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ABSTRACT

The reflection and radiation of steep-fronted wavefronts at a tunnel exit to a deep cutting is 
studied and contrasted with the more usual case of radiation from over-ground portals.  A well-
known difference between radiation in odd and even dimensions is shown to have a significant 
influence on reflected wavefronts, notably causing increased distortion that complicates analyses, 
but that can have practical advantages when rapid changes are undesirable.  Likewise, micro-
pressure waves radiating from the portal into a cutting are shown to exhibit strong dispersion that 
does not occur in the corresponding radiation into an open terrain.  In the latter case, formulae 
that represent the behaviour of monopoles and dipoles are commonly used to estimate conditions 
beyond tunnel portals, but no such simple formula exists (or is even possible) for cylindrical 
radiation that is characteristic of MPWs in cuttings.  An important outcome of the paper is the 
development of an approximate relationship that predicts the maximum amplitudes of these 
MPWs with an accuracy that should be acceptable in engineering design, at least for initial 
purposes.  The formula shows that peak pressure amplitudes decay much more slowly than those 
from an overground portal, namely varying approximately as r -0.5 compared with r -1, where r 
denotes the distance from the portal. 
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Nomenclature 
1-D one dimensional MPW micro-pressure wave  
2-D two dimensional P absolute pressure 
3-D three dimensional Pamb ambient absolute pressure 
A cross-sectional area of tunnel p acoustic/gauge pressure (P-Pamb) 
c speed of sound r radius or distance from effective source 
D width of (square section) tunnel t time coordinate 
Deff effective diameter of tunnel t* retarded time 
H flow width normal to 2-D plane of propagation x,y,z spatial coordinates (see Fig.3) 
L length of tunnel x' distance (outside tunnel) from exit plane 

Wang, H, Vardy, AE & Bi, H 2022, 'Micro-pressure wave radiation from tunnel portals in deep 
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ℓ end correction coefficient Greek characters 
�̇� mass flow rate 𝜃 angle subtended to tunnel axis, radians 
�̇�  mass flow rate per unit width (2-D case) Ω solid angle, steradians 

 
1 INTRODUCTION 
 
The radiation of micro-pressure waves (MPWs) into environments outside railway tunnels as a 
consequence of pressure wave activity inside the tunnels is well understood, at least generically.  
In extreme cases, strong emissions can occur in the audible frequency range.1-2  Likewise, radiation 
in the sub-audible range can cause unacceptable vibrations of doors and windows in buildings.3  
Almost all publications on this topic deal with tunnels emerging above ground level (Fig.1a). In this 
case, the radiation occurs into a geometrical space that is unbounded in any of the three principal 
directions (x,y,z).  However, it is increasingly common for new tunnels to emerge into cuttings 
(Fig.1b), sometimes quite deep ones.  In this case, the radiation occurs into a geometrical space 
that greatly constrains it in the z-direction normal to the plane of the figure.  The radiated waves 
do not escape this constraint until after they have reached ground level (G.L.).  In both geometries, 
the radiation beyond moderate distances from the portal (i.e. in the so-called far-field) 
approximates quite well to the purely radial radiation illustrated in Fig.1c.  For the overground 
case, this radiation is approximately spherical whereas, within a cutting, it is closer to cylindrical.  
Indeed, the particular cutting considered in detail herein has vertical sides (as is typical beyond 
cut-and-cover tunnels) and is the same width as the tunnel.  With this geometry, the radiation is 
truly two-dimensional (x,y) – for the same reason that wave propagation along the tunnel itself 
occurs in an effectively one-dimensional manner (x) that justifies neglecting lateral (y,z) variations 
in pressure over the tunnel cross-section. 
 

                                  
(a)  Overground portal (3-D)  (b) Deep cutting (2-D)           (c) Point source 

Fig.1. Radiation from tunnel exits and a point source  
 

Following a preliminary investigation of this phenomenon4, the authors reported that MPWs in 
cuttings exhibit large qualitative differences from those from overground MPWs, but they were 
unable to provide convincing explanations for this.  Several possible contributions to the 
differences were hypothesized, one of which was that it might arise from fundamental differences 
between radiation in two (x,y) and three (x,y,z) dimensions5.  The primary purpose of the present 
paper is to assess this possibility and to show that it does indeed seem to be a likely cause.  Having 
first demonstrated this, the paper moves on to the development of an equation that is shown to 
be a close predictor of the maximum amplitudes of MPWs in deep cuttings.  However, it is also 



shown that, unlike the corresponding equation for radiation from overground portals, the new 
equation must not be used to represent the shape of complete pulses.  This is interpreted as a 
further demonstration of the big differences between radiation in 2-D and 3-D geometries. 
 
