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Abstract Previous work has explored the linkages between Arctic sea ice extent (SIE) anomalies at the end
of the summer melt season and high-latitude climate. Here we show that Arctic midsummer SIE anomalies
provide predictive skill on time scales of ~2-3 months for high-latitude climate. Midsummers characterized
by low SIE are associated with significant positive temperature and easterly wind anomalies throughout
the high-latitude troposphere through September and significant positive temperature anomalies at the
Arctic surface into October. The inferred predictive skill for autumn climate derives from the persistence of the
sea ice field. It is robust throughout the Arctic basin and is supported in climate models from the fifth phase of
the Coupled Model Intercomparison Project archive and in prediction experiments from the

Arctic Predictability and Prediction on Seasonal to Interannual Time scales project. It is theorized that the
predictive skill derives from (1) the anomalous storage of heat in the Arctic Ocean during periods of low
summertime SIE and (2) the delayed formation of sea ice during the following autumn months.

Plain Language Summary Here we analyze the evidence for predictability of high-latitude climate
that derives from Arctic sea ice extent (SIE) anomalies. We demonstrate that the continuous observed lagged
correlations between Arctic sea ice anomalies and Arctic/high-latitude climate are most robust in
association with midsummer (July) SIE. The linkages between midsummer SIE anomalies and
Arctic/high-latitude climate are significant well into autumn and have potential implications for the
prediction of high-latitude climate up to 3 months in advance. The results have implications for the influence
of long-term decreases in summertime sea ice on climate change over the high latitudes.

1. Introduction

Arctic sea ice extent (SIE) is frequently defined as the total area of the Arctic Ocean that is covered by at least
15% floating ice, climatologically (1981-2010) ranging from a maximum value of 15.60 x 10° km? in March to
a minimum value of 6.54 x 10° km? in September (Fetterer et al., 2017). Satellite observations reveal
significant declines in Arctic SIE over the past few decades in all seasons, with the largest decreases found
at the end of the summer melt season. The trends in September SIE were — 8.6 + 2.9% per decade over
the period 1979-2006 (e.g., Serreze et al., 2007; Stroeve et al.,, 2007) and increased to —13.0 £ 2.4% per
decade over the period 1979-2017 (Fetterer et al., 2017), indicating an accelerated reduction of SIE over
the past decade.

Arctic sea ice covers a relatively small fraction of the globe, but it nevertheless exerts a substantial impact on
the climate system due to its important role in reflecting solar radiation and blocking the direct exchange of
latent and sensible energy between the atmosphere and the underlying ocean (e.g., Budyko, 1969;
Frankignoul et al., 2014; Gao et al., 2015; Maykut, 1982; Orsolini et al., 2012; Petrie et al,, 2015; Serreze &
Barry, 2011). Hence, considerable effort has been devoted to exploring the inherent predictability of Arctic
sea ice and its potential role on midlatitude weather.

The inherent predictability of Arctic sea ice has been a research focus for decades (e.g., Barnett, 1980;
Blanchard-Wrigglesworth, Armour, et al., 2011; Blanchard-Wrigglesworth, Bitz, Holland, 2011; Chevallier
et al, 2013; Day et al.,, 2014; Drobot, 2007; Holland et al., 2011; Lindsay et al., 2008; Rigor & Wallace, 2004;
Sigmond et al.,, 2013; Stroeve et al., 2016; Walsh, 1980; Walsh & Johnson, 1979; Wang et al., 2013). In general,
predictability of SIE emerges on three different time scales: (1) time scales of ~2-4 months due to the
relatively slow exponential decay of sea ice anomalies; (2) time scales of seasons due to the storage of sea
ice anomalies in the underlying sea surface temperature field (i.e., the reemergence of sea ice anomalies;
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Blanchard-Wrigglesworth, Armour, et al., 2011); and (3) time scales of decades due to anthropogenic climate
change (i.e., sea ice will continue to melt as the globe warms; Kirtma et al., 2013) and due to low-frequency
variability in poleward ocean heat transport (Arthun et al,, 2017; Yeager et al., 2015).

