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Abstract

Speech is an intrinsically multisensory signal and seeing the speaker's lips forms a cornerstone of
communication in acoustically impoverished environments. Still, it remains unclear how the brain exploits
visual speech for comprehension. Previous work debated whether lip signals are mainly processed along
the auditory pathways or whether the visual system directly implements speech-related processes. To
probe this, we systematically characterized dynamic representations of multiple acoustic and visual speech-
derived features in source localized MEG recordings that were obtained while participants listened to
speech or viewed silent speech. Using a mutual-information framework we provide a comprehensive
assessment of how well temporal and occipital cortices reflect the physically presented signals and unique
aspects of acoustic features that were physically absent but may be critical for comprehension. Our results
demonstrate that both cortices feature a functionally specific form of multisensory restoration: during lip
reading they reflect unheard acoustic features, independent of co-existing representations of the visible lip
movements. This restoration emphasizes the unheard pitch signature in occipital cortex and the speech
envelope in temporal cortex and is predictive of lip reading performance. These findings suggest that when
seeing the speaker's lips, the brain engages both visual and auditory pathways to support comprehension

by exploiting multisensory correspondences between lip movements and spectro-temporal acoustic cues.

Significance statement

Lip reading is central for speech comprehension in acoustically impoverished environments. Recent studies
show that the auditory and visual cortex can represent acoustic speech features from purely visual speech.
It is still unclear, however, what information is represented in these cortices and if this phenomenon is
related to lip reading comprehension. Using a comprehensive conditional mutual information analysis
applied to magnetoencephalographic data, we demonstrate that signatures of acoustic speech arise in both
cortices in parallel, even when discounting for the physically presented stimulus. In addition, the auditory

but not the visual cortex activity was related to successful lip reading across participants.

Keywords

Speech entrainment, lip reading, audio-visual, speech tracking, language, MEG



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

48

49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82

1. Introduction

Speech is an intrinsically multisensory stimulus that can be conveyed via acoustic and visual signals. It
remains debated how the brain exploits the information derived from visual speech (Besle et al., 2008;
Calvert et al., 1997; Calvert and Campbell, 2003; Grant and Seitz, 2000). One view is that the visual system
directly contributes to establishing speech representations (Bernstein et al., 2011; O’Sullivan et al., 2017;
Ozker et al., 2018), as oro-facial movements provide temporal information that can be predictive of
concurrent acoustic signals and allow mapping visual cues onto phonological representations (Campbell,
2008; Lazard and Giraud, 2017). The visual cortex tracks dynamic lip signals (Park et al., 2016) and, as
suggested recently, may also directly ‘restore’ the acoustic envelope of the visually presented speech
(Hauswald et al., 2018; Suess et al., 2022). Another view is that visual speech is mainly represented in
regions of the auditory pathways, possibly exploiting speech-specific processes of this system. Along this
line, a recent study suggested that the early auditory cortex may also be capable of reflecting the unheard
acoustic envelope of a spoken narrative (Bourguignon et al., 2020). Importantly, the evidence that visual
speech is reflected along both auditory and the visual pathways may not be mutually exclusive, as both may

contribute to a supramodal frame of reference for speech (Arnal et al., 2009; Rauschecker, 2012).

To probe the respective involvement of visual and auditory cortices in representing visual speech, many
previous studies presented syllables or isolated words as stimuli (Calvert et al., 1997; Calvert and Campbell,
2003; Pekkola et al., 2005). However, these results come short of how they translate to continuous or
natural speech. Furthermore, many studies did not probe a direct link to behavioral performance, leaving it
unclear whether potential cerebral representations derived from visual speech are behaviorally relevant
(Bourguignon et al., 2020; Ludman et al., 2000; Mégevand et al., 2020). The latter can be particularly
challenging given that pure lip reading performance for every-day speech is often low (Altieri et al., 2011;

Grant and Seitz, 2000).

The present study rests on the assumption that probing the roles of visual and auditory cortices in
representing visual speech requires data from a paradigm based on continuous speech with carefully
controlled levels of lip reading performance. In previous work we established such a paradigm and
collected MEG data from participants during a word recognition task based on syntactically similar
sentences that were presented either purely acoustically or purely visually. In the auditory condition
participants were presented with the acoustic signal embedded in background noise, while in the visual
condition they watched the muted speaker. The individual sentences were constructed from a closed-set of
linguistic items with a common syntactic structure, similar to matrix-sentences used in standardized
hearing assessment (Hagerman, 1982; Kollmeier et al., 2015). With this we achieved a comparable level of
word recognition performance during auditory- and visual-only conditions and verified that this dataset
allows linking neural representations of lexical information and speech dynamics to behavior (Keitel et al.,

2020, 2018).
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We leverage this paradigm to probe the roles of visual and auditory pathways in representing visual speech
and facilitating lip reading performance. This led us to formulate the two following questions: First,
whether representations of restored (e.g. unheard acoustic) features are independent of those physically
present (e.g. lip movements). Second, we asked whether these representations of restored features are
tied to word recognition performance. To be able to compare cerebral signatures of visual and acoustic
speech-derived features, we rooted this analysis on the following systematic assessment: we quantified
how well source-localized MEG signals track multiple acoustic and visual speech-derived features
independently of each other, both when these features are physically present (e.g. the lip contour when
watching the speaker) or absent (e.g. the pitch contour when watching the speaker). We focused this
analysis on two regions of interest centered on early auditory and visual cortices, which previous studies
have implied in supporting lip reading (Bourguignon et al., 2020; Hauswald et al., 2018; Park et al., 2016).
The analysis was based on a mutual information approach that has been used in previous work to probe
dynamic speech representations and which is well suited to address the statistical dependency between
multiple variables (Daube et al., 2019; Keitel et al., 2018). Our results show that both occipital and temporal
regions reflect unheard acoustic speech-derived features independently of the physically present lip
movements. This ‘restoration’ of acoustic information in the temporal, but not the occipital, cortex is

predictive of word recognition performance across participants.

2. Materials and Methods

The data analyzed in this study has been collected and analyzed in previous studies (Keitel et al., 2020,
2018). The analyses conducted here pose new questions and provide novel results beyond the previous

work.

2.1 Participants and data acquisition

Data was collected from 20 native British-English speaking participants (9 female, age 23.6 + 5.8 years mean
+ SD). Due to prominent environmental artefacts in the MEG recordings, data from two participants were
excluded from further analysis. Thus, the analyzed data was from 18 participants (7 female, age 24 + 6.0
years mean * SD). All participants were screened to exclude hearing impairment prior to data collection
using the quick hearing check questionnaire (Koike et al., 1994), had normal or corrected-to-normal vision
and were all right-handed (Oldfield, 1971). All participants provided written informed consent and received
monetary compensation of 10 £/h. The experiment was approved by the College of Science and
Engineering, University of Glasgow (approval number 300140078) and conducted in compliance with the

Declaration of Helsinki.