The initial desire to study this topic was triggered by enquiries from tunnel designers.  The authors 
felt unable to advise reliably on these, but realised that that they posed intriguing academic 
questions.  Following standard research practice, after spending time developing some initial 
ideas, the authors began to search the literature for relevant prior publications.  The result was 
unexpected.  Not only were no examples found of the specific topic, but also no publications at all 
on practical applications in the time domain were found.  This does not, of course, mean that no 
such studies exist, but it is a strong indicator that any that do exist are rare.  Analyses applicable to 
cylindrically radial radiation from a line source do exist, but these mostly consist of analytical 
methodologies in the context of periodic waves and involve either high-level mathematics or 
tedious summations 6-10, .  They cannot readily be adapted to studying the radiation of sudden 
wavefronts from tunnel portals.  Usually, cylindrical radiation is presented more briefly than 
spherical radiation. The authors take this opportunity to invite readers to alert them to any work 
that has been missed. 
 
1.1 Terminology 
 
In the remainder of the paper, attention is sometimes focussed dominantly on the practical 
application and is sometimes focussed on the fundamental nature of wave propagation.  In the 
former case, the distinction is between an overground portal and a portal in a deep cutting that, 
for the purposes of this paper, is assumed to be the same width as the tunnel.  However, when 
discussing the wave propagation itself, it is more natural to use terminology that denotes generic 
behaviour.  In this context, therefore, the wave propagation is usually characterised as 2-D (i.e. 
x,y) or 3-D (i.e. x,y,z).  In special cases, it is idealised even further as 'cylindrical' and 'spherical' in 
the sense represented in Fig-1c. 
 
1.2 Wavefront reflection and pulse generation 
 
To set the scene, the mechanism by which internal waves cause MPWs is now summarised.  
Figure 2a depicts an abrupt, step wavefront representing, say, a train nose-entry wavefront after it 
has steepened almost into a shock during propagation along a tunnel.  As the wavefront 
approaches the exit portal, the pressure at any axial location ahead of or behind it is almost 
uniform over the tunnel cross-section.  Ahead of the wavefront, the pressure is atmospheric 
whereas that behind it is greater than atmospheric.  On arrival at the exit (Fig.2b), the region 
behind the uppermost tip of the wavefront begins to be influenced by the external (atmospheric) 
pressure and in the next few moments, local radiation propagates over the cross-section.  
However, this takes time – approximately D/c, where D is the tunnel height and c is the speed of 
sound – during which the lower parts of the wavefront continue exactly as before, as indicated 
schematically in Fig.2c. This has the twin effect of (i) delaying and distorting the reflection back 
along the tunnel and (ii) creating a short period of strongly unsteady flow into the external 
domain.  It causes a pulse-like pressure wave to radiate outwards from the portal – approximately 
spherically in the overground case, but cylindrically in a deep cutting.  The main thrust of the 



paper is on the radiated pulse, but consequences for reflected wavefront inside the tunnel are also 
highlighted. 

                 
(a) incident wavefront          (b) shortly afterwards   (c) a little later still 

 
Fig.2. Radiation of a pressure pulse from a tunnel exit  

 
2 METHODOLOGY 
 
Figure 3 shows the calculation domains used for the simulations.  Advantage is taken of the use of 
symmetry to greatly reduce the required CPU resources.  The flanged portal is a distance L = 100 m 
from an upstream location x = 0 at which the pressure is prescribed to increase rapidly, 
representing an approaching wavefront.  The y-axis is vertically upwards and the x,z plane at y = 0 
is modelled as a plane of symmetry that is chosen to coincide with the base of the tunnel (i.e. track 
level).  That is, the tunnel is of width D = 8 m and height ½D.   Beyond the exit, the domain extends 
a distance L in each of the x and y directions.  For the above-ground (3-D) geometry, it also 
extends a distance L in the z direction, but for the cutting (2-D) geometry, the domain is the same 
width as the tunnel in the z direction. In both cases, the plane z = 0 is modelled as a plane of 
symmetry that is chosen to coincide with the centre-line of the tunnel.  Thus, although the tunnel 
itself is of width D, the calculation domain is only half this width. 
 

 
(a)  x-y plane (2-D & 3-D)        (b) y-z plane, 2-D       (c) y-z plane, 3-D 

 
Fig.3. Calculation domains and definition of axes (x = axial; y = vertical; z = lateral)  

Calculations are required only within y ≥ 0 and z ≥ 0 because the planes at y = 0 and z = 0 are 
planes of symmetry 

 
The simulations are undertaken numerically, using the commercially-available software ANSYS 
FLUENT 15.011 with the following options: density-based solver, Roe-FDS Flux Scheme, third-order 
MUSCL for spatial discretisation and second-order implicit time stepping for temporal 



discretisation. User-defined functions are used to determine the maximum pressure at each point 
in the calculation domain and the instant at which it occurs.  Formal validation of the suitability of 
the chosen numerical grid is presented in an Appendix. 