The potential influence of Arctic sea ice anomalies on the atmosphere has also been a research focus for
decades (e.g., Alexander et al., 2004; Bhatt et al., 2008; Bluthgen et al., 2012; Cvijanovic et al., 2017; Deser
et al., 2004, 2010; Herman & Johnson, 1978; Screen et al., 2013, 2014). But interest in the potential impacts
of Arctic sea ice on climate has grown exponentially in recent years due to a series of studies that have argued
Arctic sea ice loss has a pronounced influence on extreme winter weather events at midlatitudes (Francis &
Vavrus, 2012; Liu et al., 2012; Mori et al., 2014). The evidence for a causal link between Arctic SIE anomalies
and midlatitude weather is not clearly supported by observations and is highly sensitive to the choice of
methodology (Barnes, 2013; Barnes & Screen, 2015; McCusker et al., 2016). As summarized in Wallace et al.
(2014): alternative observational analyses and simulations with climate models have not confirmed the
hypothesis that Arctic SIE loss exhibits a causal relationship with midlatitude weather.

The purpose of this paper is to analyze the observed lead/lag relationships between variations in (1) Arctic SIE
and (2) Arctic atmospheric temperatures and high-latitude circulation. Previous studies have focused on the
linkages between large-scale climate and sea ice anomalies either at the end of summer melt season
(e.g., September; Francis et al., 2009; Honda et al., 2009; Koyama et al., 2017; Serreze et al., 2016) or averaged
over the entire summer (Kay & Gettelman, 2009; Knudsen et al., 2015). In contrast to those studies, we
demonstrate that the continuous (i.e., not reemerging) lagged linkages between sea ice anomalies and
high-latitude climate are most robust in association with midsummer (July) SIE. For example, we show that
September SIE is only significantly linked to high-latitude climate up to 1 month in advance, whereas
midsummer SIE anomalies are significantly linked to high-latitude climate up to three consecutive months
in advance. The linkages between midsummer SIE anomalies and high-latitude climate are significantly well
in autumn and have potential implications for the prediction of Arctic climate and the interpretation of the
climate response to future sea ice loss.

2. Data Sets and Methods

We use three data sources to assess the predictability of high-latitude climate that derives from midsummer
Arctic SIE anomalies.

1. Observations. Sea ice concentration data and the time series of Arctic-average SIE were obtained from the
National Snow and Ice Data Center (Comiso, 2017; Fetterer et al.,, 2017). Atmospheric variables are based
on output from the Interim European Reanalysis product (Dee et al., 2011). Observations are analyzed in
monthly-mean form over the period 1979-2016 with the exception of Figures S1 and S2 in the supporting
information, which are based on daily-mean data.

2. CMIP5 output. Results from observations are compared with analogous results calculated for simulated SIC
and surface air temperature output from the fifth phase of the Coupled Model Intercomparison Project
(CMIP5). The CMIP5 output is based on historical simulations (1900-2005) from 28 coupled models
(see Table ST in the supporting information). The CMIP5 output is analyzed in monthly-mean form over
the period 1900-2005.