MEG data was collected using a 248-magnetometer whole-head MEG system (MAGNES 3600 WH, 4-D

Neuroimaging) with a sample rate of 1 kHz. Head positions were measured at the beginning and end of

4
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each run, using five coils placed on the participants’ heads. Coil positions were co-digitized with the
participant’s head-shape (FASTRAK®, Polhemus Inc., VT, USA). Participants were seated in an upright
position in front of a screen. Visual stimuli were displayed with a DLP projector at 25 frames per second, a
resolution of 1280 x 720 pixels, and covered a visual field of 25 x 19 degrees. Acoustic stimuli were
transmitted binaurally through plastic earpieces and 370-cm long plastic tubes connected to a sound

pressure transducer and were presented in stereo at a sampling rate of 22,050 Hz.

2.2 Stimulus material

The stimulus material comprised two structurally equivalent sets of 90 unique closed-set English sentences.
Specifically, along the idea of matrix-style sentences using in standardized hearing assessment (Hagerman,
1982; Kollmeier et al.,, 2015), each sentence was constructed with the same sequence of linguistic
elements, the order of which can be described with the following pattern [filler phrase, time phrase, name,
verb, numeral, adjective, noun]. One such sentence for example was ‘I forgot to mention (filler phrase), last
Thursday morning (time phrase) Mary (name) obtained (verb) four (numeral) beautiful (adjective) journals
(noun)’. For each element, a list of 18 different options was created and sentences were constructed so
that each single element was repeated ten times. Sentence elements were randomly combined within each
set of 90 sentences. This procedure yielded 180 structurally similar but distinct sentences. To measure
word recognition performance for each sentence, a target word was defined in each sentence: either the
adjective (first set of sentences) or the numeral (second set). Sentences lasted on average 5.4 + 0.4 s (mean
+ SD, ranging from 4.6 s to 6.5 s) and lasted a total of approximately 22 minutes. The speech material was
spoken by a male British actor, who was tasked to speak clearly and naturally and to move as little as
possible while speaking to assure that the lips center stayed at the same place in each video frame.
Audiovisual recordings were gathered with a high-performance camcorder (Sony PMW-EX1) and an

external microphone in a sound attenuating booth.

Participants were presented with audio-only (A-only), audiovisual or visual-only (V-only) speech material in
three conditions (Keitel et al., 2020). However, for the present analysis we only focus on the A-only and V-
only conditions, as in these one can best dissociate visual- and auditory-related speech representations
given that only one physical stimulus was present. Furthermore, during the AV condition word recognition
performance was near-ceiling (Keitel et al., 2020), making it difficult to link cerebral and behavioral data.
Because performance would have been at ceiling with clear speech in the A-only condition, the acoustic
speech was embedded in environmental noise. This noise for each trial was generated by randomly
selecting 50 individual sounds from a set of sounds recorded from natural, everyday sources or scenes (e.g.
car horns, talking people, traffic). These sounds were then added together to create a distracting noise
scene for the duration of each trial. For each participant the individual noise level was further adjusted, as

described previously (Keitel et al., 2020). This resulted in an average performance of approximately 70%
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correct for both A-only and V-only conditions and allowed us to dissociate between correct and incorrect

word recognition.

2.3 Experimental Design

Each participant was presented with each of the 180 sentences in three conditions (A-only, V-only and AV).
The order of the conditions was fixed for all participants as A-only, AV and then V-only. This order exposed
the participants to the stimuli twice before the lip reading task, which helped to increase performance and
render it comparable to the A-only task. Each condition was divided into 4 blocks of 45 sentences each,
with two blocks being ‘adjective’ and two ‘number’ blocks. For each participant, the order of sentences
within each block was randomized. The first sentence of each block was a ‘dummy’ trial that was
subsequently excluded from analysis. During each trial, participants either fixated a dot (in A condition) or a
small cross overlaid onto the mouth of the speaker’s face (in V condition). In the A condition, each sentence
was presented as the respective audio recording, i.e. the spoken sentence, together with the background
noise. In the V condition, only the video of the speaker’s face was presented clearly and no sound was
present. After each trial, four words were presented as response options (either four adjectives or four
written numbers) on the screen and participants had to indicate using a button press which word they had

perceived. Inter-trial intervals were set to last about two seconds.

2.4 Preprocessing of stimulus material

From the stimulus material we extracted the following auditory and visual features. Based on previous
literature that demonstrated robust encoding of the amplitude envelope, it’s temporal derivative and the
fundamental frequency of speech, we derived these features from the acoustic speech recordings (Brohl
and Kayser, 2021; Oganian and Chang, 2019; Teoh et al., 2019). To derive the broadband envelope we
filtered the acoustic waveform into twelve logarithmically spaced bands between 0.1 and 10 kHz (zero-
phase 3rd order Butterworth filter with boundaries: 0.1, 0.22, 0.4, 0.68, 1.1, 1.7, 2.7, 4.2, 6.5, 10 kHz) and
subsequently took the absolute value of the Hilbert transform for each band. The broadband amplitude
envelope (hereon termed aud env) was then derived by taking the average across all twelve band-limited
envelopes and was subsequently down-sampled to 50 Hz. We computed the slope of this broadband
envelope (hereon termed aud slope) by taking its first derivative. To characterize the pitch contour we
extracted the fundamental frequency (hereon termed aud pitch) over time using the Praat software (‘to
Pitch' method with predefined parameters) (Boersma and van Heuven, 2001). This was done using the
original acoustic waveform at a sampling rate of 22,050 Hz. The resulting pitch contour was again down

sampled to 50 Hz. All three acoustic features together are labelled AudFeat in the following.

In a similar fashion we derived the horizontal opening of the lips, the area covered by the lip opening, and
its derivative from the video recordings. The lips were detected based on the color of the lips in the video

material using a custom-made algorithm. From these we determined the contour of the lip opening based
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on luminance values and deriving connected components from these (Giordano et al., 2017). The results
were visually inspected to ensure accurate tracking of the lips. From this segmentation of the lip opening
we derived the total opening (in pixels) (hereon termed lip area) and estimates of the respective diameters
along the horizontal axes (hereon termed lip width): these were defined between the outermost points
along the horizontal axis. These signals were initially sampled at the video rate of 25 fps. As for the auditory
features, we computed the slope of the lip area (hereon termed lip slope). The time series of these visual
features were then linearly interpolated to a sample rate of 50 Hz. Because the horizontal and vertical
mouth openings are partially correlated with each other and with the total mouth opening, we selected the
total area and the horizontal width as signals of interest, as the latter is specifically informative about the
acoustic formant structure (Plass et al., 2020). We grouped the total lip area, it’s temporal derivative and
the lip-width as signatures of lip features (LipFeat), which are of the same dimensionality as the acoustic

features (AudFeat) described above.

For comparison with previous studies (Chandrasekaran et al., 2009; Giordano et al., 2017; Hauswald et al.,
2018; Park et al., 2016) we quantified the power spectra of these features and their cross-coherences using
MATLAB's ‘pwelch’ and ‘mscoher’ functions using a window length of 1 s with 50% overlap and otherwise
predefined parameters. The resulting spectra were log transformed and averaged across sentences. To
visualize the cross-coherences we first obtained key frequency ranges of interest from our main results (c.f.

