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Abstract

In complex natural environments, sensory systems are constantly exposed to a large stream of
inputs. In order to encode the everchanging sensory surroundings efficiently, sensory systems
rapidly adapt their responses to common stimuli that are parts of predictable patterns while
retain their responsiveness to the novel, unexpected stimuli that usually contain behaviourally
important information. Such a differential processing capacity is commonly referred to as
novelty detection, whose neural signatures have been identified in human electroencephalogram
(EEG) recording as mismatch negativity (MMN) and single-neuron electrophysiology as
stimulus-specific adaptation (SSA). Despite the prevalence of the rare-selective responses in
several sensory modalities, the intracellular and network mechanisms underlying are not yet
fully understood.

In this thesis, we employ the modeling tools in the computational neuroscience community,
combined with computer simulation, to investigate the neuronal network dynamics producing
novelty-detecting signals in the auditory and somatosensory cortex of the rodent model.
Following an earlier auditory SSA mechanism in recurrent network with synaptic depression
[Yarden and Nelken, 2017], we provide further support for the SSA circuitry hypothesis by
using for the first time a similar recurrent network structure yet mediated with neuronal
adaptation implemented in both simulated mean-field and physical neuromorphic spiking
models. Our results suggest that SSA and its pertinent properties could arise from the
differential excitation of tuned neuronal populations via propagation of population activity
and short-term adaptation mechanism (neuronal adaptation or synaptic depression). In
addition, we adapted and expanded this cortical circuit of the auditory SSA to a multi-scale
thalamocortical network model that explains and reproduces physiologically observed neuronal
response patterns that demonstrate signatures of both SSA and MMN in the somatosensory
cortex [Musall et al., 2017]. Specifically, our results indicate that the novelty signal arises
from the complex recurrent interplay between thalamic neurons and cortical neurons in layers
4 and 6. This work therefore provides a concrete mechanism that can serve as a starting point
for further investigating the neural circuit mechanisms underlying novelty detection.
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2.1 Schema of the LNP model. The relation between stimulus signals and
neuronal spiking responses can be captured by the LNP model. The incoming
stimuli are synaptically filtered by a set of pre-determined temporal features.
Then aggregated filtered inputs are transformed into a Poisson spike train
whose firing rate is determined by the output of the nonlinear gain function
of the given neuron. The linear filters and nonlinear gain function can be
computed using the reverse correlation of spikes with stimuli preceding each
spike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Auditory SSA tested in the oddball paradigm. (A) A frequency oddball
sequence consists of the standard frequency f1 of a tone (95% probability of
occurrence) and deviant frequency f2 of another tone (5% probability), which
is reflected by tones of f2 interspersed among a series of repeated tones of f1 in
the temporal presentation. The average membrane potential responses of an
auditory neuron to the standard (blue) is smaller than the deviant (red). (B)
The same convention as (A) except that identities of f1 and f2 as standard and
deviant are swapped. Similarly, neuronal responses evoked by the standard
are weaker than the deviant. Recording data are replotted from Hershenhoren
et al. [2014a]. (C) Same responses in (A) and (B) are categorized by tone
frequency. As defined in Eq 2.2, the strength of SSA elicited by each of the
two frequencies is scaled by the difference between responses to the frequency
as deviant and as standard. The difference is positive for both f1 and f2, which
signifies that SSA exists at both frequency sites. . . . . . . . . . . . . . . . . 8

2.3 Human auditory MMN and late SSA in whisker-related somatosen-
sory area of the rat model. (A) Average auditory event-related potentials
in human EEG recordings in response to the deviant and standard in a frequency
oddball paradigm. An additional negative component is evoked exclusively
during the presentation of deviant stimuli. The duration of stimuli is indicated
as a black bar along the time axis. Recording data are replotted from Sams
et al. [1985]. (B) Average firing rate of neurons in the layer 4 of S1 in response
to a whisker oddball paradigm. A secondary oscillatory deviant response with
comparable latency with MMN (right panel) is observed following a transient
synchronized activity (left panel). Gray shading marks the stimulation duration.
Data are replotted from Musall et al. [2017]. . . . . . . . . . . . . . . . . . . . 9
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2.4 Adaptation in the narrowly tuned modules (ANTM) model. (A) A
widely-tuned auditory neuron integrates inputs from narrowly-tuned presy-
naptic populations organized along a frequency axis. The tone sequence is
composed of one off-peak frequency of the downstream neuron that frequently
occurs (the standard in blue) and another off-peak frequency that occasionally
occurs (the deviant in red). The repeated standard stimuli will gradually
weaken its corresponding feedforward synapses (dashed line). Stimulus-specific
inputs are dynamically filtered by the feedforward depressing synapses and
aggregated to a downstream neuron, which can be envisaged as the feature
selectivity stage of the LNP framework. (B) Before the adaptation happens,
the integrated inputs produced by standard and deviant stimuli are equal (solid
purple curve). (C) The amplitude of adapted input tuned to standard stimuli
attenuated significantly (dashed frequency tuning curves) while that tuned
to deviant stimuli is almost unaffected, which distorts the original symmetric
frequency tuning of the downstream neuron (dashed purple curve). Figure is
adapted from Whitmire and Stanley [2016]. . . . . . . . . . . . . . . . . . . . 11

2.5 Short-term synaptic plasticity. (A) At a depressing synapse, attenuated
excitatory postsynaptic potentials (EPSP) are evoked by a presynaptic spike
train at 20 Hz. The amplitude of the postsynaptic response quickly reaches a
plateau value following the first several presynaptic spikes. The synapse largely
recovers after a 1-second silence of simulation. The spike train is marked under
the panel. (B) Driven by the same presynaptic spike train as (A), the facilitating
synapse demonstrates an opposite effect. Both depression and facilitation are
stimulated using the TM model described in Eq 2.11. The postsynaptic
potential is modeled by passive membranes (τmdu/dt = −u+RIsyn(t)) with
input resistance R and membrane time constant τm. Parameters: (A) J = 250
pA, U = 0.5, τrec = 800 ms, τin = 3 ms, R = 100 MΩ, τm = 40 ms; (B)
J = 1540 pA, U = 0.03, τrec = 130 ms, τfacil = 530 ms, τin = 1.5 ms, R = 100
MΩ, τm = 60 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Schematic illustration of activity-dependent synaptic transmission.
Upon the arrival of a presynaptic spike, synaptic vesicles quickly release their
filled neurotransmitters into the synaptic cleft with the time constant τin . These
neurotransmitters are then captured by receptors on the postsynaptic membrane
and correspondingly lead to the opening of transmitter-gated ion channels. The
depleted vesicles gradually replenish themselves with neurotransmitters with
the time constant τrec and become available again for utilization by the next
presynaptic spike. The left plot is modified from Gerstner et al. [2014] . . . . 14

2.7 Synaptic depression vs. facilitation. (A) The evolution of the utilization
rate u, recovered resources x as well as postsynaptic currents Isyn of a depression-
dominated synapse in response to a presynaptic spike sequence (depicted under
the top panel). Parameters: J = 1, U = 0.45, τrec = 750 ms, τfacil = 50 ms,
τin = 20 ms. (B) A facilitation-dominated synapse driven by the same spike
sequence as (A). Same parameters used as (A) except for U = 0.15, τrec = 50
ms, τfacil = 750 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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2.8 Phase portraits of the dynamical system (2.28) for different J and
Iext. The h- and x-nullclines can intersect three times (A: J=10, Iext=0), twice
(B: J=Jc=8.199, Iext=0) or once (C: J=6, Iext=0). They can also have only
one intersection in another case where Iext ≥ θ (D: J=6, Iext=5). Red and
green curves respectively represent the x- and h-nullclines. The stable and
unstable equilibria are denoted by filled and open circles, respectively. The rest
parameters: τm = 0.001 s, U = 0.5, τrec = 0.7 s, θ = 3, α = 1. . . . . . . . . . 21

2.9 Hopf bifurcation in the dynamical system (2.28). The leftmost equilib-
rium gains stability as the bifurcation parameter τm increases (A: τm=0.001 s,
B: τm=τ∗m=0.082 s, C: τm=0.1 s) Red and green curves respectively represent
the x- and h-nullclines. Stable, unstable equilibria as well as equilibria undergo-
ing a bifurcation are denoted by filled, open and half-filled circles, respectively.
The rest parameters: J = 10 , U = 0.5, τrec = 0.7 s, θ = 3, α = 1, Iext = 0. . . 23

2.10 Representative trajectories of the system (2.28) when Iext is on and
off, respectively. (A) Phase portrait for the step input current Iext >
θ (Iext = 5). Trajectories with ascending initial synaptic resource x0 =
0.7, 0.8, 0.9, 1 but the same initial input current h0 = 0 demonstrate increasing
amplitudes of a detour before reaching the equilibrium. (B) Phase portrait for
the absent external input (Iext = 0). A trajectory starting from the prior steady
states under external stimuli terminates at a global attractor. The remaining
parameters are: J = 2.5, τm = 0.001 s, U = 0.5, τrec = 0.7 s, θ = 3, α = 1. . . 24

3.1 Network architecture. (A) The network is composed of five cortical columns
that are arranged along the frequency axis by their best frequencies. Each
column is constructed in three blocks: the adaptive layer (pale yellow) receives
thalamocortical sensory inputs and sends its feedforwards outputs to the
excitatory (pale red) population that is coupled with the inhibitory (pale blue)
population. The excitatory group is also laterally connected to its nearest
excitatory counterparts, illustrated by arrows. (B) The thalamocortical input
to each column (for example, column 3) linearly declines as the stimulated
frequency is away from the column’s best frequency, which forms the tuning
curve of the column’s thalamocortical input. (C) To be detailed, within every
column, the feedforward adaptive population excites a recurrent excitatory
population that is regulated by another recurrent inhibitory population. The
homogenous excitatory and inhibitory populations are fully connected. . . . 26
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3.2 SSA arising from the differential adaptation of populations of frequency-
tuned neurons. (A) The amounts of adaptation a accumulate immediately
upon the presentation of stimuli and are gradually released during the inter-
stimulus interval. Adaptation in the standard column (blue) is often more
substantial than the deviant column (red). Yet, adaptation induced in the
recording column (purple) is independent of the identity of stimuli after the
first several ones due to the symmetry of the thalamocortical input around the
stimulated frequency (top panel). Accordingly, the adaptive population activity
Aa in the standard column is often weaker than the deviant. The population
activity in the recording column reaches a steady state after the first several
stimuli (bottom panel). The oddball stimuli sequence is shown under the top
panel. (B) Excitatory population activity Ae in column 4 initiated by the
deviant usually propagates more significantly into the recording column midway
than by the standard-triggered activity in column 2 (top). Correspondingly,
excitatory (pale red) and inhibitory (pale blue) populations in the recording
column often respond stronger to the deviant compared to the standard stimuli
(bottom). The time axis is vertically aligned for all panels. . . . . . . . . . . 28

3.3 Average responses of the model under five protocols. (A) To investi-
gate the deviant response characteristics, five control oddball (OD) protocols
are used: ”Standard in OD” in which a stimulus is presented to column 4
as a standard with a 75% probability of appearance (blue), ”Deviant in OD”
in which the same stimulus applied to column 4 is used as a deviant with a
25% probability of appearance (red), the ”Equal” paradigm where two stimuli
are presented 50% of the time each to column 2 and 4 respectively (cyan),
”Dev alone” (green) where the stimulus is presented to column 4 alone as
a deviant against silence and the ”Dev among Std” (yellow) in which four
different stimuli are presented 25% of the time each to column 1, 2, 4 and 5,
respectively. (B) The population activity averaged over stimuli in the recording
column evoked by tones of 4 Hz embedded in five different protocols. The
gray shade marks the stimulus duration. Inset: the average spike counts with
the standard error of the mean, normalized to the Deviant alone condition.
Data are average over responses of recording column to auditory stimulation
of 4 Hz in each protocol consisting of 800 stimuli in total. In all simulation
protocols, network parameters are chosen from Table 3.1, input amplitude A
= 15 spikes/s, stimulus duration = 50 ms and inter-stimulus interval (ISI) =
300 ms (stimulus offset to onset). (C) The same setup was employed as (B),
except that 20% real-time parameter disturbances are introduced to parameters
in Table 3.1, excluding number of columns M , width of tuning curve λ and
membrane time constants τ, τe, τi that are taken from literature [Yarden and
Nelken, 2017]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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3.4 Trajectory of the excitatory-inhibitory model (3.5) when waAa = 3.
(A) The intersection of the he- (red line) and hi-nullclines (green line) is an
unstable focus (open cirlce) that is enclosed by a stable rectified limit cycle.
The phase-portrait trajectory initiated at (he, hi)=(0,0) immediately enters the
limit cycle and thereafter oscillates periodically. (B) Left panel: population
activity of the excitatory population in response to a momentary stimulus
whose duration is marked in grey. Right panel: for comparison, a population
burst recorded in A1 evoked by a tone stimulus with the same duration.
Experimental recordings are reproduced from Hershenhoren et al. [2014a].
Network parameters are chosen from the optimal values of the corresponding
parameters in Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Structure and dynamics of the thalamocortical network and minimal
thalamic circuit inducing spindle oscillations. (A) The ventral posterior
medial (VPM) nucleus of the thalamus (pink shade), which is somatotopically
arranged into discrete clusters called “barreloids”, relays peripheral sensory
information to the L4 barrels (purple), with the relative strength of connections
represented by the size of the arrows. Each L4 cluster projects its output
vertically to the corresponding L6 infrabarrel (green), which in turn provides
feedback excitation to its somatotopic barreloid and thalamic reticular nucleus
(TRN, in blue shade), with higher cortical drive on TRN than VPM (specified
by the size of the diamonds). Each L4 barrel and L6 infrabarrel also connects
to its neighbouring barrels. (B) Population spike (PS) can be generated in the
cortical cluster, represented by the transient increase of . . . . . . . . . . . . 38

4.1 the cluster’s mean firing rate (left). Mean synaptic resources of the neuronal
group are depleted by the PS and later recover gradually (right). Higher
levels of initial resources evoke a more substantial PS. The time 0 represents
the onset of a stimulus whose duration is marked in grey shading. (C) Two
classes of cells with different synaptic receptors are used in the thalamic circuit:
thalamocortical (TC) relay cells with excitatory AMPA-mediated synapses in
the VPM and reticular (RE) cells with inhibitory GABAA-mediated synapses
in the TRN. TC and RE neuronal populations are mutually coupled, and the
RE population is also recurrently connected. The thalamus can be activated
by bottom-up sensory input (grey) and top-down cortical drive (green). (D)
A minimal thalamic network of 2 TC and 2 RE cells driven by the cortex is
capable of inducing spindle oscillations. (E) Voltage traces of two types of
thalamic cells simulated by the izhikevich model in response to a step in direct
current (bottom of each panel): initial burst tonic firing in TC neuron (-70
mV at rest, hyperpolarizing pulse of 10 pA) and rebound burst in RE neuron
(-62.5mV at rest, depolarizing pulse of -10 pA lasting 120 ms). (F) The time
course of membrane potentials for the 4 thalamic cells. Cortical stimulation is
marked by red bars under the traces (0.08 pA for TC1 and 20 pA for RE1). . 39
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4.2 Spatiotemporal distribution of whisker-evoked responses in cortical
columns and thalamus. (A) Top: Snapshots of cortical spatial activity
patterns in L4, AL4, at different times after the onset of a brief stimulation to
D2 whisker. Bottom: Analogous plots for L6 populations, where population
spikes occur later and over longer periods. (B) Temporal profiles of mean
firing rate of three cortical columns in L4 (top) and L6 (bottom) respectively.
Stimulus duration is indicated in grey shading. The timescale of the left panels
matches that in (A) to show the behaviour of the initial population spikes
evoked by sensory stimulation. Late spike-bursts in L4 driven by secondary
thalamocortical input are displayed over a longer timescale (top-right), but the
additional late responses can hardly spread into . . . . . . . . . . . . . . . . . 41

4.2 L6 (bottom-right). (C) Population activity averaged over all 100 TC neurons in
D2 barreloid, ATC. The early synchronous activity is induced by the principal
whisker deflection and relays the sensory information to the L4 barrels (left).
The trapezoid form of stimulus is illustrated under the plot. The initial L6
population spike (bottom-left panel in (B)) projects back to the thalamus,
eliciting the late oscillatory rhythm that begins after ∼110 ms of stimulation
onset at an interval of ∼110 ms (right). (D) Spike raster for the full thalamic
network of D2 barreloid (from which the population activity of TC cells shown
in (C) is calculated). The circuit is composed of 100 TC cells (dark blue) in
the D2 barreloid and 100 reciprocally coupled RE cells (light blue). The time
axes of plots in (B), (C) and (D) are aligned. . . . . . . . . . . . . . . . . . . 42

4.3 SSA in the thalamocortical network (A) Time course of the whisker
oddball protocol (top), L4 population activity, AL4, (middle), and mean synaptic
resources, xL4, (bottom) in standard D2 (blue traces) and deviant C2 (red)
barrel. Both standard and deviant stimuli evoke comparable amplitude of PS
(the first burst in response to each stimulus) due to the fast recovery of depleted
resources. Conversely, late oscillations occur primarily in response to deviant
stimuli. (B) L6 population activity, AL6, (top) and mean synaptic resources,
xL6, (bottom) in D2 and C2 infrabarrel. The deviant stimulus generally triggers
more substantial PSs than the standard because of more resource available
upon presentation of the deviant than the standard. (C) Population activities
of TC cells, ATC, in D2 and C2 barreloids. The deviant corticothalamic PS is
always strong enough to initiate late thalamic oscillation, yet this is not the
case for the standard. (D) Spike raster of thalamic neurons in D2 (blue) and
C2 (red) barreloids. The transient activity of C2 RE cells in response to the
first stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 are caused by the significant cortical cross-column L6 feedback. The time axes
of all plots are aligned. In the oddball paradigm, peripheral stimulus duration
is 10 ms and inter-stimulus interval (ISI) is 1 s (onset-to-onset). . . . . . . . . 44
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4.4 Sensitivity to deviance in silico vs in vivo. (A) Two protocols are used
to test context-dependent deviance detection. In the whisker oddball condition,
deviant stimuli are applied to the C2 whisker with 25% probability of occurrence,
while standard stimuli are applied to the D2 whisker with 75% probability. In
the many-standards condition, the deviant stimulus is presented with the same
probability of appearance as in the oddball condition, but standard stimuli are
equiprobably distributed over three whiskers D1-D3, each of which is stimulated
25% of the time. The bar height represents the probability of a specific whisker
being stimulated. (B) A subset of multi-unit (MU) recordings in the granular
layer of rat S1 shows late deviant-specific responses in the whisker oddball
and many-standards protocols. Average early spike (top row, left) and late
deviant-specific oscillatory responses (top row, right) are shown for standard
(blue curves, activity recorded in D2) and deviant (red, activity recorded in C2)
stimuli in oddball condition. The late response (bottom row) also demonstrates
a distinct difference between two deviant types (both responses recorded in C2)
in oddball (red curves) and many-standards protocols (green) respectively. Data
are adapted from Musall et al. [2017]. (C) Average biphasic population activity
in cortical L4 (top row), L6 (middle) and thalamus (bottom) in response to
oddball standard (blue traces, recorded in D2), oddball deviant (red, recorded
in C2) and many-standards deviant (green, recorded in D2) stimuli. Similar
to (B), the left and right columns of panels show the early and late activities
respectively across cortical layers and the thalamus. SSA and true deviance
detection are initiated in the early L6 responses and subsequently enhanced
in the late thalamic oscillation, which finally induces the secondary deviant-
selective cortical response in L4. The third cycle of thalamic activity is too weak
to produce a response in L4 since this thalamic input is below the rheobase
(current threshold of gain function) of L4 neurons. Stimulation periods are
marked in grey shading. Data in each protocol are averages of 120 stimulus
presentations. In both stimulation paradigms, peripheral stimulus duration is
10 ms and inter-stimulus interval (ISI) is 1 s. . . . . . . . . . . . . . . . . . . 45
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4.5 True deviance detection in the model network. (A) Illustration of
oddball (top) and many-standards (bottom) protocols. The deviant stimulation
to C2 is highlighted in red for the oddball condition and in green for the
many-standards one. (B) Population activity (top) and synaptic resources
(bottom) in L4 of C2 in response to deviant stimuli presented in oddball (red
traces) and many-standards (green) condition respectively. The deviant in
both protocols often evokes comparable onset responses, while a robust late
oscillation is generally only induced by the oddball deviant (two typical cases
are highlighted in dashed boxes). (C) Same as (B) but displayed for L6 of
C2. Considerably larger early onset responses to the many-standards deviant
compared to the oddball deviant are generated in the L6 population (see dashed
boxes), because higher activity is propagated from the L6 standard column(s)
into that of the deviant column in the many-standards compared to the oddball
condition, and accordingly less synaptic resource is left and a weaker response
is evoked upon arrival of the deviant. (D) Synaptic resources in L6 of D2 in
response to the standard stimulus applied to D2 whisker embedded in oddball
(solid traces) and many-standards (dashed) sequences. . . . . . . . . . . . . . 46

4.5 The standard stimulus to D2 in the many-standards condition, with its lower
probability of appearance than the same stimulus in the oddball condition,
allows the resource in L6 of D2 to have more time to recover fully before the next
standard stimulus arrives and consequently to generate an adequate PS capable
of spreading into the same layer of the deviant column. (E) Thalamocortical
(TC) population activity in C2 barreloid evoked by the deviant in the oddball
(red) and many-standards (green) protocols. The corticothalamic excitation
of the deviant in the many-standards condition is normally strong enough to
elicit late intermittent bursting, whereas that of the deviant in the oddball
condition is not (dashed boxes). The time axes are aligned for panels A-E.
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Chapter 1

Introduction

To survive is to adapt to the world we live in. Organisms adapt over disparate timescales.
At timescales of generations and lifetimes, species adapt features that are advantageous
for survival over the course of evolution. At slow timescales related to the development of
individual organisms, animals adapt their behaviors to changes in their surroundings. For
example, polar bears hibernate in a den during the snowy wintertime and revive to search for
food when spring comes. At timescales of real-time interactions, we all have experienced that
we become easily used to the background noises and no longer conscious of their existence
when we focus on other things. Although these phenomena stem from different mechanisms,
they manifest an idea in common: adaptation is changes in an organism’s functions that
develop over diverse timescales in response to environmental changes.

