A METABOLOMICS ANALYSIS AND THE
DEVELOPMENT OF A FLUORESCENT ASSAY
FOR KYNURENINE FOR THE DIAGNOSIS OF
SEPSIS IN TRAUMA PATIENTS

by

KAMLESH PATEL

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

Physical Sciences for Health Doctoral Training Centre
College of Engineering and Physical Sciences

The University of Birmingham

June 2020



UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.



Abstract

Traumatic injuries are a leading cause of death worldwide. Whilst the physical injuries
can be treated patients are still at risk of developing an infection and becoming septic.
It is hard to diagnose sepsis in patients of trauma as the inflammatory response to sepsis
is masked by the inflammatory response to the traumatic injury. Current diagnostic
techniques involve culturing blood samples or identifying a site of infection, neither of
which are fast enough to allow for the best patient outcome. As such there is much
need for a point of care diagnostic test. This work attempted to tackle this problem in
two ways. First by analysing a metabolomics data set to identify biomarkers of sepsis in
burns patients. Second, by developing a quantitative fluorescent assay for the detection
of kynurenine, a biomarker of sepsis.

The data analysis was performed on a metabolomics data set acquired from clinical
samples from burns patients. Three different classifiers were used to create models on the
data set, k-nearest neighbours, naive Bayes and logistic regression. Classifier performance
was above average on the data set, with the k-NN technique providing an AUC value of
0.82 and sensitivity and specificity of 85 % and 70 % respectively on the early-sample class-
balanced subset of the data. The t-test and minimum redundancy maximum relevancy
(MRMR) feature selection techniques were performed on the data set along with lasso
with logistic regression. The t-test and logistic regression identified glucose and lactate
as being the most important features whereas MRMR identified glucose and not lactate.
These are both already well known biomarkers used in controlling the outcome of sepsis
patients.

A literature search identified the metabolite kynurenine as being a positive biomarker
for sepsis in patients of trauma. A fluorescent molecule was synthesised which upon
binding to kynurenine causes a large bathochromic shift in the emission spectrum of the
fluorescent sensor from 470 nm to 560 nm.

A fluorescent assay was created using the standard addition technique to quantify
the amount of kynurenine in a urine sample. The standard addition technique was cho-
sen as it removes matrix affects which would be present when using biological samples.
Tests performed on pure samples of kynurenine, gave results within 5 % of the actual
concentration. Synthetic urine was then used, giving results within 10 % of the actual
concentration.

HPLC experiments were performed to quantify the amount of kynurenine in actual

urine samples. The HPLC protocol was validated with kynurenine in solutions of water



and synthetic urine, however complications arose when using urine which meant the clini-
cal samples could not be accurately quantified. As such, a qualitative experiment showed
linear fluorescence plots when performing the standard addition technique with actual
urine samples.

The results indicate the assay will work in urine. Being fluorescence based it has the
potential to move into a point of care device. Future work would go towards quantifying
the kynurenine concentration in clinical samples and then optimising the assay parameters

once known concentrations can be determined.
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CHAPTER 1

INTRODUCTION

The work documented in this thesis was carried out with the aim of using techniques from
the engineering and physical sciences to work towards diagnosing the condition of sepsis

in patients of traumatic injury and in creating a diagnostic point-of-care test.

This chapter gives an introduction to sepsis and traumatic injury and the problems
they introduce. Information about metabolomics and point-of-care testing with regards

to the problems of sepsis and trauma are discussed.

The research aims of this thesis are then stated along with information on how they

will be realised, followed by the thesis contributions.

The final section covers the outline of the rest of the thesis.



1.1 Background

1.1.1 Traumatic injury, burns and sepsis

Sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host
response to infection” [1]. The infections are normally caused by bacteria, but can also be
caused by fungi, viruses, and parasites [2,3|. Whilst sepsis can occur in anyone, patients

of traumatic injury, such as burns, are at a much greater risk of developing sepsis [4-6].

One of the reasons for this is because large/deep burns severely damage the skin.
The skin is one of the bodies main defence systems against infection, and burns and
other traumatic injuries brake this defensive layer, making the site of injury vulnerable

to pathogens until the wound has healed [4, 5].

Sepsis is hard to detect in trauma patients as infection and trauma both cause an
inflammatory response with the same common physical symptoms, redness, pain, heat

and swelling [7].

Diagnosing and treating sepsis is a growing concern for modern medicine. A review
looking at the global incidence in 2017 showed 48.9 million cases of sepsis were recorded

with 11 million sepsis related deaths which equated to 19.7 % of the total deaths worldwide

8].

One way to protect against infection would be to prescribe antibiotics to all patients
with traumatic injuries. This would not only be costly to do but could also have a
negative impact on patient outcome. In our bodies there are bacteria which perform
useful functions, such as aiding in digestion. Antibiotics can attack the useful bacteria
in our bodies, making it harder for a patient to recover [9]. This is especially bad if the
patient was not at risk of infection in the first place, as in this case the patient receives

no positive effect from the antibiotics.



At this moment in time there are movements to try to control the distribution and
administration of antibiotics more tightly [10]. The unnecessary or reckless use of antibi-
otics can lead to the evolution of antibiotic resistant bacteria which then puts the whole

population at risk [11].

Due to these downsides in the blanket prescription of antibiotics there is a current clin-
ical need to be able to differentiate between inflammation from infection and inflammation

from a traumatic injury.

1.1.2 Diagnosis and treatment of sepsis

Symptoms of sepsis can be highly variable based on the patient age, infectious organism,
comorbidities, and site of organ dysfunction [12]. Common symptoms can include fever,
hypothermia, and hypotension, but even these common symptoms may be absent in

elderly and neonatal patients [13-15].

A positive sepsis diagnosis is given when systemic inflammatory response syndrome
(SIRS) and an infection are identified. There is a problem associated with this though,
in that within the time taken for a site of infection to become identifiable, the number of
pathogens circulating around the body will have ample time to multiply. It is estimated
that for each hour the administration of antibiotics is delayed there is a 6 % increase in
the risk of mortality from sepsis [16]. As such, the early diagnosis of sepsis is of utmost

importance.

The Surviving Sepsis Campaign (SSC) is a global collaborative initiative with the
purpose of improving treatment and reducing mortality from sepsis. Guidelines released
by the SSC state that when sepsis is suspected, sets of blood cultures are to be taken
to identify different types of bacteria [17]. The problem with this is that positive blood

cultures can take on the order of hours to days to verify the presence of bacteria. Also, a
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report looking at patient admissions over 10 years with over 6.8 million patients identified
that 47.1 % of patients with severe sepsis were culture negative, that is the cultures
performed did not positively identify bacteria [18|. As such, testing for bacteria is both

slow and unreliable.

Within the guidelines of the SSC it is stated that no currently identified biomarkers
should solely be used to direct medical intervention [17]. Given the magnitude of the
problem that sepsis presents this highlights a huge problem and an area which needs to

be investigated.

1.1.3 Metabolomics analysis for biomarker identification

The metabolome is the complete set of metabolites within a biological sample [19]. The
metabolome is of importance as it comes after the genome, transcriptome and proteome,

and so provides information on the functional status of an organism [20].

Metabolomics looks to identify and quantify metabolites, small sized molecules < 1500 Da,
from patient samples e.g. serum, urine, spinal fluid, saliva [21,22]. Using modern ana-
lytical techniques such as nuclear magnetic resonance (NMR) spectroscopy and liquid
chromatograph mass spectrometry (LC-MS) it is possible to identify hundreds and even
thousands of metabolites, however one limitation of these techniques is difficulty in la-

belling the molecules found [22].

Metabolomics studies have been used to identify useful biomarkers for a variety of
diseases/conditions such as Alzheimer’s disease, hepatocarcinoma, chronic kidney diseases

and forms of cancer [23-25].

There have been few metabolomics analyses of sepsis with trauma using limited data
and sometimes even animal data [26,27]. If more data were to become available from

human subjects, metabolomics could identify novel biomarkers.
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When it comes to sepsis with trauma, the physical signs such as changes in tempera-
ture, heart rate, and respiratory rate are not enough as they will be brought upon by the
traumatic injury, as such utilising the metabolome which best characterises a patient’s

phenotype shows promise in uncovering biomarkers for sepsis with trauma.

1.1.4 Point-of-care (POC) testing

The identification of biomarkers is not enough there also need to be methods which allow

for the rapid detection of such biomarkers.

POC devices typically produce results quicker than laboratory based techniques. There
are multiple reasons for this such as they are designed to use patient samples directly
without preprocessing and the locality of the device to the patient cuts down on time
overheads of passing samples along and collecting results. A study comparing a lab based
test with a POC test for procalcitonin showed that results were consistent between test
types but the POC test was performed in 25 minutes vs 2 hours and 24 minutes for the
lab based test [28]. An improvement of almost 2 hours would have a significant impact

on the outcome of patients with sepsis.

Trauma patients have the worst outcomes when it comes to sepsis and so if biomarkers
of sepsis with trauma can be identified there will be a need for a point-of-care test for the

biomarkers.

1.2 Research Aims

Based on what has been described about sepsis and trauma this work had three aims.

Aim 1. To analyse a metabolomics data set from burns patients to identify novel
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biomarkers of sepsis in trauma patients.

A novel study at the Queen Elizabeth hospital in Birmingham, United Kingdom, allows
for this goal to be explored. The SIFTI (Scientific Investigation of biological pathways
Following Thermal Injury) study which has already been undertaken has managed to
collect samples from patients with burn injuries and as part of this there is labelled,
quantitative metabolomics data available for analysis. Clinical studies such as this can
take years to acquire funding, receive approval and recruit enough patients and therefore

this work was very lucky to be able to use the data provided. This produces the first aim.

The data provided is completely relevant to addressing the research gap of there being
no known biomarkers for the diagnosis of sepsis in burns/trauma patients. The analysis
will look to determine whether the data collected provides good discrimination between
septic and non-septic patients of traumatic injury and will further aim to determine which

metabolites provide the best discriminatory power.

Aim 2. To design an analytical test to detect and quantify identified biomarkers of

sepsis.

Taking biomarkers identified through aim 1 or from other research, this aim will work
on the first stage in the production of a point-of-care test. Work will be conducted to
synthesise selective recognition molecules for the biomarkers. For any diagnostic test, the
analyte in question needs to be detectable. Fluorescent chemosensors can be synthesised
which exhibit selective binding to analytes depending on structure and exposed functional

groups and so a fluorescent based approach will allow for this aim to be met.

Aim 3. To develop and validate the analytical test to make progress towards making

a point-of-care test.

Once a method of detecting and quantifying the selected biomarker/biomarkers has

been established in the lab the next aim would be to have the platform work with patient



samples. POC tests are typically performed bedside and as such there can be no prepro-
cessing of patient samples. The analytical test developed will need to be able to work
with raw patient samples, or the test will need to be modified to incorporate methods of
sample processing. It will also be of great importance to see if the test works with the

complicated media of a biological sample.

Biological samples are available from the SIFTI study which can be used to validate
any analytical test. In order to verify the validity of the test this work develops, a second
quantitative technique will need to be used to confirm the values of analyte in biological

samples.

1.3 Thesis Contributions

The contributions of this thesis are towards the development of a point-of-care test through

the development of a fluorescence based assay.

This work synthesised and characterised a fluorophore which selectively binds to
kynurenine. The linear range of the fluorophore was determined to be from 1 - 200 utM
which includes the expected biological range of kynurenine. The optimum excitation and
emission wavelengths were determined so as to produce the best signal and remove back-
ground noise. Analyte binding kinetics were uncovered with respect to temperature, and
the stability of the chemosensor in neutral and acidic solutions was assessed to determine
the chemosensor should be kept outside of solution until needed. This characterisation is

of great importance for the future work in creating a POC test.

A standard addition based assay was developed which gave good accuracy of kynure-
nine concentrations in water (5 % error) and synthetic urine (10 % error). It was shown
that when using a microplate reader there is no need to wait for the sensor:analyte com-

plexation equilibrium to occur as long as the microplate is read in one pass, which saves
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data acquisition time and will increase throughput.

A linear fluorescence response was shown in patient urine samples which shows great

promise for the assay to be usable and to be developed into a point-of-care device.

1.4 Thesis Outline

This thesis consists of 9 chapters. This first chapter introduced the problem and identified

the research gap. The rest of the thesis is structured as follows.

Chapter 2 explains in more detail the problem of sepsis and traumatic injury. Current
research in diagnostic techniques and biomarker identification are reviewed. Machine

learning techniques are discussed.

Chapter 3 explains the machine learning techniques and methods used for the analysis

of the metabolomics data set.

Chapter 4 explains details of the data set. The results from the analysis are shown

along with discussion of them.

Chapter 5 details the experiments performed in order to create the fluorescent assay.
The choice in biomarker (kynurenine) and fluorophore are explained and the results from

the characterisation studies are given and discussed.

Chapter 6 covers the experiments performed when using the fluorescent assay to quan-
tify analyte in increasingly complex solutions, water, synthetic urine and patient urine.
The results from attempts to quantify kynurenine using laboratory based high perfor-
mance liquid chromatography in order to verify sample concentrations are given with

discussion.

Chapter 7 covers the materials and methods used for the synthesis and characterisation
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of the fluorophore and information on the validation experiments.

Chapter 8 provides discussion of this work with respect to the research aims, with

limitations and future work also considered.

Chapter 9 gives the conclusions of this work and briefly touches upon what would be

done should the project be taken forward.



CHAPTER 2

BACKGROUND

This chapter explains the themes of this project in more detail. First starting with
traumatic injury, burns, sepsis and inflammation. In order to explain the problem fully,
it is important to explain the different forms of inflammation, and also to talk about the
real world impact this condition has. Data for this work has been collected from burns
patients, and so some background information on burns is also provided. The biological
processes are explained to provide context to the problem and to impart how substantial
a problem sepsis is for patients of trauma. Current research with regards to the diagnosis

of sepsis is then discussed, mentioning limitations which promote further research.

The next section covers systems biology and -omics research. The importance and
usefulness of metabolomics is explained, with examples of how it has already identified

biomarkers for other conditions.

One of the major components of this work was to analyse a data set collected from
a clinical study. This introduction chapter will aim to give an overview of the types of
machine learning techniques available to use and will also provide information about data
itself. A discussion on algorithm selection is providing highlighting the pros and cons of

each technique.
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The discussion of data processing techniques is followed by information on diagnos-
tic testing, where benefits and limitations of laboratory and point-of-care tests are dis-
cussed. Finally fluorescent chemosensors are discussed with respect to their ability to
detect biomolecules and their importance for forming the basis of point-of-care tests is

covered.

2.1 Traumatic Injury, burns and sepsis

Traumatic injuries are a major cause of disability and death in the world and they are
predicted to increase in proportion as the cause of total deaths worldwide [29]. The Centre
for Disease Control and Prevention lists types of traumatic injuries and disorders in its
Occupational Injury and Illness Classification System and they are defined as “the result
of a single incident, event, or exposure” [30]. The category therefore includes not just
damage arising from physical impacts, but also the impact of things such as chemicals
and burns. Illness caused by pathogens, neoplasms or conditions which arise from long
term complications are not included [30]. This work will focus predominantly on burn
injuries, however the body’s response to other types of traumatic injury will be similar

with regards to their inflammatory response [29].

Burns injuries range in severity and are classified by the number of skin layers affected.
Therefore, first degree burns affect only the upper layer of skin (the epidermis), second
degree burns affect the upper two layers of skin (the epidermis and the dermis,) and third
degree burns (also called full thickness burns) affect all three layers of skin (the epidermis,
the dermis and the subcutis) [31-33]. The layers can be seen in fig. 2.1. A burn can also
be classified as being local or a severe burn injury (SBI) depending upon the total body
surface area (TBSA) affected by the burn, with a local burn having a TBSA < 20 %, and
a SBI having a TBSA > 20 % [32].
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Figure 2.1: Types of burns and the layers of skin and tissue affected.

In the UK the NHS treated over 15,000 patients for burns and scalds in 2017, whilst
in the US there were 486,000 burn injuries which received treatment in 2011 [34,35]. The
incidence of burns injury and the cost to treat them are very high; serious burns can
cost the NHS £95,000 to treat [34]. High costs for treating severe burns are associated
with the cost of staying in an intensive care unit, requiring multiple surgeries, constant

monitoring and supplies such as blood and wound dressings [36].