Fig. 3) and averaged the coherences within two ranges of interest (0.5-1 Hz and 1 - 3 Hz).

2.5 MEG preprocessing

Preprocessing of MEG data was carried out using custom MATLAB scripts and the FieldTrip toolbox
(Oostenveld et al.,, 2011). Each experimental block was processed separately. Individual trials were
extracted from continuous data starting 2 s before sound onset and until 10 s after sound onset. The MEG
data were denoised using a reference signal. Known faulty channels (N = 7) were removed. Trials with
SQUID jumps (3.5% of trials) were detected and removed using FieldTrip procedures with a cut-off z-value
of 30. Data were band-pass filtered between 0.2 and 150 Hz using a zero-phase 4th order Butterworth filter
and subsequently down sampled to 300 Hz before further artefact rejection. Data were visually inspected
to find noisy channels (4.37 + 3.38 on average across blocks and participants) and trials (0.66 + 1.03 on
average across blocks and participants). Noise cleaning was performed using independent component
analysis with 30 principal components (2.5 components removed on average). Data were further down
sampled to 50 Hz and bandpass filtered between 0.8 and 30 Hz using a zero-phase 3rd order Butterworth

filter for subsequent analysis.

2.6 MEG source reconstruction

Source reconstruction was performed using Fieldtrip, SPM8, and the Freesurfer toolbox based on T1-

weighted structural magnetic resonance images (MRIs) for each participant. These were co-registered to
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the MEG coordinate system using a semi-automatic procedure (Gross et al., 2013; Keitel et al., 2017). MRIs
were then segmented and linearly normalized to a template brain (MNI space). We projected sensor-level
time series into source space using a frequency-specific linear constraint minimum variance (LCMV)
beamformer (Van Veen et al., 1997) with a regularization parameter of 7% and optimal dipole orientation
(singular value decomposition method). The grid points had a spacing of 6 mm, thus resulting in 12,337
points. For whole-brain analyses, a subset of grid points corresponding to cortical gray matter regions only
was selected (using the AAL atlas, Tzourio-Mazoyer et al., 2002), yielding 6,490 points in total. Within these
we defined temporal and occipital regions of interest (ROIl) based on the brainnetome atlas (Yu et al.,
2011). The individual ROIs were chosen based on previous studies that demonstrate the encoding of
acoustic and visual speech features in occipital and superior temporal regions (Di Liberto et al., 2018;
Giordano et al., 2017; Keitel et al., 2020; Teng et al., 2018). As temporal ROl we included Brodmann area
41/42, caudal area 22 (A22c), rostral area 22 (A22r) and TE1.0 and TE1.2. As occipital ROl we defined the
middle occipital gyrus (mOccG), occipital polar gyrus (OPC), inferior occipital gyrus (iOccG) and the medial

superior occipital gyrus (msOccG).

2.7 MEG analysis

The questions outlined in the introduction require quantifying how well the source reconstructed MEG data
reflect the visual and or acoustic features. For this we relied on a previously established and validated
mutual information (MI) framework (Ince et al., 2017). The analysis relies on the notion that a significant
temporal relation between a cerebral signal and sensory features is indicating the cerebral encoding (or
tracking) of the respective features in temporally entrained brain activity (Brohl and Kayser, 2021; Keitel et
al., 2018; Park et al., 2016). In the following we use the term ‘tracking’ when referring to such putative
cerebral representations characterized using Ml (Obleser and Kayser, 2019). To quantify the tracking of a
given stimulus feature, or of a feature group, we concatenated the trial-wise MEG data and features along
the time dimension and filtered these (using 3rd order Butterworth IIR filters) into typical frequency bands
used to study dynamic speech encoding: 0.5-1Hz, 1-3 Hz,2-4Hz,3-6Hzand 4 - 8 Hz (and 0.5 - 8 Hz).
These were chosen to cover the typical modulation spectra of these features (Fig. 1C,D) and similar to
previous work (Brohl and Kayser, 2021; Etard and Reichenbach, 2019; van Bree et al., 2020; Zuk et al.,
2021). The first 500 ms of each sentence were discarded to remove the influence of the transient sound-
onset response. To compute the Ml between filtered MEG and stimulus features, we relied on a complex-
valued representation of each signal, which allowed us to include both the amplitude and phase
information in the analysis: we first derived the analytic signal of both the MEG and stimulus feature(s)
using the Hilbert transform and then calculated the Ml using the Gaussian copula approach including the

real and imaginary part of the Hilbert signals (Daube et al., 2019; Ince et al., 2017).

In a first step, we used this framework to visualize the tracking of AudFeat and LipFeat within the entire

source space (Fig. 2A,B). This was mainly done to assert that the predefined ROIs used for the subsequent
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analysis indeed covered the relevant tracking of these features. This analysis relied on a frequency range
from 0.5 to 8 Hz and a range of stimulus-to-brain lags from 60 to 140 ms after stimulus onset. As a second
step, we then quantified the tracking of auditory or visual features and their dependencies specifically
within these ROIs and individual frequency bands (Fig. 3,4,5). To facilitate these analyses, we first
determined the optimal lags for each feature, ROl and frequency band, given that the encoding latencies
may differ between features and regions (Giordano et al., 2017). For this we determined at the group-level
and for each set of features (i.e. AudFeat and LipFeat) and for each ROl and frequency band the respective
lag yielding the largest group-level Ml value (across participants and both A-only and V-only trials). This was
done by computing the MI between each set of features and the MEG in a range of lags between 0 and 500
ms in 20 ms steps. For the subsequent analyses, we used these optimal lags and computed averaged Ml

values in a time window of -60 to 60 ms around these lags (computed in 20 ms steps).

The first question of this study as outlined in the introduction concerns the tracking (Ml) of individual
feature groups in temporal and occipital ROIs and the two experimental conditions, respectively, and more
so if a given ROI reflects a given feature (e.g. the unheard acoustic envelope) independently of the
physically present other feature (e.g. the visible lip movements in the visual-only condition). To quantify
whether the tracking of each feature group (in a given ROl and frequency band) is statistically redundant
with (or possibly complementary to) the other group, we calculated the conditional mutual information
(CMI) between MEG and one feature group, partialling out the respective other group (Fig. 3, CMI values)
(Giordano et al., 2017; Ince et al., 2017). Specifically, the CMI measure allows us to quantify the unique
information shared between a variable and the MEG while controlling for the information provided by the

conditional variable. Mathematically, it can be described as

IX;Y[2) = H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z)
where | denotes the conditional mutual information and H the joint entropies between combinations of
variables X, Y and the conditional variable Z. Similarly, we also determined the CMI between the MEG and
each individual feature, obtained by partialling out all other visual and auditory features (Fig. 4). To be able
to compare the Ml and CMI estimates directly, we ensured that both estimates had comparable statistical
biases. To achieve this, we effectively derived the Ml as a conditional estimate, in which we partialled out a
statistically-unrelated variable. That is, we defined
Mil(feature ; MEG) Bl Ml(feature ; MEG| time_shifted_feature)