The sensory systems especially demonstrate a compelling capacity of fast adaptation to
the ever-changing sensory scene occurring over timescales from milliseconds to seconds, which
is omnipresent at all sensory pathways and has a profound effect on perceptual processing.
One of the simplest distributions of sensory stimuli is the binary distribution, where only two
possible values of a single-dimensional stimulus, such as the sound frequency or magnitude,
are taken, one presented frequently and the other rarely. This stimulation paradigm has
been widely used in the study of the capacity of the sensory system to highlight novel or
rare stimuli, which are often associated with behaviorally important events, embedded in
a sequence of different, repeated stimuli, which has less relevance. Such novelty detecting
capacity is favorable for human and animal survival as the brain selectively reduces its response
to the steady sensory background to save energy, but remains sensitive to rare stimuli that
may signify the appearance of prey or predators.

On the level of single neurons, the novelty-detecting ability is embodied in stimulus-specific
adaptation (SSA), characterized by the phenomenon that neuronal responses decrease with
repetitive stimuli, but recover when a different rare stimulus is presented. SSA is a robust and
widespread phenomenon found in multiple sensory modalities across several species. On the
level of human EEG recording, the neural signature of novelty detection has been identified
as mismatch negativity (MMN) featured by a deviance-sensitive component of event-related
potentials. Despite huge similarities, SSA is not likely to be the direct neuronal correlate of
MMN due to their distinct responses latencies and sensitivity to the neurotransmitter NMDA,
but probably one of the upstream mechanisms giving rise to MMN.

The overall objective of this dissertation is to elucidate the intrinsic and network mecha-
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nisms giving rise to cortical SSA, with an emphasis on auditory and somatosensory modalities,
using computational modeling methods. Particularly, we are devoted to modeling a delayed
deviant-specific response speculated as a neurophysiological origin of MMN [Musall et al., 2017],
and providing a new perspective of linking the SSA evident in single-cell electrophysiology
with the EEG-recorded MMN via our model.

The structure and research contributions of the dissertation are outlined as follows:

Chapter 2: ”Background” starts with a brief introduction to the rapid adaptation
of the sensory system and the significance of the phenomenon in the context of a sensory
encoding framework called linear–nonlinear-Poisson (LNP) models. It then focuses on a special
form of rapid sensory adaption named stimulus-specific adaptation (SSA) and its relevance
to novelty detection. A literature survey of SSA models follows up, and the modeling of
short-term synaptic plasticity, serving as a critical ingredient of SSA models, is also discussed.
The chapter concludes with the mathematical formulation of the mean-field rate model and
geometrical analysis of its dynamics, which will be the theoretical basis of our SSA models in
different sensory modalities discussed in the following chapters.

Contributions: We extend a pre-existing derivation on the rate network model coupled
with constant synapses to the case of adapting synapses. Besides, we provide an alternative
geometrical interpretation for an earlier dynamical analysis on a recurrent population with
depressing synapses and additional original work on the hysteretic and synchronous behaviors
occurred in this network configuration. This work is instructive for understanding the different
patterns of the population response to a step impulse.

Chapter 3: ”A Robust Model of Auditory Stimulus-Specific Adaptation” pro-
poses a possible mechanism for auditory SSA in a recurrent network with feedforward
adaptation, which is a simplified version of a previously reported SSA model [Yarden and
Nelken, 2017]. We theoretically compare responses of our mean-field network model across
multiple experimental protocols, which provides practical ways of tuning the spiking model
counterpart implemented on neuromorphic hardware to match the experimental recordings.
We also performed a robustness test of our model against online parameter perturbations and
sensitivity analysis by providing operating ranges of network parameters.

Contributions: The work identifies interactions of population activity of specifically-
tuned neurons, alongside cross-population adaption (spike-frequency adaptation or short-term
synaptic depression), as two essential mechanistic primitives for generating SSA and nov-
elty detection. Theoretical predictions are provided on the model responses to various SSA
paradigms. The numerical results are qualitatively consistent with the experimental observa-
tion, even in the presence of online disturbances for model parameters.

Chapter 4: ”Modelling Novelty Detection in the Thalamocortical Loop” de-
velops a thalamocortical network model that accounts for novelty detection and reproduces
physiologically observed neural response patterns in the whisker-related part of the somatosen-
sory cortex. Specifically, our results demonstrate that the novelty signal arises from the
complex recurrent interplay between thalamic neurons and cortical neurons in layers 4 and 6
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over multiple timescales. We also test the ability of our model to distinguish between stimuli
with higher or lower predictability, making it verifiable with future experiments. Finally, we
discuss several limitations of our model and potential ways to improve and expand the model’s
performance in future work.

Contributions: To the best of our knowledge, our model is the first computational model
endeavoring to elucidate the mechanism of the novelty-specific response observed in single
sensory neurons, and link it to another EEG-based novelty-detecting phenomenon called
mismatch negativity (MMN), concerning their common sensitivity to presentation context
and timescales of response latency. Furthermore, our model provides predictions for experi-
mental tests of our model’s capacity in detecting the unexpected in more elaborated paradigms.

Chapter 5: ”Conclusions and Future Work” summarizes the key contributions of
my PhD research and proposes some ideas to improve and expand my current models for
future work.

The content of the thesis is primarily based on the following publications produced during
my PhD journey.

Vanattou-Säıfoudine, N., Han, C., Krause, R., Vasilaki, E., von der Behrens, W. and
Indiveri, G., 2021. A robust model of Stimulus-Specific Adaptation validated on neuromorphic
hardware. Scientific reports, 11(1), pp.1-15.

Han, C., English, G., Saal, H. P., Indiveri, G., Gilra, A, von der Behrens, W., and
Vasilaki, E. (2021). Modelling novelty detection in the thalamocortical loop. Submitted to
PLOS Computational Biology.



Chapter 2

Background

The chapter aims to provide readers with both experimental and mathematical background
knowledge relevant to my PhD research on the cortical processing of novel stimuli. It begins
with proposing a possible explanation for the significance of general sensory adaption from
the point of the efficiency of encoding sensory stimuli using the liner-nonlinear-Poisson model
in section 2.1. The following section provides a brief background of the physiological basis of
electroencephalograph (EEG) signals. Section 2.3 then focuses on a particular type of sensory
adaptation called stimulus-specific adaptation, and further discusses its relation to its EEG
correlate termed mismatch negativity and the functional importance of both phenomena in
detecting novel signals. A review of computational SSA models is presented in section 2.4,
pointing out that none of the current models can explain a recent experimental finding of
late-phase SSA that is one of my research topics. A phenomenological model of short-term
synaptic plasticity as an essential ingredient of SSA models is introduced in section 2.5. The
chapter concludes with my original work on the derivation of mean-field recurrent networks
with depressing synapses and the analysis of the network dynamics in sections 2.6 and 2.7,
respectively.

2.1 Rapid Sensory Adaptation

Adaptation is prominent in all sensory modalities, which occurs at multiple timescales
caused by different mechanisms. Among them, rapid sensory adaptation at timescales from
milliseconds to seconds is one of the well-studied cases, which is found omnipresent at all
stages of sensory pathways and has an important impact on the processing of sensory stimuli
both neurophysiologically and perceptually [Whitmire and Stanley, 2016; Wark et al., 2007;
Series et al., 2009; Fairhall et al., 2001]. Here we try to answer the question raised naturally:
what role does this rapid adaptation play in sensory processing?

In order to probe the potential purpose of this adaptive phenomenon, we need first
to consider how an individual neuron encodes the stream of sensory information into its
corresponding spike sequences. The linear-nonlinear-Poisson (LNP) model has been widely
used as an encoding framework of single sensory neurons to capture their response properties
[Schwartz et al., 2006]. As can be seen from Fig 2.1, sensory stimuli are first linearly filtered
by a set of given temporal features of a neuron in question. These filtered stimuli are then
summed and fed to the neuron’s gain function, whose output defines the instantaneous firing
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rate of the following Poisson spike generator. The spike-triggered average of white-noise stimuli
is used to estimate linear filters and accordingly determine a related gain function [Schwartz
et al., 2006]. The linear filtering stage can be envisaged as the temporal feature selectivity
driven by synaptic inputs converging to a given neuron, and the nonlinear activation stage
as intrinsic neuronal properties resulting in the spike emission given the filtered inputs. In
the context of the LNP model, one can regard sensory adaptation as changes in the encoding
properties of the cascade, which arise from modifications in synaptically-driven feature filters
and/or neuronal gain.

Filt1

Filt2

Filt3

Filt4

Synaptically induced
feature selectivity

Linear temporal filters 

Static nonlinear gain

Poisson spike generator

Intrinsic properties

Stimulus

trials

spike-triggered 

Reverse correlation technique

average stimulus

Figure 2.1: Schema of the LNP model. The relation between stimulus signals and neuronal
spiking responses can be captured by the LNP model. The incoming stimuli are synaptically
filtered by a set of pre-determined temporal features. Then aggregated filtered inputs are
transformed into a Poisson spike train whose firing rate is determined by the output of the
nonlinear gain function of the given neuron. The linear filters and nonlinear gain function can
be computed using the reverse correlation of spikes with stimuli preceding each spike.

Barlow’s efficient coding hypothesis has shed substantial light on the question about the
purpose of sensory adaptation. It postulates that the sensory system always adopts the
optimally efficient coding strategy to express the peripheral stimuli given a limited capacity
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for information transmission [Barlow et al., 1961]. This efficient encoding strategy is expected
to be achieved by single neurons to dynamically adapt its outputs to the inputs with varying
statistics over relevant timescales. Theoretical analysis based on information theory indicates
that immediate information transmission efficacy is maximized when a sensory neuron matches
the distribution of its outputs to the local distribution of time-varying inputs [Wark et al.,
2007], which has also been experimentally tested at several stages of sensory pathways across
different modalities [Fairhall et al., 2001; Maravall et al., 2007, 2013]. The fast adaptation
in the neuronal response can be manifested in intrinsic properties as nonlinear gain scaling
[Brenner et al., 2000] and short-term synaptic plasticity as changes in features that linearly
filter stimuli [Whitmire and Stanley, 2016]. Specifically, repeated stimuli can gradually
increase or decrease the postsynaptic response through a facilitating or depressing synapse
that acts as a high-pass or low-pass filter. The short-term synaptic adaptation and modulation
of intrinsic neuronal properties can further lead to vital changes in information transmission
on a network level across multiple timescales [Gjorgjieva et al., 2014].

2.2 Neural Basis of EEG

This section introduces some of the key concepts of EEG and its neurophysiological origin
[Holmes and Khazipov, 2007; Tivadar and Murray, 2019], which are necessary to understand
the relevance of EEG signatures of the sensory adaptation to the analogous phenomenon at
the cellular level, as discussed in the next section.

The EEG is a non-invasive measure of cortical activity via multiple electrodes placed along
the scalp’s surface. It records the field potential fluctuations caused by summed extracellular
current flows of populations of similarly oriented neurons that fire synchronously. However, the
EEG electrodes could also collect electrical noises from other sources, such as muscular activity
and electrical equipment. Despite its relatively low spatial resolution and signal-to-noise
ratio, the EEG technique is still widely used to diagnose or treat seizures, sleep disorders and
encephalopathies given its advantage of portability and millisecond-scaled temporal resolution.
An event-related potential (ERP) is obtained by averaging EEG responses temporally locked
to the occurrence of a specific stimulus or event. A subtype of ERP is the evoked potential
(EP), which is the temporally averaged EEG responses evoked by the presentation of a specific
sensory stimulus.

Neurons are electrically polarized by altering the relative concentration of intracellular ions
to the extracellular milieu through the protein pumps on the membrane. Action potentials can
be generated at the soma of a depolarized neuron and propagated along its axon. When an
excitatory postsynaptic potential (EPSP) is induced by a presynaptic spike, an intracellular
current source at the EPSP site and an adjacent current sink in the extracellular space occur
together. According to Kirchhoff’s current law, an intracellular source somewhere along the
dendrite or at the soma of the postsynaptic neuron and its corresponding extracellular current
sink must be generated concurrently. This extracellular current sink-source setup forms a
current dipole that functions as a battery and gives rise to the EEG signals.

Since the pyramidal neurons in the cortex are well organized in a columnar manner, they
have homogenous spatial orientations and become active simultaneously. These essential
features make the pyramidal neurons the main contributors to the EEG response. Although
EEG cannot directly detect activity from subcortical structures such as the thalamus and
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brainstem, these deep sources have a significant influence on surface EEG activity. For
instance, a large range of rhythmic EEG activity could result from the thalamocortical system.
The mechanisms underlying some of these synchronous EEG patterns have been elucidated,
such as the sleep spindle oscillation, while many others still are unclear.

2.3 Stimulus-specific Adaptation (SSA), Mismatch Negativ-
ity (MMN) and Novelty Detection

Sensory cortices are adept at identifying regularities and patterns obscured in the ever-
changing input stream to dynamically generate predictions for the forthcoming stimulus.
Their responses are then updated according to differences between the anticipated sensory
inputs and the actual ones [Khouri and Nelken, 2015]. Mismatch negativity (MMN), observed
in human EEG recordings [Fitzgerald and Todd, 2020], and stimulus-specific adaptation
(SSA), evident in single-cell recordings in animals [Nelken, 2014], are two prominent instances
of this type of short-term plasticity acting over timescales of seconds to minutes. For example,
when consecutively presented with an identical stimulus over a short period, the cortical
sensory neuron will decline/adapt its response and predict/expect another same one for the
next stimulus. If the next stimulus violates the expectation, a larger/unadapted response
will be evoked than by the expected stimulus. Therefore, both SSA and MMN conceptually
represent a form of novelty detection: unexpected or infrequent stimuli are made more salient
by eliciting stronger responses than expected or frequent ones. By virtue of such differential
sensory processing, organisms are enabled to separate behaviorally important information
from the continuous stream of sensory information.

The phenomenon of attenuated neuronal responses to common (standard) stimuli without
generalizing to other, rare (deviant) stimuli has been a long-standing topic of interest, especially
in the auditory system, which is referred to as SSA [Ulanovsky et al., 2003; Katz et al., 2006;
Taaseh et al., 2011; Hershenhoren et al., 2014a; Musall et al., 2017]. It is typically tested using
the oddball paradigm that contains a repetitive standard sequence occasionally interrupted
by a deviant [Näätänen et al., 1978]. The roles of two single-dimension stimulus features as
the deviant and standard are swapped in order to disambiguate the effect of response bias
towards a specific stimulus feature from the occurrence probabilities on SSA. Consequently,
SSA is quantified by the SSA index (SI) [Ulanovsky et al., 2003] defined below:

SI =
(d(x1) + d(x2))− (s(x1) + s(x2))

d(x1) + d(x2) + s(x1) + s(x2)
(2.1)

where s(xi) and d(xi), i ∈ {1, 2}, describe neuronal responses evoked by stimuli feature xi
presented as standard and deviant, respectively.

The above index can be modified to measure SSA induced by each stimulus feature
separately:

SI(xi) =
d(xi)− s(xi)

d(xi) + s(xi)
(2.2)

According to the formula, SI is normalized between -1 and 1 and its positive value indicates
the existence of SSA, where stronger SSA effects leads to a closer value of the index to 1 (refer
to Fig 2.2).
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Figure 2.2: Auditory SSA tested in the oddball paradigm. (A) A frequency oddball
sequence consists of the standard frequency f1 of a tone (95% probability of occurrence)
and deviant frequency f2 of another tone (5% probability), which is reflected by tones of f2
interspersed among a series of repeated tones of f1 in the temporal presentation. The average
membrane potential responses of an auditory neuron to the standard (blue) is smaller than
the deviant (red). (B) The same convention as (A) except that identities of f1 and f2 as
standard and deviant are swapped. Similarly, neuronal responses evoked by the standard are
weaker than the deviant. Recording data are replotted from Hershenhoren et al. [2014a]. (C)
Same responses in (A) and (B) are categorized by tone frequency. As defined in Eq 2.2, the
strength of SSA elicited by each of the two frequencies is scaled by the difference between
responses to the frequency as deviant and as standard. The difference is positive for both f1
and f2, which signifies that SSA exists at both frequency sites.

SSA is a robust and widespread phenomenon found in multiple sensory modalities.
Ulanovsky et al. [2003] first observed this phenomenon in the auditory cortex, and fol-
lowing this pioneering work, SSA has also been identified at subcortical stages of the auditory
pathway such as the thalamus [Bauerle et al., 2011; Antunes and Malmierca, 2014, 2011] and
the inferior colliculus [Malmierca et al., 2009, 2015], as well as in other sensory systems such
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as the somatosensory cortex [Katz et al., 2006; Musall et al., 2017] and the visual system
[Reches and Gutfreund, 2008; Reches et al., 2010]. Furthermore, SSA was demonstrated in
the auditory cortex of anaesthetized [Taaseh et al., 2011; Hershenhoren et al., 2014a], awake
[von der Behrens et al., 2009] and freely moving rats [Polterovich et al., 2018], indicating that
this phenomenon is not significantly affected by brain state and likely a hardwired component
of sensory processing.
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Standard
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Figure 2.3: Human auditory MMN and late SSA in whisker-related somatosensory
area of the rat model. (A) Average auditory event-related potentials in human EEG
recordings in response to the deviant and standard in a frequency oddball paradigm. An
additional negative component is evoked exclusively during the presentation of deviant stimuli.
The duration of stimuli is indicated as a black bar along the time axis. Recording data are
replotted from Sams et al. [1985]. (B) Average firing rate of neurons in the layer 4 of S1
in response to a whisker oddball paradigm. A secondary oscillatory deviant response with
comparable latency with MMN (right panel) is observed following a transient synchronized
activity (left panel). Gray shading marks the stimulation duration. Data are replotted from
Musall et al. [2017].

