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Abstract 
 
Cancer cells exhibit a rewired metabolism to meet their specific energy needs for cell 

proliferation. Despite remarkable efforts to unravel how cancer cells reprogram their 

metabolism, characterization of the metabolic differences between the different subtypes 

of cancer has not been well performed. Haematological cancers can be divided into 

subtypes with significant implications for diagnosis and treatment. 

The metabolic profiles of a panel of 18 haematological cancer cell lines representing 

acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), multiple myeloma 

(MM), Burkitt’s lymphoma (BL) and diffuse large B cell lymphoma (DLBCL) were 

characterised using an NMR approach. I found a notable widespread metabolic 

heterogeneity between haematological cancer subtypes, even though all haematological 

cancer cells showed a typical Warburg effect with lactate production. Intriguingly, MM cells 

were observed with a large amount of leucine uptake. The exploration of leucine 

metabolism using stable isotope tracer revealed that leucine is fully metabolised in MM 

cells and feeds the TCA cycle as well as sialic acid formation. Moreover, metabolic 

differences between BL and DLBCL were scrutinised, as these diseases tend to share 

similar morphological, immunophenotypic and genetic characteristics. Exogenous 

asparagine was found to regulate serine metabolism in BL cells. Furthermore, the 

combination of asparaginase (ASNase), a clinically used agent that depletes exogenous 

asparagine, with a PHGDH inhibitor (NCT503) had a synergistic effect on the viability in 

BL cells, exhibiting more decrease in cell viability as compared to those obtained from 

treatment of ASNase alone. Conversely, the combination of ASNase with NCT503 

showed no synergistic effect on the viability of DLBCL cells, suggesting that the 



 

 

combination of ASNase with NCT503 is solely synergistic for BL. 

Hence, NMR-based metabolite profiling has revealed how metabolism alters in 

haematological cancers. This thesis has highlighted and investigated metabolic 

dependencies and vulnerabilities in different haematological cancer which can be utilised 

for diagnostic and therapeutic purposes in future.
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1.1 Cell metabolism 

Cellular metabolism is defined as the set of chemical reactions that take place in the cell 

so as to maintain life. Products of these chemical reactions provide cells with materials 

that are necessary for growth, reproduction, and maintenance of their structure. Metabolic 

processes have two distinct classes: anabolism and catabolism (Sánchez López de Nava 

& Raja, 2020). Both anabolic and catabolic reactions are critical to maintaining life. 

Anabolism is the construction of molecules from smaller molecules utilising energy in the 

form of ATP molecules. Examples of anabolic reactions, also called biosynthesis 

reactions, are fatty acid synthesis, nucleic acid synthesis and the pentose phosphate 

pathway that generates NADPH and pentoses (5-carbon sugars) (Stincone et al., 2015).  

Catabolism is the breaking down of complex molecules into smaller units releasing the 

energy contained in the chemical bonds. The energy yielded from a catabolic reaction is 

released in the form of ATP and heat. Important sets of catabolic reactions occur in 

glycolysis, the tricarboxylic acid cycle (TCA) and β-oxidation (Tortora & Derrickson, 2018). 

During starvation, the amino acids are broken down to their carbon and nitrogen 

skeletons.  While the nitrogen backbone is discarded through the urea cycle from the 

body, the carbon backbone can be funnelled into molecules involved in glycolysis and the 

TCA cycle (Gurina & Mohiuddin, 2020).   
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Figure 1.1.1 Anabolic and catabolic pathways. 

A simplified overview of the major anabolic and catabolic pathways. Glucose can either be 

directed to pentose phosphate pathway (PPP) or oxidised to pyruvate. Carbon atoms of alanine 

(Ala), serine (Ser), cysteine (Cys), glycine (Gly) and threonine (Thr) are used in the production of 

pyruvate. Pyruvate is converted to acetyl-CoA to enter the TCA cycle. Glutamine (Gln), glutamate 

(Glu), arginine (Arg), histidine (His) and proline (Pro) are converted into a-ketoglutarate;  

isoleucine (Ile), methionine (Met), threonine (Thr) and valine (Val) into succinyl-CoA,  

phenylalanine (Phe) and tyrosine(Tyr) into fumarate; aspartate (Asp) and asparagine (Asn) into 

oxaloacetate. The carbon skeletons of leucine (Leu) and isoleucine (Ile) are ultimately broken 

down to yield acetyl-CoA. Acetyl-CoA is then condensed with oxaloacetate yielding citrate. Citrate 

can either be cleaved to acetyl-CoA or converted to isocitrate in the TCA cycle. The carboxylation 

of acetyl-CoA to malonyl-CoA starts fatty acid synthesis. 
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1.2 Major metabolic pathways 

1.2.1 Glycolysis and pentose phosphate pathway 

Glycolysis is one of the main metabolic pathways of cellular respiration to synthesise the 

high energy molecules of ATP and NADH. Glycolysis is an anaerobic source of energy 

that has evolved in many living organisms but can occur in the presence of oxygen as 

well.  

In glycolysis, glucose is split to yield two molecules of pyruvate and produce a net total of 

two ATP molecules and NADH through a series of reactions in the cytosol (see Figure 

1.2.1). In the first reaction of glycolysis, glucose is phosphorylated with a phosphate group 

from ATP by hexokinase (HK), producing glucose 6-phosphate and ADP. HK catalyses 

the rate-limiting first step of glycolysis. Glucose 6-phosphate is then converted to fructose 

6-phosphate by phosphoglucoisomerase (PGI) which catalyses the aldose-ketose 

isomerization. Phosphofructokinase-1 (PFK-1) catalyses production of fructose 1,6-

bisphosphate from fructose 6-phosphate. Fructose 1,6-bisphosphate is split into two 

triose phosphates, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate by 

aldolase (ALD). Glyceraldehyde 3-phosphate is then converted to 1,3-

biphosphoglycerate in a reaction which reduces a molecule of NAD+ to NADH by the 

action of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 1,3-biphosphoglycerate 

is now used to generate the first ATP as part of glycolysis. Phosphoglycerate kinase 

(PGK) transfers a phosphate group from 1,3-biphosphoglycerate to ADP, producing ATP 

and 3-phosphoglycerate. Then, phosphoglycerate mutase (PGM) catalyses the transfer 

of the phosphate group from one hydroxyl group to another hydroxyl group of 3-

phosphoglycerate, generating 2-phosphoglycerate. In the next step, 2-phosphoglycerate 
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is dehydrated to form phosphoenolpyruvate by enolase (ENO). In the last reaction, the 

phosphoryl group of phosphoenolpyruvate is transferred to a molecule of ADP by 

pyruvate kinase (PKM), forming ATP and pyruvate. In the absence of sufficient oxygen, 

oxidation of NADH to NAD+ occurs in a reaction which converts pyruvate to lactate 

catalysed by lactate dehydrogenase (LDH). The production of NAD+ in this reaction allows 

further glycolysis. On the other hand, if oxygen is plentiful, glycolytically produced 

pyruvate is transported to mitochondria in order to become completely oxidised in the 

TCA cycle (Chaudhry & Varacallo, 2020). 

Glycolytic intermediates act as a starting point for the pentose phosphate pathway (PPP). 

Once glucose is phosphorylated to generate glucose 6-phosphate, it can enter the PPP 

in the cytosol (see Figure 1.2.1). The PPP can be grouped into an oxidative stage and a 

non-oxidative stage. In the oxidative stage, NADPH is produced while ribulose 5-

phosphate is formed from glucose 6-phosphate. The non-oxidative reactions are 

catalysed by transketolase (TKT) and transaldolase (TA) that exchange two and three-

carbon fragments between sugar phosphates. Ribose 5-phosphate and its derivatives are 

required for the biosynthesis of essential cellular molecules such as RNA, DNA, and 

certain coenzymes. NADPH is the pyridine nucleotide coenzyme used for biosynthesis 

pathways that require reducing power, particularly for the synthesis of fatty acids (Cho et 

al., 2018). 
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Figure 1.2.1 Glycolysis and pentose phosphate pathway. 

The diagram represents glycolysis (blue), the oxidative phase of the pentose phosphate pathway 

(green) and the non-oxidative phase of the pentose phosphate pathway (red). The glycolysis and 

pentose phosphate pathway (PPP) are metabolically connected. Glucose in cells is rapidly 

phosphorylated to generate glucose 6-phosphate (G6P). The G6P can be either metabolised by 

the PPP to produce NADPH or by the glycolytic pathway to produce ATP, NADH and pyruvate. 

The PPP consists of two biochemical branches: an oxidative branch that produces NADPH and 

a non-oxidative branch that generates fructose 6-phosphate and glyceraldehyde 3-phosphate. 

Abbreviations: ADP: adenosine diphosphate; ATP: adenosine triphosphate; NAD: nicotinamide 

adenine dinucleotide; NADH: reduced nicotinamide adenine dinucleotide; NADP: nicotinamide 

adenine dinucleotide phosphate; NADPH: reduced nicotinamide adenine dinucleotide phosphate.  

1.2.2 Fatty acid metabolism 

Fatty acid (FA) metabolism, including de novo synthesis and oxidation of FAs, contributes 

to important needs of cells. Fatty acids serve as building blocks of complex membrane 

lipids as well as acting as fuel molecules. 

Fatty acid synthesis is the process by which acetyl-CoA and NADPH are converted to 

fatty acids in the cytosol (see Figure1.2.2). Since acetyl-CoA is produced in mitochondria 

and the inner mitochondrial membrane is not permeable for acetyl-CoA, it is shuttled into 

the cytosol by the citrate transport system after condensation with oxaloacetate to form 

citrate by citrate synthase (CS). Then citrate is cleaved to regenerate acetyl-CoA and 

oxaloacetate by ATP-citrate lyase (ACLY) in the cytoplasm. The first committed step in 

fatty acid biosynthesis consists of carboxylation of acetyl-CoA to form malonyl-CoA using 

HCO3
- by acetyl-CoA carboxylase (ACCase). As the elongation steps of fatty acid 

synthesis require the phosphopantetheine reactive unit in acyl carrier protein, ACP, the 

formation of acetyl-ACP and malonyl-ACP occurs by the action of the acetyl transacylase 

(ACAT) and malonyl transacylase (MCAT) activity, respectively. The synthesis of C16 

palmitate from acetyl-ACP and malonyl-ACP is catalysed by the multiple enzymatic 
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activities of fatty acid synthase (FASN), which requires NADPH as reductant. Then, 

palmitate can undergo elongation and desaturation to yield a wide variety of other fatty 

acids (Berg et al., 2002). 

Fatty acids are particularly important energy storage compounds in nature.  Degradation 

of fatty acids plays a pivotal role in energy homeostasis in organs such as the heart, liver 

and skeletal muscles. Fatty acids can deliver more energy per gram than glucose; thus, 

they compete with carbohydrates as the primary oxidative substrate. During fasting and 

strenuous exercise, when glucose supply becomes limited, oxidation of fatty acids 

becomes vital for many organs to generate energy.  Fatty acid β-oxidation is the catabolic 

process of breaking down a fatty acid into acetyl-CoA units in the mitochondria in 

eukaryotes. Free fatty acids cannot cross any cell membrane because of their negative 

charge. Hence, fatty acids must be actively transported into the mitochondrial matrix 

where β-oxidation takes place. The transport of fatty acids into mitochondria occurs by 

facilitated diffusion. Firstly, fatty acids are activated by conjugation with coenzyme A (CoA) 

in the cytosol, catalysed by acyl-CoA synthetase. Then, fatty acyl-CoA is esterified to 

carnitine to yield acylcarnitine for transport across the mitochondrial membrane. Once 

acylcarnitine is inside the mitochondrial matrix, fatty acyl-CoA is removed and beta-

oxidation occurs by cleaving two carbons every cycle to form acetyl-CoA, along with high 

energy compounds NADH and FADH2. In β-oxidation, two carbon subunits in the form of 

acetyl-CoA are repeatedly cleaved to form acetyl-CoA, which is further oxidised 

completely to CO2 and H2O with the generation of additional NADH and FADH2 in the TCA 

cycle (Berg et al., 2002). 

 



10 

 

 

 

Figure 1.2.2 Fatty acid synthesis. 

The figure shows the fatty acid synthesis in a cell. Fatty acid synthesis starts by transportation of 

citrate out of the mitochondria. Then citrate is cleaved to yield acetyl-CoA and oxaloacetate in the 

cytosol. Acetyl-CoA is converted to malonyl-CoA. CoA portions of acetyl-CoA and malonyl-CoA 

are replaced by a carrier protein, ACP. Synthesis of C16 palmitate from acetyl-ACP and malonyl-

ACP is catalysed by the multiple enzymatic activities of FASN. Abbreviations: PYC: pyruvate 

carboxylase; PDH: pyruvate dehydrogenase; CS: citrate synthase; ACLY: ATP-citrate lyase; 

ACCase: acetyl-CoA carboxylase; ACAT: acetyl transacylase; MCAT: malonyl transacylase; MDH: 

malate dehydrogenase; ME: malic enzyme; FASN: fatty acid synthase. 

1.2.3 TCA cycle and oxidative phosphorylation 

The TCA cycle, also known as the citric acid cycle, is a series of chemical reactions in the 

cells that oxidises acetyl-CoA to CO2 and H2O, with the concomitant production of energy 

(Alabduladhem & Bordoni, 2020). Acetyl-CoA can be derived from the oxidation of 

glycolytically produced pyruvate by PDH or degradation of ketogenic amino acids and β-
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oxidation of fatty acids. The TCA cycle provides cells with precursor metabolites for the 

synthesis of fatty acids, amino acids and nucleotides. Thus, the TCA cycle is considered 

to be the hub of aerobic metabolism as it fulfils energetic, biosynthetic and redox balance 

requirements of cells.  

The TCA cycle consists of eight reactions in the matrix of mitochondria of eukaryotes and 

in the cytoplasm of prokaryotes. It begins with the generation of citrate formed from the 

condensation of oxaloacetate and acetyl-CoA (see Figure 1.2. 3). The citrate formation is 

followed by the two-step reactions in which citrate is converted to isocitrate by aconitase 

(AH). Then, isocitrate dehydrogenase (IDH) oxidizes isocitrate to α-ketoglutarate and CO2 

while reducing NAD+ to NADH. The next step of the cycle is oxidative decarboxylation of 

α-ketoglutarate to succinyl-CoA and CO2, with the formation of a molecule of NADH by α-

ketoglutarate dehydrogenase (KGCDH). Succinate thiokinase (SST) removes the CoA 

group from succinyl-CoA to produce succinate; this first generates GTP by substrate-level 

phosphorylation. Succinate is oxidised to fumarate by succinate dehydrogenase (SDH) 

using FAD+ as a proton acceptor. Then, fumarate hydratase (FH) catalyses the reversible 

addition of one molecule of H2O to the double bond of fumarate to yield malate. The last 

step of the TCA cycle is the regeneration of oxaloacetate, the starting compound of the 

cycle, from malate by malate dehydrogenase (MDH). During this oxidation, NAD+ is 

required as a cofactor and is reduced to NADH (Haddad & Mohiuddin, 2020).  

The TCA cycle shuttles high-energy NADH and FADH2 molecules to the electron transport 

chain. The electron transport chain is the site of oxidative phosphorylation and consists 

of a series of proteins and electron carriers found in the mitochondrial inner membrane. 

Briefly, oxidative phosphorylation is ATP production that links to the re-oxidation of NADH 

and FADH2 by the electron transport chain. Electrons are transferred from one member 
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of the electron transport chain to another releasing some energy. The energy released by 

electron flow is used to pump protons to the intermembrane space in order to create an 

electrochemical proton gradient between the inner and outer mitochondrial membrane. 

Therefore, protons flow back down the gradient into the matrix through ATP synthase 

(ATPase) which uses the energy of protons in the synthesis of ATP from ADP.  

Furthermore, the TCA cycle provides the substrates for amino acid synthesis by 

transamination, as well as for fatty acid synthesis and nucleotide synthesis (Anderson et 

al., 2018). For instance, malate generated in the TCA cycle can be shuttled into 

intermembrane space of mitochondria by a malate-alpha-ketoglutarate transporter (OGC) 

and converted into oxaloacetate, during which NAD+ is reduced with two electrons to form 

NADH (see Figure 1.2.3). Then aspartate aminotransferase (AST) produces aspartate 

from oxaloacetate (Todisco et al., 2019). 
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Figure 1.2.3 Main pathways of mitochondrial energy production. 

The diagram shows the TCA cycle and oxidative phosphorylation. The TCA cycle is a set of eight 

enzymatic reactions that begins with the transfer of an acetyl group from acetyl-CoA to 

oxaloacetate, then, in other steps, the acetyl group of acetyl-CoA are released as CO2, restoring 

the oxaloacetate molecule for another round. Glutamine acts as an anaplerotic substrate to 

replenish the cycle intermediate, α ketoglutarate. The TCA cycle gives rise to three NADH 

molecules and one FADH2 molecule. Electrons of NADH and FADH2 are used to create a chemical 

gradient to produce ATP by electron transport chain found in the mitochondrial inner membrane. 

The malate produced in the TCA cycle moves into the intermembrane space of mitochondria. In 

the intermembrane space, malate is oxidised into oxaloacetate. The oxaloacetate is 

transaminated to produce aspartate using glutamate. The aspartate is then shuttled into the 

mitochondrial matrix and converted back to oxaloacetate. Abbreviations: MDH: malate 

dehydrogenase; AST: aspartate aminotransferase; AGC: glutamate-aspartate transporter; OGC: 

malate-alpha-ketoglutarate transporter; MPC: mitochondrial pyruvate carrier; PDH: pyruvate 

dehydrogenase; CS: citrate synthase; AH: aconitase; IDH: isocitrate dehydrogenase; KGDHC: α 

ketoglutarate dehydrogenase; SSC: succinate thiokinase; SDH: succinate dehydrogenase; FH: 

fumarate hydratase; FAD: flavin adenine dinucleotide; FADH2: reduced flavin adenine 

dinucleotide; GDP: guanosine diphosphate; GTP: guanosine triphosphate; GLS: glutaminase; 

GLUD: glutamate dehydrogenase; ADP: adenosine diphosphate; ATP: adenosine triphosphate; 

NAD: nicotinamide adenine dinucleotide; NADH: reduced nicotinamide adenine dinucleotide; CI: 

NADH ubiquinone oxireductase; CII: succinate dehydrogenase; CIII: cytochrome bc1 complex; 

CIV: cytochrome c oxidase; ATPase: adenylpyrophosphatase. 
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1.3 Metabolism in cancer cells 

Cancer is characterised by the uncontrolled growth of abnormal cells that destroys normal 

body tissue. Normal cells acquire specific mutations and subsequently traits to become 

tumorigenic and eventually malignant. One of the most fundamental traits of the cancer 

cell is dysregulation of growth-promoting signals that prevent progression through the cell 

cycle (Hanahan & Weinberg, 2011). Whilst normal cells carefully control cell cycles and 

differentiation to ensure homeostasis of cell number and tissue composition, cancer cells 

constitutively stimulate many signalling pathways that support growth and proliferation. 

Mutations in tumour suppressor genes endow cancer cells with the ability to evade growth 

suspension and cell death (Hanahan & Weinberg, 2011).  

Cell metabolism is closely linked to cell proliferation. The uncontrolled proliferation and 

growth of cancer cells correlate with corresponding adjustments of energy metabolism in 

order to promote cell growth and division (Pavlova & Thompson, 2016). The alterations 

in metabolism are generally performed as a coordinated response of a cell to distinct 

cellular processes. For instance, cells with high proliferation reorganize the biosynthetic 

pathway for cell cycle progression, leading to a shift toward anabolic metabolism (Fritz & 

Fajas, 2010). Cancer cells uniquely alter their metabolism to meet the anabolic 

requirements associated with cell proliferation and also to enable invasion, metastasis 

and resistance to therapy (Phan et al., 2014). Thus, metabolic reprogramming in cancer 

cells has been recognised as one of the main hallmarks of malignancies (Pavlova & 

Thompson, 2016). 

Cell proliferation entails the production of building block, intermediary metabolites and 

NADPH as reducing power. Several cancer cells were shown to be addicted to glucose 

so that they adapt to rapid proliferation (Fang & Fang, 2016; Gandhi & Das, 2019; 
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Strickland & Stoll, 2017). Catabolism of glucose provides cancer cells with intermediary 

metabolites which are diverted into branching pathways (Boroughs & DeBerardinis, 

2015). For instance, glucose 6-phosphate produced by phosphorylation of glucose can 

be oxidised to generate NADPH in the PPP. Another important example is the use of 

glycolytic 3-phosphoglycerate generated from glycolysis as a precursor for the synthesis 

of serine that facilitates the folate metabolism and nucleotide synthesis (Newman & 

Maddocks, 2017). In normal cells, glycolysis is suppressed by energy-rich metabolites 

produced in mitochondria under aerobic conditions (Luengo et al., 2017). In a marked 

contrast to normal cells, cancer cells maintain a high rate of glycolysis in the presence of 

oxygen (Bhattacharya et al., 2016). Although glycolysis is bioenergetically less favourable 

than oxidative phosphorylation with less ATP production per molecule of glucose, cancer 

cells prefer glycolysis to oxidative phosphorylation(San-Millán & Brooks, 2017) .  

Paradoxically, many cancer cells show an addiction to glutamine, despite the fact that 

glutamine is a non-essential amino acid (DeBerardinis et al., 2007). Glutamine plays a 

key role in the maintenance of the TCA cycle by replenishing TCA intermediates. 

Furthermore, the efflux of glutamine is coupled to the import of leucine that maintains the 

activity of the mammalian target of rapamycin (mTOR) pathway, which regulates, cell 

motility, cell survival, protein synthesis and autophagy (Nicklin et al., 2009). Thus, the high 

rate of glutamine increases proliferation as well as survival in cancer cells.  

Many cancer cells also alter fatty acid metabolism to maintain cellular structure, provide 

energy and to regulate multiple signalling pathways (Huang & Freter, 2015). The 

increased de novo synthesis of fatty acids (FAs) is also believed to provide cancer cells 

with a constant supply of FAs for protein modification (Munir et al., 2019).  
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1.3.1 The Warburg effect 

In normal differentiated cells, glucose metabolism begins with the oxidation of one 

molecule of glucose to two molecules of pyruvate, two molecules of NADH and two 

molecules of ATP;  followed by the citric acid cycle in which three molecules of NADH, 

one molecule of FADH2 and one molecule of GTP are produced in preparation for 

oxidative phosphorylation in the presence of oxygen (Chaudhry & Varacallo, 2020). Non-

transformed cells ferment glucose to lactate in hypoxic conditions, which is known as 

anaerobic glycolysis. In the 1920s, Otto Warburg and colleagues had observed that 

tumour cells converted glucose into lactate for obtaining energy as evidenced by a high 

rate of glucose uptake and an enormous production and export of lactate even in the 

presence of the abundant oxygen (Warburg et al., 1927). Fermentation of glucose in the 

presence of oxygen is also known as aerobic glycolysis. This phenomenon was later 

termed the Warburg effect and accepted as an anomalous characteristic of cancer cells 

(Vander Heiden et al., 2009) (see Figure 1.3.1). For example, although leukaemic cells 

are present in blood and thus live under aerobic conditions, they display a glycolytic 

phenotype (Cunningham & Kohno, 2016). Nolop and colleagues showed that the rate of 

uptake of 18-fluoro-2-deoxy-D-glucose (18FDG) by pulmonary tumour cells of 12 patients 

was significantly higher than normal tissue and revealed that pulmonary tumours had 

elevated rates of glucose uptake despite being in airways (Nolop et al., 1987).  

Several hypotheses have been made so far to understand why cancer cells metabolise 

glucose via aerobic glycolysis. The fact is that complete catabolism of glucose using 

mitochondrial oxidative phosphorylation is a more efficient way to meet the energy 

requirements of cells and maximize ATP production. Specifically, insight from the study of 

aerobic glycolysis has helped to shed light on why cancer cells shut down the complete 
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oxidation of glucose in the TCA cycle. Rather than maximising ATP yield, cancer cells are 

in a much greater need for production of cellular building blocks for cell division (Vander 

Heiden et al., 2009). One molecule of glucose can be diverted into the pentose phosphate 

pathway to generate cytosolic NADPH and ribose 5-phosphate required for the 

biosynthesis of essential cellular molecules such as RNA and DNA. For instance, 

synthesis of lipids, amino acids and nucleotides require more equivalents of carbon and 

NADPH than of ATP (Boroughs & DeBerardinis, 2015). From this perspective, it becomes 

clear that aerobic glycolysis provides macromolecular precursors instead of focusing on 

ATP production in rapidly proliferating malignant cells.  

1.3.2 The role of lactate in cancer cells 

The increased glucose uptake and metabolism by neoplastic cells results in the 

accumulation of intracellular lactate (Romero-Garcia et al., 2016). The accumulation of 

lactic acids in cancer cells promotes lactic acid transport by the proton-linked 

monocarboxylate transporters (MCTs) across the plasma membrane, which in turn makes 

extracellular pH drop to 6.0–6.5 (Erra Díaz et al., 2018).  The acidic microenvironment 

contributes to immunologic escape mechanisms in different ways (Romero-Garcia et al., 

2016). The high concentration of lactate in the tumour environment was found to have a 

deleterious effect on the differentiation of monocytes to dendritic cells (DC) and 

proliferation of cytotoxic T lymphocytes (CTLs) which are important in the anti-tumoural 

response (Fischer et al., 2007). Since the export of lactate depends on the concentration 

gradient between intracellular and extracellular lactate, high extracellular lactate 

concentrations generated by tumour cells blocks lactate secretion from cytotoxic T cells. 

As a consequence of this, the accumulation of  lactate in the tumour microenvironment 
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impairs metabolism and function of the activated T cells, thereby making T cells unable 

to adequately eliminate cancer cells (Fischer et al., 2007).  

Beyond contribution to immune escape, lactate plays a central role in angiogenesis and 

metastasis. There is a renaissance of interest in the contribution of tumour acidity to local 

invasion and metastasis in cancer research, as the high rate of aerobic glycolysis impacts 

the development of the metastatic phenotype (San-Millán & Brooks, 2017). It has been 

shown that inhibition of lactate production reduces the development of metastasis in an 

established murine model of breast cancer (Rizwan et al., 2013). Furthermore, lactate 

assists angiogenesis through acid-induced expression of VEGF in endothelial cells (San-

Millán & Brooks, 2017). 

 

Figure 1.3.1 Glucose metabolism in a normal and a cancer cell. 

In normal cells, glucose is processed through glycolysis and completely oxidised through the TCA 

cycle. Only if oxygen is not sufficient, pyruvate is converted to lactate. Unlike normal cells, cancer 

cells metabolise glucose into lactate regardless of presence oxygen  (Warburg et al., 1927). The 

increased glucose uptake is used to fuel the pentose phosphate pathway in cancer cells (Jin & 

Zhou, 2019). Glutamate produced during glutaminolysis maintains the TCA cycle. 
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1.3.3 Genetic alterations and the Warburg effect 

The weight of the evidence to date supports that the Warburg effect is facilitated by 

orchestrated oncogene activation and tumour suppressor mutations (Koppenol et al., 

2011; Ward & Thompson, 2012). Therefore, numerous studies have investigated the 

regulation of the Warburg effect in cancer cells.  

