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Abstract. CMIP6 model sea surface temperature (SST) sea-
sonal extrema averaged over 1981-2010 are assessed against
the World Ocean Atlas (WOA18) observational climatol-
ogy. We propose a mask to identify and exclude regions
of large differences between three commonly used clima-
tologies (WOA18, WOCE-Argo Global Hydrographic cli-
matology (WAGHC) and the Hadley Centre Sea Ice and
Sea Surface Temperature data set (HadISST)). The biases
in SST seasonal extrema are largely consistent with the an-
nual mean SST biases. However, the amplitude and spatial
pattern of SST bias vary seasonally in the 20 CMIP6 mod-
els assessed. Large seasonal variations in the SST bias oc-
cur in eastern boundary upwelling regions, polar regions, the
North Pacific and the eastern equatorial Atlantic. These re-
sults demonstrate the importance of evaluating model per-
formance not simply against annual mean properties. Mod-
els with greater vertical resolution in their ocean component
typically demonstrate better representation of SST extrema,
particularly seasonal maximum SST. No significant relation-
ship of SST seasonal extrema with horizontal ocean model
resolution is found.

1 Introduction

Seasonal extrema of sea surface temperature (SST) are im-
portant for the global climate system. SST seasonal maxima
influence the formation and intensity of tropical cyclones
(Palmen, 1948; Dare and McBride, 2011; Holland, 1997,
Sun et al., 2017) and may be associated with marine heat-
waves, which can cause damage to marine ecosystems world-
wide, including biomass decrease, bleaching of coral reefs
and deaths of marine animals (Cheung and Frolicher, 2020;
Hughes et al., 2018; Jones et al., 2018). SST seasonal min-
ima are closely linked to the formation of sea ice and de-

termine the properties of intermediate and deep water. Heat
loss in winter allows surface water to subduct into the deep
ocean, important for thermohaline circulation. Therefore, fu-
ture projections of tropical cyclones, heatwaves, water mass
formation and sea ice extent require our models to have a
realistic representation of SST seasonal extrema.

Typically, however, evaluations of climate model histor-
ical runs focus on annual or long-term mean SST, reveal-
ing common biases across many models (Wang et al., 2014;
Flato et al., 2013). Assessments of model performance in
simulating SST seasonal cycles are less common and are
often only regional. For example, a marked seasonal vari-
ability of SST warm bias in the eastern tropical Atlantic has
been documented in Coupled Model Intercomparison Project
Phase 5 (CMIP5) and CMIP6 (CMIP Phase 6) models (Prod-
homme et al., 2019; Richter et al., 2014; Richter and Tok-
inaga, 2020). In these models, the eastern tropical Atlantic
warm bias is at a maximum in boreal summer (June—July—
August), which has been attributed to the largest wind biases
occurring during spring (Richter et al., 2012; Richter and
Tokinaga, 2020). Similarly, CMIP6 model SST cold biases
in the North Pacific subtropics vary seasonally (Zhu et al.,
2020). Song and Zhang (2020) suggested that the CMIP5
multi-model mean has seasonally dependent SST biases in
the northeastern Pacific Ocean, with a warm bias during sum-
mer and a cold bias during winter, which they argued was
caused by poorly simulated North American monsoon winds.
Wang et al. (2014) showed that the amplitude of CMIP5
multi-model mean SST biases varies seasonally and there-
fore an accurate annual mean SST does not guarantee accu-
rate seasonal extrema or seasonal cycle. Here we evaluate the
seasonal cycle globally in 20 state-of-the-art CMIP6 climate
models, to provide a foundation for model SST bias identifi-
cation and future reduction. By presenting maps of SST bias
in seasonal extrema for each model, we highlight the care
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needed in selecting these models for future climate projec-
tions in particular regions.

2 Data and methods

The historical runs of 20 models (Table 1) were averaged
over 1981-2010 to create monthly mean climatologies for
each model. The first ensemble member (rlilplfl) is used
where available; we choose r1ilp1{3 for HadGEM3-GC3-LL
and HadGEM3-GC3-MM and rlilp1f2 for UKESM1-0-LL.
The models include those incorporating biogeochemical cy-
cling (earth system models) as well as conventional climate
models. The ocean vertical coordinate is typically z level (or
the related z*), but some models use isopycnal, sigma or hy-
brid coordinates (Table 1). The total number of levels and
thickness of top grid cell are used as proxies for ocean verti-
cal resolution.