MMN, like SSA, is usually studied by applying the oddball paradigm and manifested in
human EEG recordings as an additional negative deviation elicited by a deviant stimulus that
breaks the regularity established by repeated presentations of the standard [Näätänen et al.,
1978] (see Fig 2.3A). MMN can appear in any sensory modality and has been well-studied
in the auditory Näätänen et al. [2007] and visual areas [Pazo-Alvarez et al., 2003]. Both
cortical SSA and MMN demonstrate a “true” deviance-detecting property, where the deviant
response is dependent on its presentation context and beyond mere sensory input depression
by applying several control paradigms [Jacobsen and Schröger, 2001; Taaseh et al., 2011;
Musall et al., 2017]. In addition to SSA, animal models also show MMN-like responses that
are homologous with human MMN in terms of their electrophysiological, pharmacological and
functional properties [Harms et al., 2016; Shiramatsu and Takahashi, 2021]. Despite significant
similarities, SSA is unlikely to be the direct neuronal substrate of MMN, but maybe one of the
several mechanisms leading to the generation of MMN [Nelken and Ulanovsky, 2007]. While
MMN has been pharmacologically demonstrated to be NMDA-receptor dependent [Umbricht
et al., 2000], SSA seems to be not affected by NMDA-receptor antagonists [Farley et al.,
2010]. Besides, the response latency of SSA (peaks <10 ms after stimuli onset) is substantially
shorter than MMN (peaks ∼150-200 ms post-stimulus). Instead, SSA temporally matches
better another event-related potential called mid-latency response (MLR) that peaks around
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20 ms after stimuli onset [Shiramatsu and Takahashi, 2021]. MLR observed in humans and
animals also demonstrates true deviance detection [Grimm et al., 2011] and its insensitivity
to NMDA-receptor antagonists [Shiramatsu et al., 2013]. Thus, it seems more plausible to
postulate that SSA is the potential neuronal correlate of mid-latency response. Moreover,
Musall et al. [2017] recently found a late deviant-sensitive sensory response in the primary
somatosensory cortex (S1) occurring hundreds of milliseconds post-stimulus, similar to MMN
latency (see Fig 2.3B). The late sensory response has also been tested to be context-specific.
These evidence strongly implied that the late response possibly lies in the physiological origin
of MMN.

2.4 A review of SSA models

Over the past decade, a large number of computational models have been proposed to account
for cortical SSA, with a focus on the auditory pathway. These models can be grouped into
two main classes:

1) The first class of SSA models is based on a feedforward network with synaptic depression
[Taaseh et al., 2011; Mill et al., 2011b,a, 2012; Hershenhoren et al., 2014b] which, unlike
general neuronal fatigue, is stimulus-specific. Thus reduction in synaptic strength only occurs
at those synapses mediating frequently presented stimulus features, leading to the specifically
attenuated postsynaptic inputs to the neuron in question and correspondingly the generation
of SSA. This class of feedforward adaptation models can be summarized in the adaptation in
narrowly-tuned modules (ANTM) model, which functions as linear temporal filters within
the context of LNP neuron introduced in 2.1. As illustrated in Fig 2.4, a downstream neuron
integrates feedforward excitatory inputs from populations of presynaptic neurons tuned for
specific acoustic frequencies. The feedforward synapses show activity-dependent adaptation.
SSA in the postsynaptic neuron arises from the differential adapted drives from populations
of narrowly-tuned presynaptic neurons. The ANTM model can reproduce several properties
of SSA observed in the auditory cortex, such as the dependence of SSA on oddball protocol
parameters, from the perspective of network-level adaptation. Indeed, as prominent synaptic
depression is found in the thalamocortical pathway, cortical SSA emerges probably due to the
differentially adapted thalamocortical inputs [Taaseh et al., 2011; Mill et al., 2011b].

In the ANTM model, the standard’s regularity cannot affect the deviant response because
the responses to each stimulus feature solely depend on the amount of adaptation load accu-
mulated in its input channel. Hence the model fails to exhibit true deviance detection in which
the presentation context formed by the standards also contributes to the deviant response.
Nevertheless, this flaw of the ANTM model can be potentially addressed through some
modifications, such as employing the model in a multi-layer configuration [Mill et al., 2012] or
assuming the width of the tuning curve of the input channel is history-dependent [Nelken, 2014].

2) On top of the ANTM structure that explains SSA solely by presynaptic mechanisms
of an LNP neuron, the contributions of network mechanisms to cortical SSA have also been
considered in the form of recurrent networks [Wacongne et al., 2012; Wang and Knösche, 2013;
May et al., 2015; Yarden and Nelken, 2017; Kudela et al., 2018]. The group of models has more
complex network connectivity, and combined with synaptic plasticity, it usually produces rich
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Figure 2.4: Adaptation in the narrowly tuned modules (ANTM) model. (A) A
widely-tuned auditory neuron integrates inputs from narrowly-tuned presynaptic populations
organized along a frequency axis. The tone sequence is composed of one off-peak frequency of
the downstream neuron that frequently occurs (the standard in blue) and another off-peak
frequency that occasionally occurs (the deviant in red). The repeated standard stimuli will
gradually weaken its corresponding feedforward synapses (dashed line). Stimulus-specific
inputs are dynamically filtered by the feedforward depressing synapses and aggregated to
a downstream neuron, which can be envisaged as the feature selectivity stage of the LNP
framework. (B) Before the adaptation happens, the integrated inputs produced by standard
and deviant stimuli are equal (solid purple curve). (C) The amplitude of adapted input
tuned to standard stimuli attenuated significantly (dashed frequency tuning curves) while that
tuned to deviant stimuli is almost unaffected, which distorts the original symmetric frequency
tuning of the downstream neuron (dashed purple curve). Figure is adapted from Whitmire
and Stanley [2016].

intracortical behaviors. Predictive coding based neuronal network of the auditory cortex was
studied by Wacongne et al. [2012] to account for deviance detection in the context of MMN.
Yarden and Nelken [2017] proposed a generic SSA mechanism mediated via the propagation
of synchronous population activity across a local neural circuit. Recently a laminar network
of morphologically plausible, multi-compartmental neuron units was designed to capture SSA
in the form of local field potentials [Kudela et al., 2018].

However, there is still no computational model accounting for the biphasic sensory re-
sponses in S1 that can be either sensitive to the rarity and presentation context of stimuli
or not, depending on the response latency [Musall et al., 2017]. In particular, the latency
of the secondary cortical response cannot be solely accounted for by the dynamics of a
recurrent network involving short-term synaptic depression that is commonly regarded as
an indispensable constituent of SSA models. Thus the latency is possibly produced by some
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subcortical source(s) other than the intra-cortical dynamics. Inspired by the idea that SSA
arises from the interaction between differentially adapted populations of neurons tuned for
specific feature stimuli [Yarden and Nelken, 2017], we proposed a multi-scale recurrent network
with synaptic depression and excitatory/inhibitory imbalance to explain how novelty detection
can arise in the whisker-related part of the somatosensory thalamocortical loop and reproduce
physiologically observed neural response patterns in S1 (see Chapter 4 for details).

2.5 Modeling Short-term Synaptic Plasticity

One of the prominent signatures of neocortical and thalamocortical synapses is their rapid
changes in connection strength induced by sustained stimulation, known as short-term synaptic
plasticity [Thomson and Deuchars, 1994; Gil et al., 1999; Katz et al., 2006]. The dynamics of
synaptic plasticity depend on the types of neurons connected. In general, connections between
excitatory pyramidal neurons exhibit synaptic depression, characterized by the reduction of
postsynaptic responses to a repetitive presynaptic spike train (see Figure 2.5A). In contrast,
couplings involving inhibitory interneurons often display synaptic facilitation, which has the
opposite effect described by the increase of postsynaptic responses to the same spike train
[Markram et al., 1998; Gupta et al., 2000] (see Figure 2.5B). It has been widely assumed that
short-term synaptic depression is a necessary ingredient of SSA models, either in feedforward
(such as ANTM model) or recurrent architectures [Nelken, 2014; Khouri and Nelken, 2015], as
reviewed in the previous section.

Here, we will introduce a phenomenological model of short-term synaptic plasticity
proposed by Tsodyks and Markram (also called TM model) [Tsodyks and Markram, 1997],
which can qualitatively reproduce the experimentally-recorded kinetic data of short-term
plasticity. The TM model can also be used to derive mean-field dynamics of a neural network
coupled by adapting synapses (see an example in next section), which is a useful computational
tool to investigate the local network dynamics of the cortex.

2.5.1 Modelling Synaptic Depression

The TM model assumes that each presynaptic site reserves an absolute amount of synaptic
resources, and the amplitude of postsynaptic responses depends on the fraction of presynaptic
resources in an active state. The dynamics of conversion between different states of resources
are described by the following equations:

dx

dt
=

z

τrec
− ux−(tf )

∑
f

δ(t− tf )

dy

dt
= − y

τin
+ ux−(tf )

∑
f

δ(t− tf )

dz

dt
=

y

τin
− z

τrec

(2.3)

where the fraction of synaptic resources in the recovered, active, and inactive states is denoted
by x, y and z, respectively. The Dirac delta function δ(t) represents a presynaptic spike. A
presynaptic spike elicited at time tf instantaneously transforms a rate u of resources in a
recovered state into an active state that will trigger the opening of postsynaptic ion channels.
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A

B

Figure 2.5: Short-term synaptic plasticity. (A) At a depressing synapse, attenuated
excitatory postsynaptic potentials (EPSP) are evoked by a presynaptic spike train at 20
Hz. The amplitude of the postsynaptic response quickly reaches a plateau value following
the first several presynaptic spikes. The synapse largely recovers after a 1-second silence of
simulation. The spike train is marked under the panel. (B) Driven by the same presynaptic
spike train as (A), the facilitating synapse demonstrates an opposite effect. Both depression
and facilitation are stimulated using the TM model described in Eq 2.11. The postsynaptic
potential is modeled by passive membranes (τmdu/dt = −u+RIsyn(t)) with input resistance
R and membrane time constant τm. Parameters: (A) J = 250 pA, U = 0.5, τrec = 800 ms,
τin = 3 ms, R = 100 MΩ, τm = 40 ms; (B) J = 1540 pA, U = 0.03, τrec = 130 ms, τfacil = 530
ms, τin = 1.5 ms, R = 100 MΩ, τm = 60 ms.

The active resources y immediately become inactive with a time constant τin and subsequently
recover with a time constant τrec (see Fig 2.6). x−(tf ) denotes the fraction of recovered
synaptic resources right before the presynaptic firing time tf .

Here the postsynaptic current is modeled as directly current-sourced rather than conductance-
based

Isyn(t) = Jy(t) (2.4)

where J is the synaptic efficacy expressed as the maximum capacity of synaptic transmission
when all the resources are active.

By taking into account the fact τin � τrec and the firing rate of the presynaptic neuron is
usually much lower than 1/τin, as well as the normalization condition x+ y + z = 1, Eqs 2.3
can be approximated by the following equation involving x only:

dx

dt
=

1− x
τrec

− ux−(tf )
∑
f

δ(t− tf ) (2.5)

By integrating on both sides of Eq 2.5, one can obtain the iterative expressions for the
recovered resources x in response to the presynaptic spike train

xn+1 = xn(1− u)e−∆tn/τrec + 1− e−∆tn/τrec (2.6)
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(Recovered) (Active)

(Inactive)

Instantaneous

A presynaptic spike

Release of 
neurotransmitters

from vesicles

Uptake of 
neurotransmitters

into vesicles

Presynaptic

Postsynaptic

Neurotransmitter-gated 
ion channel

Vesicles containing 
neurotransmitters

Figure 2.6: Schematic illustration of activity-dependent synaptic transmission.
Upon the arrival of a presynaptic spike, synaptic vesicles quickly release their filled neu-
rotransmitters into the synaptic cleft with the time constant τin . These neurotransmitters
are then captured by receptors on the postsynaptic membrane and correspondingly lead to
the opening of transmitter-gated ion channels. The depleted vesicles gradually replenish
themselves with neurotransmitters with the time constant τrec and become available again for
utilization by the next presynaptic spike. The left plot is modified from Gerstner et al. [2014]

where xn represents the value of x immediately before the nth presynaptic spike. ∆tn is the
time interval between the n-th and (n+ 1)-th presynaptic sikes. Correspondingly, the iterative
form for the postsynaptic current is as follow

Isyn,n+1 = (Isyn,n + Juxn)e−∆tn/τin (2.7)

Particularly, if the presynaptic neuron fires at a constant rate f (∆tn ≡ 1/f), the recovered
resource will reach a steady-state value

xss =
1− e−1/(fτrec)

1− (1− u)e−1/(fτrec)
(2.8)

as well as the postsynaptic current

Isyn,ss =
Juxsse

−1/(fτin)

1− e−1/(fτin)
(2.9)

2.5.2 Modeling Synaptic Facilitation

Since the amplitude of instant jump of postsynaptic current elicited by a presynaptic spike
is proportional to the product of u and x, to model the facilitating effect, one can assume
that u is not a constant rather being elevated by each spike and decaying between spikes.
This assumption reflects an immediate increase in calcium concentration in the presynaptic
terminal caused by an incoming spike, which leads to the release of neurotransmitters, and
slow dissipation of calcium ions afterward [Bertram et al., 1996; Mallart and Martin, 1967;
Zengel and Magleby, 1982]. The corresponding kinetics equation is therefore expressed as

du

dt
=
U − u
τfacil

+ U [1− u−(tf )]
∑
f

δ(t− tf ) (2.10)
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where u is the fraction of opened calcium channels, U denotes the steady-state value of u,
and τfacil is the time constant for the close of calcium channels following their instant opening
by incoming spikes.

Similarly, the above differential equation can be converted into an iterative form for the
value of u right before the arrival of n-th presynaptic spike, which, along with the iterative
equation of x defined in Eq 2.11, give rise to the corresponding expression for the postsynaptic
current

un+1 = un(1− U)e−∆tn/τfacil + U

xn+1 = xn(1− un)e−∆tn/τrec + 1− e−∆tn/τrec

Isyn,n+1 = (Isyn,n + Junxn)e−∆tn/τin

(2.11)

Driven by a regular presynatic spike train at the frequency of f (∆tn ≡ 1/f), u can reach a
plateau value

uss =
U

1− (1− U)e−1/(fτfacil)
(2.12)

When τfacil → 0, uss becomes equivalent to U and therefore the full model is reduced to a
model of synaptic depression with u = U

It should be noted that mechanisms of synaptic facilitation and depression can exist
concurrently. Different combination of parameters τfacil, τrec, and U in Eq 2.11 could give rise
to a wide range of short-term synaptic dynamics from strong facilitation (τfacil � τrec and
relatively small values of U) to dominating depression (τfacil � τrec and large values of U)
(see Fig 2.7).

A B

Figure 2.7: Synaptic depression vs. facilitation. (A) The evolution of the utilization
rate u, recovered resources x as well as postsynaptic currents Isyn of a depression-dominated
synapse in response to a presynaptic spike sequence (depicted under the top panel). Parameters:
J = 1, U = 0.45, τrec = 750 ms, τfacil = 50 ms, τin = 20 ms. (B) A facilitation-dominated
synapse driven by the same spike sequence as (A). Same parameters used as (A) except for
U = 0.15, τrec = 50 ms, τfacil = 750 ms.
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2.6 From Spiking to Rate Network

In this section, we derive the rate equations for a network of interacting populations mediated
by depressing synapses under the assumption that each population is large and homogeneous,
using standard techniques [Gerstner et al., 2014; Vasilaki and Giugliano, 2012, 2014; Esposito
et al., 2015]. The work is an extension of a previous work tackling populations connected with
fixed connection strength [Gerstner et al., 2014] to the scenario of adapting synapses. By
homogenous, we mean that (i) all neurons have the same properties; (ii) each neuron receives
identical external input; and (iii) the coupling strength between any pair of neurons within
the population is statistically uniform. The general conclusions drawn here will be applied in
the subsequent two chapters to formalize mean-field cortical networks composed of multiple
coupled cortical columns.

We define the mean firing rate as the population activity A(t) averaged over a pool of
homogenous neurons, as did in Gerstner et al. [2014]:

A(t) ≡ lim
∆t→0

nact(t; t+ ∆t)

N∆t
=

1

N

N∑
j=1

∑
f

δ(t− tfj ) (2.13)

where N is the number of neurons within the population, nact(t; t+ ∆t) denotes the number
of spikes of all neurons in the population, which appear betweem time t and t+ ∆t. Since
∆t is a very short time interval, each neuron fires at most one spike during the interval and
correspondingly nact(t; t+ ∆t) also represents the number of neurons that fire between time t

and t+ ∆t. δ(t) is the Dirac delta function and tfj denotes the firing time of the j-th neuron
in the population. This notion of the rate as population activity averaged over many neurons
will be widely used in the following derivation.

The dynamics of short-term depression for the connection between pre- and post-synaptic
neuron pair j, i is given by the phenomenological model [Tsodyks et al., 1998; Hennig, 2013]:

dxij(t)

dt
=

1− xij(t)
τrec

− Uxij(t)
∑
f

δ(t− tfj ) (2.14)

where each pre-synaptic spike emitted at tfj utilizes a certain rate U of the available synaptic
resource xijthat is a fraction of full resources. The depleted available resource then returns
to its baseline value with a time constant τrec. For the current-based type of post-synaptic
input, which is independent of neuronal membrane potential, the increment in the amplitude
of post-synaptic current Ii(t) triggered by a pre-synaptic spike arriving at tfj is given by

∆Ii(t
f
j ) = JUx−ij(t

f
j ) (2.15)

where J is the absolute synaptic efficacy and x−ij(t
f
j ) denotes the value of xij immediately

before the arrival of the spike.
We define xi(t) ≡ 1/N

∑N
j=1 xij as the mean available resource in a bunch of synapses

from a population of pre-synaptic neurons j to a post-synaptic neuron i. By taking the
average over the pool of pre-synaptic neurons on both sides of Eq 2.14, we get

dxi(t)

dt
=

1− xi(t)
τrec

− 1

N

N∑
j=1

Uxij(t)
∑
f

δ(t− tfj ) (2.16)



CHAPTER 2. BACKGROUND 17

The second term on the right-hand side of Eq 2.16 can be further transformed, assuming
uncorrelated Poisson spiking from a large population of pre-synaptic neurons, to

U

N

N∑
j=1

∑
f

xij(t)δ(t− tfj ) = U lim
∆t→0

∑
j∈Ω xij(t)

N∆t

≈ U lim
∆t→0

xi(t)nact(t; t+ ∆t)

N∆t
= Uxi(t)A(t)

(2.17)

where N is the number of neurons in the pre-synaptic population. Ω denotes the subpopulation
of pre-synaptic neurons that fire between time t and t + ∆t, and nact(t; t + ∆t) is the size
of the subpopulation. The approximation becomes an equality in the limit of N →∞. A(t)
represents the population activity of pre-synaptic neurons as defined in Eq 2.13.

Using Eq 2.17, Eq 2.16 can be reformulated as

dxi(t)

dt
=

1− xi(t)
τrec

− Uxi(t)A(t) (2.18)

We find that the dynamics of the mean synaptic resource xi(t) is independent of the neuronal
identity and therefore is the same for all neurons in the population.

In addition, we assume that each pre-synaptic spike emitted at tfj triggers an instantaneous

post-synaptic current with the temporal profile α(t− tfj ) and the efficacy for each synaptic
connection in an all-to-all coupled population of N neurons is scaled as J0/N . The input
current to a neuron i in the population is generated by all spikes of all neurons within the
same population,

Ii(t) =

N∑
j=1

∑
f

J0

N
Ux−ij(t

f
j )α(t− tfj )

= J0U
N∑
j=1

∑
f

∫ ∞
0

1

N
xij(t− s)α(s)δ(t− tfj − s)ds

= J0U

∫ ∞
0

α(s)
1

N

N∑
j=1

∑
f

xij(t− s)δ(t− tfj − s)ds

(2.19)

Making use of Eq 2.17 with t replaced by t− s to substitute the average quantity on the
right-hand side of Eq 2.19, we obtain

I(t) = J0U

∫ ∞
0

α(s)x(t− s)A(t− s)ds (2.20)

We dropped the neuronal index i since the input current at time t depends on past mean
synaptic resource and population activity and is identical for all neurons.

