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ABSTRACT

Neurobehavioral disorders can be phenotypically and genetically complex, and often diag-
nosed through observational study or subjective assessment alone. Certain neurobehavioral
phenotypes, such as those caused by circadian rhythm related behavior, are biochemically
well characterized, others, though, do not have yet a well understood genetic aetiology. Fur-
thermore, circadian biology and psychological disorders are often intertwined. To advance
our understanding of neurobehavioral trait/gene relationships, I first built a machine learn-
ing model that encompasses mouse transcriptomics to predict genes involved in circadian
rhythms. Next, I used genome wide association studies to model the causal influence of
genetic exposure in humans to an evening chronotype on several mental health and social
support traits, from depression to group religious participation. To more accurately model
how neurobehaviors relate to one another, I mined psychological assessment instruments
to build a species-agnostic psychological neurobehavior ontology encompassing autism and
schizophrenia phenotypes. I, then, tested the utility of this ontology in clustering children
on the autism spectrum based on phenotypic profiles. Lastly, I annotated genes to behaviors
identified among subgroups through genome wide association studies applied to phenotype
profiles. This allowed for the gene prioritization of circadian related experimentation results
and the discovery of new, potentially, casual relationships between chronotype and neurobe-
havioral traits. Finally, the semantic representation of schizophrenia endophenotypes in a
consistent, ontology framework catered its application for the identification of novel gene-
trait associations in humans. These contributions provide new knowledge to the scientific
community of the potential novel circadian functions for known genes, of the likely causal
influence of chronotype on social and mental health, provide novel robust ways of modeling
the complex phenotype of autism and schizophrenia patients, while annotating neurologically

active genes to new behavioral traits for the first time.
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Chapter One

Introduction

The burden that mental health and behavioral disorders place on society is immense, with
one in four people on the planet estimated to experience mental health problems during
their lifetime, according to the World Health Organization (Murray, Lopez, and others,
2002). Among adolescents, at least 4% will be diagnosed with major depression (Costello
et al., 2004). Recently, advances in molecular biology and genetics have transformed our
study of mental health. Genetic epidemiology has grown from a discipline that studied
small families and performed genetic association analyses within families or twins, to a dis-
cipline studying large cohorts to leverage the increased power of population-level genetic
associations (Merikangas and Merikangas, 2016). When applying genetic associations to
neurobehavioral disorders, however, these approaches often fail to report significant findings
or to be repeatable (Jones et al., 2013). In the model organism community, studying genetic
associations with the power of a large human GWAS study remains a challenge, especially
for the mouse, as ethics, financial cost, and time are key limiting factors to large gene/trait
associating studies. The mouse, however, provides an invaluable tool for investigating mech-
anism behind behavior through gene knockdown, knockout, and even wild-type behavioral
and experimental assays (Mandillo et al., 2008; Barnard and Nolan, 2008). High throughput

reverse genetics screens in mouse have been useful in elucidating a range of physiological and
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behavioral phenotypes linked to gene perturbation, and have been essential in prioritizing
deleterious mutations in humans (Dickinson et al., 2016; Boudellioua et al., 2017; Smedley
and Robinson, 2015). Phenotypes investigated in these studies, and related conditions, have

ranged from rare diseases and behavioral processes which affect every human on earth.

1.1 Introduction to circadian biology

Nearly every cell in every organism on the planet has a circadian rhythm, a biological pro-
cess which oscillates over a 24 hour period. In mammals, the sleep/wake cycle largely
regulated by an endogenous circadian rhythm influenced by external cues called zeitgebers,
or timekeepers (Albrecht, 2012). Light, a zeitgeber, enters the retina and entrains the core
mammalian clock in the suprachiasmatic nucleus (SCN) via the optic nerve and the cir-
cadian entrainment molecular pathway. The SCN is entrained primary by the light/dark
cycle, termed photoentrainment: rods and cones (photoreceptors) and the retinal ganglion
are all sensitive to light. This input is transmitted to the SCN via the retino-hypothalamic
tract to entrain the clock on a daily cycle (Hughes et al., 2015). The core clock exhibits
a transcriptional-translational feedback loop. Translated clock proteins (CLOCK, BMALI)
act as transcription factors for additional clock genes (Per1/2/3,Cry1/2). These genes, once
translated and dimerized, negatively inhibit the action of CLOCK and BMAL1 before be-
ing phosphorylated and degraded. This process takes roughly twenty-four hours (Takahashi,
2017). This central clock acts as a pacemaker tissue-specific clocks throughout the rest of the
body, and influences every organ system. There have been several computational methods
developed to identify rhythmically cycling genes involved in circadian biology, most focusing
on statistical approaches (Hughes et al., 2017). While many core circadian clock genes are
known, contributors to circadian phenotypes remain to be predicted and cataloged. In the

most wide-ranging mouse phenotype project attempted, the International Mouse Phenotyp-
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ing Consortium, circadian studies are not part of the mandatory testing pipeline (Brown
and Moore, 2012a). Lack of high-throughput experimental circadian phenotyping, which by
its very nature takes days to perform, has led to recent attempts to predict genes involved
in circadian physiology through machine learning (Anafi et al., 2014a), and meta-analytic
(Brown et al., 2017c) methods. While many studies have used in silico methods to char-
acterize circadian genes (Hughes et al., 2017), predictive models have been lacking in the
literature. Abnormalities of circadian rhythms are associated with a myriad of neurobe-
havioral disorders in human, from schizophrenia and autism to major depressive disorder

(Karatsoreos, 2014a; Takumi et al., 2020).

1.2 Psychological traits and the circadian clock

The relationship between circadian biology and psychological, neurodevelopmental, and men-
tal health traits is well known. Mood disorders, such as depression, bi-polar disorder, and
anxiety are diagnosed by behavioral assessment; no current clinical biomarkers are widely
used in practice (Watmuff et al., 2016). Unlike observing a centrally controlled trait such
as delayed circadian period, the presentations of many psychological disorders are heteroge-
neous (Wray et al., 2018b). Recent evidence supports the involvement of circadian rhythms
in psychological disorders. For instance, actigraphy data has been used to produce measures
of chronotype in persons with depression (Burton et al., 2013). Previous studies accessing
the genetic basis for circadian biology and manic behavior, for example, have often focused
on genes involved in the core pacemaker (Moon et al., 2016). With the availability of deep
phenotyping and massive genomic coverage in the UK Biobank (Allen et al., 2014a), op-
portunities exist for surveying mental health behavior outcomes en mass, and exploring the
connection between circadian biology and symptoms of neurobehavioral disorders. When

attempting to survey an array of heterogeneous behavioral disorders, it may be beneficial to
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ask how behaviors are delineated.

1.3 Characterising behavior computationally

One cannot meaningfully study the genetics of neurobehavior without first characterising
what are the expected behaviors and how to assay their alterations. To this end, computa-
tional biologists have developed biomedical ontologies to organize and structure biological
knowledge. The largest and most well known ontology is the Gene Ontology, (Gene Ontol-
ogy Consortium, 2015), which characterizes gene function and the dynamics of gene products
through three domains of knowledge: biological progresses, which are made up of molecular
functions, and take place in particular cellular components. In the domain of human health
and disease, the Human Phenotype Ontology (Robinson et al., 2008) depicts phenotypic
abnormalities, including behavioral traits from sleep-wake disorders to autism. Biomedical
ontologies have been designed for mammalian species as well as humans, facilitating the
transfer of gene function annotations between homologous human and mouse genes (Smith
and Eppig, 2009). The AberOWL repository has catalogued hundreds of ontologies, from
the Alzheimer’s Disease Ontology to the Zebrafish Phenotype ontology (Hoehndorf et al.,
2015). Perhaps the most widely used ontology for describing behavior is the Neuro Behav-
ior Ontology (Gkoutos, Schofield, and Hoehndorf, 2012), which provides the foundational

description of behavior in both mouse and human specific phenotype ontologies.
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1.4 An overview of omics data for behavioral trait mod-

eling

This study uses two main modes of multi-omics data: DNA microarrays for studying the

genome and RNA-sequencing assays for studying the transcriptome.

1.4.1 DNA Microarray

Genomic medicine historically starts at the level of the protein. Over a century ago, the ABO
blood group system was characterized. This provided a biomarker that reflected underlying
genetic variation before the discovery of genetic structure (Landsteiner, 1901; Landsteiner,
1961), making blood transfusions safe because of precise biomarker detection. In recent
decades precision medicine has moved from isolated biomarker identification to holistic,
genome-wide investigations of coding and non-coding DNA. This allows testing for several
genomic variations: single-nucleotide polymorphisms (SNPs) involved in mis- or nonsense
mutations, copy number variations (CNVs), structural transpositions/rearrangements, and
splice-cite substitutions which affect the translated protein. Common technologies to detect
these variations include DNA microarrays for CNV and SNP detection, and next-generation
sequencing (NGS) based DNA-sequencing. In this study, I used data generated from DNA
microarrays to genotype the Simons Simplex Collection and the UK Biobank (Fischbach and
Lord, 2010a; Collins, 2007). SNP-detecting microarrays probe for thousands of known SNPs
via included oligos, are relatively cheap and allow a wide array of potential SNPs and disease-
associated loci to be probed. As a cost-effective and easily portable standard of assaying for
thousands of potentially deleterious variants, SNP arrays have been manufactured by several
companies including Illumina, Agilent, and Affymetrix. Studies have shown a high degree of

correlation between different platforms; bolstering trust in use of the technology for accurate
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patient assessment (Li et al., 2015). DNA microarrays have several limitations for SNP/CNV
detection, including an a-priori decision of probes to be mapped, and the poor resolution of
SNPs within of SNP deserts, genomic regions of low SNP density (Surrey et al., 2016). The
cost effectiveness of DNA microarrays lend them to be used by biobanks, which facilitate
deep phenotyping of participants useful for characterizing behavioral disorders. The study
of behavioral genomics presented here incorporates data from human genomics as well as

mouse transcriptomics.

1.4.2 RNA-Seq

RNA-Sequencing revolutionized transcriptome studies by providing quantitative estimates
of gene product abundance (Wang, Gerstein, and Snyder, 2009). In contrast to microar-
ray experiments, most RNA-Seq protocols involve capturing mRNA from lysed cells via the
mRNA poly-A tail and converting the mRNA to a more stable cDNA library. The library
is then fragmented, and after adapters are added the library is sequenced via one of many
next-generation sequencing (NGS) technologies (Mortazavi et al., 2008). Resulting frag-
ments, termed reads, are aligned to a reference transcriptome or genome. After reference
alignment, a transcriptome-wide profile of gene activity is quantified by mapping reads to
annotated coding regions of the genome. Unlike DNA microarray experiments, where genes
must be known a priori, the unbiased nature of RNA-Seq facilitates discovery of new gene
activity, uniquely spliced transcript isoforms, and measurable products of non-protein cod-
ing genes. One particular benefit of RNA-Seq studies is capturing the dynamic processes
of transcription. Levels of detail range from single-cell specificity, to entire organs treated
as nearly homogeneous sets. Unlike genomic experiments, RNA-Seq captures the dynamic
transcriptome, facilitating studying how physiology changes in response to environmental

and repetitive cues or cycles. Transcriptomic datasets can be further explored by creating
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multiple RNA libraries through time, enabling one to study how changes in day/night envi-
ronment or endogenous neuroendocrinological cues affect genes associated with neurological

disorders (Hastings and Goedert, 2013).

1.5 Methods in computational behavioral genetics and

phenomics

The methods used in this work include inferential, causative, and predictive statistical and
machine learning models. I have also had extensive collaboration with colleagues at the
MRC Harwell Institute who have performed experimental work, including RNA-sequencing
and mouse phenotyping, in Chapter 2. Work in Chapter 3 is partly the result of a collabo-
ration with the University of Jean (ES) during the development of the Aging Neurobehavior

Ontology.

1.5.1 Statistical inference for gene association studies

Statistical inference for gene association studies relies on generalized linear models, regressing
a trait or outcome of interest against a single locus on the genome. Analyses typically
include covariates aimed at minimizing confounding variables, including those generated
by sequencing or microarray platform, by ancestry or admixture, sex, and by phenotypic
covariates which may moderate findings such as body mass index or age. This procedure is
repeated hundreds of thousands or millions of times for each allele in the genome, resulting in
many independent models. This necessitates a strict control of false positive rates, typically

with a p-value of 1e-8 set as a genome-wide standard for significance.
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1.5.2 Causal inference based on genetic inheritance

Both genome wide association studies and differential gene expression studies use statistical
inference to model associations using omics data. Differential transcriptomics studies model
how individual transcripts change in bulk expression or differential exon usage between con-
ditions. Genetic epidemiology can model trait - gene and trait - gene x environment effects.
Both of these model association, and cannot infer causality. Using traditional statistical
approaches, one cannot ascertain if a particular SNP causes an observed trait, or if down-
regulation of one gene causes the up-regulation of another, as both of these are experimental
designs are observational. Instrumental variable analysis, originally developed in economics,
has been used in genetic epidemiology to model the relationship between traits mediated
by gene exposure. It was originally used to model the relationship between modifiable ex-
posures and disease (Davey Smith and Ebrahim, 2003a). Instrumental variables are those
which robustly predict an exposure but have no independent association with an outcome;
any association must be mediated solely by the exposure (Labrecque and Swanson, 2018).
Building such causal models rely on genetic data, especially those made available via GWAS
studies. Mendelian randomization (MR) assumes its name due to the Mendel’s law of inde-
pendent assortment, which posits that alleles should be randomly distributed. While this
is true in Mendelian genetics, alleles in linkage disequilibrium will break this assumption,
but a MR experimental design will account for this by selecting loci which are indepen-
dent. Because assortment is independent, the presence or absence of a particular minor or
major allele within a population is randomly distributed. Thus, MR can be thought of as
a natural randomized controlled trial, in which participants are randomized at birth, and
exposed to different levels due to their likelihood of developing a trait due to genetic ex-
posure (Davey Smith and Ebrahim, 2003b). MR can mimic environmental, physiological,
or psychological exposures and have been used to characterise systems biology, model phar-

macogenomics, and other areas (Davey Smith and Ebrahim, 2003a). An early application
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of MR was performed in 1986, when Katan modeled differential alleles in the APOE gene
to investigate the observational relationship between cholesterol levels and cancer (Katan,
2004). Due to one’s exposure to an allele occuring prior to an exposure to any outcomes,
reverse causation is negated when proper instrumental variables are chosen. Similar to meth-
ods in GWAS or transcriptomics, most models used in MR analyses are interpretable linear
models, and associations between variables are causal only due to the correct experimental
design. MR models have been used in recent years to characterise the relationships between
many neurobehavioral traits or psychiatric conditions, including linking smoking behavior
(exposure) to bipolar disorder and schizophrenia (outcomes) (Yuan, Yao, and Larsson, 2020)
and NR3C1 expression levels (exposure) to psychosis (Iftimovici et al., 2020). In this work,
MR will be used to model the relationships between self-reported chronotype (an exposure)
and several psychological outcomes. By using causative modeling to investigate the asso-
ciation between chronotype and mental health, this work will provide direction for further
longitudinal or interventional experiments using chronotype as a intervention when studying

behavioral outcomes. A detailed discussion of these methods used are included in Chapter

3.

1.5.3 Machine learning based on genomic and phenotypic data

Modern machine learning has its roots in early attempts to understand the learning process,
when a simple model of neuronal processing were developed - the perceptron (Rosenblatt,
1958). As computational resources have increased, machine learning has become useful
to the biomedical community. Machine learning is the application of a class of induction
algorithms which seek to learn outcomes through iterative training without being explicitly
programmed (Kohavi and Provost, 1998). As eloquently proposed in Breiman’s two cultures,

data modeling and algorithmic modeling approach inference in different ways (Breiman,
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2001). Classical statistical modeling seeks to first create a model of the world (X independent
variables) which explains Y dependent responses. Based on assumptions about X, models
are built to attempt to extract information about how the X and Y are related. In contrast,
machine learning methods are often viewed as a black box. Instead of explicitly attempting to
model how X generates Y, algorithms are built that operate on X to predict the Y response
variables. This is done independently of assumptions about how X leads to Y. To achieve
good measures of predictive accuracy, machine learning methods depend on large amounts
of data and can require vast computational resources, both of which are now available to
computational biologists. Two divisions of machine learning processes are distinguished by

the presence of labels.

Unsupervised learning

Given data without labels, a problem is formulated to detect latent patterns present in
data. Given a set of data, patterns can be constructed with many different approaches. The
most familiar may be method of moments estimators, where the first moment of a sample
of data is the mean, and the second moment about the mean is sample variance. These
calculations depend on no outside labels of the data. To aid in analysis of multidimensional
data from large genomic experiments, dimensionality reduction and clustering algorithms are
often used. This thesis uses variations on hierarchical clustering, which models the Euclidean
distance between data (such as genes or phenotypes) as a metric of gene-gene similarity. It
also uses principal component analysis (PCA) as a dimensionality reduction technique; this
is commonly performed in GWAS analyses to account for population structures. In Chapter
3, this work extensively uses clustering based on the similarity of subject’s phenotypic traits

to one another in a measure called semantic similarity.

10
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Supervised learning

When given labels associated with data, those labels can serve as targets for supervised
learning algorithms. The challenge of predicting phenotype annotations (and punitively
assigning functions to genes based on these phenotypes) is a classification problem using
phenotypes or phenotypic profiles as targets (dependent variables). Supervised learning
approaches used in this work include a variation on random forests, in which initially random
decision trees are made out of biological features, and an ensemble of them (a forest) are
used to assign the presence or absence of a target trait. The variation adapts trees to
better fit data as it is learning over training iterations. Other approaches used in this work
involve supervised feature selection with a penalized generalized linear model. To measure

the performance of our modeling attempts, the following general strategy is adopted:

e data are split into training and testing sets

e during hyperparameter optimization, training sets are again split into testing and val-

idation as a cross-validation procedure to select a well performing model

e model selection is judged by the area under the receiver operating curve and summary

statistics including accuracy, specificity and sensitivity

e after model selection, models learned are evaluated by performance on the yet-unseen

testing data

e as an alternative to initial data splitting, newly generated data or additional study

cohorts can be used to measure the accuracy of models

This procedure is then repeated several times, and average metrics are used to evaluate the
generalizability of the classifier. This is done to protect against train/test splits when features

may be unevenly distributed among subjects and when there are a minority of subjects in

11
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the analysis who have a particular target class. When predicting ontology annotations,
especially rare phenotypes, class imbalances will occur (Wei and Jr, 2013). Having an equal
number of data observations (genes) with and without a given binary phenotype annotation
will increase training efficiency. We use both under- and over-sampling, when appropriate,
to balance training datasets. When validating predictions on unseen data, class imbalances
native to the data are retained, to make predictions more accurate to current levels of gene
function annotation. Our modeling thus far has been predicting phenotype annotations
from the results of gene expression analysis experiments (below). To mitigate potential
model inaccuracy from withholding a percentage of phenotype/gene annotations, a multiple

cross-validation approach may be used instead of an initial holdout validation set.

1.5.4 Method evaluation

To evaluate supervised machine learning models, I employ diagnostics which can be derived

from a confusion matrix:

Truth
Positive | Negative | Total
Positive Prediction a b a+b
Negative Prediction c d c+d
Total a-+c b+d N

Table 1.1: An example of a confusion matrix, or a 2x2 contingency table. The set {a,b,c,d} are all
integers, and indicate the number of true positives, false positives, false negatives, and true negatives

in a binary classification problem. N represents the total number of entities classified.

Accuracy is calculated as the sum of true positive and true negatives over the popu-

12
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lation:

a+d
A - 1.1
ce a+b+c+d ( )

Sensitivity, recall, or the true positive rate, is calculated as the sum of true positive cases

over the sum of true and false positives:

Sens = (1.2)

a+b
Specificity, or the true negative rate is calculated as the sum of true negative cases over the

sum of true negative and false positive cases:

d
-4 1.
Spec T d (1.3)

While accuracy gives a measure of the percent of classifications which are correct, this can
be misleading when there is a large imbalance between two cases: for instance, a classifier
who classified a set of 100 SNPs as pathogenic, when in reality 99 were, would have an
accuracy of 99%. Such a skewed dataset, however, benefits from other measures. I use the
area under the receiver operating characteristic (ROC) curve, denoted in this work by AUC.
It provides a balanced measure of the trade-off between specificity and sensitivity. An AUC
of 0.5 indicates a completely random binary classifier, while an AUC of 1.0 denotes perfect
classifier performance (Fawcett, 2006). Confidence intervals around the ROC curve provide

measures of the uncertainty of the model’s performance.

To evaluate unsupervised learning models in this thesis, two approaches are used.
In the first, data are permuted thousands of times, and measures of community or cluster
modality (density, node degree) are taken to produce an null, or random, distribution of
measures of class centrality. By comparing the modularity of members of a community to
the null and counting the frequency of observed values more extreme than those within a
community, p-values are generated, producing a measure of how unexpectedly connected a
community is with itself compared to data not in that community. I also evaluate unsuper-

vised learning clusters by biological observation: if genes, for instance, participate in more

13
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shared biological processes than would be expected by chance, this leads to the conclusion
that the community of genes as a whole may be involved in similar functions or interact with

biochemical pathways up or downstream of one another.

Inferential models from GWAS analysis (Chapter 5), and causative models from MR
analysis (Chapter 3), are evaluated primarily by the strength and variance of their associ-
ations as measured by a log-odds or the transformed 3 coefficient. GWAS are additionally
verified by using their features in supervised learning models, and MR analyses have exten-

sive post-hoc tests to ensure statistical robustness and appropriate experimental design.

1.6 Thesis aims and objectives

Neurobehavioral disorders are phenotypically and genetically complex, and often diagnosed
through observational study or subjective assessment alone. In order to further the under-
standing of the genetic basis of neurobehavioral disorders, it is necessary to devise ways of
both predicting gene/trait associations and to uncover new relationships between the obser-
vational traits which neurobehavioral disorders manifest. To make inroads into this domain,
several statistical methods and biological principles can be leveraged; from the homolo-
gous relationship between mouse and human neurogenetics to modeling causal relationships
between traits, though to the semantic modeling of relations between traits and then inter-
rogating their genetic basis. The ultimate aim of this thesis is to predict neurobehavioral
gene/trait relationships and provide a basis for prioritizing experimental investigations into

genetic causes of neurobehavioral dysfunction. To address this, this thesis aims to:

e 1: Predict genes which are involved in producing abnormal circadian rhythm behavior

in mice using supervised machine learning methods

14



Introduction

e 2: Investigate the causal relationship between chronotype, a measure of circadian
rhythm, and behavioral traits linked to mental illness or psychological disorders in

humans

e 3: Mine psychological assessment instruments to model subtle behaviors which, in ag-
gregate, are indicative of complex psychological disorders, such as autism or schizophre-
nia, and use that to reduce the phenotypic heterogeneity among populations with

complex behavioral diagnoses

e 4: Investigate genes which are associated with individuals who share both a common
behavioral diagnosis (autism) and share a common phenotypic profile derived from aim

3.

Each of these aims involves modeling of associations between neurobehavioral traits
and genetic material which, when expressed or mutated, will influence these traits. Figure
1.1 encapsulates the structure and interconnectedness of this project. The figure may be read
from top to bottom, showing the sequence of chapters, relevant data, general methods used,
and outcomes. Each chapter’s data flows into its methods and then outcomes. In Chap-
ter 2, I am to predict genes involved in abnormal circadian biology. This is accomplished
by harnessing data from mouse in predictive models using supervised machine learning to
produce genes which may produce circadian phenotypes. Knowing that circadian biology
impacts many neurobehavioral and psychosocial traits in humans, Chapter 3 uses genome
wide association studies as a basis for modeling the causal relationship between chronotype
(a manifestation of circadian rhythms) and various self-reported traits relatd to mental ill-
ness and social wellbeing. After finding such associations between chronotype and behavioral
traits in a wider population, the thesis turns to focusing on how such traits relate to one an-
other. To address this, the traits which make up complex psychological disorders, including

autism and schizophrenia, are mined from gold-standard diagnostic instruments in Chapter
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4. These traits are used to engineer biomedical ontologies, on which autism probands are
modeled to investigate the underlying (endo)phenotypic structure of a complex neurodevel-
opmental disorder. Lastly, in Chapter 5, I use phenotypic profiles from Chapter 4 and the
genome-wide association study approach from Chapter 3 to investigate the genetic archi-
tecture of probands diagnosed with autism yet presenting with distinct phenotypic profiles.
Clusters of probands who have a distinct phenotypic presentation are investigated for asso-
ciations between genetic mutations which separate them from the rest of the studied autism
cohort, revealing links to circadian biology studied in Chapter 2. The fundamental biology
studied in a model organism in Chapter 2 permiates the thesis through Chapter 5, leading to
future work combining complex behavioral phenotypes in population-based human studies

with collaborative mechanistic studies detailing individual endophenotypes in mouse.
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Figure 1.1: This work is divided into four substantive chapters, each of which attempt to address

interrelated but independent aims. Fach chapter is connected to each other (left panel, "Chapter").
Solid edges represent an explicit flow of work: in Chapter 2, mouse transcriptomics and protein
interaction data feed into kernel, cycling, and machine learning methods. These methods produce
results, specifically genes with predicted circadian function in mouse. Outcomes (both biological
relationshps and methodological insight) from each chapter indirectly inform the next, as indicated
by dashed edges in the rightmost panel (Outcomes). Outcomes from Chapter 4 directly inform

those in Chapter 5 (solid dashed edges), while the outcomes of Chapters 2 and 5 inform each other

and suggest future research integrating mammalian and human studies.
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Chapter Two

Predicting genes involved in abnormal

circadian rhythm traits in mouse

2.1 Background and Chapter Overview

As described in Chapter 1, most organisms will anticipate regular daily changes to their en-
vironment which replay over a 24 hour period, chiefly involving light, food, and temperature.
These daily circadian influences, or zeitgebers, can advance or delay the phase of the central
circadian clock in the uprachiasmatic nucleus (SCN). The transcriptional-translational feed-
back loop which regulates circadian rhythms is largely conserved between different cell types,
discounting built-in redundancy of a Clock protein paralog in the SCN (Patke, Young, and
Axelrod, 2020). The SCN exhibits intercellular coupling, with an interplay between VIP-
and GRP- producing neurons in the core with AVP-expressing cells in the shell together
regulating the core circadian clock (Hamada, Antle, and Silver, 2004). The SCN acts as the
central pacemaker for tissue-specific clocks. Projections from the SCN are largely sent to

the diencephalon, and then to the rest of the body (Mieda, 2019).

Every tissue in both mouse and human contains circadian clocks, by which the rhyth-
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mic expression of circadian-influenced genes will oscillate in a tissue-specific manner. The
SCN acts as the central pacemaker, coordinatingTissue specific transcriptome profiling has
revealed differing patters of expression, many of which are able to have sustained rhythm
even in isolation of the central pacemaker (Yoo et al., 2004; Yamamoto et al., 2004). Periph-
eral clocks have been impicated in wound healing, heart rate and respiration, and immune
function (Finger, Dibner, and Kramer, 2020). One of the best-studied peripheral circadian
clock is in the liver, where metabolism is affected by clock genes including the Per and Cry
family. While these tissue-specific clocks maintain their own rhythm, the SCN is still need to
coordinate the phases of these tissue-specific clocks (Tahara et al., 2012). They are consid-
ered dependent (’slave’) oscillators that while dependent on the SCN are strongly influenced
by external zeitgebers such as feeding cycles. The circadian role of the liver has received
attention: in-vivo mouse models have shown a hepatic cytokine to activate clock genes in
the liver (Chen et al., 2019), and in humans beneficial effects of dietary fasting have been

suggested to be influenced by peripheral metabolic clocks (Lessan and Ali, 2019).

Chronobiological deficits can have system-wide influences ranging from the central
nervous sytem, suggesting possible core clock malfunction, to influencing non-neuronal tis-
sues not explained by the SCN’s central pacemaking function alone. Genome-wide associa-
tion and mutational studies have linked variants in core clock genes to sleep /wake disorders,
disruptions due to jet-lag, and even sleep-related bone loss (Swanson et al., 2017). Recent
GWAS of self-reported chronotype (lark or owl, corresponding to being a 'morning person’
or 'night person’) reveal several candidate genes associations with previously unexpected
circadian function (Hu et al., 2016). The translational importance of understanding circa-
dian biology is not limited to neurobehavioral function; the interplay between metabolism
and circadian biology has been highlighted heavily in recent years. The gut microbiome,
adipose cytokines, and metabolic hormones from grhelin to leptin are all strongly regulated

by circadian biology (Li et al., 2020; Socaciu et al., 2020; Pan, Mota, and Zhang, 2020).
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Recent Mendelian randomization studies have also suggested a strong causal link between
chronotype (a gross circadian phenotype) and body composition, free fatty acid circulation,

and adiposity (Adams and Neuhausen, 2019; Jones et al., 2019).

As such, identification of genes, which contribute to circadian biology, either as part
of core clock machinery or up- or down-stream actors, is of great importance. There have
been recent attempts, resulting from high throughput proteomic and interaction screens,
to prioritize clock genes that bind to CLOCK (Zhao et al., 2007), as well as to identify
protein-gene interactions involving the ZFHX3 protein (Parsons et al., 2015). Such high
throughput experimental assays are invaluable, and computational predictions, combining
several of these features, have been used to screen for potential clock genes (Anafi et al.,
2014b). Statistical analysis of high throughput calorimetry data from the International
Mouse Phenotyping Consortium have been harnessed to identify novel circadian functions
for well-studied genes, further highlighting the utility of integrating data from core clocks,

peripheral or exogenous zeitgebers (Zhang et al., 2020).

Creating an in-silico method of prioritizing genes of interest, resulting from mam-
malian circadian phenotyping studies, will dramatically reduce the search space for poten-
tially novel circadian genes, leading to both cost and time savings. My method screened
several features, indicative of circadian function, to classify novel circadian genes. I com-
bined measurements of RNA-Sequencing levels, at four different timepoints in the supcrachi-
asmatic nucleus (SCN) and the liver in mouse, to indicate enrichment of genes in the both
the central and peripheral pacemaker. I also assessed genes, expressed in the SCN and liver,
in terms of their likelihood of being expressed over time in a oscillating periodic fashion
taking 24 hours. Next, potential interactions of proteins, expressed in the SCN, with both
known circadian proteins, as well as with any other proteins whose gene progenitors were
expressed in the SCN, were studied. The level of expression across several tissues in the

mouse body was also considered, and the degree of specific expression in the SCN was cal-
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culated. Lastly, my candidate novel genes were further compared to several previous studies
characterizing circadian genes in the SCN. I present an analysis of three candidates with
previously unknown circadian function, and two candidates, with known circadian function,
but not known abnormal circadian phenotype associations in mouse. Of these, I present
evidence of circadian phenotypes in Gastrin Releasing Peptide (Grp) mice, thanks to the

help of experimentalist colleagues.

The suprachiasmaic nucleus (SCN) is the central pacemaker of the body, maintaining
entrainment of peripheral biological clocks in nearly every body tissue (Li et al., 2008). By
combining attributes of several known clock genes, I used the RUSBoost machine learning
algorithm to rank genes by their likelihood to contribute to the ’abnormal circadian rhythm’
phenotype in the mouse. Several known clock genes, with no predicted phenotype in mouse,
were suggested to actually contribute to circadian biology on the phenotype level. T also
predicted classes of genes not currently known to contribute to circadian phenotypes in
mouse or human. These genes are worthy of further study in model organisms to elucidate

the molecular mechanisms contributing to clock disruption.

2.2 Methods

2.2.1 Circadian phenotype selection

Mammalian phenotype to gene annotations were downloaded from the Mouse Genome
Database on 30 Nov 2016. Genes annotated to MP:0001393 in the Mammalian Pheno-
type Ontology (MP), labeled "Abnormal Circadian Rhythm," were extracted, with positive
annotations used as targets in my analysis. Genes annotated to any children of ’Abnormal

Circadian Rhythm’ MP were likewise annotated with MP:0001393 and included as positive
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targets.

RNA-Sequencing and Experimental Validation

In this work, all wet-lab experiments, including phenotyping, collection and RNA extraction,
were performed by colleagues in the Nolan group at MRC Harwell Institute. All computa-

tional and statistical analysis is my own.

All animal studies were performed under the guidance issued by the Medical Research
Council in Responsibility in the Use of Animals for Medical Research (July 1993) and Home
Office Project Licenses (30/3384 and 30,/3206), with local ethical approval. All animals used
in this study were bred and maintained at MRC Harwell. When not being tested, mice were
housed in individually ventilated cages under 12/12 h light /dark (LD) conditions with food

and water available ad libitum.

2.2.2 Circadian Phenotyping of Grp knockout mice

Gastrin-releasing peptide (Grp) knockout mice were obtained from the International Mouse
Phenotyping Consortium (IMPC; https://www.mousephenotype.org/). Six 34 week old ho-
mozygous female mice were used for circadian analysis. Nine isogenic 34 week old C57BL /6N
females were used as controls. Circadian analysis was performed using the COMPASS system
(Brown et al., 2017a). Briefly mice were individually housed and activity data captured by
passive infrared sensors for 5 days in a 12:12 LD cycle, followed by 9 days in constant dark-
ness. Data were rebinned using custom python scripts converted to AWD files for analysis

on Clocklab (Actimetrics) (Brown et al., 2020).
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2.2.3 Tissue collection and RNA extraction

C57BL/6J animals were singly housed under a 12:12 hour LD cycle for at least two weeks
prior to dissection. Mouse activity was monitored by wheel running (Banks and Nolan 2011)
in order to confirm entrainment to LD cycles prior to dissection. Mice were sacrificed by
cervical dislocation at either Zt 3, 9, 15 or 21. SCN punches were collected as in Jagannath et
al., 2013 (Jagannath et al., 2013) and liver taken from the same animals. Samples were flash
frozen on dry ice and stored at -80 degrees C until RNA extraction. Total RNA was extracted
using RNAeasy column (QIAGEN). Quality and quantity of RNA were measured using an
Agilent Bioanalyzer (Thermo Fisher Scientific). The SCN quality of the tissue dissection was
confirmed by qPCR of Six6 (an SCN enriched gene) as described in by Jagannath (Jagannath
et al., 2013).

2.2.4 RNA sequencing

RNA sequencing was performed by the Oxford Genomics Centre (Wellcome Trust Centre for
Human Genetics, University of Oxford). 500 ug of RNA samples were sent for sequencing.
The samples underwent poly-A selection, after which two multiplexed DSN Library Prepa-
rations (6 samples/multiplex) were generated. Each multiplex was run on one 50bp PE lane

of a HiSeq2000.

RNA-Sequencing Analysis

To predict novel genes contributing to neurobehavioral phenotypes of circadian rhythm,
time-series gene expression studies can be used to exploit observed transcript oscillations

across a day. To study circadian rhythms in mice, RNA-Seq libraries were created from
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16 male C57BL/6J strain mice. Following procedures previously described (Parsons et al.,
2015), animals were sacrificed at four time points in a twenty-four hour range denoted in
zeitgeber time (Binder, Hirokawa, and Windhorst, 2009). By convention, zt0 corresponds
to lights on, zt12 corresponds to lights off in a twelve-hour light/dark cycle. Mice were
sacrificed at zt3, zt9, zt15, and zt21. Samples were taken from the suprachiasmatic nucleus
(SCN) of the brain and the liver. After purification and ¢cDNA library creation, samples

were sequenced as referenced above.