Here, time_shifted_feature is a representation of the respective feature(s) with a random time lag and
hence no expected causal relation to the MEG. Each MI estimate was obtained by averaging this estimate
over 2,000 repetitions of a randomly generated time-shifted feature vector. To render the (conditional) Ml
estimates meaningful relative to the expectation of zero Ml between MEG and stimulus features, we
furthermore subtracted an estimate of the null-baseline of no systematic relation between signals. This was
obtained by computing (conditional) MI values after randomly time-shifting the stimulus feature(s) and

averaging the resulting surrogate Ml estimates over 100 randomizations.
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2.8 Relating Ml to word recognition performance

The behavioral performance for each participant and condition was obtained as the percent correctly (PC)
reported target words (obtained in a 4-choice task). To probe the second question of whether the tracking
of restored features relates to word recognition performance we relied on partial regression. Specifically,
we probed the linear relation of word recognition performance and feature tracking across participants
while accounting for potential spurious correlations between these due to variations in the individual
signal-to-noise ratio in each participants’ MEG data. We predicted the PC in the visual-only trials based on i)
the individual Ml for aud env in the temporal ROI and the Ml for aud pitch in the and occipital ROI as the
primary variables of interest, and ii) the tracking of LipFeat (Ml) in the occipital ROl in visual trials and iii)
the tracking of AudFeat in the temporal ROl in auditory trials. The last two serve as potentially confounding
variables, as they provide a proxy to the overall SNR of the speech and lip tracking in the respective dataset.
By focusing on aud env / aud pitch in the temporal/occipital ROIs respectively, we predicted task
performance based on the individual features that were most associated with the tracking of AudFeat (c.f.
Fig. 4C,D). To establish these regression models, we z-scored the Ml values of interest (variables i - iii) and
the PC across participants. For the confounding variables, we applied the z-scoring for each frequency band
and subsequently averaged the z-scored values across bands. For each frequency band, we created a single
model containing all target and confounding variables. From the respective models we obtained the
significance of each predictor of interest. Furthermore, we compared the predictive power of this full
model with that of a reduced model not featuring the predictors of interest (variable i). From the
likelihoods of each model we derived the relative Bayes factor (BF) between these based on the respective
BIC values obtained from each model. For visualization we used partial residual plots using the procedure
described by Velleman and Welsch (Velleman and Welsch, 1981). This procedure was applied to each

individual feature of interest (i.e. aud env and aud pitch).

2.9 Statistical analysis

Statistical testing of mutual information data was based on a non-parametric randomization approach
incorporating corrections for multiple comparisons (Nichols and Holmes, 2003). To test whether the group-
level median MI (or CMI) values were significantly higher than expected based on the null hypothesis of no
systematic temporal relation between sensory features and MEG, we proceeded in a similar fashion as in
previous work (Bréhl and Kayser, 2021; Giordano et al.,, 2017): we obtained a distribution of 2,000 MI
values between randomly time-shifted MEG and the stimulus vectors, while keeping the temporal relation
of individual features to each other constant. This distribution was obtained for each participant, frequency
band, feature group (AudFeat and LipFeat), ROl (temporal, occipital) and condition (A-only, V-only)
separately. To correct for multiple comparisons, we generated a single random distribution by pooling the
randomly generated MI values across all dimensions except frequency bands, given that the MI values

decreased considerably across bands (c.f. Fig. 3), and selecting the maximum 2000 values, thereby creating
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a random maximum null distribution (Nichols and Holmes, 2003). We then tested the group-level median
against the 99th percentile of this maximum distribution as a significance threshold, which effectively
implements a one-sided randomization test at p < 0.01 corrected for all dimensions except frequency
bands. To test for differences between Ml and CMI values for a given condition, band and ROI, we also used
a permutation approach combined with a Wilcoxon signed-rank test: first, we established the respective
true Wilcoxon z-statistic between MI and CMI values; then we created a distribution of surrogate z-
statistics under the null hypothesis of no systematic group-level effect, obtained by randomly permuting
the labels of MI and CMI values 5,000 times. From this we obtained the maximum across features, bands,
ROIs and conditions to correct for multiple comparisons and used the 99th percentile of this randomization

distribution to determine the significance of individual tests.

The CMI values for individual features in Figure 4 were compared using a one-way repeated measure
Kruskal-Wallis rank test, followed by a post-hoc Tukey Kramer multiple comparison. We used the same
procedure to test for differences between CMI values in the sub-areas composing each ROI (Table 1). To
test CMI values between hemispheres, we used a Wilcoxon signed rank test (Table 2). The resulting p-
values were corrected for false discovery rate using the Benjamini-Hochberg procedure within each set of
comparisons (Benjamini and Hochberg, 1995). In all tests an alpha level of a < 0.01 was deemed significant.
For all statistical tests we provide exact p-values, except for randomization tests where the approximate p-

values were smaller than the inverse of the number of randomizations.
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Fig. 1. Stimulus material and experimental methodology. Acoustic and visual features were extracted from
audiovisual speech material and were used to quantify their cerebral tracking during audio-only and visual-only
presentations. (A) The stimulus material consisted of 180 audiovisual recordings of a trained actor speaking individual
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English sentences. For visualization here only the mouth is shown, but participants were presented with the entire face.
From the video recordings we extracted three features describing the dynamics of the lip aperture: the area of lip
opening (lip area), its slope (lip slope), and the width of lip opening (lip width); collectively termed ‘LipFeat’. From the
audio waveform we extracted three acoustic features: the broadband envelope (aud env), its slope (aud slope), and a
measure of dominant pitch (aud pitch); collectively termed ‘AudFeat’. (B) Trial-averaged percent correctly (PC) reported
target words in auditory (A-only) and visual-only (V-only) conditions, with dots representing individual participants. (C)
Logarithmic power spectra for individual stimulus features. For reference, a 1/f spectrum is shown as a dashed grey
line. (D) Coherence between pairs of features averaged within two predefined frequency bands (0.5 - 1 Hz left; 1 - 3 Hz
right, see Methods for details).

3. Results

3.1 Acoustic and visual features are tracked in temporal and occipital cortices

Participants were presented with either spoken speech (in A-only trials) or a silent video of the speaking
face (in V-only trials) and were asked to report a target word for each sentence in a 4-choice word
recognition task. The behavioral data show that participants were well able to detect the correct word both
during acoustic speech embedded in noise and during lip reading and achieved overall similar levels of
performance in both conditions (Fig. 1B, median fraction correct responses for A-only = 0.7, V-only = 0.71; n
= 18). To quantify the tracking of relevant features, we defined three auditory (AudFeat) and three visual
(LipFeat) features respectively based on the acoustic waveform and the lip trajectory (Fig. 1A). An analysis
of their temporal coherences revealed that they were coherent in the frequency bands of interest (e.g. 1 - 3
Hz, envelope-lip area coherence of ~0.2) (Fig. 1D). The overall pattern of coherence and the degree of
temporal relation between acoustic features and lip movements in the present material is comparable with
those in other datasets (Chandrasekaran et al., 2009; Giordano et al., 2017; Hauswald et al., 2018; Park et
al., 2016).