Hypoxia-inducible factor 1 alpha (HIF-1α), p53 and proto-oncogene c-Myc drive the 

Warburg effect by regulating the gene expression of many glycolytic enzymes 

(Marbaniang & Kma, 2018). Given the importance of glucose transporter 1 (GLUT1) as a 

key rate-limiting factor in the glucose transport in cells, point mutations in the DNA-binding 

domain of p53 were found to abolish the inhibitory effect of p53 on transcriptional activity 

of the GLUT1 gene, resulting in increased GLUT1 protein levels and consequently 

increased glucose uptake (Schwartzenberg-Bar-Yoseph et al., 2004). Elevated HIF-1α 

and c-Myc also continuously induce expression of hexokinase 2 (HK2), pyruvate kinase 

isoenzyme 2 (PKM2) and lactate dehydrogenase A (LDHA) (Burns & Manda, 2017). 

Studies identified that aberrant induction of HK2 expression is in part responsible for the 

high rate of glycolysis and accelerated glucose flux into the PPP in breast and lung cancer 

cells (Patra et al., 2013; T. Yang et al., 2018). 

Aberrant tyrosine kinase signalling plays a significant role in regulating the activity of 

glycolytic enzymes in numerous different cancers, including both blood cancers and solid 

tumours.  As a notable example, phosphorylation of PKM2 by oncogenic kinases (e.g., 

FGFR1, BCR-ABL, and Jak2) restricts the terminal reaction in glycolysis (Hitosugi et al., 

2009).  
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1.3.4 Drug resistance associated with the Warburg effect 

The Warburg effect enhances cancer cell growth and aggressiveness. In addition to 

promoting tumourigenesis, a series of recent studies has revealed that the Warburg effect 

is one of the essential components for the resistance of cancer cells to chemo-and 

radiotherapy (Cao et al., 2017; Tan et al., 2019). The enzymes directly catalysing the 

reactions in glycolysis have been implicated in the development of a drug-resistant 

phenotype in cancer cells (Bhattacharya et al., 2016).  

Glycolytic enzymes have been shown to promote cell survival and drug resistance 

through intervention in apoptosis (X. Yu & Li, 2017). HK2 can confer cell survival by direct 

insertion in the mitochondrial outer membrane to inhibit binding of apoptotic Bcl-2 family 

proteins to mitochondria. Thus, HK2 induces drug resistance by the inhibition of intrinsic 

apoptotic pathways (Majewski et al., 2004). Overexpression of PKM2, the final rate‐

limiting enzyme of glycolysis, was shown to prevent apoptosis by regulating Bcl-xL at the 

transcriptional level  in gastric cancer cells (Kwon et al., 2012). Clinically, increased PKM2 

levels  have been highly associated with resistance to 5‐fluorouracil (5-FU) in patients 

with colorectal cancer compared with complete responders to 5-FU-based chemotherapy 

(Bhattacharya et al., 2016). In support of this data, gene silencing of PKM2 increases the 

effects of docetaxel and cisplatin in lung carcinoma cells (Bhattacharya et al., 2016). In 

addition to PKM2, Inhibition of GLUT1 by a specific inhibitor significantly overcomes 5-

FU resistance of colon cancer cells indicating the importance of glucose uptake in colon 

cancer cells  (W. Liu et al., 2014).  
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1.3.5 Glutaminolysis 

Tumour cells undergo a metabolic reprogramming that is required for tumour 

development. Although cancer cells preferentially convert glucose into lactate instead of 

entering pyruvate into the TCA cycle, even under oxygen-rich conditions, they remain 

dependent on mitochondrial metabolism. As a result of limited pyruvate availability due to 

the Warburg effect, glutamine is used to replenish TCA cycle intermediates in order to 

maintain mitochondrial function (Reitzer et al., 1979).  

Through glutaminolysis, glutamine is first deaminated to glutamate and further to α-

ketoglutarate by glutaminase (GLS) and glutamate dehydrogenase (GLUD) respectively 

Glutaminolysis enables ATP production through oxidative phosphorylation and provides 

nitrogen and carbon skeletons for generation of antioxidants, nonessential amino acids, 

purines, pyrimidines and fatty acids (Conrad & Sato, 2012; Son et al., 2013). Thus, 

glutamine metabolism contributes to the increased levels of tumour growth and 

metastasis by the biosynthesis of proteins, lipids, and nucleotides, and overcomes 

oxidative stress through glutathione synthesis (L. V. Yang, 2017). Yang and co-workers 

reported that glucose deprivation resulted in a gradual rise in ammonia production in 

glioblastoma cells through increasing GLS activity. Indeed, inhibition of GLUD activity in 

glioblastoma cells has been shown to enhance the effect of drugs that suppress glycolysis 

(Xiang et al., 2015). As has been previously reported, GLUD over-expression is 

associated with metastatic lymph nodes and liver metastases lesions in colorectal cancer 

(G et al., 2015). Furthermore, specific inhibition of GLS by BPTES prolongs survival of an 

immune-competent Myc-mediated mouse model of liver cancer (Xiang et al., 2015).   
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1.3.6 Interplay between genetics and glutaminolysis in oncogenesis 

Cancer cells alter their glutamine metabolism to benefit their metabolic needs, growth, 

proliferation, and survival. Several findings have provided evidence that mutations in 

oncogenes and or tumour suppressor genes reprogram glutamine metabolism in cells (L. 

Yang et al., 2017). The proto-oncogene c-Myc is well known to regulate cell metabolism 

(Shim et al., 1997). With regard to glutamine metabolism, the oncogene c-Myc has been 

shown to enhance glutamine uptake by directly activating the expression of glutamine 

transporters SLC1A4 and SLC1A5  genes, promoting the influx of glutamine (Wise et al., 

2008). Indeed, c-Myc was found to induce expression of glutamine synthetase (GS) 

through upregulation of thymine DNA glycosylase (TDG), which promotes active 

demethylation of the GS promoter in a number of human and murine cells (Bott et al., 

2015). A further role for c-Myc in glutaminolysis stems from the observations that the 

expression of GLS gene is increased via transcriptional repression of the GLS repressor 

micro RNAs (miR)-23a/b by c-Myc (Bott et al., 2015).  

Mutations in RAS proteins are one of the most prevalent oncogenic alterations observed 

in human and experimentally induced animal tumours. Several reports suggest that 

oncogenic Ras proteins, such as KRAS, exhibit increased utilisation of glutamine for 

anabolic synthesis (Bryant et al., 2014; Gaglio et al., 2011).  Oncogenic KRAS was found 

to increase the gene expression of enzymes associated with glutaminolysis in KRAS-

mutant cells (Bryant et al., 2014). Specifically, KRAS-transformed cells elevate 

expression of AST to release aspartate into the cytoplasm for NADPH production (M. S. 

Miller & Miller, 2011). 

The PI3K/AKT/mTOR pathway is crucial for many aspects of cell growth and survival and 

deregulated in several cancers (Paplomata & O’Regan, 2014; Porta et al., 2014). 
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Activation of mTORC1 has been shown to positively regulate the anaplerotic entry of 

glutamine into the TCA cycle and glutamine flux by activating GLUD and GLS. (Csibi et 

al., 2014). Furthermore, the P13K/AKT axis stimulates glutathione (GSH) synthesis 

through the transcriptional up-regulation of the GSH biosynthetic genes in breast cancer 

cells(Lien et al., 2016). 

In addition to oncogenes, tumour suppressors also profoundly regulate glutamine 

metabolism. For example, the tumour suppressor retinoblastoma protein (RB) 

suppresses the expression of the glutamine transporter ASCT2 and the activity of GLS1 

by E2F transcription factor 3 (E2F3).  Loss of Rb-1 function markedly elevates glutamine 

uptake and conversion to glutamate in mouse embryonic fibroblast (MEF) cells (Reynolds 

et al., 2014). 

1.3.7 Aberrant lipid metabolism in tumour cells 

The enhanced proliferation of tumour cells requires specific alterations in their metabolic 

activity. This metabolic reprogramming supports their high growth rates and high energy 

demand. In addition to the changes in glucose and glutamine metabolism, another a 

fundamental feature of metabolic reprogramming in transformed cells is the elevated de 

novo synthesis of fatty acids (FAs). Lipids serve as a source of energy and provide cells 

with a constant supply of FAs required by the proliferating tumour cells for membrane 

biogenesis and other associated functions during growth (Mounier et al., 2014). 

In normal adults, the de novo synthesis of FAs and cholesterol largely occurs in the liver 

and adipose tissues, while the circulating dietary lipids provide for the demand of other 

mammalian tissues (Beloribi-Djefaflia et al., 2016). However, up-regulation of lipogenic 

enzymes such as FASN and ACCase has been widely observed in cancer tissues (Ray 
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& Roy, 2018). The expression of lipogenic enzymes has been found in androgen-

responsive prostate cancer cells (Swinnen et al., 2004). An elevated FASN expression 

has been reported to induce progression of cancer cells into S phase (Cheng et al., 2014). 

Furthermore, inhibition of FASN by cerulenin, a natural product of cephalosporium 

caerulens, causes suppression of DNA replication and induction of apoptosis in colon 

carcinoma cells (Flavin et al., 2010). In addition to FASN, increased ACCase, a rate-

limiting enzyme of the pathway in fatty acid biosynthesis, was associated with a higher 

risk of infiltration in breast cancer (Lz et al., 1997). Furthermore, the ACCase gene in 

breast cancer cell was found to be deregulated by high-level amplifications in ACCase 

gene copy number (Chin et al., 2006). 

1.3.8 De novo purine and pyrimidine biosynthesis and anticancer therapy 

Purines (adenine and guanine) and pyrimidines (cytosine, thymine, and uracil) are basic 

components of nucleotides for DNA and RNA. Besides acting as building blocks for 

nucleic acids, ribonucleotides are fundamental for energy supply (ATP and GTP), 

components of co-enzymes (NAD and FAD) and signal transduction (cAMP and cGMP). 

Therefore, purines and pyrimidines provide essential components for cell survival and 

proliferation (Yin et al., 2018). 

Cancer cells enhance the de novo synthesis of purines (see Figure 1.3.2) and pyrimidines 

to maintain sufficient pools to support DNA replication, and other anabolic pathways 

necessary for cell proliferation; hence impaired purine and pyrimidine metabolism is 

associated with the progression of cancer (Lane & Fan, 2015; Qiao et al., 2020; Sigoillot 

et al., 2004). Phosphoribosylpyrophosphate synthetase 1 (PRPS1), which catalyses the 

first step of the synthesis of nucleotide to synthesise ribose-5-phosphate, has been shown 
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to be overexpressed in colorectal cancer (CRC), with knockdown of PRPS1 significantly 

reducing glucose consumption and adenosine triphosphate in level CRC cells (Qiu et al., 

2015) . A recent study concluded that PRPS1 has a notable effect on cell proliferation and 

apoptosis in glioblastoma multiforme (GBM) (Li et al., 2016). Moreover, multiple types of 

cancer cells were shown to highly express inosine 5-monophosphate dehydrogenase 2 

(IMPDH2) (Collart et al., 1992), which catalyses the oxidation of inosine monophosphate 

(IMP) to xanthosine monophosphate (XMP) in de novo biosynthesis of guanine 

nucleotides. IMPDH2 considerably promotes proliferation, invasion, and metastasis and 

is associated with cancer progression and poor prognosis of cancer patients (Duan et al., 

2018; Ying He et al., 2018). IMPDH2 was found to enhance G1/S phase cell cycle 

transition through activation of the PI3K/AKT/mTOR pathway (Duan et al., 2018). 

Furthermore, inhibition of IMPDH2 activity sensitised resistant HT29 human colon cancer 

cells to methotrexate (Peñuelas et al., 2005, p. 29). 

Many studies to date have reported that pyrimidine biosynthetic enzymes are elevated in 

cancer cells in response to the increased demand for pyrimidine nucleotides (Siddiqui & 

Ceppi, 2020; Villa et al., 2019) Particularly, the activity of carbamoyl phosphate 

synthetase (CAD), which catalyses the first and rate-limiting step of pyrimidine synthesis, 

is elevated in cancer cells (Weber, 2001). 

New insights into increased metabolic demand of cancer cells for nucleotide biosynthesis 

have provided novel therapeutic strategies. Since the discovery of aminopterin in 1947, 

antimetabolites that resemble nucleotide metabolites, have been used to treat many 

cancers. Antimetabolites inhibit the activity of enzymes involved in de novo purine and 

pyrimidine synthesis. Notable examples include methotrexate and pemetrexed, which 

inhibit one-carbon transfer reactions required for de novo nucleotide synthesis (Norris & 
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Adamson, 2010). Particularly, methotrexate is very effective for the treatment of several 

cancers, either alone or in combination with other chemotherapy agents. Furthermore, 

the purine analogue 6-mercaptopurine (6-MP), which inhibits PRPP amidotransferase in 

purine synthesis, has been successful to treat childhood leukaemia (Alsous et al., 2017).  
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Figure 1.3.2 Purine biosynthesis. 

5-Phosphoribosyl-1-pyrophosphate (PRPP) is generated from ribose 5-monophosphate by the 

action of PRPP synthetase. Inosine 5-monophosphate (IMP) is synthesised from PRPP through 

a series of reactions utilizing 10-formyltetrahydrofolate, glutamine, glycine and aspartate. IMP can 

be converted into either guanosine 5-monophosphate (GMP) or adenosine 5-monophosphate 

(AMP). 

1.3.9 Tumour microenvironment and metabolism 

The uncontrolled growth of tumour can lead to deficiencies in amino acids, glucose, and 

oxygen in their microenvironment as they exceed their blood supply. While oxygen 

deprivation causes an accumulation of unfolded proteins in the endoplasmic reticulum by 

the perturbation of the oxidative environment, amino acid deprivation leads to a build-up 

of uncharged tRNAs within cells. These microenvironmental stresses activate the 

integrated stress response (ISR) in cells (McConkey, 2017). ISR includes phosphorylation 

of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2a) due to amino acid 

depletion, oxidative stress and endoplasmic reticulum (ER) stress. eIF2α phosphorylation 

leads to a net reduction in global protein synthesis while stimulating the translation of 

selected genes including activating transcription factor 4 (ATF4). ATF4 initiates an 

expansive pro-survival response, including further inhibition of global protein synthesis, 

the upregulation of autophagy and glutamine transporter SLC1A5 with concomitant build-

up of essential amino acids (Rasmussen & Adams, 2020). In cancer cells, ATF4 was 

found to promote metabolic homeostasis and cell survival in response to a diverse array 

of microenvironmental stresses (Singleton & Harris, 2012). 

The crosstalk between transformed and non-transformed cells, such as cancer-

associated fibroblasts (CAFs), immune cells and nerve fivers, creates the tumour 

microenvironment (TME). Intercellular communication is driven by growth factors, 
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chemokines, inflammatory and matrix remodelling enzymes, thereby providing additional 

oncogenic signals that enhance cancer progression.  

Cancer cells are engaged in a complex dialog with surrounding non-malignant cells in 

order to satisfy their need for energy and biomass. CAFs are one of the most important 

components of the tumour microenvironment. In pancreatic cancer cells, CAFs elicit deep 

metabolic alterations by enriching fatty acid biosynthesis, glycolysis and also 

gluconeogenesis that strengthen pancreatic tumour progression (Sherman et al., 2017). 

Moreover, CAFs are instructed to decrease their mitochondrial function with the ensuing 

increase on glycolysis by breast tumour cells within the microenvironment. This metabolic 

shift leads to release of lactate from CAFs to their microenvironment. Cancer cells take 

up lactate produced from CAFs to use as a fuel source for the TCA cycle to increase their 

tumourigenic potential (A. Miller et al., 2017). This type of catabolite transfer and 

subsequent increase in mitochondrial function of tumour cells have been recently 

described as the Reverse Warburg effect (Pavlides et al., 2009). Furthermore, some 

cancer cells that suffer from OXPHOS insufficiency were shown to take up whole 

mitochondria from stromal cells in order to further support cell growth and metastasis 

(Moschoi et al., 2016). This has been shown in co-culture studies, where both primary 

and cultured acute myeloid leukaemia (AML) raised their mitochondrial mass up to 14% 

by taking up of mitochondria from bone marrow stromal cells (Moschoi et al., 2016). 

Within the tumour microenvironment, there is substantial evidence of the contribution of 

(extracellular matrix) ECM to metabolic reprogramming of tumour cells (Pickup et al., 

2014). At its most basic level, the ECM is essential for the uptake of extracellular nutrients 

as well as serving as the scaffold. The uniqueness of ECM for tumour metabolism lies in 

the interaction between integrins and growth factor receptors accessing the cytoplasmic 



30 

 

signalling network (Ata & Antonescu, 2017). Importantly, β1-Integrin interacts with the 

monocarboxylate transporter 4 (MCT4) and CD98 that mediates transport of leucine, 

isoleucine and arginine in exchange for glutamine (Gallagher et al., 2009). Thus, integrins 

can be involved in glucose uptake and amino acid transport.  Intriguingly, detachment of 

cancer cells from ECM leads to a reduction in glucose uptake and an increase in the 

generation of reactive oxygen species (ROS) (Schafer et al., 2009). Moreover, focal 

adhesion kinase (FAK), a regulator of integrin signalling, cooperates with oncogenic 

drivers such as c-Myc, thereby supporting glutaminolysis in cancer cells to maintain high 

cell proliferation (Pickup et al., 2014). Additionally, focal adhesion signalling enhances the 

activation of the PI3K pathway which increases glycolysis by upregulating the expression 

of GLUT1 and GLUT4 (Pickup et al., 2014). 
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1.4 Haematopoiesis 

Haematopoiesis refers to the process of generation and development of a variety of 

distinct blood cell types from haematopoietic stem cells (HSCs) (see Figure 1.4.1). HSCs 

are characterised by the ability to self-renew and to produce circulating blood cells. Under 

steady-state, only a fraction of HSCs enters cell cycle to generate differentiated 

progenies. As HSCs divide, they give rise to common lymphoid and common myeloid 

precursor cells (CLP and CMP respectively). CMPs are an early ancestor of the mature 

white blood cells, red blood cells, and platelets, all of which are normally present in 

circulating blood. Common myeloid progenitors are capable of differentiating into 

proerythroblasts, megakaryoblasts, and myoblasts giving rise to erythrocytes, 

thrombocytes, and all granulocytes respectively. Common lymphoid progenitors are 

responsible for forming the lymphoid lineages. CLP further differentiate into lymphoblast 

and dendritic cells. Depending on the stimuli, lymphoblasts differentiate into natural killer 

cells or B and T lymphocytes. 

The differentiation and proliferation of CLPs and CMPs are regulated via cell-cell 

interactions and by way of the generation of growth factors and cytokines, such as 

granulocyte-monocyte colony-stimulating factor (GM-CSF) and erythropoietin. These 

growth factors and cytokines influence the differentiation and proliferation of progenitor 

cells by regulating the expression of transcription factors. These secreted molecules can 

act over long or relatively short distances. For instance, production of erythropoietin by 

the kidney primarily regulate the development of the erythroid lineage while IL-7 produced 

from stromal cells in the bone marrow drives the differentiation of hematopoietic stem 

cells into CLPs (Chapman & Zhang, 2020). 
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Figure 1.4.1 Haematopoiesis.  

The figure shows the maturational sequence of different blood cells. In adults, haematopoiesis 

starts in the bone marrow from haematopoietic stem cells (HSCs). The HSCs differentiate into 

both myeloid or lymphoid cell lines in blood and other tissues such as thymus and spleen.  

1.5 Haematological malignancies 

Haematological malignancies are a diverse group of cancers that originate from cells of 

the bone marrow and the lymphatic system. In most blood cancer cells, the normal cellular 

processes are interrupted by a variety of molecular and cytogenetic abnormalities. As a 

consequence, malignant blood cells fail to develop into functional myeloid or lymphoid 
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cells (Snowden et al., 2017). 

The first haematological malignancy was described in 1832 by Thomas Hodgkin 

(Hodgkin, 1832). The particular lymphoma that Hodgkin described bears his name in his 

honour. Since that time, other hematologic malignancies have been further described with 

the assistance of several technologies, including morphology, immunophenotyping, 

cytogenetics and molecular genetics (see Table I). To define distinct types of 

haematological cancers, the World Health Organization (WHO) published the fourth 

editions of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 

2008 with the efforts of pathologists, haematologists, oncologists, and geneticists from 

around the world (Campo et al., 2011; Vardiman et al., 2009). Then, the major subtypes 

of myeloid neoplasms, acute leukaemia, lymphoid, histiocytic, and dendritic neoplasms 

according to the WHO classification was updated incorporating morphology, 

immunophenotype, genetic features, and clinical features to define disease entities of 

clinical significance in 2016 (Arber et al., 2016). 

In this thesis, I have mainly focused on acute myeloid leukaemia (AML), chronic myeloid 

leukaemia (CML), multiple myeloma (MM), Burkitt’s lymphoma (BL) and diffuse large B 

cell lymphoma (DLBCL). 
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Table I. Main types of haematological malignancies according to the 2016 
WHO classification. 

Haematological malignancies 

Myeloproliferative neoplasms (MPN)  

Myeloid/lymphoid neoplasms with eosinophilia and rearrangement 
of PDGFRA or FGFR1  

Myelodysplastic/myeloproliferative neoplasms (MDS/MPN)  

Myelodysplastic syndromes (MDS)  

Acute myeloid leukaemia (AML) and related neoplasms  

Blastic plasmacytoid dendritic cell neoplasm  

Acute leukaemia’s of ambiguous lineage  

B-lymphoblastic leukaemia/lymphoma  

Blastic plasmacytoid dendritic cell neoplasm  

T-lymphoblastic leukaemia/lymphoma  

Mature B cell neoplasms 

Mature T and NK neoplasms  

Hodgkin lymphoma  

Posttransplant lymphoproliferative disorders (PTLD)  

Histiocytic and dendritic cell neoplasms  

 

 

 

1.5.1 Acute myeloid leukaemia 

Acute myeloid leukaemia (AML) is a rapidly progressing haematological cancer, 

characterised by the accumulation of clonal myeloid progenitor cells that do not 

differentiate normally. The differentiation arrest of clonal myeloid cells causes multilineage 

cytopenias in AML patient. The signs and symptoms of AML are mainly the results of the 

decrease in the number of normal myeloid cells, including red blood cells, platelets, and 

granulocytes, that eventually contributes to morbidity in this disease. General signs and 

symptoms of the early stages of AML may mimic other common illnesses, like the flu. 

However, the symptoms of AML usually become worse, as the disease progresses with 
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more leukaemia cells filling the bone marrow. 

Genetic abnormalities play a big role in the progression of AML. These genetic 

abnormalities include point mutations, amplifications, specific chromosomal aberrations 

and translocations, which ultimately impair the normal developmental process of myeloid 

cells. Among them, cytogenetic abnormalities are the most powerful independent 

prognostic factors in AML, which serve to determine biologically discrete subsets of 

disease (Kihara et al., 2014). However, nearly half of AML patients lack typical prognostic 

karyotypic changes and structural abnormalities in their genomes (Lin & Falini, 2015). 

Next-generation sequencing (NGS) revealed a total of 5234 driver mutations across 76 

genes in 1540 patients with AML (Papaemmanuil et al., 2016). Nevertheless, a 

comprehensive analysis of genetic alterations in 197 adult patients with AML reported that 

only FLT3, NPM1, CEBPA, DNMT3A and KIT genes were mutated in more than 10% of 

the patients, while a total of 505 mutations in 44 genes was identified (Kihara et al., 2014). 

The most common cytogenetic abnormality in AML patients is t(8;21)(q22;q22). The 

t(8;21)(q22;q22) involves the AML1 (RUNX1) gene on chromosome 21 and the ETO 

(RUNX1T1) gene on chromosome 8, producing a novel chimeric gene, AML1–ETO. The 

AML1 gene encodes the alpha subunit of the core-binding factor (CBF), which controls 

normal haematopoiesis.  AML1–ETO fusion gene disrupts the CBF transcription complex, 

thereby initiating the leukaemogenesis (Lin et al., 2008). 

Acute promyelocytic leukaemia (APL) is one of the major groups of  AML with cytogenetic 

abnormality t(15;17) in which the promyelocytic leukaemia gene (PML) on chromosome 

15 fuses with retinoic acid receptor-alpha (RARα) gene on chromosome 17, resulting in 

the expression of a PML-RARα chimeric protein. PML-RARα causes an arrest of 

differentiation at the promyelocytic stage (Adams & Nassiri, 2015). So far, typical APL with 
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PML-RARα has shown a good response to all-trans retinoic acid (ATRA) (X. Wang et al., 

2019). ATRA stimulates the terminal differentiation of immature leukaemic clone into 

granulocytes. Although the majority of APL are characterised by the expression of a PML-

RARα protein, a few variant chromosomal mutations have been also described, including 

PLZF-RARα, F1P1L1-RARα, STAT5b-RARα, et al. Unlike APL with PML-RARα protein, 

both PLZF-RAR and STAT5b-RARa do not respond to ATRA (X. Wang et al., 2019). 

1.5.2 Metabolism in AML 

Metabolic deregulation has been identified as a hallmark of cancer (Warburg et al., 1927). 

The identification of mutations in human cytosolic isocitrate dehydrogenase 1 (IDH1) and 

mitochondrial isocitrate dehydrogenase 2 (IDH2)  occurring somatically in AML cells has 

led to renewed interest in metabolic reprogramming in myeloid leukaemia cells and their 

therapeutic applications (see Figure 1.4.2) (L. Dang et al., 2009). 

The IDH1 and IDH2 proteins catalyse the oxidative decarboxylation of isocitrate to α-KG 

outside of the TCA cycle by generating NADPH from NADP+.  All mutations identified to 

date appear to effect arginine residue 132 (R132) in IDH1 or the analogous residue in 

IDH2 (R172). Since these residues are located in the active site of the enzymes, the 

missense mutations at R132 in IDH1 and R172 in IDH2 abolish their normal catalytic 

activity because of impaired isocitrate binding (Ward et al., 2010). However, in vitro 

studies have shown that the mutated IDH1/2 gain the ability to convert α-KG to R(-)-2-

hydroxyglutarate (2-HG) which is regarded as an oncometabolite owing to its impact on 

alterations in the aberrant DNA methylation and also on cellular metabolism (Reiter-

Brennan et al., 2018). Altered IDH1/2 results in a decrease in cellular α-KG because of 

the suppressed capacity to convert isocitrate to α-KG and abnormal production of 2-HG.  
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AML cells with IDH mutations were found to be addicted to glutamine so that the reduction 

in the α-KG production could be compensated, as glutamine is another cellular source of 

α-KG. Thus, targeting glutaminolysis in AML cells with IDH1/2 mutations has been a 

promising metabolic targeted therapy (Emadi et al., 2014). Somatic mutations of IDH1 or 

IDH2 genes have been reported in approximately 6-16% and 8-19% of AML, respectively. 

Indeed, these oncogenic mutations are more frequent in cytogenetically normal AML (25-

30% of cases) (Ok et al., 2019). 

Metabonomic analysis of serum samples of 183 AML patients and 232 age- and gender-

matched healthy controls has shown that AML patients have significant differences in 

glycolysis, gluconeogenesis, TCA cycle and metabolism of fatty acids (Y. Wang et al., 

2013). Particularly, glycolysis is frequently upregulated in most cases of AML. High 

glycolytic activity is implicated in AML leukaemogenesis driven by over-activated 

mTORC1 and FLT3-ITD mediated signalling (Chapuis et al., 2019). Accordingly, 

constitutive mTORC1 activation renders AML cells addicted to glucose. Furthermore, AML 

cells increase glucose uptake mainly for its subsequent diversion into the PPP, notably 

through the production of glucose-6-phosphate from glucose (see Figure 1.4.2). Targeting 

the PPP was also identified as a potential therapeutic strategy for AML cells (Y. Wang et 

al., 2013).  

The fatty-acid oxidation (FAO) pathway enables cells to produce ATP through OXPHOS. 