Now we generalize the arguments from a single fully-connected pool to multiple interacting
pools. Under the assumption that neurons are homogenous in each population, the activity of
neurons in population k is

Ak(t) =
1

Nk

∑
j∈Γk

∑
f

δ(t− tfj ) (2.21)
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where Nk is the size of population k and Γk represents the set of neurons that belongs to
population k.

We assume that each neuron i in population k receives input from all neurons j in
population l with adapting coupling strength (Jkl/Nl)Uklxij(t) and the post-synaptic current
of the neuron i elicted by a spike of a presynaptic neuron j has the time course αkl(t). Here
the synaptic efficacy Jkl, utilization rate Ukl and post-synaptic current αkl(t) depend on the
type of synaptic connection from a neuron in population l to a neuron in population k rather
than the neuronal identity. The input current to a neuron i in pool k is induced by all spikes
of all neurons in the network of pools,

Ii,k(t) =
∑
l

∑
j∈Γl

∑
f

Jkl
Nl
Uklx

−
ij(t

f
j )αkl(t− tfj )

=
∑
l

JklUkl

∫ ∞
0

αkl(s)
1

Nl

∑
j∈Γ

∑
f

xij(t− s)δ(t− tfj − s)ds

=
∑
l

JklUkl

∫ ∞
0

αkl(s)xi(t− s)Al(t− s)ds

(2.22)

Correspondingly the dynamics of mean synaptic resource xi(t) is generalized as

dxi(t)

dt
=

1− xi(t)
τrec,kl

− Uklxi(t)Al(t) (2.23)

By assuming that Ukl and τrec,kl are homogenous across different pools, we drop the
subscript kl and reformulate the above equation as

dxl(t)

dt
=

1− xl(t)
τrec

− Uxl(t)Al(t) (2.24)

Here we change the index of mean synaptic resource from post-synaptic neuron i in population
k to pre-synaptic population l since the evolution of mean synaptic resource is governed by
the activity of pre-synaptic population and is the same for all neurons within post-synaptic
populations.

In this case, the input current,

Ik(t) =
∑
l

JklU

∫ ∞
0

αkl(s)xl(t− s)Al(t− s)ds (2.25)

which is independent of the neuronal index i but the post-synaptic population index k.
Finally, we characterize the dynamics of the input current hk(t) of population k with the

differential equation of passive membrane and employ for each population the rate model
Al(t) = Fl(hl(t)) in which Fl is the stationary gain function of neurons in population l. The
input current hk(t) takes into account both synaptic coupling Ik(t) and external drive Iext

k (t),

τm
dhk(t)

dt
= −hk(t) +

∑
l

JklU

∫ ∞
0

αkl(s)xl(t− s)Fl(hl(t− s))ds+ Iext
k (t) (2.26)

where all neurons in the network have the same membrane time constant τm.
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Particularly, in the case of instantaneous post-synaptic current pulse αkl(s) = δ(s), Eq
2.26 can be reduced to a first-order differential equation

τm
dhk(t)

dt
= −hk(t) +

∑
l

JklUxl(t)Fl(hl(t)) + Iext
k (t) (2.27)

2.7 Phase Plane Analysis of a Recurrent Population with De-
pressing Synapses

Following the derivation of a mean-field rate model in the previous section, here we present
a systematic analysis of the dynamics of a recurrent, excitatory population with short-term
synaptic depression. This work re-expresses a prior stability analysis of the type of network
under different parameter settings [Vasilaki and Giugliano, 2014] in the context of phase
portraits, and extends the original work by further considering hysteretic and synchronous
behaviors of the network, respectively led by Hopf bifurcation by a specific internal parameter
and switch of external input. This network structure and its corresponding dynamics will
later be employed as an elementary component of the somatosensory SSA model discussed in
Chapter 4.

We geometrically analyze the model dynamics on the phase plane under different parameter
regimes. We identify the model can show either bistability or monostability. The hysteresis
behavior in the former case will result in sustained neuronal activity even after eliminating
the external stimulus. This phenomenon is thought of as the neuronal signature of working
memory that enables humans and animals to keep track of a temporary sensory stimulus for a
few seconds after its disappearance. Furthermore, we examine the transient model dynamics
in response to the switch of external input given a specific set of network parameters. On
the onset of external stimuli, the model can exhibit a transient, sharp increase in population
activity, reflecting almost synchronous firings of a group of neurons within a short time
interval. The coincident population activity rapidly exhausts the synaptic resources within
the population, which leads to the immediate termination of the concurrent activity and
prevents its subsequent generation.

The rate dynamics of a homogenous population fully connected by depressing synapses is
given by the following differential equations:{

τmḣ = −h+ JUxE + Iext

ẋ = (1− x)/τrec − UxE
(2.28)

where E is the excitatory population activity defined by the following gain function of the
mean-field input current h:

E = [α(h− θ)]+ = max (α(h− θ), 0) (2.29)

Since each neuron in the population has the same dynamics by assuming that the population
is fully-connected, large and homogenous, the collective dynamics of the population are
described as if a single neuron behaves. The summed mean-field input current h consists of
the self-recurrent feedback mediated by depressing synapses JUxE and the external input
Iext.
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In order to investigate the dependency of the network dynamics on parameters, we first
need to determine the nullclines of the dynamical system (2.28, 2.29). By setting ḣ = 0 in Eq
2.28, we get the following algebraic equation:

− h+ JUx[α(h− θ)]+ + Iext = 0 (2.30)

which has the solution

h(x) =

{
(θ − Iext) / (αJUx− 1) + θ h ≥ θ
Iext h < θ

(h-nullcline) (2.31)

The h-nullcline consists of a constant function h(x) = Iext for h < θ and one branch of
the hyperbola h(x) = (θ − Iext) /[αJU(x − 1/αJU)] + θ for h ≥ θ with vertical asymptote
x = 1/αJU and horizontal asymptote h(x) = θ, as depicted in Fig 2.8.

Similarly, given ẋ = 0, we obtain the equation

(1− x)/τrec − Ux[α(h− θ)]+ = 0 (2.32)

which gives the x-nullcline{
h(x) = 1/ατrecUx− 1/ατrecU + θ h ≥ θ

x = 1 h < θ
(x-nullcline) (2.33)

The x-nullcline is composed of a vertical line x = 1 for h < θ and the right branch of the
hyperbola h(x) = 1/ατrecUx − 1/ατrecU + θ for h ≥ θ with vertical asymptote x = 0 and
horizontal asymptote h(x) = θ − 1/ατrecU . The vertical line and the hyperbola join at the
point (x, h) = (1, θ) (see Fig 2.8).

When Iext ≤ θ, there is always an intersection between h- and x-nullcline at (x, h) =
(1, Iext). However, there could be zero, one or two intersections between the hyperbola parts
of the two nullclines in the domain of h > θ, depending on the parameters (see Fig 2.8A, B
and C). When Iext > θ, the scenario is greatly simplified with only one intersection at h > θ
for arbitrary choices of the rest parameters (see Fig 2.8D).

We observe that there exists a critical value for network parameters where two intersections
coalesce into a single one at x = xc and h = hc > θ when Iext ≤ θ. By definition, h-nullcline
is tangent to x-nullcline at x = xc, namely{

hh−null(xc) = hx−null(xc)

ḣh−null(xc) = ḣx−null(xc)
(2.34)

which can be further expressed in an explicit form as{
(θ − Iext) / (αJUxc − 1) = 1/ατrecUxc − 1/ατrecU

J (θ − Iext) / (αJUxc − 1)2 = 1/
[
τrec (αUxc)

2
] (2.35)

The above equations have the solution

xc = 1− αU
√
Jτrec (θ − Iext) (2.36)
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A B
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Figure 2.8: Phase portraits of the dynamical system (2.28) for different J and Iext.
The h- and x-nullclines can intersect three times (A: J=10, Iext=0), twice (B: J=Jc=8.199,
Iext=0) or once (C: J=6, Iext=0). They can also have only one intersection in another
case where Iext ≥ θ (D: J=6, Iext=5). Red and green curves respectively represent the x-
and h-nullclines. The stable and unstable equilibria are denoted by filled and open circles,
respectively. The rest parameters: τm = 0.001 s, U = 0.5, τrec = 0.7 s, θ = 3, α = 1.

Substituting xc into the second equation of Eqs 2.35, one can obtain the critical value of the
synaptic efficacy J related to the single intersection scenario (Fig 2.8B)

Jc =
(√

τrec (θ − Iext) + 1/
√
αU
)2

(2.37)

We then consider the stability of the equilibrium points. For the convenience of analysis,
we compactly rewrite the dynamical system (2.28) in the following form{

ẋ = G1(x, h) = (1− x)/τrec − UxE
ḣ = G2(x, h) = (−h+ JUxE + Iext) /τm

(2.38)
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By definition, the Jacobian matrix L of the above system at the equilibrium (xeq, heq) is

L (xeq, heq) =

(
∂G1/∂x ∂G1/∂h
∂G2/∂x ∂G2/∂h

)∣∣∣∣
(xeq,heq)

(2.39)

To be specific,

L (xeq, heq) =

(
−1/τrec − αU (heq − θ) −αUxeq

αJU (heq − θ) /τm (−1 + αJUxeq) /τm

)
For heq > θ (2.40)

and

L (xeq, heq) =

(
−1/τrec 0

0 −1/τm

)
For heq ≤ θ (2.41)

When heq ≤ θ, since the eigenvalues λ1,2 of L (xeq, heq) are always negative real numbers(λ1 =
−1/τm, λ2 = −1/τrec), the equilibrium (xeq, heq) is a stable node (the equilibrium at heq = Iext

when Iext ≤ θ, i.e. the rightmost intersection in Fig 2.8A, B and C).
We notice that in the case of Fig 2.8A, the leftmost intersection can transit from an

unstable to stable focus when τm increases. That is to say, this equilibrium undergoes a Hopf
bifurcation, which occurs when the eigenvalues of the equilibrium become pure imaginary
numbers. We numerically compute the bifurcation value τ∗m = 0.082. The middle intersection
is always an unstable saddle as τm increases in the same range. Hence, when τm > τ∗m, the
model can show bistability in absence of external input. After a long presence of external
input Iext > θ, the system states will inhabit the single global attractor. However, the system
states fail to return to their previous rightmost equilibrium when the external input Iext is
removed. The hysteresis behavior can cause persistent neuronal activity even after the removal
of external stimuli, which is postulated to be the neuronal correlate of working memory [Barak
and Tsodyks, 2007a].

Finally, we investigate the dynamic relation between synaptic resource x and summed
input current h when the external input Iext exists or not, respectively. When the external
current Iext is stepped from 0 to a non-zero value, say Iext = 5, the phase portrait changes
instantaneously, while the old state of the system does not have time to catch up. Hence
we need to consider the network dynamics when Iext = 5 with initial values (x0, h0) set to
the state of the system right before the step current. We can see from Fig 2.10A that a set
of trajectories with different initial points all make an anticlockwise excursion before finally
approaching the attractor. In the temporal domain, the excursion represents a transient
increase of the mean synaptic input h and correspondingly the population activity E. The
ensemble phenomenon is termed a population spike featured by nearly coincident firings of a
pool of neurons. The size of the excursion depends on the initial value of the mean synaptic
resource x0. The closer the initial synaptic resource x0 is to its full state 1, the larger the
population spike (excursion of h) is triggered. On the other hand, once the step current is
removed, the states of the system are immediately drawn to the h-nullcline x = 0 and then
travel along it to the global attractor with a time constant τrec (see Fig 2.10B). It is worth
noting that for our SSA model in Chapter 4, we choose parameters in the regime showing
single equilibrium in the absence of the external input, as illustrated in Fig 2.8C and 2.10B.
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Figure 2.9: Hopf bifurcation in the dynamical system (2.28). The leftmost equilibrium
gains stability as the bifurcation parameter τm increases (A: τm=0.001 s, B: τm=τ∗m=0.082
s, C: τm=0.1 s) Red and green curves respectively represent the x- and h-nullclines. Stable,
unstable equilibria as well as equilibria undergoing a bifurcation are denoted by filled, open
and half-filled circles, respectively. The rest parameters: J = 10 , U = 0.5, τrec = 0.7 s, θ = 3,
α = 1, Iext = 0.

2.8 Summary

In this chapter, we introduced the organism’s ability to detect novel sensory signals and
accordingly presented the concepts of stimulus-specific adaptation (SSA) and mismatch
negativity (MMN) as two relevant neural signatures verified in the oddball protocol. Following
these experimental findings, we reviewed the current SSA models and concluded that none
of them could account for a deviant-specific response with MMN-like latency observed in
the somatosensory cortex [Musall et al., 2017]. Therefore, one of the goals of the thesis is
to develop a mechanistic model to explain this particular response pattern that may be the
electrophysiological origin of the mismatch response in EEG. The mean-field model derivation
and its related phase plane analysis were made to form the theoretical foundation of our
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Figure 2.10: Representative trajectories of the system (2.28) when Iext is on and off,
respectively. (A) Phase portrait for the step input current Iext > θ (Iext = 5). Trajectories
with ascending initial synaptic resource x0 = 0.7, 0.8, 0.9, 1 but the same initial input current
h0 = 0 demonstrate increasing amplitudes of a detour before reaching the equilibrium. (B)
Phase portrait for the absent external input (Iext = 0). A trajectory starting from the
prior steady states under external stimuli terminates at a global attractor. The remaining
parameters are: J = 2.5, τm = 0.001 s, U = 0.5, τrec = 0.7 s, θ = 3, α = 1.

SSA model of the auditory cortex in chapter 3 and the somatosensory cortex in chapter
4. The following chapter will discuss our simplified implementation of a promising network
architecture producing auditory SSA [Yarden and Nelken, 2017]. This SSA structure will be
further adapted and extended to reproduce and elucidate the late SSA response within the
context of a somatosensory thalamocortical loop (chapter 4).



Chapter 3

A Robust Model of Auditory
Stimulus-specific Adaptation

This chapter is mainly established on my co-authored published material [Vanattou-Säıfoudine
et al., 2021], which studies auditory SSA using both a theoretical mean-field model and its
physical equivalent model implemented on a neuromorphic hardware circuit. In 2017, Yarden
and Nelken [2017] proposed a novel mechanism for SSA involving both a recurrent network and
local synaptic depression. Based on their SSA network architecture, our work provides further
support for the hypothesis of SSA as a consequence of the propagation of synchronous firing
events across the network of populations of tuned sensory neurons [Yarden and Nelken, 2017],
using for the first time both a mean-field model and a neuromorphic implementation. As the
neuromorphic hardware used in this study does not possess short-term synaptic depression,
we employed a spike-frequency adaptation mechanism to simulate synaptic depression by
introducing an adaptive input layer. Spike-frequency adaptation is a phenomenon in which
a neuron shows a reduction in its firing rate in response to a constant stimulus [Benda and
Herz, 2003]. Furthermore, it is worth noting that the adaptation feature used in our network
is an interesting tool to investigate SSA as past research has demonstrated that the cortical
adaptation recovery time scale to tones was consistent with the cortical synapse recovery
scale in synaptic depression [Ulanovsky et al., 2004, 2003; May and Tiitinen, 2010]. We
identity through this work that the propagation of population activity of neurons tuned
for specific stimuli features, along with the activity-dependent fast adaptation mechanism
(spike-frequency adaptation or synaptic depression) that modulates the extent of activity
propagation, are two indispensable components to reproduce SSA and its related properties
fully.

The following content shows my primary contributions to the joint work in developing
the minimal mean-field model, which is summarized in three folds: (1) I performed transient
dynamics and stability analysis of the mean-field populations to find the parameters qualita-
tively approximating the experimental recordings; (2) presented a theoretical analysis of the
full mean-field network behaviors under different protocols and practical ways of tuning its
equivalent spiking version of the network model implemented on neuromorphic hardware; (3)
performed robustness test of the model against online parameter perturbations and sensitivity
analysis by supplying the parameter ranges.

25
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3.1 Results

The present work proposed a hierarchical network of the primary auditory cortex (A1), which
is a simplified version of the network presented in Yarden and Nelken [2017], to explain the
dynamics of auditory SSA and reproduce its related experimental findings. The network
model is implemented in mean-field rate populations under certain assumptions, which allows
us to treat part of the network analytically and derive the necessary conditions to demonstrate
SSA and its relevant properties under this architecture. The theoretical results derived from
the mean-field model also provided insights for tuning its neuromorphic spiking counterpart
to reproduce previously obtained SSA experimental results [Taaseh et al., 2011]. The network
presented holds special features to observe SSA discussed in [Yarden and Nelken, 2017], such as
recurrent connectivity, lateral propagation of network activity and a short-term-depression-like
mechanism.

A

B

C

Figure 3.1: Network architecture. (A) The network is composed of five cortical columns
that are arranged along the frequency axis by their best frequencies. Each column is constructed
in three blocks: the adaptive layer (pale yellow) receives thalamocortical sensory inputs and
sends its feedforwards outputs to the excitatory (pale red) population that is coupled with
the inhibitory (pale blue) population. The excitatory group is also laterally connected to its
nearest excitatory counterparts, illustrated by arrows. (B) The thalamocortical input to each
column (for example, column 3) linearly declines as the stimulated frequency is away from
the column’s best frequency, which forms the tuning curve of the column’s thalamocortical
input. (C) To be detailed, within every column, the feedforward adaptive population excites
a recurrent excitatory population that is regulated by another recurrent inhibitory population.
The homogenous excitatory and inhibitory populations are fully connected.
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3.1.1 Model Architecture

As illustrated in Fig 3.1A, the primary auditory cortex is modeled as coupled cortical
columns, each of which consists of two cascaded layers: the adaptive layer where neurons
demonstrate spike-frequency adaptation and the recurrent excitatory-inhibitory layer. Columns
are unidimensionally organized by the most responsive frequency of each column, called the
column’s best frequency. The adaptive population in each cortical column is evoked by
feedforward thalamocortical inputs dependent on the frequency difference between the best
frequency of the column and the frequency of the stimulated tone. Typically, the farther the
stimulated frequency is from the best frequency of a column, the weaker the thalamocortical
input the column will receive (see Fig 3.1B). The adaptive population subsequently activates the
recurrent excitatory group regulated by the recurrent inhibitory group (Fig 3.1C). Furthermore,
each excitatory population feeds its output to its two lateral excitatory populations, leading
to a lateral propagation of population activities across the network.

3.1.2 Deviance Sensitivity Assessed in Different SSA Protocols

SSA emerges in the network in response to a ”traditional” oddball paradigm (OD) that
consists of two stimuli, standard and deviant, which differ in one specific stimulus feature
(such as frequency or amplitude of tone stimuli) activating different populations of tuned
neurons. In this study, the standard stimulus is presented with a higher probability than the
deviant stimulus. In order to control for potential asymmetries in processing the two stimuli
(e.g., being more sensitive to one tone frequency than the other), a second oddball paradigm is
presented where the occurrence probabilities of the two stimuli are switched and the stimulus
that was earlier the standard is now the deviant. Such a flip-flop paradigm allows one to
compare the responses to an identical stimulus, respectively presented as the standard and
deviant.

To test SSA in the model, we stimulated the network by an oddball sequence composed of
tones of 2 Hz and 4 Hz as the standard and deviant stimuli respectively, and recorded the
activity in the excitatory population of the middle column (column 3) to verify the existence
of SSA. The standard stimulus evokes more adapted activities in the standard column than
the deviant does in its column due to the repeated stimulation (see Fig 3.2A). Therefore, the
less adapted input from the deviant adaptive population evokes more effective propagation
of activities across the excitatory network than the standard input. Correspondingly, in the
recording column, stronger responses are triggered by the deviant than the standard, bringing
about the generation of SSA (see Fig 3.2B).