Previous work has shown that in the dataset analyzed here temporal and occipital brain regions reflect
auditory and visual speech signals respectively (Keitel et al., 2020). We extend this observation to the entire
group of acoustic (AudFeat; Fig. 2A) or lip features (LipFeat; Fig. 2B) using a mutual information (Ml)
approach. The whole-brain maps show the expected prevalence of acoustic (visual) tracking in temporal
(occipital) regions. Given that our main questions concerned the tracking of features specifically in occipital
and temporal brain regions, we focused the subsequent work on atlas-based regions of interest (Fig. 2C;

the temporal ROI shaded in mint and the occipital ROl shaded in purple, see methods for details).
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Fig. 2. Tracking of auditory and visual features in MEG source space. The figure shows group-level median Ml values
for auditory (AudFeat; panel A) and lip features (LipFeat; panel B) in the frequency range from 0.5 - 8 Hz (n = 18
participants). (C) Colored shading indicates regions of interest: temporal region in mint includes Brodmann area 41/42,
caudal area 22 (A22c), rostral area 22 (A22r) and TE1.0 and TE1.2; occipital region in purple includes middle occipital
gyrus (mOccG), occipital polar gyrus (OPC), inferior occipital gyrus (iOccG) and medial superior occipital gyrus

(msOccG).

3.2 Temporal and occipital cortex represent acoustic speech features during silent lip reading

To address the question of whether temporal and occipital cortices represent auditory and visual speech
features during lip reading, we performed a comprehensive analysis of the tracking of both sets of features
across a range of frequency bands during auditory (A-only) and visual (V-only) conditions (Ml values; Figure
3). To further quantify whether the tracking of each feature group is possibly redundant with the tracking
of the respective other feature group, we derived CMI values for each feature group, obtained by partialling
out the respective other group (CMI values). By comparing Ml and CMI values we can test, for example,
whether the temporal ROI tracks the unheard speech envelope during silent lip reading also when
discounting for the actually presented lip trajectory. In the following we discuss the results per sensory

modality and region of interest.

As expected, when listening to speech (A-only), the temporal ROI significantly tracks auditory features
(AudFeat) in all frequency bands tested (Fig. 3, top row, red Ml data; non-parametric randomization test, all
bands: p < 5 x 10”). This tracking persists when discounting potential contributions of the not-seen visual
features (red CMI data all individually significant: p < 5 x 10®), though in some bands the CMI values were

significantly lower than the unconditional MI (Wilcoxon signed rank test comparing Ml vs. CMI, 2 -4 Hz: z =
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3.59,3- 6 Hz: z = 3.68, 4 - 8 Hz: z = 3.42, all comparisons: p < 2 x 10”). During the same auditory trials, lip
features are only marginally reflected in the temporal ROI, as shown by low but significant Ml and CMI
values above 1Hz (Fig. 3, top row, cyan Ml and CMI data; all bands above 1 Hz: p < 5 x 10°). This tracking of
visual features was significantly reduced when partialling out the physically presented auditory features (2 -

4 Hz:2=3.59,3-6Hz:z=3.68,4-8Hz: z=3.42, all comparisons: p < 2 x 10°).

During lip reading (V-only), the temporal ROI tracks the unheard auditory features, particularly below 1 Hz
(Fig. 3, 2nd row, red Ml data; all bands: p < 5 x 10°). Except in the 2 - 4 Hz range, the temporal ROI tracks
the unheard AudFeat to a similar degree as when discounting the actually presented visual signal
(significant red CMI values, all bands: p < 5 x 10°) as there were no significant differences between Ml and
CMI values except one band (2 - 4 Hz: z = 3.42, p < 1 x 10, see asterisks). The physically presented lip
movements during these V-only trials were also tracked significantly in the temporal ROI (Fig. 3, 2nd row;
cyan Ml and CMI data, 1 - 6 Hz: p < 5 x 10®) but the CMI values were only marginally above chance level,

suggesting that genuine visual representations in the temporal region is weak.

As expected, during lip reading (V-only) the occipital ROI tracks lip features (LipFeat) across frequency
bands (Fig. 3, bottom row, cyan MI values; all bands: p < 5 x 10°). Again, this tracking persists after
partialling out the non-presented acoustic features (cyan CMI values; all bands: p < 5 x 107), although the
CMI values were significantly lower than the Ml (all bands above 1 Hz: z > 3.72, p < 2 x 10®). This indicates
some redundancy between the tracking of the physically present lip trajectory and that of the unheard
auditory features. Confirming this, occipital tracking of the physically presented lip signals emerges in
parallel with that of the non-presented auditory features (Fig. 3, bottom panel, red Ml data; all bands: p< 5
x 107®). This occipital tracking of unheard auditory features was significantly reduced when partialling out
the lip signal (Ml vs. CMI data; all bands above 1 Hz: z 2 3.72, p < 2 x 10®) but remained statistically
significant (red CMI data; all bands: p < 5 x 10°).

Finally, when listening to speech (A-only), the occipital ROI shows significant but weak tracking of auditory
(Fig. 3, 3rd row, red Ml data; 1 - 6 Hz: p < 5 x 10”) and visual features (cyan Ml data; only 3 - 6 Hz: p < 5 x

107), suggesting that purely acoustic signals have a weak influence on the occipital brain region.

Collectively, these results show the expected representations of auditory features in temporal cortex during
listening to speech and of lip features in occipital cortex during lip reading. In addition, they reveal that
during lip reading, both temporal and occipital regions represent unheard auditory features and do so
independently of co-existing representations of the physically presented lip movements. In the auditory
cortex this ‘restoration’ of auditory signals prevails in the low delta band (0.5 - 1 Hz), in the visual cortex

this emerges in multiple bands.
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Fig. 3. Feature tracking across regions of interest and conditions. For both conditions (A-only and V-only) and ROIs
(temporal and occipital) the figure illustrates the strength of feature tracking for presented and physically not-present
features (Ml values) and the respective strength of tracking after partialling out the respective other feature group
(CMl values). Each panel depicts (from left to right) the Ml for AudFeat, the CMI for AudFeat partialling out LipFeat, the
Ml for LipFeat, and the CMI for LipFeat partialling out AudFeat. Dots represent individual participants (n = 18). Bars
indicate the median, 25th and 75th percentile. The grey dashed line indicates the 99th percentile of the frequency-
specific randomized maximum distribution correcting for all other dimensions. Conditions below a group-level
significance threshold of 0.01 are greyed out. Brackets with asterisks indicate significant differences between Ml and
CM values, based on a Wilcoxon signed-rank test (* p < 0.01, ** p < 0.005, *** p < 0.001). Units for Ml and CMI are in
bits.