3. APPOSITE output. The predictability inferred from the observational analyses is also explored in output
from the Arctic Predictability and Prediction on Seasonal to Interannual Time scales (APPOSITE) project
(Day et al., 2015). The APPOSITE model experiments are specifically designed to assess the predictability
of Arctic climate. Details of the experiments are provided in Day et al. (2015). In short, the experiments are
conducted as follows. Long (multiple centuries) control experiments are performed with a series of
coupled ocean-atmosphere-sea ice general circulation models (GCMs). The control simulations are then
used as a baseline for assessing predictability in a series of initial-value experiments run on the same
models (i.e., the model predictions are verified against the respective model controls, the so-called perfect
model approach). The prediction experiments have lengths between 8 and 12 years (the exact number
varies from model to model), and start years for ensemble predictions are chosen from the control
simulation. The predictability of various climate variables is then assessed using anomaly correlation
coefficients (for details refer to Tietsche et al., 2014), where values exceeding 0.6 are considered as
providing potential positive skill. Here four coupled atmosphere-ocean-sea ice GCMs were chosen for
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Figure 1. Monthly lead/lag correlation coefficients between Arctic (a) SIE
and SIE (i.e., the autocorrelation of SIE), (b) SIE and TArco, (€) SIE and
TArcsgonpas and (d) SIE and TMLy,. TArcsgonpa is area-averaged 500-hPa
temperature over the Arctic (65-90°N), and TML,, is defined as midlatitude
land-mean 2-m temperature averaged over 40—70°N. Numbers on the
ordinate axis denote the number of consecutive months that a significant
lead/lag correlation occurs for each base month; negative/positive values on
the abscissa denote the lead/lag months for the base month. Correlations
that are significant at the 95% confidence level are indicated by including the
white letter of the lead/lag month. The SIE base index is inverted (i.e., the
correlation coefficients correspond to temperature anomalies associated
with anomalously low Arctic SIE). All data are deseasonalized and detrended.
SIE = sea ice extent.

analysis based on the criteria that (1) output is provided for the

required variables for our analyses (notably, surface air temperature)

and (2) the experiments were integrated for at least 200 years. The

models chosen for analyses are the MPI-ESM, HadGEM1-2,

ECHAM6-FESOM, and GFDL-CM3 (see Tietsche et al.,, 2014 for details).
Lead/lag correlations and linear regressions are based on deseasonalized
and linearly detrended versions of the time series. Detrending ensures that
shared trends in the time series (e.g., due to the global warming of the past
few decades) do not influence the statistical results. Detrending using a
quadratic approximation gives similar results (not shown). The basis for
the regressions is a standardized, inverted index of SIE averaged over
the Arctic basin, referred to herein as the Arctic SIE time series. Note that
positive values of the inverted Arctic SIE time series indicate low SIE, and
vice versa. Statistical significance is estimated using a two-tailed test of
Student’s t distribution after accounting for the effects of persistence in
the time series on sample size.

3. Results

As noted in section 1, the persistence of Arctic sea ice has been explored in
numerous previous studies during various times of the year
(e.g., Blanchard-Wrigglesworth, Armour, et al., 2011; Deser et al.,, 2010;
Honda et al, 2009; Liu et al., 2012; Rigor & Wallace, 2004). Figure 1a
explores the autocorrelation of the Arctic SIE time series associated with
all possible base months. The results confirm numerous key aspects of
sea ice variability highlighted in previous studies (e.g., Blanchard-
Wrigglesworth, Armour, et al., 2011) and also provide several novel
findings. For instance, the results make clear that SIE anomalies exhibit
continuous significant memory at positive lags up to 9 months into the
future from midsummer, which is notably longer than the persistence
indicated in Blanchard-Wrigglesworth, Armour, et al. (2011). The results
also confirm that SIE anomalies exhibit reemergence at least 12 months
into the future during the growth season months of January and
February but reveal that such reemergence is much less clear in
association with March and April SIE anomalies.