It is worth mentioning that a phenomenon of fast and synchronized firings of a pool of
neurons has been widely observed in the auditory cortex [Luczak et al., 2009, 2013; Sakata and
Harris, 2009], under the name of population spike. The synchronous activity enables its lateral
propagation across multiple cortical columns, which is associated with SSA generation [Yarden
and Nelken, 2017]. From a modeling point of view, prolonged activation could also implement
the lateral propagation of activity by increasing the excitatory population’s firing rate and then
spreading to its neighboring populations via inter-column connections, similarly as population
spikes do. However, to match the population bursts recorded in the primary auditory cortex
(A1) [Luczak et al., 2009, 2013; Sakata and Harris, 2009], we modeled responses of our network
model to sensory stimulation as a transient synchronization in population activity (see Fig
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3.2B, bottom panel).

f=4
f=2

Adaptive population

Excitatory/Inhibitory population

time (s)

A

B

A
d
ap

ta
ti
on

A
ct

iv
it
y

Figure 3.2: SSA arising from the differential adaptation of populations of frequency-
tuned neurons. (A) The amounts of adaptation a accumulate immediately upon the pre-
sentation of stimuli and are gradually released during the inter-stimulus interval. Adaptation
in the standard column (blue) is often more substantial than the deviant column (red). Yet,
adaptation induced in the recording column (purple) is independent of the identity of stimuli
after the first several ones due to the symmetry of the thalamocortical input around the
stimulated frequency (top panel). Accordingly, the adaptive population activity Aa in the
standard column is often weaker than the deviant. The population activity in the recording
column reaches a steady state after the first several stimuli (bottom panel). The oddball
stimuli sequence is shown under the top panel. (B) Excitatory population activity Ae in
column 4 initiated by the deviant usually propagates more significantly into the recording
column midway than by the standard-triggered activity in column 2 (top). Correspondingly,
excitatory (pale red) and inhibitory (pale blue) populations in the recording column often
respond stronger to the deviant compared to the standard stimuli (bottom). The time axis is
vertically aligned for all panels.
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Figure 3.3: Average responses of the model under five protocols. (A) To investigate
the deviant response characteristics, five control oddball (OD) protocols are used: ”Standard
in OD” in which a stimulus is presented to column 4 as a standard with a 75% probability of
appearance (blue), ”Deviant in OD” in which the same stimulus applied to column 4 is used
as a deviant with a 25% probability of appearance (red), the ”Equal” paradigm where two
stimuli are presented 50% of the time each to column 2 and 4 respectively (cyan), ”Dev alone”
(green) where the stimulus is presented to column 4 alone as a deviant against silence and the
”Dev among Std” (yellow) in which four different stimuli are presented 25% of the time each
to column 1, 2, 4 and 5, respectively. (B) The population activity averaged over stimuli in
the recording column evoked by tones of 4 Hz embedded in five different protocols. The gray
shade marks the stimulus duration. Inset: the average spike counts with the standard error
of the mean, normalized to the Deviant alone condition. Data are average over responses of
recording column to auditory stimulation of 4 Hz in each protocol consisting of 800 stimuli
in total. In all simulation protocols, network parameters are chosen from Table 3.1, input
amplitude A = 15 spikes/s, stimulus duration = 50 ms and inter-stimulus interval (ISI) =
300 ms (stimulus offset to onset). (C) The same setup was employed as (B), except that
20% real-time parameter disturbances are introduced to parameters in Table 3.1, excluding
number of columns M , width of tuning curve λ and membrane time constants τ, τe, τi that
are taken from literature [Yarden and Nelken, 2017].

Besides the ”traditional” OD protocol, three more protocols were tested on our network
(the ”Equal”, ”Dev alone”, and ”Dev among std”), which we also employed to test the neuronal
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sensitivity to contextual regularity called true deviant detection (TDD) on the model (Fig
3.3A). The trends, across the different protocols, are qualitatively in line with the experimental
findings in rat A1 [Taaseh et al., 2011] as well as spiking responses in the neuromorphic model,
executed under biologically-realistic network noises [Vanattou-Säıfoudine et al., 2021]. (Fig
3.3B). For the ”traditional” and equal oddballs, when the deviant column is stimulated, its
excitatory populations receive less adapted inputs due to the rarity of the presentation of this
stimulus. Consequently, more robust activity is propagated into the recording column midway,
leading to the strongest response observed in the ”Deviant in OD” protocol, followed by the
”Equal” response and finally, the lowest response in the ”Standard in OD”. Besides, the ”Dev
alone” protocol evokes the largest response among all conditions as there is no cross-frequency
adaptation caused by other stimuli. At last, the condition for the network demonstrating
TDD is given in Eq 3.17 (refer to subsection 3.2.2 for details). Both positive SI and CSI
values (SI = 0.1495, CSI = 0.0203) indicate the presence of SSA and TDD in our simulated
network model (refer to 3.2.3 for the definitions of SI and CSI).

3.1.3 Robustness to Network Parameters

To test the robustness of the mean-field model, except for the network structure parameters,
the adaptation and membrane time constants that are based on the literature[Yarden and
Nelken, 2017], we simultaneously varied the rest free parameters in Table 3.1 by adding 20%
online perturbations of their optimal values, leading to the fluctuation of actual parameters
uniformly bound between 1-20% and 1+20% of their optimal values. We then averaged
the responses of column 3 to tone of frequency 4 Hz within each protocol as done for the
deterministic parameter circumstance. As a result, one can see that the parameter perturbation
only increase the response variations and has a negligible effect on the SSA and IDD according
to the indices calculated from mean responses (SI = 0.1592, CSI = 0.0151) (see Fig 3.3C).
This demonstrates the robustness of our model against online parameter disturbances.

In addition, we did the sensitivity analysis of the free network parameters by varying
each of them individually (with all the others fixed in their optimal values) and exploring
the operating range of the parameter where SSA and TDD are both valid, based on positive
metrics values. From parameter ranges reported in Table 3.1, one can see that the SSA and
TDD of our model are relatively sensitive to the excitatory connection weights and then the
inhibitory connection weights, but much less susceptible to the adaptation connection weight
and adaptation scaling factor. The results meet our expectation since one critical element
of SSA in our model is the extent of the spread of excitatory activities across columns that
is mainly restricted by the strength of intra-column recurrent excitatory and inter-column
connections.

3.2 Materials and Methods

We reduced the activity of each cortical column to the minimal mean-field rate representation,
similar to Vasilaki and Giugliano [2014]; Esposito et al. [2015], to analyze its behavior. The
stability analysis of the coupled excitatory and inhibitory populations was done in order to
choose the parameter set leading to the biologically plausible network behavior. To be specific,
we emulated the neuronal population bursts in response to transient stimuli recorded in A1
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[Luczak et al., 2009, 2013; Sakata and Harris, 2009] by producing the oscillatory behavior near
the fixed point of the excitatory-inhibitory network. The full mean-field network behaviors
under five different protocols were then analyzed to conclude the consistency of the model
prediction with the experimental observations [Taaseh et al., 2011]. A necessary condition for
true deviance detection generation in the model is given in the end.

The architecture used in our mean-field model is closely related to the one proposed
in Yarden and Nelken [2017] of A1. In this study, we used a network comprising five
interconnected cortical columns. The thalamocortical inputs to each column linearly decrease
along with the distance between the frequency of the stimulated tone and the column’s best
frequency on the frequency gradient of the auditory cortex. Specifically, every column is
modeled by homogeneous excitatory and inhibitory populations that receive cross-adapted
inputs from the adaptive layer when stimulated by a tone featured by a certain frequency, as
shown in Fig 3.1A.

3.2.1 Transient Dynamics Analysis

In a similar vein as the derivation of a mean-field network in section 2.6, we can treat any
neuronal population in our model as an arbitrary neuron in the pool, under the assumption
that the population is fully-connected, large and homogenous. On the level of the collective
activity of a neuronal population, the mean-field rate model is theoretically equivalent to a
homogeneous group of leaky integrate-and-fire neurons [Gerstner et al., 2014].

The mean-field dynamics of an adaptive population is defined below, which a simplified
version of the adaptation model proposed in [Benda and Herz, 2003]:{

τ ḣa = −ha + Iext
τaȧ = −a+ cAa

(3.1)

where a represents the amount of adaptation accumulated by neurons, and Aa is the population
activity defined by a threshold-linear activation function of the mean synaptic input ha:

Aa = [ha − a]+ = max (ha − a, 0) (3.2)

If the population fires at a constant rate Aa, the adaptation a will be gradually accumulated,
leading to an effective decrease in the input current ha and accordingly the population activity
Aa.

Suppose that the synaptic current kinetics is much faster than the adaptation kinetics,
namely, τ � τa, then Eqs 3.1 can be reduced to one equation by treating the synaptic current
ha as instantaneously reaching its asymptotic value Iext:

τaȧ = −a+ c(Iext − a) (3.3)

The solution for zero initial state a(0) = 0 is

a(t) =
c

1 + c
Iext

(
1− e−

1+c
τa

t
)

(3.4)

This means that if the external input Iext never stopped, the adaptive threshold a would
exponentially approach to its asymptotic value cIext/(1 + c) with time constant τa/(1 + c)
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and exponentially decay to 0 with time constant τ when later external input was removed
(Supplementary data S1a, top). Correspondingly, since Aa(t) = Iext − a(t) when external
input is on, starting from Iext, the population activity Aa will exponentially decay to its
asymptotic value Iext/(1 + c) with τa/(1 + c). Aa will instantaneously drop to zero with no
external input (see Fig 3.2A).

In addition, the network model for interacting excitatory and inhibitory populations is
adapted from the well-known Wilson and Cowan’s model [Wilson and Cowan, 1972], which
is a typical neural circuit for generating oscillatory behaviors due to exhibitory-inhibitory
imbalance. A similar dynamical analysis for Wilson and Cowan’s model can be found in the
textbook by Dayan and Abbott [2001]. Here we use the type of oscillator network to resemble
the cortical response to transient sensory stimulation. The dynamics of interacting mean-field
excitatory and inhibitory populations is described as{

τeḣe = −he + weiAi + weeAe + waAa
τiḣi = −hi + wieAe + wiiAi

(3.5)

Similarly, the excitatory or inhibitory population activity Ae or Ai are defined as the rectified
linear activation function of its mean synaptic inputs Ae = [he]+ or Ai = [hi]+. wei, wee, wie,
wii and wa are the inhibitory-to-excitatory, excitatory-to-excitatory, excitatory-to-inhibitory,
inhibitory-to-inhibitory and adaptive-to-excitatory connections, respectively.

To analyze the stability of the fixed point of the excitatory-inhibitory network, we rewrite
the system (3.5) in the standard form by assuming the synaptic currents he and hi are
non-negative {

ḣe = G1(he, hi) = [(wee − 1)he + weihi + waAa] /τe
ḣi = G2(he, hi) = [(wii − 1)hi + wiehe] /τi

(3.6)

By definition, the Jacobian matrix J of above system at the fixed point (he0, hi0) is

J (he0, hi0) =

(
∂G1/∂he ∂G1/∂hi
∂G2/∂he ∂G2/∂hi

)∣∣∣∣
(he0,hi0)

=

(
(wee − 1) /τe wei/τe

wie/τi (wii − 1) /τi

)
(3.7)

which is independent of the values of fixed point and external input waAa.
The stability of the fixed point is determined by the sign of the real parts of the eigenvalues

of its Jacobian matrix J . The pair of eigenvalues λ1,2 is given by

λ1,2 =
1

2

wee − 1

τe
+
wii − 1

τi
±

√(
wee − 1

τe
− wii − 1

τi

)2

+
4weiwie

τeτi

 (3.8)

Assuming that τe = τi = τ̂ , the above expression can be further simplified as

λ1,2 =
1

2τ̂

(
wee + wii − 2±

√
(wee − wii)

2 + 4weiwie

)
(3.9)

It turns out that the eigenvalues are a complex conjugate pair with positive real parts following
the optimal parameter values given in Table 3.1. Therefore the equilibrium (hi0, he0) is an
unstable focus, which means that the phase-plane trajectory spirals away from the equilibrium
until it joins a stable limit cycle induced by the rectification nonlinearity. The corresponding
behaviours of he and hi settle into periodic oscillations (see Fig 3.4A). In this case, the
population exhibits a synchronized activity in response to a momentary stimulus, which is
qualitatively similar to the sensory responses recorded in the auditory cortex (see Fig 3.4B).
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Figure 3.4: Trajectory of the excitatory-inhibitory model (3.5) when waAa = 3. (A)
The intersection of the he- (red line) and hi-nullclines (green line) is an unstable focus (open
cirlce) that is enclosed by a stable rectified limit cycle. The phase-portrait trajectory initiated
at (he, hi)=(0,0) immediately enters the limit cycle and thereafter oscillates periodically. (B)
Left panel: population activity of the excitatory population in response to a momentary
stimulus whose duration is marked in grey. Right panel: for comparison, a population burst
recorded in A1 evoked by a tone stimulus with the same duration. Experimental recordings
are reproduced from Hershenhoren et al. [2014a]. Network parameters are chosen from the
optimal values of the corresponding parameters in Table 3.1.

3.2.2 SSA in a Recurrent Network with Spike-frequency Adapted Input

The whole network of cortical columns is described by the following rate equations:

τ ḣQa = −hQa +

M∑
f=1

AξfT
Q
f (3.10)

τaȧ
Q = −aQ + c[hQa − aQ]+ (3.11)

τeḣ
Q
e = −hQe +

1∑
R=−1

w|R|ee [hQ+R
e ]+ + wei[h

Q
i ]+ + wa[h

Q
a − aQ]+ (3.12)

τiḣ
Q
i = −hQi + wie[h

Q
e ]+ + wii[h

Q
i ]+, Q = 1, 2, · · · ,M (3.13)

where Eqs 3.10 and 3.11 describe dynamics of network of adaptive populations, which are
expanded from single adaptive population dynamics defined by Eq 3.1. In a like manner, Eqs
3.12 and 3.13 are adapted from Eq 3.5, respectively representing the dynamical behaviour of
excitatory and inhibitory populations within interconnected columns.

Every column Q is tonotopically organized along the frequency channel axis ordered from
1 to M by its preferred frequency f = Q (best frequency). The temporal profile of external
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stimulation to certain frequency channel f is given by firing rate Aξf (t), where A and ξf (t)
respectively denote the maximum amplitude and normalized temporal envelope (a fraction
between 0 and 1) of the stimulus. In the simulation, ξf (t) is chosen as a trapezoid pulse (50
ms duration with 5 ms onset/offset linear ramps).

TQf represent the relative strength of input column Q receives from frequency channel f

compared with its best frequency channel Q. The values of T fQ over all frequency channels
form the tuning curve of column Q’s thalamic inputs. Here we choose a linear tuning curve:

TQf =

[
1− |Q− f |

λ

]
+

(3.14)

where λ is the width of the tuning curve describing the level of cross-frequency thalamic
inputs that cortical column Q receives (see Fig 3.1B for an example of the tuning curve of
column Q=3’s thalamocortical inputs).

The following demonstrates analytically the conditions at which the network is able to
produce true deviance detection, i.e. response to deviant in the oddball protocol is larger
than to the same deviant in ’Dev among std’. Taking inspiration from Taaseh et al. [2011],
we define the accumulated adaptation load of column Q during certain protocol as

L(Q) =

M∑
f=1

pfT
Q
f (3.15)

where pf is the probability of appearance of the tone of frequency f . Here TQf can be
considered as the extent of cross-frequency adaptation in column Q caused by tone stimulation
of frequency f

According to the network structure, the excitatory population in the recording column
is excited by feedforward adapted inputs and lateral inputs from its neighbouring columns.
The steady state of excitatory synaptic inputs to the excitatory population in the recording
column N on the presentation of tones of frequency N + 1 in a protocol is formulated as

IProtocol(N) = waCT
N
N+1B

L(N) + w1
eef
(
waCB

L(N+1)
)

(3.16)

where B < 1 represents the steady-state response of adaptive population in a column to
tones of the column’s best frequency within a sequence consisting of only tones of that
frequency, normalized by the unadapted response C. Thus the more adaptation loads the
adaptive population has, the weaker its responses are, and accordingly, the lower inputs to
the excitatory population. f(·) denotes the equivalent activation function of the excitatory
population mediated by the inhibitory population, which is a monotonically increasing function
given the parameter values.

In all simulation protocols, N = 3 and λ = 2. Hence, in ”Standard in OD” protocol,
L(3) = 0.25T 3

2 + 0.75T 3
4 = 0.5 and L(4) = 0.25T 4

2 + 0.75T 4
4 = 0.75. Similarly, L(3) =

0.5T 3
2 +0.5T 3

4 = 0.5 and L(4) = 0.5T 4
2 +0.5T 4

4 = 0.5 for ”Equal”; L(3) = 0.75T 3
2 +0.25T 3

4 = 0.5
and L(4) = 0.75T 4

2 + 0.25T 4
4 = 0.25 for ”Deviant in OD”; L(3) = 0.25T 3

4 = 0.125 and L(4) =
0.25T 4

4 = 0.25 for ”Dev alone” and at last L(3) = 0.25T 3
1 + 0.25T 3

2 + 0.25T 3
4 + 0.25T 3

5 = 0.25
and L(4) = 0.25T 4

1 + 0.25T 4
2 + 0.25T 4

4 + 0.25T 4
5 = 0.375 for ”Dev among std”. Due to B < 1,

we get IStandard in OD(3) < IEqual(3) < IDeviant in OD(3) < IDev alone(3).
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Notation Description Optimal value Operating range

M Number of columns 5
λ Width of tuning curve 2
τa Time constant for adaptation process 1 s
τ Membrane time constant of adaptive population 1× 10−3 s
τe Membrane time constant of excitatory population 5× 10−3 s
τi Membrane time constant of inhibitory population 5× 10−3 s
w0
ee Intra-columnar excitatory-to-excitatory connection weight 3.25 [3.2, 3.5]

w1
ee Inter-columnar excitatory-to-excitatory connection weight 0.2 [0.15, 0.35]

wie Intra-columnar excitatory-to-inhibitory connection weight 1.8 [1.75, 1.95]
wei Intra-columnar inhibitory-to-inhibitory connection weight -3 [-3.3, -2.85]
wii Intra-columnar inhibitory-to-inhibitory connection weight -1 [-1.1, -0.7]
wa Connection weight between adaptive and excitatory populations 0.5 (0, 2.5]
c A constant to scale the rate of adaptive population 20 (1, 100]

Table 3.1: Parameters in the mean-field model. Steps of 0.05, 0.1 and 1 are used to
linearly search the operating ranges of the excitatory and inhibitory connection, adaptation
connection weights and adaptation scaling factor, respectively. The parameter value is valid
only if both SI and CSI metrics for the model based on that parameter value are positive.
Values exceeding 100 for the adaptation scaling factor have not been tested since SSA and
TDD vary very slightly when increasing the parameter linearly. The protocol setup used here
to compute SI and CSI is the same as that in Fig3.3.

In order to demonstrate TDD, we need to let IDeviant in OD(3) > IDev among std(3), that
is to say, the following difference should be positive:

waCT
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)︸ ︷︷ ︸
<0

+w1
ee

[
f
(
waAB

0.25
)
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(
waAB

0.375
)]︸ ︷︷ ︸

>0

> 0 (3.17)

The first and second term in the expression is respectively negative and positive. Hence,
possible ways of tuning parameter to achieve TDD are to make the second term more
positive by increasing inter-columnar connection w1

ee and/or decreasing the intra-columnar
adaptive-to-excitatory connection wa.

All the model parameters are summerized in Table 3.1. The network was numerically
simulated by Euler’s method with a time step 1× 10−4 s.

3.2.3 Data Analysis

The average response to a tone stimulus is evaluated as mean spike counts of the middle
column (column 3) of the network triggered by all presentations of the tone. The average
spike counts are calculated as the integrals of population activity with a temporal resolution
of 1 ms over a window of 100 ms starting at the stimulus onset.