To examine the seasonal cycle of SST, most studies picked
specific months to represent summer and winter (e.g. Zhang
and Zhao, 2015; Liu et al., 2020). However, model seasonal
cycles may be out of phase with observations and observed
maxima and minima occur in different months in different
regions. Instead, here we take the maximum and minimum
SST of the monthly mean climatologies (Tmax and Tpin) at
each grid point, identifying which months they occur in, for
both model and observation. Tpax and Tpin, plus the an-
nual mean SST (Tiean) and the range of the seasonal cycle
(Teycle = Tinax — Tmin) from the model climatologies are com-
pared with the World Ocean Atlas 2018 (WOA18) observa-
tional climatology on a grid spacing of 0.25° x 0.25° (Lo-
carnini et al., 2018), which covers the period from 1981 to
2010. The model fields were interpolated to the same grid as
WOA18. Biases are defined as model values minus WOA18
values. For the multi-model mean, at each grid point we aver-
age Tmax, Tmin» Tmean and Teycle across the 20 CMIP6 models.
To quantify the performance of CMIP6 models, we calcu-
lated the area-weighted root mean square error of Tinax, Tmin,
Timean and Tcycle of the model against WOA18 (henceforth
RMSE) for global SST.

Since there is some uncertainty in observational climatolo-
gies because of sparse sampling, instrumental error, qual-
ity control or gridding techniques, we compared three re-
cent climatologies: WOA18, WOCE-Argo Global Hydro-
graphic Climatology (WAGHC) (Gouretski, 2018a) (cover-
ing the time period 1985-2016) and HadISST (Rayner et al.,
2003) (covering the time period 1981-2010). Any grid points
where the maximum difference in Tinax or Tmin between the
three climatologies is larger than 2 °C are considered uncer-
tain for that variable, and these grid points are excluded from
our assessment. Any grid points which did not have values
for all 12 months for at least two climatologies are also ex-
cluded. For Tinean and Tcycle, we exclude any points where
either Tinax or Thip is excluded. The excluded grid points are
mostly located in coastal areas, a few regions in the Arctic,
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and around the Antarctic Circumpolar Current (ACC), Ag-
ulhas Current and Benguela Current. In total, 4 %, 3 %, 4 %
and 4 % of the ocean’s surface area are excluded for Tiax,
Tins Tmean and Tcycle, Tespectively. Similarly, for the timing
of Tinax and Ty, any grid points which did not have values
for at least two climatologies or whose maximum difference
between climatologies in timing is larger than 2 months are
excluded. In our global maps, these points are masked, and in
calculations of global and regional metrics, these points are
excluded.

3 Results and discussion
3.1 Model representation of SST extrema

For the multi-model mean, Tiyax and Ty have larger global
RMSEs than Tpean (Fig. 1), as SST biases with opposite
signs in different seasons compensate each other when cal-
culating the annual mean. Similarly, the Tiyax and T, global
RMSE:s of the multi-model mean are smaller than the RM-
SEs of individual models (Figs. 1b and c, 2 and 3). There-
fore, a small bias in Tipeqn does not guarantee a realistic Tax
or Trin.

The magnitudes of biases in Tmax and Tnin vary from
model to model (Figs. 2, 3 and 7). The multi-model mean
has an RMSE of less than 1°C in both Tj,,x and Ti, (0.89
and 0.87 °C, respectively). Most models have Tpax and Tiin
RMSE:s between 1 and 2 °C. Only HadGEM3-GC31-LL and
GFDL-CM4 have a Tpy,x RMSE of less than 1°C (0.94
and 0.93 °C, respectively). GISS-E2-1-H has the largest Tip,x
RMSE of 1.89 °C, and MIROCS has the largest Tipj, RMSE
of 1.62°C (Figs. 2 and 3). To test the dependence of the bi-
ases found on the realisation of models, we compared the first
and second ensemble members (except for SAMO-UNICON
and GFDL-CM4 as they have only one ensemble member).
The differences between ensemble members are very small
compared with the model biases (Figs. S1-S4 in the Supple-
ment), and thus the model biases we report are robust.

In most of the models the global RMSE is larger in Tpax
than in T, (Fig. 7a). As the bias in Tpax and Ty is largely
consistent with Tean bias, the Tcycle RMSE is small com-
pared to Thmax and T, RMSEs in most models. Different
biases in Tmax, Tmin> Tcycle and Tmean suggest that models
have different performances in simulating SST seasonal vari-
ation and annual mean. The “best” and “worst” models de-
pend on whether you choose SST seasonal extrema or an
annual mean as your metric. For example, GFDL-CM4 and
HadGEM-GC31-MM have the smallest RMSE in Tp,x, and
thus they are best for simulating tropical cyclones and heat-
waves; SAMO-UNICON has the smallest RMSE in Ty, and
thus it is best for simulating the properties of intermediate
and deep waters.