In AML, carnitine palmitoyl transferase 1A (CPT1A) protein which catalyses an essential 

step in FAO pathway, is highly expressed (see Figure 1.4.2). Targeting CPT1A has been 

shown to promote apoptosis and to suppress cell proliferation without affecting normal 

CD34+ haematopoietic cells (Shi et al., 2016). 
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1.5.3 Chronic myeloid leukaemia 

Chronic myeloid leukaemia (CML) is a pluripotent hematopoietic stem cell disorder 

characterised by unrestricted proliferation of granulocytes in the blood that occurs due to 

the presence of the Philadelphia chromosome. Philadelphia (Ph) chromosome is present 

in nearly 90% of patients with CML (Y. Chen et al., 2010).  

The Ph chromosome is a reciprocal translocation of the ABL1 gene on chromosome 9 to 

breakpoint cluster region BCR on chromosome 22 causing the formation of the BCR-ABL 

fusion gene that encodes BCR-ABL protein (see Figure 1.5.1). This translocation results 

in the generation of shorter derivative chromosome 22 and longer derivative chromosome 

9. The BCR-ABL protein has an increased tyrosine kinase activity as a result of the 

deletion of the SH3 domain of ABL (Kang et al., 2016). The oncogenic BCR-ABL protein 

is involved in the activation of RAS and STAT proteins; thus enhances cell growth and 

proliferation (Salesse & Verfaillie, 2002). 

CML's progression consists of three phases based on laboratory findings. These phases 

are chronic, accelerated and blast crisis (Apperley, 2015). Some patients with chronic 

phase CML have either mild symptoms which can be easily controlled or no symptoms at 

all. The chronic phase CML is characterised by the accumulation of myeloid progenitors 

and mature cells. In the absence of effective treatment, the disease progresses through 

a period of enhancing instability known as accelerated, to terminal transformation to an 

aggressive blast crisis. Blast crisis arises due to additional cytogenetic and molecular 

changes. e.g. deletion of p53 and duplication of chromosomes 8, 17 and 22 (Radich et 

al., 2006).  
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Figure 1.5.1 Philadelphia chromosome. 

The figure illustrates the formation of Philadelphia (Ph) chromosome. Ph chromosome results 

from a reciprocal translocation between chromosome 9 and chromosome 22. 

1.5.4 Metabolism in chronic myeloid leukaemia 

Metabolism is frequently dysregulated in CML cells due to the expression of the 

constitutively active tyrosine kinase oncoprotein BCR-ABL. BCR-ABL protein can activate 

distinct intracellular signalling pathways that enhance cell proliferation further regulating 

cell metabolism (Sontakke et al., 2016).  

Regarding glycolysis, BCR-ABL positive cells displayed increased glucose uptake by 

glucose transporter GLUT1, which is involved in the suppression of apoptosis in CML 

(Barnes et al., 2005). Upon entering cells, glucose and fructose were immediately 

phosphorylated in CML cells in comparison with controls (Karlíková et al., 2016). In 

contrast with the high phosphorylated hexose level, the leukocytes of CML patients 

showed a decrease in the majority of TCA cycle intermediates. The decrease in the 

majority of TCA cycle intermediates coincided with a significant increase in the activity of 

pyruvate dehydrogenase kinase 1 (PDHK1), which negatively regulates the conversion 

of pyruvate to acetyl-CoA (see Figure 1.4.2) (Karlíková et al., 2016).  
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Moreover, CML cells were  shown to aberrantly generate  branched-chain amino acids 

(BCAAs) by activating the expression of BCAT1, a cytosolic aminotransferase (Hattori et 

al., 2017). 

1.5.5 Diffuse large B cell lymphoma  

Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell neoplasm, histologically 

characterised by dense proliferation of neoplastic B blasts. DLBCL is the most common 

form of non-Hodgkin lymphomas (NHLs), accounting worldwide for ∼40% of adult NHL 

(Chapuy et al., 2016).  

DLBCL is a clinically and pathologically heterogeneous disease. Over the past twenty 

years, there have been significant efforts to understand what transcriptional heterogeneity 

drives the differences in outcomes. To date, two separate classification schemes have 

addressed the transcriptional heterogeneity of DLBCL, consensus cluster classification 

(CCC) and cell-of-origin classification (COC) (Alizadeh et al., 2000; Monti et al., 2005).  

According to CCC, groups of DLBCLs are characterised by the OXPHOS cluster, the 

BCR/proliferation cluster and the host response cluster (see Table II). The OXPHOS 

cluster typifies some genes whose products take part in mitochondrial oxidative 

phosphorylation, electron transport chain and apoptosis. Some of these genes are 

nicotinamide adenine dinucleotide dehydrogenase (NADH) complex, cytochrome c 

oxidase (COX) complex and antiapoptotic BCL2 related family member, BFL-1/A1. The 

BCR/proliferation cluster displays abundant expression of genes involved in cell cycle and 

B-cell receptor (BCR) signalling such as cyclin-dependent kinase 2 (CDK2). Unlike the 

other clusters, the host response cluster is associated with increased expression of 

inflammatory mediators and markers for the classical complement pathway (Monti et al., 
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2005). 

COC classification is based on the type of B cells which cancer originates. According to 

COC classification, molecular subsets of DLBCL are characterised by the germinal centre 

B cell (GCB), activated B cell (ABC) and undefined type 3. GCB DLBCLs arise from  

centroblasts in the germinal centre. The main oncogenic pathways related to GCB 

DLBCLs involve BCL6, EZH2 and PTEN (Béguelin et al., 2013). BCL6 is a transcription 

repressor and required for germinal centre formation. Therefore, the BCL6 gene is 

downregulated after germinal centre forms (Schafer et al., 2009). It has a role in the 

suppression of genes in lymphocyte differentiation and cell cycle control.  Overexpression 

of BCL6, which results from translocations or mutations, leads to GCB DLBCL due to 

differentiation blockade of centroblasts. The increased expression of EZH2 promotes 

lymphomagenesis through cooperating with BCL6 to block further differentiation of B cells 

(Béguelin et al., 2013). ABC-DLBCLs derive from plasmablasts before they differentiate 

into mature plasma cells. The constitutive activation of the nuclear factor-κB (NF-κB) 

signalling pathway is specific for ABC-DLBCLs. Apart from constitutive activation of the 

nuclear factor-κB (NF-κB), the constitutive expression of BCL6 is particularly present in 

ABC-DLBCL (Ye et al., 1993). 

 

Table II. Molecular classification of diffuse large B cell lymphoma . 

Consensus cluster classification 
(CCC) 

Cell-of-origin classification (COC) 

OXPHOS cluster Germinal centre B cell (GCB) - like 

BCR/proliferation cluster Activated B-cell (ABC) - like 

Host response cluster Undefined type 3 
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1.5.6 Metabolism in diffuse large B cell lymphoma 

DLBCL is a highly heterogeneous disease with recognised discrete clusters or subtypes 

defined based on distinct clinical, pathologic or biologic features. The molecular 

heterogeneity in DLBCL results in subsequent metabolic heterogeneity between different 

groups of DLBCL.  

The spectrum of fuel utilisation pathways within DLBCL has been investigated in order to 

predict the precise metabolic landscape of distinct subtypes of DLBCL (Caro et al., 2012).  

Among transcriptionally-defined groups of DLBCL, the OXPHOS cluster exhibits up-

regulation of genes encoding for subunits of NADH dehydrogenase (complex I), succinate 

dehydrogenase (complex II) and ATP synthase (complex V ) involved in electron transport 

chain as well as enzymes involved in FAO (see Figure 1.4.2) (Caro et al., 2012). 

Particularly, a larger enrichment of fatty acid derived TCA intermediates was detected in 

OXPHOS cell lines in comparison with other subtypes of DLBCL. In contrast to the 

Warburg effect, the OXPHOS cluster relies on mitochondrial oxidative metabolism and 

secrets less lactate than BCR cluster cells. BCR cluster cells were found to have markedly 

higher intracellular and secreted lactate and contribute more glucose into the synthesis 

of pentose sugars (see Figure 1.4.2) (Caro et al., 2012). Samples from DLBCL patients 

with the OXPHOS phenotype revealed that stromal cells of neoplastic lymphatic tissue 

shifted their metabolism to glycolysis so that the end product of glycolysis, lactate, could 

be taken up by neighbouring neoplastic cells for the TCA cycle (see Figure 1.4.2). This 

finding can suggest that DLBCL cells reprogram metabolism of stromal cells, creating a 

metabolic ecosystem (Gooptu et al., 2017).  

In addition to metabolism in distinct subtypes of the CCC scheme, metabolic rewiring in 

GCB-DLBCL has been studied. GCB-DLBCLs are exposed to different environmental 
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conditions with varying levels of oxygen and nutrients in the germinal centre (Mlynarczyk 

et al., 2019). Particularly, GC-derived lymphoma cells exposed to reduced oxygen 

availability stabilize HIF1- that promotes aerobic glycolysis. GCB-DLBCL cells were also 

found to depend on the serine/threonine protein phosphatase 2A (PP2A) to divert glucose 

carbon usage from glycolysis to the PPP in comparison with the GC B cells (G. Xiao et 

al., 2018). 

1.5.7 Burkitt’s lymphoma 

Burkitt's lymphoma (BL) is a highly aggressive germinal centre B cell-derived lymphoma 

first described by Denis Burkitt in malaria-endemic regions of Africa (Burkitt, 1958). 

Shortly after its first description in Africa, many pathologists recognised similar 

lymphomas in Europe and the United States.  

Endemic, sporadic, and immunodeficiency-associated BL are three clinical variants of BL. 

The endemic form is particularly prevalent in children aged 4 to 7 years in equatorial 

Africa, frequently affecting facial lymph nodes and kidneys. Sporadic BL  (sBL) is the most 

common variant and occurs most often in the western world where malaria is not endemic. 

It affects young adults and children and is seen as an abdominal tumour with abdominal 

swelling and an enlarged thyroid. sBL accounts for 35-40 percent of childhood lymphoma 

cases in the U.S and western Europe. The immunodeficiency-associated BL presents in 

association with human immunodeficiency virus (HIV) infections and affects mostly the 

central nervous system although it shows similarity to sporadic form (Dozzo et al., 2016). 

Gene expression profiling of BL revealed that BL cells are more akin to dark zone germinal 

centre B cell centroblasts. 

In 1975, a balanced translocation between chromosome 8 and chromosome 14 was 
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discovered in BL patients (L et al., 1976). A few years later, the proto-oncogene c-Myc 

gene was showed to juxtapose the immunoglobulin heavy chain (IgH) locus at the 

breakpoint of the t(8;14) translocation (Dalla-Favera et al., 1982; Taub et al., 1982). 

Virtually all cases of BL are characterised by c-Myc translocation. The typical 

translocation of c-Myc into IgH locus is observed in about 75%-90% of BL. The 

translocation of c-Myc into immunoglobulin light chain loci on chromosome 2 (kappa) or 

22 (lambda) occurs at a frequency of about 10%. Hence, c-Myc is brought  under the 

control of immunoglobulin enhancer elements resulting in constitutive upregulation of c-

Myc gene in BL cells (Schmitz et al., 2014). The c-Myc protein is a transcription factor 

that regulates cell growth, proliferation and survival by inducing expression of genes 

required for these processes. In contrast to the tightly regulated expression of c-Myc in 

normal B cells, BL cells overexpress c-Myc resulting in the uncontrolled proliferation of 

BL cells (Meyer-Bahlburg et al., 2009) 

1.5.8 Metabolism in BL 

BL is characterised by chromosomal rearrangements of the c-Myc pro-oncogene, 

resulting in overexpression of c-Myc oncoprotein (Klein, 2009). c-Myc has been shown to 

induce a set of genes involved in glycolysis, glutaminolysis, fatty acid synthesis and 

mitochondrial biogenesis (C. V. Dang, 2011). Particularly, c-Myc was reported to directly 

induce virtually all genes involved in glycolysis, many of them through c-Myc binding site 

E-box DNA sequences (CACGTG). Inhibition of the transactivating ability of c-Myc 

resulted in the downregulation of genes responsible for the Warburg effect in BL cells. 

(see Figure 1.4.2) (Mushtaq et al., 2015).  

The eBL is consistently associated with EBV (Mawson & Majumdar, 2017). This oncovirus 
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was shown to contribute to metabolic alteration in cancer cells to meet the amplified 

bioenergetic and biosynthetic demands, by interfering with cell metabolism (Xiao et al., 

2014). In particular, during EBV infection, cells elevate lipogenesis and aerobic glycolysis 

by enhancing the expression of FASN and HK2 (see Figure 1.4.2) (L. Xiao et al., 2014). 

Metabolomics has been used to discover novel biomarkers in BL for the diagnosis and 

prognosis (Nicholson & Lindon, 2008). Comparison of serum metabolomics of BL mice 

and normal mice demonstrated that the concentration of glucose, glutamate, and 

unsaturated lipids was remarkably distinctive between two groups (F. Yang et al., 2017).  

Furthermore, cases of BL-induced lactic acidosis and hypoglycemia in adults have been 

reported (see Figure 1.4.2) (Glasheen & Sorensen, 2005). 

1.5.9 Multiple myeloma 

Multiple myeloma (MM) is a malignant disease of monoclonal plasma cells in the bone 

marrow, leading to the production of non-functional immunoglobulins or immunoglobulin 

chains known as a monoclonal protein (M protein) associated, in more 50% of cases, with 

renal impairment (Rajkumar, 2018). MM has a worldwide incidence of 2 -3 cases per 100 

000 persons per year and accounts for 10% of all hematologic malignancies (Cowan et 

al., 2018).  

Nearly all cases of MM are developed from an asymptomatic precursor state, such as 

monoclonal gammopathy of undetermined significance (MGUS) (Gerecke et al., 2016). 

MGUS is referred to as a benign condition defined as the presence of an M-spike with a 

concentration <3g/dL, <10% plasma cells on bone marrow biopsy and absence of 

hypercalcemia, renal insufficiency, anaemia and bone lesions (CRAB) (Rajkumar, 2005). 

The diagnosis of MM requires a serum M protein ≥ 3 g/dL, bone marrow plasma cells ≥ 
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60%, plasma free light chain ≥100 mg/L and one or more of the CRAB features. MM cells 

influence the balance between bone build up and bone breakdown resulting in osteolytic 

lesions (Gerecke et al., 2016). 

Genetic studies on MM show a remarkable heterogeneity among patients although it is a 

monoclonal disorder (Brigle & Rogers, 2017; Weaver & Tariman, 2017). So far, studies 

reported that aneuploidy and translocation are the hallmark genetic lesions in MM cells 

(Hallek et al., 1998; Weaver & Tariman, 2017). Although nearly 40% of MM of patients 

carry at least a trisomy of a chromosome, some patients can carry translocations involving 

immunoglobulin heavy chain (IgH) locus along with trisomies (Hallek et al., 1998). 

1.5.10 Metabolism in MM  

Metabolic rearrangements are common features of cancers, including MM (El Arfani et 

al., 2018). Investigation of glucose metabolism in MM showed that HK2 and PKM2 are 

widely overexpressed and inhibition of these enzymes suppresses the production of ATP 

in MM cells (see Figure 1.4.2) (Yunhua He et al., 2015; Nakano et al., 2012). The 

increases in HK2 expression and lactate production is supported by osteoclasts (OCs) 

within the bone marrow microenvironment (Nakano et al., 2012). However, myeloma cells 

also incorporate lactate that originates from the surrounding elements, into the cytoplasm 

to use as fuel for OXPHOS (El Arfani et al., 2018).  

Besides alterations in glucose metabolism, MM cells are remarkably dependent on 

extracellular glutamine (Dalva-Aydemir et al., 2015). Consistent with this dependence, 

MM cells were found to express high levels of glutaminase and glutamine transporters 

(SNAT1, ASCT2, and LAT1) compared to leukaemia cells (Bolzoni et al., 2016). These 

findings lead to the assumption that MM cells rely on extracellular glutamine uptake to 
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fuel the intracellular pool of the TCA cycle. Moreover, metabolic profiles of MM patients at 

diagnosis based on 1H-NMR spectroscopy analysis of serum samples displayed 

decreased level of glutamine compared with the healthy controls (Puchades-Carrasco et 

al., 2013). However, MM patients after achieving complete remission  exhibited a closer 

metabolic profile to those of healthy individuals (Puchades-Carrasco et al., 2013). 
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Figure 1.5.1 Metabolic changes in leukaemia, lymphoma and myeloma. 

The figure shows the levels of metabolites and enzymes involved in glycolysis, PPP, TCA cycle, 

fatty acid synthesis, and β-oxidation in AML, CML, DLBCL, BL and MM (Star sign represents the 

increase in the expression level of the enzyme; arrow shows the change in the level of 

metabolites. AML: red star and red arrow; CML: green star and green arrow; OXPHOS cluster 

DLBCL: light blue star and light blue arrow; BCR cluster DLBCL: dark blue star and dark blue 

arrow; BL: orange star and orange arrow; MM: purple star and purple arrow. 
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1.6 Techniques and approaches to study metabolism 

Elucidating how metabolic pathways differ from normal cells may be one of the best ways 

to find biomarkers for cancer detection, diagnosis, and prognosis and also to develop new 

treatments (Fuss & Cheng, 2016). Identification of altered metabolic pathways can 

provide novel insights into the phenotypic changes relative to biological function. 

In general, the primary analytical techniques used for exploring tumour metabolism are 

mass spectrometry (MS) coupled with separation techniques and nuclear magnetic 

resonance (NMR) (Saborano et al., 2019). Molecular imaging of tumour metabolism holds 

great potential as a measurement tool for tumour staging, radiation treatment planning 

and monitoring of tumour response to therapy (Fuss & Cheng, 2016). At present, several 

modalities can be used for clinically translatable metabolic imaging, including magnetic 

resonance spectroscopy (MRS) and positron emission tomography (PET). 

Quantitative metabolomics, in which the concentration of metabolites in biological 

mixtures is measured, provides reliable insights into systems biology. Numerous 

approaches within NMR and MS enable accurate metabolite concentration 

measurements and to identify unknown metabolites (A.-H. M. Emwas, 2015). The 

greatest advantage of NMR spectroscopy is to observe and rigorously quantify 

compounds present in biological fluids, cell extracts, and tissues with minimal 

requirements for sample preparation (Markley et al., 2017). Through the use of stable 

isotope labels, NMR spectroscopy can determine the positional isotopomer distributions 

of metabolites in a given segment of a metabolic network (Lane & Fan, 2017). NMR 

spectroscopy detects only medium to high abundance metabolites (concentrations 

>1mM) but does not require a chromatographic separation. In contrast, MS is more 
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sensitive and offers quantitative analyses with much higher sensitivity (Aretz & 

Meierhofer, 2016). Currently, chromatographic separation techniques such as liquid 

chromatography (LC) and gas chromatography (GC) are almost always combined with 

MS to reduce the complexity of the mass spectra. MS based techniques suffer from a 

lack of standardisation which renders it difficult to compare results from different 

instrumentation. MS also requires more elaborate sample preparation or fractionation 

because of the complexity of biological matrices compared to NMR spectroscopy. Hence, 

sample preparation in MS can cause metabolite losses. Unlike NMR, MS cannot readily 

determine each positional isotopomer (Lane & Fan, 2017), but is more powerful in 

determining mass increments (Dudek et al., 2020). Besides the quantitative analysis of 

biomacromolecules by NMR and MS, metabolic imaging techniques magnetic resonance 

imaging (MRI) and PET hold great potential for the evaluating diagnosis and prognosis of 

diseases in the clinic (Fuss & Cheng, 2016). These techniques are commonly used to 

diagnose and improve the treatment of these disorders. MRI is used to characterise 

tissue, usually using the 1H-NMR signal of water molecules but can be extended to detect 

other nuclei and allows the detection of metabolites without the use of ionising radiation 

(Kurhanewicz et al., 2019). PET is based on the detection of pairs of gamma rays emitted 

indirectly by a radioactive tracer, most commonly fluorine-18, carbon-11, and nitrogen-

13. The most widely utilised PET metabolic probe has been radiolabelled glucose 

analogue 18-fluorodeoxyglucose [18F]-FDG (Plathow & Weber, 2008), which accumulates 

in highly glycolytic tissues and thereby enables to measure rates of glucose consumption. 

In the clinic, PET is used mostly in patients with cancer because of its potential to 

distinguish between benign and malignant tumours as malignant tumours usually 

consume glucose at faster rate.   
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1.7 Nuclear magnetic resonance 

Nuclear Magnetic Resonance (NMR) is a technique in which nuclei are placed in an 

external magnetic field and absorb and emit radiofrequency radiation. In an NMR 

experiment, the precession of magnetisation is detected. It is used in physics, physical 

chemistry, chemistry and biology to study liquid crystals, membranes, the structure of 

molecules, metabolism etc.  

1.7.1 Nuclear spin polarisation 

Nuclear spin (I) is a quantum mechanical property of many nuclei which can be described 

in a classical model as the total angular momentum of a nucleus (Cavanagh, 1995). The 

concept of spin is fundamental for NMR theory. Protons, neutrons, and electrons possess 

net spins of ½. The spin nuclear quantum number S can adopt values between S = 0 and 

S = 8 in ½-unit increments between elements. There are some rules to predict the nuclear 

spin value of a nucleus (see Table III). Nuclei with a non-zero spin quantum numbers are 

NMR active. 

Table III. The rules for determining the nuclear spin states. 

No.of protons No.of neutrons Spin quantum No. (S) Examples 

Even Even 0 12C, 16O 

Odd Even 
1/2 1H, 13F 

3/2 11B, 23Na 

Even Odd 
1/2 13C 

5/2 17O 

Odd Odd 1 2H 

 

Since nuclei with non-zero spin have angular momentum and charge, they possess a 

nuclear magnetic moment (μ). As a result of having this magnetic moment property, nuclei 

with non-zero spins align themselves with or against the external magnetic field. The 
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degeneracy of the ground state is determined by 2S+1 (Cavanagh, 1995). For instance, 

the nuclear spin quantum number S of 1H is ½; allowing for two spin states denoted as 

+½ (α state) and -½ (β state) in the external magnetic field (Bo). Thus, spin ½ nuclei placed 

in an external magnetic field can only exit in two energy states: 

• α low energy state where spins align with the external magnetic field  

• β high energy state where spins oppose to the external magnetic field 

At thermal equilibrium, the number of spins in the lower energy level is slightly higher than 

the number of spins in the upper level (see Figure 1.7.1). The Boltzmann distribution 

describes the distribution of the nuclei between α state and β state: 

 

                                                   
𝐍𝐮𝐩𝐩𝐞𝐫

 𝐍𝐥𝐨𝐰𝐞𝐫
= 𝐞−

∆𝐄

𝐤𝐓                                                  (1.1) 

For instance, nuclear spin quantum number of 1H is ½; so allowed the spin state of 1H is 

2 denoted as +½ and -½. In the external magnetic field (Bo), 1H nuclei are visualised 

around the magnetic field direction and against the magnetic field (Cavanagh, 1995).     

 

     

                                              

 

 

 

 

Figure 1.7.1 Demonstration of the degeneracy of ground state of 1H.   

Some of the 1H nuclei align with the external magnetic field at lower energy stage (α) and some 

of them oppose to the field at higher energy stage (β). 
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1.7.2 Vector model 

Nuclei with non-zero spin have a magnetic moment associated with angular momentum. 

Thus, nuclei act like a bar magnet and generate a small magnetic field. In the absence of 

the external magnetic field, the energy levels of quantum states corresponding to 2S+1 

values of a spin-S nucleus are equal or degenerate. Application of an external magnetic 

field removes this degeneracy, leading to formation of discrete energy levels.  

 

 

 

 

 

 

Figure 1.7.2 Generation of bulk magnetisation in an external magnetic field. 

In the absence of an applied magnetic field, the direction of the spin of the nuclei is randomly 

oriented, producing no overall magnetic effect. By placing the spins in high magnetic fields, they 

orientate with this magnetic field, generarating bulk magnetization. 

At thermal equilibrium, the different energy states are unequally populated by nuclei. The 

small population differences between energy levels produces the bulk magnetisation 

vector. The bulk magnetisation vector is parallel to the static magnetic field, B0 , which, by 

convention, points toward the z-axis (see Figure 1.7.2). The net magnetisation along the 

z-axis precesses around static magnetic field with a frequency called the Larmor 

frequency. The Larmor frequency (ω0) is related to magnetic field strength (B0) and 

gyromagnetic ratio (γ) of the individual nucleus through the relation: 

ω0 = -γ.B0                                                                (1.2) 
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The Larmor frequency is what we actually observe in an NMR experiment. To detect an 

NMR signal in an NMR experiment, the magnetisation vector is rotated away from z-axis 

by applying a radiofrequency field (RF field) from the x or y-axis for a short period of time 

at the Larmor frequency. RF field that applied around x-axis at Larmor frequency makes 

coordinate axes x and y rotate at Larmor frequency. Thus, in the on-resonance case, the 

angular frequency of the magnetisation (ω0) relative to the angular frequency of the 

rotating frame (ωrf) becomes zero. In this case, the influence of the external magnetic 

field (B0) is removed. In the rotating frame, the apparent Larmor frequency is modified  

and is given by the symbol Ω:  

                                                   Ω = ω0 – ωrf                                                                  (1.3) 

The precession of the magnetization vector is detected by a coil aligned in the xy plane 

in an NMR experiment. At equilibrium, there is no transverse magnetisation to be detected 

as the magnetisation precesses along the z axis. The precession of magnetisation vector 

at the Larmor frequency on the xy plane can be written as:  

                                                 Mx = M0 sin 𝛽 cos(ω0t)                                               (1.4) 

                                                 My = M0 sin 𝛽 sin(ω0t)                                                (1.5) 

To detect the precession of the magnetization,  the magnetisation along z axis must be 

tilted by some means to create a spin coherence. Thus, RF field is turned on for only a 

short period of time to create a spin coherence. If a RF pulse at the Larmor frequency is 

applied along x axis, the z and y component of the magnetisation is  written as (Cavanagh, 

1995): 

 

                                                       MZ= M0 cos 𝛽   MY= -M0 sin 𝛽                                        (1.6) 
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1.7.3 Fourier transformation 

In an NMR experiment, the precession of magnetisation is detected. The precessing 

magnetisation in a transverse plane rectangular to the static B0 field induces a current in 

a detection coil aligned in the xy-plane. This current is amplified and recorded as a time-

domain signal. Since this current eventually decays away as a result of relaxation, the 

signal is called the free induction decay (FID). As the frequency-domain signal is more 

interpretable than the time domain signal, the time-domain function is Fourier transformed 

in order to convert it into frequency-domain function. 

T2 is spin-spin relaxation decay constant which causes magnetisation decay over time (t). 

The precession of the magnetisation in the xy-plane induces a voltage (signal S) in a coil 

and decays as an exponential decay: 

                           Sx = S0cosΩtexp (
−𝒕

𝑻𝟐
)     Sy = S0.sinΩtexp (

−𝒕

𝑻𝟐
)                                (1.7)  

                                            S(t) = S0exp(iΩt)exp (
−𝒕

𝑻𝟐
)                                                (1.8) 

 

Fourier transformation of the FID gives rise to the frequency domain NMR spectrum. 

Fourier transformation of time domain function to frequency domain function is written as: 

 

                                                     S(t)                     S(ω)                                             (1.9)  

                             S0exp(iΩt)exp ( 
−𝒕

𝑻𝟐
 )                    S0 [A(ω) + iD(ω)]                        (2.0)   

 

The frequency-domain signal is complex, with real and imaginary parts. The real part of 

the spectrum gives a lineshape known as the absorption mode Lorentzian while the 

imaginary part shows the dispersion mode Lorentzian (see Figure 1.7.3). Phase 

correction is used to obtain pure absorption Lorentzian lineshapes in the spectrum. 

