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Abstract

In this thesis, we present distance measurements to embedded stars by

using the wealth of astrometric data from Gaia DR2. Our methodol-

ogy is based on the Bayesian techniques and the Markov chain Monte

Carlo (MCMC) sampling by modelling the extinction towards the re-

gion of interest to infer the distance to the target source. We model

the AG extinction in the line of sight to provide reliable distance mea-

surements. We also use the AV extinction derived by Anders et al.

(2019) to see the improvement in the distances when using additional

catalogues. The distance is subsequently inferred from the jump point

on the extinction from the Off-cloud to On-cloud stars as each extinc-

tion measurement has its corresponding distance.

We inferred distances to Young Stellar Objects (YSOs) selected from

the literature and to the sub-regions of the high mass star formation

region, Cygnus X (DR20, DR21, DR22, DR23, and W75N). We found

that Gaia can provide a reliable distance to an object associated with

a molecular cloud with moderate-sized extinction, showing a small

systematic uncertainty of less than 5%. For dark clouds, however, our

extinction models inferred lower distances compared to maser dis-

tances, kinematic distances, and to the extinction distances of Foster

et al. (2012). This is because there are multiple extinction breakpoints

towards those selected regions, and our models provide distances to

the first jump. We also found that the sub-regions of Cygnus X are

located at a similar distance of ∼ 1kpc according to AG, and at ∼1.6



kpc according to AV . This suggests that the idea of using additional

photometric data with Gaia in the AV model improves the distance

as it added many input stars for the models. Our methodology failed

to measure distances to object in a cloud with complex extinction dis-

tribution that differs from our simple dust screen model. We stress,

however, that the advent of the full Gaia Data Release 3 will signif-

icantly improve our distance measurements as many more data will

be available.
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Chapter 1

Introduction

Looking at the night sky on a cloud-free might make us wonder how far away those

stars are. Determining distances to the stars is one of the significant challenges

in astronomy and astronomers are still trying to find the appropriate way to

calculate them by applying several methodologies. Knowing the distances of

stars leads to solving the obstacle to our understanding of the Milky Way and

the understanding of galaxies in general. For example, combining the distance

with the apparent brightness gives us its true luminosity (see Eq. 1.1).

L = 4πD2B (1.1)

where B is the brightness of the star and D is the distance.

Apart from the luminosity, knowing distance to stars also allows us to infer

different stellar parameters such as its mass from the orbital motions, its true

motions through space and indeed its physical size. The brightness of a star

can be measured directly. By combining the measured brightness from different

wavelengths with the colour of the star, without considering the extinction, its

surface temperature can be determined. When the luminosity of a star and its

surface temperature is known, they can be plotted against each other in the

Hertzsprung-Russel diagram (H-R diagram) to understand the mass, size, age

and evolution of the star.

With the H-R diagram, we can recognise if the star is a main-sequence star or

1



Figure 1.1: Gaia’s Hertzsprung-Russell diagram. (Credit: ESA)

a super-giant star, as shown in Fig. 1.1. Most of the stars appear in the narrow

band of the diagram, called the main sequence (MS), which means that stars of

the same temperature have essentially the same luminosity and therefore have

the same size. Some stars appear above the main sequence, meaning that they

are more luminous than main-sequence stars of the same temperature (Giant

branch). Some stars are located below the main sequence (White dwarfs), which

are typically 10 mag fainter than main-sequence stars of the same temperature.

Measuring distances to stars depends on their environment during and after

their formation. When stars are ejected from the centre of the place that they

formed and can be observed visually, their distances can be calculated from their

measured parallax. However, at their early stage of formation, observing their

distances is arduous as they are embedded at the centre of the molecular cloud

where they formed. Even if nuclear fusion might have taken place at their core,

2



1.1 Parallax

Figure 1.2: Simple illustration of trigonometric parallax method (Credit: ESA).

they are still embedded by their natal cloud, so their distance is still hard to

measure. Those objects are pre-main sequence and known as young stellar objects

(YSOs), which are only observable at long-wavelength (infrared and radio) (see

Sect. 1.7).

1.1 Parallax

Parallax is conceptually the most fundamental distance measurement technique

for stars. The parallax of an object is its observed angular displacement with

respect to a reference frame due to the movement of one observer over a baseline.

This is a pure geometric measurement of distance as it does not make assumptions

about the intrinsic properties of the star (Bailer-Jones, 2015). As shown in Fig.

1.2, the Earth-Sun distance is used twice as a baseline to measure the parallax

of an object. After solving the simple trigonometric problem, the distance r of a

star is equal to the quantity 1/ω, where ω is its observed parallax.

The first stellar parallax was obtained by Bessel (1838), who measured ω =

3



1.2 The Gaia mission

0.29" for the star 61 Cygni. After that, it was used in the Hipparcos mission

to derive distances to ∼ 105 stars down to a V -band magnitude of around 12

(Perryman et al., 1997). Although this method is more effective for nearby stars,

it becomes handy for distance measurement since the advent of the Gaia mission

(Gaia Collaboration et al., 2016b).

Inverting parallax to derive distances is only valid in the absence of noise, and

it is unreliable for the faintest, most distant object. Results from Perryman et al.

(1997) show that parallax distances using Hipparcos were accurate only out to

distances of around 200 pc. This lower precision is due to dust attenuation and low

SNR as noise increases at a higher distance. However, with Gaia, the uncertainty

associated with each measurement is provided, which should be taken into account

for better estimates of distances (Astraatmadja & Bailer-Jones (2016), Bailer-

Jones et al. (2018)).

1.2 The Gaia mission

Gaia is a space observatory dedicated to astrometry. It was launched by the

European Space Agency (ESA) in late 2013 and reached the Lagrange L2 point

located about 1.5 million kilometres from Earth, one of the advantages of which

is to provide an extremely stable thermal environment. There, it describes a

Lissajous-type orbit to avoid eclipses of the Sun by the Earth, in order to be

able to power its solar panels. Its primary goal is to map the stars of the Milky

Way with greater precision. Compared to its predecessor, the Hipparcos mission

(1989-1993) (Perryman et al., 1997), Gaia observes a larger number of stars with

unprecedented precision in the range of microarcsecond. More than 1.7 billion

sources were observed in the second release of its data collection, while Hipparcos

observed only 120,000 sources. Before its end, the mission has already brought a

huge improvement in our understanding of the Milky Way.
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1.2 The Gaia mission

1.2.1 Gaia astrometric instruments

The spacecraft, which weighs about 2000 kg, carries two astrometric telescopes

separated by a fixed angle of 106.7 degrees. The two telescopes are mounted in

the hexagonal optical bench with a ∼3m diameters and merged into a common

focal plane (see Fig. 1.3). The aperture of the two telescopes is 1.45m × 0.4m

and the focal length is 35m.

Figure 1.3: Gaia payload module. The figure illustrates the two telescopes sep-
arated by a wide-angle of 106.5 degrees, which are mounted on the hexagonal
optical bench. The scientific payload has three instruments: the astrometric in-
strument, the broad-band photometer and the radial velocity spectrometer. The
combined focal plane consists of 106 CCDs on which are split between astromet-
ric, photometric and radial velocity spectrograph. (Credit: ESA).

The focal plane is split into 5 CCDs categories arranged in 7 rows and 17

columns (see Fig. 1.4). The first column contains the Basic Angle Monitor (BAM)

and WaveFront Sensor (WFS), the Sky Mapper (SM) is located in the two next

5



1.2 The Gaia mission

Figure 1.4: Layout of the focal plane assembly. Stars move from left to right of the
diagram. The skymappers provide source image detection and two-dimensional
position estimation. The astrometric field provides accurate AL measurements
and (sometimes) AC positions. The additional CCDs are the blue and red pho-
tometers (BP, RP), the radial-velocity spectrometer (RVS), wavefront sensing
(WFS), and basic-angle monitoring (BAM). (Credit: EADS Astrium).

columns, which detects objects passing the field of view, allowing the CCDs in

the focal plane to read them. The Astrometric Field (AF), which consists of 62

CCDs are formed by the next nine columns. The next two columns indicate the

Blue and Red Photometers (BP, RP), and the final three columns are the Radial

Velocity Spectrograph (RVS). In total, Gaia focal plane consists of 106 CCDs,

and each of them is 4500 by 1996 pixels in size with pixels of 10 micrometres

along scan × 30 micrometres across scan size (59 mas x 107 mas). In total the

focal plane has 938,000,000 pixels.

1.2.2 Gaia scanning law

The Gaia scanning law is a key aspect of the astrometric performance, designed to

optimise delivered final astrometric accuracy (see Fig. 1.5). Gaia simultaneously

observes two directions of sight by rotating continuously with a slight precession,

and while maintaining the same angle (45◦) to the Sun. By precisely measuring

the relative positions of the objects of the two viewing directions separated by a
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1.2 The Gaia mission

wide-angle, the high rigidity of the reference system is obtained. Each object will

Figure 1.5: The Gaia scanning law. (Credit: ESA).

be observed on average around 70 times during the mission, which is expected to

last for 5 years. The three-dimensional motion of Gaia is defined by the combina-

tion of four motions which are: the translation around the Sun (a period of one

year as that of the Earth), the orbit that Gaia describes around the Lagrangian

L2 point with the rotation of Gaia around its own spin axis, and the precession

motion (the change in the direction of the Gaia spin axis following a circle).

These measurements will allow the determination of the astrometric parame-

ters of the stars: the projected position in the sky (2 angles), the proper motion

(2 values for their derivative with respect to time) and the trigonometric paral-

lax (which provides the distance to each source). In addition, it provides optical

broad-band photometry in the G band and colour information in the form of

apparent brightness in the GBP (330 - 680nm) and GRP (630 - 1050nm) bands.

It also measures radial velocity and high-resolution spectral data in the narrow

band (847 - 874 nm).

7



1.2 The Gaia mission

Figure 1.6: Illustration of the combination of apparent path of a star across the
sky. Figure from Gilmore (2018).

1.2.3 Stellar motion seen by Gaia

Fig. 1.6 illustrates the path of a single star on the sky observed by Gaia. The first

motion is the apparent motion of the star or parallax (see Sect. 1.1). The second

motion is the proper motion of a star, which tells us how a star is orbiting in the

Milky Way and where the star came from. The third motion is the wobble motion

caused by planets around a star. The combination of these three motions makes

it challenging for Gaia to deal with, and hence a repeated observation of a single

star is needed in order to observe the stellar motions (around 80 times). In order

to model this complex path, one requires at minimum six parameters (the five

global astrometric solutions and the radial velocity), plus sufficient parameters

to model multiplicity/planets, and clearly enough precise data over a sufficiently

long time to allow a robust fit (Gilmore, 2018).
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1.2 The Gaia mission

1.2.4 The Gaia astrometric solution

As described by O’Mullane et al. (2011), the central part of the data processing for

Gaia is the system known as the Astrometric Global Iterative Solution or AGIS,

which was carried out by the Gaia Data Processing and Analysis Consortium

(DPAC;Collaboration et al. (2016)). All the mathematical tools of the basic

observation model were put in the AGIS software (see Lindegren et al. (2012)).

It is worth to note that there are two different astrometric solutions: the full

(five-parameter) solutions with positions, parallaxes, and proper motions; and

the fall-back (two-parameter) solutions with only positions.

The astrometric principles for Gaia were outlined already in the Hipparcos

Catalogue (ESA 1997, Vol. 3, Ch. 23). The general principle of a global as-

trometric data analysis was succinctly formulated as the minimization problem:

min
s,n

∥∥∥f obs − f calc(s,n)
∥∥∥
M

(1.2)

Where s is the vector of unknowns describing a star’s barycentric motion, and n

is a vector of nuisance parameters describing the instrument and other incidental

factors which are not of direct interest for the astronomical problem but are nev-

ertheless required for realistic modelling of the data. gobs represents the vector

of all measurements and gcalc represents the vector of detector coordinates cal-

culated from the astrometric parameters. The norm is calculated in a metric M

defined by the statistics of the data, this is classically referred to as error weight-

ing (see studies of O’Mullane et al. (2011), Lindegren et al. (2012), Lindegren

et al. (2018a) for an in-depth review).

The AGIS software is based on several models which are fully described in

the study done by Lindegren et al. (2012) including the reference model, the

astrometric model, the attitude model, the geometric instrument model, and

the signal model. For the reference system, the Barycentric Celestial Reference

System (BCRS) is used to model the orbit of Gaia and the light propagation
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1.2 The Gaia mission

from the source to Gaia. The BCRS is aligned with the International Celestial

Reference System (ICRS). The Centre-of-Mass Reference System (CoMRS) is

needed for the co-moving celestial reference system having its origin at the centre

of mass of the satellite and a coordinate time equal to the proper time at Gaia,

and the Geocentric Celestial Reference System (GCRS) for a massless particle.

The astrometric model is for the calculation of the proper direction to a source at

an arbitrary time of observation. The attitude model describes the instantaneous

orientation of the Gaia instrument in the celestial reference frame. The geometric

instrument model defines the precise layout of the CCDs. The fitting of the CCD

data models produces observations that are the input to the astrometric core

solution.

Figure 1.7: Illustration of the access pattern of AGIS. Figure from O’Mullane
et al. (2011).

The global solution consist of four main blocks, which are:

• Source: All observations of a given source - spatial.

• Attitude: All observations within a given time period - temporal.

• Calibration: All observations within a given time period falling on a given

CCD-temporal/spatial.
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1.3 The Interstellar Medium

• Global: All observations in any order.

The approach goes through the data once for each block, iterate them internally,

and then perform the next outer iteration. This is illustrated in Fig. 1.7.

The measurements with Gaia carry a statistical error and a systematic error.

As described in the study of Lindegren et al. (2018a), the uncertainty in parallax

and position at the reference epoch J2015.5 is about 0.04 mas for bright (G <

14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 mas at G = 20 mag for

sources with the five astrometric solutions. In the proper motion components the

corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively. The

model used for the total error in parallax for Gaia DR2 is

σext =
√
k2σ2

i + σ2
s (1.3)

For this, external data must be used to calibrate the model by estimating ω0, k

and σ0 (see Lindegren et al. (2018b)).