2.2 Inflammation

Inflammation is a non-specific immune response which arises from infection or injury.
Signs of inflammation include: redness, pain, heat and swelling |7]. These signs can be
explained by responses such as increased blood flow, vasodilation, increased metabolism,
leukocyte extravasation and release of soluble mediators, mainly pro-inflammatory cy-

tokines, such as interleukin 1 beta [37].

Inflammation can be of two forms, acute or chronic. Acute inflammation is the first

response to injury where the body aims to remove pathogens and control damage. Acute
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inflammation should only last a few days. Conversely, chronic inflammation can persist
for months to years. Chronic inflammation can be caused by autoimmune responses or
pathogens which the body cannot remove. The work presented looks at data from patients

immediately after injury. This will therefore be acute inflammation.

Inflammation can also be categorised as non-sterile or sterile depending upon the

presence of pathogens. This is a more important distinction, and the focus of this work.

2.2.1 Non-Sterile Inflammation

Non-Sterile inflammation is caused by pathogens. Pathogens create an immune response
through the activation of pattern recognition receptors present on immune cells [38].
Pathogens have molecules associated with them called pathogen-associated molecular pat-
terns (PAMPs) which are detected as foreign to the host. Examples of PAMPs include
peptidoglycan (a polymer which forms the cell wall of many bacteria), lipopolysaccharide

and double-stranded RNA which forms the genetic material of some viruses [29].

2.2.2 Sterile Inflammation

Whilst non-sterile inflammation occurs due to the presence of pathogens, it is possible
to trigger an inflammatory response without pathogens. Such a response is called sterile
inflammation, which occurs due to the host’s response to the death of its own cells as

opposed to the invasion of pathogens.

When cells are damaged in the body there are two distinct mechanisms by with cell
death occurs, under a controlled mechanism called apoptosis, or in an uncontrolled manner

called necrosis.

In apoptosis the cell membrane maintains its integrity [38] and intracellular compo-
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nents are broken down though enzyme activation via controlled signalling cascades. This
results in very few molecules leaking out into the extra cellular matrix and thus an in-

flammatory response is not produced [38-40].

For traumatic injuries cell death occurs via necrosis which causes the release of cell
contents called damage-associated molecular patterns (DAMPs) from the cells. DAMPs
are molecules which can trigger an immune response. This immune response is similar to
if the body were being attacked by pathogens, but as it is not, the inflammation caused

is called sterile inflammation.

DAMPs are released from different locations in the cell including the nucleus, the
cytoplasm and the mitochondria. DAMPs take the form of DNA/RNA and intracellular
proteins [29,38,41]. Mitochondrial DNA acting as a DAMP can induce a significant sterile
inflammation response. One theory for this is because mitochondria are believed to be

endosymbionts and so were originally bacteria [42].

2.2.3 The acute-phase response

The acute-phase response is the name given to the initial set of processes that occur during
inflammation. This response encompasses the actions of preventing further damage to
tissues, the separation and destruction of pathogens and also the activation of repair

processes which help return the body to normal function [43].

At the site of infection/injury two types of white blood cell (WBC), neutrophils
and macrophages, will aggregate. The pair of WBCs along with endothelial cells and
platelets will secrete the pro-inflammatory cytokines: Tumour Necrosis Factor-a (TNF-
«), Interleukin-15 (IL-15) and Interleukin-6 (IL-6) [43,44]. Cytokines are small peptides
used for cell signalling and the cytokines listed are chemotactic towards neutrophils and

macrophages. It is this chemotactic gradient which leads to the aggregation of neutrophils
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and macrophages at the site of infection/injury.

2.2.4 SIRS, Sepsis and Multiple Organ Failure

Inflammation is kept in balance through pro-inflammatory and anti-inflammatory mech-
anisms. When these inflammatory mechanisms are not regulated properly after trauma,
systemic inflammatory response syndrome (SIRS) can develop. SIRS is an inflammatory
response of the immune system which affects the whole body. SIRS is diagnosed when at

least two of the following criteria are met [45]:

Patient temperature above 38 °C or below 36 °C

Heart Rate > 90 beats per minute

Respiratory Rate > 20 breaths per minute, or, arterial carbon dioxide partial pres-

sure (PaCO3) < 4.3 kPa

White blood cell count of less than 4000 cells/mm3, or, white blood cell count greater

than 12,000 cells/mm?3, or, 10 % immature band forms (immature neutrophils)

The anti-inflammatory mechanism associated with SIRS is the compensatory anti-
inflammatory response syndrome (CARS) and involves production of anti-inflammatory
cytokines such as IL10. If both the pro and anti-inflammatory responses do not return to a
homeostatic level the condition can progress to persistent inflammation, immunosuppres-
sion, and catabolism syndrome (PICS). As the name indicates, PICS consists of persistent
signs of inflammation from a pro-inflammatory response, but also leaves patients in an
immunosuppresed condition which makes them more susceptible to infection. SIRS and
PICS increase non-specific immunity around the body as they trigger neutrophils, part
of the innate immune system. This however leaves the body vulnerable to attack via

pathogens which can lead to sepsis. Sepsis is diagnosed when SIRS can be diagnosed (at
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least two of the above conditions are met) and there is also an infection. The increased
neutrophil activity during SIRS (and PICS) causes them to move across damaged tissues
and accumulate in the organs. When this happens the neutrophils will begin to destroy

healthy tissue which leads to multiple organ failure (MOF) [29,46,47|.

Early innate immunity Persistent inflammation

Pro-inflammatory

response PICS

Baseline - =t €= - - - - - o o o .

Anti-inflammatory
response

Early adaptive immunity Pprogressive immunosuppression

Figure 2.2: Diagram illustrating the relationship between pro-inflammatory and anti-
inflammatory responses to injury/infection. At the point of injury/infection both pro
and anti-inflammatory responses are triggered. The blue dotted line shows the intended
behaviour where both responses return to the baseline and the patient recovers normally.
The area in grey shows the onset of PICS, with the red dotted lines showing persistent
inflammation along with a persistent anti-inflammatory response which suppresses the
body’s immune response.

A positive sepsis diagnosis is given when systemic inflammatory response syndrome

(SIRS) and an infection are identified.

If sepsis is suspected the SSC recommend running at least two blood cultures (to test
for aerobic and anaerobic pathogens) [17|. There are multiple problems with depending
on blood cultures however. First, it has been reported to take a least 24 hours to get
information of the potential organism [15]. Secondly it has been reported that 47.1 % of of
patients with severe sepsis were culture negative and so it is reasonable that a patient could
have sepsis whilst reporting a negative blood culture [18|. These two reasons combined
with the fact that there is a 6 % increase in the risk of mortality from sepsis for each hour

antibiotic therapy is delayed mean the use of blood cultures for diagnosis will not always
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offer the best outcome for the patient [16].

Trauma patients, especially those of serious burns, are more likely to become sub-
jected to sepsis, due to the fact that the skin, which normally provides to first barrier
to pathogens, will be severely damaged [4-6]. As the sterile inflammation masks the

non-sterile inflammation, better diagnostic technologies are needed.

Given these facts it can be seen that the early diagnosis of sepsis is essential, especially
for trauma patients who already have serious morbidities, and so there needs to be new

diagnostic tests made for this condition.

2.2.5 Current developments of diagnostic technologies for sepsis

Sepsis is a huge healthcare problem and so there is much research exploring different ways

to diagnose sepsis. This section will look at diagnostic technologies under development.

Researchers from the University of Bath have developed a wound dressing which
changes colour when a bacterial biofilm develops in the wound. The dressing works by
encapsulating the dye molecule, carboxyfluorescein, inside vesicles. The vesicles are meant
to mimic the membranes of host cells which the bacteria will release toxins to attack. The
toxins cause the vesicles to burst, releasing the dye, causing a colour change [48,49|. The
colour change occurs because at high concentrations, carboxyfluorescein will self-quench,
and it is only upon release from the vesicle and therefore upon dilution that the fluores-
cence can be detected [50]. A possible downside to this approach is that it requires the
formation of bacterial biofilms to develop on wounds which is not a rapid process. In a
paper published by the group, results were given for biofilms given 48 hours to develop

on a tissue sample [51].

Researchers from Harvard University have been working on diagnosing sepsis by look-

ing at neutrophil movement. Neutrophils are the most abundant type of white blood cell
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in the human body and are a part of the innate immune system. As was discussed in the
previous section, neutrophils play an important role in the progression of sepsis and can
even be the cause of multiple organ failure. The research shows that neutrophils from
patients with major burns have reduced migrational speeds across a microfluidic device
they produced [52,53|. The group later produced a microfluidic device which could pro-
cess and capture neutrophils from a drop of blood [54]. The use of a microfluidic device
relies upon the use of a microscope to view and record the neutrophil activity which was
performed for 4 hours in the referenced study. As such, currently this kind of testing
would be best performed in a hospital laboratory and would not be suitable for a bedside

point of care test.

It is not just neutrophil mobility that is being studied. Neutrophil extracellular traps
(NETs) are being studied too. NETs are an extracellular matrix of DNA, proteins and
histones which are normally used as part of the innate immune system to kill bacteria
and viruses. A study conducted in mice showed that by lowering NET activity, sepsis
was attenuated [55]. Measurement of neutrophil NETS requires isolating neutrophils from
blood, incubating with a stimulant such as lipopolysaccharide and then performing further
tests to measure reactive oxygen species, nitric oxide and mRNA expression. These are
separate tests and performing so many would make assessing neutrophil NET activity in

a point of care device quite a challenge.

Procalcitonin (PCT) is a peptide which has been linked to sepsis and levels of it
have been shown to increase in response to pro-inflammatory stimulus [56]. Its use as a
biomarker in guiding clinical decisions with regards to sepsis has been reported to reduce
antibiotic treatment duration [57,58|. There has been much interest in procalcitonin over
the years with many studies into its effectiveness with sensitivity values ranging from 76 %
to 90 % and specificity values ranging from 70 % to 91 % [59-61]. Point of care devices
have been made to detect procalcitonin, however the manufacturers of such devices state

that “Increased PCT levels may not always be related to systemic bacterial infection”, and

18



on the list of exceptions is included “The first days after a major trauma, major surgical
intervention, severe burns” [62]. The SSC specifically mentions procalcitonin should not
be used solely to make clinical decisions and it has separately been found to not be a good
biomarker for critically ill patients [17,63]. A review of sepsis biomarkers also concluded
that PCT has limited ability to distinguish sepsis from other types of inflammation [64].
As such, procalcitonin is not a good biomarker for sepsis in patients of trauma, which as

has been stated are one of the groups most likely to become afflicted with sepsis.

Lactate, a metabolite used in energy metabolism has also been identified as a biomarker
for morbidity with respect to sepsis [65|. Lactate is measured as part of standard labo-
ratory tests for patients in hospitals and it has been referenced in the Surviving Sepsis
Campaign guidelines with respect to patient resuscitation as something to monitor, how-
ever this is not used for diagnosing sepsis. A systematic review of point of care lactate
testing with respect to sepsis and infections concluded that there was not enough evidence
to support the use of point of care lactate monitoring and the SSC highlights that the use
of currently known biomarkers should only be used to support and supplement clinical
assessment and that decisions with regards to antimicrobial therapy should never be made

solely on the basis of biomarker data [17,66].

The technologies and developments discussed here are where most of the research
has been directed. Each technique currently has limitations as have been mentioned in
their respective paragraphs. As such there is a still the need for the identification of
biomarkers which can accurately diagnose sepsis. Due to the fact that early diagnosis
of sepsis significantly improves patient outcome, a point of care device to measure any

biomarkers would be extremely useful.

Systems biology could provide the key to identifying biomarkers for sepsis and this

will be explained in the next section.

19



2.3 Systems Biology and Metabolomics

Systems biology is the combination of quantitative experimental techniques with compu-
tational and mathematical techniques for analysing and modelling biological systems [67].
A definition given by Kirschner for the field is as follows, “systems biology is the study
of the behaviour of complex biological organization and processes in terms of the molec-
ular constituents” [68]. What this means is that systems biology looks at how properties
emerge by viewing systems holistically, as opposed to breaking down systems into indi-

vidual constituents.

One type of data that is collected in systems biology research is -omics data. Omics
can represent many fields within biology, common fields being genomics, proteomics and
metabolomics which look at the genome, proteome and metabolome respectively (see

fig. 2.3). This project involves the use of metabolomics data and so this will be explained
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in more detail.

Phenotype

Figure 2.3: Relationship of genome, transcriptome, proteome and metabolome along with
the constituents of each. The metabolome is downstream of all of the others and directly
influences the phenotype.
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2.3.1 Metabolomics

Metabolites are low molecular weight (typically < 1500 Da) organic and inorganic chem-
icals, which take part in enzyme-catalysed biochemical reactions, as reactants, products
or intermediates [19,69]. Metabolites can be endogenous (naturally produced in the or-
ganism) or exogenous (not naturally produced in the organism, e.g. drugs) [70]. Given
the size restrictions, proteins are typically not metabolites, however small peptides are

included, along with amino acids, carbohydrates, fatty acids and other small molecules.

The metabolome is the complete set of metabolites within a biological sample [19].
As it is downstream of the genome, transcriptome and proteome, the metabolome is of
great importance is it characterises changes in the previous omics areas and provides
information on the functional status of an organism (fig. 2.3) [20]. Metabolomics data
is therefore a good candidate for research into the discovery of biomarkers for disease as

changes in the metabolome reflect changes in DNA, RNA and proteins [67].

Metabolite information can be collected through analytical chemistry techniques such
as mass spectroscopy (MS) and nuclear magnetic resonance (NMR) spectroscopy, where

sampling times are on the order of minutes and high throughput options exist [19,71,72].

Metabolomics studies have been used to identify useful biomarkers for a variety of
diseases/conditions such as endometriosis, ovarian and colorectal cancer, and asthma
[23-25]. Therefore there is clear precedence for the use of metabolomics in biomarker

discovery for sepsis in trauma patients.

Metabolomics has garnered such interest that a study at the Queen Elizabeth hospital
in Birmingham, United Kingdom, was commissioned. The SIFTI (Scientific Investigation
of biological pathways Following Thermal Injury) study which has already been under-
taken was a longitudinal study which collected patient samples and records over a period

of 6 months per patient. As the name suggests, patients with traumatic burn injuries
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were targetted for the study. Samples have been processed with metabolites labelled
which provides quantitative metabolomics data for analysis. This project has been given

access to some of this data, namely data from days 1 - 4 since admission to the hospital.

2.3.2 Current developments in identifying biomarkers for sepsis
in trauma

There is a clear need for biomarkers which can diagnose sepsis in trauma patients.

Metabolomics is still a relatively new field within medicine when compared to other
data driven areas such as genomics. Despite this there are examples of metabolomics

studies related to traumatic injury/burns and sepsis.

Orthogonal partial least-squares (OPLS) analysis has been used on metabolic data in
a small study of twenty two patients. The result of this investigation was the identification
of a metabolic phenotype which was able to predict sepsis with an area under curve (AUC)
value of 0.778 for the receiver operating characteristic (ROC) curve [26]. This value still
means there is some overlap between the classes but the model should predict correctly
more often than not. The small sample size means the results should be validated through

a larger study.

Another study used OPLS for a metabolomics study using rats. Potential metabolite
biomarkers for sepsis were discovered. The biomarkers discovered are metabolites known
to be involved in tissue damage [27]. This research needs to be validated with human

serum data.

Metabolomics data is not just being used to predict sepsis. It can also be used to
determine injury severity [73,74]. Although metabolomics data could help with determin-
ing mortality, there are already several mortality scoring techniques which can be used

and calculated quicker and easier than metabolomics data and so the application of these
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findings may be limited.

As was previously mentioned, metabolomics is a new field when compared to the other
fields such as genomics. The studies reported here highlight that metabolomics looks to
offer promising information on disease states. The criticisms of the studies, namely small
sample size or not using human patients are less relevant to the data from the SIFTT study
which has been made available to this project. The SIFTI data made available contains
89 patient samples all taken from burns injured patients and so it contains more data
than the previous studies mentioned and it is data from humans. Given the successes

mentioned for other diseases, the SIF'TI data could allow us to find biomarkers of sepsis.

2.4 Machine Learning and data

Specific techniques mentioned in this section which were used for this project are further

discussed in more detail in chapter 3.