The bias in the timing of Thax and T, is within 1 month
in most of the global ocean in most models (Figs. 4, 5 and 6).

https://doi.org/10.5194/0s-18-839-2022



Y. Wang et al.: Seasonal extrema of sea surface temperature in CMIP6 models 841

Table 1. The 20 CMIP6 models used in this study; the horizontal resolution of their ocean component; ocean vertical coordinate (z: traditional
height coordinate; z*: rescaled height coordinate for more accurate representation of free-surface variations; p: isopycnic coordinate; o'
terrain-following sigma coordinate; multiple symbols refer to a hybrid coordinate); total number of ocean vertical levels; thickness of the

ocean top grid cell; and references.

Model Horizontal ~ Vertical Total  Top grid References
resolution  coordinate levels thickness
ACCESS-CM2 100 km z* 50 10m Bi et al. (2020)
ACCESS-ESM1-5 100 km z* 50 10m Law et al. (2017)
AWI-CM-1-1-MR 25km z-0 46 S5m Semmler et al. (2020)
BCC-CSM2-MR 50km Z 40 10m Wu et al. (2019)
BCC-ESM1 50km Z 40 10m Wu et al. (2020)
CESM2 100 km z 60 10m Danabasoglu et al. (2020)
CanESM5 100 km z 45 6m Swart et al. (2019)
E3SM-1-0 50km z* 60 10m Golaz et al. (2019)
GFDL-CM4 25km 7*—p 75 2m Held et al. (2019)
GISS-E2-1-G 100 km Z 40 10m Kelley et al. (2020)
GISS-E2-1-H 100 km 7—p—0 32 10m Kelley et al. (2020)
HadGEM3-GC31-LL 100 km z* 75 1m Andrews et al. (2020)
HadGEM3-GC31-MM  25km z* 75 1m Andrews et al. (2020)
INM-CMS5-0 50km o 40 7.3 m* Volodin et al. (2017)
IPSL-CM6A-LR 100 km z* 75 2m Boucher et al. (2020)
MIROC6 100 km 7—0 62 2m Tatebe et al. (2019)
MPI-ESM1-2-HR 50km Z 40 12m Miiller et al. (2018)
NorESM2-MM 100 km Jo 53 25m Seland et al. (2020)
SAMO-UNICON 100 km Z 60 10m Park et al. (2019)
UKESM1-0-LL 100 km z* 75 1m Sellar et al. (2019)

* The global averaged thickness of top grid cell in INM-CM35-0 was calculated using the sigma coordinates and bottom topography

obtained from E. M. Volodin (personal communication, 2021).

In the multi-model mean, Tiax and Tin occur 1 month ear-
lier than in WOA 18 for most of the global ocean, whereas in
some parts of the Arabian Sea and equatorial regions, they
occur 1 month later (Fig. 4). The bias in the timing of Tiyax
and T, demonstrates that the seasonal cycles in CMIP6
models are out of phase with observations. In regions where
monsoon prevails (e.g. the northwestern Indian Ocean), the
timing bias suggests a bias in the onset of summer monsoon.
Models have different performance in simulating the tim-
ing of Thmax and the timing of Ty,. All the models except
ACCESS-ESM1-5 have a smaller global RMSE in the tim-
ing of Tiax than in the timing of T, (Fig. 7b). HadGEM3-
GC31-MM has the smallest global RMSE in the timing of
Tmax, Whereas HadGEM3-GC31-LL and HadGEM3-GC31-
MM have the smallest global RMSE in the timing of Trip.
Tmax and T biases vary with latitude (Figs. 1b,c, 2,
3 and 8a, b). High latitudes show larger biases than low
latitudes. Typically, the RMSE of Tp.x at 30-80° is 1-
2°C larger than at low latitudes (between 30° N and 30° S)
(Fig. 8a). For GISS-E2-1-H, GISS-E2-1-G, BCC-CSM2-
MR, BCC-ESM1 and IPSL-CM6A-LR, Tax RMSEs at 30—
80° N are about 3 °C larger than at low latitudes. A similar
pattern is seen for i, but the variation in biases with lat-
itude is much smaller than for Ty« (Figs. 1c and 8b). Flato
et al. (2013) found a similar result for some CMIP5 models,
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with larger zonal mean biases in Tipeyn between 30 and 70°
than at other latitudes. The larger biases, and greater differ-
ence between Trax and Tpin, at mid-high latitudes (greater
than 30° in both hemispheres) may be explained by the large
seasonal cycle of mixed-layer depth there. Shallower sum-
mer mixed layers have a smaller heat capacity; thus a small
error in heat fluxes or mixing processes can result in a large
bias for Tinax, though this will be modulated by any seasonal
biases in mixed-layer depth. The larger inter-model biases in
Thmax than in Ty can be explained by the shallower mixed
layer in summer, which can amplify SST biases due to biases
in surface heat flux. The difference between biases in Tpax
and Tin leads to biases in Tcycle (Fig. 1d). The RMSE of
Teycle at low latitudes is typically 1°C, whereas at mid-high
latitudes it is larger, particularly in the Northern Hemisphere
(Fig. 8c). The Teycle RMSE in IPSL-CM6A-LR and MIROC6
reaches 4 °C at high latitudes (Fig. 8c).