 

FT 

FT 
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Figure 1.7.3 Illustration of absorption and dispersion Lorentzian lines. 

The absorption mode Lorentzian line shape is always positive while the dispersion mode 

Lorentzian line shape has  positive and negative parts. 

1.7.4 Relaxation 

NMR relaxation is the re-establishment of the equilibrium condition by the loss of energy 

imparted to the system. A 900(x) RF pulse on a sample perturbs the net bulk 

magnetisation along z axis and results in magnetisation in the xy-plane which 

corresponds to an alteration in the spin polarisation. Following this perturbation, recovery 

of magnetisation along z- axis occurs. This is termed longitudinal relaxation and leads to 

the equilibrium population to be restored. Longitudinal relaxation is known as spin lattice-

relaxation and corresponds to a complete loss of energy of the spins by transfer of energy 

into the surroundings. As the energies transferred in the form of heat are so small, 

temperature changes are not detected. The Bloch theory assumes that nuclear spins  
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relax to the equilibrium values following exponential behaviour, defined by:  

 

                                            dMZ / dt = (M0 - MZ) / T1                                                  (1.10)   

 

where M0 is the bulk magnetisation at thermal equilibrium, MZ is the recovery of the z-

magnetisation and T1 is the relaxation time (s-1). 

A bulk magnetisation vector in the transverse plane represents the sum of many individual 

vectors that have phase coherence. The transverse spin components precesses around 

the z-axis at Larmor frequency after the radiofrequency pulse. While transverse spin 

components move together in the transverse plane, the interaction between their intrinsic 

magnetic fields slightly modifies their precession rates. Moreover, inhomogeneities in the 

static magnetic field induce slight local changes in the precession frequency. The 

transverse magnetisation is gradually lost due to inhomogeneities in the static magnetic 

field and/or direct interactions between transverse spin components. The decay of the 

transverse magnetisation is referred to as spin-spin relaxation.This relaxation occurs with 

an exponential decay defined by the time constant T2: 

 

                                                   Mxy(t) = Mxy(0)e-t/T
2                                                                   (1.11)   

 

In most situations, spin-spin relaxation proceeds more rapidly than spin-lattice relaxation 

(Cavanagh, 1995).  

 

1.7.5 Chemical shift 

Information about the chemical environment of nuclei can be derived from its resonance 

frequency. The precise resonance frequency of a particular nucleus is dependent on the 
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effective magnetic field, B0, at the nucleus. The B0 field, experienced by a nucleus in an 

atom varies moderately from the external B0 field because the magnetic field observed 

by the nucleus depends on the nature of the chemical bonds of the atom. Therefore 

different nuclei do not resonate at the same frequency. The difference between the 

resonance frequencies of nuclei is described by the chemical shift which depends upon 

the chemical nature of the molecule.  

The electrons circulating around the nucleus create a secondary induced magnetic field 

(Be). The magnetic field created by the electron circulation within an s orbital opposes B0 

field. Thus, the B0 field is shielded from the nucleus by the Be field, leading to shifts of 

lower frequency. In opposition, the magnetic field created by the circulation of electrons 

between the ground and excited states of p orbitals augments the external B0 field. 

Consequently, the Be field produced by electrons between the ground and excited states 

of p orbitals gives rise to deshielding. There are also effects in aromatic compounds where 

ring currents in aromatic rings enhance the B0 field leading higher NMR frequencies 

(down-field shifts). 

In practice, NMR spectroscopy measures the chemical shifts relative to a given standard, 

according to the following equation: 

                                                                                                                                                                                                                                                                    

 

NMR spectrometers operate at different field strenghts. The chemical shift scale is  

expressed in parts per million (ppm), being independent from the spectrometer frequency 
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so that chemical shifts of a nucleus determined from experiments on NMR spectrometers 

at different field strenghts will be the same (Cavanagh, 1995). 

1.7.6 1D and 2D NMR spectroscopy to study metabolism 

NMR has profoundly emerged as a tool to mine an abundant amount information about 

metabolism of cells. The accurate identification of metabolites in cells or tissue can be 

carried out  by one dimensional (1D) NMR and two dimensional (2D) NMR methods (Fan 

& Lane, 2016). 

To achieve a well designed metabolomics experiment, the type of NMR measurement 

must be chosen carefully. A suprising amount of information can be obtained from 1D-1H 

NMR spectra, including chemical shifts, homonuclear coupling constant  (1H -1H ) and the 

integral of the signal. The 1D-1H NMR spectrum can only be used to measure  metabolites 

at higher levels (Dona et al., 2016). 2D methods can be used to overcome overlap of 

signals and can yield additional information to identify molecues (Dona et al., 2016). For 

example, a 2D 1H-13C heteronuclear single quantum correlation (HSQC) spectra is used 

to correlate the chemical shifts of 1H and 13C directly bonded to each other (Öman et al., 

2014).  

An NMR experiment is simply  based on a pulse sequence consisting of a series of radio 

frequency (RF) pulses and delays. A general 1D pulse sequence is made up of the 

preparation phase and detection phase (Mckay, 2011) (see Figure 1.7.4.A). During the 

preparation period, the sample is exited for a sufficient period of time by combination of 

RF pulses in order to create the desired state of magnetisation prior to detection. Due to 

precession of the magnetisation vector, the signal evolves in time and returns to its initial 

state, causing a signal as a free induction decay (FID) of the transverse magnetisation. 
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The FID is recorded during the detection period before repeating the acquisition of the 

FID for improved signal-to-noise ratio. 1D  Fourier transformation (FT) of the FID yields 

the 1D spectrum with one frequency axis.  

2D NMR spectroscopy, which yields an spectrum with two frequency axes, is sometimes 

needed to extract more information about connectivity or interactions within the various 

spin networks. 2D NMR spectroscopy introduces two additional sections into the pulse 

sequence of 1D NMR, namely the evolution time and the mixing time (Dona et al., 2016) 

see Figure 1.7.4.B). During the evolution time t1, the desired state, which is created by 

RF pulses in the preparation period, evolves with chemical shift and/or scalar couplings. 

In the case of NOESY spectra the mixing period transfers the coherence from the first 

spin to a second one via relaxation mechanisms. In heteronuclear experiements such as 

the HSQC, the chemical shift in the 2nd dimension is developed by increasing a delay 

between 1D slices which generates an alternating sinusoid in the incremented dimension. 

In order to obtain a two-dimensional data set, a 2D pulse scheme is repeated over and 

over again with systematically incremented t1. After the execution of the pulse sequence 

many times, two-dimensional time domain data set is generated, one is from direct 

detection and other is from systemically incrimination of t1. FT in both dimensions yields 

the 2D spectrum with two frequency axes containing the chemical shift of nuclei in the 

sample. Examples for 2D NMR experiments are NOESY, COSY, TOCSY and HSQC. The 

2D HSQC experiment is used to correlate the chemical shift of 1H in the F2 dimension 

with that of the directly bonded X-heteronuclei (commonly, 13C or 15N) in the F1 dimension 

(see Figure 1.7.4.C.). 

Stable isotope-resolved metabolomics (SIRM) is an approach that enables us to follow 

the metabolic fate of labelled substrates in vivo and in vitro (Bruntz et al., 2017). Use of 
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isotope‐labeled precursor metabolites in 1D and 2D NMR experiments offers a unique 

ability to analyse the fate of individual atoms from stable isotope-enriched precursors. 13C 

NMR spectroscopy allows measuring the activity of a large variety of metabolic pathways 

by the detection of resonances from 13C (Hollinshead et al., 2016). However, 13C NMR 

spectroscopy is relatively insensitive compared to 1H NMR due to low natural abundance 

of 13C and weak magnetic moment of 13C. Thus, 13C-enriched substrates are used to 

observe more carbon signals. For instance, [1,2-13C]-glucose, can be used to determine 

and quantify the activity of metabolic pathways. As a result of tracing the fate of stable 

isotopically-enriched nutrients, 13C substitution in multiple positions in the same molecule 

can be distinguished (see Figure 1.7.5). However, 13C‐optimized NMR probes restrict us 

to large concentrations of metabolites. As MS can also provide information on 

isotopomers by yielding mass increments, the combined analysis of NMR with MS 

(CANMS) can be used together to obtain long range information on isotopomer 

contributions in 13C‐labeled cells for metabolic pathway analysis (Chong et al., 2017). 

The HSQC experiment can be performed using metabolites generated using isotopically 

labeled precursors in order to decipher the carbon or nitrogen flows in cells (Fan & Lane, 

2016). The 2D-HSQC offers high resolution data that allows the detection of positional 

isotopomer distributions of metabolites. The measurement of label incorporation can be 

performed by either quantification of intensities from metabolite spin systems or analysis 

of multiplet patterns in the incremented 13C-dimension arising from the scalar coupling 

(JCC couplings) (Saborano et al., 2019).   
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Figure 1.7.4 1D and 2D NMR spectroscopy. 

(A) Schematic presentation of the pulse sequences of a simple 1D-NMR experiment. (B) The 

construction of a simple 2D-NMR experiment. (C) Pulse sequence of a 2D HSQC experiment. 
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Figure 1.7.5 Isotope tracing to probe metabolic pathways. 

The figure shows  [1,2-13C] glucose tracing pentose phosphate pathway and aminoacid synthesis.  

Empty circles, 12C; red filled circle, 13C. 
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1.4 The aim of this thesis  

Cancer cells exhibit altered metabolism, regulating the dynamics of the central metabolic 

pathways in a different manner to fulfil the demands of unbridled cell growth and 

proliferation (DeBerardinis & Chandel, 2016). A significant effort has been made toward 

understanding how cancer cells converge multiple biochemical pathways to support the 

increased energy request, rapid proliferation, and other characteristics typical of 

malignant cells. Contemporary research has led to the discovery of the dependence of 

cancer cells on specific metabolic pathways to improve cellular fitness (Nie et al., 2018; 

Patil et al., 2016). Thus, a comprehensive description of the metabolic landscape in 

cancer cells has guided the development of drugs that target cancer-cell-selective 

metabolic pathways. Accordingly, there has been considerable interest in the mapping of 

the metabolic profiling of cancer cells to exploit metabolic vulnerabilities. 

Haematological malignancies are cancers that comprise a diverse set of lymphoid and 

myeloid neoplasms in which normal haematopoietic differentiation is perturbed (Snowden 

et al., 2017). With the advent of high throughput technologies, common genetic variations 

with prognostic and therapeutic value have been identified across the different types of 

haematological cancers (Arber et al., 2016; Swerdlow et al., 2016). However, a landscape 

of metabolic variation across the haematological cancer types has not been well exploited 

so far. Therefore, the overall aim of this thesis was ‘to map metabolic profiling of a panel 

of haematological cancers for diagnostic or therapeutic purposes. This was achieved by 

employing a variety of cellular, molecular and analytical techniques, including NMR 

spectroscopy, flow cytometry and western blotting. To do this I focused on a series of 

specific experimental objectives: 

First, I characterised metabolic phenotypes of the haematological cancer cell lines using 
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18 cell lines, covering 5 different subtypes using 1D NMR spectroscopy (chapter 3).  

Then, based on the findings from this study (described in chapter 3) I aimed to further 

investigate the role of BCAAs in MM cells using 1D and 2D NMR spectroscopy, flow 

cytometry and in vitro cell viability assays (chapter 4).  

Finally, I focused on metabolic differences between BL and DLBCL. I compared the effect 

of extracellular asparagine on serine metabolism for BL vs DLBCL using 1D and 2D NMR 

spectroscopy, flow cytometry, in vitro cell viability assays and western blotting (chapter 

5). 
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CHAPTER 2 

 MATERIALS AND METHODS 
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2.1. Cell culture 

2.1.1 Maintenance of cell lines 

Acute myeloid leukaemia (NB4, HL60, U937, KG1a), Burkitt’s lymphoma (Glor, BL31, 

Sav, Ezema, Dante), diffuse large B cell lymphoma (Farage, SUDHL4, SUDHL5, 

SUDHL6), chronic myeloid leukaemia (K562) and multiple myeloma (UM3, JJN3, U266, 

RPMI8226) cell lines were purchased from DSMZ (Braunschweig, Germany). Cell lines 

were maintained in exponential growth in RPMI-1640 media (Gibco-Invitrogen Ltd, 

Paisley, UK) supplemented with 10% fetal bovine serum (FBS, Gibco-Invitrogen) and 

penicillin (100 U/ml) and streptomycin (100 μg/ml) (Gibco-Invitrogen) at 37°C with 5% 

CO2. The cultures were routinely passaged every 2 days to maintain exponential phase. 

Cells were authenticated regularly with NorthGene service for STR profiling. Mycoplasma 

test was performed with DAPI stain (Sigma Aldrich). 

 

 

 

 

 

Figure 2.1.1 Haematological cancer cell lines.  

Classification of 18 cell lines representing acute myeloid leukaemia (AML), chronic myeloid 

leukaemia (CML), Burkitt’s lymphoma (BL), diffuse large B cell lymphoma (DLBCL) and multiple 

myeloma (MM). 

2.1.2 Preparation of customised complete RPMI-1640 medium  

RPMI-1640 medium powder, modified w/o glutamine, w/o amino acids, glucose was 

purchased from MyBioSource.com,US. Firstly, the amino acid and glucose stock 

solutions were prepared in ddH2O. A nutrient mixture that consists of glucose and amino 
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acids based on the composition of RPMI-1640 media formulation was prepared (Moore 

et al., 1967) (see Table IV.). 

Then, 3.70 g RPMI-1640 medium w/o L-glutamine, w/o amino acids, glucose powder was 

dissolved in 450 ml ddH2O. 1 g of NaHCO3 was added under stirring. Nutrient mixture 

was added to the medium. To bring the final volume to 500 ml, ddH2O was added before 

adjusting the pH to 7.0 by addition of HCL or NaOH. The medium containing amino acid 

mixture and glucose was filter-sterilised using a 0.22 µm membrane. 

Table IV. RPMI-1640 (21875) culture medium composition. Source: Sigma-
Aldrich. 

 

Components Final Concentration (mg/mL) Stock Concentration (mg/mL) 

Glycine 0.01 10.0 

L-Arginine hydrochloride 0.24 50.0 

L-Asparagine 0.5 10.0 

L-Aspartic acid 0.02 50.0 

L-Cystine 0.05 25.0 

L-Glutamic Acid 0.02 50.0 

L-Glutamine 0.3 15.0 

L-Histidine 0.015 15.0 

L-Hydroxyproline 0.02 100.0 

L-Isoleucine 0.05 20.0 

L-Leucine 0.05 10.0 

L-Lysine hydrochloride 0.04 40.0 

L-Methionine 0.015 15.0 

L-Phenylalanine 0.015 10.0 

L-Proline 0.02 100.0 

L-Serine 0.03 30.0 

L-Threonine 0.02 40.0 

L-Tryptophan 0.005 5.0 

L-Tyrosine 0.02 25.0 

L-Valine 0.02 25.0 

D-Glucose (Dextrose) 2.0 100.0 
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2.1.3. Isotopic labelling of cells 

For tracer-based metabolic analysis, cells were centrifuged (at 1500 rpm, for 5 minutes, 

at 21°C), then resuspended in a medium prepared with labelled precursors (see Table V). 

The number of cells was determined based on the metabolic pathway that would be 

studied in order to obtain a strong NMR signal for analysis. Cells were cultured at a 

density of 0.5 x 106 to 1.0 x 106 based on the incubation time and cell doubling time. 

Table V. Isotopes used for metabolic tracer-based studies. 

Description Company Catalog number  

[U-13C]-Glucose, 99% 13C Cortecnet  CC860P1 

[U-13C]-Serine, 98% 13C, 98% 15N Cortecnet CCN3000P025 

[3-13C]-Glutamine, 99% 13C Sigma-Aldrich 604941 

[U-13C]-Leucine, 98% 13C Sigma-Aldrich 605239  
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2.2 In Vitro cytotoxicity assays 

2.2.1 Preparation of inhibitor solution 

Asparaginase, NCT503 and 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) 

were purchased from Sigma Aldrich. JPH203 was the gift of J-Pharma (see Table VI) 

Asparaginase solution (100 U/ml) prepared in distilled water. NCT503 solution (50 mM) 

was prepared in DMSO. JPH203 solution was prepared as 100 mM in DMSO-d6 (Sigma-

Aldrich). BCH solution was prepared as 200 mM in the cell culture medium. 

Table VI. Inhibitors used in this study.  

Inhibitor Company Catalog number 

BCH Sigma-Aldrich A7902 

Asparaginase from Escherichia coli Sigma-Aldrich A3809 

NCT-503, ≥98% (HPLC) Sigma-Aldrich SML1659 

JPH203 HCl salt, >99%        Gift from J-Pharma                              Tokyo, Japan 

 

2.2.2 Cell viability assay: CellTiter-Blue  

Cells were plated in a 96-well plate. 20x104 cells were seeded in volumes of 200 μl/well. 

To limit evaporation, the outer wells were loaded with PBS. Cells were treated with 

inhibitors or amino acid deprived media. At the end of the study, 10 μl of CellTiter-

Blue®reagent (Promega) was added to each well for four hours incubation. The 

fluorescence intensity with the setting of Ex=560 nm and Em= 600 from the Cell Titer-

Blue Reagent was read by a Victor2 plate reader (PerkinElmer). 
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2.3 Protein analysis: Western Blotting 

2.3.1 Preparation and quantification of protein samples 

Exponentially growing 5x106 cells were centrifuged at 1500 rpm for 5 minutes and 

supernatant discarded. Cells were washed with 1 ml of ice-cold PBS, and spun again. 

The cell pellet was lysed with 200 μl RIPA buffer (see Appendix A) supplemented with 1 

x EDTA-free protease inhibitor cocktail (Sigma) and incubated on wet ice for 1 hour. 

Samples were centrifuged at 14000 rpm at 4°C, for 10 minutes and the supernatant 

containing the soluble proteins collected and stored at -20°C. 

The concentration of the protein extracts was determined using the Bio-Rad DC Protein 

Assay (Bio-Rad). Briefly, 25 μl of solution ‘A+S’ (made by adding 20 μl reagent S to each 

1ml of reagent A) were pipetted in 96 well plate wells. 2 μl of BSA standards (0, 0.625, 

1.25, 2.5, 5 and 10 mg/ml) or protein extract was added in triplicate wells. A colorimetric 

reaction was obtained by adding 200 μl of reagent B to each well. The plate was incubated 

for 15 min at room temperature to allow the reaction to develop. The absorbance of the 

samples was read using a plate reader (Perkin-Elmer Victor X3 plate reader) at 690 nm. 

The absorbance obtained for BSA standards with known concentration was used to 

construct a standard calibration curve; this was then used to calculate the concentration 

of cell lysates. 

2.3.2 Sodium dodecyl sulphate –polyacrylamide gel electrophoresis (SDS-PAGE)  

A 1.5 mm SDS-polyacrylamide resolving gel was prepared with 12% acrylamide (see 

Appendix A) using the Mini-Protean 3 gel system (Bio-Rad). Distilled water was poured 

over the resolving gel to avoid oxydation and dehydration. After resolving gel had 

polimerised, stacking gel was poured and a 10-well 1.5 mm comb inserted. Once gel was 
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set, it was loaded on mini-Protean 3 gel electrophoresis cells, and 1x SDS-PAGE running 

buffer (see Appendix A) was poured in the inner and outer chamber.  

50 μg of cell lysate was mixed with 12.5 µl 4 x SDS gel loading buffer (see Appendix A). 

RIPA buffer was added to adjust the final volume to 50 µl. Samples were then denatured 

for 10 minutes at 70°C in a thermocycler. 20 µl of denatured protein samples or 5 μl 

BLUeye Prestained Protein Ladder (Geneflow Ltd) were loaded on the gel and run at 120 

V (see Appendix A) until the dye front reached the edge of the gel. 

2.3.3 Western blot 

After SDS-PAGE, the stacking gel was removed, and the resolving gel was equilibrated 

in transfer buffer for 5 minutes before western blot. Briefly, 6 pieces of 3 mm filter paper 

soaked in 1 x transfer (see Appendix A) were placed on the anode plate of a Bio-Rad 

Semi-Dry Transfer cassette (Bio-Rad). Polyvinylidene fluoride (PVDF) membrane 

(Millipore, Watford, U.K.) was activated for 10’ in methanol (Fisher) and equilibrated in 1x 

transfer buffer until use. The activated PVDF membrane was placed on top of the filter 

papers, followed by the gel. A further 6 pieces of 3 mm filter paper soaked in 1 x transfer 

were put on the gel. Bubbles were gently removed from the sandwich by gentle pressure. 

Proteins were transferred onto membranes at 25 V for 60 minutes. 

2.3.4 Immunodetection of proteins 

After transfer, the PVDF membrane was blocked for 60 minutes at RT in 5% w/v non-fat 

milk powder in Tris-Buffered Saline (TBS) with Tween 20 (TBS-T) (5% blocking solution) 

(see Appendix A). The blocked membrane was incubated with the appropriate dilutions 

of primary antibody (according to Table VII) in 5% blocking buffer overnight in 4°C on a 

shaker. After incubation, the membrane was washed in three times with TBST for 5 
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minutes, at 70 rpm on a gyro-rocker (Scientific laboratory supplies). The membrane was 

then incubated with the recommended dilution of fluorescent tagged secondary antibody 

(according to Table VII) in 5% blocking buffer at room temperature for an hour. The 

membrane was then washed 3 times in TBS-T supplemented with 0.01% sodium dodecyl 

sulphate (SDS), followed by the last wash in TBS (see Appendix A). Protein bands on the 

blot were scanned and quantified using LI-COR Odyssey®. Protein levels were 

normalised using the housekeeping protein β-actin. 

Table VII. Antibodies used for the Western blot analysis . 

Antibody Source Company Cat. No Dilution 

Anti-PHGDH Rabbit Sigma-Aldrich HPA021241 1:750 

Anti-β actin Mouse Sigma-Aldrich A1978-100 µL 1:15000 

Anti-rabbit Goat LI-COR 926-32211 1:10000 

Anti-mouse Goat LI-COR 926-68029 1:10000 

 

2.4 Analysis of cell surface expression of proteins: flow cytometry 

100 µl of exponentially growing cells was aliquoted into flow cytometry tubes. 2 μl of 

fluorophore-conjugated antibody (see Table VIII) or matched isotype (see Table VIII) was 

added and incubated for 30 min at 4 °C in the dark. After incubation, cells were washed 

with 2 ml of cold PBS, cells were fixed with 300 µl fluorescence-activated cell sorting 

(FACS) fix buffer (see Appendix A) and stored at 4°C in the dark until run. All samples 

were analysed using a BD FACSCalibur and CELLQuestTM Pro (BD Bioscience) as per 

the manufacture instructions. 
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Table VIII. Antibodies used for surface staining. 

 

 
 

2.5 NMR spectroscopy 

2.5.1 Cell extraction 

The metabolic activity of cells was halted as described before (Saborano et al., 2019). 

Briefly, cell suspensions were centrifuged in falcon tubes at 1500 rpm for 5 minutes at 

21°C. 10 ml of the supernatant was stored for media analysis and the remaining 

supernatant was disposed of. Cell pellets were then washed once with 1 ml of pre-warmed 

PBS and transferred to Eppendorf tubes. Supernatants were discarded after 

centrifugation at 14000 rpm for 20 seconds. After this, 400 μl of HPLC grade methanol 

was rapidly added. Cell pellets were resuspended in methanol on dry ice and vortexed 

for 10 seconds before storing at −80 °C until extraction. For the extraction, cell pellets in 

methanol were transferred into the Wheaton™ lear glass sample vials (MERK). 325 μl of 

distilled HPLC grade H2O and 400 μl of chloroform, pre-chilled on wet ice, were added. 

Samples were vortexed for 40 seconds and then incubated on the bench for 5 minutes. 

After centrifugation at 4000 rpm, for 10 minutes at 4°C, polar and nonpolar samples were 

transferred to Eppendorf tubes and the Wheaton™ clear glass sample vials, respectively. 

Polar samples were dried using a vacuum dryer. 

Primary antibody Matched Isotype Control Volume Per Facs Tube

CD98 FITC-conjugated

(BD Biosciences)

LAT1 (BU53) Ms IgG2α

Alexa Fluor® 647-conjugated (NovusBio)

(NovusBio)

Ms IgG1, κ 2 µl

2 µl
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2.5.2 NMR sample preparation 

All polar extracts were dissolved in 50 μl of 100 mM sodium phosphate buffer (pH 7.0) 

prepared with 90%H2O/10% D2O or 100% D2O (99.9% pure; GOSS Scientific Instruments 

Ltd.), 3 mM sodium azide (NaN3) and 0.5 mM timethylsilyl-propanoic acid (TMSP, 

Cambridge Isotope Laboratories) as a chemical shift reference. Samples were sonicated 

for 15 minutes and vortexed for 10 seconds. 35 ml of sample was transferred into 1.7 mm 

NMR tubes. Samples that were dissolved in sodium phosphate buffer containing 90% 

H2O/10% D2O were transferred into 1.7 mm NMR tubes using the GILSON sample 

preparation unit, while samples that were prepared with 100% D2O buffer were manually 

transferred. 

For preparation of media samples for NMR, 162 μl of the previously saved media was 

resuspended in 18 μl of metabolomics buffer made from 1 M phosphate buffer (pH 7.0) 

prepared with D2O, 0.5 mM TMSP and 3 mM NaN3. Then the samples were transferred 

to 3.0 mm NMR tubes. All samples were kept at 4°C until measurement. 

2.5.3 NMR data acquisition 

All 1D 1H-NOESY and 1H-13C HSQC spectra for cell extracts were acquired at 300 K using 

a Bruker 600 MHz spectrometer, equipped with a 1.7-mm TCI probe and a cooled Bruker 

SampleJet autosampler. 

The 1H 1D spectra were obtained using the 1D NOESY pulse sequence (noesygppr1d) 

with water pre-saturation. Key parameters were as follows: spectral width 7183.9 Hz; 

complex points, TD 32768; interscan delay, d1=4 seconds; NOE mixing time, d8=10 

milliseconds; number of transient, ns = 128; steady state transient, ds = 8. Total 

acquisition time was 14 minutes. For the 1H 1D spectra of media samples, Bruker 600 
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MHz spectrometer with a 5-mm TXO cryogenic probe with a cooled Bruker SampleJet 

autosampler was used. The standard Bruker pulse sequence noesygppr1d was used to 

obtain 1H 1D spectra. The key parameters used were as follows: spectral width: 7183,9 

Hz; TD=32768; d1=5 seconds; NOE mixing time, d8=10 milliseconds; ns=32; ds=8. Total 

acquisition time was 5 minutes. The 1H-13C HSQC spectra were obtained using a modified 

version of the Bruker pulse program, hsqcgphprsp.ug4 which uses States-TPPI gradient 

selection, with additional gradient pulses during the INEPT periods echo periods to 

improve signals.  The spectral width for 2D 1H,13C spectra was set to 7812.5 Hz for the 

1H observe dimension while 24154.6 Hz was set to for 13C observe dimension. For the 1H 

dimension of 2D HSQC spectra, 1024 complex data points were acquired. For the 13C 

dimension, 2048 complex data points were acquired. Spectra were acquired with 2 

transients and an interscan delay of 1.5 seconds as I had sufficient samples due to using 

of minimum 10x106 cells for the cell extraction. For HSQC spectra with a high resolution 

in the incremented dimension that allowed to see the JCC couplings, Non-Uniform 

Sampling (NUS) incrementation was used (Hyberts et al., 2014). 25% of the 8192 

complex points were sampled for the 13C dimension using Wagner’s schedule generator 

(http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html) with a tolerance 

of 0.01. Total acquisition time was 4.30 hours. 