1.3 The Interstellar Medium

The space between the stars of the galaxy is not empty. It is filled with gas (atoms,

molecules, ions and electrons) of very low density in which small solid particles

are mixed. This medium constitutes approximately 5% of the mass of stars in the

galaxy which is itself composed mainly of hydrogen (more than 70% of its mass).

Different phases characterise the ISM according to the temperature, the fractional

volumes and the densities of hydrogen present: molecular clouds, H II regions,

the cold neutral medium (CNM), the warm neutral medium (WNM), the warm

ionised medium (WIM), and the hot ionised medium (HIM). The characteristics

of these phases are explained below and summarised in Table 1.1.

11



1.3 The Interstellar Medium

Table 1.1: Components of the different phase of the ISM according to McKee &
Ostriker (1977)

Component Temperature Volume nH

(K) (%) cm−3

Molecular clouds 20 - 50 < 1 102 − 106

H II regions 104 ∼ 10 ∼ 103

Cold Neutral Medium (CNM) 50 - 100 1 - 5 20 - 50
Warm Neutral Medium (WNM) 6000 - 10000 10 - 20 0.2 - 0.5
Warm Ionized Medium (WIM) ∼ 8000 20 - 50 0.2 - 0.6
Hot Ionized Medium (HIM) ∼ 106 30 - 70 ∼ 0.0065

Molecular clouds

This phase occupies a small part of the ISM as it is only concentrated in clouds.

Following Van Dishoeck et al. (1988) and Ferriere (2001), the molecular cloud can

be classified into three categories based on the visual extinction, AV , along the line

of sight towards the cloud. i) Diffuse clouds are marked by AV < 1 mag and made

of cold atomic gas (T ∼ 100 K). ii) Dark clouds are identified by AV > 5 mag,

and made of icy gas (T ∼ 10 − 20 K). iii) translucent clouds are characterised

by an intermediate value of AV , made both from molecular and atomic gas. A

molecular cloud is the birthplace of stars. The dark part of the molecular cloud

contains the pre-stellar heart, which is protected from the outside environment.

This dark part is identified by using the lines of carbon monoxide molecule (CO)

rather than using the molecular hydrogen (H2) as it is very difficult to observe.

The reason for the difficulty of observing H2 molecules is that they are perfectly

symmetric and homonuclear diatomic molecules, so the spectral lines of H2 are

extremely weak. Because of the impact of gravity, molecular cloud divides into

hierarchical substructures of clumps and core. This gravitational collapse is the

beginning of star formation.
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H II regions

H II regions are regions that are composed of ionised hydrogen in which massive

star formation has recently taken place. H II regions are emission nebulae created

when young main-sequence OB stars ionise nearby gas clouds with intense UV

radiation. In our Galaxy, H II regions distribute in a similar way as the molecular

clouds and can be seen across the entire Galactic disk (Balser et al., 2011).

Cold Neutral Medium (CNM)

The cold neutral medium is composed of clouds and filaments (Heiles & Troland,

2003). Compared to the molecular cloud, the cold neutral medium occupies a

larger part of the ISM but is less voluminous. CNM is not easy to observe as the

molecular cloud. However, the existence of the CNM is revealed by emission in

the 21cm hyperfine transition of H I, with a median temperature of approximately

70 K, determined by a comparison of emission to absorption spectra.

Warm Neutral Medium (WNM)

The warm neutral medium occupies a large volume of the ISM, but it is not

very dense. This phase is the warmest neutral phase of the ISM, which can be

observed by using the 21 cm HI emission line. The main source of the excitation

of the CNM and the WNM is the photoelectric emission of PAHs.

Warm Ionized Medium (WIM)

After the birth of new massive stars in the ISM, a warm ionised gas is created

around them. The WIM is created by the leakage of photons out of the HII

regions. The WIM is approved as a major component of the interstellar medium

of the Milky Way and other disk galaxies (Haffner et al., 2009).
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Hot Ionized Medium

The hot ionised medium surrounds the molecular cloud, H II regions, WIM,

WNM, and CNM. The propagation of shocks from supernovae is the main re-

sponsible for the increase of the temperature for this phase of ISM (Ferriere,

2001). Shocks propagate more easily in a sparse environment and can distribute

energy over large volumes in the Galaxy. The cooling process may remain millions

of years, and it makes this phase occupy a large volume in a Galaxy.

1.4 Low Mass Stars

A review of the process of star formation produced by Larson (2003) and Kenni-

cutt Jr & Evans (2012), together with previous work on star formation is sum-

marised in this work. Understanding the formation of a star is of major impor-

tance in this study to derive their distance.

The process of star formation is summarised as follows:

Stars are born from the material of the ISM (see Sect. 1.3), the Giant Molec-

ular Cloud (GMCs). The birth of a star is a result of the action of gravity, which

makes a large number of hydrogen atoms combine. Charged and neutral particles

of GMCs are supported by thermal and turbulent pressure to resist gravity. The

ionised particles are linked to the magnetic field of the cloud, therefore, prevented

from collapse, while neutral atoms are not. The process is known as ambipolar

diffusion. Ambipolar diffusion results in a loss of turbulent and magnetic support

for the cloud because the fractional ionisation of the GMCs is quite low. It is

assumed that after the absence of magnetic and turbulent support, the only force

preventing collapse due to gravity is the thermal pressure. At this stage, the

beginning of collapse is described by the virial theorem:

2K + U = 0 (1.4)

where K is the internal kinetic energy of the cloud, and U is the gravitational

14



1.4 Low Mass Stars

potential energy of the spherically symmetric uniform cloud. Eq. 1.4 shows the

condition for a stable system, assuming that the external pressure ≈ 0.

This equilibrium does not last long as certain factors can break the balance

whether to trigger a gravitational collapse or a cloud dissipation. This disturbance

can be caused by either the explosion of a supernova or the passage of the cloud

in an area of a high density of matter. For the first factor, a supernova gives rise

to a tremendous shock wave which violently compresses the regions it crosses and

can, therefore, cause the gravitational collapse of a GMC. And for the second

factor, when a giant molecular cloud crosses one of the dense areas in our Galaxy,

it undergoes a compressive force which can cause a gravitational collapse as our

Galaxy does not have a uniform distribution of matter, but contains denser areas

than the average (Roman-Duval et al., 2016).

Once this stability is broken, GMCs start to contract. This process of contrac-

tion was studied by the British physicist James Jeans who showed that a cloud of

gas subjected to the opposite demands of the force of gravitation and the internal

pressure ends up contracting if its mass is higher than a certain threshold called

Jeans’ mass.

MJ =
(

5kT
GµmH

)3/2 ( 3
4πρ

)1/2

(1.5)

where k is the Boltzmann’s constant, T is the temperature, µ is the mean molec-

ular weight, mH is the mass of a hydrogen atom, G is the gravitational constant,

and ρ is the density in kg/cm−3.

Once Jeans’ mass has been exceeded, the collapsing material in the molecular

cloud is essentially in a free-fall (Shu, 1977). The collapse is isothermal since

the cloud is optically thin, and so Jeans’ mass decrease as the density increase.

Since then, the cloud will not only contract, but it also begins to fragment into

smaller blocks, in a process which is known as fragmentation. A new series

of fragmentation begins, and each of the blocks subdivides itself into smaller

and denser clouds, and Jeans’ mass, therefore, continues to decrease and so on.
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A series of divisions are unfolded and give rise from a giant cloud to a large

quantity of smaller and smaller fragments. The fragmentation of the cloud leads

to a clumpy structure in the molecular cloud. However, the fragmentation process

eventually stops when the temperature of the cloud begins to rise, which increases

Jeans’ mass. The smallest clouds, which appeared when the critical threshold

was at their lowest, are then too small to fragment and the whole process of

fragmentation stops.

When the fragmentation stops, each small cloud of gas continues to contract

and heat up by converting its gravitational energy into thermal energy to form

a “protostar”. At temperature ≈ 2000 K, hydrogen molecules (H2) begin to

dissociate. The energy lost from this dissociation leads to a decrease in the

gas pressure, which makes the gravity dominate again and free-fall collapse re-

occurs. An accretion disc will form around the protostar due to the overall angular

momentum vector at the initial rotating core. Once the protostar has become

a hydrogen-burning star, where the temperature is hot enough, a strong stellar

wind/jet forms along the axis of rotation (Fig. 1.8). This feature is easily seen

by radio telescopes. Stellar jets eventually dissipate the surrounding materials

as they widen, leaving a remnant disc from which planets may eventually form.

The star begins its main sequence phase once the accretion of materials stops.

1.5 Massive stars

Massive stars are defined as stars that have a typical mass M ≥ 8M� (Guzmán

et al. (2016), Billington et al. (2019), Urquhart et al. (2015)), which imply that

they already begun hydrogen-burning before accretion stage has finished. This

causes a difficulty in the study of the processes of high-mass star formation since

we cannot observe separately the luminosity of the star due to accretion and the

intrinsic luminosity of the protostar (Ward-Thompson & Whitworth, 2011).

However, studying massive stars are of great importance in astronomy be-
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1.5 Massive stars

Figure 1.8: Protostellar outflow and jet diagram from Machida (2017). The image
on the left shows a three-dimensional view of outflow, jet and circumstellar disk
in the mass accretion phase while the Schematic view around a protostar is shown
in the right.

cause of their feedback effect on the evolution of the universe. They are dominant

sources of energy in the ISM, as a form of mechanical (powerful stellar winds, out-

flows, supernova shock waves), and radiation (by creating HII regions) (Schilke,

2017). They enrich the ISM with heavy elements (aluminium, gold, iron, etc ...)

through supernova explosion (Maund et al., 2017). In addition, studying massive

stars are essential in the study of galaxy emission and evolution in the distant

universe (Stanway, 2016). Since their luminosity dominates the stellar population

in the galaxy, the observed spectra and colour of the evolution of the galaxy are

dominated by the evolution of its high mass stars (Hartquist, 2011).

Despite the importance of understanding massive stars, there are still a few

factors that make them arduous to study. They are located very far away as they

are usually formed in distant clusters (Beltrán et al., 2006). They evolve much

faster than their low-mass counterpart. High-mass stars are very rare and short-

lived, being usually deeply embedded into their natal environment throughout

their very early evolutionary stages (Roman-Lopes, 2013). Thus, observing them

requires high-resolution instruments at IR or a longer wavelength. Moreover,

massive stars do not appear to form in isolation, they almost always appear to

form in clusters (De Wit et al., 2005), making a full study of a single massive star
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difficult.

Consequently, the physical processes that dominate high mass star formation,

especially in their early stage of evolution, are not yet fully understood and

still under active study. Questions remain unanswered whether their formation

is significantly different from their low-mass counterparts or whether they form

in the same way by triggering a gravitational collapse. Different concept have

been introduced in the literature to analyse the origin of massive star formation

(e.g.: Krumholz & Bonnell (2007), Zinnecker & Yorke (2007), Schilke (2015)).

So far, there are three well-known models of massive star formation, which are

i) monolithic collapse and disk accretion, ii) competitive accretion and runaway

growth, and iii) stellar collisions and mergers (see the review by Zinnecker &

Yorke (2007) for details).

1.6 Star clusters

A stellar cluster is a group of stars born from the same molecular cloud and

which are still linked by gravity. The stars that make up a cluster, therefore,

have the same age and the same chemical composition (Krumholz et al., 2019).

Star clusters exist in different forms, ranging from the fragile association of a few

dozen members to the dense aggregate of millions of stars. Following Krumholz

et al. (2019), stellar clusters are classified into two different types depending on the

conditions in which they were formed: open clusters and globular clusters. Open

clusters are groups of a few tens to a few thousand stars that form in molecular

clouds of the galactic plane. They are generally young (≤ 1 Gyr) and have low

mass (≤ 105M�) (Krause et al., 2020). Their mass is not large enough for the

stars to remain clustered for more than a few million to a few hundred million

years. Open clusters are typical objects of the Galaxy disk mainly composed of

stars of population I. Globular clusters, on the other hand, are made up of a few

tens of thousands to a few million stars that are gravitationally bound. They have
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a dense spherical structure and have a higher stellar density towards their centre.

They are generally old (>1 Gyr) and massive (≥ 104M�) (Krause et al., 2020).

Globular clusters are typical objects of the halo of the Galaxy and composed of

stars of population II.

Since large fractions of star formation happen in a clustered environment

(Lada & Lada, 2003), understanding star clusters are important in astronomy to

study the origin and early evolution of stars and planetary systems. In addition,

some of the star clusters have a long life (> 13 Gyr), making them helpful for the

analysis of the age of the Universe (O’Malley et al., 2017). Another importance

of the study of star clusters also is the effect of their feedback on the universe.

Massive stars that form in clusters are the main responsible for feedback in galax-

ies (Goldbaum et al., 2016). This latter study showed that feedback suppresses

galaxies’ star formation rates and also leads to the formation of a multi-phase

atomic and molecular interstellar medium. The enormous amounts of ionizing

radiation from those young stellar clusters have a huge impact on the galaxy and

its surroundings. Thus understanding the massive star clusters leads to a better

understanding of the evolution of the universe.

Clusters form in massive dense cores of molecular gas that are strongly self-

gravitating (Lada & Lada, 2003). Cluster formation has three phases according

to Krause et al. (2020). The first phase is the creation of the highly transient

and inhomogeneous molecular cloud structure due to the action of supersonic

turbulence. The second phase is the formation of individual stars in clusters and

association from the cloud structure in the first phase. The last phase is char-

acterised by the stellar feedback that makes the disappearance of the remaining

gas core.
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Table 1.2: Summary of the YSOs classification

Class Emission Average stage duration
Class 0 Submillimeter 104 yrs
Class I Far-infrared 105 yrs
Class II Near-infrared 106 yrs
Class III Visible 107 yrs

1.7 Young stellar objects (YSOs)

YSOs are stars that are in their early evolutionary stage. They are pre-main

sequence stars and characterised by the presence of circumstellar material. There

are four main classes of low-mass YSOs, which are classified according to the peak

and shape of their spectral energy distribution (SED). Table 1.2 summarizes the

different classes of YSOs and their characteristics.