In polar regions, there are very small Ty, biases (Figs. 1c,
3 and 8b) except for MIROCG in the Antarctic. Winter
SSTs are close to freezing but cannot go below freezing be-
cause sea ice forms instead. If models have realistic freezing
points, Tiyin biases will be small. Some models have salinity-
dependent freezing points (Beaumet et al., 2019), in which
case a salinity bias could cause a bias in temperature. T

Ocean Sci., 18, 839-855, 2022
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Figure 1. Biases (model minus climatology) of multi-model mean
in (a) Tmean, (b) Tmax, (¢) Tmin and (d) Tcycle~ Black dots mark
grid points excluded from our analysis, as described in Sect. 2. The
numbers indicate the global RMSE (°C).

biases in the Arctic are larger than in the Antarctic (Figs. lc
and 9e, f), which suggests larger salinity biases in the Arctic.

In the subtropical North Pacific, the SST cold bias is typi-
cally 0.5-1 °C smaller in Tpnax than Tiin, which leads to too
large a Teycle (Figs. 1b—d, 2 and 3). Zhu et al. (2020) showed
a similar seasonal SST cold bias in the CMIP6 multi-model
mean but not in the CMIP5 multi-model mean. Underesti-
mated surface shortwave radiation and too strong westerly
winds in the CMIP6 multi-model mean (Lyu et al., 2020; Li
et al., 2020) are possible reasons for the year-round cold bias.
The shortwave radiation bias is likely related to the bias of
low-level cloud in the subtropics (Burls et al., 2017; Li and
Xie, 2012), and its associated cold bias is smaller in winter
when there is less solar radiation. The westerly winds cool
the surface through latent heat flux and southward ocean ad-
vection due to Ekman transport. The latent heat loss shows
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a maximum in summer (Yu, 2007), while the ocean heat ad-
vection shows a maximum in winter when meridional SST
gradients are greatest.

SST biases are seasonally dependent in the northeastern
Pacific Inter Tropical Convergence Zone (ITCZ) (Figs. 1b,c,
2 and 3). For the multi-model mean, there is a warm bias
in Tax Which exceeds 2 °C and a cold bias in T, of 0.5—
1.5°C. Similar seasonal biases exist in CMIPS5 models and
were linked to an easterly wind bias throughout the year there
(Song and Zhang, 2020). A coarse atmospheric model reso-
lution smooths out the elevation difference between moun-
tains and oceans, which allows easterly trade winds to cross
the mountains, leading to the easterly wind bias (Song and
Zhang, 2020). An easterly bias of annual mean wind was
found in the CMIP6 multi-model mean (Li et al., 2020;
Lyu et al., 2020). If the easterly bias exists throughout the
year, it can explain the seasonal SST bias we found. During
winter—spring, the northeastern Pacific ITCZ is dominated by
easterly winds, so overly strong easterly winds enhance sur-
face evaporation and lead to cold biases. In contrast, during
summer—autumn when westerly winds dominate, the simu-
lated wind is too weak, which causes the warm bias. The
northeastern Pacific is a region where tropical cyclones and
heatwaves occur (Gilford et al., 2017; Frolicher and Laufkot-
ter, 2018), so a warm bias of over 2 °C in Tyax may lead to
the overprediction of tropical cyclones and heatwaves.

The multi-model mean has a cold bias in Tyy,x and a warm
bias in Tyin over the northwest Pacific, leading to too small a
Teycle (bias of more than 2 °C) (Fig. 1b—d). The warm bias in
winter can be seen in many models, especially in ACCESS-
ESM1-5, BCC-ESM1, CanESM5 and INM-CMS5-0 (Fig. 3).
The winter warm bias east of Japan was also found in a
CMIP5 multi-model mean (Wang et al., 2018), but from our
results the warm bias extends further east (Fig. 1c).