The bottom three panels in Figure 1 show the corresponding lead/lag
correlation coefficients between inverted values of Arctic SIE and (b)
Arctic-mean 2-m temperature (TArcyny), (€) Arcticcmean 500-hPa air
temperature (TArcsoonpa) averaged over 65-90°N, and (d) midlatitude
land-mean 2-m temperature averaged over 40-70°N (TMLy.,). As
expected, periods of anomalously low SIE are preceded by anomalously
warm surface conditions during most times of year, consistent with forcing
of the sea ice field by the anomalous fluxes of sensible and latent heat
from the atmosphere to the ocean (Ding et al, 2017; Maykut, 1982;
Mortin et al, 2016). For example, negative Arctic SIE anomalies during
the months May to December are significantly (and continuously) linked
to warm conditions during the previous 2-4 months. Interestingly, SIE
anomalies in the cold season months of January and February are not
strongly linked to preceding atmospheric temperatures (Figure 1b), pre-
sumably since the Arctic is largely ice covered in January and February
regardless of the temperature anomalies in previous months. The inferred
forcing of Arctic SIE by atmospheric temperatures is less clear in results
based on Arctic-mean 500-hPa temperatures but is readily apparent in
midlatitude land-mean surface temperature, that is, anomalously warm
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Figure 2. (first column) Sea ice concentration (SIC; in %) averaged over the months regressed onto the inverted time series of July-mean Arctic SIE (i.e., regression
coefficients are shown in physical units per standard deviation of Arctic SIE reduction); the black contours indicate the isoline of 70% in the climatology SIC. (second
column) As in the first column but for the surface air temperature at 2 m (T, in K) regressed onto the inverted time series of July-mean Arctic SIE. Results are
calculated for the period 1979-2016. Dots indicate regions of regression coefficients that are significant at the 95% confidence level. (third and fourth columns) Same
as the first and second columns, respectively, but based on results averaged over coupled climate models from the historical CMIP5 simulations (the 28 simulations
are listed in Table S1 in the supporting information). SIE = sea ice extent; CMIP5 = fifth phase of the Coupled Model Intercomparison Project.
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Figure 3. Zonally averaged temperature (T; shading; in degree Celsius) and
zonal wind (u; contours; in m/s) averaged over the months indicated
regressed onto the inverted time series of July-mean Arctic SIE. Results are
calculated for the period 1979-2016. White dots indicate regions where the
temperature anomalies are statistically significant at the 95% confidence
level. SIE = sea ice extent.

conditions over midlatitudes of the Northern Hemisphere (NH) land
masses precede periods of anomalously low Arctic SIE (recall that the data
are detrended, so the results do not simply reflect shared trends in NH land
temperatures and Arctic SIE).

The most interesting result in Figures Tb-1d is that SIE anomalies not only
lag significant anomalies in atmospheric temperatures but also lead them
(i.e., see results at positive lag in Figures 1b and 1d). Summer SIE anomalies
exhibit robust and persistent correlations with Arctic surface temperatures
at positive lags of up to 2-4 months (Figure 1b). The persistence of the
positive correlations associated with summer SIE anomalies is longer than
that associated with September SIE, which is the basis for exploring
lead/lag relationships between summer SIE anomalies and Arctic climate
in numerous previous studies (e.g., Francis et al., 2009; Koyama et al.,
2017). Importantly, the correlations between July Arctic SIE and
September temperature anomalies exceed the autocorrelation of the
temperature field (see Figure S1). Hence, the lag correlations between
July SIE and September temperature anomalies derive in part from the
addition of information from the sea ice field.

Interestingly, the temperature anomalies linked to midsummer SIE are
largest at the surface (Figure 1b) and also extend to the middle
troposphere (Figure 1¢) and midlatitude land-mean surface temperatures
(Figure 1d). The negative correlations between the inverted Arctic SIE time
series in September and midlatitude land temperature in winter are
interesting and consistent with some previous findings (e.g., Honda
et al.,, 2009; Liu et al., 2012), but here we focus on the persistence of the
warming at shorter time lags.

The persistence of midsummer Arctic sea ice anomalies is explored further
in Figure 2, which shows the lead/lag regressions between inverted values
of July-mean Arctic SIE and (first column) monthly-mean values of SIC from
May to October. Note that the regression coefficients are in physical units
per standard deviation of the inverted Arctic SIE time series. During the
early-summer and midsummer months (May to July), years with
anomalously low Arctic-mean SIE are preceded by anomalously low SIC
anomalies over the Barents, Kara, and Laptev seas. The regions of
statistically significantly low SIC grow through summer and expand
dramatically into the Chukchi and Beaufort seas in August, September,
and October. Note that the enlarging of significant SIC anomalies
coincides with the retreat of the seasonal-mean sea ice cover (black
contour). That is, the sea ice anomalies exhibit most memory along the
edge of the ice pack where the ice is relatively thin.

