, and how they can simplify
automatic proof generation. The experimental results look
very promising, in particular as some common optimization
techniques are not used yet.

We aim to further improve our implementation by: gen-
erating better infeasible subsets; better integrate with the
existing linearization approach to make use of partial checks;
find better variable orderings; and improve the handling of
incremental consistency checks.

REFERENCES

[1] Erika Ábrahám, James H. Davenport, Matthew England,
and Gereon Kremer. Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven search
using cylindrical algebraic coverings. Journal of Logical
and Algebraic Methods in Programming, 119(100633), 2021.
doi:10.1016/j.jlamp.2020.100633.

[2] Erika Ábrahám, James H. Davenport, Gereon Kremer, and
Zak Tonks. New opportunities for the formal proof of
computational real geometry? In Satisfiability Checking and
Symbolic Computation Workshop, volume 2752 of CEUR
Workshop Proceedings, pages 178–188, 2020. URL: http:
//ceur-ws.org/Vol-2752/paper13.pdf.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The
Satisfiability Modulo Theories Library (SMT-LIB), 2021.
URL: http://www.SMT-LIB.org.

[4] Clark W. Barrett, Christopher L. Conway, Morgan De-
ters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds, and Cesare Tinelli. CVC4. In Computer Aided
Verification, volume 6806 of LNCS, pages 171–177, 2011.
doi:10.1007/978-3-642-22110-1_14.

[5] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco
Roveri, and Roberto Sebastiani. Incremental linearization for
satisfiability and verification modulo nonlinear arithmetic and
transcendental functions. ACM Transactions on Computa-
tional Logic, 19:1–52, 2018. doi:10.1145/3230639.

[6] George E. Collins. Quantifier Elimination for Real Closed
Fields by Cylindrical Algebraic Decomposition. In Pro-
ceedings 2nd. GI Conference Automata Theory & Formal
Languages, pages 134–183, 1975.

[7] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan
Schupp, and Erika Ábrahám. SMT-RAT: an open source
C++ toolbox for strategic and parallel smt solving. In
Theory and Applications of Satisfiability Testing, volume
9340 of LNCS, pages 360–368, 2015. doi:10.1007/
978-3-319-24318-4_26.

[8] James H. Davenport and Joos Heintz. Real Quantifier Elim-
ination is Doubly Exponential. Journal of Symbolic Compu-
tation, 5:29–35, 1988. doi:10.1016/S0747-7171(88)
80004-X.

[9] Leonardo de Moura and Nikolay Bjørner. Z3: An efficient
SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 4963 of LNCS, pages 337–
340, 2008. doi:10.1007/978-3-540-78800-3.

[10] Bruno Dutertre. Yices 2.2. In Computer-Aided Verification,
volume 8559 of LNCS, pages 737–744, 2014. doi:10.
1007/978-3-319-08867-9_49.

[11] Matthew England, Russell Bradford, James H. Davenport, and
David Wilson. Choosing a variable ordering for truth-table
invariant cylindrical algebraic decomposition by incremental
triangular decomposition. In International Congress on Math-
ematical Software, volume 8592 of LNCS, pages 458–465,
2014. doi:10.1007/978-3-662-44199-2_68.

[12] Dejan Jovanović and Leonardo de Moura. Solving
non-linear arithmetic. In Automated Reasoning, volume
7364 of LNCS, pages 339–354, 2012. doi:10.1007/
978-3-642-31365-3_27.

[13] Dejan Jovanović and Bruno Dutertre. Libpoly: A library for
reasoning about polynomials. In Satisfiability Modulo The-
ories, volume 1889 of CEUR Workshop Proceedings, pages
28–39, 2017. URL: http://ceur-ws.org/Vol-1889/paper3.pdf.

[14] Gereon Kremer. Cylindrical algebraic decomposition for
nonlinear arithmetic problems. PhD thesis, RWTH Aachen
University, 2020. doi:10.18154/RWTH-2020-05913.

[15] Gereon Kremer and Erika Ábrahám. Fully incremental
cylindrical algebraic decomposition. Journal of Symbolic
Computation, 100:11–37, 2020. doi:10.1016/j.jsc.
2019.07.018.

https://doi.org/10.1016/j.jlamp.2020.100633
http://ceur-ws.org/Vol-2752/paper13.pdf
http://ceur-ws.org/Vol-2752/paper13.pdf
http://www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3230639
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.18154/RWTH-2020-05913
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1016/j.jsc.2019.07.018

	IEEE (2)
	main
	Introduction
	Implementation
	Proof Generation
	Experiments
	Summary and Future
	References