The large cold biases at Northern Hemisphere high lat-
itudes in BCC-CSM2-MR, BCC-ESM1, GISS-E2-1-G and
GISS-E2-1-H are typically 2-5°C smaller in Ty, than in
Tmax (Figs. 2, 3 and 8a,b). These cold biases are likely to
be linked to cloud biases due to the cooling radiative effect
of low cloud (Myers et al., 2021). The negative cloud ra-
diative forcing is excessive in BCC-CSM2-MR (Wu et al.,
2019) and BCC-ESMI1 (cloud simulation likely to be similar
to BCC-CSM2-MR), while overestimated low-cloud cover in
GISS-E2-1-G and GISS-E2-1-H (Kelley et al., 2020) blocks
more of the incoming solar radiation. As solar radiation is
negligible at high latitudes in winter, the SST cold bias due
to cloud bias is much smaller in winter than in summer, con-
sistent with our results. Deep winter mixed-layer depths and
SSTs close to freezing likely also contribute to the smaller
cold biases in Ty than in Tiy,x at high latitudes.

In most models there is a warm Tynean bias in the Southern
Ocean, commonly attributed to excessive shortwave radia-
tion linked to cloud process representation deficiencies (Hy-
der et al., 2018). MIROCG6 has an underestimated mid-level
cloud cover (Tatebe et al., 2019); GISS-E2-1-G and GISS-
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Figure 2. (a) Timax in WOA18 and (b—u) Tmax model biases. Black dots mark grid points excluded from our analysis, as described in Sect. 2.
The numbers in (b-u) indicate the global RMSE of Tipax. Red lines in (a) are 30° N and 30° S. Note that the range of the bias colour bar is

twice as much as in Fig. 1.

E2-1-H have an underestimated shortwave cloud radiative
forcing (Kelley et al., 2020), and hence they have pronounced
warm biases in the Southern Ocean (Figs. 2, 3). The warm
bias is larger for Thmax than T, (Figs. 1b,c, 2, 3 and 8a,b)
because the lack of incoming solar radiation in winter means
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cloud biases have minimal effect on surface solar insolation.
Shallower mixed-layer depths in summer will also tend to en-
hance any bias in incoming solar insolation. The larger warm
bias in Tyax than T, results in a sea ice extent that is too
small in most CMIP6 models, especially in summer (Bead-
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Figure 3. As in Fig. 2 but for Tiyjy.

ling et al., 2020; Shu et al., 2020). As mode and intermediate
waters primarily form within the winter mixed layer of the
Antarctic Circumpolar Current (Talley, 1999), the Tyj, warm
bias can influence global ocean stratification.

MIROC6 stands out with the largest warm bias in the
Southern Ocean (Figs. 2m and 3m), with a Tr3x RMSE be-
tween 3 and 5°C and T, RMSE between 2 and 3 °C at
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50-80° S (Fig. 8a and b). The largest biases in MIROC6
occur in regions where there should be sea ice and where
the deep ocean is ventilated. Beadling et al. (2020) found
that MIROCG6 has the lowest Southern Ocean sea ice ex-
tent among CMIP6 models in both summer and winter, and
Tatebe et al. (2019) revealed annual warm biases exceeding
2 °C in the intermediate and deep layers of MIROCS.
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Figure 4. Biases in the timing of (a) Tyax and (b) Ty, in the multi-model mean. Black dots mark grid points excluded from our analysis, as

described in Sect. 2.

In eastern boundary upwelling regions (especially the
Benguela and Humboldt currents), most models have a sea-
sonal warm bias that is 1-5°C smaller in Tiax than Thin
(Figs. 1b,c, 2 and 3). Richter (2015) suggested that under-
estimation of stratocumulus cloud and insufficient upwelling
due to overly weak winds contribute to the warm bias in east-
ern boundary upwelling regions. The warm bias we found
therefore is likely associated with the underestimated surface
shortwave radiation and overly weak, upwelling-favourable
winds in CMIP6 models identified by Li et al. (2020). The
warm bias may lead to excessive precipitation in the At-
lantic Ocean off Angola and Namibia as shown by Rouault
et al. (2003). Letelier et al. (2009) showed that in the Hum-
boldt Current coastal region the cooling effect of upwelling
is strongest in austral summer, which is consistent with the
peak of upwelling-favourable wind in December and Jan-
uary. A poor simulation of the seasonal cloud and upwelling
processes will contribute to the seasonality of SST biases in
eastern boundary upwelling regions.