Raw paired-end reads were analyzed for quality control with FASTQC (Andews,
2015). Reads were aligned to the mm10 genome with the Bowtie2 aligner in the TopHat
application suite (Trapnell et al., 2010; Langmead and Salzberg, 2012). HTSeq was used
to extract read counts using Ensembl 83 annotation (Flicek et al., 2014; Anders, Pyl, and
Huber, 2015). Processed reads were analyzed for statistical distributional assumptions and
potential sample mis-annotation. Three samples from each time point and tissue were kept

for further analysis, resulting in 24 libraries.

Differential expression between tissues and time points was analyzed with the DESeq2
package (Love, Huber, and Anders, 2014). Assuming a negative-binomial distribution to
count data, standard settings were used to fit generalized linear models and perform Wald
tests for differential expression. Transcripts expressed with a log-fold change of greater or less
than 2 between tissues were considered differentially expressed, subjected to a Benjamini-
Hochberg adjusted p-value of < 0.05 (Benjamini and Hochberg, 1995). Transcript per Million
(TPM) measurements were additionally calculated for each gene, and are reported as the

mean TPM in all SCN samples + /- the standard error of the mean.

To test for rhythmic signatures related to circadian rhythms in each tissue, several
algorithms were used. The RAIN algorithm was used to detect cycling at four time points

(Thaben and Westermark, 2014). Using DESeq2-normalized read count estimates, period
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time was explicitly set to twenty-four hours and default RAIN settings and FDR corrections
were used. To enable detection of rhythms across the entire 24 hour period with only four
time points in each tissue, a second 24 hour cycle was imputed by duplicating the first cycle’s
values. Visual inspection of core clock-related genes’ transcriptomic patterns was performed
to verify accuracy of results. Additionally, Lomb-Scargle (Lomb, 1976; Scargle, 1982) and
JTKCycle (Hughes, Hogenesch, and Kornacker, 2010a) were implemented. All features from
cycling /rhythmic analyses were combined and used as feature input, and correlated features
were permuted during training splits to avoid multicollinearity of correlated feature detection

methods.

To compare the distribution of expression from known circadian genes across various
tissues, transcript-per-million (TPM) expression data from 25 tissues was obtained from the
mouse ENCODE consortium (Mouse ENCODE Consortium et al., 2012). Each gene was
binary coded if 1 TPM was present in a given tissue and totaled. The resulting vector of
tissue totals per gene was mean centered and scaled over the standard deviation to create a
tissue ubiquity vector. Since the particular genes represented in my tissue ubiquity metric
were chosen by the ENCODE consortium, any genes discovered in my analysis but not
included in ENCODE were missing. The tissue distribution of these genes was imputed
simply with the median of all gene tissue-wise expression, in order to limit missing values in

my downstream classification attempts.

Protein-protein interactions

To derive a quantitative feature representing interactions of known circadian phenotype
proteins with other proteins expressed in the SCN, protein-protein interaction graphs were
constructed, including annotation with phenotypes of interest. Protein-protein interaction

graphs were constructed from genes expressed in the SCN, at each time point separately, as
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follows. Using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
database version 10, all default data sources were used with an interaction threshold of
medium confidence (0.400) except for textmining which was set to a higher threshold (0.950)
(Szklarczyk et al., 2015a). Interactions between proteins are represented as an unweighted
undirected graph, and combined into one graph containing all threshold-meeting interactions
at each time point. This combined text-mining, fusion event history (proteins fused in
some genomes may have similar functions in other species), similar pathway occurrence, and
observed co-expression in tissue expression databases into one graphical representation for
potential protein-protein interactions. Graphs from each of 4 timepoints were combined,
taking the union of each graph to capture genes which were expressed in the SCN at any
point across Zt3, Zt9, Zt15 or Zt21. The biological network of interactions is represented as
a graph, G. In G, vertices represent proteins and edges represent undirected theoretical or
experimental interactions between them. Vertex sets are represented as V', while edge sets
are included in E. A convenient representation of graph G is the adjacency matrix, A. A, ;

describes similarity between V; and V.

Diffusion kernel creation

Diffusion kernels are based on the heat equation and can be thought of as discrete versions of
Gaussian kernels (Kondor and Lafferty, 2002). To compute the diffusion kernel, the Laplacian

of the combined protein-protein interaction graph above G was initially calculated as:
L=D-A (2.1)

where D is the diagonal matrix and A is the adjacency matrix of the graph. The Laplacian

L of G was used to compute the kernel K:

K = Pt (2.2)
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where 3 is the bandwidth parameter. The effect of diffusing the flow of information across

proteins according to the bandwidth parameter 8 can be seen by:

2 3
eﬂL:I+ﬁL+%L2+€L3+... (2.3)

where [ is the identity matrix (Schélkopf, Tsuda, and Vert, 2004). To calculate information
diffusion from a random walk around proteins with known circadian phenotypes, the kernel

K was multiplied by P to generate a score S
S = PK (2.4)
where

1, if an Abnormal Circadian Phenotype is annotated to a a protein

0, otherwise
The resulting feature, the diffusion score S, was obtained with a bandwidth B set to 0.2. I
assembled two features using this approach, each with a score (0,1) for every protein coding
gene in my SCN dataset. The first feature was a diffusion score for each gene expressed in the
SCN in my dataset and participating in predicted protein-protein interactions as outlined
above. The second limited interacting proteins to those which were over-expressed in the
SCN when compared to corresponding liver experiments (log fold change > 2, FDR adjusted
p-value < 0.05). Only genes expressed in the SCN and involved in predicted interactions

were annotated with features for circadian phenotype predictions.

Phenotype modeling and classifier evaluation

To predict classification into presence or absence of an abnormal circadian rhythm phenotype,
the RUSBoost algorithm was used as implemented in the R environment (Seiffert et al., 2010),

(Carnagua, 2015). Fourty-five features (see Supplementary Table 2) were used, comprising
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six categories: protein-protein interaction based diffusion scores, SCN expression, evidence
of liver and SCN cycling and wave characteristics, evidence of paralogous circadian function
in D. Melanogaster, and pan-tissue expression. My target was the presence or absence of
the ’abnormal circadian rhythm phenotype.” To avoid overfitting, I limited each forest of
decision trees to 30 in each iteration of the algorithm. A 70/30 training/test split was used,
maintaining the proportion of each class. Normalization parameters included centering both
training and test splits, and balancing class in the test split only via SMOTE (Chawla et al.,
2002; Torgo, 2010). Feature importance was calculated via the gain of the Gini index given
by each variable in a weighted tree, implemented in the Adabag R package as proposed
in Hastie et. al. (Alfaro, Gamez, and Garcia, 2013; Hastie, Tibshirani, and Friedman,
2009). To calculate feature importance per gene of interest, local linear approximations of
the model’s behavior were deduced using the LASSO (least absolute shrinkage and selection
operator) method, selecting the ten most explanatory features for each gene using the lime

method (Pedersen and Benesty, 2019; Ribeiro, Singh, and Guestrin, 2016).

To test the generalizability of my approach, a repeated resampling study was per-
formed, each generating a new train/test split. Two hundred train/test splits were created,
and the algorithm was optimized on training data and validated on the test split. To measure
the influence of the graph-based measure on training, during each resampling the diffusion
kernel experiment was re-run with additional masking of known circadian genes by setting
all scores in the vector P above (eq.4) to zero. Outcomes with and without masking the
kernel score were retained. Subjects were considered potentially novel circadian genes if they

appeared in the top 90% of re-sampling splits (n = 246).

To characterize the gene function of predicted novel genes across species, gene en-
richment analyses were conducted in the Biological Process domain of the Gene Ontology,
the Mammalian Phenotype, and the Reactome pathway database using the XGR R package
v.1.0.1(Fabregat et al., 2016; Smith and Eppig, 2009; Robinson and Mundlos, 2010). In each

28



Predicting genes involved in abnormal circadian rhythm traits in mouse

analysis, a hypergeometric test and Benjamini-Hochberg false discovery rate correction were
applied, with other settings used as default (Fang et al., 2016; Benjamini and Hochberg,
1995).

Novel candidate prioritization

The 246 ranked novel candidates, with an emitted probability of > 0.5, were kept for further
investigation. Of those with higher expression in the SCN than the liver, candidates with no
known rhythmic process (GO:0048511) annotations were compared with experimental data
from the Allen Mouse Brain Atlas (Jones, Overly, and Sunkin, 2009; Liu et al., 2007) and a
pan-tissue circadian gene expression database (Pizarro et al., 2013). A recent meta-analysis
of both RNA-Seq and RNA microarray studies investigating gene expression in the SCN
and whole brain was also used to bolster evidence from my initial analysis (Brown et al.,
2017c). A recent study of RNA-Seq in the SCN using six timepoints was also interrogated
(Pembroke et al., 2015), to add annotations of evidence of cycling behavior in genes in an

experiment with more timepoints than this current work.

Genes were additionally filtered by their tissue specificity among 27 tissues. RNA-
Sequencing for all available tissues were downloaded from the mouse ENCODE repository
(Mouse ENCODE Consortium et al., 2012) in Reads per Killobase per Million reads mapped
(RPKM) format and averaged for each tissue. RNA-Sequencing reads for each time period

of SCN data were converted to RPKM and then a mean was taken.

A recent benchmark of tissue specificity metrics found the tau statistic from to be a
reliable indicator of the degree to which a transcript is deferentially expressed in one tissue
compared to several others (Kryuchkova-Mostacci and Robinson-Rechavi, 2017; Yanai et al.,

2005). To calculate tissue specificity, I first took the base 2 log then quantile normalized
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the expression of each gene within each tissue. Then within each gene, the expression was

democratized into 10 bins of equal density. Next, the tau controling factor was calculated,

as:
> i (1= 7)
— == 7 26
T S (2.6)
and:
i (2.7)
T<i<nTi

where z; is the binned gene count (0 - 9) for each tissue divided by the max, and N is the
number of tissues which the gene is expressed in. The 7 metric was computed to compare
the degree of which each gene was expressed uniquely in each tissue. Genes with a 7 of 0.85
- 1 in the SCN were deemed to be specifically expressed in that tissue. To calculate the

specificity of each gene, a final calculation is made:

qn
T=1(
max

(2.8)

where gn is the quantile-norm gene count of a gene in a given tissue tissue, and max is the

maximum quantile-normed expression of that gene in any tissue studied.

2.3 Results

2.3.1 Machine Learning predicts 246 potential novel circadian genes

I used an ensemble classifier, RUSBoost with decision trees, to predict if genes were consid-
ered to be circadian or not, a binary classificaiton problem. To access the performance of my
classifier, the first variable importance was measured. As seen in Figure 2.1 A, the feature
which explained most of my model performance was a continuous score S from projecting
genes expressed in the SCN onto a protein-protein interaction graph, netting us information

about how connected each gene is to neighbors who are known to produce circadian traits in
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mouse. Measures of circadian amplitude, cycling potential (normalized adjusted p-values),
expression in the SCN, expression distribution throughout the mammalian body, and known
circadian function in fly homologues contribute to my predictive performance. In order to
predict previously unannotated circadian genes, I trained my model on my entire data set,
resulting in 246 potential genes which may contribute to the circadian phenotype in mouse,
reducing the search space for new circadian genes expressed in the central pacemaker by over
98% Figure 2.1 B, and achieved an area under the receiver operating characteristic curve
(AUROC) of 0.93. To test the generalizablity of my method on such imbalanced data, I
performed multiple permutations of training/test splits, and I measured performance while
masking the graph diffusion features by setting known circadian nodes in the training and
testing sets to the mean of each feature. These metrics allow us to compare my ability
to recover known circadian genes with other machine learning methods, but the biological
relevance of predicted novel circadian genes is best accessed by investigating known gene

functions.

2.3.2 Feature Characteristics

Several features were used in extracting information relevant to circadian classification.
These stemmed primarily from two sources, namely an RNA-Sequencing study of genes
expressed in the SCN and the liver, measured at four timepoints during a 24 hour period,
and predicted protein-protein interactions among those genes. Differential expression anal-
ysis between liver and the SCN at four time points in mouse shows that more genes were
over-expressed in the SCN compared to the those over-expressed in the liver. Interestingly,
over ten thousand genes exhibited 24-hour cycling in the liver (a peripheral clock) compared
to the SCN (Table 2.1). After excluding genes not expressed in the SCN and those not

involved in protein-protein interactions in the STRING database, only 12,502 genes were
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Figure 2.1: Classification results rely on SCN expression and protein interactions to narrow search
space for novel circadian phenotypes. Variable importance of the final model (a) is dominated by
the measure of likelihood of predicted protein interaction with known circadian proteins, seconded
by measures of rhythmicity in the liver and SCN. When serially trained, I predicted 246 genes previ-
ously unannotated with circadian phenotypes to have annotations. Accuracy, area under the ROC
curve with and without graph metrics (AUROC, AUROC without Graph Diffusion), Sensitivity,
and Specificity are depicted for all 200 models on their respective test holdouts (b). The median

performing (by AUC) model’s ROC curve is depicted in panel ¢, with an AUC of 0.93 + /-0.36.
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carried forward for subsequent analysis. Of those, 3058 were significantly over-expressed in

the SCN (FDR-adjusted p-value < 0.05, log fold change > 2).

SCN Liver Both Tissues

All Cycling PPI Al Cycling All Cycling
Expressed 21865 6335 12052 20138 10097 18205 2877
Over-Expressed 6533 1947 3058 3995 2008 - -

Table 2.1: SCN and Liver differential expression statistics. A larger number of genes were signifi-
cantly over-expressed (log fold change > 2) in the SCN versus the liver, while the more significantly
cycling genes were detected by RAIN in the liver than in the SCN. A final protein-protein interaction
network was constructed from 12492 genes expressed in the SCN and participating in interactions
in STRING. Of those, 3058 were over-expressed in the SCN. The analysis was limited to the 12492

genes in the large interaction network going forward.

Gene expression is shown in Figure 2.2. While the differential expression study de-
picted here indicates several modules of genes overexpressed in the liver (left) or SCN (right),
differential expression analysis alone does not reveal known clock genes. Circadian genes with
a known phenotypic manifestation in mouse that were expressed in the SCN are shown in
the insert, failing to hierarchically cluster into biologically meaningful communities Figure

(2.2, insert).

As noted above, previous studies have investigated the specificity vs ubiquity of tissue
expression among the community of clock genes. I measured the expression of genes in the
SCN and 25 mouse encode tissues (Mouse ENCODE Consortium et al., 2012), showing a
uniform distribution of tissues expression among the community of mammalian clock genes,
whereas non-clock genes were found to exhibit a somewhat bi-modal distribution (Figure 2.3
A). T also characterized the degree of cycling of all genes within both the SCN and the liver

across time, visually shown in Figure 2.3 B. Sixteen exemplar clock genes are shown, and
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Figure 2.2: Circadian genes cannot be identified by expression patterns alone. Hierarchical clustering
was performed on the rows of a time series of RNA-Sequencing on liver (left, large heatmap) and
suprachiasmatic nucleus (right, large heatmap) over four time points (Zt3, Zt9, Zt15, Zt21) with
variance stabilizing transformed read counts. Genes contributing to circadian phenotypes (insert)
do not cluster together in the larger expression matrix. Circadian contributing genes are more likely

to be overexpressed in the SCN compared to the liver (insert).
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it should be noted that while some cycle in the SCN (red) with a parabolic or sinusoidal
waveform, others do not indicate expression patterns unique to circadian genes. Several
are more highly expressed in the liver than in the SCN, again indicating the complexity of

categorizing clock genes.

The classification of each gene as circadian or non-circadian rely on varying features
contributing in a non-linear manner towards the decision. Table 2.2 shows the estimated
relative feature importance for each gene in a LASSO generalized linear model, highlighting
the diversity of cycling-detection and protein-protein interaction metrics which influenced

the algorithm’s classification probability.

phase.Liver.Rain

peak.shape.Scn.Rain

JTK_adjphase.Liver

Sytl4 0 0.004782532 -0.001507748
Grp -0.001173762 -0.004860947 0.001170079
Calcr 0 0.004137092 -0.002211773
Trh 0 3.860104e-03 -1.922031e-03
Npas2 0 0.003597015 -0.001559419
LS_ pvalue.Liver meta2d _rAMP.Liver LS_pvalue.Scn
Sytl4 0.030499157 0.031079645 0.024323524
Grp -0.021136905 -0.030154203 -0.015068329
Calcr 0.021488926 0.032092530 0.026492679
Trh 1.807519e-02 2.211730e-02 2.447960e-02
Npas2 0.017161504 0.038264636 0.019437223
LS_period.Scn LS _adjphase.Scn meta2d_ period.Scn
Sytl4 -0.002756362 0.001363876 -0.005244190
Grp 0.004348889 -0.001168412 0.003868879
Calcr -0.003853733 0.001234456 -0.005247058
Trh -2.262622e-03 9.459379e-04 -4.649955e-03
Npas2 0 0.001194213 -0.003534250
origBigDiff meta2d _phase.Scn meta2d _period.Liver JTK _amplitude.Scn
Sytl4 0.303266144 0.001337962 0 0
Grp -0.304644869 0 0 0
Calcr 0.314479838 0.001138545 0 0
Trh 2.905109e-01 0 0 2.861497e-05
Npas2 0.270126899 0.001325216 -0.002642194 0

Table 2.2: LASSO modeled feature importance weights for selected genes highlight different features

important for predicting to have circadian influence in the mouse.

Numerical quantification of each gene in the liver and SCN, including those not ex-

pressed in the SCN and not carried further in my study, is provided in Supplemental Table 1.
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Figure 2.3: Expression between and within tissues identify circadian characteristics. Evidence
of expression was measured (> 1 TPM) in 25 mouse ENCODE tissues and the SCN (in house),
depicted in a density plot 3a. Non-clock genes (blue) exhibit a bi-modal expression, most genes
expressed specifically or ubiquitously. Clock genes annotated in mouse (pink) exhibit a near uniform
distribution. Within liver and SCN tissues, core clock genes are depicted showing cyclic waves across
four time points measured (3b). Among the core clock genes, cycling appears more sinusoidal in
the SCN (blue) and u-shaped in the liver (red). 8852 genes were significantly cyclic in the SCN,
6596 in the liver (FDR p-value < 0.05, RAIN algorithm).
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Each potentially novel gene is given not only a class, but a ranking based on the emitted prob-
abilities from the RUSBoost algorithm. In Supplemental Table 2, quantified measurements
of cycling potential based on three algorithms, non-normalized computed diffusion scores
from predicted protein-protein interaction kernels, as well as measurements from other fea-
tures and external resources are listed for both known circadian actors and all 246 suggested

novel circadian genes.

2.3.3 Predicted novel circadian genes are enriched for shared bio-

logical functions

I accessed both known and unknown circadian genes by performing gene set enrichment
analyses using three sets of ontology/gene annotations. I enriched target genes for their
annotations in the Biological Process domain of the Gene Ontology to survey shared cascades
of molecular functions which contribute to biological effects (Gene Ontology Consortium,
2015). Molecular pathways of those effects were investigated by enriching among pathways
in the Reactome database (Fabregat et al., 2016). Lastly, my target for classification was
genes categorized as contributing to abnormal circadian rhythms in MP. To survey biological

traits observable to human observers, I enriched known and predicted genes in that ontology.

Known circadian genes are highly enriched for not only circadian processes and phe-
notypes (Figure 2.4 red) but also share with genes exhibiting no circadian mouse phenotype
(blue) enrichment for GPCR ligand binding, signaling receptor events, and several behavior
related phenotypes and biological processes. While no known circadian mouse phenotypes
have been associated to the novel 246 genes enriched in the MGI database |please check that
I did not alter the intended meaning|, circadian processes associations are recorded in the
GO biological process domain, as well as circadian pathways relations are identified in the

Reactome database among supposedly non-circadian genes. Both set of genes are enriched
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for abnormal sleep patterns, traits which are intricately related to circadian function.

The 246 putative novel circadian genes were segregated into two groups. The circadian-
related ignorome can be classes as a category of totally novel circadian genes, i.e. there may
be genes with biologically relevant circadian roles which have not yet been envisioned by
chronobiologists. Previously studied genes in my case include genes with identified con-
tributions to circardian biology, but who have no such recorded associations in the MGI
gene/phenotype annotation database. GO, MP, and Reactome enrichments as in Figure 2.4
above can be seen in Figure 2.5 below, with previously annotated genes in panels A,B,C
and the circadian ignorome in D,E,F. Interestingly, both gene sets share signaling pathways
and GPCR signaling events which are also shared with well prototypically characterized
circadian genes. Among the ignorome, which include genes Trh, Sytl4, and Calcr surveyed
above, abnormal synaptic transmission and nervous system physiology are highly enriched
indicating strong CNS function (E). Additionally, feeding behavior is highly enriched in the
GO.

2.3.4 ML highlights the role of Trh expressing neurons in the SCN

Thyrotropin releasing hormone (Trh) is a proprotein regulating biosynthesis of TSH, thyroid
stimulating hormone. As such, Trh deficiencies have been associated with hypothyroidism
in humans (Gary et al., 2003a), but there is no evidence that plays a circadian role in
humans or mammals. My Rusboost based approach predicted potential Trh associations
with circadian phenotypes at over 90% probability. Trh is highly expressed in the SCN
(233.39 +/- 7.99 TPM) and is predicted to interact with several known clock proteins,
including known circadian genes Avp, Cck, Oxt, and Grp. In humans, it has been suggested
that Trh is regulated by the circadian entrainment in the SCN (Gary et al., 2003b). When

comparing the expression of all my genes across 27 tissues, I found Trh to be highly enriched
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in the SCN, with a specificity value 7 value of 0.96 (see methods). In a recent transcriptomics
meta-analysis, Trh is highly enriched in the SCN compared to the whole brain (Brown et al.,
2017c), and has been shown to cycle rhythmically (Pembroke et al., 2015) in the SCN. In
a previous study of a Zthx3 mutant, Trh was shown to interact with several known clock
proteins derived from ChIP-Seq data, including Prokr2, Vip, and Vipr2 (Parsons et al.,
2015).

Feature importance, based on RUSBoost algorithm ranking of several known and
predicted circadian genes, can be visualized in Figure 2.6. Of note, Trh interacts with
several genes and is shown with a high ranking (deep red) in circadian activity while being

highly enriched in the SCN compared to the liver.

P(Phenotype)

Plot Key
® =Cyclingin SCN

® =Cyclingin Both

O = SCN enriched
<> =Known MP

Figure 2.6: Trh is predicted to contribute to abnormal circadian rhythms. Integration of clock
features helps identify known and unknown circadian genes. Genes are situated in a predicted
protein-protein interaction graph using an organic layout. Genes with dark red colors have a higher
probability of contributing to an abnormal circadian phenotype. Larger nodes are more highly
expressed in the SCN compared to the liver (log-fold change). All circular nodes depict genes with
no previous mouse abnormal circadian phenotype, while diamonds represent known ground truth
for classification. Border circle colors indicate cycling in SCN (blue), liver (green), or both (black)

tissues.
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2.3.5 ML predicts Synaptotagmin-like protein 4 contributions to

circadian rhythms

Several involved in protein exocytosis have recently been shown to be involved in circadian
rhythms (Brown et al., 2017¢; Yi et al., 2002). Sylt4 was highly expressed in the SCN (mean
29.75, +/- 0.61 TPM) and interacts with genes in a SNARE complex previously shown to be
involved in circadian regulation, Vamp2 and Snap25 (Oliver et al., 2012b). Sytl4 is not only
enriched in the SCN when compared expression in the liver, but when compared to whole
brain tissue as well (Brown et al., 2017¢). Brown and colleagues experimentally validated
the expressio nof Sytl4 revealed in their meta-analysis. Some experimental studies found the
Circadb database report that Sytl4 cycles in the SCN, but my four time-point study failed

to detect cycling (Pizarro et al., 2013).

2.3.6 Calcitonin receptors may contribute to circadian phenotypes

Calcitonin receptor (Caler) is a G protein-coupled receptor, activating Gs and GQ alpha
subunits when bound to calcitonin (Goda et al., 2018a). While highly expressed in osteo-
clasts to maintain local calcium homeostasis, it is also expressed in several brain regions.
Recent research noted Calcr expression in the mammalian suprachiasmatic nucleus, and the
expression Drosophila Calcr ortholog (Goda et al., 2018b). In my study, features relevant to
Caler include high expression in the SCN (36.5 + /- 0.51 TPM), over expression in the SCN
compared to the liver, and predicted protein-protein interactions with several well character-
ized clock proteins including Vip, Vipr2, and Avp. My algorithm predicts Calcr to influence
abnormal circadian phenotypes in mouse with > 90% probability. In addition to my algo-
rithm’s high ranking results, indicating cause for further investigation, calculations of tissue

specificity reveal a 7 of 1 linked to the SCN, indicating that across 27 mouse tissues measured
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its activity is restrained to the SCN. Calcr was demonstrated to be cycling in the SCN in
several studies (Pizarro et al., 2013; Pembroke et al., 2015), indicative of possible circadian

function.

2.3.7 Recovery of core clock genes lacking mammalian phenotypes

Although circadian processes are highly evolutionarily conserved, several discrepancies exist
among gene annotations in human and mousse when measuring circadian activity at the
phenotype level. I have predicted several known circadian genes to contribute to mouse

abnormal circadian phenotypes. Among them are Npas2, Nocturnin, Rorb, Rorc, and Grp.

2.3.8 Npas2: A recovered Clock gene paralog

Neuronal PAS domain protein 2 (Npas2) is a transcription factor in humans and mice which
acts as a Clock paralog (DeBruyne, Weaver, and Reppert, 2007), rescuing circadian clock
activity in Clock gene knockout mice. However, at least withing the MGI database, no
known circadian phenotype associations have been reported. My algorithm suggests Npas2
contributes to an abnormal circadian phenotype with a high probability (0.98), being mod-
erately expressed in the SCN (6.57 +/- 0.079 TPM), interacting with the core clock ma-
chinery, and cycling in liver tissue. Npas2 was not cycling in my dataset, nor in 3/4 SCN
datasets in CircaDB. Npas2 interacts with as a Clock paralog with core clock genes in the
transcriptional-translational feedback loop, including Bmall, Ror proteins, and the Per/Cry

complex.
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2.3.9 Grp knockouts produce a circadian phenotype

Gastrin releasing peptide is well known to stimulate the release of Gastrin in the stomach, and
is also well characterized in circadian pathways. McArthur and colleagues showed that Grp
shifts the phase of SCN nuclei as part of the circadian entrainment pathway (McArthur et al.,
2000). My results depicted Grp cycling in the liver (FDR = 0.0048) and being deferentially
overexpressed in the SCN. Grp was expressed with a mean TPM of 6.01 +/- 0.26 in the
SCN, and had enriched expression in the SCN compared to the whole brain in both Brown
et al’s meta-analysis and Pembroke et al’s time series study, who additionally found evidence
for cycling in the SCN. Grp is known to interact with many clock genes, including known
circadian actors, including Oct, Prokr2, Cck, Nmu, and App. To compare the degree to which
Grp’s role in circadian biology is evident on the phenotypic level, experimental validation was
performed. Circadian phenotyping comparing female C57B1/6N wildtype with Grp”/~ mice
indicate a reduced circadian amplitude, period, and period onset in constant darkness (DD),
and also a decreased period in in a 24 hour light-dark cycle (D), Figure 2.7. Representative
actograms are shown in Figure 2.8, with five days of wheel running in an LD cycle, and the

remainding in DD suggesting a loss of entrainment between WT and Grp”/~ models.

2.4 Discussion

Features for circadian phenotype prediction were generated from two approaches: gene ex-
pression studies and mining potential protein-protein interactions. It is worth noting that
several canonical clock genes do not share all features measured. For instance, the Clock
transcript does not cycle in the SCN, and several clock genes exhibit decreased expression
in the SCN compared to their expression levels in the liver. Using the RUSBoost algorithm,

which is particularly suited to classifying skewed data, allowed us to capture non-linear
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Figure 2.7: Grp -/- mutants exhibit a statistically significantly set of decreased circadian parameters
as defined by periodogram measurements when compared to wild type. This includes amplitude
in constant darkness (DD) as measured by a chi-squared (A) and Lomb-Scargle periodogram (B),
period in as similarly measured (C,D), decreased period in a 24 hour light-dark cycle measured by

Lomb Scargle (E), DD period onset (F), and DD interdaily variability.
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Figure 2.8: Under an initial 5 day reference period, wild type (A) and Grp knockout (B) were kept
in a 24 hour light-dark (LD) cycle. The following days are under constant darkness (DD). Lights
are switched on at 7am and off at 7pm as indicated in the top x-axis label. Y-axis labels indicate
day. Lights on is zt0, off zt12. Black histograms measure activity. Wild type activity appears more

stable under DD (A) compared with the Grp mutant in identical conditions (B).

relationships between features generated.

2.4.1 Exploiting expression knowledge within and among tissues

The cycling metric was generated by using the RAIN algorithm, and I also employed the
widely used cycling detection algorithm JTKCycle (Hughes, Hogenesch, and Kornacker,
2010b). Both JTKCycle and RAIN use non-parametric slope tests to account for statistically
unexpected forms. Unlike RAIN, asymmetric expression shapes are assumed to be aperiodic,
enabling capture of non-sinusoid rhythms by JTKCycle. My experimental setup was limited
to four time points in 24 hours. To compensate for the lack of two periods worth of coverage,
I imputed time points for a second day. This was done to increase the power of RAIN to
detect rhythms which are evident when observed by eye. Additional cycling experiments

were run with JKCycle and the Lomb-Scargle periodogram method (Scargle, 1982; Lomb,
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1976). Although imputing another 24 hours of expression data carriers much extrapolation,
it was deemed reasonable for detecting 24-hour periodicity. Cycling algorithms perform best
with repeated time points within a series as evidenced by comparing cycle detection in public
databases (Pizarro et al., 2013), and doubling my time points increased my ability to detect
cycling patterns. This does have a major limitation, however. By doubling the time points,
I may have also increased the false positive rate of detecting significantly cyclic patterns in
the data. This would be particularly likely when the algorithms attempt to compute changes
within windows involving both zt21 and the "next day" zt3, where no actual measurement
occured. If a high expression of a gene in zt21 is followed by a low expression in the imputed
zt3, a false positive oscillation will be observed. This increased false positive rate must be
considered when reporting these results. For this reason, I focus on the ability of real or
imputed cyclical measurements to predict circadian activity repeated train/test splits, and
not in reporting any cycling measurements as scientific findings themselves. To produce more
valid results, data with more than four time-points and over 24 hours would need to be used.
An observation easily seen when querying public cycling databases is that measures of cycling
are not always in agreement, as methods of detecting period, phase, and amplitude all vary.
This is evident in my features table, Supplementary Table 2, providing further evidence of the
care with which these data should be interpreted. Tissue ubiquity was used previously as a
feature in previous circadian gene predictions (Anafi et al., 2014b). To accomplish this, I re-
normalized my DESeq2-normalized read counts to Transcripts per Million, giving each gene
a percentage of one experiment’s total expression. This facilitated comparison of transcripts
between labs and tissues with different library sizes. Some discrepancy arose between my
read calling and that of mouse ENCODE due to Ensembl transcript versions used. Therefore,
some genes included in my dataset had missing tissue ubiquity measurements. While I did
impute missing values with median values, this may not reflect reality. This feature did
not heavily influence my classifier results, as tissue specificity was used as a post-algorithm

augmentation of my results rather than as feature input. The calculated 7 value of SCN-
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specific genes was a useful measure of tissue specificity across a wide range of organs and

brain regions.

This chapter used, as primary input, data from the liver and the SCN. As mentioned
in the introduction, there is an interplay between the regulation of the central and periph-
eral clocks. A widely studied endogenous zeitgeber is melatonin, which increases expresio
nof Cry2, Blam1, and Perl proteins and maintains oscillations independent of those proteins
(Chen, Zhang, and Lee, 2020). Besides melatonin, oscillations within the liver may be the
most well-studied. Liver clocks may be entrained non-photically, and feeding cycles are the
dominant zeitgeber for these clocks (Finger, Dibner, and Kramer, 2020). Gastrointestinal
hormones, including VIP, gastrin, ghrelin, and cholecystokinin are produced with a circadian
or rhythmic cycle, and feedback mechanisms to the SCN are currently under heavy investi-
gation especially as this affects adiose homeostasis (Landgraf, Neumann, and Oster, 2017;
Landgraf et al., 2015; Crosby et al., 2019; Guo et al., 2005; Buijs et al., 2001). While not
confined to the liver, including a peripheral circadian tissue in this work allows for circadian
signals which would be lost by looking only at the SCN to be gained. Circadian biology
depends on the coupling of oscillators between cells to coordinate the response of external
zeitgebers, including those independent of light (Finger, Dibner, and Kramer, 2020). The
non-linear interactions produced in this chapter’s model by decision trees may indicate mul-
tiple levels of cross-talk between the gene expression and protein-protein interaction data,
which reflects the interaction of biological clocks within brain organs (SCN, hypothalamus),

within distant tissues (liver), and between organs on a system wide level.

2.4.2 Walking across connected proteins

As expression alone could not segregate data based on circadian potential, it was hypothe-

sized that combining the expression study with protein-protein interaction data would yield
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a better predictor of circadian phenotype influence in mouse. Previous work included mea-
surements of interactions with the CLOCK protein (Zhao et al., 2007). I extended this
analysis by incorporating predicted protein-protein interactions of all genes expressed in the
SCN from my RNA-Seq analysis above. The kernel method chosen to produce a circadian-
related score S, with an importance graphically depicted in Figure 2.4 A. The method is
essentially a short random walk around proteins previously annotated with circadian MP
terms. The score reflected two elements of graph architecture: the degree of nodes (how
many proteins a protein was interacting with) and path distance (how may steps it would
take to walk between any two given proteins). A similar feature was produced using only
deferentially over-expressed genes in the SCN, chosen to reflect the importance of the cen-
tral pacemaker clock in producing circadian phenotypes in mouse. Proteins near multiple
circadian nodes receive a higher score than more isolated nodes, quantifying their relative
likelihood of contributing to circadian phenotypes from guilt by association. When perform-
ing cross-validation, I chose to mask the evidence of circadian nodes, thus predicting how
much my score S relies on previous MP annotations. While the S score was a highly impor-
tant feature in my analysis, my feature importance metrics highlight the role of traditional
metrics of circadian analysis, such as phase and peak amplitude. Using a robust random for-
est approach, I were able to segregate my data with near 100% recall /sensitivity. However,
I aimed to predict potential novel circadian genes, and the performance of the RUSBoost
machine provided a balance between a high-positive rate achieved by a random forest, and
a low recall achieved by a naive-Bayes approach. My annotations from the Mammalian
Phenotype ontology were obtained in 2016, and I inspected records from May 2020 for any
of my novel predictions. Of the genes in my analysis (those highly expressed in the SCN),
seven which I labeled as 'non circadian’ have now been annotated as influencing abnormal
circadian rhythms in mice. Of these seven, Pth2r was predicted by my approach to be a

circadian gene.
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2.4.3 Prevously studied genes reveal annotation disparities

The protein Neuronal PAS Domain 2, NPAS2, has been shown to have paralogous functions
to those of the CLOCK protein. Based on homologous structure, the STRING database pre-
dicted NPAS2 to interact with partners of CLOCK. Previous Npas2-knockout experiments
have failed to produce circadian phenotypes, though one experiment did observe the "ab-
normal sleep pattern" phenotype on a mixed-strain background (Garcia et al., 2000). While
they observed disrupted sleep bouts, no abnormal circadian phenotypes were reported. A fol-
lowing study reported GO biological process descriptions of circadian rhythm processes, but
reported no abnormal circadian mammalian phenotypes (Dudley et al., 2003). Circadian-
related activity of Npas2 has been observed in the mouse forebrain and in peripheral tissues,
thus a tissue-specific role of Npas2 may explain the lack of abnormal circadian phenotype

observed in mouse.