The linkages between midsummer Arctic SIE anomalies and surface air
temperature (T, Figure 2, second column) peak during the preceding
spring and following fall months. As noted above, the anomalies during
spring indicate forcing of Arctic SIE by atmospheric temperatures, but
the widespread significant anomalies during autumn indicate a robust link
between midsummer SIE anomalies and Arctic surface temperatures
during the autumn season. Low SIE conditions during summer 2007 were
followed by similarly warm conditions over the Arctic (Orsolini et al., 2012).

The above observed results are readily reproduced in historical simulations
from the CMIP5 archive (Figure 2, third and fourth columns), which shows
the same variables as the first and second columns in Figure 2, but
averaged over the 28 coupled models listed in Table S1 in the
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Figure 4. The anomaly correlation coefficient for Arctic-mean (north of 65°N)
air temperature derived from four models from the APPOSITE project.
Shaded values indicate levels and months where coupled GCMs initialized
on 1 July exhibit significant predictive skill. The models are (a) MPI-ESM,

(b) HadGEM1-2, (c) ECHAM6-FESOM, and (d) GFDL-CM3. GCMs = general
circulation models; APPOSITE = Arctic Predictability and Prediction on
Seasonal to Interannual Time scales.

supporting information. The spatial patterns of the SIC and surface
temperature anomalies bear strong resemblence to the observations at
all lags: periods of low July Arctic-mean SIE are followed by significantly
low SIC stretching along the Siberian and Alaskan coasts of Arctic (third
column) and by significant surface warming throughout the Arctic that
has largest amplitude during the autumn months (Figure 2, fourth
column). Note that the regressions between July SIE and T, are
comparably significant during September and October but have larger
amplitude in October since the variance of the temperature field is
larger at that time.

Figure 3 shows meridional cross sections of monthly-mean, zonally
averaged atmospheric temperatures and zonal winds regressed onto
standardized and inverted values of the July Arctic-mean SIE time series
(i.e., the same index used to generate the first two columns in Figure 2).
Figure S2 shows a time/height plot of correlations between Arctic-mean
atmospheric temperatures and the same index but for daily-mean data.
As discussed above in the context of Figure 1b, the results at negative lag
(i.e, May-June) are consistent with forcing of the sea ice field by
atmospheric temperature and circulation (e.g., Blanchard-Wrigglesworth,
Armour, et al., 2011; Rigor & Wallace, 2004). Midsummers characterized
by low sea ice conditions are preceded by positive tropospheric
temperature anomalies across high latitudes from May to June
(Figures 3a and 3b and S2). In July and August, robust warm anomalies
extend from the surface into the free troposphere (Figures 3c and 3d
and S2). Note that the Arctic temperature anomalies associated with July
Arctic SIE are significant in October when they are confined to the surface
(Figures 3f and S2). Consistent with the thermal wind relation, the positive
temperature anomalies during August and September are associated with
easterly wind anomalies of ~0.4-0.8 m/s centered at ~70°N (Figures 3d and
3e, contours).

Previous studies have emphasized the predictability of NH climate that
derives from September SIE anomalies (e.g., Francis et al., 2009; Koyama
et al, 2017). An important distinction between our study and previous
work is that the inferred predictability from midsummer SIE is ~2-3 months
(Figures 1-3), whereas that associated with September SIE anomalies is
only ~1 month, that is, September SIE anomalies are only followed by
significant Arctic surface temperature anomalies at 1 month into the
future (Figures 1b and S3).

Together, the results in Figures 1-3 indicate that the linkages between
midsummer SIE anomalies and Arctic temperatures during autumn are a
robust feature of Arctic climate. The findings suggest that SIE anomalies
during midsummer provide predictive skill of high-latitude climate during
the following autumn months, and that the skill derives from the influence
of persistent sea ice anomalies on the overlying atmosphere. The results
are physically consistent with enhanced sensible and latent fluxes of heat
into the atmosphere associated with persistent anomalies in the sea ice
field. The results are also reproducible in the historical simulations in the
CMIP5 archive and in initial value experiments run under the auspices of
the APPOSITE project.