All of the following simulations have been undertaken using the 3-D version of the code even 
though this is not strictly necessary for 2-D cases.  This eliminates any risk of comparisons between 
predictions being influenced by differences between 2-D and 3-D solvers, thereby reducing the 
reliability of comparisons of the influences of the two geometries.  Also, inviscid conditions are 
assumed.  This simplification, which aids clarity, introduces negligible error because turbulence-
related disturbances can propagate only tiny distances during the short time scales under 
investigation.  The authors have illustrated the validity of this statement in publications of other 
work on wave propagation12 

2.1 Governing equations  

All simulations have been undertaken using the 3D Euler equations throughout the whole of the 
flow-field.  The phenomena under investigation occur in such short timescales that the influence 
of viscous effects will inevitably be negligible in comparison with inertial effects.  In the absence of 
heat sources, the governing equations are 

0t x y z   U F G H                                                         (1) 
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where  x , y ,z are spatial coordinates, t is the time coordinate, u, v, w are the components of the 
velocity V in the x , y and z directions, and ρ and P are the air density and absolute pressure.  The 
specific total energy E and the specific total enthalpy H are  
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in which γ denotes the ratio of the principal specific heat capacities of the air. 

The equations are closed by regarding the air as a perfect gas satisfying the equation of state: 

gasP R T                                                                                (4) 

where Rgas is the gas constant for air and T is the absolute temperature. 

 
 A slip boundary condition is used on all solid surfaces and null-reflection conditions are prescribed 
at the outer boundaries of the external domains - although these are chosen sufficiently far from 



the portal to have no influence whatsoever on the presented results.  Initially, ambient conditions 
exist everywhere.  The pressure at the upstream end of the tunnel then increases in a prescribed 
manner to generate the incident wavefront. 

The accuracy of the simulations has been assessed in academic detail.  In particular, it is shown in 
an Appendix that the predictions are effectively independent of grid size.  Also, Wang et al 12   
have shown that wavefront steepening is modelled with good accuracy and it is shown below that 
predictions of MPWs in the overground case coincide closely with analytical expectations. 
 
2.2 Incident wavefront 

Figure 3 shows a typical prescribed pressure history at the upstream boundary.  The rate of 
change of pressure increases linearly to a maximum and then decreases to zero at an equal and 
opposite rate.  The resulting shape of the wavefront is broadly indicative of nose-entry wavefronts 
– see, for example, Figs. 10 & 17 in Miyachi et al2.  In the particular example shown in Fig.4, the 
wavefront amplitude is 2 kPa and its initial maximum steepness and length are 40 kPa/s and 34 m.  
Predictions are also presented below for wavefronts with the same pressure amplitude, but with 
maximum steepnesses of 80, 20 and 10 kPa/s respectively.  

 

 Fig.4. 40 kPa/s incident wavefront 
 

The prescribed pressure is imposed at the upstream boundary which, in the simulations, is a 
distance L = 100 m (i.e. 12.5D) upstream of the portal.  As the resulting wavefront propagates 
downstream, it gradually shortens under the influence of inertial steepening.  The toe of the 
wavefront – i.e. its leading tip – travels at the ambient speed of sound, but the rear of the 
wavefront travels at a greater speed, partly because the increased pressure behind the wavefront 
causes a small increase Δc in the speed of sound, but mostly because of the increase ΔU in air 
velocity that the wavefront induces.  The overall difference in wavespeed between the toe and 
rear of the wavefront is Δ(U + c) and for the chosen wavefront amplitude of 2 kPa, this is 
approximately equal to 6 m/s.  In the absence of friction, this difference in propagation speeds 
causes the wavefront to shorten – and hence to steepen in a manner that is loosely analogous to 
that observed in surface waves approaching a beach.  In the tunnel, the difference in speed causes 
a reduction of slightly more than 0.2D in the length of the wavefront as it travels 100 m from the 
upstream boundary to the exit portal.  All of these values (distances and speeds) are independent 



of the initial length of the wavefront so each necessarily shortens by the same amount.  However, 
the proportional influence of the shortening is greater for initially short wavefronts than for longer 
ones, so the consequences are more important for the steeper wavefronts. 
 
2.3 Non-dimensional parameters 

Although the simulations have been performed using dimensional values, all results are presented 
and interpreted in a non-dimensional manner.  This has an important advantage in the 
development of a new generic expression in Section 5.  The chosen length scale is D (see Fig.3), the 
time scale is D/c, where c is the ambient speed of sound and the mass scale is ρD3, where ρ is the 
density of the ambient air.  The pressure p scales with ρc2, the mass flow rate �̇� scales with ρcD2 
and rates of change of mass flow rate scale with ρc2D.  In the 2-D simulations, the relevant mass 
flow rate parameter, denoted �̇�  , is the mass flow rate per unit width normal to the plane in 
which waves are propagating.  Its scale is ρcD and its rate of change scales with ρc2.  For record 
purposes, in the particular simulations on which subsequent figures are based, D = 8m, L = 100 m,  
c = 340 m/s and ρ = 1.225 kg/s. 
 