Grp, a well characterized clock protein, was likewise predicted to contribute to cir-
cadian phenotypes on perturbation. While Grp has been characterized as a contributing to
circadian rhythms for well over a decade (McArthur et al., 2000), there is no evidence of this
in the mouse genome database. Indeed, investigation of Grp reveals reported phenotypes

" and three 'normal’ behavioral /neurological phenotypes.

of "abnormal grooming behavior,'
While it is understandable that several circadian genes may be under reported in phenotype
databases, or may not produce a circadian disruption observable as a measured trait on the
organismal level, using a machine learning approach revealed disparities between literature
and organism databases. This validation of my predictions both provides phenotypic evi-
dence of Grp in the MGD database for other researchers to use, but creates a further link on
the phenotypic level between circadian biology along the gut-brain axis. As many circadian

genes are well characterized but lack mammalian phenotype annotation, finding closes an

annotation gap in the widely used Mouse Genome Database (Bult et al., 2019a).
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2.4.4 Illuminating the circadian ignorome

Several likely candidates among my 246 potential novel genes have external supporting ev-
idence. While tissue specificity, whether measured by a standardized Z-score in a meta-
analysis, differential expression between tissues, or a 7 measurement is indicative of tissue-
related function. In the SCN Calcr, Trh, and Sytl4 are all enriched for SCN-specific action
indicating a possible circadian function. A meta-analysis recently experimentally validated
the presence of Sytl4 in the SCN, and functional validation is needed to characterize it’s
potential role. Calcr, the receptor for calcitonin, was previously investigated for circadian
function by researchers guided by enrichment in the SCN among orphaned G-protein cou-
pled receptors (Doi et al., 2016). Doi and colleagues’ analysis involved generation of a mouse
knockout model on the 129P2/0OlaHsd x C57BL/6J strain background, and compared its
circadian behavior to a line backcrossed to C57BL/6J for 10 generations. As interstrain
variation even among C57BL/6 mice has been shown to affect phenotype, it is reasonable
to hypothesize that no abnormal circadian effect was observed due to strain differences (Si-
mon et al., 2013). Additionally, it has been demonstrated that while Caler is not required
for coordinating locomotion-based circadian traits, it has recently been shown to regulate
circadian variation in temperature when mice are active (Goda et al., 2018b). Lastly, the
role of Trh in circadian rhythm processes has known in essential homeostatic processes in
chronobiology (Gary et al., 2003b). While it is expressed in multiple brain regions and body
tissues, Trh and Trhr both localize to the SCN in rat (Manaker et al., 1985). As it is also
located in retinal ganglia, the hormone may play a role in circadian entrainment via light
(Lexow, 1996). In hampsters, injection of TRH into the SCN shifted wheel-running phase
(Gary et al., 1996). This again provides evidence of a circadian function, but does not guar-
antee that perturbation or knockout of a gene, and therefore disruption of endogenous TRH
protein, would produce observable circadian phenotypic traits. Just as exogenous Leptin

did not produce the expected effect in humans that was observed in mice, further experi-
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mentation with Trh will be needed to verify an effect on circadian phenotypes in mammals

(El-Haschimi and Lehnert, 2003).

2.5 Conclusions

Ultimately, this study demonstrated both the utility of using machine learning to predict
abnormal circadian phenotypes, and the potential pitfalls of using observable single traits
(phenotypes) as ground truth in biological exploration. Machine learning has been applied
in various forms to a range of biological problems, including in recent large scale competi-
tions to access prediction of both biological processes (GO) and potential human phenotypic
traits (HPO) in unannotated proteins (Radivojac et al., 2013). Rather than relying simply
on amino or nucleic acid sequences, I have demonstrated the utility of combing multiple
forms of biological information (protein interactions and multiple measures derived from
gene expression) to make biologically relevant predictors. As several of my predicted genes
have known circadian roles, I expect that high throughput phenotyping screens such as the
International Mouse Phenotyping Consortium may rectify the uncovered annotation dis-
parity between GO and MP databases (Brown and Moore, 2012b). Ultimately I expect
several genes ranked high on my list of potential novel genes to provide increased insight
into chronobiology. Features included in my predictive analysis cannot discriminate between
genes which affect core clock machinery, and thus play a role in circadian periodicity, and
genes which are effected downstream of core clock genes and produce peripheral circadian
phenotypes, such as abnormal circadian temperature homeostasis. Regardless, as circadian
biology impacts every tissue in both human and murine anatomy, I expect my predictions to

be useful in prioritizing candidate genes for investigation by experimental chronobiologists.
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2.6 Chapter Summary

In this chapter, I applied several statistical and machine learning methods to characterize
and predict genes which are involved in producing abornomal circadian rhythm phenotypes
in mouse. The results demonstrate that leveraging information from orthologs, predicted and
verified protein-protein interaction networks, and gene expression across tissues in mouse can
improve the ability of classifying circadian genes based on study of the transcriptome. It
highlights the importance of looking outside the SCN for rhythmicity, as both liver and SCN
were useful features. Thanks to experimental colleagues, one well studied circadian gene,
Grp, has been validated to produce abnormal circadian phenotypes in mouse. Others are
being used in grant applications and will be analyzed in additional studies, aiming to further
validate findings observed in this chapter. Experimentalist colleagues will be able to use both
the final gene candidates and the detailed feature annotation, from tissue specific expression
to cycling analysis, to guide broad gene characterization experiments. Finally, the central
role that protein interaction networks played in this chapter should not be understated.
Future applications of this integrative approach will leverage tissue-specific predicted protein
interaction networks along with the extensive amount of tissue-specific circadian cycling gene
studies available, addressing links between peripheral clocks other than liver and the SCN

(Pizarro et al., 2013).

As discussed in this chapter, circadian biology impacts several areas of health from
metabolism to neurology. This chapter has used tissue-specific transcriptomic data from
mouse to model the likelihood of genetic disruptions influencing circadian biology as revealed
by some phenotypic manifestation. A commonly measured circadian phenotype in humans
is chronotype, a measure of circadian period which can be dichotomized into "eveningness"
and "morningness". In the following chapter, I investigate the relationship between a genetic

exposure to chronotype and mental health and social outcomes in humans, using genome-
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wide association studies and a method of modeling causation, Mendelian Randomization.
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Chapter Three

Evaluating the causal relationship
between circadian chronotype and

psychosocial behavioral traits

3.1 Background and Chapter Overview

As discussed in Chapter 1, this thesis addresses questions in neurobehavioral genetics using
a combination of approaches, ranging from predictive modeling with transcriptomics to sta-
tistical inference using genomics. In this chapter, I use Mendelian Randomization (MR) to
the causative relationship between chronotype (a measure of circadian influence) and several
neurobehavioral traits. First, I give a brief overview of Genome Wide Association Studies
(GWAS), which form the basis of MR analyses. Then I describe the UK Biobank cohort used
in this chapter. I then describe the statistical assumptions of MR and the methods used,
before presenting results. For a review of MR itself, see (Davey Smith and Ebrahim, 2003b).
This chapter contains three analyses relating chronotype to traits. First, I access the influ-

ence of chronotype on mental health, hypothesizing that 'morning’ and ’evening’ chronotyped
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individuals will experience different mental health conditions partly due to their chronotype
alone. Secondly, in a related study, I investigated measures of social support in the UKBB.
Circadian entrainment can be influenced by social cues and patterns, thus chronobiology may
influence social support related phenotypes. Lastly, I study the influence of chronotype on
keratometry (ophthalmetry) index measurements. These measurements attempt to capture
the degree of corneal power and the aim of this work was to employ keratometry measures
to assess whether circadian rhythm traits can influence eye morphology, given the fact that

light that reaches the eye forms the primary zeitgeber in humans.

3.1.1 Genome Wide Association Studies

Prior to the completion of the human genome project (Lander et al., 2001), associations be-
tween genetic variants and phenotypic outcomes were obtained through twin or family based
linkage disequilibrium studies (Merikangas et al., 1998). While successful in finding causes of
high powered monogenic disorders within pedigrees, there was little power to detect associa-
tions between genetic variants and complex diseases. Early literature suggested that GWAS
would bring increased power to detect small effects common in complex disorders (Risch
and Merikangas, 1996). Recently, an omnigenic model of complex disease manifestation has
been proposed, in which small variations in SNPs together act to explain the heritability of
a complex trait, a notion which would be lost when investigating Mendelian disease (Boyle,
Li, and Pritchard, 2017; Wray et al., 2018a). To investigate this omnigenic model, GWAS
are retrospective observational studies which test associations between several hundred thou-
sand or often over a million SNPs, chosen in an unbiased manner across the genome, to a
given trait (Bush and Moore, 2012). Within the context of a disease, studies often have
a case/control design wherein the alleic frequency, or dose, is measured in patients with a

condition and matched control subjects. In a naive approach assuming a biallelic SNP and
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two populations, a x? test can be conducted to obtain a test statistic, and then a p-value
of the association based on the extremeness of the statistic under a y distribution. From
this "2x2" table analysis, odds ratios can be constructed to measure the effect of a SNP on
a patient, or case, population characterised by a particular disease. If the prevalence of the
disease is known, then a useful relative risk statistic can be obtained (Clarke et al., 2011).
If a trait of interest is continuous and not a disease state itself, then linear regression is
used. Likewise, instead of a 2 test, logistic regression can be used to test for associations
between alleleic dose and conditions. In practice covariates are used in the GWAS which is
modeled. Typical covariates include any factors which may denote difference between pop-
ulations not related to the disease itself, whether mediating or moderating variables. These
typically include the loadings from a principle component analysis (PCA) which are used to
account for the genetic heterogeneity between large population groups, often accounting for
variations in ethnicity. Other common covariates include the technology or centre used when
performing sequencing or assays, age, body mass index, and sex. GWAS can be facilitated
by the availability of genotype and phenotype data from large consortia. In recent years, the
use of genomic biobanks (Bycroft et al., 2018; Bourgeois et al., 2017; Gaziano et al., 2016),
which combine deep phenotyping with genomic assays and long-term followup in a prospec-
tive study design, have facilitated both population level and personalized epidemiological

studies.

3.1.2 Mendelian Randomization

Epidemiology is the population-level study of the origin (etiology), spread (distribution), and
prevention of disease. Traditionally, most levels of inference in epidemiological studies are
associative - they can correlate hazardous exposures such as disease or lifestyle factors with

health outcomes. Correlation analyses are improved when potential moderating variables
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are accounted for. In a hypothetical example, lung cancer rates may be correlated with the
use of matches for light cigarettes, but it would be a mistake to say that matches themselves
are a primary driver of the disease and not smoking. To model the directionality of an effect,
causal models based on instrumental variables are used. Originally derived from economics,
instrumental variables (IVs) are variables which strongly predict an exposure but have no
association with the outcome studied that in turn is not mediated by the exposure (Kang
et al., 2014). Since the advent of widely available GWAS, Mendelian randomization has
used genetic variants as [Vs. The fundamental assumption is that, because of independent
assortment (Mendel’s second law), genetic variants should be randomly distributed within a
population. If we have deep phenotyping or outcome data, and those data co-occur or co-
vary with the presence or absence of an allelic IV, then this IV can be used as a population
level randomizer similar to what is seen in a randomized controlled trial (Davey Smith and
Ebrahim, 2003b). This mimics the experimental design of a randomized controlled trial, as
seen in 3.1a. Here, a study population is randomized into treatment and control groups,
which are then given an intervention or treatment (treatment arm) or a placebo or standard
of care (control arm). The patients in each group are followed up to investigate the efficacy
of an intervention. It is assumed that, over a population matched for age, sex, and other
potential confounding variables that other mediators or moderators will be evenly distributed
between groups and thus not impact the trial design. In an MR experiment, the design is
similar 3.1b. A sample of a population is split, by the random assortment of alleles at birth,
into two cohorts with the minor and major allele (assuming a biallelic SNP). Observed effects
are treated as lifetime exposures to the outcome of interest, assuming the resiliency of the

genetic code to mutations over a normal sample of a population.

By using genetic variants as the basis for causative modeling, MR can allow for
stronger causal inference than genetic correlation experiments and model counterfactuals

during experimental design. On a level of inferential trust between an observational study

58



Evaluating causal relationships between chronotype and psychosocial behavioral traits

Figure 3.1: Study designs of Randomised Controlled Trials and Mendelian randomization. Random-
ized controlled trails (a) begin with a sample population, randomly split into treatment and control
study arms. In each arm, an intervention or therapeutic agent (treatment arm) or a placebo (control
arm) is given. Then patients in each arm are tested for changes induced by the drug or placebo. In
a Mendelian randomization experiment (b), a population-based sample is included, and the random
assortment of alleles in instrumental variables is used to stratify individuals into different genotype
groups for each SNP. Observed effects of exposure (SNP) on the outcome measured are considered

lifetime exposure effects since the genetic code is resilient.

in model organisms, an observational study in humans, controlled experimental studies in
model organisms, and randomized controlled trials in humans MR can be thought of as
stronger than observational evidence and suggestive of experimental effect. In an MR "trial",
nature has randomized the population into cases and controls based on the presence or
absence of a specific allele, and a treatment affect can be thought of as a proxy for lifetime
exposure, since the randomization into treatment and control groups occurred at conception.
Early applications of MR modelled exposure to disease and well-known mechanism, such as
the influence of C-reactive protein and inflammation, and have been expanded to cover
both treatable and non-treatable exposures, modeling variants from either a mechanistic

perspective or those found through GWAS (Burgess and Thompson, 2017).
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Mendelian Triangulation and Assumptions

MR employs IV analysis for causative inference. Any causative modeling study can be
graphically displayed using directed acyclic graphs (DAGs) (Pearl, 1995). DAGs are directed,
meaning information between two nodes of a graph must flow in one direction from node A
to B, but not both. They are acyclic, meaning that on a path form A to B to C, there cannot
be a path from C to A. In modeling ontologies, this assures that the transitive properties of
relations are maintained and that the logic underlying deductive reasoning will not break. In
causal inference and experimental design, this helps ensure that an outcome will not influence
an exposure, or that a confounding variable not provide an additional path between an IV
and an outcome. There are three fundamental assumptions of causative inference in the MR

context which must be satisfied for an IV analysis to be valid (Burgess et al., 2020):

1. The IV (allele) must not associate directly with an exposure

2. The IV must not associate with any potential confiding variables, which then associate

with the outcome

3. The IV must not associate directly with the outcome, except as mediated by the

exposure.

This is graphically depicted in Figure 3.2. When drawing DAGs for causal inference,
a solid line indicates a path between two variables. Dashed lines in this figure indicate paths
which, if followed, violate the assumptions above. The genetic variant is the allele used as
an IV to segregate the population. The IV is selected by its association with the exposure,
either through biochemical knowledge (such as the IL-6 locus for exposure to inflammation)

or through a data driven approach (GWAS).

Instrumental variable analysis relies on strong assumptions, and occasionally unver-
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Figure 3.2: Mendelian randomization experimental design. We are primarily interested in the effect
of an exposure on an outcome. Observational studies, which report the associations between an
outcome and exposure, are subject to confounding and are by nature correlative only. By using a
correctly designed genetic instrumental variable that associates with the exposure but not with out-
come, confounding can be avoided via 'Mendelian triangulation.” Panel A depicts the conceptional
model. FEach solid black line represents directional association, and each dashed curved line rep-
resents directional associations which will violate the model if present. The following assumptions
must be satisfied:

i. The genotype must associate directly with the exposure, panel B. ii. The IV must not associate
with any potential confounding variables which then directly associate with the outcome, panel C.
iii. The IV must not associate directly with the outcome except where mediated by the exposure,
panel D.

Originally published in (Sekula et al., 2016)
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ifiable conditions (Labrecque and Swanson, 2018). Subject knowledge is the most reliable
method for concluding assumptions are valid, especially when choosing exposures and out-
comes correctly. A naieve, phenome-wide search for causation between traits is likely to
include among many tests non-plausible experimental designs, leading to an artificial in-
crease in multiple testing burden and design flaws. Adjusting for covariates, including prin-
cipal component analysis to take into account population differences and combining different

methods of MR analysis will assist in adding robustness to MR analysis.

To calculate the causal effect for one SNP of interest between two independent sam-
ples, the [ estimate from linear or logistic regression of the exposure on the allele and
outcome on the allele of interest are obtained from GWAS. Then the Wald ratio is obtained,

giving a measure of the effect of the exposure on the outcome:

ﬂYj

0; = ﬁ_X] (3.1)

where By ; is the effect of the IV on the outcome, and Sx; is the effect of the IV on
the exposure is obtained for SNP j, and 9 is the effect size. This new effect size forms the
basis of all analyses presented in this chapter. In each analysis, the summary-level statistics
from GWAS are obtained, namely S and the standard error, se, of the 5. Rather than
being considered individual level data, these are summary statistics reflect population-level
estimates in each non-overlapping population used. During the GWAS, as mentioned earlier,
these (s are both adjusted for the same covariates to minimize study bias (Davies, Holmes,
and Smith, 2018). These are considered two-sample MR studies, and one-sample MR studies
can also be performed. This involves two-stage least-squares regression. First, the exposure
is regressed on the IVs and covariates. Predicted values of the exposure from the first

regression are obtained, and the outcome is regressed on those predicted values using the

same covariates. For two non-overlapping samples, two sample MR using a meta-analytic
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method (inverse variance weighted, IVW) is asymptotically equivalent to the 2SLS method
(Burgess, Butterworth, and Thompson, 2013). The IVW method is the most powerful
estimate of causal effect when all genetic variants are valid IVs (Burgess, Dudbridge, and

Thompson, 2016).

3.1.3 Previous Mendelian Randomization Studies of Chronotype

With the advent of large biobank cohorts to provide GWAS, there have been several recent
MR studies looking at the causal influence between chronotype, sleep and several physiologi-
cal and behavioral traits. Lind and colleagues found significant genetic correlations between
oversleeping, insomnia, and undersleeping exposures with an outcome of post traumatic
stress disorder (Lind et al., 2020), but when testing for causality via did not find evidence
for causal effects of sleep phenotypes on post traumatic stress. Adams and Neuhausen
were interested in the interplay between chronotype and free fatty acid circulation, and also
between free fatty acids and type two diabetes (Adams and Neuhausen, 2019). So as to eval-
uate this, they conducted a two Mendelian randomization studies using two sample data,
and found that morning chronotype is associated with lower total fatty acid levels (IVW g
-0.21, p = 0.02) and that elevated fatty acid levels are associated with a decrease in diabetes,
granting a protective effect (IVW §-0.23, p = 0.01). They then extended their analysis to
include subtypes of free fatty acids and their conclusions held, indicating that a morning
chronotype is associated with lower mono-unsaturated fatty acid intake. Richmond and col-
leagues sought to model sleep traits and risk of breast cancer using Mendelian randomization
methods, using chronotype, sleep duration, and insomnia GWAS for instrumental variable
selection (Richmond et al., 2019). They modeled the UK Biobank in a one-sample fashion,
using a two-stage least squares regression approach instead of splitting the cohort into two

non-overlapping samples, and showed a morning chronotype to be protective against breast
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cancer (Odds Ratio 0.85). Two sample modeling with an independent cohort supported these
findings, showing morning chronotype (IVW OR 0.88) was protective against breast cancer,
while increased sleep duration has a detrimental effect (IVW OR 1.19). Gibson investigated
bi-directional causal effects between smoking and sleep duration and chronotype (Gibson et
al., 2019). They found no clear evidence that smoking initiation influenced sleep behaviors
directly, nor evidence for causal effects between chronotype on smoking behavior. However,
they did find evidence that insomnia could lead to an increase in smoking behavior (IVW
1.21, p = 0.02) in an underpowered analysis. Treur modelled caffeine consumption and sleep
traits, including chronotype, sleep duration, and history of insomnia (Treur et al., 2018).
While the association between caffeine consumption and disturbed sleep is well known, and
their analysis did show strong genetic correlations between those traits, an extensive two
sample MR using IVW and MR-Egger meta-analyses failed to produce significant causal
associations. On a wider scale, Lane and colleagues used MR analysis as a follow-up to
their first GWAS of chronotype using the UKBB (Lane et al., 2016). They found significant
associations between evening phenotype and years of education increasing and self reported
schizophrenia diagnosis, and associations between a morning chronotype and a decreased

body mass index (BMI).

3.2 Methods

A general workflow for the several MR studies in this chapter are depicted in Figure 3.3.
Data can be acquired from previously performed GWAS studies with data deposited in the
GWAS Catalog, MR Base, or another database. Additionally, researchers may conduct their
own GWAS using data they have available. I have done this in order to ensure that I include
appropriate covariates during the GWAS itself. Next, to ensure sample independence, the

UKBB population is split into two groups randomly, each with half the population. Then
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GWAS are conducted and held for further analysis. A discovery set of SNPs are obtained from
an outside data source. Next, effect sizes and their variance from each GWAS are extracted
for the discovery SNP loci. Data are then combined, and the effect sizes meta-analyzed
to produce an MR study. Lastly, post-hoc analyses are performed to test for pleiotropy,
directionality of effect between exposure and outcome, and the influence of specific SNPs in

the model.

3.2.1 Data Acquisition

To obtain an unbiased set of SNPs which associate to chronotype, I downloaded all significant
(<= 9.000e-6) variants from a 2016 GWAS conducted by 23andMe (Hu et al., 2016) via
GWAS Catalog (MacArthur et al., 2017), accession GCST00342, a total of 77 SNPs on 20
Jan, 2020.

Experimental Data

The UK Biobank (UKBB) (Bycroft et al., 2018) was initially proposed by the Wellcome
Trust and the Medical Research Council, with the goal of identifying risk factors for human
disease (Collins, 2012). The resource focuses on middle age adults, largely of European de-
scent. A plethora of biological samples and exams were taken from each subject, including
genetic material, magnetic resonance imaging (MRI) of several body regions, health and
lifestyle questionnaires, and medical history data. The UKBB aims to recruit 500,000 in-
dividuals, a large sample size reflecting the likelihood of any one individual developing a
given disorder or disease (Collins, 2012). Participants signed electronic concent declara-
tions, and the UKBB received ethics approval (Bycroft et al., 2018). For a full descrip-
tion of the resource and every measure available for use upon approved application, see

https://biobank.ctsu.ox.ac.uk/crystal/, with further details available as reported previously
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’ Obtain Discovery SNPs ‘

’ Split UKBB into Exposure and Outcome Samples

’ Curate Phenotype Coding from UKBB ‘

l

Perform GWAS against Chronotype on Exposure and each phenotype on Outcome ‘

’ Clump Discovery SNPs LD ‘

Extract Discovery SNPs from Exposure and Outcome

’ Harmonize Samples ‘

Perform IVW Mendelian Randomization Meta-Analysis

’ Check for Pleiotropy and Directionality of Effect

Figure 3.3: Mendelian Randomization workflow for testing the causal influence of Evening Chrono-
type on psychosocial and vision traits from the UK Biobank (UKBB). Discovery SNPs associating
with chronotype are obtained from an outside population. The UKBB is split into exposure, which
has a GWAS performed against Chronotype, and Outcome, which has a GWAS performed against
another trait. Discovery SNPs or proxies are extracted from each GWAS, using clumping to ensure
SNP independence. Data are combined, and an IVW meta-analysis of effect sizes from GWAS is
performed, followed by tests for pleiotropy, directionality, and sensitivity. SNPs = single nucleotide
polymorphisms, LD = linkage disequilibrium, GWAS = genome wide association study, IVW =

inverse-variance weighted.
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(Bycroft et al., 2018; Collins, 2012). The research in this chapter was performed under

project number 31224.

UK resident participants registered with the National Health Service (NHS) were
recruited between 40 and 69 years of age between 2006 and 2010. At baseline, partici-
pants donated blood and urine, and completed self assessment questionnaires relating to
lifestyle, medical and family history (Allen et al., 2014b; Collins, 2007). As of July 2020,
488,264 participants have been recruited and genotyped. Participants completed self-guided
questionnaires on centre computers with the aid of in-built help systems when prompted.
Genetic data were extracted from blood as previously described (Bycroft et al., 2018; Collins,
2007). Deoxyribonucleic acid (DNA) was extracted at baseline, and initial genetic data from
Affymetrix arrays were released in May 2015 and July 2017 (Bycroft et al., 2018). The first
release included 150,000 participants, with 50,000 genotype using the Applied Biosystems
UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) Axiom Array, and all other
participants genotyped via the Applied Biosystems UK biobank Axiom Array (Bycroft et
al., 2018). Both arrays share 95% of markers. Genetic SNP arrays can use imputation to in-
crease coverage, which was performed as described (Bycroft et al., 2018). Multiallelic SNPs
or those with a minor allele frequency (MAF) of < 0.01 (1%) were removed prior to im-
putation, The UK10K and Haplotype Reference Consortium (HRC) reference pannels were
the basis for imputation, performed by the MRC-IEU unit (Howie, Marchini, and Stephens,
2011; Huang et al., 2015). Individuals self identifying as "White British’ and having similar
ancestry by clustering with others of the same ancestry in PCA were included, while those
with a high degree of kinship to others in the biobank were excluded. The MRC-IEU also
preformed quality control during imputation, excluding individuals with a sex mismatch be-
tween self reported and genetics, or any individuals with sex-chromosome aneuploidy. For a
full description of imputation, see (Bycroft et al., 2018), and for a full description of in-house

MRC-IEU quality control see (Ruth Mitchell, 2019).
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Phenotypic data were obtained for the following fields for use in three studies in
this chapter (Table 3.1). Three studies were conducted. First, a study of the influence
of chronotype on self-reported mental health related traits. Then, a study of the effect of
chronotype on social support and lifestyle factors. Lastly, a study encompassing the influence
of chronotype on measures of eye health, taken by the best keratometry index measurements
in the UKBB. When a categorical response has multiple values, they are separated into

binary 1/0 outcomes for individual analysis.
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Trait Outcome Sample Size Type UKBB Showcase Study
1 Ever highly irritable/argumentative for 2 days 74750.000 Binary 4653 Mental Health
2 Leisure/social activities: Religious group 230684.000 Binary 6160 Social Support
3 Leisure/social activities: None of the above 230684.000 Binary 6160 Social Support
4 Ever manic/hyper for 2 days 74572.000 Binary 4642 Mental Health
5 Guilty feelings 225352.000 Binary 2030 Mental Health
6 Seen doctor (GP) for nerves, anxiety, tension or depression 229780.000 Binary 2090 Mental Health
7 Illness, injury, bereavement, stress in last 2 years: Death of a close relative 229871.000 Binary 6145 Mental Health
8 Frequency of tenseness / restlessness in last 2 weeks 222597.000 Continuous 2070 Mental Health
9 Illness, injury, bereavement, stress in last 2 years: None of the above 229871.000 Binary 6145 Mental Health
10 Fed-up feelings 226536.000 Binary 1960 Mental Health
11 3mm index of best keratometry results (right) 48004.000 Continuous 5237 Keratometry
12 Worry too long after embarrassment 221959.000 Binary 2000 Mental Health
13 Ever depressed for a whole week 74950.000 Binary 4598 Mental Health
14 Illness, injury, bereavement, stress in last 2 years: Serious illness, injury or assault to yourself 229871.000 Binary 6145 Mental Health
15 6mm index of best keratometry results (left) 41705.000 Continuous 5306 Keratometry
16 Neuroticism score 187162.000 Continuous 20127 Mental Health
17 Manic/hyper symptoms: I was more creative or had more ideas than usual 15658.000 Binary 6156 Mental Health
18 Illness, injury, bereavement, stress in last 2 years: Death of a spouse or partner 229871.000 Binary 6145 Mental Health
19 Leisure/social activities: Sports club or gym 230684.000 Binary 6160 Social Support
20 Frequency of tiredness / lethargy in last 2 weeks 224510.000 Continuous 2080 Mental Health
21 6mm index of best keratometry results (right) 42152.000 Continuous 5251 Keratometry
22 Number of depression episodes 29145.000 Continuous 4620 Mental Health
23 Suffer from ’nerves’ 222904.000 Binary 2010 Mental Health
24 Sensitivity / hurt feelings 224710.000 Binary 1950 Mental Health
25 Manic/hyper symptoms: All of the above 15658.000 Binary 6156 Mental Health
26 Worrier / anxious feelings 225382.000 Binary 1980 Mental Health
27 Leisure/social activities: Other group activity 230684.000 Binary 6160 Social Support
28 Mood swings 225810.000 Binary 1920 Mental Health
29 Number of unenthusiastic/disinterested episodes 19186.000 Continuous 5386 Mental Health
30 Tense / ’highly strung’ 223980.000 Binary 1990 Mental Health
31 Seen a psychiatrist for nerves, anxiety, tension or depression 230351.000 Binary 2100 Mental Health
32 Frequency of unenthusiasm / disinterest in last 2 weeks 223702.000 Continuous 2060 Mental Health
33 Illness, injury, bereavement, stress in last 2 years: Financial difficulties 229871.000 Binary 6145 Mental Health
34 Ever unenthusiastic/disinterested for a whole week 73271.000 Binary 4631 Mental Health
35 Manic/hyper symptoms: I was more active than usual 15658.000 Binary 6156 Mental Health
36 Irritability 221084.000 Binary 1940 Mental Health
37 Miserableness 227491.000 Binary 1930 Mental Health
38 3mm index of best keratometry results (left) 47999.000 Continuous 5292 Keratometry
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Frequency of friend/family visits

Longest period of depression

Longest period of unenthusiasm / disinterest

Frequency of depressed mood in last 2 weeks

Able to confide

Illness, injury, bereavement, stress in last 2 years: Marital separation/divorce
Risk taking

Manic/hyper symptoms: None of the above

Loneliness, isolation

Illness, injury, bereavement, stress in last 2 years: Serious illness, injury or assault of a close relative
Nervous feelings

Length of longest manic/irritable episode

Manic/hyper symptoms: I was more talkative than usual

Leisure/social activities: Adult education class

Manic/hyper symptoms: I needed less sleep than usual

Leisure/social activities: Pub or social club

229915.000
32350.000
20591.000

221420.000

224429.000

229871.000

223140.000
15658.000

227682.000

229871.000

225350.000
12624.000
15658.000

230684.000
15658.000

230684.000

Continuous
Continuous
Continuous
Continuous
Continuous
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary

Binary

1031
4609
5375
2050
2110
6145
2040
6156
2020
6145
1970
5663
6156
6160
6156
6160

Social Support
Mental Health
Mental Health
Mental Health
Social Support
Mental Health
Mental Health
Mental Health
Mental Health
Mental Health
Mental Health
Mental Health
Mental Health
Social Support
Mental Health

Social Support

Table 3.1: UK Biobank (UKBB) statistics for each Mendelian Randomization study performed in this chapter.

syrer) rerorarya( [eosoyoAsd pue odAjouoryo uvomiaq sdrgsuorje[ol fesned SuryenyeAs]



Evaluating causal relationships between chronotype and psychosocial behavioral traits

3.2.2 Performing GWAS

After harmonizing outcomes, PLINKv1.9 was used to perform GWAS against each trait
studied, including chronotype (Chang et al., 2015a). During each GWAS, the following

procedure was followed.

Quality control was carried out using PLINK R v3.5.0 (R Core Team, 2013). Variants
which had a particularly high missing call rate (>0.1) were removed. Individuals with a
missing rate of > 0.05 were also excluded. A 50kb window with a step size of 5 variants at

a time and a 0.5 r2 threshold was used to remove variants in high LD.

Variants with a MAF <0.01 were also excluded. For each analysis, covariates included
gender and the first ten principle components. PLINK was used to calculate the principal
components using default settings. Prior to any testing, final QC steps were taken per trait,
removing variants based on a case control missing rate likelihood of < 0.001 when a trait

was binary, missing rate 0.05 or a Hardy Weinberg Equilibrium p < 1E-8.

Linear models were run on all continuous traits, and logistic regression models were
used for all binary traits. To make the comparison of effect sizes between binary and con-
tinuous outcomes efficient, the § values from the generalized linear model during logistic
regression were retained using PLINK’s "-beta" flag. [, standard error (se), and p-values

from each GWAS were kept for the data harmonization process.

3.2.3 Data Harmonization

When mining each GWAS for the discovery SNPs from 23andMe, a harmonization process
was performed using the R TwoSampleMR package (Hemani et al., 2018). First, SNPs from

the discovery set were located in the exposure GWAS summary statistics. The strandedness
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of each GWAS was checked to make sure that at each allele, the minor and major alleles
were equal. If these were reversed, effect sizes were modified to correct for this. Pallendromic
SNPs, which contain alleles represented by the same base pairs on both strands of DNA,
were discarded. If SNPs were not present, proxies were found using PLINK with an R? of at
least 0.8, and strand was checked again (Chang et al., 2015b). Next, SNPs in the exposure
GWAS set were clumped by LD to ensure statistical independence. In a window of 10000
base pairs, an R? cutoff of < 0.001 was set to obtain haplotype blocks, and the European
reference panel of the 100,000 Genomes Project (Caulfield et al., 2017). This left 18 SNPs
for use as valid, independent IVs. The effect sizes and standard errors from each GWAS

were extracted for these 18 SNPs used in this analysis.

3.2.4 Causal Inference Modelling

In practice, meta-analyses often use an inverse-variance weighted average to account for
the sample size (reflected in variance) of studies included in the meta-analysis. The IVW
methods uses the Wald ratios of each SNPs as the "study" the meta-analysis, with a pooled
estimate seen in the forest plots below (see results) driving home the meta-analytic nature
of multi-SNP MR. Rather than calculate Wald ratios individually, the outcome GWAS fs
or Odds Ratios are regressed on the exposure. The slope of the regression line indicates the
strength of the effect, as an increase in the unit of outcome per unit of the exposure(Burgess

and Thompson, 2017). In a IVW metaanalysis, IVW estimate is calculated by:
Byj = OrvwBx; + erji €15 ~ N(0,0%se(By;)?) (3.2)
where @ is the inverse variance weighted average, se is the standard error, and other
terms are as above, and I is an error term.

Similarly to other meta-analysis frameworks, by weighting effect sizes by their in-
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verse variance, stronger SNPs make a larger contribution to the overall effect size obtained.
Compared to other methods used in this analysis, the IVW method has the strongest power
simply by not discarding any SNP instruments (Mode) or shrinking their variance (MR Eg-
ger). It strongly assumes all instruments are valid, requiring the slope of the meta-regression
line to be constrained to zero. Any potential pleiotropy or extreme heterogeneity among
SNPs would draw the gradient of the regression line away from the true slope. Heterogene-
ity can occur when individual SNPs do not converge on an estimate, and can be estimate by
Cochran’s () (Higgins and Green, 2011). In this context, heterogeneity may be a sign of hor-
izontal pleiotropy, wherein SNPs effect the outcome by their influence on other confounding
traits (Burgess, Small, and Thompson, 2017). In any IVW-based meta-analysis, either fixed
or random effects maybe modeled (Higgins and Green, 2011). A fixed effect model applied
to MR assumes all instruments are valid, whereas modeling random effects allows for bal-
anced horizontal pleiotropy to be present if it is independent of SNPs effects on the exposure.
This is termed the Instrument Strength Independent of Direct Effect (InSIDE) assumption,
which is not currently testable. The IVW method also relies on the No Measurement Error
(NOME) assumption, assuming SNP-exposure associations are accurate. This can be ac-
cessed by calculating F-statistics to test the degree of association between discovery SNPs

and the exposure of interest.