To obtain an estimate of the effect size of the restoration of the unheard AudFeat during lip reading we
expressed the respective CMI values relative to those of the tracking of the respectively modality-preferred
inputs of each ROI (Fig. 4A,B): for the temporal region the tracking of AudFeat during A-only trials and for
the occipital region the tracking of LipFeat during V-only trials. In the temporal ROI, the restoration effect
size, i.e. the tracking of AudFeat during lip reading, was about a third as strong as this feature’s tracking

while directly listening to speech (Fig. 4A; AudFeaty.ony /AudFeata.ony; 0.5 - 1 Hz: median = 0.37, 1 - 3 Hz:
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median = 0.24). In the occipital ROI, the tracking of AudFeat was about half as strong or stronger compared
to the tracking of lip features when seeing the speaker (Fig. 4B; AudFeaty.ony /LipFeaty.ony; 0.5 - 1 Hz:
median = 0.84, 1 - 3 Hz: median = 0.4). Albeit smaller than the tracking of the respective modality-preferred
sensory inputs, the restoration of unheard auditory features still results in a prominent signature in

temporally aligned brain activity in both cortices.

3.3 Feature tracking is bilateral and prevails across anatomical brain areas

Having established the tracking of auditory and lip features in both temporal and occipital ROIs, we probed
whether this tracking is possibly lateralized in a statistical sense and whether it potentially differs among
the individual anatomical areas grouped into temporal and occipital ROls respectively. While these analyses
do not directly concern our main hypotheses outlined in the introduction, the issue of lateralization is
pervasive in the literature on speech, and hence is addressed here for the sake of completeness. For this
analysis we focused on the conditional tracking of each feature group. Comparing CMI values among
anatomical areas (averaged across hemispheres) for each ROI (occipital, temporal), frequency band (0.5 - 1
and 1 - 3 Hz), condition and feature group revealed a significant effect of area for AudFeat tracking in the
temporal ROI during A-only trials (Table 1; 0.5 - 1 Hz: XX(3) = 27.02, p = 4.7 x 10°, €2 = 0.35; 1 - 3 Hz: X*(3) =
29.62, p=2.7x 10°, €% = 0.39; p-values FDR-corrected). Post hoc comparisons revealed that in both bands,
tracking of AudFeat was higher in A41/42 and A22c compared to TE1.0/1.2 and A22r (Tukey-Kramer test, all
tests p < 10°). The effect of Area was close to but not significant for LipFeat tracking in the occipital ROI
during V-only trials (0.5 - 1 Hz: x*(3) = 12.3, p = 0.026, €* = 0.14; 1 - 3 Hz: X*(3) = 14.57, p = 0.012, £ = 0.17).
Importantly, these results suggest that while the tracking of auditory features was stronger in the the early
auditory region during A-only trials, the restoration of unheard auditory features during lip reading

emerges to a similar degree among the individual temporal and occipital areas.

We performed a similar analysis comparing the CMI values within temporal or occipital ROIs between
hemispheres. This revealed no significant effects of hemispheres (Table 2), hence offering no evidence for a

statistical lateralization of feature tracking in the present data.

0.5-1Hz 1-3Hz
ROI Anatomical | AudCMI Chisq; pval | LipCMI Chisq; pval | AudCMI Chisq; pval | LipCMI Chisq; pval
area
A-only trials
temporal A41/42 0.97 27.02; 0.096 2.47;0.59 0.19 29.62; 0.032 5.14;0.32
4.7e-05 2.7e-05
TE1.0/1.2 0.56 0.099 0.11 0.028
A22c 0.86 0.098 0.18 0.033
A22r 0.5 0.093 0.095 0.029
occipital mOccG 0.1 3.50;0.47 | 0.073 0.66;0.88 | 0.025 2.71;0.58 | 0.02 1.97;0.66
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OPC 0.09 0.069 0.025 0.02
iOccG 0.11 0.068 0.027 0.021
msOccG 0.11 0.074 0.029 0.021
V-only trials
temporal A41/42 0.33 4.59;0.36 0.1 5.14;0.32 0.034 5.24;0.32 0.027 1.00;0.85
TE1.0/1.2 0.25 0.088 0.031 0.028
A22c 0.34 0.1 0.035 0.027
A22r 0.22 0.085 0.028 0.029
occipital mOccG 0.13 3.90;0.44 0.17 12.30; 0.045 8.20;0.13 0.15 14.57 ;
0.026 0.012
OoPC 0.14 0.19 0.06 0.2
iOccG 0.14 0.2 0.048 0.17
msOccG 0.11 0.11 0.039 0.082

472

473 Table 1. Feature tracking in individual anatomical areas within temporal and occipital ROIs. The table lists
474  CMl values of either set of features (AudCMI, LipCMI) and a statistical comparison between the individual
475  atlas-defined areas of the temporal and occipital ROIs (Kruskal-Wallis tests, reporting chi-squares (Chisq)
476  and p-values (pval)). Bold numbers indicate statistically significant results. P-values are FDR-corrected within

477 this table.

0.5-1Hz 1-3Hz
ROI Hemisphere | AudCMI z; pval | LipCMmi | z; pval AudCMI z; pval | LipCMmi | z; pval
A-only trials
temporal left 0.8 1.20; 0.094 -0.33; 0.13 -0.81; 0.028 -1.11;
0.59 0.74 0.59 0.59
right 0.64 0.099 0.15 0.031
occipital left 0.1 -0.37; 0.07 -0.33; 0.027 0.81; 0.021 0.63;
0.74 0.74 0.59 0.65
right 0.1 0.072 0.025 0.02
V-only trials
temporal left 0.31 0.89; 0.098 0.76 ; 0.035 0.85; 0.025 -1.85;
0.59 0.59 0.59 0.26
right 0.26 0.091 0.03 0.03
occipital left 0.11 22.24; 0.14 -2.98; 0.043 -1.68; 0.13 2.07;
0.2 0.046 0.3 0.21
right 0.15 0.2 0.054 0.18

478

479 Tab. 2. Feature tracking in each hemisphere. The table lists CMI values of either set of features (AudCMI,
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480  LipCMI) and a statistical comparison between hemispheres of each ROl (Wilcoxon signed rank tests,

481  reporting z values (z) and p-values (pval)). P-values are FDR-corrected within this table.
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3.4 Occipital cortex reflects pitch more than other acoustic features during lip reading

Having established that occipital and temporal regions track unheard auditory features, we then asked how
individual features contribute to these representations. For this we focused on the following condition: the
tracking of AudFeat in the delta range in V-only trials (Fig. 4C,D). We quantified the CMI for each individual
feature, while discounting the evidence about all other left-out visual and auditory features, hence focusing

on the unique tracking of each individual acoustic feature.

For the temporal ROI this revealed the prominent tracking of aud env (Fig. 4C). In the in the 0.5 - 1 Hz band
only the CMI for aud env was above chance (p < 5 x 10”°) and there was a significant effect of feature
(Kruskal-Wallis rank test y*(2) = 9.27, p = 9.1 x 10, € = 0.14). Post-hoc tests revealed that the CMI for aud
env differed significantly from that of aud slope (Tukey-Kramer test, p = 6.2 x 10 the other comparisons
were not significant; p = 0.35 for env vs. slope and p = 0.22 for slope vs. pitch). In the 1 - 3 Hz band, the
tracking of all auditory features was significant (all features: p < 5 x 10°) and there was no significant effect

of features (x*(2) = 4.14, p = 0.13, €% = 0.04).