3 REFLECTED WAVEFRONTS 

In addition to causing the radiation of a pulse, the process illustrated in Fig.2 causes distortion and 
delay of reflections back along the tunnel.  This can have a (small) influence on phenomena of 
importance on trains – e.g. passenger aural comfort13 and forces on train bodies14.  Therefore, it is 
useful to assess it in its own right as well as for providing information of relevance to the 
interpretation of predicted radiated pulses. 
 
Figure 5 shows instantaneous pressure distributions along the tunnel at representative instants 
before and after the reflection (NB: x/D = 12.5 corresponds to x = L).  In each box, an incident 
wavefront (continuous line) travelling from left-to-right is shown at the instant when its mid-point 
is at x = L/2.  The reflected wavefronts (broken lines) are shown at an instant L/c later.  By 
inspection, the shapes of the incident and reflected wavefronts are very different, whereas they 
would be identical if the reflection process at the exit occurred instantaneously (as is usually 
assumed in 1-D calculations, for instance).  Instead, strong delays are apparent, and these are 
much greater in later stages of the reflection than in the early stages.  It is shown below that the 
delays can also be observed in the resulting pressure fields beyond the portals.   
 
It can be seen in the figure that the absolute values of the delays for the various wavefronts do not 
differ greatly from one another.  They do differ, but not by anywhere near as much as the 
differences in length of the wavefronts.  This demonstrates that the effect is dominated primarily 
by conditions in the exit region, not by properties of the wavefronts themselves. 
 
The dotted grey lines in the figures are provided for information only.  They illustrate what would 
happen if the reflection process were instantaneous, but occurred a small distance outside the 
portal.  This seemingly arbitrary approximation – designated an end-correction – can be highly 
effective in studies of periodic waves15-16.  By inspection, however, it is of little value in any 
attempt to explain the wavefront reflections herein, and this is predictable because the 
wavefronts differ greatly from single-frequency periodic waves. 



 

 
(a) 80 kPa/s wavefront                                                      (b) 40 kPa/s wavefront 

 
(c) 20 kPa/s wavefront                                                       (d) 10 kPa/s wavefront 

 
Fig.5. Instantaneous pressure distributions along the tunnel (2-D external geometry) 

 
3.1 Flow rate through the exit portal 
 
The upper row in Fig.6 shows predicted flow rate histories through the portal in the cutting (2-D), 
with corresponding predictions for an overground portal also shown for comparison purposes 
(3-D).  In each case, the flow rates increase smoothly from zero and become asymptotic to a 
maximum value that is approximately equal to twice the rate induced by the incident wavefront 
during propagation towards the exit.  The strong delays in the 2-D case have an important 
influence on the resulting pulses radiated into the external environment.  However, the latter 
depend dominantly on rates of change of flow through the portal, not on absolute flow rates.  
These rates are shown in the lower row of the figure.  The ranges of the vertical axes are chosen in 
proportion to the wavefront steepnesses, thereby providing a simple visual demonstration that 
the maximum rate of change also scales approximately with the wavefront steepness. 
 
For completeness, it should be noted that the vertical axes in the figure are applicable to absolute 
mass flow rates.  In the case of 2-D flows, the stated non-dimensionalisation implies an 



assumption that the domain has a finite width D in the z-direction.  In Section 5 below, analytical 
expressions utilise a more general presentation based on flow rate per unit width. 

 

         
(a) 80 kPa/s wavefront                                                       (b) 10 kPa/s wavefront 

      
(c) 80 kPa/s wavefront                                                       (d) 10 kPa/s wavefront 

 
Fig.6. Flow rates through the portal: absolute values and rates of change 

(Overground 3-D;  Cutting 2-D) 
NB: For the 2-D case, �̇� should be interpreted as 𝐷�̇�  

 
Another feature of the flow rate histories is the ratio of the maximum values for the 2-D and 3-D 
cases.  These are approximately 0.847, 0.855, 0.869 and 0.902 for the 80, 40, 20 & 10 kPa/s 
wavefronts respectively (although these values are listed to three-digit precision only for 
qualitative purposes).  That is, the maximum flow rates induced in the 2-D case are approximately 
10 - 15% smaller than those in the 3-D case.  This is consistent with the sustained pressures at the 
exit in Fig.5.  It is intuitively reasonable because of the greater restriction imposed by the smaller 
volume of the 2-D external domain. 
 