The very early protostar stage is called “Class 0”, which was discovered by

André (1994). Class 0 are YSOs that are extremely obscured by a large circum-

stellar material (radius∼ 10,000 AU). It is characterised by a strong submillimeter

emission, not a near-infrared or mid-infrared emission. “Class 0” protostars are

rarer and correspond to the youngest protostar stage known to date (probable

age ∼ 104 yrs), and only the blackbody emission of the cool dust in the envelope

is visible.

The other three classes of protostars (“Class I”, “Class II” and “Class III”)

were found by Lada (1987). They can be distinguished based on the slope of their

Spectral Energy distributions (SEDs) in the mid-infrared. “Class I” protostars

are supposed to be formed at age ∼ 105 yrs, and they are characterised by the

positive SED slope at near and mid-IR wavelength. As the gravity continues to

shrink the molecular cloud, it makes the circumstellar spin faster which flattens

into a disk with a central bulge. The radius of the circumstellar disc for “Class

II” protostar is estimated to be around ∼ 500-1000 AU, which is 10 - 20 times

the size of our solar system. “Class II” protostar eventually become optically
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Figure 1.9: Evolutionary classification of YSOs. Source: Isella (2006)

visible on the stellar birth line as pre-main-sequence stars when the envelope

material disappears, and only the disk remains around the protostar. In terms

of their SED, as they are no longer obscured by the dusty envelope, the observed

flux will become more noticeable, but the dust within the disk will continue to

provide excess at near-infrared wavelength. At this stage, we have the classical

T Tauri. “Class III” protostars are stars that have no surrounding disks. This

corresponds to weak-line T Tauri star (WTTS), and also called “naked”. The

transition between “Class II” and “Class III” stages is called “transition-disk”,

and it appears to take place between ∼ 106 and ∼ 107 yrs (Beskin et al., 2003).

This evolutionary sequence and the typical spectral energy distribution (SED) of

a protostar is shown in Fig. 1.9.
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1.8 Stellar Extinction

Extinction is the combined effects of scattering and absorption of electromag-

netic radiation emitted from an object. The incoming photon is not destroyed in

scattering, but they are changed in direction. Contrary, in the absorption, the

incoming photon is destroyed, and its energy remains in the dust grain. Inter-

stellar extinction is quantified as the number of magnitudes by which a molecular

cloud dims starlight passing through it.

In the presence of the extinction, the observed intensity of light, Iλ, at wave-

length, λ, is given by:

Iλ = Iλ0exp(−τλ) (1.6)

where Iλ0 is the intensity of that would be received at the Earth in the absence

of interstellar extinction along the line of sight and τλ is the optical depth at the

observed wavelength.

Stellar extinction varies as a function of wavelength (Draine, 2003). The

extinction is stronger for short wavelength, which has the effect of making the

sources redder. The dependence of the extinction on the wavelength is described

by the extinction law. The variation of extinction with wavelength λ is usually

expressed as a ratio of colour excesses, E(λ − V )/E(B − V ), or of the absolute

extinction Aλ/AV , where B and V refer to the optical bands. Cardelli et al. (1989)

characterise the extinction curve by a single parameter, which is the ratio of the

total extinction over the selective extinction:

RV = AV
E(B − V ) (1.7)

RV is the total-to-selective extinction ratio that describes the variations in UV/optical

bands (Fig. 1.10). The visible part of the spectrum is roughly proportional to

λ−1, while the UV is characterised by the hump in each curve. In almost all

regions, the value of RV is close to 3.1 (Draine, 2003).
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Figure 1.10: Interstellar extinction curves of the Milky Way (RV = 2.5, 3.1, 4.0,
5.5) from Li & Mann (2012). It indicates that dust grains on different sight-
lines have different size distributions. The regional variations in the Galactic
optical/UV extinction curves is characterized by the total-to-selective extinction
ratio RV .
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1.8.1 Determination of stellar extinction

Determination of extinction is essential in any field of astrophysics for the study

of objects at distances greater than a few dozen parsecs. Although the estimation

of extinction of a single star is not within the scope of this work, it is important to

provide a brief overview of the technique that can be used for the determination

of the extinction. One of the oldest techniques used is the star counting method.

This provides an extinction value from the comparison of the number of stars

in magnitude intervals in an extinguished field, and the number of stars in a

near reference field assumed without extinction. The star counting method has

been used by different studies such as Dobashi et al. (2005), Stead & Hoare

(2010), and Foster et al. (2012). Another technique is the colour excess method,

which is a measure of the reddening of a star due to interstellar dust. The

colour excess is the difference between the observed star colour and its intrinsic

colour corresponding to the star’s spectral type. This can be written as Eλ1−λ2 =

Aλ1−Aλ2 = (mλ1−mλ2)−(mλ1−mλ2)int, where (mλ1−mλ2)int denotes the intrinsic

colour of the star, (Aλ1 , Aλ2) the total extinctions in the given photometric band,

and (mλ1 − mλ2) the observed colour. This is the most used method in the

literature. For instance, Lada et al. (1994) and Alves et al. (1998) used this

technique by mapping and measuring the distribution of dust extinction through

a molecular cloud. The method was then generalized by Lombardi & Alves (2001)

and Lombardi (2009). Lombardi et al. (2006) also calculated the extinction on

the KS − band with a high resolution 8◦ × 6◦ extinction map of the Pipe nebula

using 4.5 million stars from 2MASS PSC (Skrutskie et al., 2006).

1.8.2 The extinction AG

The extinction in the G band (AG) that we will be using in this work is one of

the stellar parameters estimated by the Gaia astrophysical parameters inference

system (Apsis) (Bailer-Jones et al., 2013). The main goal of the Apsis data
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Figure 1.11: Colour–colour diagrams for stars from the PARSEC 1.2S models
with an extinction law from Cardelli et al. (1989) and [Fe/H] = 0. Panel (a)
represents the dominant factor Teff in the Gaia colour, which degenerate with
AG extinction (panel b). (Credit: Andrae et al. (2018))

processing pipeline is to classify and estimate astrophysical parameters for the

Gaia sources using Gaia data. It consists of two algorithms called Priam and

FLAME. Priam is used to infer Teff , AG, and E(BP − RP ), while FLAME is

used to estimate stellar luminosities, masses and ages of stars. The summary of

how they obtained AG using the Priam algorithm is provided below:

Gaia has three photometric bands, the first one is the G band, and the two

other bands (GBP and GRP ) were obtained from the integration of the Gaia prism

spectra. Andrae et al. (2018) indicated that the colour is strongly influenced by

Teff , so it is impossible to derive the extinction using only the colours (see Fig.

1.11). Therefore they combined the three bands photometry with parallax $ to

infer the line-of-sight extinction and colours E(BP −RP ) of a star. As they used

magnitudes and parallax, rather than the colours, the available signal is primarily

the dimming of the sources due to absorption (Andrae et al., 2018).

The estimation of AG was performed using a machine learning algorithm with

a univariate output called ExtraTrees (Geurts et al. (2006)). Once they ob-

tained the distance by simply inverting the parallax, they computed the quantity

MX + AX using the equation

MG = G− 5 log10 r + 5− AG (1.8)
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Figure 1.12: Distribution of AG in Galactic coordinates. The map is centered
on the Galactic Center, with longitudes increasing towards the left. Figure from
Andrae et al. (2018).

Where MG is the absolute G-band magnitude and r = 1
$

is the distance.

Andrae et al. (2018) also mentioned that there are very few reliable literature

estimate of the extinction, and published estimates are of AV and/or E(B − V )

rather than AG and E(BP −RP ). Consequently, they had to train on synthetic

stellar spectra to estimate the AG. The features they used for Extratrees were

the three observables MG + AG, MBP + ABP , and MRP + ARP . Since Extra-

trees cannot extrapolate from the training data range, it does not estimate a

negative results for AG. This non-negativity results of AG means that it cannot

be Gaussian, but it should be truncated Gaussian. We also follow this truncated

Gaussian distribution to model the AG extinction in this work (see Sect. 3.3.1).

The distribution of AG in Galactic coordinates (Mollweide projection) is pre-

sented in Fig. 1.12, showing that the mean extinction is reliable. Although they

used parallax to reinforce the three optical bands for the line-of sight-extinctions

estimate, the results they obtained may not very accurate. The results cannot be

compared to the literature as the literature infer AB and AV , not AG. In addition,
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AG suffers from large uncertainties (0.46 mag) so the use of an individual star

is limited. For this reason, they advised that the AG estimates from their work

should be used statistically, and with a group of stars. The mismatch between

the training sets (synthetic data) and the features (real Gaia data) they used for

Extratrees is only of the order of ∼0.1mag or less in the zeropoints (Evans

et al., 2018). Thus, it did not lead to obvious systematic error.

1.8.3 The extinction AV

Here we summarise the method used by Anders et al. (2019) to derive stellar

parameters, extinction and distances for stars brighter than G = 18. They used

a python code called StarHorse developed by Queiroz et al. (2018). It is a

robust code that improves the distances derived by Bailer-Jones et al. (2018)

and other stellar parameters. StarHorse basically compared the observed set

of astrometric, photometric, and spectroscopic data to stellar evolutionary mod-

els to infer stellar parameters, extinction and distances. They used a prior that

contains a stellar initial mass function, density laws for the main components of

the Milky Way (thin disc, thick disc, bulge, and halo), the metallicity, and age

prior for those components. If Y is the set of measured parameter that they

used, Y can be written as Y = {Teff , log g, [M/H],mλ, π}, where Teff , log g,

[M/H], mλ, and π is the effective temperature, surface gravity, metallicity, the

apparent magnitude, and parallax respectively. Given those observed quantities,

StarHorse inferred the posterior distribution of the set of parameter θ that con-

tains θ = {m∗, τ, d, AV } where m∗, τ, d, AV is the mass, age, distance and visual

extinction respectively. StarHorse also produced a whole 3D tomographic of

the Galaxy, which is better than the extinction derived from star counts method

(Queiroz et al., 2018). It provided the posterior probability distribution of a star

over a grid of stellar models, distances, and extinction (Queiroz et al., 2018). The

algorithm is summarized in Fig. 1.13.
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1.8 Stellar Extinction

Figure 1.13: StarHorse flow diagram Queiroz et al. (2018). The diagram il-
lustrates the algorithm used to infer stellar parameters, distance and extinction
with the StarHorse method.
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1.8 Stellar Extinction

Figure 1.14: All-sky median StarHorse extinction map (Aitoff projection). Figure
from (Anders et al., 2019).

As Anders et al. (2019) used a broad-band optical Gaia passband, they im-

proved the StarHorse code by taking a better account in the extinction when

comparing synthetic and observed photometry catalogues. They pointed out that

the dust-attenuated photometry of very broad photometric passbands such as the

Gaia DR2 should take into account that passband extinction coefficient Ai/AV

varies as a function of its source spectrum Fλ (Tteff ) and the extinction AV .

Therefore, they took into account the coefficients Ai/AV for each stellar models

and the extinction in the StarHorse code. The passband extinction coefficient

is given by the relation

Ai
AV

= 2.5
AV
· log10

∫
Fλ · T iλdλ∫

Fλ · T iλ · 10−0.4aλ·AV dλ (1.9)

where T iλ is the transition curve, and aλ is the extinction law that they adopted

from work done by Schlafly et al. (2016). For the stellar model discussed above,

they used the Kurucz grid of stellar spectra Kurucz (1993) for the computation

of the bolometric corrections (as a function of Teff and AV ) and for the default

extinction law. The StarHorse-derived extinction is shown in Fig. 1.14. The
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code reached different regions of the Milky Way such as the bulge, halo, and outer

disc, which were not achieved with the use of Gaia data alone.

1.9 Bayesian astrostatistics

1.9.1 The MCMC based Bayesian analysis in distance es-
timates

The Monte Carlo based Bayesian analysis is one of the most advanced techniques

used in several disciplines during the last decades. The Bayesian statistics is a the-

ory that allows us to analyse observed data while the Markov chain Monte Carlo

is used to sample from a distribution. The combination of those two techniques

leads to an impressive result in all disciplines of science, including astronomy

(Sharma, 2017).

Numerous studies have used Bayesian techniques and MCMC to infer dis-

tances from the measured photometric and spectroscopic. The spectro-photometric

distances using the Bayesian technique was introduced by Breddels et al. (2010).

They derived absolute magnitude and distances for RAVE stars using stellar mod-

els and spectroscopic data from RAVE’s survey. This method was then extended

by Binney et al. (2013), Schlafly et al. (2014), and Santiago et al. (2016) by taking

account of extinction to their work.

The use of Bayes’s theorem dramatically increased since the coming of parallax

measurements from the Gaia mission, which is a survey dedicated to astrometry.

Anderson et al. (2018), for instance, used the Extreme Deconvolution (XD) al-

gorithm to improve Gaia parallax precision with the use of the photometric data

from 2MASS.

Recently, (Leistedt & Hogg, 2017) used a hierarchical Bayesian estimate to

derive distances to 1.4 million stars of the Gaia DR2. Their method focuses on the

use of the available data from Gaia itself, and without the use of a stellar model.

Besides, Hawkins et al. (2017) used Gaia to derive the intrinsic magnitude, ab-
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solute magnitude and dispersion of helium burning RC stars. Bailer-Jones et al.

(2018) also use Bayesian inference techniques to derive distances to 1.3 billion

stars, which are provided in the Gaia catalogues. The spectro-photometric dis-

tances cited above was improved by Anders et al. (2019) by adding the astrometric

data from Gaia with additional photometric and spectroscopic data from several

surveys (described in Sect. 2).