Machine learning is a computational technique which uses algorithms to process data
in order to create models, find patterns or make predictions. The algorithms are able
to process new data in order to improve their models and therefore predictive abilities.
The output models may also be useful in identifying features of interest in the data sets

provided.

In the language of machine learning observations are known as instances, explana-
tory/independent variables are known as features, and the different values of the depen-

dent variable are called classes or outcomes.

Machine learning algorithms have been applied to fields as diverse as agriculture,
bioinformatics, economics and speech recognition. Machine learning is therefore applicable

for use in any area where it is possible to collect large amounts of data.
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Machine learning techniques can be categorised through the way learning takes place.
Two of the most common techniques are supervised and unsupervised learning with the

work in this project utilising supervised learning techniques.

2.4.1 Supervised Learning

Supervised learning techniques consist of algorithms which learn a function to map inputs
to outputs based on given input-output examples. The given examples labelled with
output values are what provide the supervision and are often called training data. A
supervised learning algorithm should be able to generalise the training data in order to

provide output values for new unseen input data.

In order to test how well a supervised algorithm performs, it is important to test the
function with data where the output values are known. Traditionally this is performed
by a technique called cross validation which partitions the available data into a set for
training and a set for testing. A variety of statistics can then be calculated by comparing

the output generated from the function against the known output values for the test data.

Two important use cases for supervised learning techniques are that of classification

and regression.

2.4.1.1 Classification

Classification is the process of determining which of a set of categories a data instance

belongs to based on the values of its features.

To explain by example, a data instance may contain information on the words used
within an email, and it may be desired to use these features to determine if the email

belongs to the category of being a spam email or not.
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In keeping with the theme of previous sections, a notable classification problem is
to determine whether a patient has a specific disease when given some data collected on
them. Classification is therefore used a lot with medical data, where it is not only useful in
being able to determine the outcomes of patients but by looking at the models produced, it
can be possible to determine which features contribute the most to the classification. It is

therefore possible to identify biomarkers or clinical metrics useful for diagnostic purposes.

When there are only two classes to decide between, the problems are called binary
classification problems and these represent the simplest case for classification. When there
are more than two classes the problems are called multiclass or multinomial classification

problems.

Some classification algorithms were designed only to handle binary classification prob-
lems. Examples of these types of algorithm are logistic regression and support vector

machines.

Logistic regression creates a model using the logistic function, whose output value
is a number bound between 0 and 1. When creating the model, if the classes used are
represented by 0 and 1, the value output by the model when testing a new sample is
the probability of the sample belonging to the class represented by 1. This technique is

explained in more detail in chapter 3.

Support vector machines work by finding a hyperplane which separates two classes.
The algorithm finds the hyperplane which has the maximal distance between samples
from both classes and so the classification of a new sample is determined by its position
in relation to this hyperplane. There are extensions which allow the use of support
vector machines with multiclass problems, however traditionally it is a binary classification

technique.

Binary classification can be used to accommodate multiple categories through use

of the 1 vs all strategy. The 1 vs all strategy consists of creating a binary classifier
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for each class where the outcome is whether an instance is a member of the class in
question or not. With this technique, the number of classifiers needed is equal to the
number of classes which means the training time will also increase proportionally with
the number of classes. This strategy is not the only way to deal with multiple classes and
there are classification techniques which can naturally handle multiple classes through the
production of only one classifier. Examples of classification techniques which can perform

multinomial classification are k-nearest neighbours and naive Bayes.

K-nearest neighbours classifies a new sample to the majority class of the k samples
nearest to it in the training data. Naive Bayes creates a joint probability distribution
across all features, for each possible class, and uses these to determine which class has the
greatest probability given some feature values. Both of these techniques are explained in

more detail in chapter 3.

2.4.1.2 Regression

Regression techniques are used when the task is to determine the value of an output, and
so the dependent variable is continuous real valued, as opposed to being discrete valued as
with classification. In order to do this, the relationship between input and output values

must be estimated.

There are many different regression algorithms which can be used to create models
for the data. Linear regression techniques use a linear combination of parameters create
models. The simplest type, simple linear regression, is for the case of having one inde-
pendent variable and one dependent variable. The algorithm aims to find a straight line
which fits the data, thus linking the independent and dependent variables. With this
simple case the independent and dependent variables can be plotted graphically as x and
y axes respectively. A line of best fit can be found using the least squares fitting method.

The gradient of the best fitting line provides information in how the two variables are
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linked as it shows how a change in the value of one will cause a change in the value of the

other.

Linear regression techniques can handle multiple independent variables, such as by
finding a straight line of best fit in multi-dimensional space. The line of fit doesn’t have
to be a straight line however, the linear in the name linear regression comes from the
parameter values for each feature, and so feature values can be modified by exponents or

other operators.

Other regression techniques include polynomial regression, decision tree regression and

random forest regression.

2.4.2 Machine Learning with metabolomics data

Machine learning algorithms are used for a variety of different problems. They are com-
monly used alongside artificial intelligence systems but they are also used with metabolomic
data. K-Nearest Neighbours and rule based classifiers have been used to identify metabo-
lites of interest which discriminate between two sets of mice |75]. The algorithms were
used with many sets of data, each having different metabolites. By making comparisons
with the metabolites and scores it is possible to isolate metabolites which have a large
impact on the effectiveness of the model generated. Machine learning algorithms have

also proved useful for finding biomarkers for inflammatory stimuli {76, 77].

2.4.3 The curse of dimensionality

The curse of dimensionality describes the problem of when a data set does not have
enough samples to provide enough information for all of its dimensions (features) |78].

Data sets can posses an increasing number of dimensions as new and more advanced
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data collection techniques become available, such as through increasing the resolution of

spectrometers |79)].

Having more information about a sample may seem beneficial at first thought, but
increasing the dimensionality of data can lead to a data set becoming more sparse. As
more dimensions are added, more samples are needed to fill in the data space. To provide
an example with metabolomics data in mind, for a one dimensional data set looking at
a single metabolite, it would be useful to have samples with concentration ranges from
low to high. Imagining if 10 samples were enough to model the outcome based on this
data, if a second metabolite were recorded, to create a similar model, 10 data points
would be required per existing data point from the one dimensional space. That is for
each concentration of metabolite 1, low to high, it would be useful to have concentrations
from low to high in metabolite 2 for comparison. This would lead to a data set with 100
samples. If more metabolites are recorded, it can be seen more samples will be required

and that this grows exponentially [79].

There is no fixed point for which the curse of dimensionality occurs. The SIFTI data
contains 30 features and has 89 samples and so there are not a lot of samples per feature

and so there is the possibility of this causing a problem.

One method to manage the curse of dimensionality is reduce the number of features
used by a model. Feature selection methods exist which can be used with, or exist as
part of machine learning algorithms which perform this, such as using logistic regression
with the lasso penalty. Performance will be compared between algorithms using feature
selection and those which do not to determine if this is actually an issue with the data

set used.
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2.4.4 Missing Data

When acquiring data for a study it is not always possible to collect a complete data set.
In the omics fields due to the nature of how information is collected and processed it is
difficult to identify the same genes, proteins or metabolites across all patients. Even when
collecting data via questionnaire, participants may leave some questions unanswered. The
information that has been collected is correct and valid and attempts should therefore me

made to use it.
There are three types of missing data [80].

1. Missing completely at random (MCAR). Values in a data set are MCAR if the
reason for the value being missing is independent of observable variables, unobservable
parameters of interest and entirely at random. If data is MCAR, the missing values should

not introduce any bias into the data set.

2. Missing at random (MAR). Values in a data set are MAR if the missingness is not at
random but can be accounted for by observed variables which have complete information.
MAR data is impossible to verify statistically and so substantive reasonableness behind

the assumption is used.

3. Missing not at random (MNAR). Values in a data set are MNAR if the value of

the missing variable is linked to the reason as to why the data is missing.

Missing data is a problem as some techniques require a complete data set to execute
such as logistic regression and (unmodified) k-nearest neighbours which would fail to

produce a result otherwise.

It is also possible to introduce bias in data depending on the missingness type such as
MNAR data. An example of this bias going back to the questionnaire example would be

respondents leaving a question about their earnings empty if they earned over a certain
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amount of money. Analysing the data set, large values would be missing despite the fact

they can exist and this would skew the recorded data set to lower means and variances.

2.4.4.1 Data Deletion

One of the simplest methods to deal with missing values in a data set is to delete any
sample containing missing values until the data set remaining is complete. This technique
is called listwise deletion, complete case analysis or case deletion [80-82]. The use of this
technique can lead to the removal of useful data, can lead to substantial removal of data

samples and if the missing data is not MCAR can introduce bias into models [80, 83].

Another deletion technique is called pairwise deletion. Pairwise deletion does not
permanently remove data from the data set, instead the technique deletes samples with
missing values only when the missing values are required [81]. This keeps the data set
intact and allows recorded values to be used. However when calculating statistics on the
features of a data set, the number of samples used for each feature/calculation can be
different and this makes it more difficult to make comparisons between different statistics

of the same data set.

The two techniques discussed involve deleting samples from a data set or from calcu-
lations. Sometimes it is necessary to delete features themselves if they contain substantial

amounts of missing values [83].

Neither of these techniques will be used. The SIFTI data set does not contain any
complete samples and so listwise deletion would delete the entire data set. Pairwise
deletion would not be appropriate to use for this analysis as the analysis is performed on
the full data set and not on subsets of features. It is common practice in metabolomics

analysis to use imputation techniques [84]. These will be discussed in the next section.
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2.4.4.2 Data Imputation

Instead of deleting missing values, imputation techniques aim to fill in missing values thus
creating a complete data set. Strategies for determining values to impute are constantly
being researched. The simplest strategies involve imputing a single value when a field is
missing within a feature. A common value to use is the mean of the recorded values for
a feature [80]. Imputing the mean causes the feature mean to remain the same, however
it is not always an appropriate value such as when the feature is for a non-continuous
value. When feature values are discrete/categorical, the mode may be imputed to have
a similar affect. It is important to try to understand why values may be missing and so
for metabolomics data, half of the minimum recorded value for a samples is sometimes

imputed with the assumption being that the value was too low to be recorded.

The technique of multiple imputation has shown promise as an imputation strategy.
For multiple imputation, copies of the original dataset are made and for each copy, the
value to be imputed is drawn from a distribution of possible values. Each copy of the
dataset will be made into a complete data set through imputation and each copy is used

for analysis, with the final output taking into consideration the output when using each

copy.

Imputation techniques are commonly used in metabolomics analyses [84]. Common
values to impute include half the minimum value for each feature, which corresponds to
the belief that the metabolite is present but below the limit of detection of the technique

and also the mean, as this will have a less dramatic impact on the feature metrics.

For this work, deletion is not an option and so half-minimum, mean and multiple im-
putation techniques will be used. There is reasoning behind using the half-minimum value
and so it should be explored and this can easily be compared to using mean imputation
to compare effects. Multiple imputation has been shown to be resistant to different types

of missing data and so it will also be used [85].
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2.4.5 Algorithm choice

Three classification algorithms were chosen to be used for this project to perform the
metabolmics analysis, k-Nearest Neighbours (k-NN), naive Bayes (NB) and logistic re-

gression (LR).

The k-NN algorithm is a common starting point for classification problems as it is quick
to perform. It doesn’t require building a model as the model is just the training data. This
can be a drawback when a data set is large as even though training is instant, testing would
require calculating distances from each test sample to every training instance. Given the
size of the SIFTI data this will not be a problem. Another positive aspect is the algorithm
is non-parametric and so it makes no assumptions and forces no constraints on how the
data should be shaped. However a downside is the algorithm cannot inherently tolerate
missing values and so will require using an imputed data set unless modifications are
made to the distance calculation. Data will need to be preprocessed before it can be used
with the k-NN algorithm so as to standardise features, a z-score will do this, this will stop
any features with larger magnitude values from dominating in the distance calculation.
Another downside to this classifier is that class imbalance can greatly affect classifier
performance. The full SIFTI data set does not exhibit strong class imbalance, however
stratifying it into smaller data sets based on patient type/day of sample will cause the
imbalance to worsen for some of the stratifications. For most of the stratifications the
imbalance will be less than 57 % in favour of one class and so this should not cause a big
problem. The k-NN classifier has been used with favourable results with genomics and

proteomics data sets and so it should be viable to use for metabolomics data [86,87].

The naive Bayes algorithm does not require a complete data set and so it will in-
teresting to see how it compares against algorithms using imputation. With continuous
variables the naive Bayes algorithm uses the probability distributions for each feature

within each class to calculate a probability score. Downsides to the naive Bayes classifier
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include performance penalties with continuous data if features aren’t accurately modelled
and the also the classifier assumes features are independent of one another. This could
be a big problem as metabolites are often connected to one another, however if there are
many intermediates between two metabolites a lot of biological processes can happen in
between and so the relationship between metabolites may not be direct. A recent publica-
tion testing several machine learning algorithms for biomarker identification found naive

Bayes to perform well and so it is worth testing [8§].

An advantage of the logistic regression algorithm is that it can easily be used with
regularization and so feature selection is embedded within it. This can reduce overfitting
to data and also selects the most important subset of features. Another benefit is that the
model produces weights (scores) for each feature used which show the impact each feature
has on the output. These weights can be positive or negative which means LR will be able
to not only inform which metabolites are useful, but also if it is an increases or decrease
in their concentrations which is important. Like k-NN, LR can’t tolerate missing values
and so imputed data sets will need to be used, also data needs to be standardised so the
feature weights can be comparable. Logistic regression has been used with metabolomics
data to predict outcome and also identify metabolites of interest in patients with multiple

sclerosis [89).

The previous section has covered topics to do with machine learning and data pro-

cessing. The next section looks at diagnostic testing.

2.5 Diagnostic Tests

When biomarkers have been identified to diagnose a condition, it is important to develop
analytical tests which can be performed to detect/measure the chosen biomarkers. These

tests can typically fall into two categories, laboratory-based and point-of-care based tests.
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As the name implies, laboratory based testing is when tests are performed in a labo-

ratory.

Point-of-care testing, sometimes called bedside testing, is defined as “diagnostic testing
at or near the site of patient care, wherever that medical care is needed” [90]. The defini-
tion specifically addresses that the testing should be available wherever the care is needed,
as such POC tests and testing devices must be relatively small, portable and unobtrusive
as patients can present themselves not just in hospitals but also GP surgeries/outpatient
centres and even in public emergencies where paramedics may be required to perform

such tests [90].

It will typically take more time to get the results from laboratory based tests than
POC tests. Lab tests will require a trained professional to perform the test and verify
the results, whereas POC tests can normally be performed by personnel not trained in
clinical laboratory sciences. This means POC devices can be used in more settings and

even by patients themselves.

It has been reported that lab based tests can offer better sensitivity, specificity, pre-
cision and accuracy when compared to POC tests [91]. The difference between accuracy
of laboratory and POC tests is not always significant and will depend upon the tests
being performed. A comparison of laboratory and POC tests for procalcitonin showed no
significant difference between the quality of the test, despite the laboratory test taking
two hours longer [28]. A comparison of laboratory and POC glucose analysis from criti-
cally ill patients determined there was no significant difference between the POC and lab
based results [92]. However a later study in glucose testing in critically ill patients found
the POC tests differed by as much as up to 20 % from the laboratory test value, with
a further study recommending the verification of hypo and hyper-glycemic results from
POC devices with laboratory tests [93,94|. A study analysing differences between lab
and POC tests for troponin in an emergency department found no significant difference

and recommended the use of the POC testing to provide the fasted results [95]. A study
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looking at monitoring haemoglobin in patients concluded that the POC test results were
the same as the lab tests, but the POC test offered the ability to provide continuous
measurements and so would be seen as an improvement over the lab based tests [96].
As such it can be seen that there is conflicting evidence on the differences in quality of
POC tests when compared to lab test results. The conclusion should be it is important
to judge each test individually, as a sweeping statement suggesting POC tests are less

accurate does not make much sense given the number of different POC tests available.

Despite conflicting results regarding the accuracy of POC tests, there is a huge move

towards POC testing.

In order to develop a POC test for a biomarker there needs to be a way to selec-
tively identify the biomarker. Antibody based systems have been used in the past due to
their high specificity. However the use of antibodies has its own negatives such as high
cost, difficult preparation and issues with physical and chemical stability [97]. As such,

fluorescent chemosensor can be utilized. These will be discussed in the next section.