4 RADIATION FROM TUNNEL EXITS 
 
Radiated pressure histories on the x-axis in the 2-D external domain (cutting) are shown in Fig.7 at 
distances of D, 2D and 4D from the portal.  The ranges of the vertical axes are chosen in 



proportion to the square roots of the wavefront steepnesses, again giving a simple visual 
indication of the approximate relative amplitudes of the maximum values.  In this case, however, 
the scaling differs greatly from scales that would be used for radiation from overground portals, 
where the corresponding dependence is well known to approximate closely to a linear dependent 
on the steepnesses of incident wavefronts.  Analytical expressions for both geometries are given in 
Section 5. 

 

 
(a) 80 kPa/s wavefront                                                  (b) 40 kPa/s wavefront 

 
(c) 20 kPa/s wavefront                                                  (d) 10 kPa/s wavefront 

 
Fig.7. Radiated pressure histories outside the tunnel:  2-D external geometry  

 
 
Fig.8 presents the same basic data as Fig.7, but with two adjustments.  Firstly, the pressures are 
expressed as a product with the square root of the distance r from an effective focal point 
upstream of the portal. This is a point from which waves sufficiently far beyond the portal appear 
to have originated.  Herein, its location is inferred by examination of the predicted external 
pressures, and it is found to be dependent upon the wavefront shape.  However, all inferred 
values are close to a distance of 0.4D upstream of the exit plane so, for consistency, this value is 
used for all comparisons in Fig. 7.  With this scaling factor, the maximum amplitudes of the 
histories at the three distances are almost equal.  This shows that the peak values vary 
approximately with the inverse of the square root of the distance from the focal point.  This is 



another major difference from the overground case, in which the pressures vary with the inverse 
of r, not with its square root. 

 

 
(a) 80 kPa/s wavefront                                                  (b) 40 kPa/s wavefront 

    
(c) 20 kPa/s wavefront                                                  (d) 10 kPa/s wavefront 

 
Fig.8. Weighted pressure histories outside the tunnel:  2-D external geometry  

 
The second adjustment made in the lower row of the figure is a simple time shift that 
compensates for the time required for the pulse to travel (at the speed of sound) between the 
various locations.  For each graph, the retarded time t* = 0 corresponds to the instant when the 
leading tip of the wavefront reaches the sampling point, having travelled from the upstream 
boundary at the ambient speed of sound since the instant t = 0.  With these adjustments to the 
pressure and time, it is easily seen that the shapes of the rising limbs of the pulses vary only gently 
during propagation, but that the falling limbs disperse quite strongly as the pulse propagates.  This 
strong dispersion is consistent with the qualitative behaviour of the corresponding reflected 
wavefronts and mass flow rates described in the preceding Section.  Quantitative use of this 
similarity is made in Section 5. 
 
The existence of the approximate correlation is not surprising because even closer correlations 
exist for the overground radiation.  Not only do the peak pressures scale very closely with the 
inverse of the distance r, but also the whole pulse scales in this way.  That is, the shape of the 



whole pulse (falling as well as rising limbs) remains almost exactly constant as it propagates – and, 
in practice, this makes it possible for the overall propagation to satisfy simple analytical 
expressions that are used routinely when assessing MPWs.  Unfortunately, the dispersive 
character of the corresponding 2-D pulses precludes such an outcome.  However, it is shown 
below that a simple analogous formula is able to predict the peak pulse amplitudes with sufficient 
accuracy to be useful during engineering design.  As an aside, attention is drawn to an intriguing 
result presented by Bender et.al.17, namely that the dispersion can be eliminated by adding a 
second time dimension.     
 
5 APPROXIMATE EXPRESSION FOR 2-D RADIATION 
 
For overground portals, the pulse radiated from a tunnel can be approximated using simple 
acoustic formulae that relate the pulse amplitude to the rate of mass flow through the portal at an 
earlier instant determined by the time required for waves to travel from the portal to the sampling 
point.  The resulting pressures depend upon the overall geometry and the simple formulae apply 
for two extreme cases.  At one extreme, the conditions could resemble those depicted in Fig.1a 
and, for this case, the radiation approximates quite well to a simple combination of a monopole 
and a dipole.  That is the amplitude p of the pulse at a distance r from the effective source 
satisfies18 
 

Monopole + Dipole: 𝑝(𝑟, 𝑡∗) = (1 +
ℓ

𝑟
cosθ)

1

𝛺𝑟

𝜕�̇�

𝜕𝑡
 (5) 

 
in which t* is the retarded time at which the instantaneous rate of change of flow at the source 
was 𝜕�̇�/𝜕𝑡.  The parameter Ω denotes a solid angle characterising the extent of the domain 
encompassing the radiation, ℓ is the end correction described in Section-3 and θ is an angle in the 
x,z plane (zero and π in the positive and negative x-directions and ½π in the z-direction).  For an 
unflanged portal, ℓ ≈ 0.31Dtun, where Dtun is the diameter of a circle with the same cross-sectional 
area as the tunnel. 
 