For a molecular cloud, the MCMC based Bayesian analysis also is used in

several works in the literature. Zucker et al. (2018), Zucker et al. (2019), Yan

et al. (2019a), and Yan et al. (2019b) performed distance measurements to several

clouds with the use of Gaia parallaxes. For the use of Gaia parallax, the choice

of the likelihood that can be used for the parameter of inference is summarised

by Hogg (2018).

The method used in this thesis is based on Bayesian statistics. A brief history

and the basic theory of Bayesian data analysis is described in this section.

Back in history, the term “Bayesian" refers to Thomas Bayes who is an English

Presbyterian minister, statistician, and mathematician (1702-1761). The term

“Bayesian” is used after the publication of his work “An Essay towards solving a

Problem in the Doctrine of Chances (1763) ".

Currently, Bayesian analysis is becoming popular and is widely used in many

different fields of research such as astronomy, public health and economics. Ac-

cording to Loredo (2013), the Bayesian approach was first used in astronomy in

the late 1970s. In a nutshell, Bayesian statistics allows us to update our knowl-

edge of physical parameters using a new set of observations. It is often used

to estimate parameters and their uncertainties from a set of model parameters

without knowing the shape or scale of their respective distributions.
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1.9.2 Bayes’ Rule

The simple equation of Bayes’s theorem is

p(Θ|data) = p(Θ)p(data|Θ)
p(data) (1.10)

where Θ is the parameter of interest to be inferred, p(Θ) is the called “prior" (see

Sect. 1.9.4), p(data|Θ) is the likelihood (see Sect. 1.9.3), and p(Θ|data) is the

posterior distribution of the parameter given a set of observation.

The final goal of the Bayesian data analysis is to produce a posterior prob-

ability distribution of the parameter of interest or the event. It considers first

the prior uncertainty about the model parameters with a probability distribution

and updates that prior uncertainty with new data.

1.9.3 Likelihood

The likelihood function is the probability of obtaining a set of N observations,

given a known model and its set of model parameters. Otherwise, likelihood is a

model that allows us to presume how likely the data point is, under all the possible

true measurements. The likelihood is not a probability but is proportional to the

probability, so we cannot sample from the likelihood. The likelihood takes into

consideration the importance of the different possibilities of outcome in an exper-

iment in the Bayesian framework. Several distributions can be used as a model

descriptor for our data, such as the normal distribution, binomial distribution,

chi-square distribution, and Poisson distribution. Knowledge of the distribution

of the particular parameter of interest needs to be taken into consideration before

adopting one of the models.

To illustrate the likelihood function, let’s use the well-known chi-square χ2

function as an example. The χ2 is given by the relation

χ2 = p(D|Θ) =
∑ (fi − fΘ,i)2

σ2
i

(1.11)
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This shows the probability of obtaining a set of N observations of the quantity

fi with its error σi given a theoretical model fΘ,i at each point.

1.9.4 Prior

Prior is the probability distribution that summarises what is known about the

particular parameter or a particular event before making new observations. It also

can be defined as a prior belief about the parameter or the event until new data

is obtained. The choice of the prior distribution is the key feature in a Bayesian

approach as it plays a significant role in the inference. There are different types of

prior that can be used in a Bayesian analysis such as the uniform priors, Jeffrey’s

priors, reference priors, informative priors, and maximum entropy priors. The

mathematics of the Bayesian inference suggests that the prior information of an

event or a parameter should be chosen before making a new observation.

In practice, Gelman et al. (2017) suggested that the prior also should be

characterised according to the form of the likelihood function rather than only

the philosophical interpretation of the initial information of the parameter. They

concluded that the choice of the prior needs the understanding of the problem

to have a proper posterior. A prior such as the Jeffreys is used to make the

posterior distribution of the parameter more sensitive to the data, and it can be

used depending on the concept of individual data points (Kass & Wasserman,

1996). However, another type of prior such as the uniform prior is used for high

dimensional problems as it requires some conditions on the likelihood function to

have a proper posterior. In our case, we use a uniform prior between the minimum

and maximum distances in our distance samples to estimate the distance of our

embedded objects (see Sect. 3.3.2 and Sect. 3.4.2), as we have a high dimensional

space in our problem.
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1.9.5 Posterior

The desired distribution of the parameter is given by the posterior, which is the

product of the likelihood and the prior. The posterior distribution contains all of

the possible distribution of the parameter and it is difficult to solve. A common

way to solve the posterior is to draw samples to characterise the shape of the

distribution.

1.9.6 Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) is a frequentist method that can

be used to estimate the statistical model. The MLE techniques estimate the

set of all possible values of the parameter of inference Θ, and it maximises the

likelihood function p(data|Θ). Maximising the likelihood function is equivalent

to minimising the likelihood. In the initial guess of the parameter for the MCMC

sampling, the use of the MLE techniques is more convenient for the initialisation

of the chain (Sect. 3.5). In our case, we use the MLE to find the most probable

distance from our set of distances and use it as a starting point for the inference

to make the chain converge rapidly.

1.9.7 EMCEE

Emcee is a python MCMC module produced by Foreman-Mackey et al. (2013),

and is based on the affine-invariant ensemble sampler (Goodman & Weare, 2010).

Emcee allows us to draw N samples Θi from the posterior density, which can

also written by the equation

p(Θ, α|D) = 1
Z
p(D|Θ, α)p(D|Θ, α) (1.12)

where p(Θ, α) is the prior distribution and p(D|Θ, α) is the likelihood function,

which can be relatively easily computed for any particular value of (Θi, αi). Z =

p(D) is the normalisation factor.
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The advantage of using Emcee algorithm is that it is simple to use once we

have the Bayesian model. It also handy in our problems and allows us to perform

MCMC rapidly rather than writing an MCMC algorithm from scratch.

After solving the Bayesian model with Emcee, a corner plot produced by
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Figure 1.15: Corner plot example from Foreman-Mackey (2016). This shows the
marginalized distribution for each parameter independently in the histograms
along the diagonal and then the marginalized two dimensional distributions in
the other panels.

Foreman-Mackey (2016) is used to visualise the result. A corner plot is used

as it is a way to represent the probability density of the samples in a multi-

dimensional space. An example of the corner plot used in this work is shown in

Fig. 1.15. In these visualisations, each one- and two-dimensional projection of

the sample is plotted to reveal covariances. The 16th, 50th, and 84th percentiles

of the distributions are depicted by the dashed vertical lines in the histogram of

the three parameters.

35



1.9 Bayesian astrostatistics

1.9.8 Aim of this thesis - Outline

The major aim of this thesis is to estimate distances to embedded stars which are

only observed at a longer wavelength. Those sources share common launching

mechanisms in stars of different types, whether young forming stars or evolved

compact dying stars. They are totally obscured by dust and do not have visible

data. Consequently, a real study of one of them is challenging and their distance

is often deduced from the distance of the molecular cloud associated with them

(see Sect. 3.1 for more details). Kinematic distance is one of the methods used

to estimate the distance of a molecular cloud, derived by measuring the local

standard of rest (LSR) velocity, VLSR, of an object and assuming a model of

Galactic rotation. However, as indicated by Wenger et al. (2018), this method

suffers from large uncertainties and the kinematic distance ambiguity (KDA).

Another approach to estimate molecular cloud distance is the use of maser par-

allax measurements provided by the VLBI telescopes. Maser is often associated

with protostellar objects in star-forming regions, and radio telescopes can observe

maser parallax with an accuracy of better than 10 µas. The problem with this

approach is that it cannot be used towards a cloud that lacks masers, and it also

only generally provides one distance for a whole cloud.

With the advent of the second release of Gaia data, the issue concerning the

distance determination indicated above is being solved. As shown in the previ-

ous section, an advanced statistical method such as the Bayesian analysis sounds

promising and give a reliable distances measurement of the region associated

with those embedded objects. In this thesis, we use the MCMC based Bayesian

analysis with the unprecedented astrometric data provided by Gaia DR2 to repro-

duce distance measurements to YSOs from the literature. This thesis will infer

distances to YSOs and ES selected from the Leeds RMS Source Survey (RMS,

Lumsden et al. (2013)), and we also derive distances towards the sub-structures

of Cygnus X (DR20, DR21, DR22, DR23, and W75N).
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1.9 Bayesian astrostatistics

This thesis is organised as follows. Chapter 2 will provide a summary of the

Gaia DR2 content, the StarHorse Gaia DR2 catalogues (Andrae et al., 2018),

and the sample selection. The Bayesian models (AG and AV ) for the distance

inference is described in Chapter 3. Chapter 4 presents all the findings obtained

from this work, following a comparison of the results to those obtained from the

literature. In Chapter 5, the conclusions of this work are summarized.
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Chapter 2

Data analysis

2.1 Gaia data release 2

Gaia DR2 is the second release of the Gaia mission (Gaia Collaboration et al.,

2016b). It started in April 2018 and contains celestial positions for more than

1.7 billion sources based on observations collected during the first 22 months

of the mission since July 2014 (Gaia Collaboration et al., 2018). Gaia DR2

provides more than 1.3 billion parallaxes and proper motions for objects that have

a magnitude limit of G = 21 mag and a bright limit of G = 3 mag. The typical

astrometric uncertainty is around 0.7 mas for the faintest stars and 0.04 mas for

the bright limit. Gaia DR2 also provides line-of-sight extinction in the G band,

AG, for 88 million sources calculated by Andrae et al. (2018), which we combine

with parallaxes to infer distances to the region of interests. This latter work has

been discussed in Sect. 1.8.2. As indicated by Yan et al. (2019b), the extinction

AG is capable of detecting molecular clouds despite its large uncertainty. The

overall content of Gaia DR2 is summarised in Table 2.1.

2.2 StarHorse Gaia DR2 catalogues

In this work, we also used a visual extinction in the Johnson V band, AV , and

the set of distances derived by Anders et al. (2019) to see the improvement on the
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Table 2.1: Overall content of Gaia DR2 from Mignard (2019).

Data product or source Number of sources
Total (excluding solar system) 1 692 919 135

Five-parameter astrometry (position, parallax, proper motion) 1 331 909 727
Two-parameter astrometry (position only) 361 009 408

ICRF3 prototype sources (link to radio reference frame) 2 820
Gaia-CRF2 extra-galactic sources (optical reference frame) 556 869

G-band (330–1050 nm) 1 692 919 135
GBP -band (330–680 nm) 1 381 964 755
GRP -band (630–1050 nm) 1 383 551 713

Median radial velocity over 22 months 7 224 631
Classified as variable 550 737

Variable type estimated 363 969
Detailed characterisation of light curve 390 529

Effective temperature Tef 161 497 595
Extinction AG 87 733 672

Colour excess E(GBP −GRP ) 87 733 672
Radius 76 956 778

Luminosity 76 956 778
Solar system object epoch astrometry and photonetry 14 099
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derived distance obtained from AG. The following surveys were used with Gaia in

the StarHorse code: the Two Micron All Sky Survey (2MASS; Skrutskie et al.

(2006)), the Pan-STARRS1 grizy (Scolnic et al. (2015)) and AllWISE (Cutri et al.

(2014)).

Anders et al. (2019) derived stellar parameters, distances, and extinction for

265 million of the 285 million objects brighter than G=18 mag. After cleaning the

results, the final catalogues contains 137 millions sample stars that gave a median

precision of 5% in distance, 0.20 mag in V -band extinction, and 245 K in effective

temperature for G ≤ 14, degrading to fainter magnitudes 12%, 16%, and 14% in

distance, 0.20 mag, 0.23 mag, and 0.24 mag in V -band extinction, and 245 K,

260 K, and 230 K in effective temperature for 14 < G ≤ 16, 16 < G ≤ 17, and

17 < G ≤ 18, respectively. Table 2.2 shows the comparison of the work done by

Anders et al. (2019) to all of the currently available astro-photometric distances

and extinctions derived based on the Gaia astrometric solution.

2.3 Sample selection

2.3.1 Gaia DR2

For the selection of our Gaia star, we applied all the criteria needed to reduce

contamination from stars with poor astrometric data. We started by drawing a

box region centred on our object of interest, and we only considered Gaia stars in

this box. Gaia stars were selected according to their parallaxes and AG extinction.

We considered stars that have positive parallaxes (ω > 0). As suggested by

Schönrich et al. (2019), the ratio ω/δω needs to be greater than 10 for a safe

selection of Gaia stars. However, keeping stars that have ω/δω > 10 diminished

the number of stars because it removed stars that have a higher extinction in

the G band (AG > 2.5). Thus, we applied the RUWE (Lindegren et al., 2018b)

condition associated to each Gaia source, which is mentioned in the Gaia archive.

The RUWE is not yet in the Gaia archive, but it basically describes the useful
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Table 2.2: Comparision of some of the currently available astro-spectro-
photometric distances and extinctions based on Gaia data to those provided by
Anders et al. (2019), which we used in this work.

Reference Survey(s) mag_limits Objects σd/d σAV σTeff

(mag) (%) (mag) (K)
Queiroz et al. (2018) Gaia DR1 + spectroscopy – 1.5 M 15 0.07 –

Mints & Hekker (2017) Gaia DR1 + spectroscopy – 3.8 M 15 – –
Sanders & Das (2018) Gaia DR2 + spectroscopy – 3.1 M 3 0.01 40

Santiago et al. (in prep) Gaia DR2 + spectroscopy – 2 M 5 0.07 40
Bailer-Jones et al. (2018) Gaia DR2 G . 21 1330 M 25 – –

McMillan (2018) Gaia DR2 G . 13 7 M 6 – –
Andrae et al. (2018) Gaia DR2 G ≤ 17 80 M – 0.46 324
Anders et al. (2019) Gaia DR2 + photometry G < 18 137 M 13 0.22 250

Final samples of Anders et al. (2019) (after cleaning the results)
G ≤ 14 14,432,712 5 0.20 245

14 < G ≤ 16 49,171,794 12 0.20 245
16 < G ≤ 17 43,398,790 16 0.23 260
17 < G ≤ 18 29,602,832 14 0.24 230

Note: The first three columns represent the reference, the surveys, and the
magnitude limits used, respectively. The last three columns refer to the median
precision in relative distance, V -band extinction, and effective temperature, re-
spectively.
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statistical implicit for Gaia stars.