The strength of SSA is quantified by the index defined before in Eq 2.1, where s(xi) and
d(xi), i ∈ {1, 2}, are the average responses measured as spike counts to the tone frequency xi
used as the standard and deviant stimulus respectively.

To quantify the neuronal sensitivity to a regular pattern in the presentation context, we
use a context-specific index (CSI) by modifying the SSA index mentioned above accordingly.
Instead of employing the deviant and standard responses, we compare the deviant responses
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in the ”Deviant in OD” and ”Deviant among Standards” conditions.

CSI =
dDeviant in OD(x)− dDev among std(x)

dDeviant in OD(x) + dDev among std(x)
(3.18)

where dDeviant in OD(x) and dDev among std(x) are the average spike counts to the same deviant
frequency x in the ”Deviant in OD” and ”Deviant among Standards” protocols, respectively. If
the value of CSI is positive, then we conclude that the model displays true deviance detection.

The code for the mean-field model can be accessed via https://github.com/ChaoHan-UoS/
AuditorySSA_Hardware.

3.3 Summary

This chapter aims to investigate the underlying neural circuit giving rise to SSA in the
auditory cortex. To this end, we recreated a simplified version of the SSA network proposed
in Yarden and Nelken [2017] using a minimal mean-field rate model. The mean-field model is
capable of robustly reproducing previously reported experimental observations in five SSA
paradigms, even under 20% online disturbances of the optimal values of network parameters.
Our collaborators at Institute of Neuroinformatics, Zurich, further expanded our mean-field
rate model to a spiking version validated on neuromorphic hardware [Vanattou-Säıfoudine
et al., 2021]. We concluded that interactions among differential adapted populations of tuned
neurons are crucial in the development of SSA.

https://github.com/ChaoHan-UoS/AuditorySSA_Hardware
https://github.com/ChaoHan-UoS/AuditorySSA_Hardware


Chapter 4

Modelling Novelty Detection in the
Thalamocortical Loop

As discussed earlier in sections 2.3 and 2.4, Musall et al. [2017] observed a deviant-specific
spiking response with a comparable onset latency as MMN, in the region of the primary
somatosensory cortex (S1) processing whisker information. To the best of our knowledge, the
neural circuitry and mechanism giving rise to this phenomenon remain unknown.

In this chapter, we adapted and generalized the auditory SSA model developed by Yarden
and Nelken [2017] to a hierarchal thalamocortical model for the whisker-related area of S1
(also known as the barrel cortex) with multiple timescales of synaptic and neuronal dynamics
to capture the biphasic activity that demonstrates both signatures of SSA and MMN [Musall
et al., 2017]. On the short timescale of the early response, a vital element of the transient
dynamics of the cortical circuitry is the so-called population spike (PS), characterized by
a burst of firings of a pool of neurons evoked by a brief stimulus. The synchronization of
neuronal firings facilitate the robust propagation of population activity elicited in a cortical
column into its surrounding column. On the longer timescale, we hypothesize that the late
rhythmic cortical response is inherited from the thalamic spindle oscillation initiated by the
interplay between the thalamic reticular (RE) and thalamocortical (TC) relay cells. The
somatosensory thalamocortical network retains only those crucial neurobiological features,
such as the laminar architecture and somatotopic organization of the barrel cortex, synaptic
connectivity between the barrel cortex and its corresponding thalamic nuclei, as well as
different synaptic receptors within thalamic nuclei, that are sufficient to elicit the late context-
dependent deviant responses. Finally, we test the cortical capacity for predictive coding
using more complex stimulus sequences. The results of our model indicate that the precision
of expectation generated by sequence history impacts the neural response to stimuli that
interrupt those expectations.

The chapter is primarily based on Han et al. [2021] that is under review while writing the
dissertation.

4.1 Results

The architecture of the somatosensory thalamocortical network is organized in a loop as shown
in Fig 4.1A. Based on the stereotypic somatotopic map for representing rodent whiskers, the

37
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Figure 4.1: Structure and dynamics of the thalamocortical network and minimal
thalamic circuit inducing spindle oscillations. (A) The ventral posterior medial (VPM)
nucleus of the thalamus (pink shade), which is somatotopically arranged into discrete clusters
called “barreloids”, relays peripheral sensory information to the L4 barrels (purple), with the
relative strength of connections represented by the size of the arrows. Each L4 cluster projects
its output vertically to the corresponding L6 infrabarrel (green), which in turn provides
feedback excitation to its somatotopic barreloid and thalamic reticular nucleus (TRN, in blue
shade), with higher cortical drive on TRN than VPM (specified by the size of the diamonds).
Each L4 barrel and L6 infrabarrel also connects to its neighbouring barrels. (B) Population
spike (PS) can be generated in the cortical cluster, represented by the transient increase of



CHAPTER 4. MODELLING NOVELTYDETECTION IN THE THALAMOCORTICAL LOOP39

the cluster’s mean firing rate (left). Mean synaptic resources of the neuronal group are
depleted by the PS and later recover gradually (right). Higher levels of initial resources evoke
a more substantial PS. The time 0 represents the onset of a stimulus whose duration is marked
in grey shading. (C) Two classes of cells with different synaptic receptors are used in the
thalamic circuit: thalamocortical (TC) relay cells with excitatory AMPA-mediated synapses in
the VPM and reticular (RE) cells with inhibitory GABAA-mediated synapses in the TRN. TC
and RE neuronal populations are mutually coupled, and the RE population is also recurrently
connected. The thalamus can be activated by bottom-up sensory input (grey) and top-down
cortical drive (green). (D) A minimal thalamic network of 2 TC and 2 RE cells driven by the
cortex is capable of inducing spindle oscillations. (E) Voltage traces of two types of thalamic
cells simulated by the izhikevich model in response to a step in direct current (bottom of each
panel): initial burst tonic firing in TC neuron (-70 mV at rest, hyperpolarizing pulse of 10
pA) and rebound burst in RE neuron (-62.5mV at rest, depolarizing pulse of -10 pA lasting
120 ms). (F) The time course of membrane potentials for the 4 thalamic cells. Cortical
stimulation is marked by red bars under the traces (0.08 pA for TC1 and 20 pA for RE1).

barrel cortex is modeled as a grid of interconnected vertical columns, each of which primarily
mediates stimuli from its principal whisker. Also, we only focus on neuronal clusters within
layers 4 (barrels) and 6 (infrabarrels) of each cortical column, which respectively act as the
afferent and efferent layers of the cortex from and to the thalamus [Crandall et al., 2017;
Petersen, 2007; Whitmire and Stanley, 2016]. The barreloids in the ventral posterior medial
(VPM) nucleus of the thalamus show an identical layout to that of the barrels. Each barreloid
relays the information from its principal whisker through an ascending sensory pathway to L4
of its principal as well as surrounding barrels, with stronger coupling to the principal than the
surrounding ones. We hypothesize that L2/3 and L5 contribute little to the cortical SSA but
merely transmit columnar information from L4 to L6. Therefore, a direct shortcut connection
from L4 to L6 within every cortical column is added, which is sufficient in the simplified model
proposed here to demonstrate SSA in L6, although in reality the flow of excitation from L4
will go through L3, L2 and L5 in sequence before arriving at L6 [Armstrong-James et al., 1992;
Fox, 2008; Feldmeyer, 2012]. To close the thalamocortical loop, the outputs of layer 6 are
projected back to their somatotopically aligned barreloids and thalamic reticular population.
Here we assume that neurons in the thalamic reticular nucleus (TRN) are also whisker-specific,
but they are not necessarily arranged in spatially discrete clusters as barreloids.

We first focus only on the cortical network that is capable of generating SSA and true
deviance detection by modulation of cross-barrel synchronous activities. All cortical intra-
and inter-column synapses exhibit short-term depression. Only excitatory populations are
considered in the cortical circuitry to simplify the mean-field analysis, and the level of
excitability can be regulated by the threshold of neuronal gain function. Every layer-specific
population in columns is modelled by a mean-field recurrent network coupled with depressing
synapses, which can generate the so-called population spike (PS) in response to external
stimulation. The PS is characterized by nearly synchronous firing of a group of neurons
within a short time window [Tsodyks et al., 2000; Loebel and Tsodyks, 2002]. In the cortical
mean-field rate populations we studied here, a population spike is described as a sharp increase
in population activity, leading to fast depletion of mean synaptic resource that will recover
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gradually after the removal of external input. Higher initial synaptic resources cause more
substantial PSs to be triggered in response to the same stimulus (Fig 4.1B).

The thalamic circuitry is set up to induce spindle oscillations characterized by intermittent
bursting activity at 7-14 Hz, which is postulated as the origin of the late rhythmic responses
in L4 of S1 [Musall et al., 2017], since the frequency of cortical oscillation (∼10Hz) falls
into the spindle range. Early studies have shown that network and intrinsic mechanisms
act in combination to generate spindle oscillations [Timofeev and Bazhenov, 2005]. Two
interacting populations of spiking thalamic neurons are considered to model spindle oscillation:
excitatory thalamocortical (TC) neurons and inhibitory thalamic reticular (RE) neurons.
As illustrated in Fig 4.1C, the TC population is excited by whisker stimulation and then
provides AMPA-mediated excitatory synaptic input to the RE population and neurons in
cortical L4. In turn, the RE neurons suppress the activity of the TC neurons and themselves
via GABAA-mediated inhibition. The top-down modulation from L6 exerts more effective
excitation on RE than TC population due to more substantial corticothalamic conductance
[Destexhe et al., 1998; Timofeev and Bazhenov, 2005; Petersen, 2007]. Unlike the mean-field
dynamics of the cortex represented by the rate network, the intrinsic dynamics of individual
spiking thalamic neuron is simulated by the izhikevich model (see Materials and methods
section for model details). RE neurons exhibit transient bursting followed by tonic firing in
response to depolarizing step currents, and TC relay neurons can trigger rebound spike-bursts
upon release from hyperpolarization [Timofeev and Bazhenov, 2005; Izhikevich and Edelman,
2008] (Fig 4.1E).

We elucidate the mechanism of spindle oscillation triggered by the corticothalamic feedback
excitation in a minimal thalamic circuit consisting of 2 RE and 2 TC cells [Destexhe et al.,
1998] (Fig 4.1D). When the cortical drive is exerted on both TC1 and RE1 neurons, only the
RE1 neuron is able to elicit spikes due to the considerably higher cortical conductance on RE
than TC neurons. The bursting activity of RE1 cell provide inhibitory postsynaptic potentials
(IPSPs) to both TC cells and then induce rebound bursting spikes in TC2 cells when its
potential is released from hyperpolarization and almost reaches its resting state. The firing
of TC2 cell reciprocally excite RE cells, leading to the next cycle of spindle oscillations (Fig
4.1F). Minute bump in the potential of TC1 cell evoked by initial corticothalamic stimulation
prevents the cell from generating rebound bursts in the first cycle, which results in the TC
cells fire every two cycles while RE cells fire every cycle in the minimal circuit. With the
thalamocortical pathway, spindle oscillation is synchronized over cortical areas as hypothesized
to be the late oscillatory rhythms found in L4 of S1 [Musall et al., 2017].

4.1.1 Propagation of Population Activity in the Thalamocortical Loop

The PS evoked in the principal L4 barrel will propagate to the neighbouring L4 barrels
via inter-column coupling, as well as to the column-aligned L6 infrabarrel via the L4-to-L6
projection [Armstrong-James et al., 1992]. The L4 responses are largely localized around
the principal barrel and substantially attenuated in the surrounding barrels [Petersen and
Diamond, 2000b; Lebedev, 2002] (Fig 4.2A, top panel). Responses across L4 barrels start almost
simultaneously about 7 milliseconds after stimulus onset, in accordance with experimental
findings [Oberlaender et al., 2012] (Fig 4.2B, top). The topographical spread of PS in L6
is similar to that in L4 but with broader temporal profiles of the PSs and slightly longer
response latencies [Oberlaender et al., 2012] (Fig 4.2A and B, bottom panels). The extent of
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Figure 4.2: Spatiotemporal distribution of whisker-evoked responses in cortical
columns and thalamus. (A) Top: Snapshots of cortical spatial activity patterns in L4,
AL4, at different times after the onset of a brief stimulation to D2 whisker. Bottom: Analogous
plots for L6 populations, where population spikes occur later and over longer periods. (B)
Temporal profiles of mean firing rate of three cortical columns in L4 (top) and L6 (bottom)
respectively. Stimulus duration is indicated in grey shading. The timescale of the left panels
matches that in (A) to show the behaviour of the initial population spikes evoked by sensory
stimulation. Late spike-bursts in L4 driven by secondary thalamocortical input are displayed
over a longer timescale (top-right), but the additional late responses can hardly spread into
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L6 (bottom-right). (C) Population activity averaged over all 100 TC neurons in D2 barreloid,
ATC. The early synchronous activity is induced by the principal whisker deflection and relays
the sensory information to the L4 barrels (left). The trapezoid form of stimulus is illustrated
under the plot. The initial L6 population spike (bottom-left panel in (B)) projects back to
the thalamus, eliciting the late oscillatory rhythm that begins after ∼110 ms of stimulation
onset at an interval of ∼110 ms (right). (D) Spike raster for the full thalamic network of
D2 barreloid (from which the population activity of TC cells shown in (C) is calculated).
The circuit is composed of 100 TC cells (dark blue) in the D2 barreloid and 100 reciprocally
coupled RE cells (light blue). The time axes of plots in (B), (C) and (D) are aligned.

propagation is determined by the width of the cross-whisker tuning curve of thalamocortical
input, the strength of inter-column connections as well as the excitability of the neural
population, where a broader tuning curve, stronger inter-population couplings and a more
excitable population give rise to more extensive propagation.

In addition, a grid of barreloids in the VPM of the thalamus was simulated to convey
sensory signals from individual whiskers to the cortex. The activity evoked by the principal
whisker in barreloid D2 will not spread into other barreloids because no recurrent connections
are made within the VPM, as observed experimentally [Brecht and Sakmann, 2002]. The
following describes the information flow within the thalamocortical system in response to a
D2 whisker deflection: The D2 whisker stimulation first excites the D2 barreloid through a
bottom-up connection to TC neurons, and subsequently induces transient PSs in the cortical
L4 populations via thalamocortical synapses. Onset PSs are also evoked in L6 through
intra-cortical connections and projected back to the thalamus, where the spindle oscillations
are initiated after the instantaneous onset response. As can be seen in Fig 4.2C and D, the TC
cell group in the D2 barreloid exhibits a transient increase in population activity right after
peripheral stimulation (early response), followed by substantial synchronized activities in the
sleep spindle frequency range (roughly 9 Hz, late response). The diminishing late oscillation
triggered by corticothalamic excitation occurs about 110 milliseconds after stimulus onset and
lasts a couple of cycles before termination. Finally, the late thalamic activity gives rise to a
secondary cortical response in L4 that only barely propagates to L6 (Fig 4.2B, right panels).

4.1.2 SSA Arises from Adapted PS to Standard Stimuli

SSA is generally tested in the oddball protocol, where repetitive deflection is applied to one
whisker (called the standard), and the sequence is randomly interrupted from time to time
by deflection of another whisker (called the deviant). The roles of whiskers as standard and
deviant are swapped to disambiguate any response preference for individual whisker from the
deflection probability on SSA [Musall et al., 2017].

In accordance with experimental findings [Musall et al., 2017], the L4 network exhibits
prominent SSA in the late response but hardly in the initial population spike, where a similar
amplitude of activity is elicited by whisker stimulation, regardless of its identity as either
standard or deviant (Fig 4.3A, middle panel). The initial PS is relatively unaffected because
the depleted synaptic resources in the L4 populations can always recover almost fully before
the next stimulus is presented (Fig 4.3A, bottom). In contrast, depleted synaptic resources in
L6 of the standard column (D2) recover only partially during the inter-stimulus interval, due
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Figure 4.3: SSA in the thalamocortical network (A) Time course of the whisker oddball
protocol (top), L4 population activity, AL4, (middle), and mean synaptic resources, xL4,
(bottom) in standard D2 (blue traces) and deviant C2 (red) barrel. Both standard and deviant
stimuli evoke comparable amplitude of PS (the first burst in response to each stimulus) due to
the fast recovery of depleted resources. Conversely, late oscillations occur primarily in response
to deviant stimuli. (B) L6 population activity, AL6, (top) and mean synaptic resources, xL6,
(bottom) in D2 and C2 infrabarrel. The deviant stimulus generally triggers more substantial
PSs than the standard because of more resource available upon presentation of the deviant
than the standard. (C) Population activities of TC cells, ATC, in D2 and C2 barreloids. The
deviant corticothalamic PS is always strong enough to initiate late thalamic oscillation, yet
this is not the case for the standard. (D) Spike raster of thalamic neurons in D2 (blue) and
C2 (red) barreloids. The transient activity of C2 RE cells in response to the first stimulation
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are caused by the significant cortical cross-column L6 feedback. The time axes of all plots are
aligned. In the oddball paradigm, peripheral stimulus duration is 10 ms and inter-stimulus
interval (ISI) is 1 s (onset-to-onset).

to the relatively long synaptic recovery time constant in this layer (Fig 4.3B, blue trace in
bottom panel). The insufficient resources, along with depressed L4-to-L6 input in D2 caused
by repeated standard stimuli, can only trigger inadequate PSs (Fig 4.3B, blue trace in top
panel). However, as a result of the low probability of deviant stimuli, synaptic resources in
L6 of the C2 cluster often reach their steady-state (Fig 4.3B, red trace in bottom panel) and
accordingly evoke full PSs when the deviant stimulus finally arrives (Fig 4.3B, red trace in top
panel). In other words, SSA is initiated in L6 during the early PS phase, where the cortical L6
drive on the deviant barreloid is always strong enough to elicit spindle oscillation, while it is in
most cases too weak to do the same on the standard barreloid (Fig 4.3C and 4.3D). These late
deviant-selective oscillations in the thalamus are then fed back to L4 populations and result
in the late L4 rhythmic dynamics exhibiting SSA, consistent with the experimental results
that the late cortical responses are very likely to be evoked by secondary thalamocortical
inputs to L4 [Musall et al., 2017].

It is worth noting that late thalamic and synchronized cortical oscillations are also
sometimes elicited in D2 by the standard stimulation, and especially the standard stimulus
immediately following a deviant (Fig 4.3C, D and middle panel of A), in accordance with
the sporadic standard-triggered oscillation recorded in L4 of the cortex [Musall et al., 2017].
Here these late rhythmic responses occur largely because the deviant did not deplete as many
resources in L6 of D2 as another standard would have done, which occasionally allows strong
enough cortical drive on the thalamus to generate a spindle oscillation during the presentation
of the next standard stimulation.