Most models have a seasonal warm SST bias in the east-
ern equatorial Atlantic (Figs. 1b,c, 2 and 3). The Tini, multi-
model mean bias can be more than 2°C larger than the

https://doi.org/10.5194/0s-18-839-2022

Tmax multi-model mean bias. Richter and Tokinaga (2020)
showed a similar seasonal warm bias in the CMIP6 multi-
model mean, which is about 1-2 °C larger during June—July—
August than March—April-May. Richter et al. (2012) argued
that the warm SST bias in the eastern equatorial Atlantic dur-
ing June-July—August is linked to overly deep thermoclines
caused by overly weak easterlies during March—April-May.
Therefore, the warm bias can be attributed to overly weak
easterlies in the CMIP6 multi-model mean (Li et al., 2020;
Lyu et al., 2020). GISS-E2-1-G and GISS-E2-1-H have the
largest seasonality of SST warm bias in the eastern equato-
rial Atlantic, with Ty, biases up to 5 °C. Richter and Tok-
inaga (2020) illustrated that warmer than observed SSTs in
the equatorial Atlantic lead to excessive precipitation. Roxy
(2014) quantified the SST—precipitation relationship: a 1 °C
SST increase corresponds to a 2mmd~! precipitation in-
crease. Therefore, the 5 °C Ty, warm bias in GISS-E2-1-G
and GISS-E2-1-H could cause a 10mmd~! increase in pre-
cipitation.

Although the amplitudes of biases are different in Tiax
and Thin, the global patterns and signs of Tmax and Ty bi-
ases are similar to each other in most models (Figs. 2 and 3).

Ocean Sci., 18, 839-855, 2022
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Figure 5. (a) Timing of Tynax in WOA18 and (b-u) biases in the timing of Tmax in models. Black dots mark grid points excluded from our

analysis, as described in Sect. 2.

Wang et al. (2014) indicated that the SST bias of the CMIP5
multi-model mean has a pattern independent of season but
did not analyse the seasonality in bias in individual mod-
els. Our results show two exceptions: E3SM-1-0 and IPSL-
CM6A-LR, which both have an overall warm bias in Tpax

Ocean Sci., 18, 839-855, 2022

but an overall cold bias in Tpin (Figs. 2h,t and 3h, t), which
tend to cancel out in the annual means. The T,,x RMSE
is 1.38 °C for E3SM-1-0 and 1.36 °C for IPSL-CM6A-LR,
and the Tyin RMSE is 1.39 °C for E3SM-1-0 and 1.21 °C for
IPSL-CM6A-LR, whereas the Tipean RMSE is only 1.17 °C
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(a) WOA18 (b) AWI-CM-1-1-MR (c) UKESM1-0—LL
=y T o R . e T - %

J FMAMUJJASOND
month of T},

Figure 6. As in Fig. 5 but for the timing of iy,

for E3SM-1-0 and 0.94 °C for IPSL-CM6A-LR. In E3SM-1-
0, the global annual average mixed-layer depth is generally
too shallow (Golaz et al., 2019), which can contribute to the
summer SST warm bias and winter SST cold bias, and a sim-
ilar process may be affecting IPSL-CM6A-LR. These results
illustrate the risks involved in assessing only annual means,

https://doi.org/10.5194/0s-18-839-2022
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month of T,,;, bias

as models may have greater biases than assumed, so tropical
cyclone formation, for example, may be overpredicted.

In midlatitudes the SST seasonal cycle is well represented
by an annual sinusoid, whereas in equatorial and polar re-
gions an annual sinusoid explains little of the total SST sea-
sonal variance (Trenberth, 1983; Yashayaev and Zveryaev,
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Figure 7. The global area-weighted RMSE of the biases in (a) Tmax, Tmin> Imean and Teycle and (b) the timing of Tax and Tyyjp-

2001). In regions with fairly sinusoidal SST annual cycles
such as the subtropics (sinusoidal signal explains 87 % of the
observed variances in the subtropical Northern Hemisphere
and 89 % of the observed variances in the subtropical South-
ern Hemisphere), models have realistic SST seasonal cycles
with well-simulated amplitude and phase of the annual cy-
cle (Fig. 9c and d). Phase biases are mainly within 1 month
(Figs. 4, 5 and 6). In subtropical regions, seasonal SST biases
are consistent with biases in Tyeqan. Differences between the
Tmax and Ty, biases are smaller than those in non-sinusoidal
regions (Fig. 9). In regions with non-sinusoidal SST seasonal
cycles such as the western equatorial Pacific, northwestern
Indian Ocean, the Arctic and the Antarctic (sinusoidal signal
explains 33 %, 23 %, 58 % and 46 % of the observed vari-
ances), models tend to have biases in amplitudes or phases
of their SST seasonal cycles (Figs. 4, 5, 6 and 9a-b, ef).