The RUWE can be computed by using Eq. 2.1

RUWE =

√
χ2(AL)/nobs(AL)−m
f(G,GBP−GRP ) (2.1)

where m is the number of parameter solved and f is a renormalising function.

AL refers to Gaia along-scan direction.

As mentioned by Lindegren et al. (2018b), the RUWE is expected to be around

1 for an observed single star. A RUWE greater than 1 indicates a non-single star

or a problematic solution for the astrometry. For these reasons, we applied RUWE

≤ 1.4 for the selection criteria.

For the set of distances of the surrounding objects, we could not use the

reciprocal of the parallax, 1/ω, as it is not reliable for distance measurement

(Bailer-Jones et al., 2018). The inversion of parallax gives us the exact distance

if we use the true parallax of the star, r = 1
ωtrue

, which is not possible yet as mea-

surement errors are always present in astronomy. In addition, the inversion of

the parallax is a biased measurement as the distribution of the resulting distance

from this method is highly asymmetrical (Luri et al., 2018). Another issue is that

Gaia provides negative parallax measurements, so the inversion of the negative

parallax yield a negative distance, which does not have a physical meaning (As-

traatmadja & Bailer-Jones, 2016). However, those negative parallaxes cannot be

removed from the samples as they contain important information. Therefore, an

advanced method must be taken to consider all of the observed information with

measurement errors to have a better estimation of the distance.

To have a reliable estimate on the distance of a star, Bailer-Jones et al. (2018)

proposed a Bayesian analysis that finds the best estimates of the distance of a

single star given its measured parallax ω and its error σω. In their study, they

used a simpler exponentially decreasing space density prior that follows a galactic

model for the distance estimates (see Eq. 2.2, Bailer-Jones (2015)).

P (r) = 1
2L3 r

2e−r/L, for r > 0 (2.2)
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Figure 2.1: Example of Gaia distances by using Bayesian inference (Bailer-Jones
et al. (2018)). The Bayesian analysis demonstrates the impact of the parallax
error on the distances. The blue histogram and the red curve shows the poste-
rior distribution of the distance and its best fit respectively and the green curve
represents the prior distribution of the distance. Figure (a) and Figure (b) shows
that the two stars are estimated to have a similar distance even if their observed
parallax are different. The prior on the distance is underestimated when the er-
ror on the parallax is too small (Figure (b) and Figure (c)), while the distance
estimates follow the prior when the star has a significant error on the parallax
(Figure (a) and Figure (d)).
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where L is the length scale, and r is the true distance to the star.

Fig. 2.1 shows an example of Bayesian distance estimates proposed by Bailer-

Jones et al. (2018) that illustrates the importance of using Bayesian techniques

to handle the parallax error from Gaia. When a star has a small error on the

parallax, the reciprocal of the parallax is still used to derive its distances. For

that, the exponential prior was underestimated and was differentiated from the

posterior distribution (see the green curve in (b) and (c) in Fig. 2.1). However,

when the error on the parallax is significant, the posterior distribution of the

distance follows the prior, which demonstrated that the error on the parallax

plays a vital role in distance estimates.

Figure 2.2: Comparison of the Bayesian estimation of individual star provided
in the Gaia catalogues (Bailer-Jones et al. (2018)) to the distance obtained by
inverting the parallax. The distance obtained from the inversion of parallax begin
to differ from 500 pc where we start to have a significant error on the parallax
δω/ω ≥ 0.5

For all reasons cited above, we decided to use the distances provided by Bailer-

Jones et al. (2018), which is also included in the Gaia DR2 catalogue. Fig.

2.2 depicts the comparison between Gaia DR2 distance estimates and the naive

inversion of the parallax towards G010.3844+02.2128. Gaia distances begin to

differ from the distances obtained through simple inversion of parallax for sources
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with large errors, δω/ω ≥ 0.5.

For the extinction, we use Gaia stars that have AG extinction greater than

zero (a_g_val > 0). The error in the extinction ∆AG is estimated by

∆AG = 1
2(AupperG − AlowerG ) (2.3)

where AupperG and AlowerG are the 84th and 16th percentiles of AG provided by the

Gaia catalog.

2.3.2 Starhorse stars

For the extinction and set of distance for the AV model, we applied the same

criteria as the selection for Gaia stars. Although they only derived distances

and extinction for stars brighter than G = 18, their results can be used for the

purposes of this work. The process for the star selection starts by drawing a box

region centred in our object of interest, and we consider all stars inside that box.

All the stars in their catalogues have extinction and their corresponding distance

measurements.

For the distance samples and AV extinction, we used the 50th percentiles

from the StarHorse results. The error in the distance was estimated using its

standard deviation, while the error in the extinction was estimated using its 16th

percentiles and 84th percentiles, given by the relation

∆AV = 1
2(A84th

V − A16th
V ) (2.4)

We also applied RUWE ≤ 1.4 associated with each star.
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Chapter 3

Implementation of the Bayesian
models

3.1 Overview

As discussed in Sect. 1.9.8, embedded stars do not have reliable visible data.

The most probable approach to calculate their distances is to study the region

associated with them by considering all of the available stars in the sight-line. A

molecular cloud is the birthplace of stars, and all stars in the same molecular cloud

are located at a similar distance. We assume here that our stars are normally

distributed around the molecular cloud associated with those objects. Therefore,

our study is based on the molecular cloud distance, which is related to our objects

of interest.

The use of parallaxes of the available stars in a molecular cloud accompanied

by an extinction map of the region was introduced in the study done by Lombardi

et al. (2008). They derived a reliable distance of the Ophiucus and Lupus cloud

complexes using parallax measurements provided by Hipparcos (Perryman et al.,

1997) and extinction maps of these regions(NiceR, Lombardi & Alves (2001)).

Their analysis is based on a rigorous maximum-likelihood approach.

As in Sect. 1.9.1, several studies have been made for the derivation of molec-

ular cloud distances since the advent of Gaia. Yan et al. (2019b) demonstrated
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that the AG extinction derived directly from Gaia three-band photometry and

Gaia parallaxes are capable of deriving reliable distance measurements to molec-

ular clouds. They built a Bayesian model of AG extinction and derived reliable

distances to 59 molecular clouds at high Galactic latitudes (|b| > 10o). Later

on, Yan et al. (2019b) performed another measurements of molecular cloud dis-

tances towards the Galactic plane (209.75◦ ≤ 1 ≤ 219.75◦ and |b| ≤ 5◦) using the

baseline subtraction method and Bayesian statistics.

Based on the work cited in Sect. 1.9.1 and those discussed above, we imple-

mented the Bayesian model of the line-of-sight extinction towards our region of

interests, and infer their distances. For that, the AG extinction and the AV ex-

tinction were used. The two models are discussed in Sect. 3.3.1 and Sect. 3.4.1,

respectively.

3.2 Basic Analysis

Our technique for deriving distances to the molecular cloud is based on a general

fact where stars observed through excessive column densities must exhibit a high

reddening even when observed in projection towards dense regions of the cloud

(Lombardi et al. (2008)). In other words, the molecular cloud increases the ex-

tinction of all-stars behind them. To illustrate the approach, we used the region of

Barnard 68 (Fig. 3.1). Stars that are associated with the molecular cloud are

opaque at visible-light wavelength as the light coming from those stars are totally

absorbed by dust. The near-infrared image reveals all of the objects embedded

in the dust cloud and shows that those stars appear redder than stars located

around the edge of the molecular cloud. The change in colour is the jump point

on the extinction that we inferred here. The terms off-cloud and on-cloud were

used to design stars that have lower and higher extinction values, respectively.

The bottom panel of Fig. 3.1 depicts the line-of-sight extinction profile towards

the region of our objects. The diagram shows a simple dust-screen model that
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3.2 Basic Analysis

Figure 3.1: The two figures on the top panel show an optical image and near-
infrared image of Barnard 68 (hereafter B68) respectively, which is a good region
to illustrate our approach. The blue star in the second image shows an example
of a star that we are going to measure its distance and the box is the region that
we consider to infer the jump point in the extinction in that region. The bottom
panel shows a simple extinction profile that shows our dust-screen model in a
given line of sight towards our object. The blue line depicts the extinction of
off-cloud stars while the red line shows the variation of extinction for on-cloud
stars. The distance of the molecular cloud that contains our object is marked by
the black vertical line and its error (grey line). (Image credit: “ESO”)
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3.2 Basic Analysis

illustrates the jump in the extinction for On−cloud stars when passing across the

molecular cloud. By taking into account the extinction of Off-cloud stars and the

extinction of On-cloud stars, the Bayesian models provided the most probable

distances to the region.

In summary, the Bayesian models involve five parameters: the distance D of

the region, the extinction for foreground stars µ1, the error on the extinction for

foreground stars σ1, the overall extinction µ2 for background stars, and the error

on the extinction for background stars σ2.

3.2.1 Classification of star

As in Sect 3.2, when going through the molecular cloud along the line of sight,

the extinction moderately increases from off-cloud stars to on-cloud stars. With

respect to Yan et al. (2019b), the probability of a star to be located in front of

the cloud or behind the cloud is indicated by the CDF of the normal distribution

below

φ(x) = 1√
2π

∫ x

∞
e−t2/2dt (3.1)

And given the distance D of the molecular cloud associated with our object and

the range of distances di that surround our object, the likelihood of a star to be

located in front of the molecular cloud is

fi = φ

(D− di

∆di

)
(3.2)

and the likelihood of a star to be located behind the cloud is

1− fi (3.3)

In practice, the extinction of foreground stars is estimated by taking the minimum

distance Dmin and (Dmin + r pc) in our distance catalogues and calculate the

average extinction in the distance range [Dmin, Dmin + r pc]. The value of r is

chosen according to the distance cut that we use for the inference given the prior

knowledge that we obtained from the literature.
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3.3 Distance estimates using AG

3.3 Distance estimates using AG

3.3.1 Basic model

The approach used in this work is based on Yan et al. (2019a) with some modifi-

cations. As discussed in Section 1.8.2, ExtraTrees cannot extrapolate beyond

the training data range, and does not derive negative value of AG. This non-

negativity means that the likelihood for AG cannot be Gaussian, but the most

appropriate way of modelling this is by using the truncated Gaussian distribution

(Andrae et al., 2018). We also followed this for our AG model. The truncated

Gaussian distribution, with the mean µ and standard deviation σ is written as

p (AGi|µ, σ) =



1
σ
√

2π exp
(
− 1

2(AGi−µ
σ )2)

1
2

(
erf
(
Amax

G −µ
√

2σ

)
+erf

(
µ−Amin

G√
2σ

))
0

(3.4)

Where (AminG ) is the minimum value of AG extinction and (AmaxG ) is the maximum

value of AG extinction, which is equal to 0 and 3.6 mag respectively. AGi is

the range of extinction of stars that we consider in our study. The erf in the

denominator indicates the error function of (AmaxG ) and (AminG ) and is given by

the relation:

erf(z) = 2√
π

∫ z

0
e−t2dt (3.5)

In order to consider the measured error in the AG extinction, we convolved the

standard deviation of AG extinction with σ1 and σ2, which are the error for the

extinction for foreground stars and the error for background stars, respectively.

Thus, the likelihood of measuring AGi for foreground stars is given by

PFi = p
(
AGi|µ1,

√
σ2

1 + ∆A2
Gi

)
(3.6)

Identically, the likelihood of background stars is

PBi = p
(
AGi|µ2,

√
σ2

2 + ∆A2
Gi

)
(3.7)

50



3.4 Distance estimates using AV

The total likelihood is the product of all background stars. By taking into account

all of our parameters and the Eq. 3.6 and Eq. 3.7, the form of our total likelihood

is

p (AGi|µ1, σ1, µ2, σ2,D) = fiPFi + (1− fi)PBi (3.8)

3.3.2 Prior

For the prior, we chose a uniform prior for the distance D. Prior knowledge in

the distance is essential in our model, so we set a smart prior for a better result.

The distance prior was set to be uniform between Dmin and Dmax from our

dataset. For the foreground and background extinction, we chose an exponential

distribution as the extinction value increase as a function of the distance. In

summary, our prior for the five parameters are

D ∼ U (Dmin,Dmax)
µ1 ∼ E(µf)
Iσ1 ∼ E(2)
µ2 ∼ E (µb)
Iσ2 ∼ E (Iσb)

(3.9)

where U and E represent the uniform and exponential distributions, respectively,

µb and Iσb are the mean and reciprocal standard deviation of extinction AG of

background stars with distances > Dmax − r pc. The initial guess for µf and

µb were derived from the mean extinction of off-cloud stars and on-cloud stars,

respectively. The 2 mag for Iσ1 is the reciprocal of 0.45 mag, which is the typical

extinction AG standard deviation of clustering stars (Andrae et al., 2018).

3.4 Distance estimates using AV

3.4.1 AV model

The model used for AV extinction was pretty much the same as the model used

for AG (see Sect. 3.3.1). The only difference here is that the truncated Gaussian
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3.4 Distance estimates using AV

distribution is only used for AG due to the limitation of AG (AG ∈ [0, 3.609] mag)

(Andrae et al., 2018). For AV , we use the full Gaussian distribution for objects

in all regions in this study.

The full Gaussian distribution of AV with the mean µ and standard deviation

σ is indicated by the relation

p (AVi|µ, σ) = 1
σ
√

2π
exp

−1
2

(
AVi − µ

σ

)2 (3.10)

where AV i is the range of AV extinctions of our star.

As included in Sect. 3.3.1, to consider the measurement error in the AV

extinction, we convolved the standard deviation of AV extinction with σ1 and σ2.