A figure comparing the IVW method with the pleiotropy- and assumption-mitigating
factors below is shown in Figure 3.4. Each scatter plot depicts an outcome regressed on
an exposure with multiple SNPs. The slope is the estimate of the causal effect. If there is
no horizontal pleiotorpy, or the pleiotropy is balanced between outcome and effect, inverse-
variance weighted regression is used, where the contribution of each SNP is weighted by
its inverse variance, so variable SNPs contribute less to the overall study effect size. If
directional pleiotropy is suspected, then constraining the intercept to be at zero will allow

bias into the model (gray arrow). However if the intercept is not constrained via Egger
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regression, an unbiased estimate can be obtained if the instrument-exposure and pleiotropy
are uncorrelated (InSIDE assumption). If most instruments are valid (black), and some are
invalid (red), a median-based approach will provide an unbiased estimate (black), whereas
IVW linear regression would provide a biased estimate (grey). If SNPs are horizontally
pleiotropic, they will return biased estimates. Using a mode-based estimator, it is possible
to clustering SNPs based on their estimates (grey lines). If the majority of the SNPs are in
a cluster which satisfies IV assumptions, then then mode-based estimator is unbiased, if not

under powered.

3.2.5 Testing for Evidence of Pleiotropy

When an MR study, with multiple valid instruments, is considered as a meta-analysis, meta-
analytic tools used to detect bias in studies can be used to detect bias in SNPs. Egger
proposed a method for detecting small study bias in meta-analyses, and this has been adopted
into an MR context (Bowden et al., 2017; Bowden, Davey Smith, and Burgess, 2015). The
Wald ratios of each SNP are used in meta-regression by taking the inverse IVW weights used
in IVW analysis, without modeling the intercept. It provides a causal estimate similar to
IVW but adjusted for horizontal pleiotropy which would otherwise invalidate IVW (Bowden,
Davey Smith, and Burgess, 2015). As the intercept is unconstrained, it estimates the average
pleiotropic effect across the SNPs, and the slope provides an estimate of the pleiotropic effect.
If the intercept, while not constrained, is not statistically different than zero, then this suggest
lack of horizontal pleiotropy and the instruments are assumed valid. To accomplish this, the
MR-Egger method relaxes assumption 3 in Figure 3.2. MR-Egger relies on not violating the

InSIDE assumption (see above).

MR-Egger regression is an extension of IVW regression. Instead of assuming no
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Figure 3.4: Mendelian Randomization methods have different assumptions. Fach scatter plot depicts
an outcome regressed on an exposure with multiple SNPs. The slope is the estimate of the causal
effect. A) If there is no horizontal pleiotorpy, or the pleiotropy is balanced between outcome and
effect, inverse-variance weighted regression is used, where the contribution of each SNP is weighted
by its inverse variance, so variable SNPs contribute less to the overall study effect size. B) If
directional pleiotropy is suspected, then constraining the intercept to be at zero will allow bias
into the model (gray arrow). However if the intercept is not constrained via Egger regression,
an unbiased estimate can be obtained if the instrument-exposure and pleiotropy are uncorrelated
(InSIDE assumption). C) If most instruments are valid (black), and some are invalid (red), a
median-based approach will provide an unbiased estimate (black), whereas IVW linear regression
would provide a biased estimate (grey). D) If SNPs are horizontally pleiotropic, they will return
biased estimates. Using a mode-based estimator, it is possible to clustering SNPs based on their
estimates (grey lines). If the majority of the SNPs are in a cluster which satisfies IV assumptions,
then then mode-based estimator is unbiased, if not under powered. Image credit: (Hemani, Bowden,

and Davey Smith, 2018).
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intercept term, an intercept is estimated:
By; = bor + 016Bx; + €pjs ep; ~ N(0,0%se(By;)?) (3.3)

where Oy is the intercept and 6, the MR Egger estimate. If the intercept is equal to zero,
then the IVW method and MR-Egger will be equivalent (Burgess and Thompson, 2017).
During the IVW process in MR-Egger, the effect sizes of each SNP must have the same sign,
and this decreases the variation between them (Bowden, Davey Smith, and Burgess, 2015).
This renders the MR-Egger method the lowest powered method employed in this chapter,
though its robustness to horizontal pleiotropy and ability to test for this in the intercept

make it a valuable contribution to methods.

3.2.6 Assuming Weak Instrumental Variables: Median and Mode

The weighted median estimate again relies on Wald ratios. First, the Wald ratio is calculated
for each SNP. Then, as in the IVW method, a measure of central tendancy is used to produce
an overall effect size - but instead of the mean, the median is used. In an unweighted analysis
it would be assumed that over half of the instruments are valid, while in an weighted median
analysis the assumption is that the at least 50% of the weight of the instruments are valid
themselves (Bowden et al., 2016). This approach is robust to directional pleiotropy when
compared to a simple IVW meta-analysis. It is also more robust to outliers than either [IVW

or Mr Egger.

Comparative studies have demonstrated that the power of the weighted median method
is similar to the IVW. Moreover, it is not constrained by the InSIDE assumption, contrary
to MR Egger, and for it to be valid only half of instruments need to be unbiased (Hemani,

Bowden, and Davey Smith, 2018). See Figure 3.4 C for a graphical explanation.
The mode-based estimator (MBE) clusters Wald ratios before calculating random
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effects in an IVW meta-analysis (Hartwig, Davey Smith, and Bowden, 2017). The simple
MBE uses unweighted analysis, while the weighted MBE uses inverse variance weighting.
First, a smooth empirical density function is calculated for each Wald ratio and are then
clustered. The ZEMPA assumption (Zero Modal Pleiotropy Assumption) states that the
biggest cluster with the same ratio estimates will be valid instruments. Thus, the MBE can
provide a valid causal estimate when the largest number of estimates come from valid IVs,
even if a majority (those in smaller clusters) are invalid. While not all snps have to be valid
IVs, fewer valid IVs is equivalent to fewer samples actually used, and results in lost power
compared to IVW methods. I calculated both weighted (by IVW) and unweighted (Wald

ratio) methods. See Figure 3.4 D for a graphical explanation.

3.2.7 Sensitivity, Bias, and Directionality

To check if possible pleiotrophic or invalid SNPs are dominating models run, I performed a
leave-one-out analysis for each experiment. In a leave-one-out senario, the inverse variance
weighted average is run using all SNPs except one. This is repeated for every SNP, resulting
in 10 IVW average effect sizes in the case of 10 SNPs in the analysis. One outlier effect size
would indicate that the SNP left out skews the analysis and may be removed for being an

outlier (Hemani, Tilling, and Davey Smith, 2017).

I composed funnel plots to access pleiotopic effects. Originally designed to identify
potential biases arising from small studies in meta-analysis, funnel plots are a graphical
method of accessing bias, by plotting the effect size against sample size, noting that smaller
effects should belong to smaller effect sizes and that there should be a degree of balance in
the signs of the effect sizes (Egger et al., 1997). Egger proposed a regression method to test
the asymmetry of this relationship, which is the basis of the MR Egger method (Bowden,

Davey Smith, and Burgess, 2015). Cochran’s @) can be used in combination with funnel plots
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to access the degree of pleiotropy. () is a measure of heterogeneity among calculates the sum
of squared differences between SNPs and the pooled effect, and creates a x? test statistic for
comparison. The () statistic is well powered as the number of SNPs increases, indicating that
evidence of overdispersion itself does not indicate pleiotropy (Lawlor et al., 2008; Burgess,
Small, and Thompson, 2017). Even for a low p-value, indicating high heterogeneity, I have
investigated funnel plots, as severe asymmetry would suggest directional pleiotropy and
violate MR-IVW assumptions. If symmetry is observed, both fixed- and random-effects
IVW would produce similar results (Bowden et al., 2017), and if asymmetry is observed
then estimates would differ, and Median or Mode methods should be considered. In this
chapter, the IVW analysis is considred the gold standard; if it is significant, other methods
are used to confirm results in the presence of pleiotropy or heterogeneity. If all methods
of analysis for an experiment concur, the potential causal effect of chronotype is considered

more plausible.

I used the Steiger test to access the directional of all causative analyses post-hoc
(Hemani, Tilling, and Davey Smith, 2017). This method tests whether the selected IVs are
more strongly associated with the exposure than the outcome. The Steiger test first assesses
which variables (exposure or outcome) are influenced by the SNPs used, by testing if the
SNPs explain more variance in the exposure than in the outcome with a modified Z statistic.
If the p-value of the IVW estimate and the Steiger estimate are both significant, the sign of

the Z statistic is used to assign the correct causal direction between exposure and outcome.

3.3 Results

Results in this chapter are presented as follows. An example GWAS is reported, IVW

meta-analyses of all traits tested are shown in graphical form, and then individual traits are
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reported. Reports from all traits are included in the Appendix. MR analyses were performed

for the influence of chronotype on each trait listed in Table 3.1.

3.3.1 Phenome-wide overview of Circadian effects of psychosocial

and ophthalmic traits

A linear GWAS of morning - to - evening preference in self-reported chronotype is depicted
in Figure 3.5. This GWAS reveals several independent loci which associate highly with
chronotype. In green, 18 clumped discovery SNPs from the 23andMe GWAS are depicted.
Note that not all of them achieve genome-wide significance levels (p <= 1078). The y-axis

shows —log;,0 p-values, while the x-axis shows the location of each SNP by chromosome.

40 —

—logolp)

Ai, Pl

I I T T T 1 I ]
1 2 3 4 5 6 8 9 10 12 14 16 18 21
Chromosome

Figure 3.5: Manhattan plot of morning/evening chronotype GWAS using the UK Biobank pop-
ulation. Along the x-axis, SNPs are represented by chromosome location, and the y-axis depicts

—log10 p-values. SNPs from the discovery GWAS are highlighted in green.

Table 3.2 lists the SNPs used in this study by location, including effect size and p-
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values of Chronotype (exposure) and Leisure Activity: Religious Group (outcome). This
exposure produced the most extreme IVW p-value (4.20e — 5). All p-values in exposure
(Chronotype) GWAS are highly significant except for one, at the level of 3.5¢ — 6. No p-
values from the outcome GWAS reach genome-wide significance, with a range of (0.0003,0.9).

[ values are likewise smaller from the outcome than the exposure.

SNP Pvalue Chronotype Pvalue Religous Group Beta Chronotype Beta Religous Group
1 rs1064213 6.20012¢-14 0.0850002 -0.0152572 -0.00125918
2 1511121022 1.59993e-17 0.6 -0.0174991 0.00038933
3 15112613078  7.19946¢-16 0.25 -0.0208278 0.00106677
4 1s11545787  3.10027e-15 0.14 0.0187265 -0.00125028
5 rs11587758  1.20005e-19 0.00109999 -0.0187958 0.00244028
6 1s12133238  le-14 0.0729995 0.0174009 -0.00144885
7 1s12617426  3.50002e-06 0.760001 0.00974035 -0.000234953
8 1s12927162  3.19963e-20 0.01 0.0209482 -0.00210022
9 1s4239386 1.69981e-13 0.26 0.0159216 -0.000872088
10 1s4729303 1.50003e-11 0.75 -0.0175607 0.000294364
11 1s4882354 4.30031e-28 0.012 -0.0224835 0.00185288
12 1s509476 8.10028e-49 0.0219999 0.0878165 -0.00491105
13 1s57435966  8.49963e-30 0.000350002 0.0410747 -0.00465797
14 1s62436127  6.79986e-13 0.9 -0.019918 -0.000119614
15 187547493 3.69999¢-26 0.38 -0.0281137 0.000845037
16 1s76223855  2.70023e-16 0.22 -0.0798575 -0.00429174
17 159475185 1.59993e-19 0.34 -0.021635 0.000818634
18 159565309 le-20 0.81 0.0526882 -0.000495558

Table 3.2: Discovery SNPs in chronotype and religous group GWAS

The IVW analysis suggested that eight self-reported mental health traits were indica-

tive of possible causation (p < 0.05).

These include associations between a chronotype and manic symptoms, depression,
reactions to feelings (sensitivity and worry), and irritability, Figure 3.6. Wide confidence
intervals indicate a large confidence interval around the IVW (. Those confidence intervals
crossing the null line (zero) show a null effect. The results of each analysis, including non-

significant results, are reported in the online Appendix.

The IVW analysis revealed that two self-reported social traits were indicative of pos-
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sible causation (p < 0.05).

These were related to the attendance at group religious meetings weekly, and the
frequency of friend or family visits (Figure 3.6). Wide confidence intervals indicate a large
confidence interval around the IVW . Those confidence intervals crossing the null line
(zero) show a null effect. The results of each analysis, including non-significant results, are

reported in the online Appendix.

Leisure/social activities: Adult education class —L
Leisure/social activities: Sports club or gym —a—
Leisure/social activities: Other group activity —
Leisure/social activities: Pub or social club ———
Leisure/social activities: Religious group —a—
Able to confide i
Leisure/social activities: None of the above ——
Frequency of friend/family visits i
0.0 01 02

Effect of Chronotype on Social Measures

Figure 3.7: Forest plots of change in standard deviation of each Social Support trait response as

chronotype differs.

Under IVW analysis, one keratometry result was indicative of possible causation.

A 3mm index of the best keratometry result, related to right eye measurements, was
significant, and all others, while not significant, were trending in the same direction, Figure
3.6. Wide confidence intervals indicate a large confidence interval around the IVW . Those
confidence intervals crossing the null line (zero) show a null effect. The results of each

analysis, including non-significant results, are reported in the online Appendix.

The IVW results thus far presented provide a phenome-wide level overview of the
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6mm index of best keratometry results (right) i
3mm index of best keratometry results (left) L
6mm index of best keratometry results (left) i
3mm index of best keratometry results (right) L
-0.1 0.0 01

Effect of Chronotype on Keratometry Measurements

Figure 3.8: Forest plots of change in standard deviation of each kratometry trait response as chrono-

type differs.

effect of chronotype on the phenotypes measured in their respective UKBB domains. As each
MR analysis is a self-contained experiment, significant results are reported in the following

sections.

3.3.2 Morningness and eveningness influence mental health

Regressing behavioral traits on GWAS data revealed chronotype to have a likely causal
influence on several tested traits. I observed an increase of 0.090 (IVW pval 0.036, Egger in-
tercept pval 0.970, Q pval 0.213) standard deviation (SD) units of self-reported manic/hyper
symptoms [all of the above| for evening compared to morning chronotype (Figure 3.9, Table
3.3). A decrease in the need for sleep while in a high or irritable state of 0.085 SD units
(IVW pval 0.037, Egger intercept pval 0.925, Q pval 0.848) for evening compared to morning
(Figure 3.10, Table 3.4).

Three self-reported measures of depression produced robust causative models. I ob-
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MR Test
s varance e anes / Wighea maian

R Eg Weighted mode

Simple mode

SNP effect on Manic/hyper symptoms: Al of the above
I
I

0d10

0ds 0620 odas
SNP effect on Morninglevening person (chronotype)

(a) (b)
MR Method
(c) (d)

Figure 3.9: An evening chronotype suggests a small increase in manic symptoms. a) scatter plot
of MR results. b) Forest plot of SNP contributions to IVW analysis. ¢) Leave one out sensitivity

analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.10: An evening chronotype suggests a decrease in reported need for less sleep, therefore
increased duration of sleep. a) scatter plot of MR results. b) Forest plot of SNP contributions to
IVW analysis. ¢) Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing

directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept pval

1 Inverse variance weighted 0.090 0.043 0.036 16.700 0.213

2 MR Egger 0.098 0.214 0.654 16.698 0.161 -0.000 0.970
3 Simple mode 0.060 0.091 0.522
4  Weighted median 0.098 0.053 0.064
5 Weighted mode 0.098 0.077 0.225

Table 3.3: Causal effect of evening chronotype on Manic/hyper symptoms: All of the above.

Method b se  pval Q Q_pval intercept intercept pval

1 Inverse variance weighted -0.085 0.041 0.037 8.737 0.848

2 MR Egger -0.099 0.150 0.522 8.727 0.793 0.000 0.925
3 Simple mode -0.084 0.085 0.336
4  Weighted median -0.074 0.052 0.155
5 Weighted mode -0.034 0.080 0.679

Table 3.4: Causal effect of evening chronotype on Manic/hyper symptoms: I needed less sleep than

usual.

served an increase of 0.023 (IVW pval 0.024, Egger intercept pval 0.907, Q pval 0.112) (SD)
incidence of seeing a psychiatrist for nerves, anxiety, tension or repression with an evening
chronotype (Figure 3.11, Table 3.5). Likewise, an increase in the likelihood of having had
a depressive episode lasting at least a week of 0.076 SD units (IVW pval 0.0.006, Egger

intercept pval 0.860, Q pval 0.110) for evening compared to morning, Figure 3.12, Table 3.6.

Lastly, there is a marked decrease in odds of reporting "feelings being easily hurt"
when a ’evening person’. This association was not significant under the IVW model, but
was with more robust analyses: a weighted median and mode (-0.053 and -0.049 SD units,

respectively).

Egger regression suggests lack of horizontal pleiotropy (intercept p = 0.704) but strong
heterogeneity of SNPs (Q statistic 47, p < 0.000) - Figure 3.13, Table 3.7. A similar decrease
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Figure 3.11: An evening chronotype suggests an increase in self reported anxiety and depression.
a) scatter plot of MR results. b) Forest plot of SNP contributions to IVW analysis. ¢) Leave one

out sensitivity analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.12: An evening chronotype suggests an increase in self reported depression episodes lasting
longer than one week. a) scatter plot of MR results. b) Forest plot of SNP contributions to
IVW analysis. ¢) Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing

directional pleiotropy.
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Method b

se

pval Q Q_pval intercept intercept pval

1 Inverse variance weighted 0.023

2 MR Egger 0.026
3 Simple mode 0.030
4  Weighted median 0.023
5 Weighted mode 0.027

0.010
0.024
0.021
0.012
0.018

0.024 24.269 0.112

0.302  24.248 0.084 -0.000 0.907
0.169

0.067

0.150

Table 3.5: Causal effect of evening chronotype on Seen a psychiatrist for nerves, anxiety, tension or

depression.

Method b

se

pval Q Q_pval intercept intercept pval

1 Inverse variance weighted 0.076

2 MR Egger 0.066
3 Simple mode 0.082
4 Weighted median 0.072
5 Weighted mode 0.079

0.028
0.065
0.067
0.034
0.057

0.006 24.365 0.110

0.328 24.316 0.083 0.000 0.860
0.240

0.033

0.181

Table 3.6: Causal effect of evening chronotype on Ever depressed for a whole week.

was seen in SD unit self reporting of worrying too long after an embarrassing episode, though

not significant with IVW (p = 0.104), reached an effect size of 5 -0.052 with a Weighted

Median regression (p = 0.06, Egger intercept p = 0.268, Q pval = 0.113) - Figure 3.14, Table

3.8. Finally, a study on irritability returned mixed results. IVW analysis suggests that there

is a 0.047 SD unit increase in irritability per SD increase of self-reported evening chronotype

(p = 0.031). Non-significant values were returned for robust analyses, indicating lack of

power, which coincided with high heterogeneity among SNPs (Q 54, Q pval = < 0.001),

while MR Egger intercept p-value suggests unlikely pleiotropy (p = 0.08), Figure and Table

3.15 and 3.9.

Other analyses did not yield suggestive results using the IVW method, see the online

appendix, https://github.com /jaw-bioinf/PhdThesis.
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Figure 3.13: An evening chronotype suggests an decrease in self reported sensitivity to hurt feelings.
a) scatter plot of MR results. b) Forest plot of SNP contributions to IVW analysis. ¢) Leave one

out sensitivity analysis using IVW method. d) Funnel plot accessing directional pleiotropy.

90



Evaluating causal relationships between chronotype and psychosocial behavioral traits

:
g
g —_
Eo uu—\w\'
M P
3
g S
=,
3
s
o
H
]
SNP effect on Morminglevening person (chronotype) £
MR Method
nnnnnnnnnnnnnnnnnnn ed
R
K
a
kK
o4 o2 0bo i oo
R v -one-out ety anyis o

Figure 3.14: An evening chronotype suggests an decrease in self reported worrying after embarrassing
episodes. a) scatter plot of MR results. b) Forest plot of SNP contributions to IVW analysis. c)

Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.15: An evening chronotype suggests an increase in irritability. a) scatter plot of MR results.
b) Forest plot of SNP contributions to IVW analysis. c¢) Leave one out sensitivity analysis using

IVW method. d) Funnel plot accessing directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept pval

1 Inverse variance weighted -0.039 0.022 0.075 47.398 0.000

2 MR Egger -0.057 0.051 0.285 46.959 0.000 0.000 0.704
3 Simple mode -0.047 0.035 0.195
4  Weighted median -0.053 0.020 0.010
5 Weighted mode -0.049 0.027 0.086

Table 3.7: Causal effect of evening chronotype on Sensitivity / hurt feelings.

Method b se  pval Q Q_pval intercept intercept pval

1 Inverse variance weighted -0.026 0.016 0.104 24.243 0.113

2 MR Egger -0.064 0.036 0.098 22.389 0.131 0.001 0.267
3 Simple mode -0.049 0.029 0.117
4  Weighted median -0.052 0.019 0.006
5 Weighted mode -0.053 0.025 0.047

Table 3.8: Causal effect of evening chronotype on Worry too long after embarrassment.

3.3.3 CR influences measures of social support

Four categories of social support measures were studied in relation to self-reported chrono-
type. Of these, religious behavior and the frequency of visiting family over the last year
produced strong associations. Modeling attending group religious activities at least once a
week produced a decrease of -0.050 SD units per likelihood S of being an evening person
(p < 0.001, Q pval = 0.041, Egger intercept pval = .959). Self-reported visits to friends or
family was coded as an ordinal variable, and increases in this axis indicates less frequent
socialization with friends or family (or their absence outside the home). Evening chrono-
type was indicative of fewer visits (IVW £ 0.102, p = 0.009), though suggestions of strong
heterogeneity (Q pval 0.037) and possible pleiotropy (Egger intercept .004, p = 0.069) were

present, and robust methods yielded no signal. See Figure 3.17, Table 3.11.

Other analyses did not yield suggestive results using the IVW method, see the online
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MR Test

SNP effect on Leisure/social activities: Religious group

1/sey

(c) (d)

Figure 3.16: An evening chronotype suggests an decrease in group religious activity. a) scatter plot
of MR results. b) Forest plot of SNP contributions to IVW analysis. ¢) Leave one out sensitivity

analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.17: An evening chronotype suggests an increase in the frequency of family visits. a) scatter
plot of MR results. b) Forest plot of SNP contributions to IVW analysis. ¢) Leave one out sensitivity

analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept pval

1 Inverse variance weighted 0.047 0.022 0.031 54.070 0.000

2 MR Egger -0.031 0.046 0.515 44.402 0.000 0.002 0.080
3 Simple mode 0.030 0.025 0.236
4  Weighted median 0.027 0.018 0.124
5 Weighted mode 0.033 0.022 0.144

Table 3.9: Causal effect of evening chronotype on Irritability.

Method b se  pval Q Q_pval intercept intercept pval

1 Inverse variance weighted -0.050 0.012 0.000 28.338 0.041

2 MR Egger -0.051 0.029 0.093 28.334 0.029 0.000 0.959
3 Simple mode -0.039 0.025 0.141
4  Weighted median -0.055 0.014 0.000
5 Weighted mode -0.050 0.021 0.028

Table 3.10: Causal effect of evening chronotype on Leisure/social activities: Religious group.

appendix, https://github.com/jaw-bioinf/PhdThesis.

3.3.4 Chronotype affects eye morphology

Finally, I modelled the causitive influence of evening chronotype on keratometry measure-
ments to study potential interplay between eye physiology and circadian biology. I found a
decrease in SD units of 3mm keratometry index in the right eye only per unit of likelihood of
having an evening phenotype (IVW 3 -0.096, p = 0.011, Q pval 0.607, Egger intercept pval
0.273. This trend was echoed non-significantly by results from the weighted median method
(8 -0.093, p = 0.078).

Other analyses did not yield suggestive results using the IVW method, see the online

appendix, https://github.com/jaw-bioinf/PhdThesis.
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Figure 3.18: An evening chronotype suggests an decease in corneal strength measured by keratom-
etry index in the right eye. a) scatter plot of MR results. b) Forest plot of SNP contributions to
IVW analysis. ¢) Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing

directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept pval

1 Inverse variance weighted 0.102 0.039 0.009 28.702 0.037

2 MR Egger -0.041 0.082 0.619 23.205 0.108 0.004 0.069
3 Simple mode 0.071 0.065 0.290
4  Weighted median 0.063 0.042 0.141
5 Weighted mode 0.057 0.060 0.354

Table 3.11: Causal effect of evening chronotype on Frequency of friend/family visits.

3.4 Discussion

This chapter presents a phenome-wide investigation of the role in circadian rhythms, as
reported by chronotype, on the areas of mental health and social support. The results
suggest that being a "night owl," or having an evening chronotype, may influence mental
health outcomes. The combination of self-reported traits in "Manic Symptoms: all of the
above" include feeling more active than usual, getting less sleep, being more talkative, and
having more creative ideas than usual. When modeling these traits during hyper or manic
episodes alone, sleeping less than usual was also influenced by an evening chronotype. While
it has been argued that chronotype and sleep duration are generally independent in a healthy
population (Roenneberg et al., 2007), the 43,531 individuals who answered these questions in
the UKBB were directed to because they have either been highly irritable and argumentative
or manic for a period of two days or more in the past. These may be seen as signs of
a diagnosed or undiagnosed bipolar disorder, characterized by periods of hyper and hypo
activity. Melo and colleagues recently reported that an evening chronotype is more prevalent
in adults with biopolar disorder (Melo et al., 2017), and this chapter adds weight to the

hypothesis that circadian biology may contribute to this disorder.

Both measures of depression increased with an evening chronotype, though a self-

reported episode of depression had a much larger slope, Figure 3.12 A. Sensitivity analyses
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suggest little dominance of any one SNP in the model (B), and a funnel plot (D) suggest any
pleiotropy may be balanced across conditions. Though not all SNPs have significant Wald
ratios (C) individually, collectively when meta-analysed the effect is significant. While these
findings echo previous reporting (Jones et al., 2019), there is a distinction between general
measures of anxiety and depression which are associated with an evening chronotype, and
the observation than an ’evening person’ is more likely to experience a significantly sustained
episode of depression. Measures of self-appraisal were tested for in the UKBB. These included
having easily hurt feelings and reflecting on embarrassing moments after the fact for a self-
described too long period. Both of these studies suggested, via measures other than IVW,
that an evening chronotype leads to a decrease in self-reporting these feelings. Self-reported
feelings of irritability increased when an evening chronotype was reported, and while most
measures were in agreement over the direction of effect, the MR Egger method changed
sign, Figure 3.15. Investigating returned plots, it is clear that four SNPs are strong IVs
and influence the model to be positive, seen graphically in panel B, though one single SNP
does not dominate the model, as seen in the leave-one-out sensitivity study in panel C. The
funnel plot (D) suggests a fairly balanced pleiotropy. Overall, while irritability may be caused
in part by circadian biology, these findings suggest that the effect is small and additional

investigations are warranted before truly judging that chronotype causes the trait.

Of the social support measures studied, there was an increase in attendance at group
religious activities at least once a week associated with being a morning person. This effect
was quite pronounced, yielding the smallest p-value of any study in this chapter, 4.20e-5.
This very significant effect is tempered by the high degree of heterogeneity among the SNPs
studied, though not one SNP truly changed the outcome of the model during sensitivity
tests (see Figure 3.16 C). There was little evidence of pleiotropy, as the Egger intercept
was not significantly different than zero. Nevertheless, there are strong biases to this study

design, and it may be that the questions I would ask about the role of chronobiology in
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religious participation cannot be answered by the UK Biobank data. For instance, what
about non-group religious activity - are morning people still likely to participate? There is
an extreme lack of literature on the influence of circadian biology and religion. One recent
study investigates the effect of religious participation on diurnal salivary cortisol patterns
(Merritt and McCallum, 2013), finding an increase in religious coping mechanisms correlate
with increased stress among caregivers for dementia patients. Other literature focus on the
interplay between metabolism, circadian biology, and fasting during Ramadan (Chaouachi
et al., 2009). This highlights the largest potential source of bias with this study - the
mostly white, middle age UK population in this study, who participate in group religious
activity, are not as likely to be Muslim as the are to be Christian. Viewing these results
as tantalizing but suspect, I must ask if these associations between morning chronotype
and religion would hold if the study population practice group activities Friday afternoons
instead of Sunday mornings. The decrease in frequency of self-reported visits with friends
and family was associated with an evening chronotype, though a look at the scatter plot
of results (Figure 3.17 A) do not indicate a strong agreement among methods (again, the
Egger method is reversed), nor do they suggest a large effect, as the slopes are nearly flat,
and robust methods loose any significant signal. This study highlights several pitfalls when
performing a (restricted) phenome-wide study using MR methods. Each study includes
multiple analyses, and simply looking at p-values does not tell a whole story. The multiple
testing burden on these analyses is immense, but for my purposes p-values are more of a guide
than a definitive answer. The low power of MR studies, especially when multiple instruments
are used, suggests that p-values should assist in interpretation of studies but a Bonferroni
correction may be to strict (McShane et al., 2019; Burgess et al., 2015). Additionally, the
coding in the UK Biobank for this trait is conter-intuitive, as a higher 'number’ on the
ordinal scale does not indicate increased frequency of family/friend visits. Thus, a scientist

must pay attention to the coding of traits when using such a public resource.
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Finally, I studied the causative role of chronotype on keratometry measurements. Ker-
atometry, or opthalmometry, was accessed in the UK Biobank on over 100,000 participants
(Chua et al., 2019). To date, there has been one genome-wide association study performed
using any measurements from this field, investigating loci involved in corneal and refractive
astigmatism, common to myopia in general (Shah, Guggenheim, and UK Biobank Eye and
Vision Consortium, 2018). As the keratometry data are currently used by specialists to ad-
dress specific questions after deriving new measurements relating to astigmatism from these
data, I did not set out to address the role of chronotype in astigmatism itself. The fact that
an association was found in the limited number of parameters from this field I tested is in
itself interesting and worthy of follow-up by; as light is the primary zeitgeber responsible
for circadian entrainment, eye physiology plays a crucial role in chronobiology. This study
highlights that there may be bi-directional causation which should be investigated, possibly

in mouse and other model organisms.

Each analysis in this study was tested via several methods, from those with the
most power (IVW) to others with fewer assumptions about the strength of instrumental
variables (Weighted Mode). A strength of this study was that each meta-analytic model of
the causal influence of chronotype on a trait was tested with each method and investigated
for possible evidence of pleiotropy with the MR Egger method. Vertical pleiotropy, in which
SNPs influence multiple traits because of their influence on circadian rhythm as reported
by chronotype, is an assumption of Mendelian randomization. Horizontal pleiotropy, where
SNPs independently influence multiple traits, leads to the assumptions of causality breaking
down (Davey Smith et al., 2020). In this study, although the Egger method can provide an
estimate of causal effect robust to such pleiotropy, the presence of pleiotropy was accessed
by the intercept. If significantly different than zero (p < 0.05), then evidence suggests
a lack of unbalanced pleiotropy which would bias the model. In a two-sample MR study,

weak instrument bias attenuates results towards the null as SNP-exposure and SNP-outcome
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estimates are derived in non-overlapping samples (Burgess and Thompson, 2017). If I had
performed a one-sample analysis with two-stage least-squares regression, this would not
have been the case, and bias would have artificially inflated the effects seen away from the
null hypothesis. Not only do multiple methods add strength to this chapter, but including
multiple SNPs is a strength as well, since complex traits such as depression and participation
in leisure activities are influenced by many weak effects in many SNPs, part of the omnigenic-
and polygenic hypotheses (Boyle, Li, and Pritchard, 2017; Wray et al., 2018a). Though this
model is under debate, the multiple loci identified by the chronotype GWAS, Figure 3.5,
indicate that no single locus is responsible for chronotype. To reduce the heterogeneity of
this study, I pruned SNPs in strong LD with each other. While this only left 18 instruments
for this study, they were proxies for the influence of SNPs in each locus acting in tandem.
Including all SNPs may have lead to stronger conclusions and larger effect sizes, but would
have increased the variance of SNPs and therefore the heterogeneity’s of the models. Lastly,
the direction of effect for each study was correct, as verified by the Steiger tests; all of which

were significant in the correct ’direction.’

3.5 Conclusions

I found some evidence that chronotype has causal adverse effects on mental health (increased
depression, variety of manic symptoms, sensitivity to hurt feelings, irritability), and is associ-
ated with fewer group religious activities but more frequent association with family members.
Analyses were largely robust to pleiotropy, with several methods applied to each analysis
agreeing in direction and magnitude. Nevertheless, results should be treated with caution,
and follow-up studies with large GWAS, such as the Million Veterans Program, will allow for
confirmation of these findings before any experimental follow-up may be warranted (Gaziano

et al., 2016). This study highlights how genetic epidemiology and social questionnaires can
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be combined to answer questions about the causal relationship between circadian rhythm, a

potentially modifiable exposure, and outcomes relevant to personal and social well-being.

3.6 Chapter Summary

In this chapter, I applied MR methods to investigate the role of circadian chronotype in a
series of mental health, social support, and eye physiology traits with the UK Biobank. The
results of these three studies suggest that evening chronotype affects several self-reported
mental health traits relating to depression, manic symptoms, and irritability. Additionally,
significant findings included a link between chronotype and two social measures - group
religious participation and interactions with friends and family outside the home. Lastly, a
relationship between chronobiology and the refractive index of the cornea indicate a two-way
relationship worth of further experimental study. For each of the mental and social studies,
verification outside the UK Biobank will provide additional evidence, as self-assessments of
mental and social health may be culturally biased. As chronotype is a potentially modifiable
trait, these studies suggest possible routes of therapy for depression and and other mental
health outcomes. Overall, this study demonstrates how MR and causal analysis can be
applied to test the effect of circadian biology on neurobehavioral traits. Several of these
associations can be investigated in the mouse to test a mechanism of vertical pleiotropy

between circadian biology and other behavioral outcomes.

Here I investigated the relationship between a genetic exposure to evening chrono-
type and several complex neurobehavioral traits, from episodes of depression to self-reported
visits to friends and family. Many of the outcome traits studied were interrelated, including
multiple measures of depression or surrounding manic episodes. To study the genetics of

traits with multiple presentations, it is useful to break these traits down into observable con-
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stituant parts. In the next chapter I create a biomedical ontology to model the relationships
between pschological behavioral traits in populations who are aging, have schizophrenia, or
are on the autism spectrum. The behavioral traits modeled here move beyond chrontype to

other manifestations of aberrant behavior.
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Chapter Four

Semantic Modeling of Neurobehavioral

Phenotypes

This chapter is based in part on the following publications:

Martinez-Santiago, F., Garcia-Viedma, M. R., Williams, J. A., Slater, L. T. &
Gkoutos, G. V. Aging Neuro-Behavior Ontology. Applied Ontology 15, 219-239 (2020).