In the western equatorial Pacific, the SST seasonal cycle in
WOA18 is modest (less than 1 °C), whereas in some models
such as MPI-ESM1-2-HR, GISS-E2-1-G, GISS-E2-1-H and

Ocean Sci., 18, 839-855, 2022

especially INM-CMS5-0, the seasonal cycle is much larger
(Fig. 9a). In INM-CMS5-0, the T¢ycle is about 2 °C and there
is a cold SST bias throughout the year, reaching 3 °C dur-
ing September—October—November (Fig. 9a). Similar to our
analysis, Volodin et al. (2017) noted that INM-CM5-0 has a
cold bias of more than 4 °C in annual mean temperature in the
upper 700 m of the western equatorial Pacific. The cold bias
could limit the skills of models in simulations of the El Nifio—
Southern Oscillation (ENSO) and ENSO-induced telecon-
nections. For example, a cold bias in the western equatorial
Pacific results in a rising branch of the Walker circulation
that is too far west in many coupled climate models leading
to too weak an ocean—atmosphere coupling and unrealistic
ENSO dynamics (Bayr et al., 2018). The associated convec-
tive response along the Equator during ENSO events is too
far west leading to a westward shift in the sea level pressure
response in the North Pacific and precipitation response in
the subtropics (Bayr et al., 2019).
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Figure 8. Area-weighted RMSE in 10° bands for (a) Tmax, (b) Tmin and (¢) Teycle-

In the northwestern Indian Ocean where the monsoon sys-
tem prevails, SST has a semi-annual cycle, but most mod-
els are unable to reproduce this with the correct amplitude
and phase (Figs. 4, 5, 6 and 9b). Most CMIP6 models have
SST cold biases in this region throughout the year, while the
biases are generally larger during March—April-May than
other months and the multi-model mean fails to simulate
the primary maximum SST (Fig. 9b). Cold SST biases in
the northwestern Indian Ocean lead to a significant reduction
in the monsoon rainfall over the Indian subcontinent (Prod-
homme et al., 2014; Levine and Turner, 2012). Thus the cold
biases in the CMIP6 models are likely to lead to overly weak
monsoon precipitation. Consistent with our result, McKenna
et al. (2020) found a cold SST bias over the northwestern
Indian Ocean in the CMIP6 multi-model mean. Fathrio et al.
(2017) showed that the SST cold bias over the western Indian
Ocean in the CMIP5 multi-model mean has a seasonal cycle,
with the coldest SST bias occurring in April, whereas the
coldest SST bias in our CMIP6 multi-model mean occurs in
May. GISS-E2-1-G and GISS-E2-1-H fail to simulate a real-
istic second minimum SST in August (Fig. 9b), which would
lead to overly intense tropical cyclones. SST in the north-
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western Indian Ocean determines the onset of the summer
monsoon (Sijikumar and Rajeev, 2012; Jiang and Li, 2011).
The primary maximum SST is 2 months later in ACCESS-
ESM1-5 than in WOA18 (Fig. 9b), which suggests a delayed
summer monsoon onset in projections using that model.

3.2 Impact of model characteristics on SST seasonal
extrema

We have shown that biases in Tmax, Tmin and Teycle are dif-
ferent between models. We now use the diversity in the
20 CMIP6 models to explore the effects of different model
characteristics on the magnitude of these biases as quanti-
fied by global area-weighted RMSE for Tinax, Tmin, Tcycle
and Tean-

No significant correlation was found between the models’
seasonal biases and horizontal ocean resolution (Fig. S5 in
the Supplement). Chassignet et al. (2020) used four pairs
of matched low-resolution and high-resolution ocean simu-
lations from FSU-HYCOM, AWI-FESOM, NCAR-POP and
IAP-LICOM to isolate the effect of ocean horizontal resolu-
tion and compared their representation of global SST. They

Ocean Sci., 18, 839-855, 2022
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found that enhanced horizontal resolution does not deliver
unambiguous SST bias improvement in all regions for all
models, which is consistent with our finding. Nor did we find
any correlation of seasonal biases with atmospheric resolu-
tion (Figs. S6 and S7 in the Supplement), ocean grid type,
ocean vertical coordinate and inclusion (or not) of biogeo-
chemical processes (circles or squares in Figs. 10 and 11).

The only characteristic yielding a statistically signifi-
cant relationship was the ocean vertical resolution (Figs. 10
and 11). The importance of vertical resolution for reduc-
ing seasonal biases is not unexpected: SST is influenced
by ocean stratification and ocean vertical mixing processes,
whose representation depends upon the vertical resolution.
It has been found that high resolution in the upper ocean is
important for the representation of diurnal and intraseasonal
SST variability in ocean general circulation models (Misra
et al., 2008; Xavier et al., 2008; Ge et al., 2017). Ideally
we would have considered the number of vertical levels in
the upper ocean. However, the number of vertical levels in
the upper ocean (e.g. upper 200m) cannot be unambigu-
ously determined for models using an isopycnal or sigma
vertical coordinate (6 out of 20 in our study) as their level
depths vary with location and time (Bleck, 2002; Shchep-
etkin and McWilliams, 2005). Excluding the isopycnal and
sigma models, the remaining high vertical-resolution models
are mainly from the Met Office Hadley Centre family, and
hence any relationship between SST biases and vertical reso-
lution in the upper ocean might have been overly influenced
by that particular family. Hence we use the total number of
vertical levels and top grid cell thickness (Table 1) as proxies
for the vertical resolution. Our study emphasises the impor-
tance of vertical resolution for simulating seasonal extreme
SST and annual mean SST.