For the occipital ROI, this revealed a dominance of aud pitch (Fig. 4D). In the 0.5 - 1 Hz band, only the CMI
of aud pitch was above chance (p < 5 x 10”), a direct comparison revealed a significant effect of features
(0.5 - 1 Hz: X*(2) = 18.28, p = 1.07 x 10, €® = 0.32) and post-hoc tests revealed a significant difference
between aud pitch and aud slope (p = 7.03 x 10®), while the other comparisons were not significant (p =
0.26 for pitch vs. env and p = 0.02 for env vs. slope). In the 1 - 3 Hz range, the tracking of all features was
significant (all features: p < 5 x 10”), there was a significant effect of features x*(2) = 19.2, p = 6.77 x 10°, €°
= 0.34), and post-hoc tests revealed a significant difference between pitch and slope (p = 3.61 x 10”), while
the other comparisons were not significant (p = 0.05 for pitch vs. env and p = 0.12 for env vs. slope).
Collectively these results suggest that the restoration of acoustic signals in the occipital region emphasizes

spectral pitch, while in the temporal region this emphasizes the temporal speech envelope.
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Fig. 4. Modality dominance and tracking of individual auditory features during lip reading. (A,B) Comparison of the
tracking of unheard AudFeat over the tracking of the modality-preferred sensory input in each ROI (i.e. AudFeat during
A-only trials in the temporal ROI; LipFeat during V-only trials in the occipital ROI). (C,D) Tracking of individual auditory
features during V-only trials conditioned on all other auditory and lip features in temporal (C) and occipital (D) ROIs.
Brackets with asterisks indicate levels of significance from one-way Kruskal-Wallis rank test with post-hoc Tukey-
Kramer testing (* p < 0.01, ** p < 0.005, *** p < 0.001). Dots represent individual data points. Bars indicate the
median, 25th and 75th percentile. The grey dashed line indicates the 99th percentile of the frequency-specific
randomized maximum distribution correction for all other features. Units in (A) and (B) are a ratio, in panels (C) and (D)

units are in bits.

3.5 Tracking of auditory features is associated with lip reading performance

Finally, we probed the second main question of whether the restoration of unheard auditory features
during silent lip reading relates to word recognition performance. For this we probed the predictive power
of the MI about specific auditory features in either ROI for word recognition performance during V-only
trials (Fig. 5). We specifically focused on the tracking of aud env in the temporal ROl and of aud pitch in the
occipital ROl as the dominant feature-specific representations (c.f. Fig. 4C,D). Using linear models we
predicted word recognition scores across participants based on the tracking indices of interest and while

discounting for potential confounds from differences in signal-to-noise ratio in the MEG data.
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The results show that variations in word recognition scores are well predicted by the collective measures of
feature tracking (0.5 - 1 Hz: R* = 0.74, 1 - 3 Hz: R* = 0.8). Importantly, the tracking of aud env in the
temporal ROI was significantly predictive of lip reading performance (Fig. 5, 0.5-1 Hz: B = 0.6, p =0.037; 1 -
3 Hz: aud env B = 0.6, p = 2.8 x 10*), while tracking of pitch in the occipital ROl was not (0.5 - 1 Hz: p = -0.13,
p =0.56; 1 - 3 Hz: B =-0.026, p = 0.91). This conclusion is also supported by Bayes factors for the added
predictive power of aud env and aud pitch to these models (aud env in the temporal ROI; 0.5 - 1 Hz: BF =

3.12; 1 - 3 Hz: BF = 26.34; aud pitch in the occipital ROl; 0.5 - 1 Hz BF = 0.3; 1 - 3 Hz BF = 0.24).
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Fig. 5. Association between lip reading performance and tracking of auditory features. Across participants the
tracking of aud env during V-only trials in the temporal ROI but not the tracking of aud pitch in the occipital ROl was
significantly associated with word recognition performance (PC) across participants in visual trials. Graphs show
partial residual plots, dots represent individual data points and the line indicates the linear fit to the target variable

from the full regression model.

4. Discussion
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Natural face-to-face speech is intrinsically multidimensional and provides the auditory and visual pathways
with partly distinct acoustic and visual information. These pathways could in principle focus mainly on the
processing of their modality-specific signals, effectively keeping the two input modalities largely separated.
Yet, many studies highlight the intricate multisensory nature of speech-related representations in the brain,
including multisensory convergence at early stages of the hierarchy (Bernstein and Liebenthal, 2014; Crosse
et al., 2015; Schroeder et al., 2008; Schroeder and Lakatos, 2009) as well as in classically amodal speech
regions (Keitel et al., 2020; Mégevand et al., 2020; Scott, 2019). However, as the present results suggest,
the auditory and visual pathways are also capable of apparent ‘restoring’ information about an absent
modality-specific speech component: while seeing a silent speaker, both auditory and visual cortices track
the temporal dynamics of the speech envelope and the pitch contour respectively, in a manner that is
independent on the physically visible lip movements. These ‘restored’ representations of acoustic features
relate to participants’ word recognition, suggesting that they may form a central component of silent lip

reading.

4.1 Auditory and visual cortex reflect acoustic speech features during lip reading

We systematically quantified the tracking of auditory and visual speech features during unisensory auditory
and visual (lip reading) conditions in dynamically entrained brain activity. As expected, this confirmed that
early auditory and visual regions reflect acoustic and visual features respectively at the time scales of delta
(< 4 Hz) and theta (4 - 8 Hz) band activity, in line with previous work (Aiken and Picton, 2008; Bauer et al.,
2020; Doelling et al., 2014; Giraud and Poeppel, 2012; Haegens and Zion Golumbic, 2018; Obleser and
Kayser, 2019). In addition, we found that during lip reading both regions contained significant information
about unheard auditory features, also when discounting for the physically presented lip movements. This
representation of acoustic features prevailed in low delta in auditory and delta and theta bands in visual
cortex. Interestingly, this representation emphasized the temporal speech envelope in auditory cortex and
spectral pitch in visual cortex. These results not only support that both regions are active during lip reading
(Besle et al., 2008; Calvert et al., 1997; Calvert and Campbell, 2003; Ludman et al., 2000; Luo et al., 2010),
but directly show that they contain temporally and feature-specific representations derived from lip

movements that are relevant for comprehension.

These results advance our understanding of how the brain exploits lip movements in a number of ways. The
restoration of auditory features during silent lip reading has been suggested in previous studies, one
quantifying the coherence of temporal brain activity with the non-presented speech envelope
(Bourguignon et al., 2020) and others quantifying the coherence between occipital activity and the
envelope (Hauswald et al., 2018; Suess et al., 2022). Yet, these studies differed in their precise experimental
designs, their statistical procedures revealing the ‘restoration’ effect, and did not probe a direct link to
behavioral performance. The present data demonstrate that such tracking of auditory speech-derived

features indeed emerges in parallel and in the same participants. Our data reveal the restoration of
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unheard acoustic features also when discounting the physically present lip signals (i.e. when using
conditional mutual information). This finding is important, as the mere coherence of brain activity with the
acoustic speech envelope may otherwise simply reflect amodal information contained in the physically-

present visual speech that is directly redundant with the acoustic domain (Daube et al., 2019).