In the particular case of a flanged portal – i.e. the portal of a tunnel emerging at the bottom of a 
vertical cliff, the dipole term in Eq.5 can be discarded and the pressures is modelled as19  
 
 

Monopole: 𝑝(𝑟, 𝑡∗) =
1

Ω𝑟

𝜕�̇�

𝜕𝑡
 (6) 

 
Extensive use of this approach has been made in practical assessments of radiation from railway 
tunnel portals3,20 even though it is strictly suitable only for a special geometry.   Figure 9 shows a 
comparison between Eq.6 and numerical predictions obtained in the manner described above for 
a flanged 3-D case.  It can be seen that the whole of the pulse, including the falling limb as well as 
the rising limb, correlates almost exactly with rates of change of mass flow rate through the portal 
(as assumed in Eq-6).  It will be seen later that this contrasts with the corresponding 2-D case for a 
portal in a cutting.  Figure 9 also serves a second useful purpose; it provides a measure of the 



accuracy of the CFD methodology used herein.  This is strong evidence for present purposes 
because rates of change in the 3-D are greater than those in the 2-D case and hence are more 
demanding computationally.  

 

 
(a) 80 kPa/s wavefront                                                  (b) 40 kPa/s wavefront 

 
(c) 20 kPa/s wavefront                                                  (d) 10 kPa/s wavefront 

 
Fig.9. Comparison of Eq.(6) and CFD predictions at x' = 2D 

(3-D geometry with flanged portal, Ω= 2π)  
 

5.1 2-D domains 
 
Miyachi and Fukuda18 show that radiation from typical overground portals approximates more 
closely to the (unflanged) Eq-5 than to (flanged) Eq-6.  Nevertheless, the geometry for portals 
emerging to a deep cutting will usually approximate more closely to the flanged case and so 
radiation will be nearly independent of direction.  That is, just as radiation from a flanged 
overground portal is approximately spherical, so radiation from a flanged portal in a cutting is 
approximately cylindrical.  Ideally, an expression such as Eq-6 should be developed for this case, 
but that is not practicable. For example, Lighthill6 has shown that, at large distances from the 
source, the behaviour depends on the (½)th derivative of the flow rate history from the source.  
This is the reason for the continued variation in pressure seen in Fig-6 even after the main pulse 
has passed.  Nevertheless, there is an engineering need for an expression that can be used with 



confidence, at least for initial design purposes.  Therefore, to simplify matters, a less daunting 
objective is adopted, namely the development of an approximate method of estimating the most 
important single property of the pulse - its peak amplitude. 
 
The development of the proposed expression is necessarily empirical, but it is based on two firm 
observations presented above, namely: 
•  the peak amplitudes vary approximately with the square root of the maximum flow rate 
•  the peak amplitudes reduce approximately with the square root of the distance from the 
effective source 
 
By analogy with Eq-6, these observations suggest that a suitable functional form of the desired 
expression will be 
 

Functional form: 𝑝 (𝑟) ∝
1

𝑟 .

𝜕�̇�

𝜕𝑡

.

 (7) 

 
in which 𝜕�̇� /𝜕𝑡 is the rate of change of mass flow rate per unit width normal to the plane of 
propagation (i.e. the z direction in Fig.3).  For this expression to be of practical value, it is 
necessary to quantify the proportionality.  This has been done by means of a detailed assessment 
of the numerical predictions, interpreted in the non-dimensional manner used above, leading to 
the following quantitative formula for predicting the peak amplitudes of the pulses: 
 

 Peak amplitude: 𝑝 (𝑟)  ≈
0.053

𝑟 .

𝜕�̇�

𝜕𝑡

.

 (8) 

 
The non-dimensional coefficient 0.053 applies when each of the parameters p, r, t* and 𝜕�̇� /𝜕𝑡 is 
expressed in its non-dimensional form defined in Section 2.3.  Alternatively, if a dimensional form 
is preferred, the coefficient can be replaced by 0.053c(ρD)½. 
 
Equation 8 is directly applicable only to the specific geometry under consideration, namely to a 
flanged portal.  This will almost always be the case in a deep cutting, so no attempt has been made 
to generalise the expression to embrace other geometries in the manner that is done for 
overground portals and gives rise to the inclusion of the solid angle in Eqs- 5 & 6. 
 
