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Abstract. This work presents the initial results of an analytical tool 
designed to quantitatively assess the level of resilience of urban areas. 
We use Deep Neural Networks to extract features of resilience from a 
trained model that classifies urban areas using a pre-assigned value 
range of resilience. The model returns the resilience value for any urban 
area, indicating the distance between the centre of the selected area and 
relevant typologies, including green areas, buildings, natural elements 
and infrastructures. Our tool also indicates the urban morphological 
characteristics that have a larger impact on the resilience score. In this 
way we can learn why a neighbourhood is successful (or not) and how 
to improve its level of resilience. The model employs Convolutional 
Neural Networks (CNNs) with Keras on Tensorflow for the 
computation. The outputs are loaded onto a Node.JS environment and 
bootstrapped with React.js to generate the online demo. 

Keywords.  Sustainable Cities and Communities, Resilient 
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1. Introduction 
The configuration of the built environment has a significant impact on the ways in 
which people inhabit the urban space. Within the scope of this study, we consider 
resilience in terms of the ways in which urban communities respond to any event on 
the basis of the presence, location and configuration of the resources in their 
neighbourhoods and cities. In case of adverse circumstances (that can happen at a 
sudden as an earthquake or flooding, or more slowly like climate change), communities 
adapt, withstand and thrive in and around the physical elements of their urban space. 
This work is underpinned by the assumption that there is a significant correlation 
between urban morphology and the resilience of communities.  

In previous work (Carta et al., 2021), we developed a quantitative method to 
evaluate the resilience of net-zero communities, based on position, density and 
proximity of physical resources. In this paper we present further findings where we 
apply our method to generate an online tool to automatically evaluate the level of 
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resilience of any neighbour and urban area based on their urban configuration. 
The end-goal of our research is to develop a reliable method to calculate resilience 

values of urban communities based on urban morphology. In particular, we aim to use 
satellite images using models for object detection, so that our model can automatically 
assess and consistently provide a resilience value for any urban area in the world. The 
long-term plan is to train our model to classify resilience values directly from the 
images, by training it with a robust list of values of resilience for each urban area. In 
this study, we present the first step towards this plan where we use object-detection to 
identify relevant urban typologies in satellite imagery and evaluate resilience values 
directly on the web app.   

2. Methods 

We generated two datasets of satellite images. The first one is based on the DeepGlobe 
Land Cover Classification Dataset (Demir et al., 2018) and has been used for the 
training of the model on Tensorflow. We used a sample of 100 images (out of the 803 
images in the original set) selecting the most representative with regards to the 
typologies observed.  

The second dataset has been created for this project using QGIS to extract the 
OpenStreetMap features related to the physical environment (detectable in aerial 
images) as for our previous work (Carta et al., 2021). This second set has been used for 
the validation of the model. 

2.1. WORKFLOW 

For the resilience predictive model, we followed the workflow below: 
Dataset: 1) collect satellite images from the DeepGlobe Land Cover Classification 

Dataset; 2) object labelling with VoTT (Visual Object Tagging Tool); 3) export the 
labelled images (in JSON format) (VoTT-JSON); 4) Import the labelled data (JSON) 
into roboflow; 5) Pre-process the images in roboflow (including resizing and 
augmentation); 6) in roboflow generate a new dataset (with pre-processed images) and 
create train/test split (70/20/10%); 7) export new dataset to YOLOv5/PyTorch format 
for training. 

Training: 1) Import the pre-processed dataset from roboflow to Colab; 2) Clone 
Yolov5 on Colab; 3) Define model configuration and architecture; 4) Train custom 
Yolov5 Detector (approx. 4hr – using CUDA tensor types running on GPU); 5) 
Evaluate Custom YOLOv5 Detector Performance; 6) Run inference with training 
weights; 7) Export weights (with the best weight model) for tensorflow.js. 

Web app visualiser: 1) Import tensorflow.js weights from Colab; 2) Apply the 
model to the on-screen satellite image selected by the user; 3) Compute the distance 
between each identified cluster to the GPS location on the centre of the screen; 4) show 
the final resilience score. 