4.1 Background and Chapter Overview

From findings in Chapter 3, it is clear that circadian biology has the potential to affect many
measurable psychosocial traits, from religious participation to depression. In particular,
links between circadian biology and developmental disorders, such as autism (Hu et al.,
2009; Carmassi et al., 2019; Ballester et al., 2019; Tordjman et al., 2015; Manning, O’Roak,
and Babur, 2019; Manning, O’Roak, and Babur, 2019), and psychiatric disorders, such as
schizophrenia (Oliver et al., 2012a; Mansour et al., 2009; Kishi et al., 2011; Jones and Benca,

2015; Karatsoreos, 2014b), are abundant. Far from being homogeneous single traits, which
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are easily studied, each disorder is on a spectrum, namely the autism spectrum (ASD) and
schizophrenia spectrum (SSD). To study genetic relationships between autism and circadian
biology, for instance, it may be helpful to segregate patients by the various phenotypic traits
they manifest - identifying them where they are on the spectrum as individuals. As a first
step towards this goal, this chapter proposes to model traits related to ASD and SSD using
biomedical ontologies. Then, I will demonstrate the utility of ontological modeling using
a cohort of autism patients, while continuing to model diverse sets of behavioral processes

with ontologies relating to SSD and cognitive decline in elder patients.

4.1.1 Biomedical Ontologies

In 2009, Levitis (Levitis, Lidicker, and Freund, 2009) and colleagues conducted surveys and
proposed that behavior is the ’internally coordinated responses (actions or in-actions) of
whole living organisms (individuals or groups) to internal and/or external stimuli, excluding
responses more easily understood as developmental stimuli.” Such a working definition points
out how broad the domain of behavior is. In psychiatric genetics, observed behaviors may be
classified differently depending on particular settings. During a typical clinical encounter, the
behavior observed may be a presenting sign as well as a phenotypic presentation that could
account for a larger part of a particular syndrome or form particular disease’s symptoms.
Endophenotypes may be considered a subclass of phenotypes in general, as they have links
to a genetic locus and are not dependent on a patient’s transitory state (Gottesman and
Gould, 2003). This chapter uses biomedical ontologies to model neurobehavioral traits and
endophenotypes relating to three domains of interest, namely autism, schizophrenia, and
cognitive decline. To enable this translation, biological processes and observable phenotypes
are represented as logical constructs known as ontologies. While an exact definition of

ontology in information science is beyond the scope of this work, a working definition is
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that an ontology is a descriptive logic knowledge base (Baader, Horrocks, and Sattler, 2008).
Description logic is a subset of first-order logic that is decidable, that is implicit knowledge
is able to be correctly inferred from axioms, in this use case via subsumption. Ontologies are
composed of an ABox (axioms stating facts about the world), a TBox (axioms pertaining
to the terminology of the domain of interest). The TBox may sate that every mouse is a
mammal, and an ABox may state that an individual is a mouse. In the ontologies used
in this chapter and following, the TBox, which pertains to classes of an ontology and not
instances, is used. Ontologies are often thought of as knowledge graphs, and can be depicted
as directed, acyclic graphs (DAGs), with entities (phenotypes, for example) connected via
relations (inter alia part-of, is-a). Ontologies typically exhibit the following four features

(Hoehndorf, Schofield, and Gkoutos, 2015):

Classes and relations

e Domain vocabulary

Metadata and descriptions

Axioms and formal definitions

A class is an entity which refers to a set of entities, for example 'mouse’ which includes all mice
of all strains extant in the world. Classes are intentionally defined, as opposed to an arbitrary
set. Relations facilitate describing two different entities. An example relation, 'mitochondrial
membrane’ in the Gene Ontology (GO)(Ashburner et al., 2000) is part of some 'mitochondrial
envelope’ and is a ’organelle membrane’. Both part of and is a are relations. In addition,
standard identifiers facilitate computational integration of ontologies across databases. An
example of standard identifiers in use: in the Neuro Behavioral Ontology (Gkoutos, Schofield,
and Hoehndorf, 2012), ataxia is represented by the identifier NBO:0000590. Included in

this definition is HP:0001251, the identifier of ataxia in the Human Phenotype Ontology
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(Robinson et al., 2008), and an the analogous mouse phenotype MP:0001393 (Smith and
Eppig, 2009).

Domain vocabulary concerns the list of terms associated with an ontology’s classes
and relations (above). A class identifier may be identical to a domain vocabulary item.
In anatomical ontologies, there may be concurrent descriptions of an anatomical entity.
The cerebellum has been termed the 'corpus cerebelli’ in human and 'parencephalon’ in rat
(Swanson, 2003; Truex and Carpenter, 1996). Having a controlled domain vocabulary is
particularly useful in an international scientific world, where multiple vocabulary terms can

identify the same class.

Metadata and descriptions enable domain experts using an ontology to understand the
precise meaning intended when a class was created. Curators of the GO added the following
definition to the ’circadian rhythm’ term: "Any biological process in an organism that recurs
with a regularity of approximately 24 hours." This enables a developmental biologist without

neuroscience expertise to understand what the class means in context.

In addition to textual descriptions which are human readable, ontologies include ax-
ioms and formal definitions. These machine-readable definitions enable computation over
ontologies, such as automated reasoning and integration. Ontologies are commonly repre-
sented as directed acyclic graphs, which facilitates probabilistic methods over graphs and

storing ontologies as graph data structures.

Behavior is currently modelled in several ontologies, the most widely used of which is

the Neuro Behavior Ontology, or NBO (Gkoutos, Schofield, and Hoehndorf, 2012).
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4.1.2 NBO Model of behavior

The NBO is composed of two branches, each an ontology interacting with the other, Figure
4.1. The first is the Behavioral process (NBO:0000313) branch, which classifies processes
in which an organism or group of organisms is involved, and is an extension of the Gene
Ontology’s Behavior class (Gene Ontology Consortium, 2015). Behaviors are conceptualized

on three main axes of classification:

e Response: behavior processes are considered responses to external stimuli, and the
" " : . . . . L
in-response-to" relation axiomatizes this response. For example, visual behavior is in

response to some visual perception.

e Intentionality: Intentionality concerns what a behavior is directed towards. An aggres-
sive child’s behavior can be directed towards peers or parents; this can be differentiated

in NBO with the "is-about" relation.

e Means: Behavior, as a response to an external stimulus, must be mediated by physical

attributes. Visual behavior occurs "by-means-of" some visual system.

Having axiomatized behavior processes, the second branch of the NBO is the behavior pheno-
type domain. Most phenotypes encoded in NBO are manifestations of behavioral processes
described in the Behavior Process domain. Phenotypes, or phenotypic traits, are observable
characteristics of an organism. Phenotypes encoded in other ontologies, such as Disinhibition
(HP:0000734), are translated into NBO equivalents. Taking an example of interest to this
chapter, forgetfulness is a phenotype defined by the loss of information already encoded in
long-term memory. This is classified in NBO as NBO:0000606, and relates to memory loss
behavior in the process arm of the NBO structure. Additionally, forgetfulness is a subclass

of cognitive behavior phenotype, indicating that it is also related to cognitive processes.
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To facilitate interoperability between domains, various strategies have been imple-
mented. Ontology aligners operate in a variety of ways to find terms in one ontology which
are equivalent to another (Faria et al., 2013). Alignment may be atomic matches, where
terms are logically equivalent, or associated with a degree of probability. To aid in trans-
lating phenotypes from one species to another, it is useful to reduce complex phenotypes
into their constitute components (Malsen et al., 2011). The Phenotypic Quality Ontology
(PATO) was implemented to decompose phenotypes into constituent parts based on entity-
quality (E-Q) relations (Gkoutos et al., 2009). For example, ’amyotraphy’ in the HPO is
an intersection of the term ’atrophied’ from PATO and inheres in muscle, muscle being a
class of the Functional Model Anatomy ontology (Rosse and Jr, 2008). The NBO uses the
EQ relations imported from PATO to define the behavioral phenotype branch of NBO. The

term forgetfulness, then, is equivalent to:

has_quality some (
increased tendency and

towards some memory loss behavior)

where "increased tendency" indicates an increased likelihood of participating in (towards

relation) memory loss behavior.

4.1.3 Phenotypic Representations of Autism and Schizophrenia

Autism spectrum disorder is a neurodevelopmental disease defined by the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) as including impairment in social interac-
tion and communication, and restrictive repetitive behaviors (Association, 2013). Defects
in social communication or interaction may include verbal or non-verbal behaviors, from

abnormal eye contact to a lack of facial expression. Restricted and repetitive behaviors may
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Figure 4.1: The Neuro Behavior Ontology (NBO) is structured with two top-level domains, a
"Behavior Process" and a "Behavioral Phenotype" domain. The behavior process domain models
phenotypic processes, such as a learning behavior. Behavioral phenotypes are pre-composed from
behavioral processes. All learning behavior phenotypes, for example, ’participate in’ some learning

behavior process.

be stereotyped movements, adherence to ritualized patterns of routines, or rigid thinking
patterns. In addition to these example characteristics, the DSM-5 lists hyperreactivity to

sensory input as a type of restricted or repetitive behavior pattern.

Diagnostic criteria for schizophrenic spectrum and other psychotic disorders, as indi-
cated by the DSM-5, include delusions, hallucinations, disorganized speech, disorganized or
catatonic behavior, and the presence of negative symptoms (avolition, diminished emotional
expression). To be diagnosed, patients must also have disrupted areas of life, including work,
self-care, or interpersonal relations. Related syndromes, including depressive or bipolar dis-
order, must be ruled out. Importantly, there is large phenotypic overlap between ASD and
SSD - and if there is a history of ASD, then a diagnosis of SSD is only warranted of prominent

delusions or hallucinations occur for a period of time (Association, 2013).
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4.1.4 Current Ontological Representation of Psychological Disor-

ders

Psychological and behavioral disorders are described in several ontologies.

Neuro Behavior Ontology

The NBO currently describes psychotic disorder as a top-level behavioral phenotype, directly
under the "Behavioral Phenotype" class. Psychotic disorders are further broken down into
five subtypes via "is-a" relations to psychotic disorder, including catatonic, disorganized,
paranoid, residual, and undifferentiated schizophrenia. Other disorders are present on the
same level of the ontology, including dissociative disorders, mood disorder (including bipolar
and depressive disorder, and substance induced mood disorders). No representation of autism

itself, as an entity, exists in the NBO.

Human Phenotype Ontology

The Human Phenotype Ontology (Robinson et al., 2008) (HPO) contains an "Behavioral
Abnormality" class, among whose children are "Autistic Behavior." The HPO uses this class
to refer to autism spectrum disorder, which can be part of a disease as a phenotypic feature,
see Figure 4.2. Immediate child classes, connected by "is a" relations, include hallmarks of
autism related traits, such as restrictive behavior and impaired social interactions, as well as
additional classes denoting "Autism with high cognitive ability" and "Autism." Additional
phenotypic traits are part of the HPO’s depiction of autism. Additionally, schizophrenia
is defined as a mental disorder characterized by disintegration of thought processes and
emotional responsiveness. No child terms of schizophrenia are provided. Biologically closely

related terms to SSD include psychosis and its child terms psychotic mentation, and psychotic
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episodes with its child transient psychotic episodes. SSD frequently manifests delusions,
hallucinations, and paranoia; all of these are in the HPO but do not have any relations to

the class "schizophrenia".

Inappropriate

Figure 4.2: Autistic behavior is modelled in the Human Phenotype Ontology as a type of behavioral

abnormality, with many subclasses connected by "is a" relationships.

Mental Disease Ontology

The Mental Disease Ontology (Ceusters and Smith, 2010) is an extension of the Mental
Functioning Ontology which describes various mental disorders. They designate autism
spectrum disorder (and children autistic disorder, atypical autism, and Asperger syndrome)
as subclasses of "pervasive developmental disorder," but describe no ASD-related traits. SSD

is described with child classes as in the NBO, as a subclass of psychotic disorder.

Autism and Schizophrenia Specific Spectrum Ontologies

Three autism-specific ontologies have been developed in recent years. Tu et al (Tu et al.,
2008) created an autism phenotype ontology following OBO Foundry principles, and com-
prises 34 classes which represent high-level phenotypes derived from autism diagnostic in-
struments, and four classes representing the instruments used. The ontology was originally

developed for use with the National Database for Autism Research to enable the consor-
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tium to organize diagnostic data, and allow researchers to compare diagnostic instruments.
The ontology contains SWRL rules to facilitate annotating hypothetical patient traits to
the classes in the ontology (Horrocks et al., 2004). More recently, McCray and colleagues
created the ASD Phenotype ontology (McCray, Trevvett, and Frost, 2014). As part of the
Autism Consortium, their ontology encodes 283 terms across three classes: Personal Traits,
Social Competence, and Medical History, including 97 personal traits and 72 social com-
petence entities. Their goal was to integrate the ontology into the Boston-based Autism
Consortium database, which no longer exists. From the Autism Diagnostic Inventory, Re-
vised (Lord, Rutter, and Le Couteur, 1994a), they mapped 62 concepts relating to personal
traits, and 25 relating to social competence. The ontology has a maximum depth of five and
a an average number of siblings of 4. A strength of this ontology is that the compilers were
able to map diagnostic criteria from 24 instruments, including a reported 1,883 questions
mapping to 97 personal traits, and 931 questions mapping to 72 social competence traits.
The bulk of their ontology mapped to medical history questions, not behaviors relating to
autism. Lastly, Mugzach et al (Mugzach et al., 2015) combined elements of the ontologies
of Tu and McCray into the Autism DSM-ADI-R ontology, or ADAR. ADAR adds SWRL
rules to Tu’s ontology to infer traits from ADI-R items, and incorporates the phenotype class
hierarchy of McCray. Unlike Tu and McCray, their goal was to test the ability of the ADI-R
to diagnose individuals with autism using both the DSM-IV and DSM-V criteria. They map
coding from the ADI-R directly onto the ontology - for instance, a basic class they encode
is "ImaginativePlay-NotAvailable", indicating that an individual assigned to their ontology
using SWRL did not have an answer to the question, denoted by a score of 8 for the related

question in the ADI-R.

At the present time, no schizophrenia specific trait ontology exists, to the author’s

knowledge.
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4.1.5 Chapter contributions

In this chapter, I present ontological modeling of behaviors relating to three complex behav-
ioral domains: schizophrenia, cognitive decline, and autism, each extensions of the Neuro
Behavior Ontology. In the cognitive decline domain, I show the integration of pre-existing
ontologies for use in modeling behavior, currently being undertaken by colleagues. I explore
the phenotypic overlap between schizophrenia and autism, before exploring the diversity of
phenotypic presentations of children on the autism spectrum. I then use data from deeply
phenotyped people on the autism spectrum to demonstrate the utility of the Psychological
Neuro Behavior Ontology (PNBO), the primary output from this chapter, in segregating
subjects based on their presenting phenotype into data-driven subgroups based on semantic

similarity.

4.2 Methods

The ontology build in this chapter, and semantic profiles derived from it, draws heavily from
data provided by two diagnostic questionnaires, the Autism Diagnostic Interview - Revised
(ADI-R) (Lord, Rutter, and Le Couteur, 1994b), and the Positive and Negative Symptom
Scale (PANSS) (Kay, Fiszbein, and Opler, 1987a). Additionally, work with collaborators was
essential in building the Aging Neuro Behavior Ontology (ANBO) (Martinez-Santiago et al.,
2020). The data used to derive traits from the ADI-R was provided by the Simons Foundation
for Autism Research, using data collected for the Simons Simplex Collection. This study
was approved by the University of Birmingham’s ethical review committee, ERN-17-0879,

and assigned SFARI project number 2720.1.
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4.2.1 Phenotype Extraction from the Simons Simplex Collection

The SSC version 15 dataset cohort contains 2644 families, each with two biological parents,
one proband diagnosed with autism spectrum disorder, and at least one unaffected sibling
for a total of 10474 individuals, 2292 male probands and 352 female probands (Fischbach
and Lord, 2010b). Probands were deeply phenotyped with a variety of medical and behav-
ior related inventories, including the aberrant behavior checklist (Aman et al., 1985), the
autism diagnostic observation schedule (ADOS) (Lord et al., 1989), and the ADI-R. The
ADI-R was built to diagnose children with ASD, and incorporates questions appropriate for
both verbal and nonverbal children. The ADI-R contains 93 questions mapping to several
domains, each of which is used to quantitatively diagnose a child wiht ASD. The social
domain includes questions relating to peer relationships, nonverbal communication, sharing
one’s enjoyment with others, and socioemotional measures. The communication domain in-
cludes aggregate scores for verbal and non-verbal communication, delayed language learning,
ability to make conversation, idiosyncratic speech, and a lack of make believe or imaginative
play. The repetitive/restrictive behavior domain contains scores from repeated patterned be-
havior, compulsive rituals, repetitive mannerisms, and preoccupation with material objects.
Children with high scores derived from each domain can be reliably diagnosed with ASD,
using an algorithm provided with the instrument (Lord, Rutter, and Le Couteur, 1994a).
Using data provided with the SSC, I first identified behaviors relating to the ADI-R to the
"behavior process" arm of the NBO ontology, and I then manually added those which did
not exist in the current NBO hierarchy. Next, I derived traits from the ADI-R, and mapped
those to the "behavioral phenotype" arm of the NBO. Again, where traits did not exist, they

were added.
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4.2.2 Categorical Data Extraction from PANSS

The positive and negative symptom scale (Kay, Fiszbein, and Opler, 1987b) was incorporated
into the PNBO in a similar manner as in with the ADI-R. Items in the instrument were
first mapped to the ’behavior process’ domain, then composed into traits in the ’behavior
phenotype’ domain of the ontology. Where traits overlapped existing NBO/PNBO classes,
they were imported directly into the ontology. As no patient data was available, no individual

subject annotations were created.

4.2.3 Curating the NBO and creating the PNBO

Once data from each diagnostic instrument was obtained and incorporated into the NBO,
several modifications to the NBO were made. Diagnoses of psychological disorders were
removed from the "behavior process" arm of the NBO, and either remodeled as phenotypic
traits, or discarded. Next, the "object" class from the Relation Ontology (Smith et al., 2005)
was added to the NBO, to allow classes to be "about" using an external object. Next, the
OntoFox tool (Xiang et al., 2010) was used to extract those portions of the NBO, including
classes, relations, and annotations, of the NBO "behavioral phenotype" from the parent class
down to each class added from the ADI-R and PANSS. The "behavioral process" domain
was left in its entirety to facilitate future expansion of the ontology. Lastly, the extracted
classes and relations from each domain were entered into a new ontology, the Psychological

Neuro Behavior Ontology, or PNBO.
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4.2.4 Modeling the relationship between ASD and SSD phenotype

In order to model the relationship between endophenotypes of ASD and SSD as encoded
in the PNBO, a graph was created to quantify the degree of overlap between traits. Traits
derived from the PANSS and ADI-R were separated, including their ancestors through to
the root term "Behavioral Phenotype". The intersection of the terms was then obtained,
denoting which terms were exclusive to either survey. To hypothesize about the causal re-
lationship between SSD and ASD conditions, regardless of endophenotype presentation, a
Mendelian Randomization analysis was performed, suing the MR Base platform (Hemani
et al., 2018) to obtain GWAS SNPs from non-overlapping populations. 73 SNPs were ob-
tained from MR-Base curated summary statistics from a study of 35,476 SSD patients by
the Psychiatric Genomics Consortium (Schizophrenia Working Group of the Psychiatric Ge-
nomics Consortium, 2014). These SNPs were harmonized with a meta-analysis of 18,381
individuals on the autism spectrum (Grove et al., 2019). Using the TwoSampleMR, pack-
age, inverse-variance weighted, MR Egger, weighted median, and weighed median Mendelian

randomization analyses were performed as in Chapter 3.

4.2.5 Modeling Behavior in the ANBO

Working with colleagues, I also created another derivation of the NBO, the Aging Neuro
Behavior Ontology (ANBO). This ontology was built to provide a model of the aging process
as it relates to activities of daily living (ADLs) and cognitive decline. To this end, the ANBO
was built to provide a formal description of cognitive processes relevant to studying an aging
population. NBO processes relating to executive function, perception, attention, memory
behavior, long-term memory, and proxies were created. Unlike the PNBO, the ANBO is
focused on the behavior process domain of the NBO only, and relies on the EQ components

of PATO to post-compose phenotypes.
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The ANBO is presented for use in conjunction with the OSLE, or Ontology SmartLab
Elderly (Martinez-Santiago et al., 2020), an ontology built by my collaborators to model
ADLs in a SmartLab environment, in which sensors are attached to devices such as medicine
cabinets or televisions to track their use, and their use is compared to pre-planned daily
routines modeled with the OSLE. Recorded daily activities in the OSLE are then mapped
to the ANBO, to monitor fluctuations in cognitive processes related to cognitive decline. To
build ANBO, I first mapped a minimal set of traits from the "Behavioral Process" arm of
NBO using OntoFox (Xiang et al., 2010). Additional processes as proposed by collaborators
were added. Cognitive processes were modelled by integrating the ANBO with functions
from the OSLE using SWRL rules, which allow integrating descriptive logic with constraints
to create new classes in the ontology. For example, to denote that a brother of one’s parent

is one’s uncle, a rule may be created:

hasParent(?z1,?7x2) A hasBrother(?x2,?7x3) = hasUncle(?x1, 7x3) (4.1)

which denotes that if x2 is the parent of x1, and x3 is the brother of x2, then x3 must
be the uncle of x1. SWRL rule creation, and all ontology development, were performed in

Protege (Musen, 2015).

4.2.6 Reasoning and Completeness

After each ontology was built, it was subjected to reasoning to ensure its logical consistency.
PNBO, ANBO, including the SWRL rules and collaborators’ OSLE, were evaluated with
the Hermit reasoner (Shearer, Motik, and Horrocks, 2008). Each ontology was constructed

using the OBO Foundry design standards (Smith et al., 2007a).
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4.2.7 Comparing Individuals via Semantic Similarity

Each proband in the SSC was assayed with the ADI-R, and a numeric score was provided

for each question. Data are predominantly coded the following format:

e (: Behavior not present

e 1: Behavior present in abnormal form, but not not severe enough to meet criteria
e 2: Definite abnormal behavior

e 3: Extreme abnormal behavior

e 7: Abnormality in the area of coding but unspecific

e 8: Not applicable

e 9: Not asked or unknown

Following the algorithm presented in (Lord, Rutter, and Le Couteur, 1994a), I as-
signed, for each question in the ADI-R, a proband a trait if their score 2 or 3, and all
others were considered to be absent. Several of the 93 questions were repeated, asking if the
proband currently or ever presented with the possible trait. If either of these traits were
scored positively, they were combined into one trait. This resulted in a corpus of probands,

each annotated to several traits in the PNBO ontology.

4.2.8 Calculating Semantic Similarity

Once annotated, probands were compared to each other by calculating the semantic similarity

shared by their annotated traits. Semantic similarity measures, originally derived for text,
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seek to quantify the specificity and commonality of information shared between two corpora.
In population genetics, they are widely used alongside ontology-based gene set enrichment
to characterise the functions of genes or the similarity of individual diagnoses. 1 used two
similarity measures in this chapter, both based on the measure of the specificity of a class
in the ontology. The graph-based structure of an ontology, and the (largely) is a relations
between them, ensure that the class "delayed echolalia" is more specific than its parent class,

"echolalia". This specificity can be calculated using Resnik’s method (Resnik, 1995a):

ICRresnik(z) = —logp(x) (4.2)

where p is the probability of finding a term in a corpus (or in the ontology):

()]
1|

p(z) = (4.3)

and can be calculated directly from the ontology, or from the corpus of terms anno-
tated to the ontology. I calculated the IC of each term in terms of the frequency of a proband
being annotated to a term. All annotations take advantage of the transitive property of the
is a relation, so a proband annotated to the term "delayed echolalia" is also annotated to

"echolalia" and all intermediate terms through to "behavioral phenotype", which will have

an IC of 0.

To calculate the similarity between classes in the PNBO, I used two methods. Resnik’s

similarity measure (Resnik, 1995b):

SimResnik (ZL’, y) - IO(MIOA((L’, y)) (44)

where IC is the information content and MICA is the most informative common
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ancestor, or the parent of the two terms with the highest IC. Lin (Lin, 1998) modifies this

measure:

2% IC(MICA(z,y))

IC(x) + IC(y) (4:5)

Simpin(x,y) =

to standardize the measure over the total information content of each term, x and y.
This constrains the measure of similarity to be between 0 and 1, and enables classes that
are more distantly located from their MICA to have a lower similarity. To compare sets
of classes that were used when comparing sets of probands, I used the Best Match Average

approach, which first calculates the maximum average similarity between sets of probands:

Y rex MaTyey sim(x,y)

simMA(X,Y) = |X|

(4.6)

where the maximum similarity of any term in proband set Y against each term for

proband set X is calculated, and standardized.

The best match average takes the average of the maximum similarity between sets of

probands, as they are not guaranteed to be symmetric:

simara(X,Y) + simpa(Y, X)

simBMA(X,Y) = 5

(4.7)

All semantic similarity calculations and ontology plotting were performed in R v3.5,
using the OntologyPlot and Ontology Similarity packages (Greene, Richardson, and Turro,
2017).
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4.2.9 Semantic Clustering of SSC Proband Annotated Traits

To compare probands to each other based on their shared or differential PNBO traits, a
pairwise semantic similarity matrix was created for each proband using a Resnik-based BMA
approach. Next, hierarchical clustering was performed using the WGCNA package in R
(Langfelder and Horvath, 2008) in the following manner. First, the normalized similarity
matrix was transformed into a weighted adjacency matrix. Adjacency matrices represent

graphs in the form of:

1if simsz
Qj 5 = (48)

0 if sim; j<r

where sim is an similarity matrix, usually from correlation between entities but in this
case the semantic similarity matrix calculated. Rather than having a thresholding function

T to constrain the adjacency matrix entries to only 0 or 1, a soft-thresholding was performed:

a;; = |simi, j|°, forg > 1 (4.9)

were 3 was set at 6, which forces less-similar pairs of probands to have much weaker
connections in the adjacency matrix. The adjacency matrix was used to calculate the

weighted connectivity, or degree, of each node (proband) in the graph.

Next, a topological overlap matrix was created from the adjacency matrix to capture

the similarity of nodes: (Zhang and Horvath, 2005):

Dy il + 05 (4.10)
mm(k;z, ]{ZJ) =1- CLZ'J' '

Wi,j
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and a dissimilarity matrix crated by 1 — w. Hierarchical clustering was performed on
the dissimilarity matrix, using average linkage. Hierarchical clustering results in a tree, or
dendogram, representing the relationship between probands. To transform the dendogram
into discrete clusters, a dynamic tree cutting algorithm was performed using the WGCNA
package (Langfelder, Zhang, and Horvath, 2008). Rather than "cut" a dendogram once,
an initial cut is made with a static tree cut, then each resulting cluster is analyzed for
fluctuations in the its own subtree. Any clusters exhibiting such a pattern are recursively
split, using a limit of 30 probands to indicate a floor for the recursive algorithm. See

(Langfelder, Zhang, and Horvath, 2008) Supplementary Data for a detailed explanation.

4.2.10 Bootstrap Cluster Validation

To test the resulting clusters’ stability, I performed a bootstrapping procedure, using the
package NetRep (Ritchie et al., 2016). Two test statistics were investigated: the magnitude
of edge weights in each module, and the magnitude of the semantic similarity of each module.
To create test statistics, the dissimilarity matrix was permuted 10,000 times, and summary
statistics created during each permutation, resulting in a null distribution. The statistics
for each module were compared to the null distribution using a one-sided test, and the
proportion of null tests more extreme than the observed test statistic provided empirical
p-values. Those values were then adjusted for multiple testing by the False Discovery Rate,

as in (Benjamini and Hochberg, 1995).

4.2.11 Bayesian Semantic Profile Regression

To investigate what underling phenotypic profile the module represents, an adaptation of

Similarity Regression using the SimReg package (Greene, Richardson, and Turro, 2016) was
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performed. Originally developed to find single SNPs causing rare disease based on the ability
of an average semantic similarity profile from the human phenotype ontology to predict
disease, this was adapted to predict cluster membership and view the underlying marginal
probabilities of an ontology term being associated with cluster membership. Using Baysian

regression, two models are compared:

v = 0: log(lf—;i =)

y; Bernoulli(p;); (4.11)

v = 1: log(Z- = a) + BS(4,2,)

Yi--Yn is a vector of cluster membership: 1 if a patient belongs to a cluster, and 0
if not. x;..z, is the vector of phenotypes for each subject, where i is the minimal set of
PNBO phenotypes requried to describe the proband. The set is minimal if and only if only
contains directly annotated terms and not others implied by transitive relationships in the
PNBO. For instance, if a proband is annotated with "delayed echolalia," their minimal set

of traits will not include the parent term "echolalia."

Under the null model assuming v = 0 (no association between a phenotype and
cluster), alpha is the intercept, the proportion of cases in the cluster. Under the alternative,
[ is the coefficient representing a unit increase in phenotypic similarity, using a modified Lin
BMA measure, of the patient to a characteristic phenotype ¢, on the log-odds of being a
member of the cluster. Therefore, the probability that v = 1 is greater when the similarity
of a proband’s phenotype to a cluster profile is larger when if they are indicated as a member

of that cluster.

To estimate the characteristic profile ¢, a Markov chain Monte Carlo procedure is
undertaken under a uniform sampling of up to 2,000 sets of PNBO terms of size k = 5.
A mapping function v is applied to the vector of phenotypes to account for the fact that
not all sampled PNBO sets will be minimal. The prior on the estimated 5, counting the

number of times a trait appears in a sampled distribution under the gamma = 1 assumption
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(the individual is in cluster membership). For a full description of the models used, and
a detailed discussion of MCMC sampling procedures, see (Greene, Richardson, and Turro,
2016) supplementary material section 7. The conditional posterior distribution of each model
(null and alternative) can be estimated from MCMC samples where v = 0 and 1 and the
posterior probability that the alternative model is true is estimated from the number of
iterations in which v = 1. The marginal posterior probability of a term’s inclusion into phi

for each model was retained, to derive the characteristic minimal phenotype of each cluster.

4.3 Results

4.3.1 PNBO and ANBO Structure

The PNBO includes 131 entities in the "Behavioral Phenotype" domain specifically to model
ASD and SSD traits, including 103 novel classes specific to the PNBO. Including all NBO
terms potentially relevant to psychological disorders on heterogeneous spectra and thus kept

from the original NBO, statistics for the ontology are given in Table 4.1.
The ANBO is much smaller than the PNBO, can be visualized in Figure 4.3.

Both the PNBO and ANBO take advantage of several types of relations, among them

the following;:

e by means: A process x occurs by means of a material structure y if and only if x occurs

by means of y.

e has participant: A relation between a process and a continuant, in which the continuant

is somehow involved in the process
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Figure 4.3: ANBO class diagram. Gray processes are relevant to activities of daily living and

are modeled in the OSLE. Horizontal shading indicates behavioral processes native to the NBO,

while vertical shading represents processes added for the ANBQO. Graphic originally published in

(Martinez-Santiago et al., 2020)

in response to: Between a process x and a process y if and only if x occurs in response

toy

intersection of: With cardinality of zero or more, this indicates a term is the equivalent

to the intersection of several other terms

is a: a subsumption, indicating that x is a subclass of y, wherein x’s specification

implies y’s specification

is about: A process x is about some entity y if and only if x is about or directed toward

y.

has input: A phenotype has input a collection of entities with a given property regard-

ing frequency, amount and so on

part of: a core relation that holds between a part and its whole
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4.3.2 Integrating the OSLE and ANBO Ontologies

As the majority of the work contained in this chapter involved the PNBO, results from
the ANBO in which I played a major role will now be discussed. The ANBO combines
behavioral processes in the NBO, entities and qualities from PATO, and anatomy from
UBERON (Mungall et al., 2012). It aims to capture the conditions under which a process
can be triggered, which results may be expected after a process, and any qualities which
define normal or abnormal instances of that process. For example, "visual search" process,
ANBO:0000004, is depicted in Figure 4.4. Visual search "is a" visual behavior, which "is
about" a physical object quality, and is "in resonse to" visual perception, which is facilitated
"by means" of an in-tact visual system. This visual search process (an entity) may have a
quality of increased duration, in which case a slow visual scanning phenotype is manifested.
Each behavioral phenotype was encoded to depend on high-level UBERON anatomy, and

participate in behavioral processes while being denoted by certain qualities.

physical object quality

Figure 4.4: In ANBO, individual classes are composed of input from an anatomical entity, a be-
havioral process in response to such input, and an expected output. The trait of "Visual Search",

ANBO:0000004, is depicted here. Graphic originally published in (Martinez-Santiago et al., 2020)

Collaborators used the ANBO ontology with the Telehealth Smart Home system to

setup a hypothetical experiment, monitoring behaviors modeled with the ANBO by use of
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sensors attached to objects involved in activities of daily living. SWRL rules were created
for several senarios, as exemplified by by a subject getting a bottle of water, which is an

ADL which, in part, has input from a visual search process modeled in ANBO Figure 4.5.

Q SMARTLAB OSLE ANBO input
— \ l -IIEE. hysical object quality(COS5)
inhabitantd ot
context(C0S) has_light(CO5)
/ | visual_system(us1) [EZ,> | sensory_behaviour(adi1) :
- o . | bearer_ itant1,vs1) : i
e act of inhabitant1 obtaining a
bottle of water triggers sensor Asserted Facts m> is_about(adI1,CO5)
€05 and adl(adl1), located_in(adl1, CO5)
has_executer(adll,inhabitant1) | adi(adiz) lmTA> visual perception(adi1) ;
and located_in(adI1,c05) are i | has_executer(adl1,inhabitant1) ; by_means(adi1,vs1) i
asserted
SWRL rule 1: LightQualityToPhysicalObjectQuality rule 2: TranslateADLToSensoryBehavior
translation Translates a OSLE context with a visual attribute (color, shape...) An ADL implies a sensory behavior
rules to a ANBO input physical object quality rule 3: TranslateContexOfADLTolsAboutAn
Repository rule 4: ADLByMeansOfVisualSystemCommment: An ADL that  ADL implies that the action is about the
includes visual quality executed by means of a visual perception related context
with working visual system

Figure 4.5: The visual search process is modeled in SWRL rules when a hypothetical sensor (C05)
is triggered by a subject obtaining a bottle of water on which a sensor rests. SWRL rules then take
in facts that the sensor, when activated, must be operated by a subject with a visual system and
who has participated in an assigned activity of daily living, visual perception, by means of ANBO

behavior. Graphic originally published in (Martinez-Santiago et al., 2020)

While the ANBO models activities of daily living in a population which may experi-
ence cognitive decline (the elderly), the PNBO models traits found among individuals among

all walks of life, some of whom may be on the autism or schizophrenia spectra.

Overlap between ASD and SSD Phenotypes in the PNBO

A high degree of overlap is apparent between traits in the PNBO derived from ASD and
SSD diagnostic interviews, Figure 4.6. To the left, red children from the "Cognitive Behavior
Phenotype" annotated from PANSS segregate onto one level. Further yellow children are
Learning/Memory behavior phenotypes annotated from ADI-R. The bulk (middle) of the
ontology is made up of yellow nodes from the ADI-R, while orange nodes are common to

both ontologies, though they may not appear on the diagnostic instruments themselves and
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are a product of "is a" relations in the ontology. Distinct traits from each instrument can be
closely related: motor retardation (PANSS) is four classes away from abnormal gait (ADRI).
Traits with similar names can also be only distantly related: stereotyped thinking (PANSS)
is on the third level of the ontology DAG, while Stereotypic motor behavior is on the fifth,

six classes away on the DAG, traversing "Behavioral Phenotype."
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Figure 4.6: The PNBO includes entities drawn from both the PANSS and the ADI-R, gold-standard
psychological instruments designed to diagnose schizophrenia and autism respectively. The structure
of the PNBO shows the high degree of overlap between traits manifested by individuals on each
spectrum. Autism-specific traits are shown in yellow, schizophrenia specific traits in red, and traits

in common in orange. Only the behavioral phenotype domain of the PNBQO is shown.