4.1.3 Context-dependent Deviance Detection

It has been suggested that the larger responses to the stimuli features, when deviant than
when standard, not only reflect the rarity of the deviant causing less use-dependent adaptation
[Nelken, 2014], but also the sensitivity to the violation of the expectation established by the
repeated standard, indicating a dynamic prediction mechanism for the next stimulus based
on the short-term memory of the previous statistical sensory stream [Näätänen et al., 2001].
Such sensitivity to contextual information is termed true deviance detection/sensitivity. A
common test for true deviance detection uses many-standards control protocol, where besides
the standard-deviant stimuli pair in the oddball sequence, many other different stimuli are
presented as the standards [Jacobsen and Schröger, 2001]. In this control, each of these
distinct stimuli occurs with the same probability as the deviant stimulus, which consequently
eliminates any potential expectation for the next stimulus but preserves the rarity of the
deviant. If the response to the deviant stimulus in the oddball sequence exceeds the response
to the same deviant one embedded in the control sequence, then the existence of true deviance
detection is confirmed [Jacobsen and Schröger, 2001]. Here in the many-standards condition
for the somatosensory domain, the standard stimuli are equiprobably distributed over three
whiskers in a row that are adjacent to the deviant whisker, therefore each whisker is deflected
with 25% probability [Musall et al., 2017] (Fig 4.4A).
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L4 recordings

Figure 4.4: Sensitivity to deviance in silico vs in vivo. (A) Two protocols are used to
test context-dependent deviance detection. In the whisker oddball condition, deviant stimuli
are applied to the C2 whisker with 25% probability of occurrence, while standard stimuli
are applied to the D2 whisker with 75% probability. In the many-standards condition, the
deviant stimulus is presented with the same probability of appearance as in the oddball
condition, but standard stimuli are equiprobably distributed over three whiskers D1-D3, each
of which is stimulated 25% of the time. The bar height represents the probability of a specific
whisker being stimulated. (B) A subset of multi-unit (MU) recordings in the granular layer
of rat S1 shows late deviant-specific responses in the whisker oddball and many-standards
protocols. Average early spike (top row, left) and late deviant-specific oscillatory responses
(top row, right) are shown for standard (blue curves, activity recorded in D2) and deviant
(red, activity recorded in C2) stimuli in oddball condition. The late response (bottom row)
also demonstrates a distinct difference between two deviant types (both responses recorded
in C2) in oddball (red curves) and many-standards protocols (green) respectively. Data
are adapted from Musall et al. [2017]. (C) Average biphasic population activity in cortical
L4 (top row), L6 (middle) and thalamus (bottom) in response to oddball standard (blue
traces, recorded in D2), oddball deviant (red, recorded in C2) and many-standards deviant
(green, recorded in D2) stimuli. Similar to (B), the left and right columns of panels show
the early and late activities respectively across cortical layers and the thalamus. SSA and
true deviance detection are initiated in the early L6 responses and subsequently enhanced in
the late thalamic oscillation, which finally induces the secondary deviant-selective cortical
response in L4. The third cycle of thalamic activity is too weak to produce a response in
L4 since this thalamic input is below the rheobase (current threshold of gain function) of L4
neurons. Stimulation periods are marked in grey shading. Data in each protocol are averages
of 120 stimulus presentations. In both stimulation paradigms, peripheral stimulus duration is
10 ms and inter-stimulus interval (ISI) is 1 s.
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Figure 4.5: True deviance detection in the model network. (A) Illustration of oddball
(top) and many-standards (bottom) protocols. The deviant stimulation to C2 is highlighted in
red for the oddball condition and in green for the many-standards one. (B) Population activity
(top) and synaptic resources (bottom) in L4 of C2 in response to deviant stimuli presented in
oddball (red traces) and many-standards (green) condition respectively. The deviant in both
protocols often evokes comparable onset responses, while a robust late oscillation is generally
only induced by the oddball deviant (two typical cases are highlighted in dashed boxes). (C)
Same as (B) but displayed for L6 of C2. Considerably larger early onset responses to the
many-standards deviant compared to the oddball deviant are generated in the L6 population
(see dashed boxes), because higher activity is propagated from the L6 standard column(s)
into that of the deviant column in the many-standards compared to the oddball condition,
and accordingly less synaptic resource is left and a weaker response is evoked upon arrival of
the deviant. (D) Synaptic resources in L6 of D2 in response to the standard stimulus applied
to D2 whisker embedded in oddball (solid traces) and many-standards (dashed) sequences.
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The standard stimulus to D2 in the many-standards condition, with its lower probability of
appearance than the same stimulus in the oddball condition, allows the resource in L6 of D2
to have more time to recover fully before the next standard stimulus arrives and consequently
to generate an adequate PS capable of spreading into the same layer of the deviant column.
(E) Thalamocortical (TC) population activity in C2 barreloid evoked by the deviant in the
oddball (red) and many-standards (green) protocols. The corticothalamic excitation of the
deviant in the many-standards condition is normally strong enough to elicit late intermittent
bursting, whereas that of the deviant in the oddball condition is not (dashed boxes). The time
axes are aligned for panels A-E. In both stimulation paradigms, peripheral stimulus duration
is 10 ms and inter-stimulus interval (ISI) is 1 s (onset-to-onset).

Fig 4.4C illustrates the distinctive biphasic activity of C2 populations evoked by the oddball
and many-standards deviant as well as of D2 populations by the oddball standard whisker
deflection in the cortical L4, L6 and the thalamus. For comparison, Fig 4.4B replots from
Musall et al. [2017] two different sets of cortical multi-unit (MU) recordings that respectively
exhibit late SSA (top panel) and true deviance sensitivity (bottom panel) tested in the oddball
and many-standards conditions. The late responses are only found in a subset of recordings
mainly confined to the L4. In line with the experimental findings, the simulated L4 populations
elicit nearly equally strong population spikes at short latency to both the oddball standard
and deviant, as well as the many-standards deviant stimulation, while SSA and true deviance
detection are only observed in the late oscillatory responses (Fig 4.4C, top row). Notably,
the timescales of the L4 early and late activity as well as the amplitude of the late response
in our model are quantitatively in accordance with the experimentally recorded L4 activity.
Apart from the close match with the existing experimental data, our model makes further
predictions of the population activity in the cortical L6 and the thalamocortical populations
in both somatosensory oddball and control protocols, which, to the best of our knowledge,
has not been conducted experimentally yet. We hypothesize that the late context-dependent
deviant oscillation seen in L4 is reflected by the thalamic spindle oscillation that can be
solely generated by the specific thalamic circuit (Fig 4.4C, right panel of bottom row). The
differences in the secondary thalamic responses to each type of stimulus are driven by the
early cortical PS variations in the L6 circuit, which independently detects the deviant in its
own responses (Fig 4.4C, left panel of middle row).

To understand why the average early response of the L6 network for the oddball deviant is
larger than for the many-standards deviant, we compared the dynamics of deviant responses
in L6 across the two conditions. In the regular oddball sequence, the inadequate L6 activity in
D2 evoked by the repetitive standard stimulus hardly propagates into C2, leading to negligible
L6 resource depletion in C2 and little cross-whisker adaptation (refer to Fig 4.3B, bottom). In
contrast, in the many-standards sequence, the standard stimuli generate substantial activity
in their corresponding clusters that provide C2 with strong inter-column inputs, because of
the equiprobable distribution of the standard stimuli and accordingly longer recovery time
of resources between repeated stimulation. This additional lateral input generally results in
higher activity in C2 evoked by the standard stimulation in the many-standards condition
than the oddball condition, and consequently leads to more adaptation. To illustrate this
mechanism for true deviance detection across the hierarchical network, Fig 4.5A-4.5E displays
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population activities and synaptic resources for the C2 cluster in both protocols across the
L4, L6, and thalamocortical populations respectively. The dashed brown frames highlight
two examples for an oddball deviant triggering a significant late response in L4, while a
many-standards deviant does not. In the first frame, the thalamocortical input as a deviant
in both protocols triggers approximately the same onset PS in L4 of C2 (Fig 4.5B, top, first
spike within the box). In contrast, less L6 activity is elicited in the many-standards than the
oddball condition owing to the lower level of L6 resources reduced by the last D3 stimulation
in the many-standards condition (Fig 4.5C). In consequence, only the corticothalamic feedback
in the oddball protocol is large enough to trigger spindle oscillations in TC cells (Fig 4.5E),
which in turn cause synchronized activity in the cortical L4 barrel (Fig 4.5B, top). In a similar
vein, the second frame shows an example where resources in L6 of C2 in the many-standards
condition are freshly exhausted by the preceding D2 stimulation and do not have time to
recover adequately to trigger a spindle oscillation. It is also worth noting that under cross-
whisker adaptation, the resources in L6 of C2 are occasionally depleted by bursting activity at
long latency propagated by the first robust burst of late oscillation evoked in L4 of standard
column(s) (Fig 4.5C, an instance is highlighted by golden pyramid).

4.1.4 Further Experimental Predictions

We ran another pair of novel prediction paradigms on our model with the same set of parameters
used in all previous protocols to test the model’s sensitivity to contextual information that
includes sequential statistics. Here we used variants of the many-standards paradigm with
fixed deviant position but permutated the order of the standards presentations to be either
random or periodic. In the sequenced paradigm, the standard deflection was periodically
applied to C2, D1 and B1 whiskers, each of which is rarely substituted for the C1 deviant
in order, which is overall presented 3% of the time. Identical statistics were used in the
randomized paradigm except that the three standard stimulations are randomized between
the successive deviants. A schematic representation of both sequences is displayed in Fig
4.6A.

In comparison with the sequenced condition where the expectation is established by
the repeated sequential standards and violated by the deviant, a precise prediction about
forthcoming stimuli cannot be formed in the randomized condition. As shown in Fig 4.6B, a
slightly stronger L6 response is initiated for the deviant embedded in a sequenced, expectation-
forming than random stimulation train. The response discrepancy is also reflected in L4
with latency by the thalamocortical loop. We quantify this effect by computing the context-
specificity index (CSI) defined as the difference between responses to sequenced and randomized
deviants normalized by the sum of two responses.

Furthermore, our model predicts the dependence of the novelty-predicting effect on the
inter-stimulus interval (ISI) across different cortical layers and thalamus (Fig 4.7). Due to the
feature of biphasic dynamics in our network, CSI is separately computed for the early and
late responses. For the early response, the novelty-predicting effect is demonstrated in the
cortex over a wide range of ISI and particularly prominent in L6 that as we expected to be
the novelty detector. Early novelty-predicting responses originated in L6 are subsequently
revealed in the thalamic oscillation and secondary L4 responses via the L6-to-thalamus-to-L4
pathway.

To eliminate the potential effect of sensory input uncertainties on CSI, we removed the
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Figure 4.6: Deviant responses of cortical and thalamic populations in sequenced
and randomized paradigms. (A) Schematic illustration of sequenced and randomized
stimulation trains and the stimulated whiskers. In two sequences, the delivery of the deviant
stimulus to the C1 whisker is the same, but three standard stimuli are employed either
periodically (sequenced condition, top) or randomly (randomized condition, down) to C2,
D1 and B1 whiskers. In the sequenced stimulus train, the deviant occasionally breaks the
regularity by repeatedly taking the place of one of the standards in the order of C2, D1
and B1. In both paradigms, stimulus duration = 10 ms and inter-stimulus interval (ISI)
= 250 ms (stimulus offset to onset). Deviant stimuli constitute 3% of overall stimuli (30
out of 1000 stimuli). (B) Average population activity across cortical L4 (left), L6 (middle)
and thalamus (right) in response to the deviant in sequenced (red) and randomized (green)
paradigms. A weakly differential response to sequenced and randomized deviant exclusively
appears in the L6 population at short latency. Owing to the thalamocortical loop, this subtle
difference is successively manifested in late thalamic and cortical L4 bursting activities, which
are magnified in insets for clarity. Stimulus duration is highlighted in grey. CSI values are
0.0115, 0.0254 and -0.0061 for early L6 (computed over [0, 40] ms) and late L4 and thalamic
responses (computed over [40, 250] ms), respectively.
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Figure 4.7: Novelty-predicting effect as a function of inter-stimulus interval. Early
and late CSIs are respectively computed over 40 ms after stimulus onset and the remaining
time before the onset of the next stimulus. Data are averaged over 5 trials of each paradigm
consisting of 1000 stimuli.

stimulus-by-stimulus variation of the thalamocortical drive that was previously presented
and reran both protocols on the model. In this case, each external stimulus evokes the same
amplitude of thalamic responses. One can clearly see from Fig 4.8A that the novelty-predicting
effect is greatly attenuated near both ends of the range allowing for it because either of the
cases will lead to the steady-state of unrecovered/recovered synaptic resources in L6, which are
independent of the presentation context. We also investigate the individual role of three types
of deviant in the sequenced paradigm in detecting novelty across different ISIs, where the C1
deviant preceded by the B1, C2 and D1 standard is defined as type 1, 2 and 3, respectively
(Fig 4.8B). The novelty-predicting effect is the most pronounced for the type 2 deviant and
is not influenced much by the increase in ISI after the first several values, which indicates
the capacity of novelty prediction in the cortex depends on the specific sequential context
in the recent past in randomized paradigms, i.e., the precise information about the order of
standard presentations over hundreds of milliseconds before the arrival of deviant.

4.2 Discussion

We presented a cortico-thalamo-cortical circuit of somatosensory processing with recurrent
dynamics and depressing synapses that is capable of producing both SSA and the contextual
sensitivity over different latencies across cortical layers and thalamus, in line with previous
experimental observations [Musall et al., 2017]. The computational results suggest that the
early context-specific deviant responses in S1 L6 could be a strong candidate for the electro-
physiological correlates of the mid-latency response observed in EEG recordings [Shiramatsu
and Takahashi, 2021; Grimm et al., 2011], because of their similar response latencies and
shared sensitivity to presentation context. Besides, we show that the late context-dependent
responses in S1 L4, which temporally and functionally resemble MMN, can be produced
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Figure 4.8: Novelty-predicting effect as a function of inter-stimulus interval in the
model with deterministic sensory inputs. (A) Early and late CSIs are computed in the
same fashion as Fig 4.7 except that data are averaged over 30 deviant out of 1000 stimuli in
each paradigm. The CSI values for the early thalamic responses are ignored since they are
always zero independent of ISI. (B) Three types of deviants show different dependence of
novelty predicting capacity on ISI. Type 2 deviant has a wider ISI range allowing novelty
prediction in both early and late responses than the other two types.
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simply by the interaction between different cortical layers and the thalamus, without involving
top-down modulation by higher brain areas.

Inspired by a previously described mechanism producing SSA through interactions among
intracortical populations with different specificity for stimulus features in the auditory cortex
[Yarden and Nelken, 2017], our model enables the generation of a cortical population spike upon
the presentation of stimuli and its lateral propagation across different barrels to mediate SSA,
consistent with the given neurobiology of the barrel cortex. The existence of whisker-evoked
population spikes and their spatiotemporal distribution in S1 are inferred from voltage-sensitive
dye imaging [Hubatz et al., 2020] and multielectrode array recordings [Petersen and Diamond,
2000a; Lebedev et al., 2000], where the mean firing rates show a temporary peak in the
principal column upon the onset of stimulation, followed by weaker activity with short latency
in the surrounding columns [Lebedev et al., 2000]. Previous modelling work has demonstrated
that this population burst could be a consequence of a recurrent network with synaptic
depression [Tsodyks et al., 1998, 2000; Loebel and Tsodyks, 2002; Barak and Tsodyks, 2007b].
Here, such a network is the essential ingredient of our hierarchical model to produce SSA.

Our model can be regarded as a simplified representation of the cortico-thalamo-cortical
pathway of the rodent whisker system. The dynamics of the barrel cortex are described
by population activity and mean synaptic resources of somatotopic neuronal clusters in a
two-layered grid network. The reasons for adopting rate models for the cortical dynmaics are
twofold. First, the mean-field description of population activity makes it possible to analyze the
dynamics of single recurrent clusters giving rise to population spikes on the phase plane, under
the mathematical abstraction that each cortical cluster is a large and homogenous network.
Theoretical work has demonstrated that such a mean-field representation is equivalent to a
homogeneous pool of leaky integrate-and-fire neurons in terms of its population activities
[Gerstner et al., 2014]. Second, this specification allows us to focus on the collective population
behaviour within the grid network, which is sufficient to generate cortical SSA and true
deviance detection. SSA and true deviance sensitivity cannot be accounted for solely by the
intrinsic dynamics of individual neurons, but relies to a large extent on network dynamics.
It should be noted that although this mean-field network of the barrel cortex ignores some
details, such as the potential contribution of additional layers, distinct neuron types and
their morphology, and more realistic connectivity profiles, critical features of the barrel
cortex including its somatotopic columnar arrangement and the spatiotemporal pattern of
whisker-evoked responses are retained and indeed shown to be sufficient to explain the deviant
selectivity of transient L6 responses.

For the thalamic contribution, following previous work by Destexhe et al. [1998], a spiking
neural circuit of single-compartment thalamocortical (TC) and thalamic reticular (RE) cells
are used to reproduce spindle oscillation. Synaptic currents within the network are simulated
by the synaptic kinetics of AMPA and GABA receptors. In contrast to the cortical rate
model, which only depends on network mechanisms, the thalamic spiking model takes into
account both the intrinsic properties of single cells and their interplay to elicit synchronous
oscillations. Specifically, the spiking dynamics of each thalamic neuron is simulated by an
Izhikevich model that reproduces similar firing patterns to the conductance-based model used
in Destexhe et al. [1998], but is computationally as efficient as the leaky integrate-and-fire
model. Our modelling results implicate the slow recovery variable in these thalamocortical
neurons, which may describe the inactivation of low-threshold Ca2+ T-currents [Izhikevich,
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2007], as the main factor driving the latency of the secondary response observed in S1 L4 and
therefore potentially MMN.

Finally, it is worth mentioning that the current implementation of our model still has several
shortcomings. A major limitation is the sensitivity of SSA to cortical network parameters,
which stems from the different layer-specific response patterns in the feedforward L4-to-L6
network. In other words, the parameter regime allowing for SSA and the true deviance
sensitivity in initial L6 responses is constrained by not only the spatiotemporal pattern of
whisker-evoked transient activity in the L6 network but also responses in L4 that directly
delivers its output to L6. Primarily, in the L6 circuit, the PS evoked by the oddball standard
should reduce with repeated stimuli while not generalize to the oddball deviant. Besides, the
propagation of activity across the L6 network is supposed to be robust enough to occasionally
pass the PSs triggered by standards in the many-standards condition into the deviant column,
yet too weak for PSs evoked by the oddball standard to do so. Another possible shortcoming
of the model is that it omitted cortical layer 2/3 and layer 5 that could modulate the laminar
pathway from L4 to L6. Future work incorporating these missing layers could generate richer
dynamics that expand the narrow region of SSA existence in the parameter space, leading to
a robust SSA phenomenon. Lastly, it would be instructive to test the NMDA dependency
of the late response in a spiking implementation of the cortical dynamics explored here to
further investigate SSA’s connection with MMN.

4.3 Materials and Methods

It has been observed that a cortico-thalamo-cortical loop structure exists in the rodent whisker
system. The excitatory thalamocortical (TC) neurons in the ventral posterior medial (VPM)
nucleus present feedforward projection to layer 4 (L4) of the cortex. On the other hand,
neurons in layer 6 (L6) provide feedback excitation to TC and reticular(RE) neurons that
impose reciprocal inhibition on TC cells.

4.3.1 Modeling the Barrel Cortex

Here, for the complexity needed for the work, we greatly simplified the laminar structure
of the cortex by only considering two cascaded excitatory networks that model L4 and L6
respectively.

To mimic the somatotopic organization of the barrel cortex, the circuit of each layer
is composed of an array of cortical columns (barrels). Each column is modelled by a fully
connected excitatory population mediated by synaptic depression, with its mean-field dynamics
as analyzed in the last subsection. Every column is also connected to its nearest vertical and
horizontal neighbours by inter-column depressing synapses. Furthermore, the L4 columns
receive thalamic inputs with cross-whisker tuning and send outputs to their aligned L6
columns.

The mean-field dynamics of cortical layer 4 network is described by the following equations
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Figure 4.9: Schematic representation of the thalamo-cortio-thalamic loop model
of the barrel cortex, to illustrate the notation used in Methods. (A) Feedforward
thalamocortical pathway. (B) Feedback corticothalamic pathway. The width of arrows
describes the relative strength of each connection.

(see Fig 4.9 for a schematic representation of the network architecture):
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Am,nL4 = [αL4(hm,nL4 − θL4)]+ (4.4)
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Similarly, the mean-field cortical layer 6 network is defined as:

τm
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dt
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L46A
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Am,nL6 = [αL6(hm,nL6 − θL6)]+ (4.8)

The dynamics of each barrel is described by its population activity Am,n and mean fraction
of synaptic resource available xm,n, where m and n denote the row and arc indices of the
barrel on an idealized M ×N grid. Both variables are specified by subscript either L4 for
the population in layer 4 or by L6 for layer 6 (which applies for all layer-specific variables).
The population activity Am,n is defined as a threshold- linear gain function of the mean-field
current hm,n (α and θ are respectively the slope and horizontal intercept of the gain function).
The function [·]+ is defined as its argument when the argument is positive, otherwise zero.