Consequently, the likelihood of measuring AV i for foreground stars is given by

PFi = p
(
AVi|µ1,

√
σ2

1 + ∆A2
Vi

)
(3.11)

and the likelihood for background stars is

PBi = p
(
AVi|µ2,

√
σ2

2 + ∆A2
Vi

)
(3.12)

The total likelihood of the AV extinction is given by the relation

p (AVi|µ1, σ1, µ2, σ2,D) = fiPFi + (1− fi)PBi (3.13)

3.4.2 Prior

For the choice of prior, we used the same prior as for AG except the inference of

the error for foreground stars Iσ1. The prior used for AV are

D ∼ U (Dmin,Dmax)
µ1 ∼ E(µf)
Iσ1 ∼ E (Iσf)
µ2 ∼ E (µb)
Iσ2 ∼ E (Iσb)

(3.14)

where U and E the uniform and exponential distributions, respectively. µb and Iσb

are the mean and reciprocal standard deviation of AV extinction of background
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3.5 MCMC sampling

stars, while µf and Iσf are the mean and reciprocal standard deviation of the

AV extinction of the foreground stars.

3.5 MCMC sampling

Finally, we solved the posterior distribution with Monte Carlo Markov Chain

sampling (MCMC) techniques. The MCMC is a process for generating a random

walk in the parameter space and drawing a representative sample from the poste-

rior distribution. We applied the same process for AG and AV . As introduced in

Sect. 1.9.7, we used emcee to sample the joint posterior probability. We initialized

15 walkers for the sampling, which means we calculated 15 independent chains.

After setting up the walkers, we ran 1000 steps from the posterior distribution

of parameters, this step is called the “burn-in” phase. Then, we ran 2000 steps

again for the production phase. As this work is a high dimensional inference,

emcee comes with some outliers and takes a large number of steps to converge

until it finds a good starting point for the sampling. For this, we speeded up

the convergence with the “Maximum Likelihood Estimation (MLE)” technique.

MLE provided the most probable value for the starting guess of the sample based

on the data that we used. We also increased the number of steps to observe a

clear convergence of the chain.
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Chapter 4

Results

This section deals with the derived distances obtained from this work and the

comparison of the results to the literature. In Sect. 4.1, we test the two models

with the Orion A region to examine the reliability of the methodology. After

testing the model, in Sect. 4.2.1, we examine distances to YSOs taken from the

RMS survey (Lumsden et al., 2013). We also derive distance towards the active

star forming region Cygnus X in Sect. 4.2.2. Finally, Sect. 4.3 compares the

results to several distance measurements in the literature.

4.1 Testing the models

4.1.1 The Orion A structure

The Orion A cloud is the closest massive star-forming population in the Galaxy.

By using Gaia DR2, Großschedl et al. (2018) studied the 3D shape of Orion and

identified that it consists of two separate parts, which are the northern part of

the cloud or head (box (d) in Figure 4.1) and the southern part of the cloud or

tail (box (b) and (c) in Figure 4.1). This recent study also showed that the head

of Orion A is bent in regards to the tail, following a finding of the head to be

located on the plane of the sky and the tail not far from the line of sight. Those

parts of the cloud contain rich clusters of young stars and active sites of massive

star formation (Rezaei Kh. et al., 2020), not a flat filament in the plane of sky
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4.1 Testing the models

Figure 4.1: Illustration of the Orion A sub-regions used for the test of the effec-
tiveness our methodology. All the boxes in the figure represent different parts
of the Orion A, in which we used to analyse all the parameters involved in our
models. (Credit: ESASky (Martí et al., 2016), Herschel PACS RGB 70, 160
micron)
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4.1 Testing the models

(Schilke, 2015).

The Orion A is suitable to test the models by a number of factors. It has

a well known distance derived from the literature ∼ 400 pc (Großschedl et al.

(2018), Menten et al. (2007), and Schlafly et al. (2015)). The understanding

of the distance gradient across the Orion A indicated by those authors also is of

significant importance for the test to analyse several distances when shifting from

the head to the tail. In addition, this region is well observed by Gaia due to its

location nearby the Sun. Thus, it contains many datapoints with high quality

parallaxes and extinctions in the Gaia DR2, making it the best region to test the

models.

4.1.2 Orion A distance analysis

Variation of number of stars

We divided the Orion A into four boxes which are named [(a), (b), (c), (d)], and

we derived distances to each of them. After that, we subdivided (b), (c), and

(d) into four sub-regions each and inferred their distances. Fig. 4.1 illustrates all

the sub-regions used. By using those different sub-regions, the number of input

stars decreased compared to the big three boxes. This helps to understand the

effect of using fewer stars into our models, and also help to identify the distance

gradient across the Orion A.

Extinction cut-off

As outlined in Sect. 3, the technique used in this work relies on the extinction

of stars and their corresponding distances. We used a simple dust screen model

of the extinction of foreground stars and background stars to infer the most

reliable distances to the star-forming region. Here we applied a lower cutoff in

the extinction (1.5 mag for AG and 2 mag for AV using box (c)) to see if we can

still obtain distances. This is important to test the sensitivity of the model when

inferring distances to a region with a small jump in the extinction.
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4.1 Testing the models

Distance cut-off

We also extended the distance cutoff to 2 kpc for the box (c) to test the effect of

including many background stars into the models. Some of the objects we studied

in this work have an estimated distance in the literature. Hence, by varying the

distance cutoff, we are able to understand the reliable cutoff than can be applied

for other objects according to the literature value. More importantly, reducing

the distance cutoff removes stars that are located very far away, which are not

part of the region under study.

At the end part of the test, we added an additional error in the distance

samples to our datasets by ∼ 50%. This is just a quick check of the importance

of the error in our data samples and its effect in the results.

4.1.3 Results and discussions

In general, the two models of extinction detected distances to all the regions

drawn with respect to the extinction breakpoint. The box (a) of Fig. 4.1 was

first used for the distance measurement. It represents the whole region of the

Orion A including the head and the tail. It also contains data from all part of

the Orion A, so it provides an average distance towards this region. For that, we

obtained a distance of 399+8
−8 pc with AG, and 427+5

−4 pc with AV , respectively.

The one obtained with AV is ∼28 pc higher than the AG distance. This slight

difference is caused by the large number of on-cloud stars obtained with AV data.

We also derived several distances to the other three boxes, shifting from the

head to the tail (see Fig. 4.2 and Fig. 4.3). For the head, which is represented

by (d), we obtained 340+13
−10 pc with AG, and 349+8

−7 pc with AV . For the tail, we

used the box (b) and (c) to derive its distance. For (b), we obtained 455+21
−20 pc

with AG, and 413+11
−10 pc with AV . For (c), we obtained 410+19

−12 pc with AG, and

407+11
−10 pc with AV . The results indicate that the tail is located further away than

the head, which are ∼ 115 pc more distant for AG, and ∼ 64 pc away for AV .
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4.1 Testing the models

Figure 4.2: Distances towards the Orion A with AG obtained from the test. The
Orion A is located at a distances ∼ 400 pc. The grey points represents the
selected stars for each box, while the red points show their corresponding binned
data averaged in every 10 pc. The derived distances is indicated by the green
vertical line. The vowel in brackets for each figure indicates the part of the Orion
A used for the test.
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4.1 Testing the models

Figure 4.3: Test of the AV model to derive distances to the Orion A. See the
caption of Fig. 4.2 for more details.

This demonstrates the additional ∼ 70 pc on the distances of the tail stated by

Schlafly et al. (2015).

Variation of the number of stars

To further understand the reliability of our methodology, we derived distances

to the sub-regions of (b), (c), and (d). For those sub-regions, we obtained data

within 1 degree square across the region. Compared to the number of stars that

has AV extinction, those sub-regions contain fewer star with AG extinction, mak-

ing them very difficult to deal with the AG model. In addition, the distribution

of AG across those sub-regions is very complicated, and we failed to derive a re-

liable distances to some of the sub-regions drawn. For instance, the distances of

the sub-regions (1c) and (2c) obtained using the AG model were very large (see

Fig. 4.4). We can clearly see the location of the jump in the AG extinction, but

the algorithm inferred larger distance, which are 521+29
−45 pc and 488+28

−39 pc respec-
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tively. In the opposite way, for (4c), we obtained a lower distance 282+46
−38 pc. In

those sub-regions, the jump point in the extinction was not confirmed because of

implementing fewer stars in our model.

As in Sect. 4.1.2, we used a simple dust screen model, so our methodology

depends on the behaviour of foreground and background extinction. Thus, having

more datapoints does not always provide distances. For instance, the sub-region

(2d) contains many datapoints for both AG and AV , but we are still not able

to infer a reliable distance due to the complicated distribution of the extinction

(see Fig. 4.5). For that, we obtained 268+17
−20 pc, which is lower compared to the

extinction breakpoint.

The results obtained from those small sub-regions also demonstrate the dis-

tance gradient across the Orion A. For both models, we obtained a lower distances

to the sub-regions in head compared to those in the tail. All the figures obtained

to those sub-regions are listed in Appendix A.

Figure 4.4: Distances towards the sub-regions of box(c) using AG.
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Figure 4.5: Distances towards the sub-regions of box(d) using AV .

Extinction cutoff effects

The two models always detect distances even if a smaller jump in the extinction

were used. By applying an extinction cutoff of 1.5 mag for AG and 2 mag for

AV to the box (c), we inferred a distance of 438+21
−15 pc for AG and 438+10

−12 pc for

AV . Compared to the distances obtained with no extinction cutoff, which are

410+19
−12 pc with AG and 407+11

−10 pc with AV , we observed an increase of about ∼30

pc in the distance for both models. The extinction cutoff removed background

stars that suffer much extinction at the boundary of the cloud, and thus the

observed distance naturally shifted with respect to the distribution stars along

the sightline.
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Distance cutoff effects

The larger distance cutoff 2 kpc applied has no considerable effect in the AG

distance, but it caused a slight decrease for about ∼60 pc for AV . Compared to

the measurements without distance cutoff, there is also an increase in the errorbar

for the two models. I fact, increasing the number of stars into our model should

lower the errorbar, however, we obtained higher errorbar since stars located at

higher distance have large uncertainties.

The additional 50 % error in the distance sample has no significant effect in

the results as it only caused a slight increase of about ∼10 pc in the distance and

small increase in the errorbar (see Fig. 4.6).

Figure 4.6: Test of the two models AG (in the left panel) and AV (in the right
panel) by adding a 50 % error in the distance samples. See Caption 4.2 for more
details.

4.1.4 Effective sample selection

According to the test, all changes applied to the datasets had effects in the dis-

tance measurement. As we used a simple dust screen model, good agreement of

the extinction with this model is crucial and enough background stars that has

extinction data is also required. In addition, applying a large distance cutoff did

not yield to a considerable change in the distance, so it is not always necessary.

One issue with a large distance cutoff was that it added more stars that are lo-

cated very far away, which might not be part of the molecular cloud. Those many

input stars also take too much time for the computation. According to the test,
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4.1 Testing the models

the distance cutoff for an object that has an estimated distance less than 500 pc

in the literature should not exceed 1 kpc. This distance interval will be respected

for the other distance measurements in this thesis.

4.1.5 Distance error and autocorrelation

Our distance measurements contain two categories of uncertainty: the statistical

uncertainty and the systematic uncertainty. The systematic uncertainty is not

included in the test but will be added in the next results. As mentioned by Luri

et al. (2018), Gaia measurement may be affected by systematic errors due to

the design of both the spacecraft and the implementation of the data processing

software. This systematic error on the parallax is estimated to be around 0.04

mas which causes a systematic error about 5% in the distance. We adopted this

5% systematic error in our distance measurements in this work.

An alternative way to view the autocorrelation has been discussed by Foreman-

Mackey et al. (2013) when using the emcee package. They pointed out that the

acceptance fraction should be in the 0.2 to 0.5 range in order to see if emcee

performs well. In this test, the acceptance fractions observed fell in this range of

value, meaning that the way we used the MCMC algorithm was convenient.

The results obtained from the test are summarised in Table 4.1 for AG, and

in Table 4.2 for AV . The rest of the figures are listed in Appendix.
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4.2 Distance catalogs

4.2 Distance catalogs

4.2.1 RMS distances

In this section, we present distances of YSOs selected from the Leeds Red MSX

Source Survey (RMS, Lumsden et al. (2013)). Those stars are taken from different

regions with different dust environments, and have distances ranging from 0.5 to

3 kpc which are mostly derived from kinematic method. The RMS selected

candidates are displayed in Table 4.3, and our extinction distances are listed in

Table 4.4 alongside the RMS distances.

Overall, we inferred distances to all selected target except the AG distance

of G034.4035+00.2282A. As shown in the top left panel of Fig. 4.12, this target

is surrounded by a very few optical stars which is not enough for the distance

measurement.

Table 4.3: List of RMS stars used in this work.

(1) (2) (3) (4) (5)
Name l b Distance (kpc) Distance type

G010.384+2.213 10.3844 2.2128 1.1 Kin
G108.929+2.595 108.9288 2.5954 0.7 Par
G126.714-0.822 126.714 -0.822 0.7 Kin

G014.4886+0.0219B 14.4886 0.0219 2.5 Kin
G065.3169-2.7141 65.3169 -2.7141 1.2 Kin

G034.4035+0.2282A 34.4035 0.228 1.6 Par

Note: List of stars used in this work. The name, Galactic coordinates (l, b), and
source type are shown in (1), (2), (3) and (4) respectively, while the estimated distances
and the type of method used from the literature are displayed in (4) and (5), respectively.