2.2. DATA PREPARATION AND LABELLING 
The satellite images from the first dataset (all of which were at the same altitude and 
resolution) have been labelled one by one using Microsoft VoTT: Visual Object 
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Tagging Tool (Microsoft, 2019). Our previous work on the city of Copenhagen (Carta 
et al., 2021) showed that resilience values calculated on proximity and density of 
physical elements are mostly affected by green areas, natural elements and 
entertainment venues. Based on these previous findings, we focused on the 4 visually 
recognisable typologies below to identify relevant classes for our training: 1) Green 
areas, 2) Buildings (built areas vs unbuilt), 3) Large infrastructures (train stations, 
stadiums etc.) and 4) Natural elements (lakes, rivers, coasts etc.).  

The labelling on VoTT allowed having a clearly tagged dataset where all images 
are mapped to the 4 classes. All images and labels have been pre-processed, including 
resizing all set to 416×416 pixels to ensure consistency in the training. We augmented 
the initial 100 images to 559 images including horizontal flip, rotation (-15° to+ 15°), 
saturation (-50% to +50%) and exposure (-25% to +25%). The dataset has been split 
into 70% for the training set (489 images), 20% for the validation set (46 images) and 
10% for testing (24). The set ready for training has been exported in Yolov5 format, as 
the YOLO architecture allows for tensors and the use of GPU perfect for Tensorflow. 

2.3. TRAINING DATA ON TENSORFLOW   

The main idea underpinning this experiment is to use the YOLOv5 Detector (Redmon 
et al. 2016), which is an object detection model based on DenseNet/CNN backbone 
and train the weights for the model using inference (Gavali and Banu, 2019). Our 
model uses Keras on Tensorflow.  

The You Only Look Once (YOLO) model was developed in 2015 and has attracted 
significant attention in researchers in computer vision since then. YOLO is defined as 
“an object detection algorithm that divides images into a grid system. Each cell in the 
grid is responsible for detecting objects within itself” (Ultralytics, 2021). One of the 
advantages of YOLO is that its system “computes all the features of the image and 
makes predictions for all objects at the same time. That is the idea of "You Only Look 
Once" (Thuan, 2021).  

Released in 2020 by Glenn Jocher on GitHub (Jocher, 2020), YOLOV5 has been 
introduced as 'a family of object detection architectures and models […] [that] 
represents […] research into future vision AI methods' (Jocher, 2020). YOLOV5 object 
detection model is based on a DenseNet architecture (cf. EfficientDet architecture, 
which employs 'EfficientNet as the backbone network, BiFPN (bi-directional feature 
pyramid network), as the feature network, and shared class/box prediction network' 
(Tan et al., 2020:5).  

For the training of our model, the following method has been followed: 1) Install 
dependencies, including TORCH.CUDA. This package adds support for CUDA tensor 
types, that implement the same function as CPU tensors, but they utilize GPUs for 
computation (PyTorch, 2021); 2) Import labelled dataset from roboflow server; 3) 
Define model configuration and architecture; 4) Train custom Yolov5 Detector. The 
model has been trained with 50 epochs and the network had 283 layers, 7,263,185 
parameters, 7,263,185 gradients, 16.8 GFLOPs (Giga flops, or floating-point 
operations per second); 5) Evaluate Custom YOLOv5 Detector Performance, as shown 
in Figure 1. 
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Figure 1. Visualising the performance of the object detector. The class-loss curve goes down to a 
value of 0.033 after around 40 epochs in this train. 

6) Visualise training data with labels for control, as shown in Figure 2.  

Figure 2. This figure shows the ground truth training data where the classifier has been initially 
tested with the training set. The classifier correctly assigned various classes (0 for green areas, 1 for 

buildings, 2 for large infrastructures and 3 for natural elements).  

7) Run inference with training weights. The last part of this method is to use the best 
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weight in the training to run inference on a new set using the method detect.py. In this 
case, we use the testing set to initially evaluate the model within Colab. The best weight 
is used to evaluate the resilience value of any new map inputted to the model. Figure 3 
illustrates how the model is able to detect the presence of buildings in a test image.   