The synaptic efficacy is represented by J |k|+|l| with superscript specifying the column-
to-column distance of the connection (0, 1 and 2 respectively indicate intra-column, ver-
tical/horizontal and diagonal inter-column connection). U denotes the utilization rate of
synaptic resources. τm and τrec are the membrane time constant of cortical neurons and
recovery time constant of synaptic resources, repectively. The dynamics of thalamocortical
synapses from the whisker channel p, q to the L4 barrel m,n is characterized by the fraction
of resources available zm,np,q , parameterized by utilization rate UThC and recovery time constant
τrec,ThC. Similarly, the L4-to-L6 depressing synapse of column m,n is described by its resources
xm,nL46 with utilization rate UL46 and recovery time constant τrec,L46. JThC and JL46 denote the
efficacy of thalamocortical and laminar synapses, respectively.

Tm,np,q represents the relative magnitude at which the barrel m,n receives thalamocotical
input from whisker channel p, q compared with its primary whisker channel. The values of Tm,np,q

over all channels on the M ×N grid compose the spatial tuning curve of the thalamocortical
inputs to the barrel m,n. We chose a linear tuning curve in the simulation, which is defined
as

Tm,np,q = [−d/λ+ 1]+ (4.9)

where λ is the radius of tuning curve and d is the floored Euclidian distance between barrel
m,n and whisker channel p, q on the evenly-spaced gird where the separation distance is 1

d =
⌊√

(m− p)2 + (n− q)2
⌋

(4.10)

where b·c denotes the floor function that rounds its argument to the nearest integer less than
or equal to that argument.

Ap,qTC describes the thalamocortical input delivered through the whisker channel p, q. It is
defined as the population activity of TC cells organized in barreloid m,n, which in practice is
evaluated by Eq 2.13 with a time window ∆t = 2 ms. It is worth noting that the time bin of
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2 ms is only used to compute the population activity of TC cells from their spikes, and the
cortical population activity is obtained by numerically solving those differential equations of
the cortical dynamics with an integration time step of 0.1 ms. Specifically, the Ap,qTC is updated
every time window (2 ms) and held constant for 20 integration time steps (each 0.1 ms).

4.3.2 Thalamic Circuit Generating Spindle Oscillation

We assume that the late cortical rhythmic activity (roughly 10 Hz) that lies in the frequency
range of the spindle oscillation (7-14 Hz) [Timofeev and Bazhenov, 2005] emerges from the
thalamo-cortical system. Earlier studies have shown that spindle oscillation is initiated in
the thalamus and synchronized over the cortex and its minimal neural substrate lies on the
interaction between thalamic RE cells and TC relay cells [Destexhe et al., 1998; Timofeev
and Bazhenov, 2005].

20 ms

2
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A B

I(t)

I(t)=0

62.5 mV

Figure 4.10: Latency to spike bursts in a TC cell. (A) A burst of spikes with significant
latency is evoked by an inhibitory current pulse with 1 pA amplitude lasting 5 ms that
approximates a transient inhibitory postsynaptic current of RE cells modulated by GABAA

neurotransmitters. The membrane potential value immediately after the release from inhibition
is denoted in the open square. (B) The phase portrait of the dynamical system (4.11, 4.12)
with parameters used in first subpopulation of TC cells when I(t) = 0. The intersection
of the v-nullcline (red) and u-nullcline (green) is a stable focus, whose attraction basin is
marked in orange. The trajectory initiated at the states right after the removal of inhibitory
input (open square same as in (A)) slowly goes through the neighborhood of the equilibrium
before accelerating towards the voltage threshold of the spike peak. After setting off several
spikes, the states are reset to the attraction domain and approach along the v-nuclline to the
equilibrium (resting potential).

Motivated by the anatomy of the VPM and reticular nucleus of the thalamus, we modelled
each barreloid in the VPM nucleus by a cluster of 100 TC cells mediated by a pool of 100 RE
cells, whose connectivity is illustrated in Fig 4.9B. The spiking dynamics of each thalamic
neuron simulated by the Izhikevich model, which uses the quadratic integrated-and-fire model
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for the membrane potential equation, is expressed as

v̇ = 0.04v2 + 5v + 140− u+ I(t)
u̇ = a(bv − u)

(4.11)

with after-spike resetting

if v ≥ +30mV, then

{
v ← c
u← u+ d

(4.12)

where the time t is in milliseconds; v and u respectively denote the membrane potential (in mV)
and recovery variable that represents the difference of all influx and efflux of voltage-gated
ionic currents (in pA). In particular, the population of 100 TC cells in each barreloid are
divided into two subgroups. (a, b, c, d) = (0.005, 0.26,−52, 2) are assigned to the first 60 TC
neurons (indexed from 1 to 60) to induce rebound bursts that is an essential ingredient of
spindle oscillation. The same parameter quartet except for b = 0.25 is assigned to the rest 40
TC neurons (indexed from 60 to 100) that only fire spike trains following stimulation from
depolarized currents but fail to produce rebound spikes. Thalamic RE cells are modelled as
bursting neurons by assigning (a, b, c, d) = (0.02, 0.2,−55, 4).

As explained before, the latency to the secondary cortical response could be attributed to
the delay of rebound bursting in TC cells elicited by inhibitory inputs from RE cells (see burt).
Such a delay usually results from the slow inactivation of low-threshold Ca2+ T-currents in
the TC neurons [Izhikevich, 2007]. In Fig 4.10, we illustrate the delay mechanism of TC cells
from the perspective of dynamical systems. Significant delay to rebound bursts arises due
to the slow passage of neuronal states across the vicinity of an attractor before setting off
a spike. As depicted in Fig 4.10B, a brief, weak negative current pulse sets the neuronal
states to a new location on the left side of the neighborhood of an attractor but outside of its
attraction basin, where values of the vector field are quite small. The membrane potential
increases slowly and steadily to pass that region and fire a burst of spikes before entering the
attraction domain. Hence the spike burst is induced with a long latency. It is worth noting
that in Fig 4.1F, TC1 cell does not fire a spike in the first cycle as TC2 does because the
initial excitatory corticothalamic drive neutralizes the effect of inhibition from RE1 cell and
accordingly, the innate states of TC1 cell model remain within the attraction domain after
the initial bursting of RE1 cell.

The thalamic network connectivity is illustrated in Fig 4.9B, with a connection probability
of 0.6 for TC-to-RE, RE-to-TC and RE-to-RE coupling in each pair of subgroups of TC and
RE cells and 0.2 for coupling between two subgroups of RE cells. I(t) is the total current
input to the the neuron (in pA)

I(t) = Inoise(t)− Isyn(t) + ICTh(t) + Is(t) (4.13)

The thalamic background noise Inoise(t) is subject to uniform distribution bound between -0.5
and 0. The conductance-based synaptic current is modelled as

Isyn(t) = gsyn(t) (v(t)− Esyn) (4.14)

where Esyn is the synaptic reversal potential. Synaptic conductivity gsyn(t) has a time course
of exponential decay:

gsyn(t) =
∑
f

ḡsyne
−(t−tf)/τΘ(t− tf ) (4.15)



CHAPTER 4. MODELLING NOVELTYDETECTION IN THE THALAMOCORTICAL LOOP58

Table 4.1: Values used for the network parameters

Notation Description Value

M Number of rows 5
N Number of arcs 4
λ Radius of tuning curve 1.6
UL4/UL6 Utilization rate of L4 / L6 synapses 0.5
UThC/UL46 Utilization rate of thalamocortical / L4-to-L6 synapses 0.8 / 0.5
αL4/αL6 Slope of L4 / L6 gain function 1
θL4/θL6 Threshold of L4 / L6 gain function 5 / 3
J0

L4/J
0
L6 Intra-column synaptic efficacy in L4 / L6 2.2 / 2.5

J1
L4/J

1
L6 Vertical/horizontal inter-column synaptic efficacy in L4 / L6 0.05 / 0.03

J2
L4/J

2
L6 Diagonal inter-column synaptic efficacy in L4 / L6 0.001

JThC Synaptic efficacy of thalamocortical connection 1 / 0.05
JL46 Synaptic efficacy of L4-to-L6 connection 0.24
τm Membrane time constant 0.001 s
τrec,L4/τrec,L6 Recovery time constant of L4 / L6 synaptic resources 0.5 / 1 s
τrec,ThC/τrec,L46 Recovery time constant of thalamocortical / L4-to-L6 synaptic resources 0.8 / 1.2 s

where Θ(t) is the Heaviside step function and tf represent the arrival time of pre- synaptic
spikes. We simulated AMPA and GABAA receptors with the decay time constant τ = 5
and 6 ms; Esyn = 0 and -75 mV, respectively. The maximal conductance ḡsyn for each
type of connection is scaled as ḡsyn = Ḡsyn/C, where C = 100 × 0.6 = 60 is the number of
randomly chosen presynaptic partners for each neuron and Ḡsyn = 2, 0.01 and 0.2 nS for
AMPA-mediated TC-to-RE, GABAA-mediated RE-to-TC and GABAA-mediated RE-to-RE
synapses, respectively.

In addition, half of TC cells in each barreloid and their coupled RE cells were randomly
picked receiving corticothalamic feedback current, which is expressed as

ICTh(t) = wCThAL6(t) (4.16)

where AL6(t) denotes the population activity of L6 neurons in the somatotopic infrabarrel.
We respectively assigned the corticothalamic coupling strength wCTh = 0.001 and 0.4 for TC
and RE neurons.

Finally, we respectively stimulated randomly 10% and 50% of TC cells in the two comple-
mentary subgroups of each barreloid with sensory input that is described as

Is(t) = ξ(t) ·B (4.17)

where B and ξp,q(t) respectively represent the maximum amplitude and temporal envelope of
the sensory stimulus (normalized between 0 and 1). In all simulation protocols, B = 5 and
ξp,q(t) has the profile of trapezoid pulse with 10 ms duration (2 ms onset/offset ramp time).

Forward Euler method with a time step of 0.1 ms is used to simulate the network
dynamics. The values for different network parameters are listed in table 4.1. The Matlab
code for running the network model is available online at https://github.com/ChaoHan-UoS/
SomatosensorySSA_Model.

https://github.com/ChaoHan-UoS/SomatosensorySSA_Model
https://github.com/ChaoHan-UoS/SomatosensorySSA_Model
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4.4 Summary

This chapter described a multi-scale recurrent network with synaptic depression to explain
how a delayed deviant-detecting activity [Musall et al., 2017] can arise in the thalamocortical
loop of the barrel cortex. The architecture and dynamics of the model presume that neurons in
cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus,
resulting in reduced population activity in the corresponding cortical column when compared
with the population activity evoked by a rare stimulus. This difference in population activity
is then projected from the cortex to the thalamus and amplified through the interaction
between neurons of the primary and reticular nuclei of the thalamus, resulting in spindle-like,
rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to
cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a
particular stimulus pattern. Model results show a strong analogy between this late single
neuron activity and EEG-based mismatch negativity in terms of their common sensitivity
to presentation context and timescales of response latency, as observed experimentally. Our
results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce
signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could
generalize to other sensory modalities.



Chapter 5

Conclusions and Future Work

This chapter recapitulates the research work and contributions delivered in the thesis. Possible
ideas for future work are also discussed.

5.1 Thesis Contributions

The principal goal of the thesis is to investigate the neural substrate of the elemental phe-
nomenon of novelty detection. To this end, we presented an exhibitory-inhibitory network
moderated by spike-frequency adaptation modified from Yarden and Nelken [2017] to elucidate
and replicate the auditory response trends across five SSA protocols adapted from experiments,
both heuristically and theoretically (chapter 3). On top of that, we further generalized the
SSA network structure of the auditory cortex [Yarden and Nelken, 2017] to the barrel cortex
in the context of a thalamocortical loop to explain a deviant-specific somatosensory response
with MMN-like latency observed by Musall et al. [2017] (chapter 4). Supplementary materials
on the theoretical derivation and dynamical analysis for the mean-field model used in chapter
3 and 4 were provided in the last two sections of Chapter 1. We summarized the main
contributions of this PhD research on SSA and deviance detection as below:

Testing an SSA hypothesis in a simplified network of the auditory cortex. In
this work, we consolidated by employing a two-layered rate model of A1 the idea originated
from Yarden and Nelken [2017] that SSA results from differential adaptation of populations of
tuned neurons modulated by the interaction of population activity. Our rate model provided
numerical comparisons among responses to different protocols, qualitatively in line with
experimental results [Taaseh et al., 2011], and the analytical condition achieving the response
trend to further guide the parameter tuning of its spiking counterpart. We identified through
this study that, under the SSA-eliciting hypothesis, not only the synaptic depression in the
original implementation but neuronal adaptation (e.g., spike-frequency adaptation) could
also produce SSA and its pertinent properties. Finally, our network embodiment of the SSA
hypothesis ameliorates the sensitivity of SSA to network parameters in the initial model of the
hypothesis by demonstrating robustness against online parameter uncertainties and relatively
wide operating ranges of free network parameters.

Modeling delayed SSA in the barrel cortex. We proposed a neural circuity mech-
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anism to explain how novelty detection emerges in the whisker-related region of the so-
matosensory cortex (called the barrel cortex) and qualitatively reproduces its corresponding
electrophysiological response patterns [Musall et al., 2017], via a somatosensory thalamocorti-
cal network with several distinct timescales of dynamics. To the best of our knowledge, our
thalamocortical model is the first attempt to account for the underlying network mechanism
of the late deviant-specific response recorded on the single-cell level and relate it to EEG-level
MMN given their sharing response latency sensitivity to context information. Our results show
that the late response in cortical L4 could be inherited from the thalamic spindle oscillation
that is only evoked by the unadapted cortical drive from cortical L6 on the presentation of
the deviant stimuli. Our hypothesis of late SSA can be further verified by comparing our
model predictions with future experimental results.

Finally, it is worth discussing the modeling philosophy taken in the thesis. We started
by converting the previous SSA model [Yarden and Nelken, 2017] to its ”minimal” form in
the sense that we removed the biological details that are not essential for SSA generation
and only kept those indispensable elements that could elicit the qualitatively comparable
deviance-detecting phenomenon to that in the full model. The minimal model could help us
better understand the fundamental mechanisms behind the phenomena on the least level of
complexity. Particularly, the use of mean-field representation in the minimal model facilitates
the interpretation of the parameter dependence of the model dynamics via the phase plane
analysis. The final phenomenological model was built upon the minimal model by augmenting
it with new features to reflect the experimental data [Musall et al., 2017] while avoiding
unnecessary modeling complexity. Lastly, it should be noted that there has been a long
debate on the employment of reductionism vs. holism to model the brain [Mazzocchi, 2012;
Pigliucci, 2014]. Prior holism efforts on large-scale spiking model of brain area [Izhikevich and
Edelman, 2008; Markram et al., 2015] have gained impressive achievement on reproducing
experimental observations. Still, most of them could not identify the explicit intrinsic and
circuitry mechanisms giving rise to certain specific phenomena. In this thesis, we supposed that
the neural network generating SSA is a non-complex system (absence of emergent behaviors)
[Ladyman et al., 2013], and therefore our reductionist methodology remains viable.

5.2 Future Developments

While our hypotheses and models have explained and replicated some of the prominent
SSA experimental findings in both the auditory and somatosensory cortex, there are still
several open questions that need to be further investigated in the area of deviance detection.
Therefore, in this section, we outlined some future work worth pursuing following the research
conducted in the thesis.

One major future direction is to explore the possibility of applying a general sequence
learning algorithm called hierarchical temporal memory (HTM) [Hawkins and Ahmad, 2016]
to explain SSA recordings in different sensory modalities. Although current machine learning
algorithms, such as the hidden Markov model (HMM) Fine et al. [1998], long short-term
memory (LSTM) Hochreiter and Schmidhuber [1997] and echo state network (ESN) [Jaeger
and Haas, 2004], have gained impressive performance on learning sequential data, they can
only provide little insight into how the cortex deal with similar sensory stream information
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Figure 5.1: Schema for the merging the HTM layer into our thalamocortical net-
work. The feedforward intra-column pathway starts from the thalamocortical (TC) cells, to
L4, to L2/3 and further the high-order S2 area. Neurons in L2/3 also project back to L6 and
subsequently the thalamus via the corticothalamic (CT) pathway. Intra-column connections
are constructed in L2/3, L4 and L6. Cells of the HTM in L2/3 are divided into three states:
active, predictive and inactive. Cells in the predictive (depolarized) state within a stimulated
column will become active and reinforce the subset of intra- and inter-column synapses causing
the depolarization, which forms a Hebbian-like learning rule.

due to their independence or oversimplification of neuroscience details. In contrast, HTM
is an unsupervised sparse neural network greatly inspired by high-order sensory processing
via laminal and columnar structures in the neocortex [Cui et al., 2016]. Since both our
SSA models and the HTM model use columnar processing, we can compare and possibly
combine each other to check further how closely the model predictions correlate with the
SSA behavioral experiments. Specifically, we could add cortical layer 2/3 modeled by a
single-layer HTM into our thalamocortical model to alleviate the sensitivity of SSA to model
parameters/background noises and accordingly enlarge the difference between responses to the
sequenced and randomized sequences discussed in section 4.1.4. The merged model architecture
is illustrated in Fig 5.1, where the L2/3 represented by HTM receives the undifferentiated
deviant inputs in both paradigms from L4 and yields robust response discrepancy independently.
The context-sensitive responses of L2/3 are concurrently delivered downstream to the thalamus
via L6 and upstream to the secondary somatosensory cortex (S2) in which pronounced response
difference between sequenced and randomized paradigms was also found. By virtue of the
thalamocortical loop, the differentiated responses could also be reflected in L4 over a long
latency. The motivation for the model extension is that short-term synaptic depression and
somatosensory thalamocortical loop seem not enough to show a consistent response tendency
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over various inter-stimulus intervals (see Fig 4.7). Therefore some additional mechanisms need
to be considered. A promising candidate could be the Hebbian-like synaptic learning rule
employed in the HTM model that sparse neurons become active via a reinforced connection
motif in response to anticipated stimuli while an unpredicted stimulus can activate all neurons
in a column [Hawkins and Ahmad, 2016; Hawkins et al., 2017]. In addition, we can test the
abilities of our simplified auditory SSA model (see chapter 3) and the HTM model to account
for the sensitivity of auditory neurons to complicated statistical regularities [Yaron et al.,
2012] that cannot be explained by any previous SSA models. Experimental evidence suggested
a long-term dependence on the history of sensory stimuli. Thus an additional long-term
synaptic effect would be plausible to be incorporated into our SSA models. We can also
investigate the dependence of our SSA models on the protocol parameters (the probability
of deviant appearance and inter-stimulus interval) and compare it with experimental results.
Finally, it would be very instructive to study the MNDA-dependence of the early and late
sensory responses via both experiments and simulation to verify our hypotheses that the
early response in S1 L6 and late response in S1 L4 are respectively the physiological origins
of the EEG-based MLR and MMN. A potential modeling direction would be to augment
our thalamocortical network by including L2/3 modeled by the HTM model since it uses
local NMDA spikes triggered on dendritic branches to activate a neuron [Cui et al., 2016].
An alternative modeling approach can also be converting the cortical rate neurons of our
thalamocortical model into their spiking counterparts coupled by MNDA-mediated synapses.

5.3 Conclusions

In this thesis, we supplied further support for the SSA network mechanism by testing auditory
responses to different novelty-detecting protocols in a simplified but robust version of Yarden
and Nelken [2017]’s model, implemented on both a simulated mean-field minimal model and
physical neuromorphic hardware. In addition, a thalamocortical network with a somatotopic
arrangement was developed to explain a delayed deviant-sensitive cortical response. We
concluded for the simulation results that novel signals could be initially detected in the
transient L6 response to sensory stimuli as the fewer synaptic resources in the deviant column
were depleted when presented in a regular than random stimuli context. The L4 delayed
deviant-specific response was inherited from L6 through the thalamocortical loop, and the
latency was contributed by the slow inactivation of specific ion channels in the thalamocortical
neurons. Our results suggest a mechanistic model that yields signatures of both SSA and
MMN, which could be expanded and generalized to explain and reproduce more experimental
findings on novelty detection in future work.
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