4.2.2 Cygnus X distances

Apart from that, we derived distances to the complex star formation region,

Cygnus X. We are particularly interested in Cygnus X as it is a nearby massive

star formation region located at ∼ 2 kpc (Reid et al., 2011) that Gaia also can
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4.2 Distance catalogs

Figure 4.7: The distance of G010.384+02.213. The two images in the middle of right panels are taken from
the ESASky website (Martí et al., 2016), which is a great astronomical tool for viewing. The one in the top is
an optical image (SDSS 2 York et al. (2000)), while the one in the bottom is a NIR image (2MASS, Skrutskie
et al. (2006)). The purple plus in the centre of each image represents the location of our object of interest. In
the top and bottom right panels, the grey points are the selected stars we used for the distance measurements,
while the red points show their corresponding binned data (averaged in every 10 pc). The derived distances and
the uncertainty are indicated by the green vertical line. The corner plots of the MCMC samples obtained from
AG (on the top) and AV (on the bottom) are displayed on the left panels. They show the obtained distance D,
the inferred extinction of Off-cloud stars µ1 with its error σ1, and the extinction for On-cloud stars µ2 with its
error σ2 with the two models, respectively. The 16th, 50th, and the 86th are shown by the dashed vertical lines,
respectively. 67



4.2 Distance catalogs

Figure 4.8: The distance of G108.929+02.595. Top left panel and bottom left panel show the
corner plot of the MCMC samples obtained from AG and AG, respectively. In the right panels,
the grey points and red points in the top and bottom show the stars used for the distance
calculation and their corresponding binned data (averaged in every 10 pc). The two images in
the middle of right panels are optical image and NIR image showing the object of interest and
their surrounding stars. See the caption of Fig. 4.7 for more information.
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4.2 Distance catalogs

Figure 4.9: The distance of G126.714-0.822. Top panels show the optical image (on the left)
and NIR image (on the right) of the region that contain our object of interest. Middle panels
and bottom panels show the corner plot of the MCMC samples (on the left), and the stars used
for the distance inference with their corresponding binned data (grey and red points on the
right), which are obtained from AG and AV , respectively. See the caption of Fig. 4.7 for more
information.
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4.2 Distance catalogs

Figure 4.10: The distance of G014.4886+0.0219B. Top panels show the optical image (on the
left) and NIR image (on the right) of the region that contains our object of interest. Middle
panels and bottom panels show the corner plot of the MCMC samples (on the left), and the
stars used for the distance inference with their corresponding binned data (grey and red points
on the right), which are obtained from AG and AV , respectively. See the caption of Fig. 4.7
for more information.
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4.2 Distance catalogs

Figure 4.11: The distance of G065.3169-2.7141. Top left panel and bottom left panel show
the corner plot of the MCMC samples obtained from AG and AG, respectively. In the right
panels, the grey points and red points in the top and bottom show the stars used for the distance
calculation and their corresponding binned data (averaged in every 10 pc). The two images in
the middle of right panels are optical image and NIR image showing the object of interest and
their surrounding stars. See the caption of Fig. 4.7 for more information.
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4.2 Distance catalogs

Figure 4.12: The distance of G034.4035+00.2282A. Top panels show the optical image (on
the left) and NIR image (on the right) of the region that contains our object of interest. Bottom
left panel shows the corner plot of the MCMC samples, while bottom right panel depicts the
stars used for the distance inference (grey points) with their corresponding binned data (red
points). See the caption of Fig. 4.7 for more details.
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4.2 Distance catalogs

Table 4.4: RMS distances results.

(1) (2) (3) (4) (5) (6)
Name l b Distance Distance using AG Distance using AV

(kpc) (kpc) (kpc)
G010.384+02.213 10.3844 02.2128 1.1 1.50+0.3

−0.07 ± 0.07 1.58+0.06
−0.05 ± 0.08

G108.929+02.595 108.9288 02.5954 0.7 0.73+0.03
−0.06 ± 0.03 0.87+0.05

−0.06 ± 0.04
G126.714-00.822 126.714 -00.822 0.7 1.10+0.03

−0.04 ± 0.05 0.93+0.02
−0.02 ± 0.04

G014.4886+00.0219B 14.4886 0.0219 2.5 2.02+0.12
−0.11 ± 0.10 1.78+0.08

−0.13 ± 0.09
G065.3169-02.7141 65.3169 -02.7141 1.2 1.23+0.04

−0.05 ± 0.06 0.99+0.03
−0.03 ± 0.05

G034.4035+00.2282A 34.4035 0.228 1.6 – 1.11+0.02
−0.03 ± 0.05

Note: The distances of YSOs selected from the RMS survey. The distance calculated
with both AG and AV are shown in (5) and (6) respectively. The first error term in the
distance estimates is the statistical uncertainty while the second error term is the 5%
systematic uncertainty.

deal with. In this part, provide distances to its sub-regions including DR 20,

DR21, DR22, DR23, and W75N. This helps to know whether those sub-regions

are located at the same distance or not.

Recent work such as Beerer et al. (2010) has proved the high number of YSOs

in the Cygnus X region. In their work, they identified 670 Class I, 7,249 Class II,

112 transition disk, and 200 embedded protostellar sources.

The Cygnux X sub-regions we used are shown in Fig. 4.13. We failed to

measure the distance towards DR23 using the AV model due to the complex

distribution of AV extinction. The distances obtained for the other sub-regions

are summarised in Table 4.5.

4.2.3 Distances to additional sources

We also derived distances to G5.89-0.39, G35.20-0.74, and G59.7+0.1. Those are a

well-studied high mass star forming region, and also have distances measurement

in the literature. For example, Motogi et al. (2011) derived distance 1.28+0.09
−0.08 kpc

to G5.89-0.39 with the use of VERA (VLBI Exploration of Radio Astrometry),

Zhang et al. (2009) found a distance of 2.19+0.24
−0.20 kpc to G35.20-0.74, and Xu
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4.2 Distance catalogs

Figure 4.13: Infrared image of the extremely active star-forming region Cygnus
X. The distance of the marked areas in the figure are calculated in this work.
Credit: ESA.
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4.2 Distance catalogs

Figure 4.14: The distance of DR22. Top panels display, from left to right, a far-infrared (FIR) image
(Herschel, Marton et al. (2015)), an optical image (SDSS 2, York et al. (2000)), and a near-infrared (NIR) image
(Skrutskie et al. (2006)) of the source of interest. Middle and bottom left panel display the corner plot of the
MCMC samples obtained from AG and AV , respectively. The corner plots show the obtained distance D, the
inferred extinction of Off-cloud stars µ1 with its error σ1, and the extinction for On-cloud stars µ2 with its error
σ2 with the two models. The 16th, 50th, and the 86th are shown by the dashed vertical lines, respectively. The
grey points in the middle and bottom right panel are the selected stars we used for the distance measurements.
The the red points show their corresponding binned data (averaged in every 10 pc), while derived distances and
the uncertainty are indicated by the green vertical line.
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4.2 Distance catalogs

Figure 4.15: The distance of W75N. See the caption of Fig. 4.14 for more details.
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4.2 Distance catalogs

Figure 4.16: The distance of DR21. See the caption of Fig. 4.14 for more details.
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4.2 Distance catalogs

Figure 4.17: The distance of DR20. See the caption of Fig. 4.14 for more details.
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4.2 Distance catalogs

Figure 4.18: The distance of DR23. See the caption of Fig. 4.14 for more details.

Table 4.5: Distances to the sub-regions of Cygnus X. The statistical uncertainty
and the 5% systematic uncertainty in the distances are shown.

Name l b Distance using AG Distance using AV
(kpc) (kpc)

DR 22 80.903 -0.117 1.26+0.03
−0.02 ± 0.06 1.60+0.03

−0.03 ± 0.08
W 75N 81.867 +0.779 1.02+0.07

−0.04 ± 0.05 1.73+0.06
−0.05 ± 0.08

DR 21 81.680 +0.537 1.19+0.03
−0.03 ± 0.06 1.72+0.03

−0.03 ± 0.08
DR 20 80.872 +0.411 1.21+0.3

−0.02 ± 0.06 1.59+0.02
−0.02 ± 0.08

DR 23 81.543 +0.016 1.12+0.04
−0.05 ± 0.06 –
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4.2 Distance catalogs

et al. (2007) derived a distance of 2.20 ± 0.11 kpc to G59.7+0.1 using VLBA

maser parallax.

By using our extinction models, the observed distances for G5.89-0.39 are

1.27+0.05
−0.08 ± 0.06 kpc with AG and 1.25+0.06

−0.07 ± 0.06 kpc with AV (see Fig. 4.19).

For G35.20-0.74, we inferred 1.30+0.08
−0.09± 0.06 kpc with AV (see Fig. 4.20), but we

failed to derived AG distance due to the lack of data. For G59.7+0.1, we obtained

2.24+0.10
−0.18±0.1 kpc and 2.78+0.12

−0.09±0.1 kpc with AG and AV , respectively (see Fig.

4.21).
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4.2 Distance catalogs

Figure 4.19: The distance of G5.89-0.39. Top panels display, from left to right, a far-infrared (FIR) image
(Herschel, Marton et al. (2015)), an optical image (SDSS 2, York et al. (2000)), and a near-infrared (NIR) image
(Skrutskie et al. (2006)) of the source of interest. Middle and bottom left panel display the corner plot of the
MCMC samples obtained from AG and AV , respectively. The corner plots show the obtained distance D, the
inferred extinction of Off-cloud stars µ1 with its error σ1, and the extinction for On-cloud stars µ2 with its error
σ2 with the two models. The 16th, 50th, and the 86th are shown by the dashed vertical lines, respectively. The
grey points in the middle and bottom right panel are the selected stars we used for the distance measurements.
The the red points show their corresponding binned data (averaged in every 10 pc), while derived distances and
the uncertainty are indicated by the green vertical line.
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4.2 Distance catalogs

Figure 4.20: The distance of G35.20-0.74. See the caption of Fig. 4.19 for
additional information.
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4.2 Distance catalogs

Figure 4.21: The distance of G59.7+0.1. See the caption of Fig. 4.19 for addi-
tional information.
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4.3 Discussion

4.3.1 Comparison with RMS disances

We first compare our results to the RMS distances listed in Table 4.3. The dis-

tance to our selected RMS target are derived from kinematic method and VLBI

maser parallax. Our estimated distances from the two models agree well with

the literature distance of G108.929+02.595 and G065.3169-02.7141, showing only

a ∼0.1 kpc difference in the distance. For the other targets G010.384+02.213,

G126.714-00.822, G014.4886+00.0219B, G034.4035+00.2282A, we observed dif-

ference of ∼0.5 pc in the distance. The RMS distance are not accompanied

with their uncertainty, but if we consider the typical 0.7 kpc error for kinematic

distances, our findings are consistent with the literature.

4.3.2 Comparison to kinematic distances

In this section, we compare our results from Sect. 4.2.3 to their literature dis-

tances. Foster et al. (2012) derived kinematic distances to those high-mass star

forming regions using two different rotational curves (Clemens (1985) and Reid

et al. (2009)). As can be seen in Table 4.6, kinematic distances are systemati-

cally greater than our distance measurements. Our distances are about ∼1 kpc

Table 4.6: Comparison with the maser parallax distances from the literature.

Name Distance using AG Distance using AV Kinematic distance (kpc)
(kpc) (kpc) Clemens (1985) Reid et al. (2009)

G5.89-0.39 1.27+0.05
−0.08 ± 0.06 1.25+0.06

−0.07 ± 0.06 2.0+0.7
−0.7 1.9+0.6

−0.7

G35.20-0.74 – 1.30+0.08
−0.09 ± 0.06 2.3+0.2

−0.2 2.4+0.2
−0.2

G59.7+0.1 2.24+0.10
−0.18 ± 0.1 2.78+0.12

−0.09 ± 0.1 3.3+1.0
−0.5 4.2+1.0

−1.0

lower than those kinematic distances. A possible reason for our lower distance

is that those are complex dark clouds that contain high-massive star formation

rate (Hampton et al., 2016; Xu et al., 2007), where extinction is higher. Thus
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4.3 Discussion

Table 4.7: Maser used in this work.

(1) (2) (3) (4) (5) (6)
Name l b Distance [kpc] Reference Type

G5.89-0.39 5.8842 -0.3924 1.28+0.09
−0.08 Motogi et al. (2011) 22 GHz H2O

G35.20-0.74 35.1970 -0.7431 2.19+0.24
−0.20 Zhang et al. (2009) 12 GHz methanol

G59.7+0.1 59.7828 0.0647 2.16+0.10
−0.09 Xu et al. (2009) 12 GHz methanol

W 75N 81.867 +0.779 1.3+0.7
−0.07 Rygl et al. (2012) 12 GHz methanol

DR 21 81.680 +0.537 1.50+0.08
−0.07 Rygl et al. (2012) 12 GHz methanol

DR 20 80.872 +0.411 1.46+0.10
−0.09 Rygl et al. (2012) 12 GHz methanol

Note: Maser selected from the literature. The name, Galactic coordinates (l, b), and
the distances are displayed in (1), (2), (3) and (4) respectively. The references and the
maser type are shown in (5) and (6), respectively.

Gaia suffers from the extinction and is not able to detect many stars in the cloud

boundaries. Consequently, few stars are available and only lower distance can be

produced in the same line of sight towards the dark cloud. Another possible rea-

son is that the line of sight towards those cloud might contain several extinction

breakpoint, and hence our models naturally infer the distance of the first jump

as there are many datapoints in there.

4.3.3 Comparison with the VLBI maser parallax distances

Some of the sources we study in this thesis have maser parallax distances from

the literature. They are listed in Table 4.7 with the literature reference and

the maser type. As indicated by Reid & Honma (2014), the VLBI can measure

parallaxes for sources across the Milky Way with ∼10 µas accuracy, which is a

very accurate measurement. If we suppose that those maser parallax distances

are the true distances for those regions, our results display a systematic error of

1-20% except G5.89-0.39, which shows a large 40% systematic error with AV .
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Table 4.8: Comparison of the VLBI maser parallax distance measurement from
the literature with the results obtained from this work.

Name Maser Parallax Distance using AG Distance using AV
(kpc) (kpc) (kpc)

G5.89-0.39 1.28+0.09
−0.08 1.27+0.05

−0.08 ± 0.06 1.25+0.06
−0.07 ± 0.06

G35.20-0.74 2.19+0.24
−0.20 – 1.30+0.08

−0.09 ± 0.06
G59.7+0.1 2.16+0.10

−0.09 2.24+0.10
−0.18 ± 0.1 2.78+0.12

−0.09 ± 0.1
W 75N 1.3+0.7

−0.07 1.02+0.07
−0.04 ± 0.05 1.73+0.06

−0.05 ± 0.08
DR 21 1.50+0.08

−0.07 1.19+0.03
−0.03 ± 0.06 1.72+0.03

−0.03 ± 0.08
DR 20 1.46+0.10

−0.09 1.21+0.3
−0.02 ± 0.06 1.59+0.02

−0.02 ± 0.08

4.3.4 Comparison to extinction distance

Here, we compare our results with the extinction distances of Foster et al. (2012).