Figure 4 shows the predictability of Arctic-mean temperature derived from
four coupled atmosphere-ocean-sea ice GCMs initialized on 1 July from
the APPOSITE archive (see section 2 and Day et al., 2015 for details).
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As shown in the figure, Arctic-mean air temperature exhibits persistent potential predictability from
midsummer through autumn, and the potential predictability of Arctic middle/upper tropospheric air
temperature is higher in August and September than it is in October. Though the source of predictability
in APPOSITE cannot be uniquely attributed to sea ice anomalies, the predictive skill indicated by the
coupled GCMs from the APPOSITE project is consistent with our interpretation that midsummer condi-
tions over the Arctic lead to predictive skill over the Arctic basin well into the autumn months. In fact,
as indicated in Day et al. (2014) initializing predictions of extent and volume in July has strong advantages
for the prediction of the September minimum. Note that similar predictive skill is not found for results
initialized on 1 January (Figure S4).

4, Conclusions

Previous work has explored the potential impact of summertime Arctic SIE on the large-scale circulation but
has focused primarily on sea ice anomalies at the end of summer melt season (September; Francis et al., 2009;
Honda et al., 2009; Koyama et al., 2017; Serreze et al., 2016) or sea ice melt averaged over the entire summer
(Kay & Gettelman, 2009; Knudsen et al., 2015). Here we have demonstrated that midsummer Arctic SIE
anomalies exhibit pronounced potential predictability (at lags of 2-3 months) of the atmospheric circulation
and temperature at high latitudes. The skill inferred from midsummer conditions (Figure 3) is notably longer
than that inferred from late summer conditions (Figure S3).

The intrinsic time scale of large-scale atmospheric extratropical variability is only ~10 days (forcing from the
tropics, e.g., ENSO, can contribute to autocorrelation of the extratropical circulation but is not significantly
correlated with the Arctic-mean surface temperature time series used here). Hence, the linkages shown here
suggest a measure of predictability of Arctic climate at lead times of several months. Midsummers
characterized by low sea ice conditions are followed by positive temperature anomalies throughout the
Arctic that persist in September into the free atmosphere and into October at the surface (Figures 1-3 and
S2). The warming of the Arctic atmosphere during August to September is accompanied by robust changes
in the zonal wind encircling the Arctic basin (Figure 3). Importantly, the time/space evolution of the linkages
between midsummer Arctic SIE and Arctic surface temperature is reproducible in historical runs with coupled
climate models (Figure 2), and the inferred predictive skill is mirrored in coupled climate model experiments
initialized on 1 July from the APPOSITE project (Figure 4). That the linkages between SIE anomalies in
midsummer and surface temperatures during autumn extend to midlatitude land-mean temperature
(Figures 1d and S5) suggests that the anomalies in surface heat fluxes associated with Arctic SIE anomalies
are sufficiently large to noticeably project onto the midlatitude land-mean energy budget.

Arctic SIE shows the most dominant melt in summer due to larger energy uptake in this season (e.g., Knudsen
et al,, 2015; Mortin et al., 2016; Stroeve et al., 2014). In these months, the sea ice and ocean systems receive
large input of heat from above, and differences in absorption rates lead to anomalous oceanic heat storage
that can be returned to the atmosphere in autumn and winter and make an imprint on the climate system.
Hence, the seasonal relationships between midsummer SIE and autumn Arctic climate highlighted here likely
derive from (1) the anomalous storage of heat in the Arctic Ocean during periods of low midsummer SIE and
(2) the delay in the formation of sea ice during the following months, which should increase the anomalous
fluxes of heat into the Arctic atmosphere due to the increased areas of open ocean. The mechanisms and
implications of the linkages shown here for Arctic climate are currently under investigation in numerical
hindcast experiments in a companion study.
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