The approximate validity of Eq-8 is illustrated in Fig.10, in which it is compared with values 
obtained from the CFD analyses.  As expected for such a dispersive phenomenon, the correlation 
is not exact, but it is likely to be adequate for initial design purposes and, perhaps, even for final 
design when the predicted pulse amplitudes are sufficiently small.  In this context, it is useful to 
bear in mind that it is rare for designers to be able to estimate the portal flow rates with high 
accuracy.  Uncertainties in those estimations will commonly be much greater that the expected 
uncertainties in Eq-8.  An identical difficulty exists when seeking to use Eqs-5 & 6.for overground 
portals. 



 
Fig.10 Comparison of the empirical Eq.8 with CFD predictions  

 
Unlike its overground counterparts, Eq-8 applies only to peak values of the pulse pressure and the 
rate of change of flow through the portal.  However, it is instructive to explore a slightly 
generalised version of the expression, namely: 
 

Indicative equation only: 𝑝(𝑟, 𝑡∗) =
0.053

𝜕�̇�
𝜕𝑡

𝑟
𝜕�̇�
𝜕𝑡

.  (9) 

 
At the peak, this expression is identical to Eq.8, but it also shows the pressures that would exist if 
the pulse had a one-to-one correspondence with rates of change of flow through the portal.  
Predictions obtained using this expression are presented in Fig.11.  By inspection, it approximately 
reproduces the rising limbs of the pulses, but not the falling limbs.  This is consistent with 
expectations from Fig-7, but it is more instructive because it shows how strongly the pulses 
elongate.  It is important to emphasize that the authors do not propose the use of Eq.9 in practical 
applications.  Its purpose is simply to assist in the understanding of the physical behaviour of the 
radiation in the constrained environment of a deep cutting. 

 



 
(a) 80 kPa/s wavefront                                                  (b) 40 kPa/s wavefront 

 
(c) 20 kPa/s wavefront                                                  (d) 10 kPa/s wavefront 

 
Fig.11. Comparison of Eq.(9) and CFD predictions at x' = 2D 

 
6 IMPLICATIONS FOR IN-TUNNEL PRESSURES AND MICRO-PRESSURE WAVES 
 
The focus of this paper is on understanding large differences between pressure pulses radiated 
from tunnel portals in deep cuttings and the corresponding pulses from overground portals.  
However, brief attention is now given to potential practical implications of the outcomes. 
 
Inside tunnels, the increased elongation of wavefronts reflected from portals in cuttings will 
slightly reduce extreme values of pressure changes in short periods relevant to passenger aural 
pressure comfort21 and to sudden forces on train bodies.14  However, these topics are not likely to 
be strongly influential in the overall design process, so although the small benefit is likely to be 
welcome, it will not be decisive. 
 
Outside tunnels, the overriding outcome is a strong increase in pressure amplitudes at any 
particular distance in comparison with the above-ground case.  This has implications for criteria 
relating to the acceptability of allowing railway staff to operate inside cuttings during train 
operation.  It is also noteworthy, however, that the increased amplitudes are offset to some 
extent by corresponding reductions in frequency resulting from the strongly-dispersive character 



of the radiation.  Such reductions will be especially significant when they cause frequencies to fall 
below the audible range. 
 
All of the results presented herein have been obtained for specific wavefronts that have a simple 
'S' shape that is indicative of many pressure waves in railway tunnels.  In the case of overground 
portals, this is not an important limiting factor because the pulse radiation has a one-to-one 
correspondence with rates of change of flow through the portal.  It is already known that Eqs-5 & 
6 can be used regardless of the shape of the incident wavefront.  Thus, for example, the maximum 
pulse amplitude will always correspond to the maximum rate of change of flow rate, regardless of 
the overall shape of a wavefront.  However, the same assertion cannot be made with full 
confidence for portals in deep cuttings, even though it is assumed in Eq-8.  This is because 
dispersion causes the pulse pressure at any particular radius and time to be influenced by portal 
flows at all times up to the principal retarded time that has sole control in the 3-D case.  
Nevertheless, the equation has been shown to apply closely even for wavefronts with steepnesses 
differing by a factor of four, thereby indicating that the dependence on earlier times is relatively 
weak during the rise time of a rapid pulse.  This is the period of greatest significance for design 
purposes.  The influence of dispersion does not become strong until after the peak has been 
reached.  
 
7 CONCLUSIONS 
 
The reflection of steep wavefronts arriving at a tunnel portal in a deep cutting and the 
consequential radiation of MPWs beyond the tunnel have been investigated and compared in 
detail with the corresponding phenomena for portals above ground.  The above ground case has 
been investigated extensive by numerous researchers, but the authors are not aware of any 
previous study related to wave propagation in cuttings.  Indeed, no comparable study related to 
any other application with similar geometry has been found even though many existing CFD 
packages are eminently capable of simulating such phenomena.  This is assumed to be an indicator 
that cuttings are a rare instance of practical applications in which wavefront propagation in 2-D 
geometry is important. 
 