2.6 Fluorescent Chemosensors

A fluorescent chemosensor is a compound with a binding site, a fluorophore and a mecha-
nism by which the two sites can communicate [98|. There are a huge variety of fluorescent
chemosensors and this section will attempt to cover some of the application domains they

cover, but first, fluorescence itself will be explained.

2.6.1 Fluorescence

Fluorescence is the phenomenon of a molecule absorbing and then subsequently emitting

light. The absorbed photon promotes an electron into a higher energy level and a new
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Figure 2.4: Example Jablonski Diagram. Sy and S; label electronic energy levels. The
labels O - 3 label vibrational energy levels within each electronic energy level. The diagram
shows an electron being promoted to a higher energy level through the process of absorbing
energy (purple arrow) such as from a photon of light. The electron then loses energy
through non-radiative transitions (red arrows). The electron then returns to the ground
state electronic energy level (green arrow) and as it does this it loses energy which for
fluorescence is in the form of a photon.
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photon is released upon relaxation back to the ground state. Typically the photon emitted
will be of a longer wavelength and thus lower energy than the absorbed photon, however
it is possible for the emitted photon to have more energy than the absorbed photon in the
case of upconverting nanoparticles. Upconverting nanoparticles are a special case where
multiple photons are absorbed per each emitted photon and so the emitted photon has
higher energy [99]. The difference in wavelength between absorbed and emitted light is
called the Stokes shift. The causes for this difference will typically be dependent upon the
fluorophore and the environment it is used in, however common causes for the emission
of lower energy photons include electron energy loss through vibrational relaxation and
also electrons entering higher vibrational energy levels within their ground states. The
energetics of fluorescence can be illustrated with the aid of a Jablonski diagram with an

example presented in fig. 2.4.

2.6.2 Fluorescent chemosensors for the detection of ions and
biomolecules

Fluorescent chemosensors have been around since 1867, where the first reported fluores-

cent chemosensor was a technique to detect the aluminium ion (AI*") [100].

Since then, many chemosensors have been developed for other ions, such as those
essential to live, such as sodium (Na™) [101], potassium (K*) [102] and calcium (Ca™)
[103,104]. These chemosensors typically have an large aromatic structure with a site the

metal ion may complex to.

It has been shown that chemosensors can be used with biological samples where a
range of ions can be detected such as chloride ions, oxygen for the determination of blood

oxygen concentrations and hydrogen ions for the determination of pH [105].

Chemosensors have come a long way form just being able to detect ions in solutions.
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They are now actively developed to detect biomolecules. One group reports the ability
to detect the metabolite a-Ketoglutarate within serum using a fluorescent chemsosensor
[106]. This is currently a lab based test but as it works in serum the possibility to move

to a point-of-care system is well within reach.

A fluorescent chemosensor to detect glutathione, a biomarker for cancer, and Cu?"
ions has been developed [107]. This chemosensor is actually colorimetric and so it exhibits

visible colour changes upon binding to gluththione or Cu?" ions.

As has been shown, chemosensors can be made to detect a multitude of ions and
molecules. The final part of this chapter will look at their development into point-of-care

devices.

2.6.3 Chemosensors and POC testing

Detecting fluorescence typically involves the use of large instruments such as fluorometers
and microplate readers. However small benchtop/handheld fluorescence detectors have
been designed [108-110]. As specific fluorescence assays will only require one excitation
wavelength and one emission wavelength, large and expensive monochromator/filter wheel

based systems are not necessary, more simple optical and filter based systems can be used.

For some fluorescent assays there are visible colour changes are high analyst concen-
trations. There will still be a colour change at lower concentrations, it will just be more
subtle, but that was using the human eye. Cameras can more accurately detect the differ-
ence between two colours. One such point-of-care system to exploit this was designed to
detect haemoglobin within blood samples using acoustic waves to modulate the fluorescent

particles and a smart phone to detect the colour changes [111].

Another potential avenue for a point of care device which has been developed is the use

of microfluidic paper-based analytical devices in conjunction with a smart phone to take

38



photos and analyse the results [112]. Continuing the theme of combining microfluidics
with fluorescence, there also exists a point-of-care device which uses and optical fibre

spectrometer with a microfluidic chip to detect avian influenza virus [113].

As can be seen fluorescence sensing devices are leading the way in advancing point-
of-care diagnostic technology. Chemosensing platforms can provide an advantage over
traditional analytical techniques for biomarkers such as nuclear magnetic resonance spec-
troscopy, mass spectrometry and chromatographic techniques as these existing techniques

cannot currently be miniaturised to make them bedside instruments.

2.7 Conclusion
This concludes the background and literature review chapter. The next chapter deals

with the machine learning techniques and methods used for the metabolomics analysis

part of this work.
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CHAPTER 3

MACHINE LEARNING TECHNIQUES, METHODS

3.1 Introduction

One of the aims of this project was to try to determine whether metabolic data can be
used to create an accurate predictive model for the development of sepsis in patients

suffering from burns injuries.

This chapter will discuss the techniques used in this project to build a classifier for
sepsis, and also the attempt to perform feature selection in order to pick out the most

relevant metabolites for classification.

The techniques used are:

1. k-Nearest Neighbours
2. Naive Bayes
3. Logistic Regression

These techniques are all supervised learning techniques [114, 115]. This means that

they require a labelled dataset for training a model which can then be used to classify
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new data samples. Given that this property is true for all of the techniques used, first it
will be discussed how the data is partitioned into training and test datasets, subsequently
preprocessed, and then the discussion will move onto how the individual techniques work.

Finally feature selection and methods of evaluating classifier performance are discussed.

3.2 Training and Test Datasets

As was mentioned before, the techniques used are supervised learning techniques, and so
the algorithms must be provided with data to train a model on. In order to test the model

produced

To test how well the algorithms work, we need to provide them with data to train on
and then use different data for testing. The data used to test the algorithms needs to be
labelled, and so the classes of each sample will be known, in order to determine whether
the classifications provided by the algorithms are correct. Because of this, completely new
data where the outcome is unknown can not be used to test the classifiers, but instead
data from the original dataset will be used. To do this, the original dataset must be
partitioned. There are many ways to partition a dataset to provide training and test sets,

but this work uses the technique of k-fold cross-validation.

3.2.1 k-fold cross-validation

For k-fold cross-validation, the full dataset is partitioned into k folds. For this research
stratified k-fold cross-validation was performed and so the distribution of classes in each
fold will be similar to the distribution of classes across the whole dataset where possible.
By keeping the class distributions in each fold similar to that of the entire dataset, the

training set should relate more closely to the complete dataset as opposed to if random
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Partition data into folds

L1l 213 el s |6 | 7 | s ]| 9 [0

Use all but one of the folds for training, leave one to test the model

[eain | e | T | i | i | i | rin | i | i | ot |

Do the same again but use leave out a different fold for testing

Repeat until each fold has been used for testing

Figure 3.1: Example of k-fold cross-validation where k = 10.

sampling were used to determine each fold. After the folds are made, k rounds of testing
are performed (one per fold), with each round using k-1 folds as training data and the
remaining fold as test data. Each round uses a previously unused fold for the test fold.
This allows for all of the data to be used as test and training data and results can be

collected by analysing the performance from each fold.

3.3 Z-score

For the k-nearest neighbour and logistic regression techniques the data was z-scored be-
fore use. This means that for each metabolite, all values had the metabolite mean sub-
tracted from them and were divided by the metabolite standard deviation, which gave

each metabolite a mean of zero and a standard deviation of one.

(3.1)

This is a method of standardisation, and is a useful way to preprocess the data.

Depending on the technique used to analyse the data, metabolites which have naturally
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greater concentrations could overshadow those which naturally have lower concentrations.
The absolute values are not as important as the differences between samples, and so
standardising the data in this way stops metabolites with larger values from dominating

the classification.

3.4 k-Nearest Neighbours (k-NN)

K-Nearest Neighbours is a non-parametric machine learning algorithm which can be used
for both regression and classification problems. The k-NN algorithm can be described as
a lazy algorithm as it uses the complete set of training data provided to it without any
modification, as such it does not produce any models of its own. Because of this, training
is very fast and easy, the data just needs to be partitioned and the creation of the training
set is the training stage. It is during the testing stage that the complexity increases, as
the distances between each training sample and each test sample need to be calculated
in-order to determine which k samples are closest (the k-nearest neighbours) to each test
sample. When multiple neighbours are used, the new data point will be assigned to the

class which has the majority neighbours.

Mathematically the algorithm for the classifier works as follows [116,117].

Yy = arg max Z I(y; = ¢) (3.2)

ce{c1,...,cn} 2, EN (24,k)

Where I(.) is the indicator function which returns 1 if the condition evaluates to true
or 0 if the condition evaluates to false. And where N(zy, k) returns the set of k nearest

neighbours of sample X; from the training data.

Many uses for k-NN only require classification and so eq. (3.2) is applicable . For

medical data, amongst other types of data, it is typical to produce Receiver Operating
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Characteristic (ROC) curves to assess a classifier. To create a ROC curve, probability
values are required for a classification and the classification threshold is changed to deter-
mine how the classifier reacts to such a change. In order to get probabilities from a k-NN
classifier one simply needs to take the sum of each class occurrence within the £ nearest

neighbours and divide it by k, so the probability is equal to the proportion of the class

occurrences as is given by eq. (3.3) [118].

P(Y=c|X=x)=1/K > Iy=c (3.3)
2, EN(x¢,k)
@
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(c) When k& = 3 the new sample will (d) When k£ = 5 the new sample will
be classified to the red class. be classified to the blue class.

Figure 3.2: An illustration of how to classify using k-NN.

Figure 3.2 illustrates how the k-NN classifier works with a simple example. First it
shows a training dataset with two classes indicated by different colours (red and blue),

then, a new sample (the black circle) is introduced which needs to be classified. The
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nearest neighbours for k values of 3 and 5 are shown, indicating the effect changing k£ can

have on the quality of the classification.

3.4.1 Calculating Distances

The k-NN algorithm requires a distance function in order to determine which training
points are nearest to the test point. For this, the square distance was used which is
similar to the Euclidean distance function but without calculating the square root, as

shown in the equations below:

Given two points p and q of n dimensions,

Euclidian Distance = (3.4)

n

Squared Distance = Z(pl —q)? (3.5)

i=1

The square distance can be used for this algorithm as the distance value is only used
to determine which neighbours are the nearest. As the differences between points in the
same dimensions are squared, the distance values are all positive. If the square root of
the distance values were taken, larger squared values will have larger square root values
and so the points considered using the square distance are the same points which would
be used if the Euclidean distance were used. Not calculating the square root speeds up

computation time as fewer calculations are needed [119,120].

Equation (3.5) requires that the two samples have the same dimensions. As mentioned
earlier this is not the case for all samples. In order to be able to calculate a distance

between all pairs of samples the data and/or the distance equation needs to be modified.
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There are multiple methods which can be employed to handle missing values [121].

For this project it was decided to try three methods:

1. Leave the cells empty, no imputation (NT).

2. Half-min Imputation (HM). Replace the missing values in each column with half of
the minimum value in the column. This technique makes the assumption that the
metabolites are present but just in small concentrations and so may not have been

detected.

3. Mean Imputation (M). Replace the missing values in each column with the column

mean.

When half-min and mean imputation are used, eq. (3.5) can be used. For method 1,

the distance function is modified such that eq. (3.6) below is used.

Given two points, p and q, which have comparable data for m metabolites:

m

1
Dist :-E i — ;) 3.6
istance = — (pi — qi) (3.6)

i=1

The samples given to eq. (3.6), p and ¢, have comparable data in m metabolites, but
either may have concentration values for metabolites not present in the other sample.

This data must be ignored as there is nothing to compare it to.

3.4.1.1 Comparing samples with missing values

When leaving in samples/metabolites with missing values, comparing samples to calculate

a distance value requires another step.

In order to make the comparison it is necessary to find out which metabolites two
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Table 3.1: AND logic table.

Input 1 | Input 2 | Output
0 0 0
0 1 0
1 0 0
1 1 1

samples have in common. To do this efficiently the AND operator is used. The logic table

for AND is shown below.

It is possible to create logical matrices in Matlab which have a 1 where an actual
concentration value is and a zero where there is none. This step is facilitated by filling in
the empty cells in the data spreadsheet with an unrealistically high value (e.g. 100,000).
This value will not appear as an actual concentration in the dataset and so it is used as
a placeholder and can be searched for to find the empty cells. It is possible to do this
without a placeholder value, by using not a number (NaN) values, however this limits
the functions which can be used, as NaN values in Matlab do not behave as traditional

numbers.

By creating logical vectors for each pair of samples to be compared, the logical vectors
can have the AND operation performed on them. The result is another logical vector.
For this to work, both vectors p and ¢ need to be of the same dimensionality (n) and the
resultant vector will also be of n-dimensionality. On vectors (and matrices), the AND op-
eration compares values with the same index (the same position in both vectors/matrices).
From table 3.1 it can be seen that when using logical values to indicate concentration val-
ues being present, the resultant value will only be a 1 if both input values are 1, and so

the metabolite needs to be present in both samples as illustrated in fig. 3.3.

The sum of the values in the output vector provides the number of comparable metabo-
lites (value m in eq. (3.6)). To calculate the distance according to eq. (3.6), first both
data points (the actual concentration vectors, not the logical vectors) are multiplied by

the logical output vector. This will zero the unmatched metabolites and only keep the
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Input 1 0 1 0 1 1 0
AND

Input 2 1 1 1 1 0 1

Output 0 1 0 1 0 0

Figure 3.3: Example of two samples having the AND operation applied to them.

comparable metabolite concentrations. The squared distance function can now be used
from eq. (3.5) as the zeroed values will not contribute to the overall distance. The distance

can then be scaled by dividing by the number of comparable metabolites (m).

The half-min and mean imputed samples will have no missing values and so when using
those techniques all samples can be compared directly to one another without needing

the above check.

3.4.2 Classification

Once the distances have been calculated, the nearest k points are selected and the number

of neighbours for each class is calculated.

The number of neighbours used is user defined and will affect the quality of the out-
come. There are many heuristics for the optimal value of k, such as using k = y/n where
n is the number of samples in the training data. Despite the heuristics available, the
optimal value for k is very data dependant and so in order to determine the optimal value
for k, the algorithm should be run for multiple k values and the value which is consistently
the best should be chosen. In order for the classifier to be robust, therefore not affected

by noise in the dataset, the value for k should be sufficiently large so noise will be ignored.
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3.4.2.1 Scaled Voting

The data provided is subject to class imbalance, as such one of the classes is a more com-
mon outcome than the other. Having imbalanced classes can affect the quality of results
produced by the k-NN algorithm. To try to lessen the effect, the totals for neighbours in

each class are scaled according to the class distribution.

In the code, the number of neighbours from the non-sepsis class is scaled, so it is as if

there were the same number of samples for each class.

3.5 Naive Bayes (INB)

The naive Bayes algorithm uses Bayesian probability statistics to generate a probability
value for a data sample belonging to a specific class. As the name implies, it utilises Bayes’
theorem which is given in eq. (3.7). Bayes’ theorem provides the value for a conditional
probability, that is the probability of an event happening knowing that another event has
already happened. This is relevant to the classification problem as we would like to know
the probability of a patient being in the disease state, given the information collected on
them. Bayes’ theorem is often expressed in a non-mathematical way, such as in eq. (3.8).
When looking at eq. (3.7), for the classification problem the hypothesis would be the
patient having sepsis, and the evidence would be their metabolomic data. In order to
calculate this posterior probability, it is necessary to calculate the likelihood, which is
the probability of a patient having that metabolomic data (the evidence) given that they
already have sepsis (the hypothesis), and this is multiplied by what is called the prior.
The prior is what we currently believe the probability of the hypothesis being true to be.
Given the example being used, the prior for a patient having sepsis could be the calculated
as the fraction of patients admitted who had sepsis against the total number of patients

admitted. The probability of the evidence in this example will be the probability of seeing
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the patient’s metabolomic data irrespective of their outcome. Therefore the evidence is
calculated as the probability of seeing the metabolomic data given a patient having sepsis
multiplied by the (prior) probability of having sepsis, and adding to this the probability of
seeing the metabolomic data given a patient not having sepsis, multiplied by the (prior)

probability of not having sepsis.