2.5 4 Analysis of 1D spectra 

2.5.4.1 One dimensional NMR spectra of cell extracts 

The NMRLab/MetaboLab software (Günther et al., 2000; Ludwig & Günther, 2011) in the 

MATLAB, version R2017a (MathWorks, Massachusetts, USA) programming environment 

was used to process all one-dimensional NMR data. The free induction decay (FID) signal 

http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html
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was zero filled to 32768 points once and Fourier transformed using an exponential line 

broadening of 0.3 Hz. After all spectra were phase corrected and referenced to TMSP at 

δ 0.00 ppm, they were aligned on the TMSP signal. Then, a spline-based baseline 

correction was applied to all spectra. The water region and regions devoid of signal at the 

edges of the spectrum were excluded. The icoshift software was used to subject the 

shifted regions to segmental alignment (Savorani et al., 2010). The spectra were scaled 

to a probabilistic quotient normalisation (PQN-scaling). For multivariate analysis, log-

transformation was applied in MATLAB. Subsequently principal component analysis 

(PCA) was carried out using the mean centered x-block data employing PLS toolbox 

(Eigenvector Research). Chenomx NMR Suite (version 5.0) (Alberta, Canada, 2015) was 

used to assign resonances of metabolites. The intensity of metabolites was determined 

by semi-manual integration (ITN tool) in MetaboLab within Matlab, version R2017a 

(MathWorks, Massachusetts, USA). Concentration of metabolites calculated as follows: 

 

 

Where Ia is the intensity of TMSP signal; Ib is the intensity of sample signal, Ha and Hb 

are the number of protons of TMSP and sample respectively and Ca and Cb are the 

concentrations of TMSP and sample respectively. 

 

2.5.4.2 One dimensional NMR spectra of cell culture media 

The raw NMR data (FIDs) of media samples were manually phase-adjusted and baseline-

corrected using the NMRLab/MetaboLab within Matlab, version R2017a (MathWorks, 

Massachusetts, USA) after referencing to TMSP chemical shift at δ=0.0ppm. The spectral 

region 5.15 ppm – 4.65 ppm was removed to exclude the effect of imperfect water 

= 
Ia              Ha X Ca      

Ib              Hb X Cb             
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suppression. Then, segmental alignment (using icoshift) was performed in order to align 

several metabolites. Resonances of metabolites were assigned using Chenomx NMR 

Suite (version 5.0) (Alberta, Canada, 2015). The intensity of metabolites was measured 

by semi-manual integration (ITN tool) in MetaboLab in the MATLAB, version R2017a. 

Finally, metabolite intensities are normalised according to cell number as follows:  

 

 

 

2.5.4.3 Two-dimensional NMR spectra  

2D HSQC spectra were processed using NMRPipe software, version 9.2 (Delaglio et al., 

1995) and loaded into Metabolab within Matlab, version R2017a (MathWorks, 

Massachusetts, USA). Cosine-squared window functions were applied to both 

dimensions and spectra were phased manually. Calibration was carried out manually 

using the L-lactic acid methyl signal as a reference (δ 1.31/22.9 ppm). Metabolite 

identification was performed using the MetaboLab library that was originally derived from 

the Human Metabolome Database (HMDB). For 2D NUS-HSQC spectra, data processing 

was initially performed using NMRPipe software (version 9.2)  with the Hyberts extension 

(Hyberts et al., 2012) for processing NUS spectra and subsequent analysis was then 

performed with Metabolab  within Matlab, version R2017a as described above for regular 

HSQC spectra. 

PQN scaling factors from the corresponding 1D 1H spectra were used to scale the 

associated 2D HSQC spectra for both labelled and unlabelled samples. The percentage 

of label incorporation in specific metabolites was calculated as follows: 

normalization factor = 
cell density 

1x10
6
 

 normalized signal intensity value = signal intensity x normalization factor 
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Where Ilab is the intensity of the resonance from the labelled sample, Slab is the scaling 

factor in the corresponding 1D NOESY spectrum for labelled sample, Ictl is the intensity 

of the resonance from the reference unlabelled sample, Sctl is the scaling factors in the 

corresponding 1D NOESY spectrum for the control sample.  Although, 13C makes up 

about 1.1% of all natural carbon, I assumed that the natural abundance of 13C is 1% of all 

natural carbon using the formula to determine the percentage of label incorporation. 

 

2.6 Transcriptomic data and RNA-seq data analysis 

Publicly available gene expression (RNA-seq) data of eBL (Abate et al., 2015) and GCB-

DLBCL (Teater et al., 2018) primary tumors were downloaded from Sequence Read 

Archive (SRA) database (Cochrane et al., 2011) using the SRA Toolkit. The accession 

number for eBL study is SRP062178 and for GCB-DLBCL is SRP1000105. Both studies 

generated paired-end RNA-seq data with Illumina HiSeq2000 platform. In total, RNA-seq 

data from 19 eBL and 12 GCB-DLBCL cases were used for gene expression analysis. 

Significant altered genes were calculated with Sleuth using the “Wald Test”. Based on this 

parametric statistical test, a ‘beta’ value (a biased estimator of the fold change) is 

assigned to every transcript, describing the expression in each condition. False discovery 

rate (FDR) was also calculated to correct for multiple testing comparison with a threshold 

at 1%. Finally, advanced gene set enrichment analysis (GSEA) was applied with 

“SetRank” (Simillion et al., 2017). R/Bioconductor software package to identify pathways 

using 980 gene sets from KEGG annotated database (Kanehisa et al., 2019). Gene set 
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network maps were generated with “Cytoscape v3.5.1” software (Shannon et al., 2003), 

considering a level of significance with FDR and setRank p-values at 1%. Transcriptomic 

data were retrieved and analysed jointly by Mr. Grigorios Papatzikas and Prof. Jean-

Baptiste Cazier using the recent computational workflow of Kallisto-Sleuth (Bray et al., 

2016).  

2.7 Statistical analysis 

Statistical analysis of data was performed using Prism version 7.0 (GraphPad Software, 

Inc., La Jolla, CA, USA). To determine whether two populations are statistically different, 

t-test for paired data was used. One-or two-way analysis of variance (ANOVA) was used 

to determine whether three or more populations are statistically different from each other. 

Pearson correlation analysis was carried to estimate whether there was a statistically 

significant linear relationship between datasets. The dose-response curves were plotted 

to calculate IC50 values. To determine IC50 values, concentration values were converted 

to log(concentration) values before performing non-linear regression (log(inhibitor) vs. 

response - variable slope). All error bars in the experiments represent standard error of 

the mean (SEM) for a minimum of three independent experiments. Data were considered 

significant when p-values were less than 0.05 and were represented in figures following 

the standard convention: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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CHAPTER 3 

 METABOLIC PROFILING OF 

HAEMATOLOGICAL CANCER CELLS 
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3.1 Introduction 

Most cancer cells exhibit an altered metabolism compared to normal cells, utilising 

nutrients in a different manner to produce large amounts of biomass for rapid proliferation 

(Pavlova & Thompson, 2016). Haematological malignancies are multi-factorial diseases 

of unclear molecular underpinnings. There are growing consciousness and understanding 

that metabolic pathways are commonly dysregulated in hematologic malignancies 

(Wojtowicz et al., 2018). 

Metabolism is frequently dysregulated in haematological cancer cells. Unlike the genetic 

characteristics, the metabolic alterations of haematological cancers are poorly 

understood. The identification of mutations in human cytosolic isocitrate dehydrogenase 

enzymes IDH1 and IDH2 in acute myeloid leukaemia (AML) cells has led to renewed 

interest in metabolic reprogramming in haematological cancers and their therapeutic 

applications (Mardis et al., 2009). For instance, the striking genetic heterogeneity in diffuse 

large B cell lymphoma (DLBCL) was found to result in subsequent metabolic 

heterogeneity between different groups of DLBCL (Caro et al., 2012). In addition to these 

findings, c-Myc protein, whose overexpression is characteristic of BL, was reported to 

induce virtually all genes involved in glycolysis (Goetzman & Prochownik, 2018). 

Metabolome reflects not only catabolic and anabolic reactions but also cellular regulation 

and genetic variations. Metabolomics has a marked potential to uncover the critical 

metabolic pathways recruited in carcinogenesis. Despite remarkable efforts to determine 

genetic characteristics, the metabolic alterations of haematological cancers and 

characterisations of metabolic differences in cancer subtypes have not been well focused.  

In this chapter, metabolic phenotypes of the most frequently occurring haematological 
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cancers representing AML, CML, BL, DLBCL and MM, have been studied using 1D NMR 

spectroscopy. Both intracellular and extracellular metabolites were monitored to explore 

the differences or similarities between these distinct haematological cancer subtypes. 
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3.2 Results 

3.2.11H-NMR profiles show discrimination between blood cancer cell lines 

In order to study the metabolic phenotype of haematological cancers, 1D 1H - NMR 

spectra of 18 exponentially growing cell lines were acquired with 6 replicates per cell line. 

These cell lines represent AML (NB4, HL60, U937, KG1a), BL (Glor, BL31, Sav, Ezema, 

Dante), CML (K562), DLBCL (Farage, SUDHL4, SUDHL5, SUDHL6) and MM (UM3, 

JJN3, U266, RPMI8226). To explore the metabolic discriminations, all 1D 1H - NMR 

spectral data from AML, CML, BL, DLBCL and MM were subjected to multivariate 

statistical modelling using unsupervised PCA. 

The score plot of the first principal component (PC1) versus PC2 from PCA of the 1D 1H-

NMR spectral data of 18 cell lines is shown in Figure 3.1. PC1, that captures the greatest 

amount of total variance in the dataset, accounted for 29.08% of the variation while PC2 

that captures the second greatest contribution to variance, includes 14.93% variability. 

The PCA score plot revealed a clear separation between AML, CML, DLBCL and BL 

underscoring the metabolic variation between these haematological cancers. However, 

the PCA score plot did not give a clear distinction between MM and other groups. 
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Figure 3.1 Principal component analysis (PCA) score plot of metabolic profiles of 

haematological cancers cells. 

PCA score plot of 1H NMR spectra of cell extracts. The PCA score plot displays the first and 

second PC components, PC 1 and PC 2 namely. Key; red: AML cell lines, green: CML cell line, 

blue: BL cell lines, black: DLBCL cell lines, magenta: MM cell lines. 

 

3.2.2 1H-NMR profiles show discrimination from a same tumour type 

To reveal the metabolic similarity between cell lines derived the same disease, 1H - NMR 

spectra for the cell lines from the same group were evaluated by PCA. 

Statistical evaluation by principal component analysis (PCA) showed a clear separation 

between the AML cells and CML cells reflecting underlying differences in metabolite 

composition. The first two principal components (PCs) explain 68.58% of the total 

variation in the spectra from AML and CML cells (see Figure 3.2.A). The observed 

metabolic differences between AML and CML can be reasoned by the specific genetic 

differences, such as the presence of the Philadelphia chromosome in K562 cells. The 
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PCA score plot showed almost no separation between the BL cell lines, except for Dante 

cells, indicating that the metabolite profiles of these BL cells are very similar (see Figure 

3.2.B). This marked overlap in metabolic profiles of BL cells may reflect the strong 

metabolic effect of overexpression of c-Myc in BL cells. In opposition to the metabolic 

homogeneity of BL cells, PCA analyses computed for the spectral data from 

the DLBCL and MM reported a notable metabolic divergence between cell lines.  The 

PCA that performed on the NMR data of different DLBCL cells revealed a clear separation 

between DLBCL cells lines, with the PC1 and PC2 accounting for 41.26% and 24.94% of 

the total variance respectively (see Figure 3.2.C). The PCA score plot for PC1 and PC2 for 

the comparison of metabolic profiles in MM cells showed that MM cell lines distinctly 

separated from each other due to their biochemical backgrounds (see Figure 3.2.D). 
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Figure 3.2 PCA score plots of metabolic profiles of different types of haematological 

malignancies. 

PCA score plots for PC 1 versus PC 2 of 1D 1H-NMR data of cell extracts from AML (NB4, HL60, 

U937, KG1a) & CML (K562) (A), BL (Glor, BL31, Sav, Ezema, Dante) (B), DLBCL (Farage, 

SUDHL4, SUDHL5, SUDHL6) (C) and MM (UM3, JJN3, U266, RPMI8226) (D) cell lines. 95% 

confidence intervals are indicated by ellipses. 
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3.2.3 1H-NMR profiles of intracellular metabolites show discrimination between 

blood cancer cell lines 

To construct metabolic maps of AML, CML, BL, DLBCL, and MM, intracellular metabolites 

in NMR samples were identified. 1D NMR experiment provided well resolved spectra for 

intracellular polar samples (see Figure 3.3), thus enabling identification of several 

metabolites from several metabolic pathways (see Figure 3.4). 

 

 

 

Figure 3.3 1D 1H-NOESY NMR spectrum of cell extracts of 18 cell lines.  

Showing an overlay of 103 1H-NOESY NMR spectra of intracellular polar samples extracted from 

AML, CML, MM, BL and DLBCL cells. The spectral regions including water and TMSP resonance 

peaks were excluded. Key; red: AML, green: CML, blue: BL, black: DLBCL, magenta: MM. 
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Figure 3.4 Assignment of intracellular metabolites. 

Metabolite assignments in 103 1D 1H-NMR spectra of intracellular polar samples from AML (red), 

CML (green), MM (magenta), BL (blue) and DLBCL (black) cell lines. 
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3.2.4 Glucose and one carbon metabolism in blood cancer cells 

The high glycolytic rate and glucose catabolism forming lactate even with ample oxygen 

has been regarded as the most ubiquitous metabolic phenotype in cancer cells (Hsu & 

Sabatini, 2008). For this reason, metabolites that could be directly or indirectly de novo 

synthesised from glucose (see Figure 3.5) were studied across the 18 cell lines from 

different haematological cancer types.  

Figure 3.5 Major metabolic 

pathways.  

Glycolysis, the TCA cycle and the folate 

cycle are the major pathways of central 

metabolism. Glycolysis gives rise to 

several precursor metabolites for the 

biosynthesis of other macromolecules. In 

glycolysis, glucose is converted into 

pyruvate. Glucose-6-phosphate is a 

glycolytic intermediate that lies at the 

crossroads of synthesis of myo-inositol 

and UDP-glucose. The glycolytic 

intermediate 3-phosphoglycerate can be 

converted into serine. Serine can be 

converted to glycine yielding methylene 

tetrahydrofolate (THF) which starts the 

folate cycle. The enzymes involved in the 

folate cycle are expressed in both the 

mitochondria and cytosol. Serine and 

glycine can be also imported from the 

extracellular environment. The glycolytic 

product pyruvate is converted to acetyl-

CoA, which enters the TCA cycle. 
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Lactate was found at a higher level in CML, DLBCL and BL cells than AML and MM cells 

(see Figure 3.6.A). The least lactate production was observed in MM cells with the 

exception of JJN3 cells. On the other hand, MM and BL cells exhibited a higher alanine 

level than that in AML, CML and DLBCL cells (see Figure 3.6.B), suggesting that there 

may be a negative correlation between lactate and alanine in haematological cancer cells, 

as pyruvate can be converted to either lactate, alanine or acetyl-CoA. However, the 

Pearson correlation test did not reveal a significant negative association between alanine 

and lactate in haematological cancer cells (see Figure 3.6.C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Graphical demonstration of the quantification of lactate and alanine. 

Signal intensities of lactate (A) and alanine (B) across the 18 haematological cancer cell lines 

which represent AML (red), CML (green), MM (magenta), BL (blue) and DLBCL (black). 

Correlation between alanine and lactate in AML, CML, MM, BL and DLBCL cell lines (C). Bar 

graphs represent mean ± SEM, with n=6. Pearson rank correlation coefficient (r) was used to 
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detect associations between metabolites. 

Cells require one-carbon units for the production of nucleotides to support the high 

proliferation rate of cancer cells (Newman & Maddocks, 2017). Serine, which can be 

synthesised from glucose or taken up from the extracellular environment, is a major 

source for maintenance of one carbon units which leads to formation of glycine and 

formate (see Figure 3.5). Figure 3.7.A and Figure 3.7.B demonstrate that U266 and K562 

cells, which represent MM and CML respectively, had the largest amount of glycine and 

formate. The Pearson correlation was applied to show the relationship between the level 

of glycine and formate in haematological cancers. A significant positive correlation 

between glycine and formate was observed in the combined dataset that contains data 

from AML, CML, MM, DLBCL and BL cells (see Figure 3.7.C),  

The production of lactate through aerobic glycolysis indicates the rate of glucose 

metabolism in cells (Vazquez et al., 2010). Even though lactate production was highest in 

BL and DLBCL, the level of UDP-glucose and myoinositol, which are synthesised from 

glucose was observed less in BL and DLBCL than other haematological cancers (see 

Figures 3.7.D and 3.7.E).This finding may suggest that glucose 6-phosphate derived from 

glucose in BL and DLBCL cells is mostly used to produce lactate rather than synthesis of 

UDP-glucose and myoinositol.  
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Figure 3.7 Graphical demonstration of the quantification of intracellular metabolites 

involved in glucose metabolism.  

Signal intensities of glycine (A) and formate (B) across the 18 haematological cancer cell lines 

which represent AML (red), CML (green), MM (magenta), BL (blue) and DLBCL (black). 

Correlation between formate and glycine in AML, CML, MM, BL and DLBCL cells (C). Peak 

intensities of myoinositol (D) and UDP-glucose (E) across the 18 haematological cancer cell lines. 

Bar graphs represent mean ± SEM, with n=6.  Pearson rank correlation coefficient (r) was used 
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to detect associations between metabolites. 

3.2.5 The TCA cycle and amino acid metabolism in blood cancer cell lines 

In the light of the accepted belief that cancer cells exhibit substantial alterations in the TCA 

cycle (Hammoudi et al., 2011), metabolites relative to the TCA cycle were studied to 

uncover how or to what extent different types of haematological cancers rely on the TCA 

cycle. 1D 1H-NMR spectra showed that acetate levels in different cell line cells were in a 

similar range except for NB4, KG1a, JJN3, U266, and SUDHL6 cells (see Figure 3.8.A). 

The levels of glutamate, glutamine and succinate were almost the same in different BL 

cell line cells except for glutamine level in Ezema cells. By contrast, the levels of these 

metabolites noticeably varied across the AML, CML, DLBCL, and MM cells (see Figures 

3.8.B - 3.8.D).  

Glutamine is an important anaplerotic source of carbons for the TCA cycle. In cells, 

glutamine is converted to glutamate and next to α-KG. So, the association between 

glutamate and glutamine was studied to understand whether or to what extent a 

relationship between glutamate and glutamine is present in haematological cancers. In 

addition, the correlation between succinate and glutamate was questioned to see whether 

glutamate fuels the TCA cycle in haematological cancers. The Pearson correlation test 

was used to probe for relationship between the TCA cycle intermediates in AML, CML, 

BL, DLBCL and MM cells. This analysis demonstrated that there are pronounced positive 

significant associations between succinate and glutamate and also between glutamate 

and glutamine in haematological cancer cells (see Figures 3.8.E and 3.8.F). 
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Figure 3.8 Graphical demonstration of the quantification of intracellular metabolites 

involved in TCA cycle and glutamine metabolism. 

Peak intensities of acetate (A), glutamate (B), glutamine (C) and succinate (D) across the 

18 haematological cancer cell lines which represent AML (red), CML (green), MM 

(magenta), BL (blue) and DLBCL (black). Correlation between glutamate and glutamine 

(E). Correlation between glutamate and succinate (F). Bar graphs represent mean ± SEM, 
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with n=6. Pearson rank correlation coefficient (r) was used to uncover associations 

between metabolites in AML, CML, MM, BL and DLBCL cells.  

The levels of aspartate and  proline noticeably varied across the AML, CML, DLBCL, BL 

and MM cells (see Figures 3.9.A and 3.9.B). The other noteworthy metabolite choline, 

which plays a key role in the formation of the cell membrane and serves as a precursor 

for many signalling molecules, was found at lower levels in K562 cells and higher levels 

in UM3, U266, Sav, Glor, Ezema and BL31 (see Figure 3.9.C). Furthermore, the 

comparison of the intracellular arginine level revealed that there is no remarkable 

difference for the level of arginine between cell lines except for NB4 and Farage cells (see 

Figure 3.9.D). NB4 cells had the highest level of arginine while the Farage cells possessed 

the smallest amount of arginine. 

Arginine mainly acts as a nitrogen donor and maintains the nitrogen balance in cells. Aside 

from the maintenance of nitrogen balance, arginine is also used to generate creatine that 

supplies cellular adenosine triphosphate reservation by the generation of 

phosphocreatine. The most abundant amount of cellular creatine was found in K562 cells 

whereas the least amount of creatine was observed in BL cells (see Figure 3.9.E). 

The levels of BCAAs and phenylalanine greatly varied across the haematological cancer 

cell lines (see Figures 3.10.A - 3.10.D). Although leucine and isoleucine levels were rather 

high in MM cells, the level of valine in MM cell lines except for U266 cells was found much 

lower compared to valine levels in other cells from different haematological cancer 

subtypes. Since the System L-amino acid transporters (LATs) mediate transport of BCAAs 

and phenylalanine (see Figure 3.11.A),  the correlation between these amino acid levels 

was investigated. The Pearson correlation test revealed that there is a strong correlation 
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with a very high statistical significance between leucine and isoleucine valine and 

phenylalanine (see Figures 3.11.B - 3.11.D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Graphical demonstration of the quantification of metabolites.  

Peak intensities of aspartate (A), proline (B), choline (C), arginine (D) and creatine (E) across the 

18 haematological cancer cell lines which represent AML (red), CML (green), MM (magenta), BL 

(blue) and DLBCL (black). Bar graphs represent mean ± SEM, with n=6.  
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Figure 3.10 Illustration of the quantification of intracellular amino acids.  

Signal intensities of leucine (A), isoleucine (B), valine (C) and phenylalanine (D) across the 18 

haematological cancer cell lines which represent AML (red), CML (green), MM (magenta), BL 

(blue) and DLBCL (black).  Bar graphs represent mean ± SEM, with n=6.  
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Figure 3.11 Relationships between the intracellular levels of metabolites.  

Illustration of transport of BCAAs, phenylalanine, tyrosine and methionine by the LAT-1 transporter 

(A). Correlation between isoleucine and leucine(B). Correlation between valine and leucine (C). 

Correlation between phenylalanine and leucine (D). Pearson rank correlation coefficient (r) was 

used to uncover associations between metabolites in AML, CML, MM, BL and DLBCL cells. 
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3.2.6 NMR spectroscopy monitors the production and consumption of metabolites 

Analysis of spent culture media provides crucial information about metabolic components 

which cancer cells consume and produce. To further understand the metabolic profiles of 

haematological cancers, 1D 1H-NMR spectra of the cell-free extracellular medium and the 

conditioned media from AML, CML, BL, DLBCL and MM were acquired and analysed. 

Analysis of the lactate peak from 1D 1H‐NMR spectra of conditioned media revealed that 

AML and CML cells, with the exception of KG1a cells, secreted the largest amount of 

lactate to their environments compared to lactate levels in the media of MM, BL and 

DLBCL cells (see Figure 3.12.A).  AML cells, U937, HL60 and KG1a  were shown to 

harbour the highest level of alanine in their media (see Figure 3.12.B). The extracellular 

alanine level of MM cells was pretty high in comparison with the  extracellular alanine level 

of CML, BL and DLBCL cells. However, the lowest extracellular alanine level was 

observed in the conditioned medium of K562 cells despite the observation of large 

amounts of lactate in K562 cells.  

Whilst myoinostol and glycine levels in cell culture media noticeably varied across AML 

and MM cell line cells, the media of distinct BL cell line cells contained similar amounts of 

myoinositol and glycine (see Figures 3.12.C and 3.12.D). This was the case for 

extracellular myoinositol and glycine in DLBCL cells with the exception of Farage cells for 

which myoinositol levels were greater than for most other cells. Interestingly, the amount 

of glycine in the media of U937, KG1a, K562, RPMI8226 and U266 cells more than that 

of the original cell culture medium. This observation demonstrates that the secretion of 

intracellular glycine into extacellular environment exceeded the uptake of extracellular 

glycine for U937, KG1a, K562, RPMI8226 and U266 cells.  



98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Graphical illustration of the comparison of extracellular metabolites related to 

glucose metabolism. 

Comparison of the intensities of lactate (A), alanine (B), myoinositol (C), glycine (D) in the cell 

culture media of AML (red), CML (green), MM (magenta), BL (blue) and DLBCL (black) cell line 

cells. Bar graphs represent mean ± SEM, with n=3.  
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The spectral assignment of branched chain amino acids (BCAAs) was carried out to show 

how or to what extent haematological cancer cells are dependent on extracellular BCAAs. 

Comparison of the BCAAs in conditioned media from cell lines compared to standard 

defined cell culture medium revealed that MM and BL cells prominently relied on 

extracellular leucine, isoleucine and valine (see Figures 3.13.A - 3.13.C). AML and CML 

cells showed less dependence on extracellular BCAAs than BL and MM cells. Intriguingly, 

the isoleucine level in media of U937 cells was higher than that of the standard defined 

cell culture medium, suggesting that the amount of isoleucine that was exported from 

U937 cells to the medium was greater than the amount of the isoleucine that was imported 

into U937 cells from medium.  Because LAT transporters are responsible for the transport 

of all BCAAs across the plasma membrane (Barollo et al., 2016), the relationship between 

the amount of leucine and isoleucine and also between the amount of valine and leucine 

was demonstrated by applying  Pearson correlation tests. This correlation test revealed a 

positive correlation between the leucine and isoleucine and between the leucine and 

valine (see Figure 3.13.D).  
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Figure 3.13 Graphical illustration of the comparison of extracellular BCAAs. 

Comparison of the intensities of leucine (A), isoleucine (B), valine (C) in the cell culture media of 

AML (red), CML (green), MM (magenta), BL (blue) and DLBCL (black). Correlation analysis 

between leucine, isoleucine and valine in AML, CML, MM, BL and DLBCL cells using Pearson 

rank correlation coefficient (D). Bar graphs represent mean ± SEM, with n=3.  
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Furthermore, increases in the asparagine, aspartate and glutamate levels of the 

conditioned medium from U937 and K562 cells were observed (see Figures 3.14.A - 

3.14.C). The glutamate level in conditioned media of AML, CML, MM and DLBCL was 

higher than the glutamate level in the cell-free cell culture medium, indicating that these 

cells, whilst potentially consuming glutamate, are releasing more into the media (see 

Figure 3.14.D). In contrast, the glutamate level in the conditioned media of BL cells was 

lower than the glutamate level in the cell-free cell culture medium (see Figure 3.14.D). 

This finding may suggest than BL cells consume a greater amount of glutamate than they 

release back into the media, hence the levels decrease in conditioned media. 
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Figure 3.14 Graphical illustration of the comparison of extracellular amino acids. 

Comparison of the intensities of asparagine (A), aspartate (B), glutamine (C) and glutamate (D) in 

the cell culture media of AML (red), CML (green), MM (magenta), BL (blue) and DLBCL (black). 

Bar graphs represent mean ± SEM, with n=3.  
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3.3 Discussion 

3.3.1 1D 1H-NMR spectroscopy to study metabolism in cells 

Over the past two decades, 1D 1H-NMR spectroscopy has emerged as one of the most 

useful tools to study metabolism in cells (Saborano et al., 2019). This is because every 

known organic compound has protons that resonate at a characteristic frequency. 