Figure 3. detection of building groups with the testing set.  

2.4. VISUALISE RESULTS ON THE WEB APP 

For this experiment we developed a web app to calculate the R values directly on 
browsers, where we evaluate the distance in pixels between the centre of the map (as 
selected by the user) and the centre of the rectangular selection identified by the Yolov5 
model. 

The Web app is developed with the front-end Javascript framework React.js and 
uses Tensorflow.js to load and run the Yolov5 model online. It presents users with a 
Google Maps-like interface, where one can move around a satellite map of the World, 
pan and zoom in and out, and look for specific places by label. A button on the lower 
right corner triggers the execution of the classification over the white-overlayed area 
on the map, as shown in Figure 4. A static satellite image of the GPS location on the 
centre of the screen is fetched from Google Maps, encoded, and run through the Yolov5 
model. 

The results are pixel coordinates of the identified markers for each class (i.e., green 
areas, buildings, infrastructures, natural elements). We convert these coordinates back 
to GPS locations in order to draw the right squares onto the onscreen map (each with a 
different shade depending on the class it belongs to) and calculate the line-of-sight 
distance between each point and the centre of the screen. Finally, we calculate the R 
value using these distances and the gamma values for each class, displaying the result 
on screen. On this initial prototype, we are not using the uncertainty given by the model 
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for each identified marker, but it could play a role in future instances of the model. 

Figure 4. Web app interface where user can visualise R values based on area search. 

3. Model Validation  

In order to test the accuracy of our model, we used a sample of 15 cities, for which we 
compared the resilience values obtained by using two different methods. Firstly, we 
used data from existing literate and rankings, using data from the 2013 Grosvenor 
report (Barkham et al., 2013) and the Quality of Life global ranking from Numbeo 
(2021). Secondly, we evaluate the resilience values for the same cities using the method 
we developed in previous work (Carta et al., 2021), as detailed in Section 3.1. We then 
compared the three sets of values to estimate the precision of our model.    

3.1. RESILIENCE BY PHYSICAL ELEMENTS 

In order to test our model, we calculated the resilience value of each neighbourhood 
using the method developed in Carta et al. 2021 which can be summarised in (1):  

                                            𝑅𝑅 =  ∑ 𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚)𝑛𝑛 𝛾𝛾𝑛𝑛𝑛𝑛
𝑖𝑖=1                            (1) 

where R is the overall resilience value for eth observed neighbourhood, d(min) is 
the minimum distance between the centre of the neighbourhood and the urban typology 
considered (e.g. local school, park etc.) and ϒ is a coefficient that considers the quality 
of the distance of the typology based on Kronberg et al. (2019), Government Office for 
Science (2019) and Knupfer et al. (2018) for the private/public transportation ratio and 
National Travel Survey (2014) for education settings. The ϒ values are calculated 
following Table 1: 
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Good Fair Bad 
< 15 min 15 min / 30 min > 30 min 
< 1,260 Km 1,260 to 2,520 Km > 2,520 Km 

Table 1. We considered walking distance in minutes and Kilometres: average of 1.4 metres per 
second or 5 km per hour. 

As this method requires the georeferenced position of urban typologies (like schools, 
train stations, parks etc.), we created a specific map for each city using QGIS to import 
the OpenStreetMap features related to the physical environment at the scale of the city 
and the pin as from the Google Earth image. To calculate the values for each of the 4 
typologies included in this study (green areas, buildings, large infrastructures and 
natural elements), we run a simple Grasshopper definition to compute the equation (1) 
using the maps created with OpenStreetMap and QGIS. The Grasshopper definition 
provided the values shown in the third column of Table 2. 

3.2. VALUES COMPARISON 

The resilience values obtained with these two methods have been compared with those 
calculated with the Yolov5 model as shown in Table 2 below.    