P(Ewvidence | Hypothesis) P(Hypothesis)

P(Hypothesis | Evidence) = P(Evidence) (3.7)
) Likelihood x Prior
Posterior = Fvidonce (3.8)
P(z | C1)P(Ch)
P(C |x) = 3.9
D= e TePen) + (Pal CoPc) &

Naive Bayes Classifier for a binary classification problem (classes being 0 or 1), calcu-

lating the probability for a sample belonging to the class labelled 1.

P(a|C) =] P | C) (3.10)
P(FEvidence) = ZP(:U | Ci)P(CY) (3.11)

Equation (3.9) shows the formula behind the naive Bayes classifier for a binary classifier

where the result is the probability of a sample x belonging to class 1.

Given a dataset of d dimensions and a sample x which also has d dimensions, the naive

Bayes classifier calculates the probability values of each individual feature appearing in a
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chosen class (in the equation class 1 is chosen). The feature probability values per class
are multiplied together to give the likelihood of having sample x given the chosen class.
The likelihood value is multiplied by the prior probability of the class to give the posterior

probability.

The naive Bayes classifier can easily be used with features which are discrete/categorical
as the likelihood and prior values can easily be calculated. For the likelihood values
P(X = x| C;) can be calculated by % where N is the number of samples. The

prior probability P(C' = ¢) can be calculated by %

Continuous data is not as simple to work with. As has previously been mentioned, for
discrete data it is only necessary to tally the total number of observations of each feature
value across all samples and divide by the total number of samples. For continuous data,
this is typically not possible, as it is possible there are values which are valid but which
have not been seen in the training data. One method to deal with continuous data is to

discretize it.

3.5.1 Probability Density Functions

In order to use the naive Bayes classifier with the metabolomics dataset, probability
density functions (PDFs) needed to be built for each metabolite. Probability density
functions transform a set of discrete data values into a continuous probability function.
When looking at the denominator of Bayes’ Theorem the probability of the evidence
needs to be calculated, which in the case of this project would be the probability of a
patient’s set of metabolite values appearing. It is therefore necessary to construct PDFs
because the metabolite concentrations can be any from a range of continuous values, but
the dataset itself will only contain a small subset of these values. If testing the probability
of a specific value for a metabolite appearing in the dataset, it is highly likely there will

be no repeat, and this is true for all samples. Part of this is due to the nature of the
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data. The metabolite values are recorded to a precision which would require many more
samples to have a good chance of seeing the same value more than once. As can be seen
in the denominators of egs. (3.8) and (3.9), the probability of the evidence for a binary
classification problem is the summation of the probabilities of the evidence coming from
either of the available classes. In order to calculate these probabilities, PDFs are created

for each metabolite, per class.

Probability Density Functions were constructed using the Parzen—Rosenblatt Window
technique. This works by fitting a kernel function around each point and summing up
the values from all of them. There are a variety of kernels which can be used, with a
popular one being the normal (Gaussian) distribution. Figure 3.4 provides an illustration
of a PDF generated for a metabolite. An important parameter when using the Parzen-
Rosenblatt Window technique is that the PDF generated can differ greatly based on the
bandwidth used for the kernel function. When using a normal distribution, the bandwidth
affects how wide the peak will be. If the bandwidth is two narrow, there will be regions of
extremely low probability between clusters of datapoints. If the bandwidth is too wide,
it will smooth out the clusters of datapoints. Figure 3.5 shows examples of how changing
the bandwidth can change the distribution produced. The bandwidth here can be seen
as an analog to bin widths when plotting a histogram. A histogram can also be used to
visualise the distribution of datapoints, however histograms do this in a discrete way due
to the use of bins. If the bins too wide, the data will be split between very few bins, if
the bins are too narrow, they may fail to collect multiple points to show an underlying

density distribution.
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Figure 3.4: Samples data points from a normal distribution and PDFs using large (1)
and small (0.2) bandwidths. The large bandwidth produces a smooth normal distribution
whereas the small bandwidth produces a distribution with multiple peaks.
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Figure 3.5: Samples data points from two normal distributions and PDFs using large (3)
and small (1) bandwidths. Using a large bandwidth creates a smooth normal distribution
whereas the smaller bandwidth produces a distribution with peaks around the means of
each original distribution.

3.6 Logistic Regression (LR)

Logistic Regression (LR) is a classification technique which falls under a class of techniques

called generalized linear models (GLM). LR is typically used for binary classification
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problems; and whilst it can be extended to multiple-class problems, for this project binary
classification is the goal [118|. Unlike the A-NN and NB techniques seen previously, LR
creates a model from the training data, and this model fits data using the logistic function
eq. (3.12). The logistic function produces a sigmoid curve, as can be seen in fig. 3.6. This
curve is bound between 0 and 1, and so the output can therefore be interpreted as a

probability.

flx) = (3.12)
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Figure 3.6: Example of a Logistic Curve

The model takes the form of Sy + By x 1 + ... + B * x,, where [y is the intercept
for the model, f; ... (,, are weights for each feature and z; ...z, are the feature values
from a sample. LR is therefore a parametric classification technique, with the intercept
and weights being the parameters which need to be computed. These parameters are
estimated through a technique called maximum likelihood estimation (MLE). MLE max-
imises a likelihood function which provides an estimate for how good the predictions will
be when using a given model given some training data. An example of the likelihood func-
tion is given in eq. (3.13) which calculates the residual sum of squares (RSS) error The
mathematics behind MLE are beyond the scope of this project, however it is a procedure

which has been optimised in many software packages and this project will take advantage
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of that fact.

Likelihood = min arg beta Z(yl — f(Xy))? (3.13)

i=1
In order to get a probability value from the model, the S values are used with the
feature values of a sample and eq. (3.14) is used. The binary LR classifier returns a
probability value for the outcome evaluated being true. For this project the outcome is
a patient having sepsis, and so the probability value returned is the probability of the

patient having sepsis.

6(’80+er;1 Bi *xz)

(3.14)

3.6.1 Multiple Imputation

The logistic regression technique requires a complete data set to work and so imputation
will be required to use it. For this classifier the technique of multiple imputation was

chosen.

The process of multiple imputation follows creating models for each feature in a data
set and then using those models to generate values to impute into the incomplete data
set. This process is repeated multiple (n) times, creating n different data sets upon which
classifiers are produced for each imputed data set [80]. When testing is performed, each
test case will be used with all n models, producing n different results which are then
averaged to produce one overall result [122|. In the case that a test sample has missing
values, multiple imputation is performed on it n times and all n new complete samples

are passed to each of the n classifiers and the output is averaged across all responses [122].

The technique used to model each feature will be to create PDFs for each feature.
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PDFs have been explained under the naive Bayes section, however unlike for the NB
classifier which creates PDFs for each feature per class, for multiple imputation PDFs will

be created only per feature, with all classes used [122].

3.7 Feature Selection

Feature selection will be important in determining a subset of metabolites. This work
will use three different methods of feature selection. The first method is using the lasso
penalty with logistic regression which is an embedded feature selection technique, which
means it is incorporated in the model creation algorithm. The other two feature selection
techniques are the use of t-test and minimum redundancy maximum relevance (MRMR)
algorithms, which are examples of filter based feature selection techniques, which means

they act on a data set before a model is created.

3.7.1 Lasso

The logistic regression technique creates a model by assigning weights to each feature. The
value of the weights show how a change in the feature value will change the probability.
The sign of the weight is important as it shows whether a feature has a positive or negative
affect on the outcome. For this project, a positive weight means that an increase in a
metabolite will cause an increased in the probability for sepsis and conversely a negative

weight means an increase in metabolite concentration decreases the likelihood of sepsis.

By standardising the data through the use of z-scores, the weights show the contri-
bution each metabolite has on the overall probability, and so metabolites with greater

weights can be seen as more important to the outcome.

To take this a step further, a LR model can be created whilst using a penalty function.
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A typical penalty function is the lasso penalty also known as the /; norm and is shown
in eq. (3.15). This penalises a model based on the absolute value of all of the weights,
and so models which assign non-zero weights to more features are penalised more heavily,

thus this penalty promotes reducing the number of features used [123].

Penalised likelihood = Likelihood — A Z | 5i (3.15)

i=1
where A is a parameter which scales the penalty value. A very large \ value will cause
large penalties for non-zero weights and so the models produced will favour having most
weights set to zero. A small value for A will cause models with few zero weights, and so

the value of A needs to be tuned to produce models with the desired number of features.

3.7.2 Two-sample t-test

The two-sample t-test determines if there is a significant difference between two popu-
lations of data. For feature selection for a binary classification problem, the two-sample
t-test is performed on each feature, splitting each feature into two groups based on the
class label. The t-test is then performed to determine the significance of the difference

between the two groups.

T—9
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t= (3.16)

where  and y are sample means, s, and s, are the sample standard deviations, and n

and m are the sample sizes.

P-values are determined from t values from eq. (3.16) using degrees of freedom and
values from Student’s t-distribution [124]. Whilst it is common to threshold based on

p-values when claiming significance, for feature selection, features can be ranked by p-
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value for comparison. Whilst simple, the t-test has been shown to perform well with high

dimensional biological data and so it should perform well with metabolomics data [125].

3.7.3 Minimum redundancy maximum relevance (MRMR)

The MRMR algorithm is more complicated than the t-test. It works by calculating
the mutual information between pairs of features eq. (3.17). The mutual information
measures how much uncertainty can be reduced from one variable by knowing another.
For use with continuous data, the data can be discretized by binning. Equation (3.18)
which determines the relevance of a feature set which needs to be maximised and eq. (3.19)
which determines the redundancy in a set of features which needs to be minimised in order
to rank features [126]. The MATLAB implementation of the MRMR algorithm discretizes
continuous variables by binning into 256 bins, or the number of values in a feature if this

is less than 256.

P(X =ux;,7Z = zj)
I(X,7) = P(X =ux;,Z = z;)log J (3.17)
2 MO P =) P(Z =)
where X and 7 are features.
1
Vi=1g > Ie. fi) (3.18)

ies
where c is the class labels, f; are features, S is the set of features considered, |S] is the size

of the feature set.

W, = — > I ) (3.19)

2
151 e
where f; and f; are features, S is the set of features considered, |S| is the size of the feature

set.
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3.8 Evaluating Classifier Performance

The accuracy of each technique can be calculated in terms of the percentage of the test
data which is accurately classified. This can be calculated per fold of class validation and

then averaged [118].

k
1
CVigy = Z Z Accuracy; (3.20)
i=1

Where k is the number of folds used for cross validation and Accuracy; is the percent-

age of correctly classified samples for a specific fold.

The accuracy measurement is not always the best statistic to evaluate classifier perfor-
mance however, as the accuracy value alone does not provide information on the samples
the classifier performed well or not very well on. An example of when the accuracy mea-
surement would not be a good enough measurement would be when trying to diagnose
a rare medical condition. If we had a dataset where only 1 in 1000 samples were from a
patient with the condition, and we were to train a classifier on this dataset, a classifier
which simply predicted not having the condition every time would have an accuracy of
99.9 %. Looking at the accuracy alone, this may seem like a great success, but it ig-
nores the importance of being able to provide an accurate positive classification for the

condition.

In order to better evaluate the performance of a classifier, a confusion matrix can be
created. A confusion matrix is a table which shows the differences between the predicted
outcomes from a classifier against the actual known outcome. This way, the number
of true positives and true negatives can be seen, along with false positives and false
negatives. A true positive is a correct positive prediction, and true negative is a correct
negative prediction, a false positive is a positive prediction for a negative sample and a

false negative is a negative prediction for a positive sample.
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Table 3.2: An example of a confusion matrix which shows how true positives, false pos-
itives, true negatives and false negatives can be determined based on the predicted and
actual classifications of samples.

Actual Class
Disease Not Disease
Disease 5 (True Positive) | 1 (False Positive)
Not Disease | 4 (False Negative) | 2 (True Negative)

Predicted Class

Some useful metrics to calculate from the TP, TN, FP, FN values are given below.

The True positive rate (TPR) is also called sensitivity or recall is shown in eq. (3.21).

TP TP
TPR = —-

= 21
P TP+ FN (3:21)

True negative rate (TNR) is also called specificity or selectivity given in eq. (3.22).

TN TN

TNR = =
R N TN+ P

(3.22)

One way of displaying the data from a confusion matrix, which is commonly used
with medical data, is to create a receiver operating characteristic (ROC) curve [127]. A
ROC curve plots the true positive rate against the false positive rate of a classifier output
whilst changing the classification threshold. The classification threshold is the threshold
value which is used to determine a classification, so for a threshold value of 0.5, any values
returned from the classifier <0.5 would be classified as the negative class whereas values
from >0.5 would be classified as the positive class. By changing the threshold value, the
values in the confusion matrix will change and a ROC curve shows this change to give
an idea of how good the classifier is and also for comparison against other classifiers. An

example of a ROC curve is given in fig. 3.7.
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Figure 3.7: An example of a ROC curve.

When using a ROC curve, the area under the curve (AUC) value is also provided
for each classifier. The AUC value gives an indication of how good a classifier performs,

with a perfect classifier having an AUC value of 1 and all other classifiers having a value

<1 [127].

ROC curves and AUC are not affected by class imbalance in a data set which can
be a common issue for medical data sets, however they are still used extensively in the

literature and so this work will do the same [59-61,127].

TP

PPV = ——
v TP+ FP

(3.23)

PPV xTPR 2T P
PPV xTPR 2TP+ FP+ FN

FiScore =2 x (3.24)

Precision-recall curves plot recall against precision and do account for class imbalances
[128]. These types of curves do not appear often in literature for clinical applications and
so they will not be used. However as class imbalance is a problem, the F; score will be
provided as the interpretation is simple, a value of 1 indicates the best performance with

the lowest value possible being 0. The equation behind the Fy score is given in eq. (3.24).
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It uses the previous equations and also the positive predictive value which is also called

precision which is given in eq. (3.23).
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CHAPTER 4

METABOLOMICS ANALYSIS

4.1 Data

The following information concerns the data used for this project and is taken from the

thesis of Dr Christopher Wearn who provided the data for this project [129].

The data used in this project was collected from patients as part of the SIFTI study
(Scientific Investigation of biological pathways Following Thermal Injury) (UKCRN ID:
13654) and were admitted to the adult Burns Centre at Queen Elizabeth Hospital Birm-

ingham (QEHB), UK (2012-2014).

The full information on patient recruitment and treatment is included in the thesis
of Dr Wearn [129]. The information relevant to this project regarding the metabolomics

data has been included below.

4.1.1 Data collection and processing

Blood samples were collected from patients, allowed to clot, centrifuged and then aliquots

were stored at -80 °C. When needed, a sample would be thawed, centrifuged again with
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a fraction taken from the middle of the sample so as to avoid the lipid rich top layer to
process further. The fraction would then centrifuged in a 3000 Da molecular weight cut-off
filter. Glass vials were prepared with NMR buffer containing 2,2,3,3-tetradeuteropropionic
acid (TMSP), and an aliquot of serum filtrate was mixed with this solution in the glass
vial. 'H NMR spectra were collected from the processed patient serum samples. The
spectra were autophased and calibrated based on the TMSP peak. The spectra were
baseline corrected and the water region and TMSP peaks were removed. The spectra
were divided into bins set by chemical shift (0.005 ppm, 2.5 Hz) were normalised and

g-log transformed.

The spectral data were analysed by principal component analysis (PCA), partial least
squared discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA). Variable
importance in projection (VIP) scores were calculated to determine which peaks con-
tributed the most to OPLS-DA models. These peaks were then identified using the
Human Metabolome Database and Chenomx NMR suite software. Chenomx was also
used to calculate the concentrations of metabolites in samples in relation to the TMSP
standard. It is these metabolites and concentration values which are used in the dataset

used by this project.

4.2 Data set Information

The dataset utilised by this project was processed on 17th March 2015. The NMR peaks
from the patients were matched to those labelled from a healthy control patient, of which

there were 30 metabolites labelled.