Because 1H nuclei magnetically interact with neighbouring 1H nuclei through scalar 

couplings, signals split with characteristic coupling constants; thereby providing additional 

information regarding the structure and environment (Dayrit & Dios, 2017). 

In this study, 1D 1H-NMR spectroscopy enabled us to identify and quantify complex 

multiple metabolites in cancer cells. However, narrow dispersion of 1H chemical shifts and 

a large number of 1H resonance signals inevitably create overlapped peaks with the 

different relative intensities on the NMR spectrum. Signal overlap in 1D 1H-NMR spectrum 

complicates peak identification and metabolite quantification. For these reasons, only 22 

intracellular and 13 extracellular metabolites were identified due to their distinctive signals 

in the relatively free-overlapping and uncrowded region in the 1H-NMR spectrum using 

the NMRLab/MetaboLab software within Matlab. For example, citrate gives rise to 

multiplets at δH 2.5 ppm and δH 2.7 ppm (Dona et al., 2016). However, the citrate peaks 

at δH 2.5 and δH 2.7 ppm overlaps with glutathione and cystathionine respectively, i.e. this 

signal overlapping problem complicates obtaining quantitative information about the 

citrate amount. The other problem with the interpretation of 1D NMR spectrum was that 

1H protons from C-H units of the glucose backbone resonance between δH 3 - 5.5 ppm 

from the full range of δH 0- 10 ppm (A.-H. Emwas et al., 2019). 
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Hence, the occupation of the region δH 3 - 5.5 ppm by glucose peaks raises the probability 

of accidental overlaps. For instance, serine has signal multipltes at δH 3.8, δH 3.9 and δH 

4.0 ppm (A.-H. Emwas et al., 2019). Nevertheless, some assigned metabolites still do not 

reflect the real cellular or extracellular amount of metabolites due to overlapping problem. 

For example, the lactate and threonine doublet peaks appear at δH 1.33 ppm, thus the 

measured lactate intensity in this study reflects the amount of lactate and threonine. 

However, this overlapping problem could be avoided by using Chenomx NMR Suite 

instead of NMRLab/MetaboLab software.  

3.3.2 Differentiation between haematological cancers using PCA of 1H-NMR 

spectroscopy 

1H-NMR spectroscopy detected a broad range of metabolites that allowed collection of a 

large data set for the haematological cancer cells in this study. PCA was carried out to 

reduce these big data sets in order to identify whether or to what extent any discrimination 

or similarity exists between haematological cancer cells and also between cancer cell 

lines from the same subtype of haematological cancers.  

The PCA revealed a clear discrimination between AML, CML, BL and DLBCL cell lines. 

This could be reasoned by the subtype specific genetic mutations. For instance, PCA 

revealed a clear separation of K562 cells derived from a patient with CML in blast crisis, 

from AML cells (Pietarinen et al., 2015). Although CML cells in blast crisis present clinically 

like an acute leukaemia to a great extent, this sharp metabolic difference between AML 

cell lines and K562 cells was unexpected. This unexpected metabolic difference could be 

explained by the expression of the constitutively active tyrosine kinase oncoprotein BCR-
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ABL in CML cells, since the BCR-ABL oncoprotein is reported to support proliferation, 

impaired transcriptional activity and survival (Cilloni & Saglio, 2012). As a result of 

oncogenic activity of BCR-ABL protein, CML cells could differently regulate metabolic 

pathways in comparison with AML cells.  

Furthermore, the PCA score plot demonstrated that the biggest metabolic variation is 

present between different MM cell lines. This divergence in metabolic profiles of MM cells 

may reflect the existence of the widespread genetic heterogeneity in MM (Lohr et al., 

2014).  In contrast, the absence of separation of BL cell lines except for Dante, suggest 

that BL cells are metabolically highly similar. This remarkable overlap in metabolic features 

of BL cells may be a result of c-Myc overexpression (Scheller et al., 2010), which is the 

genetic hallmark of BL, as c-Myc regulates many aspects of metabolic processes such as 

glycolysis, glutaminolysis, and fatty acid oxidation (Chi V. Dang, 2013; Goetzman & 

Prochownik, 2018) leading to a typical Warburg effect signature. 

3.3.3 Characterisation of the intracellular metabolic profile of haematological 

cancer cells 

A semi-targeted NMR spectroscopy metabolomics approach was applied to identify 

intracellular metabolic profiles of different types of haematological cancers. This approach 

revealed the metabolic differences between AML, CML, MM, BL and DLBCL cells in this 

study. 

This study revealed that lymphoma cells presented the most glycolytically oriented 

metabolic phenotype with a higher amount in intracellular lactate. The intracellular levels 

of lactate and aspartate are informative on the origin of the energy sources (Y.-J. Chen et 
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al., 2016), since the Warburg effect and the malate aspartate shuttle define cell’s use of 

either glycolysis or OXPHOS to produce ATP. Thus, the levels of lactate and aspartate 

reflect how cancer cells rely on aerobic glycolysis and OXPHOS.  For instance, a low level 

of aspartate was observed in BL cells while the highest amount of aspartate was found in 

MM cells that produced the lowest amount of lactate. These findings support that BL is 

the most glycolytic haematological cancer type while MM is the haematological cancer 

type that utilizes OXPHOS more than other types. 

The elevated lactate in lymphoma cells relative to leukaemia and myeloma cells can be 

reasoned by the stabilisation of HIF-2α in normoxic conditions (Evens et al., 2008), c-Myc 

overexpression (Scheller et al., 2010, p.), gain-of-function mutations in EZH2 (Shen & 

Vakoc, 2015) or presence of tonic BCR signalling (survival of B cells in the absence of 

antigen) in lymphoma cells (Havranek et al., 2017). Limited O2 supply stabilizes HIFs that 

develop numerous adaptive responses (Majmundar et al., 2010). In addition to genes 

related to hypoxia, HIFs were also found to directly promote aerobic glycolysis by 

activating the expression of LDHA, HK2, GLUT1 during hypoxia (Majmundar et al., 2010). 

However, lymphoma cells demonstrate normoxic HIF-2α stabilisation and a small amount 

of HIF-1α stabilisation (Evens et al., 2008). It can be speculated that the stabilisation of 

HIFs in lymphoma cells under normoxic conditions may be a driver of high lactate 

production in DLBCL and BL cells.  

The other driver of aerobic glycolysis in the lymphoid cell is the B-cell antigen receptor 

(BCR), which is activated by antigen binding and not expressed by plasma cells which 

produce their secreted version, i.e., antibodies. BCR crosslinking following antigen 

encounter leads toa rapid increase in glucose uptake and glycolysis (Doughty et al., 2006). 
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However, DLBCL cells were found to display tonic BCR signalling which contributes to the 

survival of B cells in the absence of antigen stimulation activating multiple downstream 

effectors (Havranek et al., 2017). Since AML, CML and MM cells do not express BCR, 

which is massively expressed in GC cells, the observation of a high lactate level in 

lymphoma cells may be explained by the tonic BCR signalling in lymphoma cells in 

addition to other key drivers for aerobic glycolysis, such as c-Myc. Various types of c-Myc 

gene mutations, which induce over-expression and increased activity of LDH-A (Shim et 

al., 1997), are present in all BL patients and 5–15% of patients with DLBCL (Zhou et al., 

2014). 

The production of lactate through aerobic glycolysis indicates the rate of glucose 

metabolism in cells (Tiefenthaler et al., 2001). Even though lactate production was higher 

in BL and DLBCL, the level of UDP-glucose and myoinositol, which are produced from 

glucose 6-phosphate, was observed to be lower in BL and DLBCL cells compared to other 

haematological cancers. Myo-inositol inhibits the activity of PI3K (Kapral et al., 2017), and 

could thereby indirectly reduce aerobic glycolysis in cells as the PI3K pathway promotes 

the metabolic switch to aerobic glycolysis (L. Yu et al., 2017). From this point of view, we 

could explain why less glycolytic haematological cancer types, AML, CML and MM, were 

observed to have more myo-inositol.  

One carbon metabolism is required for cells to support nucleotide synthesis thus benefits 

cancer cell survival (Newman & Maddocks, 2017). One carbon metabolism occurs both 

in mitochondria and cytosol. Formate is the key one-carbon unit for cells because of being 

transported between mitochondria and cytosol. For example, formate derived in 

mitochondria is exported to the cytosol to support the generation of serine from glycine 
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(Ducker & Rabinowitz, 2017). In this study, we observed that there is a significant negative 

correlation between glycine and formate in AML and MM cells. This negative association 

was unexpected, suggesting that this negative relationship between glycine and formate 

for AML and MM may have resulted from the translocation of mitochondrial formate to the 

cytoplasm and subsequent conversion of glycine to serine. 

One of the most common metabolic alterations in cancer cells is the enhanced usage of 

glutamine (Cluntun et al., 2017). Besides being a constituent of proteins, glutamine acts 

as both an anaplerotic substrate for the TCA cycle and a nitrogen donor for the 

biosynthesis of nucleotides. As an anaplerotic substrate, glutamine is first converted to 

glutamate by the function of glutaminase. The correlation test that we applied revealed 

that the intracellular glutamate level is positively associated with intracellular glutamine 

and succinate levels in AML, CML, MM, BL and DLBCL cells. This finding shows that 

haematological cancers use glutamine to feed the TCA cycle. Moreover, the glutamate 

level detected in BL cells was relatively high compared to glutamate levels in other cells. 

Many studies have demonstrated that c-Myc transcription factor increases expression of 

glutaminase enzyme (P. Gao et al., 2009; D. Xiao et al., 2015). This observation could be 

the result of overexpression of c-Myc protein, which increases the expression of 

glutaminase enzyme, as BL cells are characterised by the overexpression c-Myc.  

The most striking result was the detection of high amounts of creatine in the CML cell line 

K562. Phosphorylated creatine, known as phosphocreatine, serves as a rapidly 

mobilisable energy donor for ATP formation. This high level of creatine in CML cells 

suggests that K562 can use creatine to recycle ATP. However, creatine and 

phosphocreatine give resonance signals nearly at the same frequency in 1D 1H-NMR 
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spectrum (Dewar et al., 2010). Thus, distinguishing creatine from phosphocreatine 

requires the application of other techniques such as reverse phase high-performance 

liquid chromatography (HPLC). 

The identification of intracellular metabolites by 1D NMR approach helped us to describe 

the general metabolic profile of AML, CML, MM, BL and CML. However, an extended 

genome-wide association study is necessary to better understand metabolic traits 

quantified by 1D-NMR. In addition, the application of other techniques is required to better 

explore the altered metabolic pathways. 

3.3.4 1H NMR metabolic profile of media samples  

Another objective of this study was to investigate the differences between the extracellular 

metabolic profile of haematological cancer cells, i.e. the levels of metabolites in the media 

of cells. I used metabolomics data from 1D NMR spectroscopy to study nutrient 

consumption and metabolite accumulation within the media of AML, CML, MM, BL and 

DLBCL. 

Lactate has often been seen as an useless by-product of anaerobic metabolism, needed 

to produce NAD+ during its formation from pyruvate to drive the productive phase of 

glycolysis. However, lactate has also been suggested as a metabolite serving as an 

alternate source of energy. For instance, lactate was found to be imported into cells and 

oxidised in mitochondria by cancer cells (Y.-J. Chen et al., 2016). In this study, I showed 

that AML and CML cells secreted high levels of lactate and alanine into their environment 

whereas their intracellular lactate level was quite low. I also demonstrated that BL cells 

produced more lactate and alanine but exported these metabolites less than AML and 
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CML cells. These findings could be explained by the activity of the lactate shuttle theory 

(Brooks, 2018) which suggests that the secreted lactate is imported into cells to be 

oxidised in the mitochondria for ATP production. It could be proposed that BL cells might 

actively use the lactate shuttle to maintain the TCA cycle. 

The other key finding is the consumption of BCAAs by MM cells. I observed that there 

was a remarkable uptake of BCAAs from the extracellular environment MM cells. This 

addiction of BCAAs might have developed so that MM cells can meet demand for 

producing proteins and immunoglobulin light chains in large amounts, considering that 

MM are characterised by large amounts of abnormal proteins (Fairfield et al., 2016).  
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CHAPTER 4  

 BCAA METABOLISM IN MULTIPLE 

MYELOMA 
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4.1 Introduction 

Cancer cells alter their metabolism in order to support their rapid cellular proliferation (Hsu 

& Sabatini, 2008). The increased glucose uptake in cancer cells is shown as a major 

characteristic of metabolic alteration. Apart from glucose, branched-chain amino acids 

(BCAAs; leucine, isoleucine, and valine) were described to be important for cancer cell 

proliferation and growth (Selwan & Edinger, 2017). 

BCAAs are essential amino acids that must be provided by the diet. BCAAs are primarily 

oxidised in skeletal muscle and adipose tissue, whereas the other amino acids are mainly 

catabolised in the liver (Dewar et al., 2010). BCAAs are not only used for protein synthesis 

but also have unique properties with diverse physiological and metabolic roles. BCAAs 

were documented to participate in lipolysis, lipogenesis and glucose metabolism (Doi et 

al., 2003; Nishimura et al., 2010). For example, BCAAs were shown to promote the 

secretion of insulin (Nair & Short, 2005). In addition, leucine acts as a nonspecific carbon 

source of oxidation for production of energy in muscle cells, producing more energy than 

complete oxidation of glucose (Monirujjaman & Ferdouse, 2014). Besides playing a vital 

role in lipid and glucose metabolism in specific tissues, BCAAs were reported to 

participate in several signalling pathways, the most classic of which is the activation of the 

mTORC1 signalling pathway.  mTORC1 plays a key role in regulating many fundamental 

cell processes. For instance, mTORC1 enhances protein synthesis, de novo lipid 

synthesis and glycolysis whilst it inhibits autophagy (Saxton & Sabatini, 2017). Among the 

three BCAAs, leucine has gained the greatest reputation for its role in the recruitment of 

mTORC1 to the lysosome (see Figure 4.1) (Yao et al., 2017).  
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Figure 4.1 Schematic model of 

BCAAs uptake and leucine signalling 

to mTORC1. 

Leucine, isoleucine and valine enter 

cells via the L-type amino acid 

transporters (LATs). Cytosolic leucine 

inhibits Sestrin1/2, leading to the 

activation of GATOR2 that inhibits 

GATOR1. Lysosomal luminal leucine 

activates vATPase. Then vATPase 

stimulates the activation of Ragulator, 

the guanine exchange factor (GEF) for 

RagA/B. The activation of the Rag 

heterodimer leads to the recruitment of 

mTORC1 to the lysosomal surface. 

 

In recent years, many cancer cells have been shown to overexpress branched-chain 

amino acid aminotransferase 1 (BCAT1) enzyme, which catalyses a transamination 

reaction between glutamate and BCAAs in both directions (Selwan & Edinger, 2017; 

Tönjes et al., 2013; Zheng et al., 2016). In human gliomas, BCAT1 enhances glutamate 

excretion and promotes cell proliferation (Tönjes et al., 2013). The chemoresistance-

inducing function of BCAT1 has been described in hepatocellular carcinoma (Zheng et al., 

2016). 

The critical requirement of extracellular BCAAs is reflected in the overexpression of L-type 

amino acid transporters (LATs) in many cancer cells (see Figure 4.1). LATs mainly 

transport neutral amino acids in a sodium independent manner. So far, LAT1, LAT2, LAT3 
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and LAT4 have been identified in different tissues. LAT1 transcripts are expressed in brain, 

spleen, testis, activated lymphocytes, pancreatic islet cells and blood-brain barrier cells 

while LAT2 mRNA is expressed in skeletal muscle, kidney, jejunum, ileum, fetal liver, 

prostate and ovaries (Q. Wang & Holst, 2015). LAT1 and LAT2 both interact with CD98 

(4F2hc) through a conserved disulphide bridge and thus form a heterodimer (see Figure 

4.2). CD98 is responsible for the plasma membrane localisation of LAT1 and LAT2 to 

transport BCAAs, phenylalanine, tyrosine, tryptophan and methionine in exchange for the 

intracellular glutamine (Kanai et al., 1998; Segawa et al., 1999). Conversely, LAT3 and 

LAT4 are monomeric amino acid transporters and display a narrow substrate selectivity 

(Q. Wang & Holst, 2015a). Expression of LAT3 is limited to skin, liver, muscle, prostate 

and pancreas whilst the expression of LAT4 is restricted to the placenta, kidney and 

peripheral blood leukocytes (Q. Wang & Holst, 2015a). A variety of cancer cells have been 

shown to predominantly overexpress LAT1 such as lung cancer and breast cancer and 

even though LAT2 has sequence similarity to LAT1 (Furuya et al., 2012; KAIRA et al., 

2010; Kobayashi et al., 2005). 

 

Figure 4.2 Schematic illustration of the structure of 

LAT1/CD98 heterodimeric transporter.  

LAT1/CD98 heterodimeric transporter is a member of the 

SLC7 solute carrier family, which comprises CD98hc, 

also known as 4F2 antigen heavy chain, covalently links 

to LAT1 light chain (Singh & Ecker, 2018).  

 

MM is characterised by the production of a high amount of non-functional 

immunoglobulins or immunoglobulin chains. Since MM cells need more amino acids to 
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produce immunoglobulins compared to other haematological cancer cells, they might be 

dependent on extracellular amino acids more than other cancer cells. In the previous 

chapter, MM cells were shown to take up more BCAAs than AML, CML, BL and DLBCL 

cells do. Given that leucine is required for the activity of mTORC1 that stimulates protein 

synthesis, MM cells might be dependent on extracellular leucine to support protein 

synthesis by enhancing mTORC1 activation. In addition, leucine is a ketogenic amino acid 

whose carbon skeleton can be catabolised for energy in the TCA cycle. 

Based on these findings and observations, I aimed to further investigate the role of leucine 

in MM cells. In this chapter, BCAAs metabolism and expression level of LAT1/CD98 were 

studied in MM cells. The effects of inhibition of LATs by using specific inhibitors were 

explored using NMR spectroscopy and Celltiter Blue (CtB) assay. 
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4.2 Results 

4.2.1 Multiple myeloma cells express CD98 more than other blood cancer cells  

High quality 1H NMR spectra from conditioned media samples of AML, CML, MM, BL and 

DLBCL revealed that MM cells take up more BCAAs than AML, CML, BL and DLBCL cells 

(see Figures 4.3.A - 4.3.C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Graphical illustration of the comparison of extracellular BCAAs.  

Comparison of the intensities of leucine (A), isoleucine (B), valine (C) in the cell culture media of 

AML, CML, MM, BL and DLBCL cell line cells.  

 



117 

 

To test whether MM cells express the LAT1 transporter on their cell surface to facilitate a 

high level of BCAAs uptake compared to AML, CML, BL and DLBCL cells, surface 

expression of LAT1/CD98 was examined by flow cytometry in AML cell line KG1a, CML 

cell line K562, MM cell lines U266 and JJN3, BL cell line Glor and DLBCL cell line Farage. 

Surprisingly, LAT1 surface level was found to be at the lowest level in MM cells and at the 

highest level in Farage and K562 cells (see Figure 4.4.A). However, flow cytometry 

analysis revealed that CD98 heavy chain was mostly present on the plasma membrane 

of MM cells (see Figure 4.4.B). The lowest level of CD98 surface staining was observed 

in K562 and Farage cells that exhibited the lowest BCAAs uptake compared to other cells. 

Then, I investigated whether or to what extent, an association between leucine uptake 

and the surface levels of CD98 and LAT1 is present. The Pearson correlation test analysis 

revealed that the amount of leucine left in the cell culture medium of U266, JJN3, Glor, 

SUDHL6, Farage, KG1a and K562 was negatively correlated with CD98 and positively 

correlated with LAT1 (see Figures 4.4.C and 4.4.D). These findings suggest that although 

the LAT1/CD98 transporter is comprised of CD98 heavy chain and LAT1 light chain the 

surface level of CD98 determines the level of BCAAs uptake from the extracellular 

environment in haematological cancer cells. 
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Figure 4.4 Cell surface expression of CD98 and LAT1.  

Flow cytometry analysis showing the relative fluorescence units (RFU) of LAT1 (A) and CD98 (B). 

Black and white peaks represent isotype control and stained samples respectively. Bar graphs 

display the geometric mean of fluorescence intensities of CD98 and LAT1 divided by geometric 

mean of fluorescence intensities of unstained samples. Correlation analysis between leucine and 

CD98 (C) and between leucine and LAT1 (D) using Pearson rank correlation coefficient.  
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4.2.2 Catabolism of leucine in multiple myeloma cells 

To find out whether leucine is metabolised in MM cells, 40x106 U266, JJN3 and Farage 

cells were cultured with [U-13C]-leucine for 48 hours. After metabolite extraction, 2D 1H-

13C HSQC NMR spectroscopy was performed to analyse the metabolites derived from [U-

13C]-leucine (see Figure 4.5.A). Farage cell line was chosen to see how cancer cells less 

dependent on extracellular leucine metabolise the 13C enriched leucine. 

The production of [3-13C]-glutamate and [3-13C]-glutamine was detected in U266 and JJN3 

cells (see Figures 4.5.B and 4.5.C). The 13C incorporation into glutamate and glutamine 

shows that leucine is metabolised to produce acetyl-CoA in MM cells. As shown in Figure 

4.5.A, leucine yields acetyl-CoA and acetyl-CoA derived intermediates. Briefly, acetyl-CoA 

molecules originating from [U-13C]-leucine enters the TCA cycle. The entry of [1,2-13C]-

acetyl-CoA into TCA cycle results in 13C carbons in citrate, isocitrate and α-KG. Thus, the 

detection of glutamate 13C labelled at position 3 and 4 in U266 and JJN3 cells shows that 

glutamate was synthesised by transamination of α-ketoglutarate derived from leucine. In 

addition to 13C labelled glutamate, 13C enrichment in glutamine was also observed in U266 

cells. The 13C labelled glutamine could be produced from 13C labelled glutamate by the 

activity of glutamine synthetase. The 13C incorporation into glutamine was around 10% in 

U266 cells while the [U-13C]-leucine was not metabolised to glutamine in JJN3 cells. 

Interestingly, I also identified large amounts of [11-13C]-N-acetylneuraminic acid (Neu5Ac) 

originating from [U-13C]-leucine in U266 and JJN3 cells (see Figures 4.5.B and 4.5.C). By 

contrast, 13C enrichment in glutamine and Neu5Ac was not observed in Farage cells (see 

Figure 4.5.D). 
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Figure 4.5 Catabolism of leucine in U266, JJN3 and Farage cells.  

Schematic of labelling scheme using [U-13C]-leucine showing the labelling of glutamate (Glu) and 

glutamine (Gln) via TCA cycle activity as well as production of N-acetylneuraminic acid from acetyl-

CoA (A). Bar graphs represent the 13C% label incorporation in U266 (B), JJN3 (C) and Farage (D) 

cells cultured for 48 hours in the presence of [U-13C]-leucine. Data information: Data shown as 

mean SEM, n = 3. 

 



121 

 

4.2.3 LAT inhibitors reduce tumour cell viability 

To understand whether the inhibition of LAT1/CD98 complex could affect the viability of 

MM cells, LAT1 inhibitors BCH and JPH203 were used (see Figures 4.6.A and 4.6.B). I 

first treated U266, JJN3 and K562 cells with BCH, a standard inhibitor of LATs (LAT1-4) 

at different concentration for 24 and 48 hours and then the Celltiter Blue assay was 

performed. K562 cell line was chosen as a cell line less dependent on exogenous BCAAs. 

BCH gradually decreased cell proliferation in a dose-dependent manner (see Figure 

4.6.C). After 24 hours of exposure to BCH at 20 mM, the viability of three cell lines was 

decreased around 30%. However, the reduction in cell viability was similar in U266, JJN3 

and K562 cells up to 48 hours of exposure to BCH with 24 hours of exposure to BCH. 

Furthermore, the similar gradual decrease in the viability of U266, JJN3 and K562 shows 

that BCH inhibits the cell proliferation regardless of exogenous BCAAs dependence of 

cells. To further test, whether a specific LAT1 inhibitor (JPH203) can result in a reduction 

in the viability of U266, JJN3, K562 and Farage cells, I assessed the effects of JPH203 

on cell viability performing the Celltiter Blue assay. The inhibitory effect of JPH203 on 

U266, JJN3 and K562 cells was dose- and time-dependent as a moderate drop was 

observed in viable cells with an increasing JPH203 concentration and an increased 

exposure time (see Figure 4.6.D). U266, JJN3, K562 and Farage cells presented more 

than 50% cell viability after 24 and 48 hours of exposure to JPH203 at 50 µM. Comparison 

of 24 to 48 hours exposure data showed that Farage cell viability increased with increasing 

exposure time from 24 hours to 48 hours. The maximal reduction of viability was reached 

after 72 hours for all cells. However, this reduction was around only 50% for U266 and 

JJN3 even though these cells are most dependent on extracellular BCAAs.  
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Figure 4.6 Effect of BCH and JPH203 on cell proliferation.  

Structure of BCH (A) and JH203 (B) (Q. Wang & Holst, 2015) Effect of BCH on cell viability in 

U266, JJN3 and K562 cells after treatment with increasing concentrations of BCH for 24 and 48 

hours (C). Effect of JPH203 on cell viability in U266, JJN3, K562 and Farage cells after treatment 

with increasing concentrations of JPH203 for 24 ,48 and 72 hours (D). Cell viability was measured 

by Celltiter Blue assay. Each data point was presented as the mean ± SEM of three experiments. 

 

4.2.4 Inhibition of LATs results in a decrease of cellular BCAAs in multiple myeloma 

cells  

To explore the effects of inhibition of LATs in MM cells, I treated U266, JJN3 and K562 

cells with 5 mM and 10 mM BCH for 48 hours. The effects of BCH on intracellular cell 

metabolism was investigated using NMR spectroscopy. The resonances of lactate, 

alanine, arginine, acetate, proline and succinate between 1.35 and 2.5 ppm in 1D 1H-NMR 

spectra from cell extracts were not measured due to spectral overlap with peaks from BCH 

(see Figure 4.7.A). Thus, metabolites that do not overlap with BCH, were quantified. BCH 

potently reduced BCAA uptake in U266 cells (see Figure 4.7.B). Intracellular leucine, 

isoleucine and valine significantly decreased in both U266 and K562 cells in a dose-

dependent manner whereas a slight reduction was observed in JJN3 cells (see Figures 

4.8.A - 4.8.C). Although, LAT1 is also responsible for transporting phenylalanine across 

the plasma membrane, BCH at 5 mM did not decrease the intracellular phenylalanine 

level in U266 cells whereas 10mM BCH did (see Figure 4.6.D).  BCH at 10 mM decreased 

less intracellular phenylalanine in K562 cells than 5 mM BCH did (see Figure 4.8.D). The 

BCH treatment dose-dependently reduced the intracellular phenylalanine in JJN3 cells 

(see Figure 4.8.D). A slight decrease in intracellular glycine was observed in U266 cells 



124 

 

treated with BCH at 10 mM while intracellular myoinositol, choline and creatine seemed 

not to be affected by BCH treatment. Interestingly, a small dose-dependent reduction in 

myoinositol and choline levels was observed in JJN3 cells (see Figures 4.8.E - 4.8.H).  

 

 

 

Figure 4.7 1D NMR spectra of U266 cells treated with BCH. 

Representative 1D 1H-NMR spectra of U266 cells indicating BCH (A) and BCAAs (B). Leu, leucine; 

Ile, isoleucine; Val, valine. Metabolites were extracted from intracellular samples of U266 cells 

treated with 5 mM and 10 mM BCH for 48 hours. Key: black line, untreated sample; red line, 

sample treated with 5 mM BCH; blue line, sample treated with 10 mM BCH. n=3 
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Figure 4.8 Effect of BCH on intracellular metabolism. 