To query the potential causal relationship between exposure to SSD and autism, a
strong association was identified between a genetic predisposition to SSD and a manifestation
of ASD. Although there was high heterogeneity (Inverse variance weighted [IVW| Q statistic
174, p = 4e-07, MR Egger intercept p-value 0.06), all methods agreed in the magnitude of
effect: IVW g = 0.107, standard error (se) 0.03, odds ratio (OR) = 1.1; MR Egger 8 = 0.306,
se 0.11, OR = 1.35, . MR Steiger tests suggest a strong directionality from SSD exposure to
ASD outcome (p = 1.e-132). See Figure 4.7.
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Figure 4.7: To test the assumption that genetic exposure to schizophrenia may influence the like-
lihood of autism diagnosis, a Mendelian randomization analysis was performed. Results show the
possible causal effect of schizophrenia associated alleles (x-axis) on the development of autism (y-
axis). MR = Mendelian randomization. Scales represent the log-odds of phenotype per allelic

dose.
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Interoperablility between PNBO and ANBO with other ontologies

Each class of the ANBO and PNBO uses entity-quality notation from the PATO ontology
(Gkoutos et al., 2009) to enable translation between different ontologies. As an example,
the PNBO trait "repetitive use of objects", PNBO:072, can be mapped nearly directly to
the Mammalian Phenotype ontology term MP:0001409, "increased stereotypic behavior" as

shown below.

PNBO_072: '"repetitive use of objects"

’has part’ some (
’increased rate’ and
’inheres in’ some ’stereotypic behavior’ and

’has modifier’ some abnormal and ’is about’ some object)

MP_0001409: "increased stereotypic behavior"

’has part’ some (
’increased rate’ and
’inheres in’ some ’stereotypic behavior’ and

’has modifier’ some abnormal)

while not a perfect match, the EQ notation indicates that both traits are composed of an
increased rate of some abnormal quality (when compared to a reference population) that
‘inheres in’, or belongs to or is a property of, stereotypic behavior. The EQ notation is
extended for PNBO:072, by indicating that the behavior 'is about’ some object. meaning
the behavior is directed towards an external material object - often a toy or other object, in

the case of SSC probands annotated with PNBO.
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4.3.3 Distribution of SSC Phenotypes among Probands and Clus-

tering of Traits

The frequency of trait annotations among probands can be seen in Table 4.2. The trait
observed with the highest frequency was "group play with peers," indicating that all but
five probands who were phenotyped and whose genetics passed QC did not play well with
peers! Indeed, social response abnormalities are seen in the vast majority of probands. 265
probands were annotated with a musical ability phenotype, indicating that they have an
increased ability to play music compared to their peers of a similar age. Clustering of traits
reduced the dimensionality of the ASD-related traits studied, form 73 annotated in the
PNBO to 14 clusters, Figure 4.8. Two of the largest clusters, turquoise and brown, appear
nearly intertwined; while smaller clusters with lower-hanging features in the dendogram are

more self-contained. Table 4.3 shows the permutation-based, empirical p-values for two

PNBO SSC probands clustered

Figure 4.8: Parents answers on the Autism Diagnostic Interview-Revised were used to model
probands’ traits in the Psychological Neuro Behavior Ontology (PNBO). A pair-wise semantic simi-
larity score was calculated for each pair of probands using Resnik Best-Match-Average. The resulting
matrix was clustered using hierarchical clustering and a dynamic tree cutting algorithm. Clusters

are depicted by color.

test statistics of module stability: the weighted degree of the nodes in the cluster, taken
from the topological overlap dissimilarity matrix used as clustering input, and the semantic

similarity-based degree, taken from the raw semantic similarity input. The constraints on the
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dissimilarity matrix produce more stable modules, as indicated by lower p-values (column 1
vs column 2). The FDR corrected p-values for each test are given in columns 3 and 4. Note
that the smallest possible p-value, based on 10,000 permutations, is 0.0001 - a frequently
observed output, while the highest p-value, a null result of 1, is also observed for some

clusters.

Semantic Makeup of Phenotype Derived Clusters

Semantic profiles of each cluster were generated from similarity regression, by combining the
marginal probabilities of each PNBO trait’s ability to model the likelihood of a proband in
a given cluster having membership in only that cluster. Here, I outline the semantic profiles

that typify each cluster, from largest (turquoise) to smallest (cyan) in membership.

Each cluster is made up of at least 48 probands, each annotated with a mean of 39
PNBO terms, see Table 4.4. The turquoise cluster, the largest, is associated with playing

behavior phenotypes, as well as memory and skill phenotypes, Figure 4.9.

The blue cluster revealed only one minimal trait which could reliably characterise
the cluster, abnormal reciprocal conversation. The brown cluster is broad, and encompasses
strong associations with deficits in engaging in reciprocal conversation and learning behavior

phenotypes, Figure 4.10.

The yellow cluster is very homogeneous, and indicates a combination of self injury,
lack of interest in and of playing with other children, and few instances of using one’s body

to communicate, Figure 4.11.

The green cluster’s signature is a loss of language ability, and abnormal social verbal-

ization and response rates, Figure 4.12.
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Figure 4.9: Minimal sub-graph of the PNBO traits in cluster turquoise.
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Figure 4.10: Minimal sub-graph of the PNBO traits in cluster brown.
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Figure 4.11: Minimal sub-graph of the PNBO traits in cluster yellow.
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Figure 4.12: Minimal sub-graph of the PNBO traits in cluster green.
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The red cluster is significantly enriched for defects in coping with changes in the
proband’s environment, sensitivity to noise, and increased visiospatial ability, which unlike
most PNBO traits indicates a gain of function, where an individual is assessed to have

increased visiospatial cognition, see Figure 4.13.
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Figure 4.13: Minimal sub-graph of the PNBO traits in cluster red.

The black cluster and all following have under 100 probands assigned, and probands
who are members of the black cluster have the fewest average traits annotated to them, 28.5
(Table 4.4). Probands typically exhibit defects in voluntary movement, reciprocal conversa-

tion, and appropriate social responses (Figure 4.14).

The pink cluster is uniquely made up of individuals who have the restricted behav-
iors often exhibited by autism patients, including circumscribed interests, unusual sensory

interests, and unusual preoccupations, Figure 4.15.
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Figure 4.14:
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Minimal sub-graph of the PNBO traits in cluster black.
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Figure 4.15: Minimal sub-graph of the PNBO traits in cluster pink.
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The magenta cluster does not have a well defined signature, but self injury (with a
13% probability, and difficulties in coping with changes in the external environment (with a

22% probability) make the cluster of probands distinct.
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Figure 4.16: Minimal sub-graph of the PNBO traits in cluster magenta.

Uniquely among clusters, the purple cohort of 73 probands have a strong likelihood of
self-injurious behaviour, with few instances in directing others’ attention towards interests,
poor eye contact related behavior, and few reported instances of smiling to express happiness,

Figure 4.17.

The greenyellow cohort (Figure 4.18) collectively have a strong loss of language ability
which was previously acquired, and abnormal social verbalization and response to parental

cues.
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Figure 4.17: Minimal sub-graph of the PNBO traits in cluster purple.
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Figure 4.18: Minimal sub-graph of the PNBO traits in cluster greenyellow.
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The tan subgroup (Figure 4.19) are likely to exhibit abnormal gait, and unlikely to

use their heads to nod "yes" to communicate.
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Figure 4.19: Minimal sub-graph of the PNBO traits in cluster tan.

The salmon cluster (Figure 4.20) has a strong association (marginal probabilities
of 1 each) of having unusual sensory interests, having difficulty in coping with personal

environmental changes, and asking inappropriate questions.

Lastly, the cyan cluster, like the blue cluster, contained hetergogeneous behavioral
traits with one discovered unifying element, decreased frequency of head nodding. Head

nodding, in this case, indicates nodding "yes" to non-verbally communicate agreement.

Taken as a whole, these clusters are often made up of individuals with common

phenotypic traits across the spectrum of communication, repetition/restriction, and social
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Figure 4.20: Minimal sub-graph of the PNBO traits in cluster salmon.
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behavior traits. Each cohort can be distinguished by a core set of shared traits, revealing
possible sub-types of autism characterised by a spectrum of endophenotypes. The PNBO
ontology and the ANBO ontology, as implemented in (Martinez-Santiago et al., 2020), is

available in the online appendix, https://github.com /jaw-bioinf/Phd Thesis

4.4 Discussion

The process of creating the ANBO and the PNBO necessitates first ontology evaluation, and

then discussion of the value of the ontologies themselves.

4.4.1 Ontology evaluation

The ANBO and PNBO ontologies can be validated several different ways. Hoehndorf and
colleagues (Hoehndorf, Dumontier, and Gkoutos, 2013) suggest three distinct modes of on-

tology validation:
e direct evaluation: accessing intrinsic properties of an ontology, such as consistency and
expressivity
e application based evaluation: evaluating an application which itself uses an ontology
e analysis based evaluation: evaluating a scientifically based data analysis which uses an

ontology for data integration or analysis itself

In this chapter, 1 evaluate the ANBO and PNBO by the first criterion. I also perform
unsupervised machine learning, in the form of hierarchical clustering, using data informed

by the PNBO; thus evaluating the PNBO’s ability according to the third criterion as well.
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Both the ANBO and PNBO use the DL subset of the OWL query language, which
ensures decidability. At different stages, both the Hermit and ELK reasoners were used; as
the ANBO or PNBO grow it may be necessary to restrict reasoning to the ELK reasoner as it
is guaranteed to classify an ontology in polynomial time (Kazakov, Krotzsch, and Simanéik,
2014). Both ontologies follow the principles of the OBO Foundry (Smith et al., 2007b), and
are working towards fulfilling as many criteria of the minimum information for reporting on-
tologies (MIRO) standards as possible (Matentzoglu et al., 2018). Guidelines include basics
(ontology name, URL), motivation (need, competition), scope (issue tracking, community),
knowledge acquisition (data source acknowledgement), ontology content (metrics, axiom
patterns), managing change (sustainability plan), and quality assurance (testing and exam-
ples of use). While some criteria for best practices are outstanding for either ontology (issue
tracking for ANBO, for instance), this Chapter aims to fulfill the majority of these suggested
best practices. Following the OBO Foundry best practices include creating non-overlapping
ontologies with a strictly focused content, and importing data from other ontologies using
the MIREOT principles (Courtot et al., 2011). Gomez-Perez (Gomez-Pérez, 2001) provides
five criteria for validating ontologies using validation approach 1 of (Hoehndorf, Dumontier,

and Gkoutos, 2013), which are fulfilled as demonstrated here:

e Consistency: Both ANBO (including SWRL rules) and the PNBO are logically consis-
tant, and evaluation with ELK found no cases of class unsatisfiabiliity, or classes which

could contain no instances.

e Completion: That everything which should be in the ontology can be inferred from a
reasoner or is explicitly built in. With colleagues, we ensured that at least one ADL
was defined for each cognitive process in ANBO; and I ensured that all traits from the

PANSS and ADI-R were incorporated into the PNBO.

e Concision: I have pruned behavioral phenotypes from the PNBO which do not currently
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relate to either ASD or SSD, while keeping the behavior process domain intact.

e By keeping the behavior domain intact, I facilitate the expandability of the ontology
- the effort needed to add new definitions or terms. As knowledge of behavioral en-
dophenotypes grow, this strategy will help ensure the integration of PNBO with other

ontologies, including the Mammalian Phenotype ontology.

e Sensitiveness: the ability of the ontology to withstand small changes. By porting the
PNBO away from the NBO, I was able to make fundamental changes to the description
of psychologically relevant neurobehaviors without breaking the backwards compata-

bility of the NBO, which forms the basis of studying behavior in several ontologies.

4.4.2 Why model autism with the PNBO?

Fundamentally, there are two main reasons to model autism with the PNBO instead of pre-
viously discussed ontologies, these being interoperability, and the second being its ability
to correctly capture phenotypic traits relating to ASD. The PNBO relies on EQ notation
from PATO to define behavioral phenotypes by the behavioral processes in which they par-
ticipate. As illustrated in the EQ example with the Mammalian Phenotype (MP) ontology,
this allows endophenotypes derived from children with autism or adults with psychosis to
more readily be translated into observable characteristics in mouse. This is essential, be-
cause ontology labels (the readable names) can be misleading in certain contexts. The term
MP:0002730, head shaking, is a stereotypic behavior and an abnormal head movement. The
NBO term NBO:0000023, head shaking, is a behavior process relating to head movement
on the horizontal plane, and not a phenotypic trait, nor is it related to stereotypic behavior
necessarily. The PNBO term PNBO:051, head shaking, is a lack of shaking the head back
and forth to indicate a negative response to questions by others. This, unlike previous uses

of head shaking,’ is not just a physical response to an external stimulus (a behavior), but
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also inheres in a specific cultural context in which shaking the head horizontally indicates
"no" or displeasure, and has specific communicative intent. The existing autism ontologies,
including the ADAR, do not take advantage of EQ notation and are thus unusable by the
wider community not focused specifically on autism research in humans. The ability of the
PNBO to align with MP and HPO ontologies is a major strength, particularly with the abil-
ity of home cage monitoring in mouse and rat experiments to capture unexpected behaviors
(Bains et al., 2016; Brown et al., 2017b). Importantly, there can be no diagnosed "autistic"
or "schizophrenic" mouse, but endophenotypes of these disorders can map to approximate
equivalents. The operational subset of the PNBO needed to characterise ASD is remark-
ably slim, with only 102 classes needed to incorporate the 93 questions from the ADI-R.
When comparing this to the work of Mugzach and colleagues, this may at first seem inade-
quate. Their ontology, however, includes entities which are deemed phenotypes but are not
observable properties of an organism. The class "Imaginative Play," for example, contains
two sublasses "ImaginativePlayNotAvailable" and "ImaginativePlayUnknownOrNotAsked".
While no doubt useful for predicting if a subject will be classified as autistic, the ontology
does not allow interoperability with other ontologies which are used in behavioral genetics,
limiting its potential usefulness to the neurobehavioral genetics community in annotating
genes with autism-specific phenotypes; if association analyses are performed on the encoded
"phenotypes" in the ADAR, interpretation of "ImaginativePlayWithPeersNot Available", for
example, would be impossible. Where the ADAR is extensive but confounding, the current
state of psychological disorder description in the HPO and in the original NBO have flaws
which the PNBO seeks to correct. From the NBO, we removed all instances of explicity
diagnoses, or re-defined them; while there is depressive behavior in the process arm of the
PNBO, the phenotypic manifestation of that behavior has changed from "depressive dis-

"and children terms such as "major depressive disorder" have been

order" to "depression,'
eliminated. Though useful, "major depressive disorder" is not itself a phenotype but a diag-

nosis, muddling the concept of disease and phenotypic trait. Likewise, schizophrenia is not
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directly described by the PNBO, which is not designed to aid diagnosis of the condition, and
thus the original NBO term has been removed. While the presence of these terms do not
directly impact the ability of the PNBO to model endophenotypes of ASD or SSD, they are a
potential source for confusion. When appraising the HPO’s depiction of autism and autistic
behavior, many problems are evident that give one pause when using it to describe behavioral
disorders in general. Figure 4.2 shows the many subclasses of autistic behavior which may
be annotated with patients via diagnostic instruments, or with genes from experimental or
computational studies. The true path rule, as proposed by the OBO Foundry (Smith et al.,
2007b), follows the principle of subsumption: when a gene is annotated to a child term, it
must follow transitive relations up the ontology structure. Thus, any gene which is involved

"a definitive ASD trait, must also be annotated to "Autistic

in "Lack of peer relationships,’
Behavior." Any patient exhibiting hypersexuality or risk taking is likewise annotated with
autistic behavior. Given the fact that autism is generally diagnosed at a young age, hyper-
sexuality is unlikely to be an autistic trait, and appears to be so because it is a child of
"Inappropriate behaviors." This highlights the social context in which biomedical ontologies
must be used if they are to be interpreted correctly. By removing the diagnosis-suggesting
"Autistic Behavior" term, and modeling all behaviors on physiology-based behavioral pro-
cesses, the PNBO works around the confusion which would be evident if persons on the

autism spectrum were annotated phenotypes following the HPO. The PNBO also highlights

the co-ocurrence of ASD and SSD phenotype.

4.4.3 On which spectrum: autism or schizophrenia?

Much previous work has been done on the overlap between ASD and SSD conditions; in-
deed they were once considered the same disorder. Autism was viewed, in the 1970s, as

an early manifestation of SSD (Rutter, 1972 Oct-Dec; Kolvin, 1971). Each condition is di-
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agnosed purely based on behavioral assessment, and diagnostic instruments still carry the
legacy of early conflation of SSD and ASD. Both the DSM-5 criteria and the PANSS in-
terview both mention autism directly; the DSM as a potential confounding factor and the
PANSS as a description of the trait "Preoccupation": "Absorption with internally generated
thoughts and feelings and with autistic experiences to the detriment of reality orientation
and adaptive behavior." Recent work has highlighted the difficulty in diagnosing ASD in
SSD patients because of phenotypic overlap, even with specially made instruments (Deste
et al., 2018; Késtner et al., 2015). Figure 4.6 shows the degree of overlap between the two
conditions in the PNBO; encoded overlapping traits include both low-level phenotypic traits
with high specificity (anxious behavior, reciprocal conversation) but also intermediate level
terms (involuntary movement behavior phenotype). By encoding the PANSS and ADR-I
into the same ontology, a higher degree of overlap between conditions is seen than would
otherwise be expected. This is explained by the transitive nature of subsumption reasoning,
as described by the true path rule. This overlap is heterogeneous and does not speak to
a directionality of phenotype - however, Mendelian randomization analysis seems to echo
a base assumption from the 1970s about the relationship between ASD and SSD. In my
causative modeling of SSD exposure to ASD, I used SNPs which were not associated with
SSD. Both the effect size of all methods used, and the post-hoc directionality tests suggest
a strong possibility that a lifetime exposure to SSD associated genetic loci may cause ASD.
There was strong heterogeneity and among SNPs, though the intercept test under MR Egger
regression suggests a lack of direction pleiotropy which would invalidate the robust methods
used. While no single SNP will likely be the cause of this association, the strong evidence
brought forward by the causal model confirms the interconnected presentation, and possible

interconnected etiology, of these heterogeneous conditions.
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4.4.4 Clustering the spectrum

Methods originally developed for weighted gene co-expression analysis were adapted for clus-
tering probands based on the semantic similarity of their phenotypes. Probands were divided
into 14 clusters, with no probands failing to cluster (possible using the WGCNA framework
if unstable clusters are found during recursive tree cutting). While each cluster was accessed
for stability with permutation testing, each cluster was kept for further analysis. The most
informative measure tested under permutation was the weighted degree, which calculates the
mean weighted degree of nodes in each cluster, the idea being that nodes in a cluster should
have higher degree ( a measure of inter-connectivity) than expected by chance. When testing
each cluster’s stability, the mean semantic similarity of each trait was also calculated. While
both measures were robust, the mean semantic similarity of traits alone was not enough
to indicate cluster stability. This highlights the usefulness of exponentiating the adjacency
matrix before using it to create a dissimilarity matrix for clustering. By applying that trans-
formation, semantically dissimilar pairs of probands’s connections are further weakened. The
range of raw similarity, measured by Resnik’s method, was (2.81, 5.22), indicating the high
degree of inherent similarity of probands. Semantic similarity-based regression was used to
both independently validate clusters and indicate which combinations of traits were most
likely to segregate a cluster from the combination of all others. Two samples, cyan and blue
clusters, while varying greatly in size, were themselves heterogeneous enough to not produce
robust phenotypic signatures under similarity regression. Some clusters, for example green,
produced a signature phenotype profile of highly related traits (loss of language ability and
abnormal social verbalization and response rates). Others, such as the red cluster, included
gain of function traits - so called savant abilities. While the red cluster was marked by
increased visiospatial ability, other abilities possible include computation ability and artistic
ability. In the PNBO, these are disjoint with cognitive traits indicating loss of communica-

tive ability. The semantic profiles revealed include several upper-level terms - such as in
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the black cluster where probands exhibit abnormal voluntary movement. There are several
subclasses of voluntary movement, indicating that the members of the black cluster share
several varied movement abnormalities. If a more specific movement related trait helped de-
fine the cluster vs all others, it would have been revealed in the similarity regression analysis.
Interestingly, the pink cluster is uniquely distinguished by probands who have high levels of
several restricted behaviors. Here, sensory interests indicate repetitive preoccupations such
as spinning the wheel of a toy car repeatedly, or running in circles. The type of sensory
interests are not always well defined by the ADI-R; if they were anatomical components
from UBERON could be assigned to them to further segregate interests by body parts or
associated behaviors. For example, running repeatedly in circles may be indicated on assess-
ments as an unusual sensory interest, but may also be a voluntary movement trait. When
viewing each proband as a constellation of 100 traits, cluster-based similarity regression has
been useful for reducing the dimensionality of these traits in subgroups. What remains to
be seen, however, are if probands in different clusters have different genetic loci associated

to them from GWAS analysis.

4.4.5 Extending PNBO and ANBO beyond this chapter

A main goal of the research in this project is to expand both the ANBO and PNBO be-
yond what is currently presented. To benefit the model organism research community, I aim
to align the PNBO with the Mammalian Phenotype ontology. Working with colleagues, I
aim to annotate the PNBO with data from patients on the schizophrenia spectrum, lever-
aging large deeply phenotyped cohorts as part of the Psychosis Immune Mechanism Strati-
fied Medicine Study; see https://www.birmingham.ac.uk/research /mental-health /Psychosis-
Immune-Mechanism-Stratified-Medicine-Study.aspx. By applying the PNBO to the various

cohorts in this study, I will be able to validate the ability of PNBO to discriminate clusters of
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non-autism patients. The PNBO modelled the phenotypic profile of one well-studied cohort
of autism patients, the Simons Simplex Collection. By expanding the cohort to others diag-
nosed with the ADI-R, more precise and better powered characterization of autism subtypes
will be possible. Lastly, as the ANBO expands and opportunities to use it in practice with
SmartLab begin, it may be possible to extend this approach of studying cognitive processes
to the model organism community, by semantically labeling sensors with domains of activity
in a home cage. To accomplish this, ANBO would have to be modified to be mouse focused,
and extensive consultation with model organism focused neurobehavioral geneticists would

be required.

4.5 Conclusions and Chapter Summary

In this chapter, I have presented the development of the Psychological Neuro Behavior On-
tology, or PNBO, and the Aging Neuro Behavior Ontology, or ANBO. Both ontologies are
logically consistent and concise descriptions of their respective domains. The PNBO incor-
porates phenotypic manifestations of both autism (ASD) and schizophrenia (SSD) spectrum
disorders from two diagnostic interviews, the Positive and Negative Syndrome Scale and the
Autism Diagnostic Interview - Revised. The degree of overlap between ASD and SSD traits
is reflected a possible genetic etiology suggested by a Mendelian randomization analysis using
independent SSD and ASD populations. To my knowledge, this chapter includes both the
first ontology to represent the SSD phenotype, and to do so in combination with the ASD
phenotype. It also includes the first Mendelian randomization study of exposure to SSD
on ASD, and results are intriguing even if possible balanced pleiotropy is involved. Lastly,
a major work of this chapter was modeling the Simons Simplex Collection cohort with the
PNBO, and segregating clusters of probands who manifested similar traits. Robust boot-

strapping suggests most clusters of probands exhibit more stability than would be expected
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by chance. Additionally, linear modeling of phenotypic profiles which can explain the cluster
segregation suggests cluster Independence while explaining which traits are informative in

segregating probands in the SSC cohort.

Modeling the relationships between traits exhibited by the probands of the SSC cohort
produced several clusters of individuals with a shared phenotypic profile. Autism manifests
itself in these various phenotypic profiles, which may have differing genetic etiologies. This
leads to the natural complement of detailed phenotyping when genetic data is available:
genomics. To test the genetic variability of autism sub-profiles, in the next chapter I employ
genome-wide association studies (as in Chapter 3) and complementary analyses to correlate
genetic mutations in the SSC cohort with both individual traits encoded in the PNBO and

with the clusters derived in this chapter.
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Metric Count

1 Axiom 52872
2 Logical axiom count 9064
3 Declaration axioms count 3649
4 Class count 3255
5 Object property count 226
6 Data property count 0
7 Individual count 4
8 Annotation Property count 166
9 SubClassOf 7058
10 EquivalentClasses 1334
11 DisjointClasses 152
12 GCI count 26
13 Hidden GCI Count 1317
14 SubObjectPropertyOf 222
15  EquivalentObjectProperties 0
16 InverseObjectProperties 41
17 DisjointObjectProperties 0
18 FunctionalObjectProperty 1
19 InverseFunctionalObjectProperty 0
20 TransitiveObjectProperty 34
21 SymmetricObjectProperty 6
22 AsymmetricObjectProperty 1
23 ReflexiveObjectProperty 0
24 TrrefexiveObjectProperty 2
25  ObjectPropertyDomain 60
26  ObjectPropertyRange 55
27 SubPropertyChainOf 78
28 AnnotationAssertion 36959

Table 4.1: PNBO Ontology Full Metrics
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Trait TraitName Count
1 PNBO_050  group play with peers 2580
2 PNBO_037  appropriate social response 2453
3 PNBO_080  social disinhibition 2446
4 PNBO_054  imaginative play 2422
5 PNBO_086  spontancous imitation of actions 2409
6 PNBO_028  offering to share 2387
7 PNBO_047  eye contact behavior 2347
8 PNBO_074  response to children initiating behavior 2277
9 PNBO_023  reciprocal conversation 2255
10 PNBO_039  response to voice 2255
11 PNBO_055  imitative social play 2218
12 PNBO_058 initiating social activity 2215
13 PNBO_027  offering comfort 2208
14 PNBO_022  social verbalization and response 2204
15 PNBO_072  repetitive use of objects 2191
16 PNBO_059  interest in children 2190
17 PNBO_065  pointing to express interest 2184
18 PNBO_067  abnormal quality of social overtures 2162
19 PNBO_044  instrumental gesture behavior 217
20 PNBO_077  smiling 2138
21 PNBO_068 facial expressions 2105
22 PNBO_078  directing attention 2068
23 PNBO_014  delayed ccholalia 2042
24 PNBO_075  offering to share enjoyment 2030
25 PNBO_061 intonation phenotype 2024
26 PNBO_048 friendship maintenance behavior 2016
27 PNBO_081  unusual sensory interests 2010
28 PNBO_081  sensitivity to noise 1983
29 PNBO_041  circumseribed interests 1962
30 PNBO_019  loss of simple language comprehension 1961
31 PNBO_056 inappropriate facial expressions 1931
32 PNBO_004  verbal communication phenotype 1877
33 PNBO_032  aggressive behavior towards caregiver 1863
34 PNBO_046  coping with changes in environment 1847
35 PNBO_052  hand and finger mannerisms 1632
36 PNBO_035  abnormal response to sensory stimuli 1604
37 PNBO_026  head nodding 1577
38 PNBO_020  complex movement behavior 1487
39 PNBO_034 delayed development of verbal communication 1438
40 PNBO_057  inappropriate questions 1393
41 PNBO_066  pronominal reversal 1391
42 PNBO_051  head shaking 1357
43 PNBO_033  aggressive behavior towards non-carcgiver 1324
44 PNBO_021  other body use 1304
45 PNBO_043  compulsive behavior 1203
46 PNBO_076  self-injury 1253
47 PNBO_024  abnormal gait 1211
48 PNBO_010  loss of articulation skills 1122
49 PNBO_085  verbal rituals 1018
50 PNBO_070  memory ability and skill phenotype 929
51 PNBO_083  unusual preoccupations 855
52 PNBO_082  attachment to objects 817
53 PNBO_025  neologism phenotype 753
51 PNBO_012 loss of learned skills 669

55 PNBO_073  coping with changes in environment not affecting self 638

56 NBO:0000565  social withdrawal 610
57 PNBO_003 loss of language ability 148
58 PNBO_071  visiospatial ability 106
50 PNBO_069 reading ability phenotype 368
60 PNBO_007 loss of meaningful communication 363
61 PNBO_008 loss of communicative intent 329
62 PNBO_064  musical ability phenotype 265
63 PNBO_036  computational ability phenotype 245
61 PNBO_013  midline hand movements 240
65 PNBO_049 fainting behavior 215
66 PNBO_0353  hyperventilation 208
67 PNBO_011  loss of language from physical illness 192
68 PNBO_030 skilled drawing behavior 173
69 PNBO_016  constructive playing behavior 164
70 NBO:0000591 motor coordination phenotype 11
71 PNBO_006  decreased level of communication ability 106
72 PNBO_018 loss of self-help skills 105
73 PNBO_009 loss of syntactical skills 29

Table 4.2: The frequency of traits the Psychological Neuro Behavior Ontology mapped to the Simons

Simplex Collection probands, as provided by thf5/§ut1'sm Diagnostic Interview - Revised (ADI-R).
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Weighted Degree Pval Semantic Similarity Pval Degree FDR Similarity FDR  Module Module Color

1 0.0001000 0.0001000 0.0001273 0.0002800 1 turquoise

2 0.0001000 0.0001000 0.0001273 0.0002800 2 blue

3 0.0217978 0.0001000 0.0234746 0.0002800 3  brown

4 0.0001000 0.0001000 0.0001273 0.0002800 4 yellow

5 0.0001000 0.0001000 0.0001273 0.0002800 5 green

6 0.0001000 0.3841616 0.0001273 0.7683232 6 red

7 0.0938906 1.0000000 0.0938906 1.0000000 7 black

8 0.0001000 0.9748025 0.0001273 1.0000000 8 pink

9 0.0001000 0.9600040 0.0001273 1.0000000 9 magenta
10 0.0001000 1.0000000 0.0001273 1.0000000 10 purple
11 0.0001000 0.9505049 0.0001273 1.0000000 11 greenyellow
12 0.0001000 0.5857414 0.0001273 1.0000000 12 tan
13 0.0009999 1.0000000 0.0011666 1.0000000 13 salmon
14 0.0001000 0.0465953 0.0001273 0.1087225 14 cyan

Table 4.3: Modules from hierarichical clustering were subjected to 10,000 label permutations. The

pairwise semantic similarity matrix and average distance of the topological overlap matrix of each

community was calculated, and test statistics created against these empirical p-values. PNBO =

Psychological - Neuro Behavior Ontology
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Color Count TraitMin TraitMean TraitMax TraitSD
turquoise 627 25 39.49 56 5.2
blue 524 17 41.06 57 6.51
brown 518 21 43.08 61 6.46
yellow 138 24 39.67 52 5.16
green 123 28 40.02 53 4.9
red 100 20 36.17 57 6.21
black 95 18 28.55 46 5.23
pink 79 25 37.65 51 6.05
magenta 74 22 34.96 49 4.97
purple 73 17 31.59 46 5.36
greenyellow 71 24 37.58 49 6.53
tan 58 24 33.67 42 4.9
salmon 57 18 31.82 45 5.81
cyan 48 27 36.9 51 5.91

Table 4.4: Trait distribution within modules. Count is the number of probands assigned to each
module. TraitMin, Mean, Max, and SD are the minimum, mean, maximum, and standard deviation

of the number of traits assigned to each proband in each cluster.

160



Chapter Five

Uncovering genetic correlates of autism

endophenotypes

5.1 Background and Chapter Overview

While Chapter 4 provided a road map for depicting endophenotypic traits among cohorts
of individuals on various spectra of disorders, it did not provide a method for associating
genetic loci with these traits. To address questions of which loci or combinations of loci may

cause manifested phenotype profiles, this chapter employs a variety of methods.

First, I briefly re-introduce the theory behind genome wide association studies (GWAS),
and explain the concept of epistasis, and how genetic interactions can be mined to provide
insight into networks of genes which contribute to a phenotype. I then review poly-genic
models of complex disease as it relates to psychiatric/behavioral disorders. The experimental
basis for this chapter is 64 genome wide association studies (GWAS): 50 of endophenotypes in
Simons Simplex Collection probands modeled in the PNBO, and 14 of clusters of probands
identified by creating a network out of those traits (see Chapter 4). I demonstrate that

GWAS of these trait profiles can produce more robust associations than single-trait GWAS,
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and that SNPs from cluster-based GWAS can be used to successfully classify probands as
belonging to their identified cluster. Lastly, I investigate findings from the best-validated
GWAS, providing insight into a possible link between chronobiology and a subgroup of autism

patients.

5.1.1 Genome Wide Association Studies

As previously described in Chapter 3, genome wide association studies, or GWAS, form the
basis of modern genetic epidemiology. GWAS have successfully revealed risk alelles associ-
ated with traits from body composition (Fox et al., 2012) to opioid sensitivity (Nishizawa
et al., 2014). At heart, they are simple association analyses between a genetic locus (often
a SNP) and an measurable or observable phenotype. However, such associations are more
complicated when subjects in a GWAS study are related. Family based GWAS offers meth-
ods not available to case/control analyses of unrelated individuals (Benyamin, Visscher, and
McRae, 2009). These include transmission disequlibrium tests (Spielman, McGinnis, and
Ewens, 1993) and family-based designs (Laird and Lange, 2006) which take into account
paternal or maternal associations or create artificial controls from a trio of parents and a
proband. In the analyses performed in this chapter, I kept a case/control framework while us-
ing generalized mixed linear models to account for relationships between cases and controls.
In combination with traditional GWAS, 1 explore gene x gene interactions, investigating

epistasis.

5.1.2 Epistasis

In terms of quantitative genetics, epistasis can be understood as the non-additive contribu-

tion of two variants on a phenotypic trait, as proposed by Fisher (Fisher, 1919). We know
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that proteins act together to manifest molecular functions, as evidenced by the utility of the
STRING protein-protein interaction database (Szklarczyk et al., 2015b). Because of such
interactions, there is a dependency between the loci encoding interacting proteins. This non-
independence is what Fisher measured, and can be quantified through various tests at the
level of the individual allele. Challenges in identifying epistatic interactions range from the
number of combinatorial tests to be performed (a test of 10 loci results in 100 tests, and this
scales quadraticly). Recent reviews have concentrated on the role of epistatic interactions
may play in mental illness and psychiatric disorders (Webber, 2017), leading away from a

monogenic influence on disease to a polygenic approach.

5.1.3 Polygeninicity in Psychological Disorders

Polygenicity is the contribution of many alleles, whether SNPs or larger mutations, to phe-
notype manifestation (Wendt et al., 2020). Such contributions to behavioral disorders are
often small, and it is only when combing alleles into a polygenic model does heritability or
disease status get explained. Beyond polygenic models, the omnigenic hypothesis propose
that highly interconnected networks of gene regulatory networks contribute to a phenotype
(Boyle, Li, and Pritchard, 2017). A survey of the GWAS catalog (MacArthur et al., 2017)
in March 2020 identified 29 associations between 25 independent loci and autism from 6
published studies, only one of which reached strict genome-wide significance. Compounding
this, it has been recently demonstrated that polygenic risk for autism is associated with ele-
vated DNA methylation patterns, furthering the complexity of gene regulation’s role in ASD
phenotype manifestation (Hannon et al., 2018). Knowing the complexity of the genomics
of autism spectrum disorder, this chapter attempts to reduce this complexity by organizing
ASD patients phenotypically following the approach depicted in Chapter 4, and then gene

association testing on clusters of phenotypicly similar individuals is performed.
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5.2 Methods

This study was approved by the University of Birmingham’s ethical review committee, ERN-
17-0879, and assigned the Simons Foundation Autism Research Initiative (SFARI) project
number 2720.1. Genetic data was downloaded from the Simons Simplex Collection, compris-
ing 2591 families. Of these, the majority are quads including both parents and an unaffected
sibling or parental trios, with some having two probands or more than one sibling. The fam-
ilies were genotyped on one of three Illumina platforms: 1Mv1 (333 families), 1Mv3 (1189
families), Omni2.5 (1069 families).