The dataset has samples from 57 patients where:

e 37 were Adult Resus (Age 16 - 64, >15 % TBSA) with a total of 69 records
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e 5 were Elderly Resus (Age >65, >15 % TBSA) with a total of 9 records

e 15 were Elderly FT (Age >65, >1 % TBSA full-thickness burns but <15 % TBSA)

with a total of 26 records

Samples were removed from the dataset when the patient was diagnosed as septic on
the day of or just prior to the day of sampling. Samples from patients who died early (< 3
days from admission) were also removed. Samples from control patients were not used in
the analysis as the goal is to distinguish between sterile and non-sterile inflammation and

healthy controls will not be inflicted with serious inflammation of either kind.

A table of the metabolites identified through the NMR analysis is provided in ta-
ble 4.1. As this is an untargeted approach, metabolites already known to be related to
sepsis were not targeted for this data acquisition. Therefore the data set contains the
metabolites which were able to be identified based on the NMR data without focusing on
any specific metabolites. An untargeted approach such as this allows for the discovery of

new biomarkers.

Table 4.1: Metabolites identified through NMR analysis

2-Hydroxybutyrate | 3-Hydroxyisobutyrate | 3-Hydroxyisovalerate
Acetate Acetoacetate Acetone
Alanine Betaine Carnitine
Choline Creatine Creatine phosphate
Creatinine Dimethyl sulfone Ethanol
Formate Glucose Glutamine
Glycine Histamine I[soleucine
Lactate Methanol Phenylalanine
Proline Pyruvate Threonine
Tyrosine Valine Xanthine

4.2.1 Data set stratification

Patients were stratified into 3 categories, adult resus (AR), elderly resus (ER) and elderly

full thickness (EFT). The reason for this is because the response to burns in the elderly has
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been shown to be different than in non-elderly patients, where elderly patients exhibited
delayed hyper-metabolism and increases in hyperglycemic and hyperlipidemic responses
[130]. The differences in metabolomic response between adult and elderly patients should
be apparent in the data set and so separating the two cohorts should produce a benefit
in classifier performance. The adult resus and elderly resus groups can be combined into
a separate category representing severe injury. The elderly resus set by itself has too few
samples to be used on its own and so will only be used in conjunction with the adult resus

samples.

The patient groupings can also be subdivided based on the day from admission that
the samples were collected on. Early samples were collected on either days 1 or 2, and
later samples were collected on days 3 or 4. This stratification was performed as earlier
diagnosis would be more beneficial and so it will be interesting to see if there are important

differences between sample collection dates.

Table 4.2 shows the data stratifications created from the full data set. EFT D1D2
and EFT D3D4 have not been created, this is because the number of samples would be
very low for those groups. The table also shows that some of the stratifications have
quite a large class imbalance, such as D3D4 and EFT. The scaled vote technique for
the k-NN classifiers was designed to reduce the effect of class imbalance and will be
tested on these data sets. The naive Bayes classifiers will likely be impacted, however
as stratified cross validation is performed with the class distributions maintained across
data sets, the priors will reflect this imbalance. For logistic regression, class imbalance
should not affect the weights associated with each feature but only the intercept term [131]
and so important features should still be identified. Changes to the intercept can affect
performance but it was decided to determine initial performance before deciding on more

advanced techniques.
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Table 4.2: Information about the different stratifications of the data set. For each strati-
fication, the number of patient samples, the number of samples from patients diagnosed
with sepsis, the number of samples from patients who did not become septic and the per-
centage of septic samples against total samples is included. The septic percentage shows
the amount of class imbalance in each stratification.

Data set Patients | Septic Sljl?tﬁc Septic % Not %eptlc Completeness
Full 89 39 50 43.82% 56.18% 72.02%
D1D2 54 27 27 50.00% 50.00% 71.73%
D3D4 35 12 23 34.29% 65.71% 72.48%
AR 58 28 30 48.28% 51.72% 69.48%
AR D1D2 36 19 17 52.78% 47.22% 69.72%
AR D3D4 22 9 13 40.91% 59.09% 69.09%
ARER 65 33 32 50.77% 49.23% 70.62%
ARER D1D2 41 23 18 56.10% 43.90% 71.30%
ARER D3D4 24 10 14 41.67% 58.33% 69.44%
EFT 24 6 18 25.00% 75.00% 75.83%

4.2.2 Cross-Validation

For this project, stratified cross-validation was used, with the typical fold number being
10, however this was reduced to 5 in situations where required by the data. In table 4.2 it
can be seen that for the AR D3D4 and EFT stratifications, there are only 9 and 6 septic
patient samples respectively. Using 10 fold cross validation would lead to folds without
any septic patient samples which can have an affect on the confidence bounds of the ROC
curve. Folds of 5 or 10 were chosen as these have been reported in the literature to be

commonly used values [132].

4.3 Classifier performance results

The results given in this section are from analysing the data set stratifications mentioned
in the previous section with the techniques discussed in chapter 3. The k-NN techniques
are no imputation (NI), half-min imputation (HM) and mean imputation (M) and each

technique is also used with and without scaled voting (sv). The naive Bayes and logistic
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regression with multiple imputation techniques are also used with metrics reported. The
values given in each table of results are the k value for the number of neighbours which
when used gave the best AUC value, the 95% confidence interval value (calculated from
the 5 or 10 folds of cross validation), the sensitivity and specificity for the best point on
the ROC curve and the F; score. Results not reported for the NB or LR MI techniques
are due to not being able to create PDFs of the features in a training set due to not

enough data.

Table 4.3: Full data set results.

Technique | k | AUC | 95 % CI (+) Sensitivity | Specificity F1 Score
(TPR) (TNR)

k-NN NI 13 ] 0.78 0.08 0.64 0.80 0.68
k-NN_ NIsv | 13 | 0.78 0.08 0.62 0.82 0.67
k-NN_ HM | 10| 0.70 0.07 0.41 0.84 0.51
k-NN_ HMsv | 10 | 0.69 0.07 0.41 0.84 0.51
k-NN M 31| 0.75 0.08 0.49 0.86 0.58
k-NN_ Msv | 31| 0.75 0.08 0.64 0.74 0.65
naive Bayes 0.78 0.10 0.69 0.78 0.70
LR MI 0.75 0.07 0.74 0.70 0.70

Table 4.4: D1D2 data set results.

Sensitivity | Specificity
Technique | k | AUC | 95 % CI (&) F1 Score
(TPR) (TNR)
k-NN NI | 9 | 0.82 0.14 0.85 0.70 0.79
k-NN_HM | 20 | 0.77 0.12 0.81 0.63 0.75
k-NN M | 17| 0.77 0.16 0.48 0.93 0.62
naive Bayes 0.72 0.17 0.63 0.93 0.74
LR_MI 0.71 0.15 0.70 0.70 0.70
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Table 4.5: D3D4 data set results.

Sensitivity | Specificity
Technique | k | AUC | 95 % CI (%) F1 Score

(TPR) (TNR)

k-NN NI 71 0.84 0.13 0.75 0.83 0.72
k-NN_ NIsv | 7 | 0.83 0.13 0.83 0.83 0.77
k-NN HM | 15| 0.72 0.18 0.83 0.74 0.71

k-NN_HMsv | 15 | 0.75 0.18 0.83 0.74 0.71

k-NN_ M 8 | 0.82 0.13 0.83 0.74 0.71

k-NN_ Msv | 8 | 0.81 0.13 0.83 0.74 0.71

naive Bayes

LR MI 0.82 0.15 0.67 0.91 0.73

Table 4.6: AR data set results.

Technique | k | AUC | 95 % CI (&£) Sensitivity | Specificity F1 Score
(TPR) | (TNR)

k-NN NI 15 ] 0.84 0.08 0.79 0.70 0.75
k-NN_ NIsv | 15| 0.84 0.08 0.79 0.70 0.75
k-NN_HM | 12| 0.75 0.07 0.50 0.90 0.62
k-NN_ HMsv | 12 | 0.76 0.07 0.46 0.93 0.60
k-NN_ M 20| 0.79 0.09 0.61 0.80 0.67
k-NN_Msv | 20 | 0.80 0.09 0.82 0.63 0.74
naive Bayes 0.69 0.12 0.61 0.80 0.67
LR MI 0.67 0.11 0.68 0.70 0.68
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Table 4.7: ARD1D2 data set results.

Technique | k | AUC | 95 % CI (&) Sensitivity | Specificity F1 Score
(TPR) | (TNR)
k-NN NI 14 | 0.86 0.09 0.74 0.88 0.80
k-NN_ NIsv | 14 | 0.88 0.09 0.84 0.82 0.84
k-NN HM |14 | 0.78 0.13 0.74 0.76 0.76
k-NN_ HMsv | 14 | 0.80 0.13 0.84 0.71 0.80
k-NN M 5 | 0.82 0.08 0.58 0.88 0.69
k-NN Msv | 5 | 0.83 0.08 0.63 0.88 0.73
naive Bayes
LR _MI 0.76 0.17 0.68 0.94 0.79
Table 4.8: ARD3D4 5-fold CV data set results.
Technique | k | AUC | 95 % CI (&) Sensitivity | Specificity F1 Score
(TPR) (TNR)
k-NN NI 2| 0.72 0.18 0.33 1.00 0.50
k-NN_ NIsv | 2| 0.76 0.19 0.56 0.85 0.63
k-NN_HM | 3| 0.67 0.16 0.22 1.00 0.36
k-NN_ HMsv | 3 | 0.69 0.16 0.33 1.00 0.50
k-NN M 31 0.75 0.22 0.67 0.77 0.67
k-NN_ Msv | 3| 0.74 0.22 0.67 0.77 0.67

naive Bayes

LR MI
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Table 4.9: ARER data set results.

Technique | k | AUC | 95 % CI (4) Sensitivity. | Specificity F1 Score
(TPR) | (TNR)

k-NN NI 8 | 0.80 0.12 0.82 0.69 0.77
k-NN_ NIsv | 5 | 0.81 0.10 0.67 0.84 0.73
k-NN HM 4 1 0.78 0.10 0.85 0.56 0.75
k-NN_ HMsv | 4 | 0.80 0.10 0.82 0.63 0.75
k-NN M 22 1 0.78 0.09 0.91 0.50 0.76
k-NN_ Msv |22 | 0.79 0.09 0.76 0.66 0.72
naive Bayes 0.71 0.09 0.64 0.78 0.69
LR _MI 0.72 0.09 0.79 0.72 0.76

Table 4.10: ARERD1D2 data set results.

Sensitivity | Specificity
Technique | k | AUC | 95 % CI (&) F1 Score
(TPR) | (TNR)

k-NN NI 11 | 0.86 0.09 0.78 0.89 0.84
k-NN NIsv | 8 | 0.85 0.12 0.91 0.67 0.84
k-NN _HM | 19| 0.75 0.09 0.96 0.39 0.79

k-NN_ HMsv | 3 | 0.77 0.12 0.87 0.50 0.77

k-NN_ M 11 | 0.88 0.13 0.83 0.72 0.81

k-NN_Msv | 11 | 0.89 0.13 0.61 1.00 0.76

naive Bayes

LR_MI 0.77 0.12 0.70 0.89 0.78
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Table 4.11: ARERD3D4 data set results.

Technique | k | AUC | 95 % CI (%) Sensitivity | Specificity F1 Score
(TPR) (TNR)
k-NN NI | 2] 0.79 0.15 0.40 1.00 0.57
k-NN_ NIsv | 2 | 0.82 0.15 0.80 0.79 0.76
k-NN_HM |9 | 0.66 0.23 0.80 0.71 0.73
k-NN_ HMsv | 3 | 0.67 0.23 0.90 0.50 0.69
k-NN M |6 0.72 0.23 0.60 0.79 0.63
k-NN_ Msv | 6| 0.75 0.23 0.90 0.57 0.72
naive Bayes
LR_MI
Table 4.12: EFT 5-fold CV data set results.
Technique | k | AUC | 95 % CI (+) Sensitivity | Specificity F1 Score
(TPR) (TNR)
k-NN_ NI | 10| 0.75 0.19 0.83 0.83 0.71
k-NN_Nlsv | 10 | 0.75 0.19 0.83 0.83 0.71
k-NN_HM | 10 | 0.75 0.14 0.83 0.78 0.67
k-NN_HMsv | 10 | 0.75 0.14 0.33 1.00 0.50
k-NN_ M 10 | 0.81 0.11 0.83 0.78 0.67
k-NN_ Msv | 10 | 0.82 0.10 0.83 0.78 0.67
naive Bayes
LR_MI 0.75 0.31 0.33 1.00 0.50
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4.3.1 ROC curves

Below are samples of the ROC curves produced by the created classifiers. The sample
was chosen in order to highlight things such as comparing the k-NN techniques, showing
per fold variance from cross validation, the confidence intervals (95 %) associated with

the curves, and the NB and LR techniques.
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(a) The ROC curves with the best AUC val- (b) The ROC curves with the best AUC

ues per k-NN technique when using the Full values per k-NN technique when using the
data set. ARER data set.

Figure 4.1: Showing the best ROC curves for each k-NN technique for two data sets, a
the Full data set, and b the ARER data set. With the Full data set it can be see that the
NI method performs the best, followed by M and then HM imputation techniques. The
ARER data set shows that this is not consistently the case.
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(b) The overall ROC curve for the best k-
(a) The ROC curves per fold for k-NN NIsv NN NIsv classifier on the Full data set show-
classifier on the Full data set. ing confidence bounds set at 95 %.

Figure 4.2: Showing the variance across folds when using NI technique with k = 13 on
the Full data set.

73



ROC: Full

1 TR
2 [ 7
e
o
2
‘B
O -
Q
(&}
2
|_
0 02 04 0.6 0.8 1

False positive rate

Figure 4.3: The ROC curve for the naive Bayes technique on the Full data set showing
confidence bounds set at 95 %.
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Figure 4.4: The ROC curve for the logistic regression technique on the Full data set
showing confidence bounds set at 95 %.

4.4 Classifier performance discussion

The stratifications of this data set had different levels of class imbalance. The scaled
voting technique was introduced to the k-NN algorithms in order to compensate for class
imbalance. The elderly full thickness data set contains the largest class imbalance, 75 %
non-septic patients, however it is also one of the smallest data sets and so a single mis-

classification in a fold can greatly impact the metrics recorded. Looking at the results
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in table 4.12 it is seen that the scaled vote did not affect the classifier performance for
the no imputation and mean imputation techniques. For half-min imputation there is a
difference, however not the difference which would be expected, as the true negative rate
increases and the true positive rate decreases. The scaled vote should have allowed for
more positive predictions to have been made but the TNR being 1 shows there were no

false positives and the lower TPR score shows there were more false negatives.

Looking at the other data sets it can be seen that the affect of the scaled vote varies.
In the Full data set (table 4.3) there is a pronounced improvement in TPR when scaled
voting is used with mean imputation, going from 0.49 to 0.64. Similar improvements
when using the scaled vote technique can be seen in other data sets, such as in the D3D4
data set for the NI methods the TPR increases from 0.75 to 0.83. The ARERD3D4
data set (table 4.11) is imbalanced in favour of the negative non-septic class (58 %). For
this data set the expected effect of vote scaling would be to increase the influence of the
positive septic samples and thus lead to more samples being given a positive classification.
This is a good data set to look at, as the optimal number of neighbours for the NI and
M imputation methods was also the same when using vote scaling for each respective
method, thus the impact of the scaled vote can be isolated. There are dramatic increases
in the true positive rates when scaled voting is applied to each method, for NI the value
doubles from 0.4 to 0.8, and for M the value increases by 1.5 times from 0.6 to 0.9. These
are coupled with decreases in the true negative rate which for the NI technique went from
1 to 0.79 and for the M technique from 0.79 to 0.57. For the NI non-scaled vote method,
a TNR of 1 meant that there were no false positives, however the TPR value of 0.4 shows
there were a lot of false negatives. Here the classifier is favouring a negative classification
which is likely due to the class imbalance. Vote scaling corrects this improving the AUC

and F; score values.

The affect of vote scaling is not consistent across the data sets. For the ARD1D2

data set (table 4.7) the class imbalance is in favour of the positive class (53 %) and so
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the vote scaling should correct for this and allow more negative class predictions to be
made. The actual effect of the vote scaling led to increases in the TPR values for each
technique and decreases in the TNR for NI and HM techniques. Each classifier pair (non-
sv and sv) used the same k value and so the difference should be from the scaling factor.
The differences between the AUC and F; scores between scaled vote and non-scaled vote
methods vary from no change at all up to a 5 % difference, however the difference can be
a reduction in the scores. Because of this, based on this data alone it can not be said that
the vote scaling method performs the function is was intended to do. When the effect
works for the better, the changes in TPR and TNR can be quite substantial as mentioned
in the previous paragraph, however there is no pattern as to when it would provide this
benefit. Further analysis could be performed on artificial data sets designed for testing
class imbalance methods which may uncover the scenarios where vote scaling works out

to be beneficial.