 
 R (QoL)  R (GSVN) R  (GH)  R (Yolov5)  
Munich  27 24 14.14 9.48 
Seattle  26 11 7.56 3.08 
Beijing 234 39 7.39 1.43 
Tokyo  87 26 6.97 1.47 
Melbourne  44 13 6.7 1.24 
Rio  232 45 6.7 1.22 
Pittsburgh  47 5 6.55 - 
Cairo   227 48 5.89 5.48 
Moscow  202 37 5.78 - 
Delhi  236 42 4.92 0.79 
London  149 18 4.82 - 
Toronto  101 1 4.69 1.31 
Singapore  113 32 4.53 - 
Bno Aires 213 36 4.06 1.12 
Stockholm  92 6 3.92 1.25 

Table 2. Comparison of different values of resilience. QoL (1st column) from Numbeo (2021) 
indicating Quality of Life values, GSVN (2nd column) from Gosvernors (2014), R values obtained 

with our Grasshopper script (3rd column) and values with our Yolov5 model (4th column).  
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3.3. ANALYSIS OF RESULTS 

The four sets of R values summarised in Table 2 differ significantly in relative 
magnitude between sets. However, they appear consistent throughout in relative values 
per city, as shown in Figure 5. For example, we see that Buenos Aires has lower R 
values than Delhi and higher than Melbourne in all 4 sets. This is consistent in all cities 
observed.   

 
Figure 5. Plot of the R values with the 4 methods from Figure 2. 

4. Limitations and Next Steps 

In the development of this model, we identified the following limitations. Firstly, we 
used a limited dataset (around 500+ images) for model training. An architecture like 
that of Yolov5 would require a larger number of images per class (in the order of 
thousands). However, Yolov5 is able to provide accurate results even with low 
numbers of images (Ultralytics, 2021). Moreover, the dataset used for the web app is 
based on DigitalGlobe Basemap +Vivid (Maxar, 2021) and differs from those of 
Google Maps and this might lower the accuracy of our results.     

Secondly, we employed a limited number of categories to define the urban 
morphology of the areas observed. We limited the classes to 4 (green areas, buildings 
etc.). A more comprehensive experiment should include more categories, for example 
distinction between buildings (schools, residential, museums etc.). This approach will 
move from the analysis of simple satellite imagery to augmented images through the 
integration with OpenStreetMap data.  

Another point to consider for refinement of this work is the way in which different 
values in (1) for each typology are summated and averaged. In this experiment, we did 
not attribute different weights to points. By acknowledging the individual contribution 
of each element, using for example a coefficient that accounts for distance from the 
centre of the area, or the size of the typology, we could yield more accurate results. 
Also, the model returns a value of uncertainty of each identified cluster, which might 
also be included in the R measure. 

We also noticed that the model predicts differently depending on the zoom of the 
visualised area on screen (larger zoom results in more features being detected). This is 
partially related to the scale of the images in our training set and to the resolution of 
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images loaded on the web app when calculating R. In future iterations of the app, we 
will consider constraining the zoom of the area, once the user has made the selection.    

Finally, a limitation we observed in using Yolov5 was the difficulty in creating 
custom datasets without using roboflow to pre-process the dataset and labelling.  

The next step for this project is to build a larger dataset with labels in order to refine 
the model and its accuracy. 

5. Conclusions 

The model we developed compute the resilience value R of any urban area in the world. 
For each selected area, the app returns an overall R, as well as a breakdown of the 
average of each cluster of urban typologies sorted by category, as shown in Figure 6. 
With this study, we introduce the early stages of a novel tool to analyse urban areas and 
their level of community resilience, as well as elements to suggest how to intervene to 
improve it.  

Figure 6. Screen grab of the app showing the overall value R and 4 clusters of buildings detected by 
the model. The distance from the centre of the area to each cluster is used to calculate the individual 

contribution of that cluster to R (0.31, 0.28, 0.26). 

This tool can be helpful to analyse areas of the world that are not currently included in 
world’s resilience rankings, and to help designers to test design hypothesis for new 
schemes. For example, planners can analyse georeferenced master plan images to 
compare current levels of resilience to those resulting from the proposed schemes. We 
this initial results, we aim at sharing with colleagues our findings and gather feedback 
on how to improve the tool in the next stages of development.  
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