5.2.1 SSC GWAS Quality Control

Quality control was carried out using PLINK v1.9 and R v3.5.0. For each of the three
datasets the same procedure was followed. Firstly, variants which had a particularly high
missing call rate (>0.1) were removed. Parents were excluded from the analysis, followed
by heterogeneity outliers, with a rate greater than 3 standard deviations (SD) from the
mean and individuals with a missing rate of > 0.05. In order to find related individuals
outside of families, identity-by-descent calculations were performed. Regions of known high
LD were removed, then remaining regions presenting with high linkage disequilibrium (LD)
retained using the PLINK function ‘indep-pairwise’ moving a 50kb window with a step size
of 5 variants at a time and a 0.5 R? threshold. Identity by descent (IBD) scores calculated
between individuals, selecting the individual with the lowest missing rate to retain. Inside
family comparisons were made for IBD estimates > 0.9 to remove twins or duplicates and
outside of family > 0.1875 to find those too closely related. Variants not positioned on

autosomes or with a MAF <0.01 were excluded before the datasets were merged.

Variants were identified that were shared across the three datasets and the merge was
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performed. Any variants which presented with inconsistent base pair position or alleles were
removed. For each analysis, a covariates file was built which included gender, genotyping
platform, and the first five Principal Components (PC’s). Principal Component Analysis
(PCA) was carried out by removing known high LD regions using the PLINK function
‘indep-pairwise’ moving a 50kb window with a step size of 5 variants at a time and a 0.5 R?

threshold.

5.2.2 GWAS with Related Subjects

To perform a GWAS analysis with related individuals, a mixed model using the GEMMA
software suite was used (Zhou and Stephens, 2012). A generalized linear mixed model is
created:

y=Wa+zB+Zu+e (5.1)

where y is the vector of outcomes (presence or absence of a trait), W is a matrix of fixed effect
covariates and a column vector of 1s, « is the corresponding vector of coefficients including
the intercept, x is the vector of genotypes, 3 is the effect size of each genotypic marker, 7 is
the identity matrix, and u is the vector of random effects, and e is the vector of error terms.

The mixed effect term w is calculated by:
u~ MV N,, (0, \7*K) (5.2)

where u is distributed in a multivariate normal distribution with a mean of 0, m = n below
and denotes the number of individuals, 7 is the variance of residual errors, K is a m x m
relatedness or kinship matrix (derived from the covariance of the individuals, populated by
the proportion of shared alleles), and \ is the ratio between the variance components. The
error term, €, is modelled as:

e~ MVN,(0,77'I,) (5.3)
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which is multivariate normally distributed about a mean of 0, where I is the identity ma-
trix. In non-human studies, m could denote the number of strains and n the number of
animals with Z representing the strain each animal belongs to, but in this case m = n as
stated. By incorporating the mixed-effect u, which captures the relatedness of individuals,
the assumption that each subject in the GWAS analysis is independent does not have to
hold. A kinship matrix was built for the entire cohort of probands and siblings and used
for each analysis. Individual fam files were created for each of the 50 different behavioural
phenotypes modelled in PNBO which had > 1,000 cases. Prior to any testing, final QC steps
were taken per trait, removing variants based on a case control missing rate likelihood of <
0.001, missing rate 0.05 or a Hardy Weinberg Equilibrium p < 1le-8. Finally, case-control

association was calculated for the remaining variants.

For each GWAS in this chapter, QQ normality and manhattan plots were generated

with ggplot2 (Wickham, 2016). Results of p <= le-5, were kept for further investigation.

5.2.3 GWAS of Clustered Traits

To test the assumption that individuals who shared common traits would also share a com-
mon genotypic architecture underlying those traits, GWAS were performed using the pres-
ence or absence of a proband in each cluster identified in Chapter 3. For cluster 1, probands
in clusters 2:14 were treated as controls, and probands in cluster 1 as cases. The procedure
for performing GWAS on individual PNBO traits was followed, including using a kinship
matrix as a mixed effect parameter, and including sex, genotyping platform, and genetic

principal components as fixed effects.
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5.2.4 Epistasis Detection

To test for non-additive interactions between traits, logistic regression epistasis tests for SNP-
SNP interactions were performed using CASSI (“CASSI”). After each GWAS performed,
any SNPs associated to a trait at a moderate p-value of 1le-3 were retained for analysis with

CASSI. A likelihood ratio test statistic to test two models was applied:

In(P(y = case)/P(y = control)) = Wa + By + 194 + Bags + P39498 (5.4)

versus

In(P(y = case)/P(y = control)) = Wa + By + f1ga + 298 (5.5)

where the (s are the intercept, allele 1, allele 2, and the interaction term respectively. As
previously used, W« is the fixed effect covariate matrix including sex, genotyping chip, and
5 PCs. After calculating the likelihood of each model for a pair of SNPs, the ratio of the

reduced model over the full A = Ly/L; can be transformed into a x? statistic:
x? = —2In\ (5.6)

to produce a p-value compared to a chi? distribution with 1 degree of freedom. Test with p

<- le-5 were considered statistically significant.

5.2.5 GWAS validation via LASSO

To validate the results of clustered GWAS, SNPs identified as significantly associating with
each cluster p <= le—>5 or whose pairwise combination was associated at the same threshold
were kept. Alleles were extracted and recoded to allelic dose format in a dominant model
using PLINK. These SNPs were used as features in a LASSO model, mimicking the frame-
work in Chapter 2 and as published by myself and colleagues (Bravo-Merodio et al., 2019).

Using the presence or absence of an individual in a cluster as target and SNPs as features,
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data were split split into training (75%) and test (25%), stratified to maintain the propor-
tion of members in the target cluster. Cluster membership was regressed on SNPs and all
their pair-wise interactions using the least absolute shrinkage and selection operator, or lasso
(Tibshirani, 1994; Zou, 2006), as modified for logistic regression. In this regression analysis,

the normal objective function is:

N
Residualsumofsquares (RSS) = Z (yi — xiTﬂ)2 (5.7)

i=1
which minimizes the residual sum of squares error. The 3 value, the regression coefficients,

minimize this value. In the lasso, a penalizing term is added:

minimize 1
WgHy—XﬁHngMWlll (5.8)

which adds a A penalizing term. Here, the left side of the equation is the RSS loss function
rewritten, and the right side shows the parameter \; this is the penalized sum of the absolute
values of the 3 coefficient. To optimize the A, hyperparameter,each training set was split
10-folds for cross-validation, and a grid search was used to test values of A\ in each fold,
optimized on the best area under the ROC curve. The best performing model was then
tested on the hold-out test set. This procedure was repeated in an outer loop 10 times
to account for stratification effects. The caret (Wing et al., 2018) and glmnet (Friedman,
Hastie, and Tibshirani, 2010) packages were used for modeling, and all plots were created

in the ggplot2 (Wickham, 2016) package in the R computing environment (R Core Team,
2013).

5.2.6 Phenome Wide Network Creation

To characterize genetic variants which influence the autism phenome, a graph was created.
The Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016) was used to annotate

significant SNPs from GWAS and epistasis detection for each of the 14 phenome clusters
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identified in Chapter 3. For each phenotypic profile identified by Similarity Regression,
traits with a marginal probability of association greater than 0.5 were kept. Within each
gene/cluster association, the —log;0 p-value of the association was multiplied by the marginal
probability of each trait/cluster association, resulting in an association score. This resulted
in gene/trait associations which formed the nodes of a weighted, undirected graph. Edge
weights were the association scores. The graph was visualized using a weighted force-directed

layout in Cytoscape v3.9.0 (Shannon et al., 2003).

5.2.7 Gene Set Investigations

SNPs identified as significant in the SSC GWAS were annotated with the Ensembl Variant
Effect Predictor, using version 97 (McLaren et al., 2016). Variants within protein-coding
genes were annotated for coding consequences, and potential deleteriousness with SIFT
(Vaser et al., 2016) and PolyPhen (Adzhubei et al., 2010). Gene sets were investigated
by performing gene set enrichment analysis using the gProfiler2 R package (Kolberg and
Raudvere, 2020; Reimand, Arak, and Vilo, 2011). Databases and ontologies used include
the Gene Ontology (Gene Ontology Consortium, 2015), the Kyoto Encyclopedia of Genes
and Genomes Database (Kanehisa and Goto, 2000), the Human Phenotype Ontology (Ko6h-
ler et al., 2019), the CORUM database (Ruepp et al., 2010), REACTOME (Fabregat et al.,
2016), and Wikipathways (Slenter et al., 2018). To compare my findings against a known gold
standard for autism-related genes, the gene scoring SFARI Gene database was downloaded

from the Q2 2019 release.
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5.3 Results

Strict quality control and preprocessing allowed for the assessment of individuals and SNPs,
but also facilitated for the mitigation of ethnic background artifacts by including loadings
from the principal component analysis of each cohort. The 1Mv1 chip cohort (Figure 5.1)
contains individuals with the highest missingness rate of their SNPs, while also being the
cohort genotyped - see Table 5.1. The cohort genotyped on 1Mv3, the second generation to be
processed in the SSC, is also the largest, and the large degree of variance explained by the first
principal component reflects the homogeneity of the cohort (Figure 5.2. The near horizontal
lines in the right of panel 5.2b indicate the low explanatory power of dimension 4 and
following principal components. The percent of variance explained by the second component
is the largest of each cohort. The Omni cohort reflects a wide degree of heterogeneity (Figure
5.3a as indicated by the F-Statistic range (black vertical bars). While not the largest cohort
(1016 probands vs 1136 in the 1Mv3 passing QC), it is by far the largest chipset, including

over twice the loci passing QC as any other genotyped cohort in the SSC, Table 5.2.

Individual Filter 1Mvl 1Mv3 Omni2.5

Original 335/1019 1193/3433 1077/3163
Remove Parents  335/353  1191/2378 1077/1025
Check Sex 335/350  1191/1046 1077/1024
Heterozygosity ~— 326/343  1140/1012 1023/979

Relatedness 324/343  1136/1007 1016/978

Table 5.1: Filtering individuals in three arrays. Individuals are segregated into proband/other,

where other includes parents and siblings.

5.3.1 Single Trait GWAS fail to reveal significant associations

Fifty GWAS analyses were performed on PNBO-encoded traits from the SSC cohort. No

single-trait analysis produced SNPs above a strict genome-wide threshold for significance
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Heterozygosity Rate vs Sample Missing Rate Comparisons of First Four Principal Components
0.03- 021
A 0.00-
. 00 00
& -005- 8 3
. o a 02 & o
-0.10-
04 0.4
. -0.15- v v v ! ! ! ! 0 g ‘ v
. -0.15 -0.10 -0.05 0.00 -0.15 -0.10 -0.05 0.00 -0.15 -0.10 -0.05 0.00
PC1 PC1 PC1
0.02-
g 02- .
. ‘, I
° 00- — - nmria Y
5
LS . @ = 5
2 ‘ g.. g
g -02-
s .
. 04 0.4-
© . . 4 U i = 0 U 0 '
0.01- LA -0.15 -0.10 -0.05 0.00 -0.15 -0.10 -0.05 0.00
o| o LR
o 0.2
. R
. ! ° Percent Variance 0.0-
.89 '-: . PC1 29.66 s
* 0 ° 4 © & 02-
oy . .
I .i‘ﬁ.‘ L Sl PC2 10.74
W oo o ¥ ‘.&,‘ Ll PC3 458 oa)
| PC4 421
0.1 00 o1 64 02 00
F-Stat for heterozygosity PC3
(a) (b)

Figure 5.1: Diagnostic plots for the Simons Simplex Collection (SSC) cohort genotyped with the
Illumina 1Mv1 array. For each individual, panel A indicates the Fisher’s test statistic for heterozy-
gosity (x axis), black horizontal lines representing three standard deviations from the mean. The
missingness rate for each individual is indicated by the y axis. Panel B indicates the first four prin-
cipal components of the SNPs belonging to each individual after PCA dimensionality reduction,

and the percent of variance explained by each component shown in the key.

Individual Filter 1Mvl 1Mv3 Omni2.5

Original 1,072,814 1,199,033 2,440,283
Autosomes 1,029,591 1,147,689 2,383,385
Missingness >0.05 1,006,127 1,105,550 2,380,115
MAF <0.01 962,109 1,062,277 2,236,183

Table 5.2: Filtering variants in three arrays. Within each array, variants were filtered to exclude

10% missing, a minor allele frequency (MAF) of less than 1 %, and exclude sex chromosomes.
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Heterozygosity Rate vs Sample Missing Rate Comparisons of First Four Principal Components
0.075- 05-

. 0.4-
0.050- 0.00-
03-

3
0.05- o 02°

PC2
PC3

0.025-

0.1-
0.000-

0.02-4 . —0025- 4 o O S S S
0.00 0.02 0.04 0.06 0.08 0.0 0.02 0.04 0.06 0.08 000 0.02 004 0.06 0.08
PC1 PC1 PC1

Missing Rate
.

0.01- : T
0,025 0.000 0.025 0.050 007! -0.025 0.000 0.025 0.050 0.07
PC2 PC2
05-
04-
Percent Variance 03
PC1 45.55 3
Qo2
pPC2 16.59 o
1
PC3 414
| o.0-1 S N
o PC4 252 Y
-010 005 0.00
F-Stat for heterozygosity PC3
(a) (b)

Figure 5.2: Diagnostic plots for the Simons Simplex Collection (SSC) cohort genotyped with the
Illumina 1Mv3 array. For each individual, panel A indicates the Fisher’s test statistic for heterozy-
gosity (x axis), black horizontal lines representing three standard deviations from the mean. The
missingness rate for each individual is indicated by the y axis. Panel B indicates the first four prin-
cipal components of the SNPs belonging to each individual after PCA dimensionality reduction,

and the percent of variance explained by each component shown in the key.
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Heterozygosity Rate vs Sample Missing Rate Comparisons of First Four Principal Components
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Figure 5.3: Diagnostic plots for the Simons Simplex Collection (SSC) cohort genotyped with the
Illumina Omni2.5 array. For each individual, panel A indicates the Fisher’s test statistic for het-
erozygosity (x axis), black horizontal lines representing three standard deviations from the mean.
The missingness rate for each individual is indicated by the y axis. Panel B indicates the first four
principal components of the SNPs belonging to each individual after PCA dimensionality reduction,

and the percent of variance explained by each component shown in the key.
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(p < le-8), and few produced any hits above a nominal threshold used for inclusion into
the GWAS catalog (MacArthur et al., 2017) (p < le-5). Two traits are presented, namely
an abnormal gait and a lack of head nodding. As seen in Figure 5.4, the GWAS is heavily
underpowered ( Figure 5.4a), with a QQ plot whose observed p-values fall far below the

expected line The Manhattan plot likewise shows no single locus, and largely no signal.

Manhattan Plot for gait in SSC Cohort

Observed (-logP)

Expected (-logP)
(a) (b)

Figure 5.4: GWAS of the SSC cohort whose endophenotype included an abnormal gait as reported
by a proband’s parent. Panel A shows an under powered QQ plot, with very little signal. Panel B
shows the corresponding Manhattan plot. X-axis represents chromosome position, Y-axis represents

the -log10 p-value of association.

A GWAS analysis on head nodding produced similar results, see Figure 5.5, with
nearly identical QQ statististics; while there appears to be a locus in chromosome 15
which presents several SNPs in high LD, none are statistically significant on a genome-wide
scale. GWAS statistics for each individual analysis are available in the online appendix, see

https://github.com/jaw-bioinf/Phd Thesis.
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Manhattan Plot for nodding in SSC Cohort

Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.5: GWAS of the SSC cohort whose endophenotype included a lack of nodding the head as
reported by a proband’s parent. Panel A shows an under powered QQ plot, with very little signal.
Panel B shows the corresponding Manhattan plot. X-axis represents chromosome position, Y-axis

represents the -logl0 p-value of association.

Epistasis detection highlights otherwise non-significant loci

While in most cases there were no genome-wide significant loci revealed when testing each
PNBO trait, tests for epistatic interactions did reveal loci which, when combined, had a
statistically significant association with PNBO traits (p < le-5). The PNBO trait "Delayed
Echolalia" can be seen in Figure 5.6. While the GWAS itself was underpowered Figure (5.6a),
there were significant epistatic interactions, as can be seen in the Manhattan plot. Intra-
genic SNPs are labelled with their coding gene, and yellow diagrams indicating interactions
between CASP8 and ADGRAS3, and between SCL39A8 and AC007846.2. Each interaction

is in trans, highlighting the multigenic nature of behavioral GWAS.

While the GWAS of abnormal gait in the SSC cohort did not produce any significant

results, Table 5.3 indicates 17 significant interactions. Six of them are between SNPs located
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Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.6: GWAS of the SSC cohort whose endophenotype included delayed echolalia, or the
delayed repetition of words and sounds heard by the proband. Panel A shows a QQ plot. Panel B
shows the corresponding Manhattan plot. X-axis represents chromosome position, Y-axis represents
the -logl0 p-value of association. Gold lines indicate epistatic interactions, both intragenic (gene

names labeled).
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on chromosomes 11 and 17, each with a 5 of at least 0.43, or an odds ratio (OR) of 1.5.
Not all associations are positive, indeed one pairwise epistatic interaction between SNPs on

Chr 8 and 14 may be protective against abnormal gait in an autistic population, with a (8

of -17.60, OR. of 2e-8.

ID1 CHRI1 BP1 ID2 CHR2 BP2 beta se D
1 1s10903108 1 25061527 rs6836731 4 126776318  -0.3352 0.0739 5.69396e-06
2 151975365 1 85318295 1s12120901 1 241637153 1.0540 0.2376 9.17224e-06
3 1s934012 2 19593206 1s11707637 3 25554919 0.3354 0.0750 7.63249e-06
4 1s934012 2 19593206 1s12432424 14 35549578  -0.7752 0.1711 5.86169e-06
5 151427538 2 19627241 1s11707637 3 25554919 0.3825 0.0863 9.37178e-06
6 1s1530940 2 236570047 1s9401672 6 123820711 -0.4470 0.0847 1.3026e-07
7 1513024834 2 236611291 1s9401672 6 123820711 -0.4034 0.0863 2.92018e-06
8 156920980 6 71083045 1s9540226 13 64281942 0.7508 0.1691 8.97587e-06
9 1rs12375209 7 10863750 1s7789727 7 102576731  -0.8807 0.1963 7.23405e-06
10 rs4595060 7 108548069 rs4782578 16 82620921 0.5280 0.1184 8.13866e-06

11 rs7830660 8 16460188 1rs10483465 14 35978788 -17.6035 3.9463 8.16772e-06
12 1rs1152620 11 65013905 1s16972147 19 52544819 0.4816 0.1026 2.65643e-06
13 1rs1152620 11 65013905 1s10419759 19 52547139 0.4844 0.1018 1.97434e-06
14 1rs600231 11 65017222 1s16972147 19 52544819 0.4396 0.0995 9.99016e-06
15 1rs10896016 11 65092281 1s16972147 19 52544819 0.4411 0.0989 8.11992e-06
16 rs1784220 11 65094290 1s16972147 19 52544819 0.4859 0.1020 1.922e-06

17 1rs1784220 11 65094290 1s10419759 19 52547139 0.4739 0.1011 2.76482e-06

Table 5.3: Significant gait Epistasis Results

An epistatic association analysis of the "head nodding" phenotype revealed 7 signif-
icant interactions, including one protective against a lack of communicating yes by a head

nod (the explanatory meaning of this trait), between Chrs 1 and 3, 5 -0.92, or an OR 0.39.

While individual traits may not produce many (or any) statistically significant genetic
or epistatic associations in the SSC cohort, the PNBO allows us to investigate very closely

related traits to see if they produce similar GWAS results.
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ID1 CHRI1 BP1 1ID2 CHR2 BP2 beta se p
1 rs6673329 1 161061124 1s9837045 3 3044773 -0.9282 0.2088 8.81891e-06
2 182279014 2 218969420 1s6481442 10 52041194 0.3257 0.0732 8.65598e-06
3 1s12633333 3 21027741 rsd4741721 9 2498296 0.3525 0.0784 6.85237e-06
4 1s12633333 3 21027741 rs1970074 9 2499947 0.3534 0.0781 5.98102¢-06
5 16846158 4 14373558 rs7725025 5 83343330 0.5811 0.1305 8.47224e-06
6 rs6840522 4 54725132 r1s17402321 7 8206434 0.6121 0.1256 1.08975e-06
7 1s4446676 7 103665690 1rs8009761 14 73958307 0.3363 0.0739 5.42927e-06

Table 5.4: Significant nodding Epistasis Results

Case study: aggression towards peers (non-caregivers)

The ADI-R asks parents two questions about aggressive behavior, one relating to aggression
towards peers (coded as aggression towards non-caregivers), and the other relating to aggres-
sion towards caregivers. FEach trait is a sibling in the PNBO ontology, with a common parent
term (aggressive behavior). When investigating GWAS against a caregiver, no significant
results are returned, evident in Figure 5.7. Not only did GWAS not reveal any associations,

but epistasis testing did not reveal any interacting SNPs associated with the trait.

Aggression towards a non-caregiver, however, did result in statistically relevant asso-
ciations from epistasis testing. While still underpowered, the QQ plot indicates a less-severe
observed to expected p-value ratio, and several epistatic interactions are visible in the Man-
hattan plot in Figure 5.8. Eight epistatic interactions were uncovered, including two cis
interactions sharing a chromosome, on Chr 3 and 14, see Tables 5.5 and 5.6. Three GWAS
SNPs were significant, including several intragenic. These include SNPs within PEX5L,
COL25A1, CPZ, MARCHF1, GALNT18, JCAD, OPCML, and CAPNS3.

After GWAS and tests for significant epistatic interactions were performed on each

PNBO trait, intragenic SNPs were annotated with their corresponding genes, and inter-
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Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.7: GWAS of the SSC cohort whose endophenotype included aggression directed towards

caregivers. Panel A shows a QQ plot. Panel B shows the corresponding Manhattan plot. X-axis

represents chromosome position, Y-axis represents the -logl0 p-value of association.

Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.8: GWAS of the SSC cohort whose endophenotype included aggression directed towards

non-caregivers, usually other children. Panel A shows a QQ plot. Panel B shows the corresponding

Manhattan plot. X-axis represents chromosome position, Y-axis represents the -logl0 p-value of

association.
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s chr ps beta se p

1 1s6530854 8 15280833 0.0432 0.0091 2.193156e-06
2 16530863 8 15291861 0.0403 0.0088 5.054047e-06
3 1s35684719 19 1852649 -0.0853 0.0191 7.806984e-06

Table 5.5: Significant aggression towards a non-caregiver GWAS Results

ID1 CHRI1 BpP1 1ID2 CHR2 BP2 beta se p
1 1rs12141375 1 201447985 rs2505127 10 30409866 0.5838 0.1261 3.62889¢-06
2 1s4078437 1 227325540 1s1526131 4 110053688 0.4728 0.0822 8.8008e-09
3 1s11801153 1 227327711 1s1526131 4 110053688 0.4372 0.0817 8.74462e-08
4 rs4855129 3 181161256 1rs2315505 3 183835768 0.3466 0.0755 4.3705e-06
5 152302580 4 8659534 rs7120582 11 11508648  -0.3424 0.0769 8.57002e-06
6 1s1877314 4 164709468 1s17764849 15 40483167 -17.5639 3.9234 7.57961e-06
7 1s11154637 6 131780207 rs871437 11 132309082 0.4900 0.1000 9.67749e-07

8 1511159233 14 76295162 1s12436912 14 85891516 0.3185 0.0702 5.76176e-06

Table 5.6: Significant aggression towards a non-caregiver Epistasis Results

sected with SFARI Gene. Gene set enrichment of those intersections included genes listed as
syndromic, and with scores 1 and 2 of potential deleteriousness, but none with score 3 (the
category with least support). Of intragenic SNPs, which overlap with SFARI Gene, signif-
icant associations include post-synapse, dendritic, and neuron projection processes, several
synaptic cellular component locations, and glutamate binding functions. Genes were en-
riched in the "Glutamatergic synapse" KEGG pathway (all adjusted p < 0.05) - see Table
5.7. Likewise, genes not found in the SFARI Gene database were also highly enriched for
synapse organization, and enriched in several synapse-related cellular components including
the glutamatergic synapse specifically, as well the postsynaptic membrane and a variety of
plasma membrane and intracellular vesicle locations. The genes were also enriched for par-
ticipation in the KEGG calcium signaling pathway. While individual trait-level GWAS did

fail to produce significant GWAS-level results, performing GWAS on the clusters of traits
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p_value term _id source  term_name

1 0.0179 GO:0099173  GO:BP  postsynapse organization
2 0.0201 GO:0097061 GO:BP  dendritic spine organization
3 0.0291 GO:0106027 GO:BP neuron projection organization
4 0.0353 GO:0007399 GO:BP nervous system development
5 0.0043 GO:0032279 GO:CC asymmetric synapse
6  0.0062 GO:0098984 GO:CC neuron to neuron synapse
7 0.0225 GO:0098590 GO:CC plasma membrane region
8 0.0499 GO:0014069 GO:CC postsynaptic density
9  0.0497 GO:0016595 GO:MF glutamate binding
10 0.0043 KEGG:04724 KEGG  Glutamatergic synapse

Table 5.7: Gene ontology and KEGG gene set enrichment results of genes in SFARI Gene with signif-
icant SNPs from individual PNBO analysed traits. P-values are analytically corrected (permutation

based) in GProfiler software.

discovered in Chapter 4 indicate significant associations between phenotypic profiles and

SNPs in the SSC cohort.

5.3.2 Phenome profile GWAS and epistasis studies reveal signifi-

cant genetic associations for diverse autism phenotypes

GWAS and epistatic interaction tests were performed for each of the 14 clusters identified
in Chapter 4. Results are all presented in order by cluster, from largest to smallest proband

membership.

The turquoise cluster’s traits include high level traits (memory ability and skill, play-
ing behavior, and loss of self-help skills). It is associated with significantly interacting (Table
5.10) and single SNPs (Table 5.9, Figure 5.9). Enrichment produced few results (Table 5.11).
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Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.9: GWAS of the SSC cohort who belong to cluster 1, turquoise. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.

The blue cluster singularly included one significantly associated trait, lack of recipro-
cal conversation. It is associated with significantly interacting (Table 5.13) and single SNPs

(Table 5.12, Figure 5.10). The cluster is enriched for two protein interaction complexes

(Table 5.14).

The brown cluster is phenotypically diverse, including high level (restricted behavior)
and more specific (anxious behavior) traits. It is associated with significantly interacting
(Table 5.16) and single SNPs (Table 5.15, Figure 5.11). The cluster is enriched for bile acid

synthesis, and zinc homeostasis, among others (Table 5.17).

The yellow cluster is phenotypically diverse, but specific to communication and social
traits. It is associated with significantly interacting (Table 5.19) and single SNPs (Table
5.18, Figure 5.12). The cluster is enriched for receptor localization to synapse processes

(Table 5.20).
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Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.10: GWAS of the SSC cohort who belong to cluster 2, blue. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.
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Figure 5.11: GWAS of the SSC cohort who belong to cluster 3, brown. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.
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Figure 5.12: GWAS of the SSC cohort who belong to cluster 4, yellow. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.

The green cluster’s phenotypic signature is broad, including lack of communication
(head nodding and loss of intent to communicate), lack of interest in children, and lack of
offering to share one’s enjoyment with others. It is associated with significantly interacting
(Table 5.22) and single SNPs (Table 5.21, Figure 5.13). The cluster is enriched for T-cell

leukemia virus 1 infection ( Table 5.23).

The red cluster’s phenotypic signature represents above normal visiospatial ability
and sensitivity to noise. It is associated with significantly interacting (Table 5.25) and single
SNPs (Table 5.24, Figure 5.14). The cluster is enriched for one protein interaction complex
(Table 5.26).

The black cluster’s phenotypic signature is vague, including a lack of appropriate
social response, abnormal reciprocal conversation, and abnormalities i voluntary movement

behavior. It is associated with significantly interacting (Table 5.28) and single SNPs (Table
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Figure 5.13: GWAS of the SSC cohort who belong to cluster 5, green. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.
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Figure 5.14: GWAS of the SSC cohort who belong to cluster 6, red. Panel A shows an under powered
QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome position,

Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic interaction.
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5.27, Figure 5.15). The cluster is associated with metabolism and energy use (Table 5.29).
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Figure 5.15: GWAS of the SSC cohort who belong to cluster 7, black. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.

The pink cluster’s phenotypic signature includes several types of restricted behaviors.
It is associated with significantly interacting (Table 5.31) and single SNPs (Table 5.30, Figure

5.16). The cluster is associated with recombination hotspot binding (Table 5.32).

The magenta cluster’s phenotypic signature is made up of poor coping mechanisms. It
is associated with significantly interacting (Table 5.34) and single SNPs (Table 5.33, Figure

5.17). The cluster is associated with localization in the postsynaptic membrane (Table 5.35).

The purple cluster’s phenotypic makeup involves self injury, sensitivity to noise, and
social communication traits. It is associated with significantly interacting (Table 5.37) and
single SNPs (Table 5.36, Figure 5.18). The cluster is associated with three interacting protein
complexes involving DZIP1 (Table 5.38).
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Figure 5.16: GWAS of the SSC cohort who belong to cluster 8, pink. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.
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Figure 5.17: GWAS of the SSC cohort who belong to cluster 9, magenta. Panel A shows an
under powered QQQ) plot. Panel B shows the corresponding Manhattan plot. X-axis represents
chromosome position, Y-axis represents the -log10 p-value of association, and yellow bands indicate

epistatic interaction.

187



Uncovering genetic correlates of autism endophenotypes

Observed (-logP)

Expected (-logP)

(a) (b)

Figure 5.18: GWAS of the SSC cohort who belong to cluster 10, purple. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.

The green-yellow cluster’s phenotypic makeup is broad, including learning, playing,
and communication traits. It is associated with significantly interacting (Table 5.40) and sin-
gle SNPs (Table 5.39, Figure 5.19). The cluster is associated with Notch signaling pathways
(Table 5.41).

The tan cluster’s phenotypic makeup is specific, involving head nodding and gait
abnormalities. It is associated with significantly interacting (Table 5.43) and single SNPs
(Table 5.42, Figure 5.20). The cluster is associated with circadian biology and the SNARE

complex ( Table 5.44).

The salmon cluster’s phenotypic makeup includes unusual sensory interests, coping
with environmental changes, and asking socially inappropriate questions. It is associated
with significantly interacting (Table 5.46) and single SNPs (Table 5.45, Figure 5.21). The

cluster is associated with several protein complexes (Table 5.47).
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Figure 5.19: GWAS of the SSC cohort who belong to cluster 11, green-yellow. Panel A shows
an under powered QQ) plot. Panel B shows the corresponding Manhattan plot. X-axis represents
chromosome position, Y-axis represents the -log10 p-value of association, and yellow bands indicate

epistatic interaction.
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Figure 5.20: GWAS of the SSC cohort who belong to cluster 12, tan. Panel A shows an under
powered QQ) plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.
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Figure 5.21: GWAS of the SSC cohort who belong to cluster 13, salmon. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.

Lastly, the cyan cluster’s phenotypic makeup includes head nodding. It is associated
with significantly interacting (Table 5.49) and single SNPs (Table 5.48, Figure 5.22). The
cluster is associated with the transcription factor PRDM1 and one protein complex (Table

5.50).

5.3.3 SNPs predict autism endophenotype-derived cluster member-

ship

Without access to external datasets of autism patients phenotyped with the PNBO and
genetic data available, I designed cluster classification experiments to test the biological
validity of phenotype-derived clusters. My working hypothesis was that if SNPs associated

to a cluster via GWAS can classify probands correctly into this cluster, then there may be
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Figure 5.22: GWAS of the SSC cohort who belong to cluster 14, cyan. Panel A shows an under
powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome
position, Y-axis represents the -logl0 p-value of association, and yellow bands indicate epistatic

interaction.

a genetic etiology to the distinct phenotype profile of that cluster. To validate this, 1/4 of
probands in a cluster were excluded from classifier training and used to test the performance

of the classifier.

The coded allele at each SNP (major, minor, missing) made up features used for
classifying SNPs into their cluster. The experiment was repeated 10 times, and the median
Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values retained. The
worst performing was an AUC of 0.61 (Figure 5.23a in the turquoise module (the largest).
The highest was in the tan cluster, the 12th smallest, with a median AUC of 0.94, seen in

Figure 5.25d.

While each cluster was evaluated with 10 different train/test splits (drawn at random),
few showed large AUC score variance, as indicated by a lack of outliers (outside of 1.5 times

the interquartile range). Predictive models, which accurately captured cluster membership,
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include those used to classify turquoise, yellow, green, red, black, purple, green-yellow, tan,
salmon, and cyan; see Figures 5.23d, 5.24a, 5.24b, 5.24c, 5.25b, 5.25¢, 5.26a, and 5.26b.
Others were more variable including the blue, brown, pink, and magenta models; see Figures

5.23b, 5.23c, 5.24d, and 5.25a.
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Figure 5.23: Predictive ability of SNPs identified from GWAS in the turquoise, blue, brown, and
yellow cluster to predict cluster membership of 25% holdout validation set, repeated 10 times.
Panels A presents areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-

performing ROC curve is plotted in Panels B.

5.3.4 Phenome-wide network reveals gene-driven relationships be-

tween autism related traits

Thus far, each analysis focused on on a single trait or cluster. Each cluster of probands
is made up of multiple traits, many intersecting. To view a phenome-wide map of genes
influencing their several traits in clusters, a graph, whose edges represent the -log P-value of
association between a gene and a trait, with wider edges indicating a stronger association,
was generated . Only SNPs associating with known genes are included, and interactions are
collapsed to the level of the gene. The only edges in the graph are links between genes and
traits; no links between PNBO traits from the ontology, or links between genes sharing an

epistatic interaction, are shown, Figure 5.27.
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Figure 5.24: Predictive ability of SNPs identified from GWAS in the green, red, black, and pink
cluster to predict cluster membership of 25% holdout validation set, repeated 10 times. Panels A
presents areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-performing

ROC curve is plotted in Panels B.
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Figure 5.25: Predictive ability of SNPs identified from GWAS in the magenta, purple, greenyellow,
and tan cluster to predict cluster membership of 25% holdout validation set, repeated 10 times.
Panels A presents areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-

performing ROC curve is plotted in Panels B.
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(a) (b)

Figure 5.26: Predictive ability of SNPs identified from GWAS in the salmon and cyan cluster to
predict cluster membership of 25% holdout validation set, repeated 10 times. Panels A presents
areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-performing ROC

curve is plotted in Panels B.

Traits are in green, genes are in white, with a data-driven edge-weighted force directed
layout show. From this bird’s eye view of gene/trait associations made in this chapter, it is
apparent that loss of language ability, social verbalization and response, and learning and /or
memory behavioral phenotypes are with an interconnected cluster of genes, which reflects
results observed in the green-yellow cluster. Another cluster of genes connects traits related

to the visiospatial ability and sensitivity to noise from cluster red.