For the 20 models, there is a decrease in bias with increas-
ing total number of vertical levels (Fig. 10). We calculated
the inter-model correlation between global RMSE and the
total number of vertical levels following the method of Wang
et al. (2014). The relationship between SST biases and the
total number of vertical levels is significant for Tiax, Tmin
and Tmean (p values < 0.05), with the largest correlation of
—0.648 for Tax. The higher correlation between the global
Tmax RMSE and ocean vertical resolution is likely linked
to shallower mixed-layer depths in summer than in winter.
RMSE is also correlated with top grid thickness (but with a
smaller correlation than the total number of vertical levels):
models with a smaller top grid thickness tend to have smaller
biases (Fig. 11).

The impact of ocean vertical resolution on SST biases
varies with latitude and season. Ocean vertical resolution is
most important for Tin,x at low latitudes (Figs. S8 and S9
in the Supplement). SST biases decrease with the number of
vertical levels in the Benguela, Humboldt and California up-
welling regions (Figs. S10-S12 in the Supplement). Only the
Canary upwelling region, which has the smallest SST bias
among the main four eastern boundary upwelling regions,
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does not have a good inter-model correlation between SST
biases and ocean vertical resolution (Fig. S13 in the Supple-
ment).

4 Conclusions

Using the newly released CMIP6 models, this study provides
a global view of the biases in SST extrema, identifies regions
with large seasonal bias and suggests a future direction to re-
duce these biases. To study the seasonal cycle of SST, we fo-
cus on Tax and Tinin Whenever they occur, rather than partic-
ular months. Global area-weighted Tinax, Tmin and Tcycle RM-
SEs are typically 1-2 °C. Most models have Tin,x and Tiin
biases of the same sign at most locations, apart from IPSL-
CMO6A-LR and E3SM-1-0, which have an overall warm bias
in Tmax and an overall cold bias in Tpi,. When averaged
across the whole globe, the bias in Tiean 1S typically consis-
tent with Thax and Tpi, biases, but certain regions (eastern
boundary upwelling regions, polar regions, the eastern equa-
torial Atlantic, the North Pacific) show significant differences
between winter and summer biases. The seasonal variation
in the SST bias demonstrates the importance of evaluating
model performance on Tinax and T, not just Tiean. Sea-
sonal processes related to wind and cloud could be the main
reasons for seasonal SST biases but depend upon region. Fur-
ther investigations of wind and cloud biases in CMIP6 mod-
els for different seasons could be undertaken to better un-
derstand the causes of seasonal SST biases. In regions with
non-sinusoidal SST seasonal cycles, models tend to have bi-
ases in amplitudes and/or phases of their SST seasonal cy-
cles. If there is a substantial change in the climate, it should
be considered that the pattern of biases in Tiax and Tin may
change. For the models we examined, those with increased
vertical resolution in the ocean generally had a better rep-
resentation of SST extrema, particularly Ty,x. This is likely
related to the ability of the higher-resolution models to bet-
ter represent the surface mixed layer and particularly shallow
mixed layers in summer. For improving the accuracy of fu-
ture climate projections, we suggest that as much priority (or
possibly more) should be given to increasing vertical ocean
model resolution as is given to increasing horizontal resolu-
tion.

Code availability. All codes that support the finding of this study
are available from Yanxin Wang, upon reasonable request.

Data availability. The WOA18 climatology was obtained from
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18/

(Boyer et al., 2018) on 14 August 2019. The WAGHC climatology
was obtained from https://doi.org/10.1594/WDCC/WAGHC_V1.0
(Gouretski, 2018b) on 15 August 2019. HadISST was obtained
from http://www.metoffice.gov.uk/hadobs/hadisst/ (Rayner et al.,
2003) on 17 May 2019. CMIP6 data were obtained between 23
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Figure 11. As in Fig. 10 but against the thickness of top grid in ocean.

July 2020 and 31 July 2020 and can be freely downloaded from the
Earth System Grid Federation (e.g. https://esgf-index1.ceda.ac.uk/
CMIP, 2022).
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