The investigation has been undertaken using commercially-available CFD software that is widely 
used and the solutions obtained have been shown to exhibit negligible dependence on the chosen 
numerical grid structure.   In addition, previous work has been cited in which predictions of 
wavefront propagation, including inertial steepening effects, have been validated by comparison 
with analytical expressions. 
 
It has been shown that the reflection/radiation process for portals in deep cuttings exhibits strong 
dispersion that is absent in the above-ground case.  The dispersion causes long delays in the full 
development wavefronts reflected back along a tunnel.  It has been shown that this behaviour 
cannot be represented satisfactorily by an existing practice that is sometimes adequate for 
overground portals, namely imagining that the reflection effectively occurs in a plane a short 
distance outside the portal. 
 



Corresponding delays in radiation beyond the portals have been shown to have only a weak 
influence on steep rising limbs of propagating pulses, but a strong influence on their falling limbs.  
For engineering design purposes, this is a fortuitous result because the rising limbs of the pulses 
are much more important than the falling limbs.  Furthermore, it has made it possible for an 
approximate analytical equation to be developed and used to predict the maximum amplitudes of 
pulses emitted into deep cuttings.  The equation shows that the maximum amplitude of any 
particular pulse decays with increasing distance much more slowly that its counterpart for 
overground portals.  In the cutting, the maximum amplitude is approximately proportional to r -0.5 
whereas, overground, it is approximately proportional to r -1, where r is the distance from the 
portal.  
 
Another important difference from the overground case is that the new equation for the 
maximum amplitude of the radiated pulse cannot be generalised to representing the detailed 
shape of the whole pulse.  Its inadequacies during the period of increasing to a maximum are 
expected to be acceptable in engineering practice, but the same is not true during the subsequent 
decay that is so strongly influenced by the delays that cause strong dispersion. 
 
The practical significance of the work has been discussed briefly, including drawing attention to 
some topics that would benefit from further investigation. 
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APPENDIX NUMERICAL ACCURACY 
 
Comparisons presented in Section 5 demonstrate that the numerical analysis is sufficiently 
accurate for only very small differences from the monopole behaviour to be detectable.  
Nevertheless, it is useful to demonstrate formally that the chosen grid size is sufficiently small to 
have negligible influence on the predictions. For this purpose, comparisons are focussed on a 
location where the strongest spatial changes exist, namely the 90° corner between the tunnel 
ceiling and the vertical face of the cutting in the plane of the portal (i.e. at x = L and y = D/2 – see 
Fig.3).  Likewise, the comparisons are presented for the case that causes the strongest temporal 
changes, namely the steepest wavefront and the 3-D external environment. 
 



Fig.12 shows predicted instantaneous pressures parallel and normal to the axis for the 3-D 
geometry when the toe of the steepest wavefront has travelled a distance 2D beyond the exit 
plane.  Both lines pass through the point {L, D/2, 0}.  The line parallel to the x-axis is on the tunnel 
ceiling when x/D < 12.5 and beyond the tunnel when x/D > 12.5.  The line parallel to the y-axis is in 
the portal plane when y < D/2 and on the vertical face above the portal when y > D/2.  Predictions 
are shown for two grid sizes, namely Δx/D = 1/20 and 1/40.  Except close to the corner the 
differences between the two in the external domain are negligible, but small differences are seen 
close to the corner.  This region is shown at a larger scale in the figures, using discrete points to 
indicate the grid spacing.  This shows that the differences in the smaller scale graphs are 
attributable in part (although only in part) to the influence of discretisation.  In the main body of 
the paper, a grid size of Δx/D = 1/40 has been used for calculations with the 80 kPa/s wavefront, 
but a grid size of Δx/D = 1/20 has been used for the other two wavefronts, for which all changes 
are less rapid. 
 
For completeness, it is noted that the small differences between the predictions with the two grid 
sizes include any inaccuracies in the prediction of wavefront steepening along the tunnel as well as 
inaccuracies introduced at the corner itself.  That is, the strong level of agreement has the 
supplementary effect of demonstrating that numerical dispersion during propagation along the 
tunnel is small in comparison with the wavefront steepening process.  This can be interpreted as 
confirmation that the time steps used in the calculations are suitable.  These satisfy cΔt/Δx = 0.30, 
which has previously been shown by Wang et al 4,7 to be optimum for simulating wavefront 
steepening in a tunnel – even though the optimum value of this ratio for explicit 1-D simulations is 
close to unity.   

  
         (a)  Along y = D/2, z = 0    (b) Along x = L, z = 0 
 

Fig.12. Grid-size dependence close to a 90° corner between the tunnel and the vertical wall 
(80 kPa/s wavefront, 3-D external geometry) 

 