Bar graphs show the relative intensities of the intracellular metabolites including leucine (A), 

isoleucine (B), valine (C), phenylalanine (D), glycine (E), myoinositol (F), choline (G), creatine (H) 

in U266, JJN3 and K562 cells treated with 5 mM and 10 mM BCH for 48 hours. Bar graphs 

represent mean ± SD with n=3. Two-way analysis of variance (ANOVA) was used to determine 

whether populations are statistically different from each other. * p<0.05, ** p<0.01, *** p<0.001, 

**** p<0.0001. 
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To investigate the effect of blocking of LAT1, I used another supposedly more specific 

inhibitor JPH203 to treat U266 cells at 25 µM and 50 µM for 24 and 48 hours. In the 25 

µM JPH203 treated U266 cells, LAT1 substrates including leucine, isoleucine, valine, 

phenylalanine and tyrosine levels were significantly lower than in non-treated cells (see 

Figures 4.9.A - 4.9.E). Interestingly, increasing JPH203 dose from 25 µM to 50 µM did not 

enhance the LAT1 inhibition. The inhibition of LAT1 with 25 µM JPH203 significantly 

increased the cellular glutamine, asparagine and glycine in U266 cells (see Figures 4.9.F 

- 4.9.H). In comparison with the increase in the level of these amino acids, cellular 

glutamate level was found to increase moderately after 24 hours 25 µM JPH203 treatment 

(see Figure 4.10.A). In contrast, 48 hours 50 µM JPH203 treatment resulted in an 

insignificant decrease in glutamate level in U266 cells. A slight change was observed in 

the levels of lactate, alanine, acetate and succinate in JPH203 treated U266 cells, while 

JPH203 treatment of U266 cells caused no alteration in the level myoinositol and arginine 

(see Figures 4.10.B - 4.10.G). Furthermore, 50 µM JP203 treatment of U266 cells for 24 

hours and 48 hours reduced the intracellular aspartate level (see Figure 4.10.H). 
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Figure 4.9 Effect of the LAT1 inhibitor JPH203 on intracellular metabolism.  

Bar graphs show the relative intensities of the metabolites including leucine (A), isoleucine (B), 

valine (C), phenylalanine (D), tyrosine (E), glutamine (F), asparagine (G), glycine (H) in U266 cells 

treated with 25 µM and 50 µM JPH203 for 24 and 48 hours. Bar graphs represent mean ± SD, 

with n=3. Two-way analysis of variance (ANOVA) was used to determine whether populations are 

statistically different from each other. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Figure 4.10 Effect of JPH203 on intracellular metabolism. 

Bar graphs show the relative intensities of the metabolites including glutamate (A), lactate (B), 

alanine (C), acetate (D), succinate (E), arginine (F), myoinositol (G), aspartate (H) in U266 cells 

treated with 25 µM and 50 µM JPH203 for 24 and 48 hour0s.  Bar graphs represent mean ± SD, 

with n=3. Two-way analysis of variance (ANOVA) was used to determine whether populations are 

statistically different from each other. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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4.3 Discussion 

4.3.1 Association of CD98 heavy chain with LAT1 and LAT2 light chains 

This study demonstrated that MM cells express CD98 heavy chain at higher levels than 

cells from different subtypes of haematological cancers. However, flow cytometry analysis 

revealed that the level of LAT1 light chain on the surface of MM cells is less than the LAT1 

surface level of other cells. Although CD98 is involved in the localisation of LAT1 light 

chain which is involved in the trafficking of the LAT1/CD98 heterodimer complex to the 

membrane (Bröer et al., 2001), the BCAA uptake was negatively correlated with surface 

level of LAT1 light chain in this study. This unexpected result can be explained by two 

potential scenarios. The first scenario relates to masking of LAT1 light chain by the CD98 

heavy chain in  the large extracellular domain of LAT1/CD98 heterodimer (Barollo et al., 

2016). Briefly, the ~40 kDa LAT1 light chain penetrates the cellular membrane by forming 

disulfide-linkage with ~80–85 kDa CD98 heavy chain. Based on these facts, the LAT1 light 

chain may be masked by large extracellular CD98, therefore could not bind to the antibody 

that we used to measure the surface level of LAT1 light chain by flow cytometry. A second 

possible scenario is the association of CD98 with LAT2 instead of LAT1. Briefly, LAT2 light 

chain requires association with CD98 for stable localisation at the cellular membrane to 

have a function to transfer BCAAs. Although many studies have shown that LAT1 is 

upregulated in cancers (Furuya et al., 2012; Kobayashi et al., 2005; Q. Wang & Holst, 

2015), LAT2 could be overexpressed in MM cells and result in presence of high level of 

CD98 on the cellular membrane of MM cells.  
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4.3.2 Catabolism of leucine in multiple myeloma cells 

In past decades, MM has been shown to significantly alter glucose and glutamine 

metabolism like many cancers (Rizzieri et al., 2019). In the previous chapter, I showed 

that MM cells take up more BCAAs from their extracellular environment than other cancer 

cells. To shed new light into our understanding of BCAA metabolism in MM cells, leucine 

metabolism has been exploited in this chapter. 

In this chapter, leucine was found to be fully oxidised in MM cells. Intriguingly, the 

contribution of carbon substrates to glutamate from leucine occurred in U266 cells. As the 

first step of leucine catabolism, leucine is transaminated to branched-chain α-keto acid 

(BCKA) by the activity of branched-chain amino acid aminotransferase 1 (BCAT1) (E. A. 

Ananieva & Wilkinson, 2018). In this reaction, the α-amino group of leucine is transferred 

to α-ketoglutarate to yield α-ketoisocaproate and glutamate. Thus, the glutamate that 

formed by transamination of leucine contains one nitrogen atom derived from leucine. 

However, the glutamate that we detected was 13C labelled. Hence, the production of 

glutamate in U266 and JJN3 cells proves that α-ketoisocaproate derived from leucine is 

further metabolised to yield acetyl-CoA in MM cells (Moghei et al., 2016). The acetyl-CoA 

then enters the TCA cycle by condensation with oxaloacetate. Therefore, leucine is not 

only a building block in the polypeptide chain of proteins but also acts as an energetic 

molecule in MM cells. However, lipid and ketone bodies synthesis from leucine needs to 

be studied, since acetyl-CoA acts as a key precursor for the synthesis of fatty acid and 

ketone bodies in cells.N-acetylneuraminic acid (Neu5Ac), also known as sialic acid, is an 

important family of related 9-carbon sugars. Neu5Ac is positioned at the tip of glycans on 

cell-surface glycoproteins and glycolipids in a process called sialylation (Bork et al., 2009). 
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Cell surface sialylation is dynamic and often changes in response to cellular differentiation. 

In light of its important biological and pathological functions, the relationship between 

Neu5Ac and cancer has been drawing great attention. Increased expression of sialylated 

glycans represents one of the most important modifications of the glycome during tumour 

development, including MM, and often correlates with aggressive metastatic behaviour 

(Natoni et al., 2019; Teoh et al., 2018). Many studies have presented that the level of 

Neu5Ac increases in the serum of patients with MM (Cohen et al., 1989; Crook et al., 

1996; Natoni et al., 2019). Here I demonstrated that the majority of acetyl-CoA derived 

from leucine participates in the production of Neu5Ac in U266 and JJN3 cells. This finding 

suggests that leucine supports sialic acid formation and sialylation more than acting as an 

energetic molecule in MM cells. 

4.3.3 Treatment of cells with LAT inhibitors 

Increased expression of LAT family members in several cancers has been reported 

(Häfliger & Charles, 2019; Q. Wang & Holst, 2015). I observed that MM cells consume 

more BCAAs than leukaemia and lymphoma cells. Although MM cells seemed not to 

express LAT1 more than AML, CML, BL and DLBCL cells, I found that they express CD98 

more than other cells. In addition, the surface level of CD98 was found to be positively 

correlated with leucine uptake.  

Due to the association of LAT1 with cancer patient’s survival rates (Hayashi & Anzai, 

2017), there have been efforts to synthesise LAT1 inhibitors. I investigated the effect of 

the L-type amino acid transporter inhibitor BCH and a LAT1 selective inhibitor JPH203 on 

viability and metabolism of MM cells. BCH differs from JPH203 since it cannot differentiate 
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LAT1 from other LAT transporters, thereby targeting all LATs on the plasma membrane. In 

this study, BCH did not cause a dramatic decrease in viability of cells when cells were 

treated even with 20 mM of BCH. Another study revealed that BCH at 100 mM is required 

to result in the death of 100% of the esophageal cancer cells (Ohshima et al., 2016). 

However, JPH203 applied in micromolar concentrations resulted in a better cytotoxic 

effect. These data suggested that blood cells could be either resistant to BCH or require 

high doses of BCH. Nevertheless, treatment of U266 cells with BCH at 10 mM decreased 

the intracellular BCAAs level as much as the treatment with JPH203 at 25 µM did. 

Although these inhibitors decreased the intracellular BCAAs approximately at the same 

level, they did not result in cell death in the same level. Thus, we could speculate that the 

reduction of intracellular BCAAs is not an effective way to decrease viability of MM cells 

even though MM cells seemed to consume extracellular BCAAs more than leukaemia and 

lymphoma cells. From this point of view, JPH203 might have shown its cytotoxic effect 

impairing with something else in cells rather than blocking LAT1 transporter. To test it, 

LAT1 knockdown is required to show whether JPH203 can lead to cell death in the 

absence of LAT1 protein. 
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CHAPTER 5 

 ASPARAGINE AND SERINE 

METABOLISM IN LYMPHOMA CELLS 
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5.1 Introduction 

B-cell non-Hodgkin lymphomas (B-NHLs) encompass malignant tumours that results from 

the clonal growth of B cells at varying stages of development (Coso et al., 2015). Most B-

NHL cells originate from the germinal centre (GC) reaction (Mlynarczyk et al., 2019). GCs 

are transient and dynamic structure that form within secondary lymphoid organs in 

response to T cell dependent antigens (see Figure 5.1). 

 

 

 

 

 

 

 

 

 

Figure 5.1 Structure of germinal centre. 

Germinal centres (GCs) form in the secondary lymphoid organs (spleen, lymph nodes, tonsils, 

Peyer's patches, and mucosal tissues) in which B cells rapidly proliferate, differentiate and 

undergo affinity maturation. As the germinal centre matures, GCs are polarised into dark and light 

zones. Naive B cells initiate a germinal centre response when they encounter an antigen. The 

naive B cells turn into centroblasts and centrocytes within the GC. Centrocytes subsequently 

differentiate into memory B cells or into short-lived plasma cells called plasmablasts. Then 

plasmablasts leave the GC and terminally differentiate into long-lived plasma cells in the bone 

marrow. 
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GC B cells undergo intense clonal diversification and somatic hypermutation of their 

immunoglobulin variable genes encoding their B cell receptors. Although the GC reaction 

is tightly regulated to avoid emergence of autoreactive B cell clones, GC B cells are still 

at a considerably high risk for acquiring the properties of cancer because of attenuation 

of DNA damage and replication checkpoints (Mlynarczyk et al., 2019). 

BL and DLBCL are subtypes of B-cell lymphomas that have been exposed to GC reaction 

(de Leval & Hasserjian, 2009). In the most recent WHO classification, a strict diagnostic 

criterion is defined for BL; presence of c-Myc rearrangement, positive for BCL6, negative 

for BCL2 and medium-sized cellular morphology (Swerdlow et al., 2016b).  Despite having 

a characteristic gene expression profile, some BL cases morphologically resemble 

DLBCL, which could increase the risk of misdiagnosis. GEP of DLBCL has identified two 

main subtypes: germinal centre B-cells (GCB) or activated B-cells (ABC) (Devin et al., 

2019). Morphologic features of BL and GCB-DLBCL overlap even though GCB DLBCL 

subtype harbours different oncogenic pathways to drive cellular transformation. Indeed, 

both lymphoma types are usually positive for CD19, CD20 and BCL-6 (Devin et al., 2019). 

Moreover, aberrant phenotypes are present in DLBCL and lead to confusion in diagnosis. 

For instance, Myc translocation that is characteristic to BL have been detected in a 

significant subset of DLBCL cases (Said, 2013). Nevertheless, there is an ongoing effort 

to separate these lymphoma types from each other to avoid undertreatment or 

overtreatment of patients.  

Accurate diagnosis is required to treat BL and DLBCL patients properly since treatment 

regimens for these lymphoma types are remarkably different. The conventional regimen 

of four drugs known as CHOP which consists of cyclophosphamide, hydroxydaunorubicin 
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vincristine and prednisone is favoured for DLBCL whereas more intensive chemotherapy 

is preferred for BL (Sinha et al., 2012). For instance, BL patients usually have a poor 

outcome when they are treated with regimens for DLBCL as compared with those treated 

with more intensive regimens (Thomas et al., 2011). Therefore, a deep insight into the 

specific nature of BL and DLBCL is indispensable to accurately distinguish these cases 

and to develop new and emerging targeted therapies. 

Amino acids play essential roles in the maintenance of cellular redox homoeostasis, 

replenishment (anaplerosis) of TCA cycle intermediates and synthesis of nucleosides 

besides their direct role as substrates for protein synthesis. Cancer cells usually rewire 

amino acid metabolism so that they can meet the biosynthetic demands of rapid 

replication. A number of cancers lose the ability to synthesise non-essential amino acids 

and then become dependent on exogenous sources. For instance, some melanoma and 

prostate cancers have been found auxotrophic for arginine due to lack of expression of 

argininosuccinate synthetase (ASS1) (Dillon et al., 2004). It has been shown that 

leukaemic lymphoblasts display little or no detectable asparagine synthetase (ASNS) that 

transfers the amide group from glutamine to aspartate yielding asparagine (Lomelino et 

al., 2017). Acute lymphoblastic leukaemia (ALL) cells were found to be sensitive to 

depletion of extracellular asparagine. Furthermore, these observations were used to 

develop targeted therapy for auxotrophic ALL cells. Asparaginase (ASNase) has been 

used to treat patients with ALL. ASNase catalyses the conversion of asparagine to 

aspartate, thereby depleting blood asparagine and starving leukaemic cells of asparagine 

and leading ultimately to cell death. Extensive clinical data have shown that the long-term 

outcome of ALL has improved dramatically due to the development of ASNase treatment 
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(Cecconello et al., 2020; Lomelino et al., 2017). 

Asparagine as a versatile amino acid has a role in protein synthesis, serine uptake and 

mTORC1 activity (Krall et al., 2016). Depletion of asparagine reduces protein synthesis, 

amino acid uptake and mTORC1 activity in asparagine auxotrophic cells. In this chapter, 

the distinctive differences in asparagine metabolism between BL and DLBCL were studied 

to exploit new treatment strategies. I compared the effect of exogenous asparagine on 

serine metabolism for BL vs DLBCL. For this, I have investigated the effects of asparagine 

deprivation on serine uptake and production, as well as the inhibition of serine synthesis 

by targeting phosphoglycerate dehydrogenase (PHGDH).  
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5.2 Results 

5.2.1 Extracellular metabolic differences between BL and DLBCL  

To elucidate extracellular metabolic differences between BL and DLBCL, metabolites in 

cell culture were studied in the media of BL and DLBCL cell using NMR spectroscopy. 1D 

1H-NMR spectroscopy enabled assignment of 13 metabolites that have a unique peak 

pattern. A principal component analysis (PCA) was performed with a metabolite data 

matrix (13 metabolites versus samples) obtained from the media samples of Sav, Glor, 

Ezema, BL31, Farage, SUDHL4, SUDHL5 and SUDHL6 cells.  

The PCA score plot of the 1D 1H-NMR spectra is shown in Figure 5.2.A. The first principal 

component (PC1) describes 58% of the total variation while PC2 demonstrates 26% of 

the total variation. The PCA pronouncedly separated BL cells from the DLBCL cells, 

reflecting the differences in metabolite composition. The loading plot of the PCA analysis 

pointed out that the separation of BL from DLBCL was mainly based on differences in 

relative amounts of asparagine and glutamine and lactate (see Figure 5.2.B). This analysis 

revealed that BL cells consumed dramatically more extracellular asparagine, glutamine 

and lactate than the DLBCL cells (see Figures 5.2.C - 5.2.E). 

To reveal genetic diversity between BL and DLBCL, transcripts abundances were 

quantified for 17048 genes in the dataset derived from 19 BL and 12 DLBCL patients. 

Differential expression analysis performed by Mr. Grigorios Papatzikas identified 6475 

genes as statistically significant altered genes between the two diseases (Figure 5.2. F). 

Notably, 264 statistically significant metabolic genes were found. This strong signature 

has considerable potential to support differentiation between BL and DLBCL on a 
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diagnostic level.  
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Figure 5.2 Metabolic differences between BL and DLBCL.  

Principal Component Analysis (PCA) (A) and corresponding loadings plot (B) of a metabolite data 

matrix that consists of 13 metabolites in the spent media of four BL cell lines (red) and four DLBCL 

cell lines (blue). Comparison of 1D 1H-NMR peak intensities of asparagine at 2.80 ppm (C), 

glutamine at 2.46 ppm (D), lactate at 1.33 ppm (E) in the cell culture media of BL and DLBCL cell 

line cells. Heatmap of 6475 statistically significant genes between DLBCL and BL. Purple colour 

indicates the rows of the 264 statistically significant metabolic genes (F). The confidence ellipse 

in A is based on with 95% confidence. Bar graphs represent mean ± SEM, with n=3. Gene 

expression values have been converted to a Z-score scale along the rows for case comparisons. 

Dendrogram in hierarchical clustering analysis was produced with Ward method and distance 1- 

Spearman’s rank correlation. 

 

5.2.2 Association between extracellular asparagine and serine metabolism  

In consideration of the recent report showing the regulation of serine metabolism by 

asparagine (Krall et al., 2016), I aimed to further investigate the role of asparagine on 

metabolism in BL and DLBCL cells. To determine the influence of extracellular asparagine 

on glycolysis, serine uptake and glutaminolysis, BL and DLBCL cells were cultured in a 

medium with or no asparagine containing 13C-stable-isotope labelled tracers for the 2D 

HSQC NMR experiments. As tracers, I used [U-13C]-glucose, [U-13C]-serine and [3-13C]-

glutamine (see Figure 5.3.A).  Glor and Farage cell lines were chosen to represent BL and 

DLBCL respectively. 

Firstly, to assess the effect of asparagine on glycolysis, 20 x106 BL and DLBCL cells were 

cultured in asparagine depleted or in complete media containing [U-13C]-glucose for 24 

hours. HSQC analysis of tracer-based experiments revealed that asparagine deprivation 

increased the formation of serine from [U-13C]-glucose in Glor and in Farage cells (see 

Figure 5.3.B). However, glycine production from [U-13C]-glucose remained steady in both 
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cell lines (see Figure 5.3.C). When deprived of asparagine, divergent changes in lactate 

production were observed in Glor and Farage cells. Compared to lactate production in 

cells grown in cell culture media with asparagine, a dramatic increase in production of 

lactate from glucose was observed in Glor cells, while a significant decrease was found 

in lactate production in Farage cells (see Figure 5.3.D). However, asparagine deprivation 

resulted in an enhancement in alanine production in DLBCL Farage cells (see Figure 

5.3.E). Furthermore, asparagine starvation led to a pronounced increase in AMP 

production in Glor cells (see Figure 5.3.F). 

To determine the influence of asparagine on serine uptake and glutaminolysis, 10 x106 BL 

and DLBCL cells were cultured in asparagine depleted or complete media containing [U-

13C]-serine and [3-13C]-glutamine for 24 hours. The analysis of HSQC spectra of Glor and 

Farage cells revealed that the influx of serine reduced in both Glor cells and Farage cells 

in asparagine depleted media (see Figures 5.4.A and 5.4.B). I also observed no change 

in the level of glycine originating from extracellular [U-13C]-serine (see Figure 5.4.C). The 

use of [3-13C]-glutamine to trace the catabolism of glutamine carbons in the TCA cycle 

revealed that the absence of asparagine slightly raised the intracellular level of 13C-

glutamate and 13C-glutamine levels (see Figures 5.4.C - 5.4.F). However, I could not 

observe any changes in the level of TCA intermediates derived from [3-13C]-glutamine in 

Glor cells (see Figures 5.4.F - 5.4.H). Farage cells cultured in the media without 

asparagine produced more succinate and malate originating from [3-13C]-glutamine 

compared to control cells (see Figures 5.4.F - 5.4.H). These results suggest that 

asparagine regulates glucose and serine metabolism in BL and DLBCL cells. 
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Figure 5.3 Asparagine alters glucose metabolism.  

1H-13C HSQC analysis of the cell extraction of Glor and Farage cells cultured in a medium 

containing [U-13C]-glucose in the absence or presence of asparagine for 24 hours. Illustration of 

metabolism of [U-13C]-glucose, [U-13C]-serine and [3-13C]-glutamine in a cell (A). 13C peak intensity 

of [3-13C]-serine (B), [2-13C]- glycine (C), [3-13C]- lactate (D), [3-13C]-alanine (E) and [5-13C]-AMP 

(F) derived from [U-13C]-glucose. Data is shown as mean ± SEM expression. *p < 0.05; **p < 0.01; 

***p < 0.001. 
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Figure 5.4 Extracellular asparagine regulates glutamine metabolism of DLBCL cells.  

Analysis of 2D 1H-13C HSQC spectra of the cell extraction of Glor and Farage cells cultured in a 

medium containing [U-13C]-serine and [3-13C] glutamine in the absence or presence of asparagine 

for 24 hours . 13C peak intensity of [3-13C]-serine (A), [2-13C]-serine (B), [2-13C]-glycine (C) derived 

from [U-13C]-serine. Metabolic fates of  [3-13C]-glutamine in a cell (D). 13C peak intensity of [3-13C]-

glutamine (E), [3-13C]-glutamate (F), [3-13C]-succinate (G) and [3-13C]-malate derived from [U-13C]-

glutamine.  Data is shown as mean ± SEM expression.Data are shown as *p < 0.05; **p < 0.01; 

***p < 0.001. 

 

5.2.3  Metabolic effects of asparaginase and NCT503 

The use of the asparagine-free medium is not enough to completely eliminate extracellular 

asparagine as cells can synthesize aspragine from aspartate and can secrete asparagine 

into their environment. Asparaginase (ASNase), which catalyzes the hydrolysis of 

asparagine to aspartate, has been used as a medication to decrease extracellular 

asparagine in asparagine dependent cancers (Cecconello et al., 2020). Thus, to test 

whether and to what extent ASNase can completely diminish the extracellular asparagine, 

ASNase at different doses was added into fresh complete media. After supplementation 

of fresh media with ASNase at 0.1 U/ml, 0.25 U/ml and 0.5 U/ml for 24 hours, the 1D 1H-

NMR measurement was performed. ASNase at 0.1 U/ml was found to be enough to 

completely diminish asparagine which was proven by a 4-fold increase in the aspartate 

level in comparison with the control media cells (see Figures 5.5.A and 5.5.B). Moreover, 

ASNase also broke down a significant amount of glutamine into glutamate in a dose-

dependent manner cells (see Figures 5.5.A and 5.5.B). Although ASNase at 0.1 U/ml 

depleted almost all asparagine, it reduced glutamine levels by 14%. However,  ASNase at 

0.5 U/ml significantly reduced glutamine level by  88%. Consistent with the decrease in 
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glutamine level, media containing ASNase at 0.5 U/ml had the highest level of glutamate. 

Hence, 0.1 U/mL  ASNase was used for experiments with cells. 

As shown earlier, asparagine regulates serine metabolism by increasing serine production 

from glucose and decreasing serine uptake. This observation encouraged me to ask if the 

expression level of PHGDH, an enzyme that catalyses the first rate-limiting step of serine 

synthesis from glucose, can be increased by reducing extracellular asparagine with 

ASNase. To answer this question, BL (Glor, Sav, BL31) cells and DLBCL (Farage, 

SUDHL4, SUDHL6) cells were exposed to 0.1 U/ml ASNase for 24 hours. Western blot 

was used to evaluate the relative concentration of PHGDH in treated and non-treated 

cells. Western blot analysis showed that ASNase treatment increased the protein levels 

of PHGDH in BL cells while no alteration in the protein level of PHGDH occurred in DLBCL 

cells in response to ASNase cells (see Figure 5.5.C).  

To further understand the role of amino acids biosynthesis in BL and DLBCL, Mr. Grigorios 

Papatzikas analysed 980 gene sets which represent the majority of biological processes 

and pathways derived from 19 BL and 12 DLBCL patients. Mr. Grigorios Papatzikas 

performed GSEA with SetRank, which reduces the risk of false positive hits.  Mr. Grigorios 

Papatzikas then constructed gene interaction networks, using STRING database 

(Szklarczyk et al., 2019) for all the statistically significant gene sets that are associated 

with serine metabolism. We found that genes associated with serine biosynthesis pathway 

are upregulated in BL cases (see Figure 5.5.D). 

After I observed that glutamine and asparagine depletion mediated by ASNase increases 

the expression level of PHGDH in BL cells, I examined whether inhibition of PHGDH by a 

spesific inhibitor would decrease cell viability (see Figure 5.5.E).To answer that I evaluated 
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anti-cancer effects of PHGDH inhibition on proliferation of BL (Glor, Sav, BL31) cells and 

DLBCL (Farage, SUDHL4, SUDHL6) cells through using a PHGDH inhibitor, NCT503 

(Pacold et al., 2016) for 72 hours. The effects of NCT503 on viability were measured by 

Celltiter Blue assay at different concentrations. NCT503 inhibited cell proliferation in all 

cell lines with IC50 values between 6.65 µM and 52.71 µM (see Figures 5.6.A and 5.6.B). 

BL cells (IC50 6.55–20.91 μM) were found to be more sensitive to PHGDH inhibition than 

DLBCL cells (IC50 12.21–52.71 μM). Next, I tested how effectively NCT503 inhibits serine 

production from glucose. To study the effect of NCT503 on serine production from 

glucose, DLBCL (Farage, SUDHL6) and BL (Glor, BL31) cells were cultured with [U-13C]-

glucose and NCT-503 at 10 μM for 24 hours. BL and DLBCL cells exhibited a marked 

attenuation in the amounts of [U-13C]-glucose derived [3-13C]-serine and [2-13C]-glycine 

compared to untreated cells (see Figures 5.7.A and 5.7.B). Strikingly, lactate production 

from glucose was enhanced by the inactivation of PHGDH in all cells (see Figure 5.7.C). 

Conversely, NCT503 reduced alanine production in BL cells (see Figure 5.7.D). AMP 

production was found to increase in DLBCL cells by the inhibition of PHGDH in DLBCL 

cells (see Figure 5.7.E). 

 

 

 

 

 

 

 



147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 The effect of ASNase on asparagine, glutamine and synthesis of serine.  