Looking at the different strategies to deal with missing data with the k-NN classifiers
uncovers that not imputing values typically gives the best performance, giving the best
AUC and F; scores in the majority of the data sets. Figure 4.1 illustrates that some-
times there is a clear advantage by not imputing values and other times the classifiers
perform similarly. Typically the half-min imputation method performs worse than the

mean imputation method which correlates with published data [84].

The naive Bayes classifier works by only looking at available data, which is similar
to the no imputation technique created for the k-NN algorithm. The NI technique only
compared matching features in samples which would in theory, reduce the amount of
usable data when compared to the naive Bayes technique. This is because the naive
Bayes technique constructs PDFs per feature per class, and therefore every feature in a
test sample will have a probability value assigned to it for each class, whereas the NI
technique required features to match between samples. Because of this, it would have

been expected that the naive Bayes algorithm would at least perform similarly, whereas
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it can been seen that it performs worse.

One reason for the naive Bayes algorithm performing worse than k-NN is that it
depends strongly on the PDFs it uses. Without enough records per feature, the PDF may
not accurately resemble the underlying distribution of the feature and that would cause
the probability values to be poor. This limitation of small samples sizes was realised
from the fact that it was impossible to produce PDFs for some data splits when using
cross validation and so only the Full, D1D2, AR and ARER stratifications allowed the
algorithm to complete. The number of folds was reduced from 10 to 5 for some of the
data sets which failed to work with the NB implementation, however there were still some
folds which did not contain enough values per feature per class to create the PDFs and

so getting the algorithm to work on these data sets was abandoned.

Logistic regression with multiple imputation was used as the final classifier type. Mul-
tiple imputation requires modelling the feature set and this was done through the cre-
ation of PDFs as with the naive Bayes approach, as such similar difficulties arose when
trying to do this for some data sets and so results are not available for the ARD3D4 and
ARERD3D4 data sets. The LR_MI classifiers performed similarly to the naive Bayes
classifiers, which is typically worse than the k-NN classifiers. As with the NB technique,
the performance is likely hindered by the feature modelling performed where the PDFs

may not be representative of the actual data.

Whilst some of the techniques presented managed to generate classifiers with AUC
values going up to 0.89 for some data sets, it is important to take into account the variation
per cross validation fold. Figure 4.2 shows the per fold ROC curves and how variable they
are along with the ROC curve with confidence bounds highlighting the range the classifier
actually performs in for the Full data set using the k-NN NIsv technique. Figures 4.3
and 4.4 show the confidence bounded ROC curves for the NB and LR _MI techniques
respectively for the Full data set. Ideally when performing cross validation there would

be minimal variance between the results from each fold which would be indicative of the

77



folds being representative of the complete data set. The variation seen implies the folds

differ a lot, which again reinforces the difficulties in generating PDFs for each feature for

the NB and LR MI techniques.

4.5 Stratification discussion

The complete data set was stratified by the conditions of patient type (adult and elderly)

and also by sample time early, days 1 and 2, and late, days 3 and 4.

Looking at tables 4.3 to 4.5 it can be seen that in this instance, splitting the data set
actually had a positive impact, with classifiers performing better on each split respectively
when compared to the full data set, excluding the NB and LR classifiers for D1D2 which
performed only slightly worse than on the full data. If there were no difference between
the early and late samples it would be expected that the classifiers would perform better
on the full data set as there is more data available. One thing to consider however is that
the confidence intervals are larger for D1D2 and D3D4 compared with the full data set.
This shows there was more variance across the cross validation folds. One explanation for
this is simply because there are fewer samples in the split data sets, which means each
fold has fewer samples and misclassifications will have a greater impact on the calculated

metrics.

Table 4.6 gives the results of the stratification which removes all elderly patient data.
When compared against the full data set in table 4.3 the k-NN techniques produce better
classifiers, however the NB and LR do not. The confidence intervals remain similar
between data sets with most being unchanged and the largest change of 0.04 for the LR
method. This indicates that the consistency in performance across the folds is the same
when using either of these data sets. Therefore the reduction in the number of samples

has not had the same effect as noticed earlier.

78



Splitting the AR data set up by sample time shows improved classifier performance
with ARD1D2 but decreased performance for with the later samples ARD3D4 as can be
seen in tables 4.7 and 4.8. The ARD3D4 data set does not contain a lot of samples and
so b-fold cross validation was performed. Despite this the variation between the folds is
very high with the confidence intervals ranging from + 0.16 to £ 0.22. The ARD3D4 data
set on its own should therefore not be used to build classifiers. The fact that classifier
performance improved for the ARD1D2 data set over the AR data set does indicate that
there are useful differences between the sample dates and so for further studies, if more

data can be collected this stratification would still be recommended.

Results from excluding only the elderly full thickness patients from the data set are
given in tables 4.9 to 4.11. The results repeat what has been seen previously, a minor
increase in classifier performance when comparing ARER with the Full data set for all
k-NN techniques, along with another increases when looking at the ARERD1D2 split,
along with worse performance when looking at ARERD3D4. Again, having fewer samples
on the D3D4 days appears to be affecting performance, but the increased classification
scores when looking at ARERD1D2 against ARER does give further credence to there

being differences between metabolite concentrations on the different days since admission.

The elderly full thickness EFT data set contains the strongest class imbalance and
is among the data sets with the fewest samples. The classifier performance on this data
set was worse than the Full data set, as would be expected. The class imbalance in
this data set is heavily towards the non-septic patients (75%), however the classifiers do
still manage to achieve good true positive rates, indicating the classifiers are not just
choosing the dominant class. Despite this, the confidence intervals are large and so per

fold performance varies greatly.

Classifiers using the early D1D2 splits for all patient type stratifications gave better
AUC and F; scores than the respective data sets including the D3D4 samples. Also the

data sets without the EFT patients obtained better AUC and F; values for all k-NN
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techniques. Therefore, it can be seen that stratifying the data set by sample date from
admission and removing EFT patients provides a benefit when performing classification

on this data set, however attention needs to be paid to the number of samples remaining.

4.6 Feature selection results

The features selected via different techniques are displayed below. The techniques used are
logistic regression with multiple imputation, half-min imputation and mean imputation,
which provide results of an embedded feature selection process. There are also results

from using the t-test and MRMR algorithms, which provide results of filter based feature

selection.
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Figure 4.5: The sum of the weights associated to each metabolite across all of the models
produced for the Full data set when using logistic regression with multiple imputation.
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Figure 4.7: The sum of the weights associated to each metabolite across all of the models
produced for the Full data set when using logistic regression with mean imputation.
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Figure 4.8: The metabolites identified as being significant when using t-tests for feature

selection on the Full data set. The bar heights are the reciprocal of the p-value from

performing the test. This is because a lower p-value signifies greater significance.
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Figure 4.9: The metabolites identified as being significant when using the MRMR algo-

rithm for feature selection on the Full data set.
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4.7 Feature selection discussion

A benefit of using logistic regression is that it can perform feature selection automatically
when paired with a penalty function. The lasso penalty function was used with this work.
Because the overall aim of this project is to identify a subset of metabolites with high
predictive power for sepsis in order to create a point of care device to detect them, it was
decided to run the logistic regression algorithm and have it set to produce models with
up to 5 metabolites, however for the planned work for the next part of this project, the

fewer metabolites the better.

By looking at the weights assigned to each feature in the models created, it is possible
to determine which metabolites are deemed the most important. This can be done by
summing up the total weight assignments. The summed weights for the Full data set are
shown in fig. 4.5 as an example. The two metabolites glucose and lactate stand out as

being the most important features for the classifier.

To determine if multiple imputation had a profound effect on the identified features,
LR was performed with a half-min and mean imputed Full data set with the results
shown in figs. 4.6 and 4.7 respectively. The results from LR with multiple imputation
show that more metabolites were used across the models, however the size of the columns
indicates that they must metabolites outside of glucose and lactate were either used
sparsely or just given very low weights. The half-min imputed feature graph mimics the
multiple imputation feature graph, however the mean imputed graph identifies proline
as a negative biomarker, that is a greater proline concentration is linked to a reduced

likelihood of sepsis.

Using the t-test for each feature shows that glucose and lactate are again the most

important features in the data set as shown in fig. 4.8.

The MRMR algorithm tries to keep the most relevant features but also remove re-
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dundancy, and so if any metabolites are closely connected through metabolic pathways,
this algorithm should remove the redundant metabolites. Interestingly this technique
highlights glucose as the main feature of interest, the peak for acetone is almost 5 times

smaller.

The result of the MRMR algorithm not reporting lactate but instead only glucose
implies that the two are connected and so there would be redundancy in having both.
The metabolic pathways of the two molecules are connected where glucose can be turned

into pyruvate and then lactate [133]. This shows that the method works as expected.

Looking further into glucose and lactate, they are already currently recommended
metabolites to monitor as declared by the Surviving Sepsis Campaign [17]. As such, there

are already point of care devices for both metabolites |66, 92].

There is little literature available on proline in combination with sepsis however one
report indicates that a higher proline concentration is indicative of sepsis, which would
contradict the result from the logistic regression which gave it negative odds [134|. The
paper actually shows that proline is also linked with glucose and lactate through energy
metabolism. As such it would seem that it should be a positive biomarker and so there may
be something wrong with the acquisition of the data set with respect to peak identification
and fitting to standards from the original NMR data. Therefore it would be something
to look for in a targeted metabolomics study, but not something to design a point of care

device for given the current data.

4.8 Conclusions

The k-NN algorithm was used and adapted to handle missing values without imputa-
tion through the use of a custom distance function which only looks at matching pairs of

features and scales the result accordingly. This was combined with mean and half-min im-
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putation, and all three techniques were used with and without vote scaling based on class
imbalances. The algorithm performed best without any imputation and the vote scaling
did offer some inconsistent performance benefits. Classifier performance was increased
by removing the EFT patient set from the Full data set. Improvements when comparing
early sample collection date with the later sample collection dates may have been caused
by changes to the class imbalance, or the reduction of samples comprising a set, as there
were fewer D3D4 samples. The increased class imbalance when splitting the data set this
way means accuracy could be increased by predicting the majority class more often. The
large confidence bounds for each classifier show that the per fold accuracy varies greatly

and the classifier is therefore not stable.

The naive Bayes algorithm was employed due to the fact that it can operate with an
incomplete data set. Whilst this is true, it does require enough data to be able to create
probability density functions to accurately model the data which does exist. This was
not the case for most of the data stratifications for the given data set. The classifiers it
did produce offered worse average performance than the k-NN classifiers and also suffered

from large per fold variation.

Classifiers produced from logistic regression with multiple imputation did not perform
as well as the k-NN techniques. The ROC curves still had large confidence bounds and
so it appears the multiple imputation did not perform as hoped. This is likely due to the
same reason the naive Bayes technique failed to execute on some data sets, namely a lack

of feature information to accurately model each feature.

The logistic regression models had the advantage of having feature selection embedded
within them and this was one of the reasons this technique was chosen. Despite the
performance not being the best the metabolites of interest were investigated. These
features turned out to be glucose and lactate, biomarkers which are already recommended
to be monitored for sepsis and already have available devices do perform such monitoring.

Given the importance given in the feature selection graphs towards lactate and glucose
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it strongly suggests the other metabolites would not strongly classify the data without

them.

During this analytical process, literature searches were being performed to better
understand the metabolomics research in the field and to see if any novel biomarkers were
reported, especially with regards to sepsis and traumatic injury. The next chapter will

explain how a biomarker was chosen from literature to progress this project.
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CHAPTER 5

ASSAY DEVELOPMENT

5.1 Introduction

The previous work utilising machine learning algorithms on a metabolomics data set man-
aged to identify known clinical markers for sepsis diagnosis, however it did not provide any
novel diagnostic biomarkers. Throughout the machine learning phase, literature searches
were performed to improve understanding of the problem, research already conducted,
and to try to identify novel biomarkers specifically for trauma patients. Having read
about the tryptophan metabolic pathway and how its conversion to kynurenine showed
significance in sepsis diagnosis, it was decided that the project should continue with the
development of an assay for this small molecule. The aim to be to detect and quantify it

within biological samples.

5.2 Kynurenine

Kynurenine was the metabolite chosen to continue this project. Kynurenine is a metabo-

lite produced from the tryptophan metabolic pathway. Tryptophan is an essential amino

87



acid, and in humans, its metabolic pathway has two paths. One pathway leads to the
formation of serotonin and melatonin, with the former being a neurotransmitter and the
latter being a hormone, and the other pathway leads to the formation of kynurenine and
follows through to niacin, a form of vitamin B3 [135,136]. The structures of kynurenine
and tryptophan are shown in fig. 5.1. Tryptophan is broken down along the kynurenine
pathway by the indoleamine 2,3-dioxygenase (IDO) enzyme . The breakdown products of
tryptophan along the kynurenine pathway have been linked to several biological functions
and disease states and most importantly, this pathway has been linked with inflammation
and the immune system [137].

NH,

OH
e} NH,

(a) Kynurenine

HN /

OH
HyN

(b) L-Tryptophan

Figure 5.1: Molecular structures of Kynurenine and L-Tryptophan

5.2.1 Connection with sepsis

A team from the University Hospital Diisseldorf and Johann Wolfgang Goethe University
examined the possibility of kynurenine as a biomarker of sepsis in trauma patients. For
their study, they analysed data from 60 trauma patients of various injuries, including
peripheral fractures and abdominal, thoracic and cerebral injuries [138]. The concentra-
tions of kynurenine and tryptophan were measured from blood serum samples and the
results can be seen in fig. 5.2. The figure shows an increase in serum kynurenine concen-

tration, a decrease in serum tryptophan concentration and so an overall increase in the
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kynurenine:tryptophan ratio. As can be seen, the kynurenine concentrations measured in
patients who did not develop sepsis lies within the range measured from the healthy control
subjects. The kynurenine concentration for the patients who did develop sepsis is greater
than this concentration and so kynurenine can act as a positive biomarker for sepsis. This
is not the only study to find a link between tryptophan metabolism and sepsis and there
are others which are linked to trauma and mortality. Multiple studies identify the role of
the IDO enzyme in immunodeficiency and death in trauma patients [135,137,139|. These
studies all had quite low sample sizes, between 15 and 30 patients, however the results con-
sistently show increased kynurenine concentrations and kynurenine:tryptophan ratios are
linked with sepsis. A larger study monitoring 100 patients found not just kynurenine but
other metabolites downstream of it could discriminate between non-septic and pre-septic
patients [140]. Other reports have identified the role of kynurenine in hypotension during
systemic inflammatory response syndrome and septic shock [141-144]. It can clearly be
seen that Kynurenine has a strong connection with sepsis. The referenced studies typi-
cally used MS or HPLC to determine the metabolite concentrations in patient samples.
MS and HPLC are not bedside point of care devices, and so if a simple assay could be

designed to measure kynurenine concentrations it would have great clinical significance.
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Figure 5.2: Graphs showing the measured concentrations of tryptophan, kynurenine and
the kynurenine:tryptophan ratio across multiple days from patients of traumatic injury.
The grey bar shows the concentration found in healthy control patients. This figure is
reproduced with permission from [138].

5.2.2 Detecting Kynurenine

Absorption spectroscopy has the ability to detect analyte concentrations into the pM
range, whilst fluorescence techniques can improve sensitivity by going down to the nM
range in some cases. Fluorescence spectroscopy has also been shown to be more sensitive
in urine and plasma than UV spectroscopy [145]. The concentrations of kynurenine which
diagnose sepsis in serum are low (between 2 - 6 pM), and so photospectroscopic techniques
are suitable for detection at these levels. Kynurenine is a weakly fluorescent molecule,

with an excitation wavelength of 365 nm and an emission wavelength of 480 nm [146,147].
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When in a biological sample, the signal from kynurenine is overlapped with that from
other compounds [148]. These two issues make it very difficult to specifically detect and

accurately quantify kynurenine in a biological sample.