They performed two methods of extinction distances in 11 dark clouds that con-

tain maser parallax measurement. The two extinction methods that they used

are the Blue Number Count Extinction (BNCE) method and the Red Giant Ex-

tinction (RGE) method. Basically, the idea of their blue count extinction method

is to count the blue number of stars within the region of interest and compare

those number of blue stars to the Galactic model (Robin et al., 2003) to estimate

the distance. For the red giant method, they calculated the visual extinction

AV of giant stars along the same line of sight as the cloud, and compared the

extinction to a Galactic model (Marshall et al., 2006) to derive the distances.

The extinction distances and our results are highlighted in Table 4.9.

Foster et al. (2012) used 2MASS and UKIDSS, which are deep infrared imag-

ing surveys. They can observe stars that are heavily embedded in a dark cloud,

and therefore they can rich larger distance. Here, their extinction distance are

very large compared to our AG and AV distance. For G5.89-0.39, the extinction

distances from the blue number count and the red giant are almost three times

larger than our AG and AV distances, and it is two times larger for G35.200.74.
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Table 4.9: Comparison with the extinction distances from Foster et al. (2012).

Name Distance using AG using AV BNCE (kpc) RGE (kpc)
(kpc) (kpc) 2MASS UKIDSS 2MASS UKIDSS

G5.89-0.39 1.27+0.05
−0.08 ± 0.06 1.25+0.06

−0.07 ± 0.06 ... 4.5+0.6
−0.8 3.9+1.4

−1.1 3.7+0.3
−0.4

G35.200.74 – 1.30+0.08
−0.09 ± 0.06 2.4+0.8

−0.7 2.7+0.3
−0.3 2.4+0.3

−0.2 2.6+0.7
−0.2

G59.7+0.1 2.24+0.10
−0.18 ± 0.1 2.78+0.12

−0.09 ± 0.1 ... 4.2+0.9
−1.2 2.5+0.2

−0.2 ...

For G59.7+0.1, however, our AV distance agree with the 2MASS red giant ex-

tinction distance (only 10% systematic error).

4.3.5 Limitation of the method

As in Sect. 4.1, we used a simple dust screen model of the extinction along the line

of sight. We modelled the extinction along the line of sight and infer the distance

to one target according to a sudden jump in the extinction. Thus, the method rely

on the distribution of star in the line of sight. With our method, we managed

to derive reliable distances to several regions which agree with the literature.

Unfortunately, however, certain regions have complicated dust distribution which

violates our model assumption as Gaia cannot measure enough stars needed for

our Bayesian method. Therefore, we are not able to report distance measurements

to other sources with our AG and AV model. An example of a failure model we

observed is shown in Fig. 4.22. As can be seen in the figure, there is no clear

extinction breakpoint in the figure presented in the top left panel and bottom

right panel. For the two other target, the number of on-cloud stars are not

enough to produce the Bayesian inference.
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4.3 Discussion

Figure 4.22: Examples of failure in our method. Top panels and bottom left panel represent
the distance estimate towards G23.01-0.41, G21.4859+0.5260, and G35.20-0.74 using AG model.
Bottom right panel shows the distance of G23.01-0.41 using AV model. The failed distance
estimates is due to the weak distribution of off-cloud and on-cloud stars. There is no clear jump
in the extinction along the line of sight, and the model failed to provide distance measurement of
the target under study. For G35.20-0.74, we observed distance of the small component located
in foreground of the target of interest.

88



Chapter 5

Conclusions and Future Work

The purpose of this thesis has been to derive distances to embedded stars using

the second release of Gaia data (Gaia DR2). To do this, we started by drawing a

box region centred on our object of interest and classified the stars along the line

of sight into two categories: i) Off-cloud stars, which are stars located around

the molecular cloud and have low extinction ii) On-cloud stars are stars that

can be observed in the boundaries of the densest part of the molecular cloud

and have higher extinction. Secondly, we built a Bayesian model of the AG

extinction and AV extinction towards the region of interest to detect the jump

point in the extinction from Off-cloud stars to On-cloud stars. As those extinction

measurements have their corresponding distances, the distance to our region of

interest is subsequently deduced by the Markov chain Monte Carlo (MCMC)

technique with respect to the breakpoint in the extinction. The Bayesian model

that we used in this work is fully described in Chapter 3.

Chapter 4 has presented and discussed our findings on the distances to dif-

ferent regions. We targeted Young Stellar Objects (YSOs) from the Leeds RMS

survey, an additional three sources from the literature, and the sub-structures

of Cygnus X. Overall, our distance measurements are consistent with the lit-

erature. If we suppose the maser parallax is the true distance, our distances

show a small systematic uncertainty of less than 5% for objects that are associ-

ated with a molecular cloud with an average extinction (e.g . G108.929+02.59
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and G065.3169-02.714). However, for a target associated with a complex dark

cloud such as G5.89-0.39 and G59.7+0.1, the systematic uncertainty raised about

∼20%.

The results of this work suggest that the distance to an object associated with

a dark cloud cannot be well reported with our method as Gaia stars are only sen-

sitive to moderate-sized extinction. Consequently, our measurements with both

the AG and AV model are lower compared to the extinction distances of Foster

et al. (2012). Our models only determined the nearby distances along the line

of sight either there is a presence of multiple clouds or several distances depend-

ing on the structure of the cloud. However, the use of AV and set of distances

provided by Anders et al. (2019) improved the distances to all regions selected.

Compared to the kinematic distances of Foster et al. (2012), our distances are

much lower. This large discrepancy may be the result of the presence of multiple

clouds along the line of sight.

Another significant result of this thesis is the finding of the similarity between

the distances to the components of Cygnus X. We found that DR20, DR21, DR22,

DR23, and W75N are all located at ∼1.0 kpc according to AG model and ∼1.6

kpc according to the AV model. This is an excellent agreement with the maser

parallax distances given by Rygl et al. (2012), who found an average individual

distance of 1.4 kpc to the Cygnus X.

Interestingly, with the AV extinction for only stars brighter than G=18 mag

provided by Anders et al. (2019) that we used, we managed to detect reliable dis-

tances to several regions we arbitrary chose. The results using a similar method-

ology as we used in this work will absolutely bring more knowledge when more

parallax data is available in the future. The case when our extinction model fails

to infer distances towards a region with complex extinction distribution is also

discussed in Sect. 4.3.5.
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5.1 Future Work

As illustrated by previous studies such as Zucker et al. (2018) and Yan et al.

(2019b), a precise classification of stars is essential for molecular cloud distance

calculation. They used velocity slices of a CO spectral cube to trace the presence

of the molecular cloud, and they classify the stars along the line of sight according

to the CO emission. Although we have shown reliable distance measurements with

our method (described in Chapter 4), it would be useful in the future to use CO

velocity slices or a similar method before proceeding to the distance inference.

This has to be taken into account for the study of large regions as it removes a

large number of unnecessarily background stars.

As seen in Sect. 4, distances to certain regions cannot be reported with our

models due to the insufficiency of Gaia stars within the region. In the future, as

Gaia future data release is expected to provide many stars within those regions,

suggest that combining Gaia DR3 astrometry with an ultra-deep infrared survey

such as the UKIRT Infrared Deep Sky Survey (UKIDSS) will improve distance

measurements to embedded stars. A similar work as which are done by Foster

et al. (2012) using real astrometric data from the Gaia DR3 rather than using

the Galactic model to derive the distances is also recommended.

Besides, we have seen in this study that only a few other approaches can be

used to derive distances to embedded objects. Since they do not have visible data,

it is impossible to carry out a single distance measurement to those sources. It

is known that the kinematic method suffers from its large errors and the kine-

matic distance ambiguity (KDA) (Rice et al., 2016), while the extinction distance

methods are dependent on the Galactic model. In addition, we have introduced

that the maser parallax distances is very accurate but cannot be applied to gauge

distances to embedded objects in a region that lack maser. This accuracy on the

parallax will be improved with the upcoming of the large project Square Kilo-

metre Array (SKA) and can pin down distance measurements to a substantial
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5.1 Future Work

part of the galactic plane including the central parts of the Milky Way. In the

future, we recommend the use of maser parallax information to derive distances

to complex dark clouds. The SKA is an international collaboration planned for

full operation in 2030. When completed, it will be 50 times more sensitive than

any current system and can measure astrometry with an accuracy better than ±

1 µas (Reid & Honma, 2014).
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Appendix

A.1 Examples of ADQL query used in this work
*+*+*+*+*+*+*+*+*+*+*+*+*+*+
ADQL query for GAIA stars
*+*+*+*+*+*+*+*+*+*+*+*+*+*+
SELECT TOP 10000 dist.source_id, g.ra, g.dec, dist.r_est,
dist.r_len,g.parallax, g.parallax_error,g.a_g_val,
g.a_g_percentile_lower, g.a_g_percentile_upper, rw.ruwe
FROM external.gaiadr2_geometric_distance as dist,
gaiadr2.gaia_source AS g, gaiadr2.ruwe AS rw
WHERE dist.source_id = g.source_id
AND g.source_id = tbest.source_id
AND g.source_id = rw.source_id
AND g.parallax IS NOT NULL
AND 1./g.parallax <3
AND 33.4035 < g.l AND g.l < 35.4035
AND -0.772 < g.b AND g.b < 1.228
AND g.a_g_val > 0
AND rw.ruwe < 1.4
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
ADQL query for STARHORSE stars
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
SELECT TOP 10000 g.ra, g.dec, s.dist16, s.dist50, s.dist84,
s.AV16, s.AV50, s.AV84, s.AG50
FROM gdr2.gaia_source AS g, gdr2_contrib.starhorse AS s
WHERE g.source_id = s.source_id
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A.2 Corner plot of the Orion A obtained in Sect. 4.1

AND 33.4035 < g.l AND g.l < 35.4035
AND -0.772 < g.b AND g.b < 1.228
AND s.AV50 > 0
AND s.dist50 > 0 AND s.dist50 < 3 AND s.ruwe < 1.4

A.2 Corner plot of the Orion A obtained in Sect.
4.1

Figure A.1: Corner plot of the four boxes of Orion A using the AG model.
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A.2 Corner plot of the Orion A obtained in Sect. 4.1

Figure A.2: Corner plot of the four boxes of Orion A using the AV model.
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A.2 Corner plot of the Orion A obtained in Sect. 4.1

Figure A.3: Corner plot of the resulting cutoff applied to the box (c) of Orion A
using the AG model.
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A.2 Corner plot of the Orion A obtained in Sect. 4.1

Figure A.4: Same figure as Fig. A.3 but using the AV model.

97



A.2 Corner plot of the Orion A obtained in Sect. 4.1

Figure A.5: Corner plot of the box (b) sub-regions of Orion A with AG.
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A.3 Summary of distances obtained from this work

Figure A.6: Corner plot of the box (c) sub-regions of Orion A with AG.

A.3 Summary of distances obtained from this
work

99



A.3 Summary of distances obtained from this work

Figure A.7: Distance to the box (c) sub-regions of Orion A using AV model.

Figure A.8: Corner plot of the box (c) sub-regions of Orion A with AV .
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A.3 Summary of distances obtained from this work

Figure A.9: Distance to the box (b) sub-regions of Orion A using AV model.

Figure A.10: Corner plot of the box (d) sub-regions of Orion A with AV .
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A.3 Summary of distances obtained from this work

Table A.1: All distances obtained from this work.

(1) (2) (3) (4) (5)
Source l b Distances with AG Distances with AV

(kpc) (kpc)
G010.384+2.213 10.3844 2.2128 1.50+0.3

−0.07 ± 0.07 1.58+0.06
−0.05 ± 0.08

G108.929+02.595 108.9288 2.5954 0.73+0.03
−0.06 ± 0.03 0.87+0.05

−0.06 ± 0.04
G126.714-00.822 126.714 -00.822 1.10+0.03

−0.04 ± 0.05 0.93+0.02
−0.02 ± 0.04

G014.4886+00.0219B 14.4886 0.0219 2.02+0.12
−0.11 ± 0.10 1.78+0.08

−0.13 ± 0.09
G065.3169-02.7141 65.3169 -02.7141 1.23+0.04

−0.05 ± 0.06 0.99+0.03
−0.03 ± 0.05

G034.4035+00.2282A 34.4035 0.228 0.48+0.02
−0.01 ± 0.02 0.83+0.01

−0.01 ± 0.04
G5.89-0.39 5.8842 -0.3924 1.27+0.05

−0.08 ± 0.06 1.25+0.06
−0.07 ± 0.06

G35.20-0.74 35.1970 -0.7431 – 1.30+0.08
−0.09 ± 0.06

G59.7+0.1 59.7828 0.0647 2.24+0.10
−0.18 ± 0.1 2.78+0.12

−0.09 ± 0.1
W 75N 81.867 +0.779 1.02+0.07

−0.04 ± 0.05 1.73+0.06
−0.05 ± 0.08

DR 21 81.680 +0.537 1.19+0.03
−0.03 ± 0.06 1.72+0.03

−0.03 ± 0.08
DR 20 80.872 +0.411 1.21+0.3

−0.02 ± 0.06 1.59+0.02
−0.02 ± 0.08

DR 22 80.904 -0.117 1.26+0.03
−0.02 ± 0.06 1.60+0.03

−0.03 ± 0.08
DR 23 81.543 +0.016 1.12+0.04

−0.05 ± 0.06 –

Note: (1), (2), and (3) represent the source name and the Galactic coordinates
(l,b), respectively. The distances D obtained from the two models AG and AV

are given in (4) and (5), respectively. Our distances contain the two categories
of uncertainties: the statistical uncertainty as 16th and 84th percentiles (in the
first term error), and the 5% systematic uncertainty (shown in the second term
error).
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