Furthermore, they show that this effect is largely bilateral and emerges across a number of anatomically-
identified areas, suggesting that it forms a generic property of the respective pathways. Interestingly, the
unheard auditory features during V-only trials were restored dominantly in the lower frequencies (0.5 - 3
Hz), similarly to recent results (Bourguignon et al., 2020). In principle, activity at these slow timescales may
possibly reflect oro-facial cues such as head, eye or eyebrow movements (Munhall et al., 2004; Schroeder
et al., 2008). We aimed to mitigate such confounds by instructing the speaker to move their head as little as
possible and to avoid gestures, and by instructing participants to focus their gaze on the speaker’s lips.
Moreover, our results align with recent work showing the restoration of the unheard acoustic envelope
even when controlling for the speaker’s movement during visual presentation (Bourguignon et al., 2020).
One may speculate whether this restoration reflects the synthesis of speech-specific elements. However,
linguistic elements at this time scale mostly encompass phrasal structures, prosody or speech rhythm
(Gross et al., 2013; Keitel et al., 2018; Meyer et al., 2017) and few of these are probably restored during lip
reading in detail. Possibly, the restoration of the unheard envelope based on lip movements reflects
processes for the temporal segmentation of speech-related information based on low-frequency activity

(Doelling et al., 2014; Ghitza, 2017; Nidiffer et al., 2021).

These results come with an important caveat: the capability to read from lips alone is generally low in naive
listeners (Altieri et al., 2011; Grant and Seitz, 2000), which poses an intricate problem when studying the
cerebral basis of lip reading. To solicit a sufficient number of trials with successful lip reading and to balance
word recognition performance between visual-only and auditory-only trials, we relied on a specifically
designed experimental paradigm with two critical features. First, this paradigm relied on sentences
constructed based on a repeating set of linguistic elements and a forced-choice task with a closed set of
options. This limits the generalizability of the results towards naturally-produced every day speech, as
participants could in principle learn the mapping of only target words onto lip movements and choose the
most likely one during the course of the experiment. Although we did not strictly control for this, both the
chosen elements in each sentence as well as the target and distractor words were chosen randomly.
Second, to familiarize participants with the material, the A-only condition preceded the V-only condition
during the experiment. This may allow for memory-related processes to contribute to the observed
restoration effects. However, the use of 180 syntactically similar but unique sentences makes it in our view
highly unlikely that participants solely relied on the stimulus repetition and memory to solve the word
recognition task. Rather, we believe that the restoration in the occipital cortex reflects the active parsing of
the lip movement signal and engages specific visuo-phonetic transformations, as speculated previously

(Hauswald et al., 2018; Nidiffer et al., 2021). This poses a possible solution to how the brain finds the best
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match between visually perceived speech and a word from a limited set of options. Nevertheless, the visual
system might be primed to perceive visual speech after being familiarized with the underlying acoustic
stimulus in a previous condition. Even in naturalistic listening situations one is likely to do so when
observing a moving face. Therefore, we do not expect any priming of the visual system to confound the
nature of lipreading in this paradigm compared to real-life situations. More so, this alludes to the origin of
speech-related information during lip reading in general, as bottom-up processes may be aided by
sentence-level predictions or expectations that contribute in a top-down manner and partially predict
acoustic and lexical information based on the immediately preceding material (Cope et al., 2017). Given
that lip reading performance was higher than in other studies or real-life circumstances (Altieri et al., 2011;
Grant and Seitz, 2000) it is possible that top-down processes exerted a stronger influence on early visual

and auditory cortices in this data compared to real-life circumstances.

4.2 Lip reading activates a network of occipital and temporal regions

Previous work has shown that lip movements activate a network of temporal, parietal and frontal regions
(Bourguignon et al., 2020; Calvert et al., 1997; Capek et al., 2008; O’Sullivan et al., 2017; Ozker et al., 2018;
Paulesu et al., 2003; Pekkola et al., 2005) and that both occipital and motor regions can align their neural
activity to the dynamics of lip movements (Park et al., 2018, 2016). The present data substantiate this, but
also show that the representation of the physically visible lip trajectory along visual pathways is
accompanied by the representation of spectral pitch, a type of selectivity not directly revealed previously
(Suess et al., 2022). Spectral features are vital for a variety of listening tasks (Albouy et al., 2020; Brohl and
Kayser, 2021; Ding and Simon, 2013; Tivadar et al., 2020, 2018), and oro-facial movements provide concise
information about the spectral domain. Importantly, seeing the speaker’s mouth allows discriminating
formant frequencies and provides a comprehension benefit particularly when spectral features are
degraded in the underlying acoustic speech (Plass et al., 2020). This suggests a direct and comprehension-
relevant link between the dynamics of the lip contour and spectral speech features (Campbell, 2008).
Hence, a representation of acoustic features during silent lip reading may underlie the mapping of lip
movements onto phonological units such as visemes, a form of language-specific representation emerging
along visual pathways (Nidiffer et al., 2021; O’Sullivan et al., 2017). This emphasize the role of the visual

system as an active agent during audio-visual speech processing.

Our results corroborate the notion that multisensory speech reception is not contingent only on high-level
and amodal representations. Rather, they suggest that the brain likely exploits cross-modal
correspondences between auditory and visual speech along a number of dimensions, including basic
temporal properties (Bizley et al., 2016; Chandrasekaran et al., 2009) as well as mid-level features, such as
pitch or visual object features, whose representation is traditionally considered to be modality specific
(Crosse et al., 2015; Plass et al., 2020; Schroeder et al., 2008; Zion Golumbic et al., 2013). Previous work has

debated whether visual speech is mainly encoded along the auditory pathways or whether occipital regions

23



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

659

660
661
662

663

664
665

contribute genuine speech-specific representations (O’Sullivan et al., 2017; Ozker et al., 2018). Our results
speak in favor of occipital regions supporting speech reception by establishing multiple forms of speech-
related information, including those aligned with the acoustic domain revealed here, and those establishing
visemic categories based on complementary visual signals (Nidiffer et al., 2021; Suess et al., 2022). Which
precise occipital areas and by which patterns of connectivity they contribute to comprehension remains to
be investigated, but both kinds of representations may well emerge from distinct temporal-occipital
networks (Bernstein and Liebenthal, 2014). While visemic information may be driven by object-related
lateral occipital regions, the more auditory-aligned representations such as the restoration of spectral
signatures may be directly driven by the connectivity between occipital areas and superior temporal
regions, which play a key role for audio-visual speech integration (Arnal et al., 2009; Lazard and Giraud,
2017). In the auditory cortex, the alignment of neural activity to the unheard speech envelope may reflect
the predictive influence of visual signals on guiding the excitability of auditory pathways via low frequency
oscillations (Schroeder et al., 2008). This alignment of auditory cortical activity to attended or expected
sounds is well documented and has been proposed as a cornerstone of multisensory speech integration in
general (Lakatos et al., 2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010), and as shown here,

directly relates to participants comprehension performance.
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