In 2012 at the University of Missouri, Klockow and Glass designed a chemosensor for
the detection of kynurenine [149]. They showed the chemosensor to bind selectively to
kynurenine, and that when bound, the complex has an excitation wavelength of 555 nm
and emission wavelength of 632 nm. This change in wavelength from kynurenine’s natural

emission wavelength can help in isolating the signal specifically for kynurenine.

S/\
N,

/\N o) o)

)

Figure 5.3: Chemical structure of the fluorescent sensor.

In this work it was decided that for the assay which was to be created, kynure-
nine would be the metabolite of interest based on the reasons given previously, and the
chemosensor developed by Klockow and Glass would be the basis for it. There are multiple

reasons as to why this chemosensor was chosen.

One reason for choosing this chemosensor is that it exhibits selectivity towards kynure-
nine compared to biomolecules with the same functional groups and similar size [149]. The
tested biomolecules include glycine and the nucleosides adenosine and cytidine. Glycine
is a simple amino acid which has amine and hydroxyl groups in an arrangement very
similar to those in kynurenine. It does bind to the chemosensor but does not induce the
same bathochromic shift which indicates that the rest of the structure of kynurenine has
a role in the effect of this shift. Adenosine and cytidine are components of DNA and

RNA and are therefore likely to be circulating in the blood especially around the site of
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a traumatic injury. Both have amine and hydroxyl groups but neither produce the affect
kynurenine does upon binding to the chemosensor. All three of these molecules exhibit
lower association constants than kynurenine to the chemosensor which again highlights
the selectivity towards kynurenine and how the chemosensor should be usable with the

testing of biological samples.

Another reason for choosing this chemosensor is due to its molecular structure. The
chemosensor contains a sulphide group, which when looking at the synthetic route in
fig. 7.1, is added to the base coumarin structure through reaction with a thiol. In the
future this thiol could be replaced with other molecules which could enhance the binding
of the chemosensor to kynurenine and also change the wavelengths at which the complex
fluoresces at [150]. The sulphide group could also be used to bind the chemosensor
to a surface, where it could be used as part of a molecular imprint [151]. Usage as
part of a surface could improve selectivity even more by forming a template around the
chemosensor which is made for kynurenine thus inhibiting competitive interactions from

other molecules [152].

The fluorescent chemosensor, which will be referred to as the sensor for this assay, was
synthesised as described in chapter 7. The following sections in this chapter focus on the

characterisation of the sensor and the initial tests conducted to create the assay.

5.3 UV-Vis spectroscopy

In order to test the synthesised sensor worked as expected, UV-Vis absorbance spectra

were recorded with solutions of the sensor, kynurenine, and the sensor with kynurenine.

First there is the UV-Vis spectra of just the sensor at 10 pM concentration in fig. 5.4.
In this graph there can be seen a peak absorbance at 469 nm, which is the expected

position of the peak. It can also be seen that there is only a single peak in the wavelength
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Figure 5.4: The absorbance spectra of a 10 pM solution of sensor.

range displayed of 400 - 650 nm and after the peak the absorbance value returns to
zero. This indicates that there is nothing else in the solution which absorbs light in that

wavelength range.

Next we have the UV-Vis spectra of two concentrations of kynurenine in fig. 5.5. The
6 pM solution is within the biological range we are aiming for and can barely be seen
whereas the 500 pM is much higher in concentration and shows the absorbance spectra

clearly with the expected peak for kynurenine at 360 nm.

Moving on to fig. 5.6, the sensor kynurenine mixture, the affect of increasing the
kynurenine concentration can be seen in the absorbance spectra. Two changes are seen
which indicate the sensor:kynurenine complex being formed. First there is a small decrease
in the absorbance at 469 nm which indicates there is less free sensor in solution. Secondly
there is the appearance of two new absorbance peaks at 526 nm and 555 nm, which are

indicative of complexation with kynurenine.

The previous experiment provided confirmation the sensor was working as expected
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from literature, however the concentrations of kynurenine used to produce the changes
in the absorbance spectra were much higher than those expected for biological samples.
For serum, the expected levels would be between 2 - 6 nM, whereas the lowest kynure-
nine concentration used in the experiments was 50 pM. The previous experiment used a
fixed sensor concentration and varied the concentration of kynurenine. As there is an ex-
pected concentration range for kynurenine, another experiment was performed where the
kynurenine concentration was fixed at 6 pM and the sensor concentration was changed.
The goal was to determine if it was possible to produce a large change in the absorbance
spectra with a lower, more biologically relevant concentration of kynurenine. The sensor
concentrations used were (0.1, 0.5, 1, 2 and 6 pM) and so went from having kynurenine in
excess to a 1:1 ratio of kynurenine:sensor. The results in Figure 5.7 show that this was not
possible. As the sensor concentration increased, so did the peak of the unbound sensor,
which was to be expected, but the two new absorbance peaks could not be seen. The
concentrations used were possibly too low, as the maximum absorbance value was around
0.13, which is largest value given for unbound sensor. Without any sensor present the
absorbance at 365 nm, the wavelength kynurenine absorbs at, is recorded as less than 0.01
which is a very low value, 10 times less than the unbound sensor of similar concentration
and so absorbance spectroscopy for these concentrations of kynurenine will not make a

viable technique.

Absorbance spectroscopy has been shown to be a less sensitive technique than fluo-
rescence spectroscopy, with the latter able to go down to nanomolar detection, and so to
counteract the low absorbance values of the new peaks with kynurenine present, it was

decided to move to a fluorescence based system.
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Figure 5.7: The absorbance spectra of varying sensor concentration from 100 nM to 6 pM,
keeping the kynurenine concentration fixed at 6 pM.

5.4 Fluorescence Tests

Initial fluorescent tests consisted of titrations which kept the sensor concentration constant
and increased the concentration of kynurenine. Excitation wavelengths were selected
based on the absorbance spectra from the UV-Vis experiments and emission spectra were
recorded by keeping a fixed excitation wavelength and measuring over a range of emission
wavelengths. The excitation wavelengths used were 470 nm which is the peak for the
unbound sensor and 555 nm which is the largest wavelength out of the two new peaks
created by the complex. Figure 5.8 shows a subplot of graphs, where each new graph is
for a different sensor concentration and within each graph there is a range of kynurenine
concentrations being measured. The fluorescence intensity does not change a lot when
exciting at 470 nm. This correlates with the UV-Vis spectra where there was no significant
change in the absorbance at 470 nm. There are spectra within fig. 5.8b which show a
decrease in fluorescence. This is believed to be caused by not thoroughly mixing the

titrated solutions, as it happened only for the first two additions and then the spectra
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Figure 5.8: Fluorescence spectra of kynurenine in various sensor concentrations exciting
at 470 nm

for all subsequent additions overlapped with each other. A change in fluorescence of the
same kind cannot be seen at any of the other concentrations used either which supports

the idea of incomplete mixing.

The fluorescence emission spectra when exciting at 555 nm display a defined increase
in fluorescence after each addition of kynurenine. The bands are clearly visible, and even
the spectra for 1 pM kynurenine concentration can be seen visibly separate from that
of only the background fluorescence of the sensor. This validates the use of fluorescence
over absorbance as a technique which can detect the complexation of kynurenine and the

sensor even with low concentrations of kynurenine.
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Figure 5.9: Fluorescence spectra of kynurenine in various sensor concentrations exciting
at 555 nm

5.5 Absorption and Emission spectra

3D spectra were collected to determine the optimum excitation and emission wavelengths
to use. A 3D spectra is a collection of spectra where emission and excitation wavelengths
are changed. A contour plot is produced which shows which excitation wavelengths can

produce maximal emission intensities and the wavelengths the measure them at.

When looking at just the sensor (figs. 5.10a, 5.10d and 5.10g) it can be seen that there
is minimal background fluorescence from the unbound sensor in the wavelengths targeted
for emission by the sensor:kynurenine complex. When kynurenine is added, the spectra
appears to have two regions of maximum fluorescence intensity, both centered around

a wavelength of 580 nm. Subtracting the background sensor fluorescence from that of
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Figure 5.10: 3D Fluorescence spectra. Dark blue represents less fluorescence intensity and
red represents the highest fluorescence intensity. The units are arbitrary units. Excitation
wavelengths are given on the x-axis (nm) and emission wavelengths (nm) are given on the
y-axis.
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the sensor:kynurenine complex, figs. 5.10c, 5.10f and 5.10i, shows there is really only one
maximum region and that by exciting with a wavelength between 550 - 565 nm, it is
possible to reduce the background signal coming from the unbound sensor. To explore
this further, the intensity values at an emission wavelength of 580 nm were taken for a
range of wavelengths and plotted separately. The plotted data included the data for the
sensor, the sensor with kynurenine and finally the sensor with kynurenine subtracting the
initial sensor values and can be seen in in fig. 5.11. This data allowed for the excitation
wavelength which gives the least background signal to be found, as can be seen in the
graphs in fig. 5.11, where the (sensor + kynurenine) and the ((sensor + kynurenine) -
sensor) values are closest to each other shows that the background sensor fluorescence
is minimised. This value is at 560 nm. So the optimal excitation wavelength is at 560
nm and the optimal emission wavelength is 580 nm. Looking at figs. 5.10 and 5.11 it is
clear that there are values around each wavelength that are usable, which could become
useful for future experiments as the difference of 20 nm between excitation and emission
wavelengths is quite a small gap and some machines may not allow measurements to be

taken due without specialist equipment such as a dichroic mirror.
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Figure 5.11: Fluorescence emission intensity measured at 580 nm.

5.6 Temperature
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Whilst conducting some initial tests with the sensor, it was found that the temperature
of the sample has an affect on the fluorescence output, with the measured fluorescence
decreasing as the temperature increases. When looking at the fluorescence intensity at
580 nm in fig. 5.12, at 30 °C in fig. 5.12a the value is 237.9, whereas at 10 °C in fig. 5.12b
the value is 918.0, which means there is a 3.86 times increase in signal when reducing the
temperature by 20 °C. To test this in the most extreme case, the solution was heated to

90 °C and compared to the signal from a solution with just sensor in it. The resulting



spectra, as seen in fig. 5.13, shows that the signals are almost identical. This demon-
strates that as the temperature increases, the equilibrium for the complex shifts towards
the uncomplexed side. A second point to notice from fig. 5.12 is that the fluorescence
intensity took time to reach its maximal value. For the data collected in fig. 5.12, spectra
were collected until there was no noticeable change in intensity. The solution was mixed
thoroughly in the cuvette before being placed into the fluorometer, but this process was
not regulated to be strict with timekeeping. This result is consistent with literature of
different fluorophores, where the changes in fluorescence have been shown to be due to
a combination of changes in binding equilibria and also changes in the photophysics of
the molecules [153-155].The section below contains more detailed experiments which also
look at the influence of time as well as temperature on the fluorescence intensity. The

two are not independent of each other as it takes time for the sample to reach the desired

temperature.
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Figure 5.12: Fluorescence intensity of the same solution at different temperatures
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Figure 5.13: Fluorescence intensity at 90 °C

5.6.1 Equilibration time

Cuvettes will typically be filled using stock solutions at the ambient room temperature
and so, when measuring at a fixed temperature using a fluorometer, it will take time for
the temperature of the cuvette to equilibrate to that of the cell holder. To determine how
much time would be needed for this, spectra were recorded every minute for 19 minutes
(providing 20 measurements) to determine the optimal waiting time for the temperature
to equilibrate. By performing this, it allows the parameters on the instrument to be set
so that measurements are taken automatically after the desired time period. The data
has been plotted (fig. 5.14) and tabulated (table 5.1) in order to see the true values at the
peak emission. Time is taken from 0 minutes as a spectra is recorded immediately upon
placement of the cuvette in the instrument until the 19th minute. Using the fitted data
it is possible to determine when 99 % of the maximal value is reached, and this is from

the measurement taken at the 9th minute.

The time determined by this experiment may only be relevant for cooling a sample to

10 deg from an ambient temperature of around 22 deg, however all future experiments
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Table 5.1: Fluorescent intensity values at 580 nm from fig. 5.14.

Time (mins) | Intensity at 580 nm (a.u.)
0 461.257
1 666.459
2 782.458
3 867.509
4 929.999
) 973.955
6 1002.17
7 1020.56
8 1033.14
9 1040.19
10 1044.02
11 1045.5
12 1046.36
13 1046.11
14 1045.91
15 1041.97
16 1040.69
17 1038.3
18 1037.93
19 1033.96
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Figure 5.15: Fluorescence intensity after 20 mins
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using the fluorometer will be conducted at 10 deg and so this is the only relevant mea-
surement for the continuation of this work. The most important finding to learn from this
is that sample measurements should be taken at the same temperatures when collecting
a series of data. Previous experiments were all performed using active cooling/heating to
maintain a constant temperature, although the temperature was not chosen to optimise

the fluorescent signal.

5.7 Stability

Previous experiments were set up through the use of fresh solutions of sensor and kynure-
nine. This involved weighing tiny amounts of the respective powders (fractions of a
milligram) and then dissolving them into the necessary buffers. In order to save time in
experimental preparation, it is normal to make up stock solutions which can then be used
for many future experiments. As the goal of this project is to create an assay, it would
be important to find out the stability of the sensor and of kynurenine in their respective
buffer solutions. The importance of this comes from the fact that when testing the abil-
ity of an assay to accurately quantify an analyte, it is important to know the amount
of analyte in the test solutions. UV-Vis spectroscopy measurements were used for this
experiment as the absolute values will then be comparable across days. Two solutions
were made for both kynurenine and the sensor, the first where the respective molecule
was dissolved in water at neutral pH and the second where the respective molecule was

dissolved in a solution of HCI at pH 1.

5.7.1 Stability of kynurenine

The results for 500 pM kynurenine can be seen in fig. 5.16. The results show that the

absorbance values are always greater when in water at neutral pH as opposed to at pH 1,
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however, in water there is a greater change between days. The absorbance values when

dissolved just in water do not change drastically for the first 5 days.
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(a) UV-Vis absorbance spectra for 500 pM Kynurenine at neutral pH across
multiple days.
03

0.25
0.2

0.15

Absorbance

0.1

0.05

O 1 T T : I 1 I T T
300 340 380 420 460 500 540 580 620

Wavelength (nm)

—Water —Day1 —Day2 —Day3 —Day4 —Day5
—Day 6 Day 7 Day 8 —Day9 —Day 10—Day 21

(b) UV-Vis absorbance spectra for 500 pM Kynurenine at pH 1 across multiple
days.

Figure 5.16: UV-Vis absorbance spectra for 500 pM Kynurenine across multiple days.

To examine the results from the experiment further, the absorbance values at 365 nm
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have been considered in fig. 5.17. Figure 5.17a shows that after 5 days, the absorbance
value begins to decrease sharply until the 10th day at a neutral pH, whereas at pH 1
although much lower, the absorbance value is much more consistent for the whole 21
days. Figure 5.17b is a plot showing each value as a percentage of the day 1 value. When
at pH 1, the value goes as low as 88.8 % of the starting value at day 11. For comparison,
at neutral pH by day 7 the value is 81.9 % that of the day 1 value, and by day 11 it is

only 12.6 % of the day 1 value.
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Figure 5.17: UV-Vis absorbance value at 365 nm for 500 pM Kynurenine across multiple
days.

The substantial difference in absorbance between the two samples even from day 1 was
investigated further. One proposed reason is that of the chloride ions in solution causing

the kynurenine to aggregate. To test this hypothesis, instead of adding HCI to the water
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to change the pH, NaCl was added such that the chloride ion concentration should be
the same as if changing the pH to 1 with HCl. The absorbance spectra were recorded
along with one for kynurenine in pure water for comparison with the results shown in
fig. 5.18. The graph shows no change in absorbance between the kynurenine solutions
and so it is evident that the chloride ions are not the cause of the absorbance change from

the previous experiment.
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Figure 5.18: Absorbance spectra of 500 ptM Kynurenine at neutral pH with and without
NaCl added.

The overall result from these experiments is that kynurenine can be stored for 3 weeks
in an acidic solution if a stock solution is to be used. Up to 7 days provided changes up to
3.5 %, after this after this the changes fluctuated between 5 - 11 %. Kynurenine should

not be stored in water, but if necessary, for no longer than 5 days.

5.7.2 Stability of sensor

The results for the sensor at 50 pM can be seen in fig. 5.19. Again, as with kynurenine,
the absorbance values for the pH 1 solutio