Relative 1D 1H-NMR peak intensity of asparagine, aspartate, glutamine and glutamate in the fresh 

medium supplemented without or with asparaginase (ASNase) at 0.1 U/ml, 0.25 U/ml and 0.5 
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U/ml for 24 hours (A). Representative 1D NMR spectra demonstrating the alteration in the level of 

asparagine, aspartate, glutamine and glutamate in the medium supplemented with no ASNase, 

ASNase at 0.1 U/ml (green line), 0.25 U/ml (red line), 0.5 U/ml (blue line) for 24 hours (B). Western 

blot analysis shows the expression of PHGDH in Glor, Sav, BL31, Farage, SUDHL4 and SUDHL6 

cell lines after treatment without or with 0.1 U/ml ASNase for 24 hours.. The graph presents the 

relative abundances of PHGDH after normalisation with B-actin (C). Heatmap of statistically 

significant genes associated with serine metabolism in DLBCL and BL. (D) Illustration of the 

mechanism of action of ASNase and NCT503 (E). Bar graphs represent mean ± SEM, with 

n=3;*p < 0.05; **p < 0.01; ***p < 0.001. Abbreviations: SHMT1: serine hydroxymethyltransferase 1; 

DLD: dihydrolipoamide dehydrogenase; CBS: cystathionine beta-synthase; SHMT2: serine 

hydroxymethyltransferase 2; PSAT1: phosphohydroxythreonine aminotransferase; PHGDH: 

phosphoglycerate dehydrogenase; PGAM1: phosphoglycerate mutase 1; GAMT: 

guanidinoacetate methyltransferase; PSPH: phosphoserine phosphatase; GCSH: glycine 

cleavage system protein H; SRR: serine racemase. Dendrogram in hierarchical clustering analysis 

was produced with Ward method and distance 1- Spearman’s rank correlation. 
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Figure 5.6 NCT503 decreases cell viability. 

Effect of NC503 on BL and DLBCL on cell viability. Cell viability was measured by Celltiter Blue 

assay in BL (Glor, Sav, BL31) (A) and DLBCL (Farage, SUDHL4, SUDHL6) (B) cells treated  with 

increasing doses of NCT503 for 72 hours. Cytotoxicity curves represent the mean of 3 

independent experiments ± SD performed in 3 replicates per drug concentration.  

 

Figure 5.7 Effects of NCT503 treatment on glucose metabolism.  

Analysis of 2D 1H-13C HSQC spectra of metabolites extracted from Glor, BL31, Farage and BL31 

cells incubated with [3-13C] glutamine in the presence and absence of NCT503 at 10 µM for 24 

hours. Graphs represent 13C labelled serine (A), glycine (B), lactate (C), alanine (D) and AMP (E). 

Data is shown as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 
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5.2.4 The synergistic effect of asparaginase and NCT503 

Asparagine deprivation and PHGDH inhibition were shown to alter cell metabolism (see 

Figure 5.8.A). However,  the effect of extracellular asparagine and serine deprivation on 

viability of BL and DLBCL cells was not evaulated. To get an insight into the effect of 

asparagine and serine on cell viability, BL Glor cells and DLBCL Farage cells were cultured 

in the absence of extracellular asparagine or serine, and also in media supplemented with 

ASNase at 0.1 U/mL or NCT503 at 10 µM for 72 hours. Then Celltiter Blue assay was 

performed. The asparagine deprivation and treatment of ASNase at 0.1 U/ml exhibited a 

similar reduction in the viability of Glor and Farage cells (see Figure 5.8.B). Glor cells 

appeared to be more sensitive to serine starvation than inhibition of PHGDH enzyme, as 

deprivation of serine resulted in a ~50% decrease in cell viability. Nevertheless, NCT503 

treatment of Glor cells caused  a ~25% reduction in cell proliferation. Moreover, Farage 

cells were found not to be affected by the inhibition of PHGDH enzyme by NCT503 

compared to cells cultured in complete media. The extent of reduction in viability was 

almost similar for both lymphoma cells grown in asparagine and serine free media. These 

results suggested that BL cells are much more sensitive to the maintenance of the serine 

pool than DLBCL cells. BL cells were found to be sensitive to inhibition of serine uptake 

and serine production from glucose opposite to Farage cells.  

Previously asparagine starvation was shown to decrease serine uptake and to increase 

serine production from glucose. NCT503 was found to decrease production of serine from 

glucose. In light of these findings, combination of ASNase with NCT503 may decrease 

more intracellular serine, thereby leading to more reduction in the viability of cells. Thus, 

I aimed to test if the combination of NCT503 with ASNase could decrease the sensitivity 
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of BL cells to ASNase, since BL cells were found to be more dependent on extracellular 

asparagine and also produce more serine from glucose compared to DLBCL cells. To 

answer that BL (Glor, Sav, BL31) and DLBCL (Farage, SUDHL4, SUDHL6) cells were 

treated with ASNase at 0.1 U/ml or combination of ASNase at 0.1 U/ml with NCT503 at 

10 µM for 24, 48 and 72 hours. ASNase alone reduced the viability of BL and DLBCL cells 

to around 50%  after 72 hours of treatment (see Figure 5.8.C). Treatment of BL and DLBCL 

cells with ASNase at 0.1 U/ml resulted in a time-dependent decrease in cell viability of 

those cells. 72 hour exposure of ASNase at 0.1 U/ml to BL and DLBCL cells caused 

approximately 50% cell loss in both lymphoma types. Moreover, the combination of 

ASNase with NCT503 had a synergistic effect on cell viability in BL cells, exhibiting more 

decrease in cell viability as compared to those obtained from treatment of ASNase alone. 

Conversely, the combination of ASNase with NCT503 showed no synergistic effect on the 

viability of DLBCL cells, suggesting that the combination of ASNase with NCT503 is solely 

synergistic for BL.  
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Figure 5.8 Combined effects of asparaginase and NCT503. 

Illustration of combined effects of asparaginase (ASNase) and NCT503 on serine and asparagine 

metabolism (A). The viability of Glor and Farage cells in a complete medium, in asparagine-free 

medium, in serine free medium, in the medium with ASNase at 0.1 U/ml, in the medium with 

NCT503 at 10 uM and in the serine and asparagine free medium after 72 hours (B). Treatment of 

Glor, Sav, BL31, Farage, SUDHL4, SUDHL6 with ASNase at 0.1 U/ml and ASNase at 0.1 U/ml 

plus NCT-503 at 10 µM for 24, 48 and 72 hours. Cell viability was assessed by the Celltiter Blue 

assay. Data is shown as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 
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5.3 Discussion 

5.3.1 Dependence of BL cells on extracellular asparagine 

Although daily practise shows that BL and DLBCL display some intermediate and 

unclassifiable genetic features, which could increase the risk of misdiagnosis, we showed 

that distinctive differences in metabolism between BL and DLBCL using both 

metabolomics and transcriptomics. Gene expression profiling has revealed 264 altered 

metabolic genes between the two diseases. 

In this study, I demonstrated that BL cells are more dependent on extracellular asparagine 

than DLBCL cells. This result can suggest that BL cells may either have more impaired 

capacity to synthesise adequate amounts of asparagine than DLBCL cells or need more 

asparagine than DLBCL cells need. Previous studies have shown that ALL cells have 

reduced or complete loss of expression of asparagine synthetase (ASNS) that synthesise 

asparagine from aspartate (Beard et al., 1970; Jiang et al., 2019). In the light of this 

finding, it could be proposed that BL cells may express ASNS less than DLBCL cells; 

thereby being more dependent on extracellular asparagine. However, most healthy cells 

increase transcription of ASNS and synthesis of asparagine when exposed to asparagine 

starvation (Balasubramanian et al., 2013). Indeed, ASNase resistant ALL cells were 

shown to have elevated ASNS protein expression. Conversely, when BL and DLBCL cells 

were treated with ASNase at 0.1 U/ml for 72 hours, this treatment resulted in 50% of cell 

loss. From this observation, it could be speculated that BL and DLBCL cells may not be 

able to regulate ASNS expression as much as normal healthy cells do.  

Another possible reason behind the cell loss in response to ASNase treatment of BL and 
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DLBCL cells could be the role of asparagine in protein synthesis and in the regulation of 

uptake of other amino acids. Asparagine is a building block to produce protein and found 

to be a regulator of amino acid uptake and mTORC1 activity (Krall et al., 2016). Hence, 

asparagine starvation could impair protein synthesis and trigger apoptosis. 

5.3.2 The metabolic consequences of asparagine starvation 

Here, I examined the role of extracellular asparagine on cell metabolism. Particularly, the 

deprivation of extracellular asparagine resulted in an increase in serine, lactate, alanine 

and AMP production from glucose in BL cells. Asparagine starvation could enhance 

glucose uptake and thereby promoting glycolysis in BL cells to overcome the stress arising 

from the absence of extracellular asparagine Furthermore, loss of mitochondrial function 

and a compensatory increase in glycolysis occur during apoptosis of human leukaemia 

cells (Tiefenthaler et al., 2001). In this study, I showed that asparagine deprivation 

mediated by ASNase induced cell death in both BL and DLBCL. Taken together, the 

enhancement in the level of metabolites derived from glucose in BL cells could be 

explained by loss of mitochondrial function due to apoptosis. Another possible scenario to 

explain the increase in glycolytic intermediates in BL cells could be activation of PPP 

during asparagine starvation. The PPP supports cancer cell survival by directing glucose 

flux to its oxidative branch for nucleic acid synthesis and NADPH generation under stress 

condition (Jin & Zhou, 2019). In this regard, the increase in AMP level and other 

metabolites derived from glucose in BL cells might be associated with the activation of 

PPP to support cell growth and proliferation during nutrient deficiency. In contrast to the 

role of exogenous asparagine on the metabolism of BL cells, DLBCL cells significantly 
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decreased the lactate production from glucose in the absence of asparagine and show a 

slight increase in alanine and AMP production from glucose. These findings demonstrate 

that exogenous asparagine affects glucose metabolism differently in distinct cancer types. 

However, serine metabolism was affected in a similar manner in both lymphoma types by 

asparagine starvation.  

Serine is a central node for the synthesis of glycine, cysteine and sphingolipids (X. Gao 

et al., 2018). Particularly, the conversion of serine to glycine is involved in the generation 

of one-carbon units that contribute to purine synthesis. Thus, the requirement of serine for 

the biosynthesis of purine bases makes serine  a master regulator of nucleotide synthesis 

in cells (Lane & Fan, 2015). A recent study demonstrated that intracellular asparagine 

deprivation mediated by ASNS knockdown elevated the expression of enzymes involved 

in serine synthesis from glucose (Krall et al., 2016). Indeed, the same study revealed that 

intracellular asparagine regulates uptake of serine. Here, I showed that extracellular 

asparagine is involved in the regulation of serine metabolism. Although I did not quantify 

ASNS expression level in both lymphoma types, inadequate expression of ASNS in BL 

could be present in BL cell; thus, exogenous asparagine may regulate serine synthesis 

and serine uptake in lymphoma cells.  

The data shown in this chapter support that extracellular asparagine is an important 

contributor to the regulation of glucose and serine metabolism. These findings can support 

that extracellular asparagine controls serine uptake and serine synthesis; thereby 

modulating the nucleotide biosynthesis in exogenous asparagine dependent cells due to 

the importance of serine in purine nucleotide biosynthesis. 
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5.3.3 The combination of a PHGDH inhibitor with asparaginase 

In this chapter BL cells were found to express the PGHDH more than DLBCL cells. In the 

light of the effect of extracellular asparagine on serine synthesis, I combined the ASNase 

with NCT503 so that the intracellular serine amount could be further decreased, thereby 

leading to an additional reduction in the viability of BL cells. As shown, this combination 

induced a synergistic effect in terms of cytotoxic activity in BL cells. NCT503 enhanced 

the efficacy and sensitivity of ASNase to BL cells. However, this synergistic effect was not 

observed in DLBCL cells.  

A recent study uncovered that PHGDH directly enhances the initiation of translation by 

interacting with translation initiation factors (Ma et al., 2019). Several studies also reported 

that PHGDH promotes cancer cell growth by upregulating the expression of cancer-

promoting genes, such as cyclin B and cyclin D (J. Liu et al., 2013; Ma et al., 2019). Taken 

together, it could be speculated that the inhibition of PHGDH by NCT503 is more harmful 

to BL cells since BL cells express more PGHDH than DLBCL cells. Thus, the combination 

of ASNase with NCT503 might have exhibited synergistic inhibitory effects on BL cell 

growth in all three cell lines due to the role of PHGDH in non-metabolic pathways. 

Combination approaches are designed to reduce the overall dose of drugs. Here, the 

combination of NCT503 with ASNase resulted in an increased cell loss owing to the 

sensitivity of BL cells to PHGDH inhibition in comparison with DLBCL cells. Thus, this work 

revealed that BL could be effectively treated by ASNase at a low dose along with a 

PHGDH inhibitor. 
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CHAPTER 6 

 GENERAL DISCUSSION 
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6.1 General discussion 

Cancer cells exhibit altered metabolism compared to normal cells, utilising nutrients in a 

different manner in order to fulfil their energy demands (Hsu & Sabatini, 2008). This was 

first observed by Otto Warburg in 1924 who demonstrated that tumour cells shift their 

metabolism towards aerobic glycolysis even under high oxygen condition (Warburg et al., 

1927). This switch from oxidative metabolism to aerobic glycolysis is called the Warburg 

effect, and promotes tumourigenesis and malignancy progression. Given the capacity of 

cancer cells to adjust their metabolism in response to challenging conditions, the 

evaluation of metabolites present in cancer cells and their microenvironment has gained 

significant importance. In this study, I focused on characterisation of metabolic differences 

in haematological cancer subtypes using NMR spectroscopy. 

1D 1H-NMR spectroscopy has emerged as one of the useful tools to study metabolism in 

cells. However, narrow dispersion of 1H chemical shifts and a large number of 1H 

resonance signals inevitably generate overlapping peaks in the NMR spectrum. Hence, 

the signal overlaps in 1D NMR spectra complicates peak identification and metabolite 

quantification (Dona et al., 2016). Nevertheless, 1D NMR spectroscopy enabled me to 

identify and quantify 22 intracellular and 13 extracellular metabolites that have a unique 

peak pattern. Identification of intracellular and extracellular metabolites highlighted 

substantial variation in the general metabolic profile of AML, CML, BL DLBCL and MM cell 

lines. Indeed, the PCA analysis displayed a clear separation between these 

haematological cancer subtypes. One of the major separations was observed between 

AML (HL60, NB4, KG1a, U937) and the CML cell line K562. K562 cells were derived from 

a CML patient in blast crisis (A et al., 2010); therefore they behave like an AML. The K562 



159 

 

cells were sharply discriminated from all AML cell lines, suggesting that presence of the 

BCR-ABL protein could affect cellular metabolism. BCR-ABL protein contributes to 

glycolytic metabolism, promoting the Warburg effect (Shanmugam et al., 2009). Despite 

the presence of BCR-ABL protein in K562 cells, AML cells were found to be more glycolytic 

than CML cells with a higher amount of lactate production in this study.  

From my data and analysis of cell extracts, a great amount of creatine in K562 cells is the 

most distinguishing feature. Over the years, countless studies have exhibited that the 

creatine/phosphocreatine system is a shuttle for energy-rich phosphates between cellular 

sites of ATP utilisation (Brosnan & Brosnan, 2010; M & R, 2000; Taegtmeyer & Ingwall, 

2013). However, key enzymes required for de novo creatine synthesis are expressed in 

skeletal muscle, liver and kidney (M & R, 2000), thus making de novo creatine synthesis 

in leukaemia cells unlikely. Despite this fact, the large amount of creatine found in K562 

cells shows that the enzymes involved in de novo creatine synthesis are highly expressed 

in K562 cells. Other studies have also observed increased intracellular levels of creatine 

in imatinib-resistant CML cells and drug-resistant human breast cancer cells (Dewar et 

al., 2010; Kurmi et al., 2018). These findings can suggest that creatine may contribute to 

drug resistance besides acting as an intermediary of energy transfer. 

A wide metabolic heterogeneity was observed between MM cell lines in this study. A 

significant heterogeneity in MM patients exists at both genetic and the clonal levels 

(Rasche et al., 2019). Several studies have reported the genomic landscape of MM 

patients pointing out the recurrently mutated genes that are likely causal drivers of the 

MM, such as KRAS, NRAS and BRAF (Hideshima et al., 2004; Rasche et al., 2019; 

Weaver & Tariman, 2017). However, although KRAS mutations are known as the most 
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common putative oncogenic mutations in MM, these mutations are just present in 16% of 

patients with MM (Kazandjian et al., 2019). Furthermore, multiple layers of heterogeneity 

were also revealed in MM. Thus, the large metabolic heterogeneity observed in PCA plots 

of MM cell lines might be result of the molecular heterogeneity in the MM cells. 

I revealed that lactate production was greater in DLBCL and BL cells than AML, CML and 

MM cells. Lymphoma cells were found to be more glycolysis-oriented in comparison with 

leukaemia cells. The high levels of lactate in lymphoma cells relative to leukaemia and 

MM cells can be reasoned by the stabilisation of HIF-2α in normoxic conditions, c-Myc 

overexpression, gain-of-function mutations in EZH2 or presence of tonic BCR signalling 

in lymphoma cells. However, BL and DLBCL cells demonstrate HIF-2α stabilization even 

under normoxic condition (Evens et al., 2008). It can be suggested that the stabilisation 

of HIFs in lymphoma cells under normoxic conditions may be a driver of high lactate 

production in DLBCL and BL cells. The other potential driver of aerobic glycolysis in the 

lymphoid cells is the BCR signalling (Doughty et al., 2006). BCR crosslinking following 

antigen encounter leads to induce a rapid increase in glucose uptake and glycolysis. 

However, DLBCL cells were found to display tonic BCR signalling which activates multiple 

downstream effectors without BCR crosslinking (Havranek et al., 2017). Since AML, CML 

and MM cells do not express BCR ,which is massively expressed in GC cells, the 

observation of high lactate level in lymphoma cells may be a result of the tonic BCR 

signalling, in addition to other key drivers for aerobic glycolysis, such as c-Myc. Various 

types of c-Myc gene mutations, which induce over-expression or increased activity of 

LDHA, are present in all BL patients and 5–15% of patients with DLBCL (Nguyen et al., 

2017). 
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I also showed that there was considerable uptake of leucine, isoleucine and valine from 

the extracellular environment in MM cells. MM cells are likely to upregulate BCAAs uptake 

to meet demand for production of immunoglobulin light or heavy chains. BCAAs are 

transported by LAT (LAT1, LAT2, LAT3, LAT4) transporters (Hayashi & Anzai, 2017). LAT1 

interacts with CD98 to localize to plasma membrane (Bröer et al., 2001). I demonstrated 

that that CD98 was mostly present in MM cells that had showed the highest BCAAs 

uptake. One of the characteristics of MM is the excessive production of monoclonal 

protein. The excessive accumulation of unfolded proteins in their endoplasmic reticulum 

initiates the integrated stress response which results in inhibition of protein synthesis while 

promoting the expression of ATF4 protein. ATF4 protein has been found to regulate 

CD98/SLC3A2 (Drummond et al., 2011). Thus, the high level of the surface CD98 could 

be resulted from the expression of ATF4 due to the accumulation of unfolded proteins.  

 Conversely, LAT1 surface level was found to be at the lowest level in MM cells. The 

detection of low level LAT1 on MM cell by flow cytometry may be due to technical issues.  

As CD98 is much larger than LAT1, LAT1 could be physically masked by CD98 at the cell 

surface and therefore not easily accessible for antibody staining, hence giving low LAT1 

signal intensities by flow cytometry analysis. To address this, western blotting could be 

performed.  Another possible scenario to explain the detection of low level of LAT1 on MM 

cells may be the association of CD98 with LAT2 instead of LAT1 in MM cells. Just like 

LAT1, LAT2 forms a heterodimer with CD98 (Bröer et al., 2001).  

I investigated the metabolic role of leucine in MM cells. I found that leucine is broken down 

to acetyl-CoA by MM cells to promote the TCA cycle. I also showed that leucine acts as 

an energetic molecule in MM cells. Furthermore, acetyl-CoA derived from leucine was 
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showed to be involved in sialic acid formation in MM cells. Hypersialylation has been 

previously implicated in cancer malignancy and metastatic potential (Rodrigues & 

Macauley, 2018). Sialic acid production increases in MM cells (J. Chen et al., 2015). Thus, 

it could be suggested that MM cells break down leucine to acetyl-CoA to support aberrant 

glycolysation.  

BL cells were found to be more dependent on extracellular asparagine than DLBCL cells. 

BL cells may have more impaired capacity to synthesise asparagine than DLBCL cells 

due to inadequate expression of asparagine synthetase (ASNS). Many studies 

demonstrated that ALL cells are dependent upon extracellular asparagine as they are 

unable to de nova synthesise asparagine from aspartate owing to reduced or complete 

loss of expression of ASNS (Balasubramanian et al., 2013; Beard et al., 1970). 

Consequently, the clinical use of ASNase, which converts asparagine into aspartate, was 

approved to treat patients with ALL (Beard et al., 1970). Thus, asparagine dependency of 

BL cells directed me to investigate the asparagine metabolism in BL cells. Particularly, 

starvation of extracellular asparagine caused an increase in lactate, alanine and AMP 

production from glucose in BL cells. In light of this finding, BL cells seemed to enhance 

glucose uptake thereby promoting glycolysis to overcome the cellular stress arising from 

the absence of extracellular asparagine. In contrast, DLBCL cells were observed to 

decrease lactate production when exposed to asparagine starvation. Taken together, 

exogenous asparagine affects different cell types in different ways with regard to the 

glycolysis. However, exogenous asparagine affected serine metabolism in a similar 

manner in both lymphoma types. Asparagine starvation increased serine production from 

glucose and decreased serine uptake in BL and DLBCL cells. In addition, asparagine 
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deprivation mediated by ASNase elevated the expression of PHGDH that is involved in 

serine synthesis from glucose. My findings show that exogenous asparagine is an 

important contributor to the regulation of glucose and serine metabolism.  

BL cells were found to be more sensitive to PHGDH inhibition by NCT503 than DLBCL 

cells. The combination of NCT503 with ASNase resulted in a more decrease in viability of 

BL cells compared to the reduction in the viability of DLBCL cells. Thus, I revealed that BL 

could be effectively treated by ASNase at a low dose with a PHGDH inhibitor. 
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6.2 Future work 

Even though I have studied the metabolic phenotype of five distinct haematological 

cancers which represent AML, CML, BL, DLBCL and MM, metabolic phenotypes of many 

haematological cancer types still remain to be elucidated. To further understand the 

metabolic diversity of haematological cancers, more cell lines from different 

haematological cancer subtypes could be studied using NMR spectroscopy. More 

importantly, many conclusions are drawn from in vitro experiments of cancer cells in this 

thesis. Given that many studies have revealed that the metabolism of cancer cells can 

differ from that of primary tumours, in vivo studies would provide crucial data for proof-

concept determination of the metabolic underpinnings in haematological cancer cells.  

To elucidate altered metabolic pathways of AML, CML, BL, DLBCL and MM, different 

isotopically labelled precursors would need to be used as starting points to determine the 

intermediates and products of metabolism across 18 cell lines. For instance, 2D NMR 

examination of cells which are grown in a medium containing [1,2-13C]-glucose and [3-

13C]-glutamine would present the balance between glycolysis and glutaminolysis in 

supplying the TCA cycle. Thus, the use of different isotopically labelled precursors would 

shed more light on the metabolic phenotypes of AML, CML, BL, DLBCL and MM cells. 

To understand creatine metabolism in CML cells, the creatine synthetic pathway (AGAT 

and GAMT enzymes) would be investigated at the protein and the mRNA level. To test 

whether creatine synthesis is associated with the drug resistance, 1H NMR spectroscopy 

would be carried out on cell extracts of imatinib-sensitive CML cells and imatinib-resistant 

CML cells. Given that many studies have revealed that creatine/phosphocreatine system 

functions as an energy buffer, the effect of the knockdown of AGAT and GAMT genes on 
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the viability of CML cells would be studied.  

To further investigate the BCAA metabolism in MM cells, the expression level of LAT2, 

LAT3 and LAT4 could be studied. The expression level of intracellular LAT1 light chain 

and CD98 heavy chain would be assessed by western blot in order to test whether their 

intracellular expressions are correlated with their cell surface levels. Furthermore, 

knockdown of CD98 would be performed to understand the role of CD98 in BCAA uptake. 

To understand whether or to what extend MM cells rely on BCAAs for the production of 

monoclonal free κ and λ immunoglobulin light chains, the effect of inhibition of LAT1/CD98 

transporter by BCH or JPH203 on the production of kappa and lambda light chains could 

be studied. The importance of LAT1 on BCAAs uptake would be investigated using LAT1 

knockout cells.  

To deepen understanding of the level of asparagine dependency of lymphoma cells, the 

use of more BL and DLBCL cell lines could validate the observations related to 

extracellular asparagine dependency of BL cells. The measurement of expression level of 

asparagine synthetase (ASNS) in cell samples from patients with BL and DLBCL could 

show the extracellular asparagine dependencies of primary cells. Gene expression 

profiling of samples from BL and DLBCL patients and cell lines would allow simultaneous 

monitoring of the transcriptional behaviour of genes involved in asparagine and serine 

metabolism.  In this thesis, asparagine deprivation mediated by ASNase was shown to 

induce cell death. Future investigations may address which cell death mechanism is 

activated by asparagine deprivation. ASNS and PHGDH knockdown mouse would be 

used to study the biological effects of ASNase.  
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6.3 Final remark 

Cancer cells exhibit altered metabolism, regulating the dynamics of the central metabolic 

pathways in a different manner (Hsu & Sabatini, 2008). The metabolic alterations of 

haematological cancers and characterisations of metabolic differences in cancer subtypes 

have not been well-focused so far.  

Using NMR-based metabolite profiling, I revealed how haematological cancer cells 

converge multiple biochemical pathways. I have also expanded the scope of metabolic 

dependencies beyond the classical pathways that are known in cancer cells. From a 

therapeutic perspective, my work has also presented potential metabolic vulnerabilities 

that might be targeted for therapies of BL and MM. Future research should bring further 

light to these emerging vulnerabilities and dependencies and conceive ways to use them 

for diagnosis and therapy. This will require the use of in vivo models and integration of 

NMR based metabolomics with other methods. 

Briefly, I believe my findings provide deep insights into metabolism in haematological 

cancer cells and aid to tailor therapeutic strategies by researchers. 
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Appendix A: Recipes and buffers  

A.1 Protein extraction  

Ripa buffer  

• 1ml of NP40 (IGEPAL)  

• 0.5g sodium deoxycholate  

• 1ml 10% SDS  

• Adjust volume to 100ml with dH20.  

 

A.2.Western blotting  

10 x SDS running buffer  

• 30g Tris (250mM)  

• 144g glycine (1.92M)  

• 10g SDS (1%)  

• Adjust volume to 1 litre with dH20.  

• Dilute 1:10 to make 1x SDS Running Buffer  

4 x SDS gel loading buffer  

• 2.0ml 1M Tris-HCl, pH 6.8  

• 0.8g SDS  

• 4.0ml 100% glycerol  

• 0.4Ml 14.7M β-mercaptoethanol  

• 1.0ml 0.5M EDTA  
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• 8.0mg bromophenol blue  

• 2.6ml dH2O  

• Dilute 1:4 to make 1x SDS gel loading buffer.  

1.5M Tris (pH 8.8)  

• Dissolve 90.8g Tris in 400ml dH20 and adjust pH to 8.8  

• Make up to 500ml in dH20  

• 0.5M Tris (pH 6.8)  

• Dissolve 30.3g Tris in 400ml dH20 and adjust pH to 6.8  

• Make up to 500ml with dH20  

Transfer Buffer  

• Dissolve 7.575g Tris and 36g glycine in 500ml methanol  

• Make up the volume to 2.5 litres with dH20  

TBTS-T  

• Dissolve 16g Nacl and 2ml Tween 20 in 40ml 1M Tris HCL pH7.6  

• Make up the volume to 2 litres with dH20  

TBS  

• Add:20mM Tris HCl, pH 7.5  

• 0.8% w/v NaCl  

• Make up the volume to 1L with dH2O  
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