5.4 Discussion

In this chapter, 64 GWAS and epistatic analysis experiments were performed, and 14 were
validated by holdout. At the endophenotype level, GWAS failed to find significant associ-
ations between alleles and traits. In the SSC cohort, nearly 40 out of 100 individual traits
will map to an individual, giving each proband a mix of seemingly uncorrelated traits which
may be expressed more or less strongly. Because traits are assigned from the ADI-R instru-
ment, subjectivity in interpreting answers may bias how accurate assignments of individual
traits are. Moreover, these findings are not unique to this work. Chaste and colleagues
performed GWAS analyses on the SSC cohort (Chaste et al., 2015). They manually split

the cohort into 10 overlapping groups for separate analyses based on autism diagnosis, 1Q),
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having circumscribed interests in the ADI-R, difficulty with change in the ADI-R, sensitivity
to noise, and from measurements derived from the Autism Diagnostic Observation Schedule
(Lord et al., 1989). They reported no genome-wide significant signal, hypothesizing that
among the phenotypically similar SSC cohort divisions based on phenotype are still to ho-
mogeneous. In each case of trait selection, rather than split the cohort into groups based
of phenotypic profile, they analysed single traits following the approach described in the be-
ginning of this chapter. Epistatic interaction analysis did not improve the signal, although
evidence of epistatic interactions associated with individual phenotypes (p < le-6), when no
GWAS association was identified, was found. This suggests that the non-additive effect of
SNPs making a small contribution toward a phenotype may explain more of the aberrant

traits than single SNP effects.

5.4.1 Cluster-based GWAS find novel genomic associations for autism

traits

Contrary to single trait-based GWAS, cluster GWAS and epistatic analysis produced genome-
wide significant results which were not seen at the individual trait level. These associa-
tions included 27 SNPs associated with their cluster’s traits at p < 1e-20, far exceeding the
genome-wide standard of 1e-8. To validate clusters GWAS associations, supervised learning
experiments aiming to classify probands into their cluster were performed. After training
a classifier to place probands in their cluster or the rest of the SSC population, holdout
probands were then tested. Previous approaches have used GWAS summary statistics and
expected AUCs of around 0.75 for a well-performing classifier (Patron et al., 2019). Ours
performed much better, with several GWAS validating with AUCs above 0.9, up to 0.94 in
the tan module. Their model, however, did not include SNPs from epistatic interactions,

which were not found in GWAS, and did not perform feature selection via the LASSO. Ad-
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ditionally, I made artificial epistatic interactions between all SNPs in my GWAS validation
classifier by including interaction terms for each SNP used to attempt to classify probands.
This may have explained the increased performance among some clusters, as complex disease
is often underpinned by complex genetic models. The two largest clusters had the lowest
AUC scores assigned, likely indicative of the very high level phenotypic signature which
defined the large number of probands in the two clusters. Given that most probands were
assigned play-related behavior traits in PNBO, which make up the majority of the turquoise

cluster’s phenotypic signature, this is not surprising.

Core circadian genes associate with communication and gait phenotypes

Interestingly, the best preforming validation ROC score was identified for the second smallest
"tan" cluster, see Figure 5.25d. Of nine SNPs within protein coding regions, one SNP
rs4851384 is embedded in the intron of NPAS2. NPAS2 was discussed in Chapter 2 as an
under-annotated circadian gene; it clearly has a biological function in the core circadian
pacemaker but, due to being a paralog of the CLOCK gene, does not yet have associations
with abnormal circadian rhythms in mouse. A survey of the other nine genes in this cluster
reveal CADPS2, whose mouse homolog is annotated in the Disease Ontology (Schriml et al.,
2012) with ASD. None of these genes are currently annotated to their cluster’s phenotypic
profile of head nodding and abnormal gait. Cadps2 is associated with abnormal circadian
behavior (further strengthening the module’s circadian connection) and abnormal cerebellum
morphology, affecting Purkinje and granule cells (Bult et al., 2019b). There are several
PNBO-enoded ASD traits which involve fine motor skills, controlled by the cerebellum.
Mouse models of Fragile-X syndrome often exhibit neurodegeneration, abnormal gait, and
autism characteristics while also being implicated in Purkinje cell dysfunction (Tsai et al.,
2012; Sundberg and Sahin, 2015). Given this evidence, behavioral mouse phenotyping may

be needed on Selll2 and Lrrcl8, which have not been phenotyped by the International Mouse

197



Uncovering genetic correlates of autism endophenotypes

Phenotyping Consortium. The IMPC SHIRPA exam, which includes observations of gait in
all screens, may be sufficient to prompt further behavioral assays (Hampson and Blatt, 2015;
Brown and Moore, 2012a; Hatcher et al., 2001). This cross-species analysis demonstrates the
utility of combining model organism with human (and potentially translational) research,

especially in the field of neurobehavioural genetics.

5.4.2 Gene-phenotype network highlights novel gene /trait relation-

ships

Ultimately, this chapter was able to associate multiple genetic loci with multiple phenotypic
traits. No single locus was strongly associated with any of the 14 clusters, suggesting that
networks of genes acting together in trans with small effect sizes are together responsible for

complex traits.

However, whereas most GWAS studies would associate multiple loci with a single
trait, by performing GWAS on clusters of traits, effectively a single dependant variable as
a substitute for a dependent multivariate model used. This produces a many - to - many
annotation problem, where many SNPs are each associated with a set of traits in combination.
How does one annotate a gene to a profile of traits, if each trait has a different probability

of representing the cluster?

The gene/trait network, Figure 5.27, is one approach for addressing this question.
Underling that network is the probability of a trait associating with a cluster, multiplied
by the strength of the association. Thus, each SNP may be more or less well annotated
with multiple PNBO-derived traits. A threshold of 0.5 was set to inform the annotation
graph, meaning that if a trait has a marginal probability of characterising a phenotype

cluster of at least 0.5 (from Chapter 4), a SNP /trait association was made. For example,
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strong associations exist between "coping with a changing environment" and genes linked to
sensitivity to noise. SNPs linked to many behavioral traits associated with social phenotypes
such as group pay with peers and pointing to express interest. They also associate with self-
injury and repetitive hand and finger mannerisms in a different part of the graph. Of more
interest, the periphery of the graph shows loss of language ability, social verbalization and
response, and a high level learning or memory phenotype associated with a cluster of genes.
These traits are isolated from the others parts of the graph. The genes associated to them
are enriched for Notch signaling, indicating roles in developmental biology. These traits
also uniquely defined a cluster phenotypically; the same is true of sensitivity to noise and
visiospatial ability. These results suggest that while phenotypic heterogeneity among the SSC
cohort may be difficult to untangle, there is a likely shared genetic basis for characteristic

behaviors of some phenotypically similar probands in the SSC cohort.

5.5 Conclusions and Chapter Summary

In this chapter, genetic associations between autism spectrum disorder endophenotypes
mapped in the Psychological Neuro Behavior Ontology (PNBO) among families with probands
and unaffected siblings were investigated. Genetic associations between SNPs and individ-
ual traits were statistically underpowered, and produced no genome-wide significant results.
When using mixed models and surveying clustered traits, several genome-wide significant as-
sociations were found. GWAS of PNBO profile clusters were well powered, indicating a strong
correlation between genotypic and phenotypic homogeneity. Epistasis models performed on
clustered traits unveiled gene/gene interactions passing strict genome-wide significance lev-
els. In lieu of available cohorts for GWAS replication studies, predictive models tested the
performance of SNPs identified through GWAS and epistatic interactions to classify probands

by phenotypic profile. This novel approach showed that diverse autism phenotype profiles
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can be classified by genetics. Lastly, specific trait/trait relations were found when survey-
ing significantly enriched genetic activity amongst phenotype clusters. The best-performing
predictive model was annotated with genes involved in circadian rhythm biology, revealing
a subset of probands who may have circadian abnormalities though have not been tested
for it. Thus, this chapter links autism spectrum disorder and chronology indirectly, suggest-
ing an underlying polygenic link between circadian abnormalities and communicative and

movement related traits.

Following are cluster-specific tabular results, including SNPs and associations to each
cluster’s trait profile both directly and via epistatic interactions with other loci. Additional
tables incldude gene enrichment results for significant intragenic SNPs. After the last re-
sult tables are presented for each SSC cluster, the next chapter dicusses the project as a

comprehensive whole.

5.6 Cluster Result Tables

s chr ps beta se P Gene

1 1s6664362 1 9536458  0.2252 0.0094 4.379245e-119 SLC25A33
2 1s3008409 1 31814425 0.0565 0.0107 1.487914e-07
3 1s2602948 1 77530012 0.0350 0.0072 1.08932e-06 AK5
4 1516841336 1 157167751 0.0851 0.0058 3.525406e-48  PYHINI1
5 r1s10779486 1 206805932 0.1379 0.0074 1.619351e-75
6 1s4832336 2 83911474 -0.0479 0.0071 1.645032e-11
7 1517025837 2 85136390 0.0896 0.0063 2.179066e-44 KCMF1
8 152396261 2 226253774 0.0658 0.0074 1.259342e-18
9 1511925421 3 147370852  0.1927 0.0086 6.195197e-107
10 1s11729526

W

323310  0.0383 0.0082 3.009371e-06  ZNF141
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

rs4833120
rs10053502
rs16901158
152394173
156914506
rs331833
rs17837474
rs16931350
rs3019885
rs12114111
rs1887387
rs4978649
rs11238776
rs7908852
rs11818837
rs7913323
rs7946005
rs11225401
rs17100060
rs9316212
rs2137512
rs1003761
rs4903419
rs4780805
rs13330491
rs13329856

10
10
10
10
11
11
12
13
13
14
14

35516217
40014929
83891214
29881137
37374934
54629782
142056577
65701037
118094826
125398550
90069741
109716918
42098785
90684773
99209983
132050446
78464992
102113169
62739380
20727309
64399588
23602251
76054408
19312146
30012701
57491588

-0.0281 0.0061 4.012208e-06

-0.0748
-0.0544
0.0616
-0.1152
-0.0530
-0.0568
-0.0581
0.0398
-0.0292
0.0464
0.0433
0.1046
0.0855
0.1540
0.0340
0.1297
0.0968
-0.0335
-0.0348
-0.0314
0.0914
0.0964
0.0413
-0.0684
-0.0598

201

0.0084
0.0100
0.0070
0.0049
0.0076
0.0080
0.0088
0.0059
0.0057
0.0057
0.0061
0.0218
0.0139
0.0297
0.0070
0.0072
0.0061
0.0075
0.0078
0.0068
0.0094
0.0061
0.0071
0.0078
0.0081

6.297018e-19
9.553335e-08
2.082146e-18
1.470992e-115
2.667352e-12
1.8312¢-12
4.863796¢e-11
1.58287e-11
2.843439e-07
6.535233e-16
1.832544e-12
1.723645e-06
7.865417e-10
2.230238e-07
1.217173e-06
1.442226e-69
6.03376e-56
8.276557e-06
8.25745e-06
4.303749e-06
5.07282e-22
4.322848e-55
7.015834e-09
3.076694e-18
2.302452e-13

TBC1D22B

CYP7B1
SLC30A8
TMEMG65

STAMBPL1
MMS19

TENMA4

SRGAP1

CARMIL3

AC130456.7
YPEL3
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37
38
39
40
41
42
43

rs235083
rs486743
152849233
rs11910489
rs4596064
rs2828789
rs17002187

16
18
18

21
21

64760511
12495089
46585551
16968775
19786452
24363246
26762664

-0.1138 0.0053 1.744564e-99

-0.0742
0.0334
0.0825
0.0394
0.0617

-0.0460

0.0052
0.0058
0.0122
0.0078
0.0139
0.0057

1.134169e-44
9.244312¢-09
1.403848e-11
4.893777e-07
9.103979e-06
1.1432e-15

SPIRE1
MRO

CYYR1

Table 5.12: Significant blue GWAS Results
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p_value term_id source term_name

1 0.0235 CORUM:6807 CORUM ADRA1A-CXCR4 complex
2 0.0205 GO:0050808  GO:BP  synapse organization

3 0.0000 GO:0098978  GO:CC  glutamatergic synapse
4 0.0002 GO:0030054  GO:CC  cell junction

5 0.0006 GO:0045202 GO:CC  synapse

6 0.0007 GO:0071944  GO:CC  cell periphery

7 0.0007 GO:0005886  GO:CC  plasma membrane

8 0.0008 GO:0097060  GO:CC  synaptic membrane

9 0.0013 GO:0098794  GO:CC  postsynapse

10 0.0020 GO:0099699  GO:CC  integral component of synaptic membrane

11 0.0020 GO:0045211 GO:CC  postsynaptic membrane

12 0.0038  G0O:0099240 GO:CC  intrinsic component of synaptic membrane

13 0.0070 GO:0099056 GO:CC  integral component of presynaptic membrane
14 0.0112  GO:0005901 GO:CC  caveola

15 0.0120 GO:0098889 GO:CC  intrinsic component of presynaptic membrane
16 0.0156 GO:0016020  GO:CC  membrane

17 0.0185 GO:0031012 GO:CC  extracellular matrix

18 0.0185 GO:0031226 GO:CC  intrinsic component of plasma membrane

19 0.0185  GO:0099055 GO:CC  integral component of postsynaptic membrane
20 0.0217 GO:0005887  GO:CC  integral component of plasma membrane

21 0.0217 GO:0098590  GO:CC  plasma membrane region

22 0.0217  GO:0098936 GO:CC  intrinsic component of postsynaptic membrane
23 0.0250 GO:0042383  GO:CC  sarcolemma

24 0.0321  GO:0098793 GO:CC  presynapse

25 0.0321 GO:0062023  GO:CC  collagen-containing extracellular matrix

26 0.0321 GO:0045121 GO:CC  membrane raft

27 0.0321 GO:0098857 GO:CC  membrane microdomain

28 0.0321 GO:0044853  GO:CC  plasma membrane raft

29 0.0435 GO:0098589  GO:CC  membrane region

30 0.0492  GO:0097708 GO:CC  intracellular vesicle

31 0.0492 GO:0031224 GO:CC  intrinsic component of membrane

32 0.0492 GO:0031410 GO:CC  cytoplasmic vesicle

33 0.0045 GO:0005509 GO:MF  calcium ion binding

34 0.0145 KEGG:04020 KEGG Calcium signaling pathway

Table 5.8: Gene ontology and KEGG gene set enrichment results of genes not annotated in SFARI
Gene, which have significant SNPs from individual PNBO analysed traits. P-values are analytically

corrected (permutation based) in GProfiler software.
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Uncovering genetic correlates of autism endophenotypes

s chr ps beta se p Gene
1 rs6664362 1 9536458 -0.1252 0.0106 1.355673e-31 SLC25A33
2 1516841336 1 157167751 -0.0536 0.0063 3.442908e-17 PYHIN1
3 1510779486 1 206805932 -0.0820 0.0081 8.339206e-24
4 1517025837 2 85136390 -0.0571 0.0069 2.64675e-16 KCMF1
5 152396261 2 226253774 -0.0405 0.0081 5.565648e-07
6 rs11925421 3 147370852 -0.1013 0.0096 1.063148e-25
7 1s2394173 6 29881137 -0.0444 0.0076 5.607052e-09
8 156914506 6 37374934 0.0718 0.0055 2.449977¢-38 TBC1D22B
9 1516931350 8 65701037  0.0487 0.0095 3.433225¢-07 CYP7B1
10 1s7341614 8 68723993 0.1358 0.0296 4.600234¢-06 CPAG6
11 1rs10125854 9 5454065  0.0630 0.0137 4.417458e-06 CD274
12 157946005 11 78464992 -0.0799 0.0079 1.167039e-23 TENM4
13 1s11225401 11 102113169 -0.0536 0.0067 1.316471e-15
14 rsd765231 12 124270220 -0.0423 0.0087 1.187936e-06 TMEMI132B
15 1rs4765028 12 124278681 -0.0368 0.0082 7.45518¢-06 TMEMI132B
16 1s11058097 12 124287014 -0.0400 0.0084 2.012821e-06 TMEM132B
17 151003761 14 23602251 -0.0598 0.0103 6.047103e-09 CARMIL3
18 154903419 14 76054408 -0.0542 0.0067 7.658302¢-16
19 1513330491 16 30012701 0.0431 0.0085 4.075843e-07 YPEL3
20 1s13329856 16 57491588  0.0407 0.0088 4.146549¢-06
21 rs235083 16 64760511 0.0623 0.0059 5.425392e-26
22 1486743 18 12495089  0.0387 0.0057 1.949031le-11 SPIRE1
23 1s17002187 21 26762664 0.0284 0.0062 5.17815¢-06 CYYRI1

Table 5.9: Significant turquoise GWAS Results
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Uncovering genetic correlates of autism endophenotypes

ID1 CHRI1 BP1 1ID2 CHR2 BP2 beta se p Genel Gene2
1 1512089482 1 183864117 1s1689310 7 52083956 1.0042 0.2159 3.3078¢-06
2 1510779486 1 206805932 rs11225401 11 102113169 -0.9935 0.1759 1.6097e-08
3 1510779486 1206805932 1s4903419 14 76054408  -0.8547 0.1757 1.14832-06
4 15748615 2 13250777 1s16827846 3 158771579 -16.9912 3.8248 8.89616e-06
5 1512712101 2 101426229 159393387 6 23396822  0.3867 0.0845 4.6701e-06
6 152396261 2 926253774 156914506 6 37374934  0.4563 0.0921 7.21786e-07 TBC1D22B
7 1511549705 3 17107009 153749213 3123616520 -0.8504 0.1891 6.92634e-06
8 1511549705 3 17107009  1s10934592 3123617932 -0.8506 0.1892 6.92298¢-06
9 1517018468 3 26662581 1s2508191 11 63509558 -16.2046 3.6469 8.85541c-06
10 111925421 3 147370852 152394173 6 29881137 -1.4784 0.3183 3.4118¢-06
11 111925421 3 147370852 154903419 14 76054408 -1.0787 0.2247 1.58633¢-06
12 111925421 3 147370852 15486743 18 12495089  0.9562 0.1937 7.996e-07 SPIRE1
13 1511925421 3 147370852 1s7278383 21 27500390 17747 0.3768 2.472260-06
14 1510053502 5 40014920 1s486743 18 12495089  -0.4105 0.0892 4.20932¢-06 SPIRE1
15 156452463 5 81868125 1511651038 17 11167226 -0.5360 0.1203  8.20945¢-06
16 156452463 5 81868125 151546560 17 11169414  -0.5363 0.1203 8.24343¢-06
17 156914506 6 37374934 1s13329856 16 57491588 -0.4824 0.0972 6.99962e-07 TBC1D22B
18 1s6914506 6 37374934 1s235083 16 64760511 -0.4957 0.0713 3.69418e-12 TBCLD22B
19 1s480456 6 147889216 1s4257948 7 93578688  -0.4184 0.0936 7.73479-06
20 1s4263777 8 25783203 rs551112 9 14433468 -0.8769 0.1952 7.07747e-06
21 1310429356 8 126150662 rsd792121 17 11141667 -0.5742 0.1291 8.67985e-06
22 1312686783 9 100901588 rs3210635 12 26955499  -0.6130 0.1353 5.86506e-06
23 1s7946005 11 78464992 rs11225401 11 102113169 -0.7171 0.1576 5.35793¢-06 TENM4
24 1s7946005 11 78464992 154903419 14 76054408 -0.7035 0.1585 9.02146e-06 TENM4
25 1s7946005 11 78464992 15235083 16 64760511  0.6037 0.1325 5.24508¢-06 TENMA4
26 157946005 11 78464992 15486743 18 12495089  0.7445 0.1258 3.28291e-09 TENM4  SPIRE1
27 1511225401 11 102113169 15235083 16 64760511  0.4424 0.0915 1.3385¢-06
28 1510162458 14 77174941 152295000 2 61007383 -0.6148 0.1284 1.6795e-06
29 15235083 16 64760511 1sd86743 18 12495089  -0.2986 0.0662 6.56885¢-06 SPIREL
30 1s7186168 16 86543637 rsd792121 17 11141667  0.4059 0.0918 9.81487¢-06

Table 5.10: Significant turquoise Epistasis Results
p_value  term_id source  term_name
1 0.0499 REAC:R-HSA-5579013 REAC Defective CYP7B1 causes Spastic paraplegia 5A, autosomal recessive (SPG5A) and Congenital bile acid synthesis defect 3 (CBAS3)

Table 5.11: Significant gene set enrichment results of genes with SNPs found by turquoise cluster

analysis. P-values are analytically adjusted.
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ID1 CHR1 BP1 1D2 CHR2 BP2 beta se p Genel Gene2
1 rs6664362 1 9536458 rs17025837 2 85136390 -1.0634 0.1314 5.69145e-16 SLC25A33 KCMF1
2 136664362 1 9536458 1rs10053502 5 40014929 1.5329 0.3299 3.37052e-06 SLC25A33
3 1s6664362 1 9536458 1rs16931350 8 65701037 1.3496 0.2883 2.85701e-06 SLC25A33 CYP7BI1
4 136664362 1 9536458 rs1887387 9 90069741 -0.6083 0.1324 4.30855e-06 SLC25A33
5 186664362 1 9536458 1rs11238776 10 42098785 -1.8342 0.3687 6.54073e-07 SLC25A33
6 1s6664362 1 9536458  rs5030416 11 36489064 -0.7433 0.1465 3.87038e-07 SLC25A33
7 1s6664362 1 9536458 1rs1003761 14 23602251 -0.8616 0.1729 6.20901e-07 SLC25A33 CARMIL3
8 186664362 1 9536458 1rs486743 18 12495089  1.3808 0.2775 6.49246e-07 SLC25A33 SPIREL
9 rs6664362 1 9536458 rs11910489 21 16968775 -1.3202 0.2190 1.65162e-09 SLC25A33
10 rs6664362 1 9536458 rs17002187 21 26762664 0.9024 0.1982 5.30623e-06 SLC25A33 CYYRI1
11 rs6687006 1 38445830 152924338 18 51326785 -0.9532 0.2072 4.19675e-06
12 rs6690381 1 83928327 1s13415553 2 221126448 -3.1959 0.6105 1.64724e-07
13 rs16841336 1 157167751 1rs17025837 2 85136390 -0.4429 0.0793 2.33708e-08 PYHINI1 KCMF1
14 rs16841336 1 157167751 1s5030416 11 36489064 -0.4897 0.0903 5.89178¢-08 PYHINI1
15 rs11803913 1 203139465 1s11925421 3 147370852 -0.7989 0.1515 1.33751e-07
16 rs10779486 1 206805932 rs17025837 2 85136390 -0.4889 0.0909 7.39718e-08 KCMF1
17 rs10779486 1 206805932 1s11238776 10 42098785 -1.4005 0.2926 1.70295e-06
18 12574672 1 240482668 rs663366 8 98528011 -0.8496 0.1838 3.79235e-06
19 rs11898209 2 45872037 rs12549933 8 80992623 -0.5751 0.1270 5.9624e-06
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27
28
29
30
31
32
33
34
35
36
37
38
39
40

rs17025837
rs17025837
rs17025837
rs17025837
rs17025837
rs17025837
rs6809953
rs782437
rs782437
rs11925421
rs11925421
rs11925421
rs11925421
rs6443856
rs6443856
rs3902731
rs3844554
rs13172873
rsh82677
rs7754397

rs11758609

85136390
85136390
85136390
85136390
85136390
85136390
117493781
128899892
128899892
147370852
147370852
147370852
147370852
184362805
184362805
87314833
87317210
118665442
5953061
91847214

105948645

rs11925421
rs9322193
rs1887387
rs11823088
rs11225401
rs4903419
rs9383431
rs6788460
rs9831130
rs16931350
rs1887387
rs1003761
rs11910489
rs387946
rs632547
rs11152086
rs11152086
153789950
rs7251000
rs8127479

rs11626056

11
11

14

14
21
12
12
18
18
10
19
21

14

147370852
149960836
90069741
19146328
102113169
76054408
18800063
138324139
138332662
65701037
90069741
23602251
16968775
69162165
69162296
54391010
54391010
98152781
4665468
26012227

51303026

-0.7958
-0.3705
-0.3553

0.6435
-0.5004
-0.4412
-0.5738

0.4671

0.4453

1.3044
-0.9915
-0.8264
-1.0415
-1.2677
-1.2696
-1.1719
-1.1536

1.1497
-0.4884
-1.5186

-0.6441

0.1126
0.0762
0.0744
0.1393
0.0811
0.0802
0.1289
0.0908
0.0902
0.2620
0.1140
0.1556
0.1880
0.2831
0.2830
0.2488
0.2492
0.2585
0.1098
0.3305

0.1454

1.55212e-12
1.17391e-06
1.77149e-06
3.86113e-06
6.96136e-10
3.80492e-08
8.56706e-06
2.65296e-07
7.96323e-07
6.40999e-07
2.13373e-07
1.08115e-07
3.04159e-08
7.53719e-06
7.27077e-06
2.46512e-06
3.65516e-06
8.68879e-06
8.58508e-06
4.3388e-06

9.43036e-06

KCMF1
KCMF1
KCMF1
KCMF1
KCMF1
KCMF1

CYP7B1

CARMIL3
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o1
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53
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o6
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29
60
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rs4458717
rsd458717
16922844
rs11761505
rs17837474
rs17837474
rs10755971
rs12541541
rs16931350
rs4307325
rs1887387
rs11238776
rs548102
rsb030416
rs7946005
rs11225401
rs11225401
rs380835
rs7156661
rs4903419

rs2162549

10

10

11

11

11

11

12

14

14

15

132950572
132950572
150360447
47069736
142056577
142056577
52577973
52579465
65701037
124490578
90069741
42098785
105854556
36489064
78464992
102113169
102113169
69136889
70131302
76054408

78303041

rs17837474
rs16931350
rs7022051
rs10876864
rs16931350
rs12114111
rs7923523
rs7923523
rs12114111
rs17375044
rs11225401
rs11225401
rs8063675
rs4903419
rs11910489
rs1003761
rs486743
rs2149313
rs4636985
rs11910489

rs2221434

10

10

11
11
11
16
14
21
14
18
14
18
21

16

142056577
65701037
95042804
54687352
65701037

125398550
95192322
95192322

125398550
35173476

102113169

102113169
68841080
76054408
16968775
23602251
12495089
23313477
12068224
16968775
77508627

-0.8846
-1.2024
1.1557
0.4749
-1.5678
-0.8455
0.5616
0.5391
-0.6981
-1.0275
-0.4008
-1.0909
2.4075
-0.4518
-0.6999
-0.5900
0.9056
-0.7588
0.5602
-0.6136

-0.8880

0.1792
0.2109
0.2616
0.0988
0.2736
0.1400
0.1170
0.1198
0.1577
0.2148
0.0829
0.2392
0.5193
0.0923
0.1580
0.1018
0.1849
0.1707
0.1262
0.1361

0.1918

7.96785e-07
1.19041e-08
9.92936e-06
1.51414e-06
1.00398¢-08
1.52957e-09
1.58222e-06
6.81784e-06
9.61961e-06
1.72692e-06
1.3395e-06

5.1104e-06

3.55187e-06
9.8978e-07

9.42932e-06
6.88186e-09
9.71786e-07
8.78126e-06
9.10903e-06
6.48894e-06

3.67171e-06

CYP7B1

TENM4

CYP7B1

CYP7B1
TMEMG65

TMEMG65

CARMIL3
SPIRE1
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602

62

rs8063675

16

68841080

152824699 21 18483226 2.8982 0.6053

1.68158e-06

Table 5.13: Significant blue Epistasis Results
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Uncovering genetic correlates of autism endophenotypes

p_value term _id source term_name

1 0.0497 CORUM:7222 CORUM MMS19-XPD complex
2 0.0497 CORUM:7223 CORUM MMS19-FAM96B complex

Table 5.14: Significant gene set enrichment results of genes with SNPs found by blue cluster analysis.

P-values are analytically adjusted.
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Uncovering genetic correlates of autism endophenotypes

IS chr ps beta se p Gene

1 156664362 1 9536458 -0.1140 0.0098 6.045372e-31 SLC25A33
2 1516841336 1 157167751 -0.0471 0.0058 8.530469e-16 PYHIN1
3 1510779486 1 206805932 -0.0672 0.0075 3.520136e-19

4 1817025837 2 85136390 -0.0420 0.0064 6.236332¢-11 KCMF1
5 152396261 2 226253774 -0.0389 0.0074 1.760571e-07

6 15164208 3 32519945 0.0273 0.0061 7.229022e-06

7 1s164219 3 32539488  0.0305 0.0063 1.192366e-06

8 183853720 3 32590673  0.0272 0.0061 7.851331e-06

9 1511925421 3 147370852 -0.0968 0.0088 1.32862e-27

10 rs6914506 6 37374934  0.0593 0.0051 5.092402¢-31 TBCI1D22B
11 rs17837474 7 142056577 0.0433 0.0080 7.93706e-08

12 rsl1555737 8 17198414  0.0403 0.0087 3.449944e-06 VPS3TA
13 1s7015243 8 17220931 0.0413 0.0089 3.610716e-06 MTMRT
14 1s16931350 8 65701037 0.0577 0.0088 5.578833¢-11 CYPT7B1
15 1s3019885 8 118094826 -0.0265 0.0059 6.479774e-06 SLC30A8
16 rs12114111 8 125398550 0.0389 0.0056 6.399247¢-12 TMEMG65
17 1s10829351 10 129865332 -0.0353 0.0071 7.688361e-07

18 1s7946005 11 78464992 -0.0693 0.0073 3.799564e-21 TENM4
19 1rs11225401 11 102113169 -0.0442 0.0062 7.932704e-13

20 1s9548183 13 37559893 -0.0293 0.0065 6.773426e-06

21 151924198 13 37628805 -0.0303 0.0064 2.171432e-06

22 151003761 14 23602251 -0.0445 0.0095 2.52818e-06 CARMIL3
23 154903419 14 76054408 -0.0494 0.0062 1.44213e-15

24 1s13330491 16 30012701 0.0692 0.0078 7.493377e-19 YPEL3
25 15235083 16 64760511  0.0539 0.0054 4.174809e-23

26 1s486743 18 12495089 0.0265 0.0053 6.556181e-07 SPIRE1

Table 5.15: Significant brown GWAS Results
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ID1 CHR1 BP1 1D2 CHR2 BP2 beta se p Genel Gene2
1 rs16861446 1 18221371 1rs2798353 1 47413628 1.5482 0.3489 9.10384e-06
2 rs1149064 1 30315613 rsb11773 2 13543565 0.5905 0.1332 9.33032e-06
3 rsl6841336 1 157167751 1rs10779486 1 206805932 -1.1393 0.1833 5.08374e-10 PYHINI1
4 1s16841336 1 157167751 1s11925421 3 147370852  -1.4548 0.2774 1.57319e-07 PYHIN1
5 1s16841336 1 157167751 1s7946005 11 78464992  -0.8703 0.1698 2.98342¢-07 PYHIN1 TENM4
6 1s16841336 1 157167751 1s11225401 11 102113169  -0.5718 0.1211 2.35013e-06 PYHIN1
7 1rsl6841336 1 157167751 1s4903419 14 76054408  -0.6564 0.1271 2.40881e-07 PYHIN1
8 1s10779486 1 206805932 1s2396261 2 226253774  -1.0879 0.2392 5.41111e-06
9 1rs10779486 1 206805932 1rs6914506 6 37374934 0.6451 0.1428 6.2931e-06 TBC1D22B
10 rs10779486 1 206805932 rs11225401 11 102113169  -1.0480 0.1915 4.44974e-08
11 rs10779486 1 206805932 1s4903419 14 76054408  -0.8963 0.1925 3.23644e-06
12 1rs10779486 1 206805932 rs235083 16 64760511 0.8737 0.1594 4.19024e-08
13 rs10779486 1 206805932 rs486743 18 12495089 0.6892 0.1536 7.2125e-06 SPIRE1
14 rsb11773 2 13543565 rs17097224 5 140708718  -2.8161 0.6119 4.18622¢-06
15 rs13402137 2 91334683 rs7832778 8 27181804  -2.0163 0.4550 9.36948e-06
16 rs10206874 2 120876615 1rs9988693 10 4369270 0.4632 0.0962 1.45726e-06
17 12396261 2 226253774 1s11925421 3 147370852  -2.2440 0.4296 1.76062e-07
18  1rs2396261 2 226253774 1s2394173 6 29881137 -0.6360 0.1373 3.59189e-06
19 rs2396261 2 226253774 rs11225401 11 102113169  -0.9079 0.1478 8.05579e-10
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rs2396261
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rs4381740
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19861677
1513325694
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rs2355617
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rs2267639
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rs10239402
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rs4947572
rs10247961
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rs7023854
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9

226253774
226253774
235698824
240165374
29472993
150740094
144370151
146429885
128987981
164848265
30688616
37374934
37374934
36754882
46188335
51149992
75147682
4645818
99145556
99177215

103331633

rs235083
rs486743
rs16879540
rs4618447
rs4374629
rs6924196
rs2188148
rs3848701
rs4922069
rs1396208
rs7843326
rs235083
rs486743
rs17691755
rs10859030
rs8071990
rs2725627
rs2076421
rs28364553
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rs3824951
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4

4

20

12

16

19
12
17
15
16
15
15
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64760511
12495089
27200415
177799781
99630806
131631199
91046536
57536928
19518995
24449587
120942523
64760511
12495089
34485216
89614699
4526387
51979784
1071394
40492634
40492634

5611809

0.4829
0.4315
-17.2377
-1.3536
0.4309
-0.5837
-1.1761
-0.4536
-0.8433
0.4803
-0.9458
-0.4966
-0.3528
-0.6212
-1.7266
-0.4730
-0.6196
1.4867
1.5533
1.5653

-0.4790

0.0991
0.0942
3.7457
0.2975
0.0932
0.1108
0.2605
0.0957
0.1798
0.1063
0.2096
0.0769
0.0733
0.1152
0.3894
0.1046
0.1352
0.3339
0.3324
0.3290

0.0974

1.1096e-06

4.69904e-06
4.18497e-06
5.37353e-06
3.79037¢e-06
1.38346e-07
6.32338e-06
2.16634e-06
2.71299e-06
6.17479e-06
6.38434e-06
1.06689¢-10
1.48384e-06
6.94713e-08
9.23292e-06
6.18877e-06
4.56701e-06
8.47268e-06
2.97645e-06
1.95973e-06

8.70492e-07

TBC1D22B

TBC1D22B

CSMD1

SPIRE1

SPIRE1
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42
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rs1983812
rs12292693
rs7946005
rs7946005
rs11225401

rs235083

9
11
11
11
11
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103372864
64693295
78464992
78464992

102113169

64760511

rs3824951
rs17073814
rs11225401
rs235083
rs4903419

rs486743

11
13
11
16
14

18

9611809
80638674
102113169
64760511
76054408

12495089

0.4332
1.0129
-0.9678
0.7355
-0.6355

-0.3868

0.0961
0.2243
0.1802
0.1439
0.1329

0.0722

6.54686e-06
6.2858e-06
7.888e-08
3.18345e-07
1.74557e-06

8.28396e-08

TENM4

TENM4

SPIRE1

Table 5.16: Significant brown Epistasis Results

sodAjouoydopus WSIINE JO SOIR[OLIOD DI}OUOS FULIDAOIU()



Uncovering genetic correlates of autism endophenotypes

p_value term_id source term_name
1 0.0017 CORUM:6780 CORUM RAD6A-KCMF1-UBR4 complex
2 0.0248 GO:0008396 GO:MF  oxysterol 7-alpha-hydroxylase activity
3 0.0248 GO:0015218 GO:MF  pyrimidine nucleotide transmembrane transporter activity
4 0.0248 GO:0033783 GO:MF  25-hydroxycholesterol 7alpha-hydroxylase activity
5 0.0248  GO:0047092 GO:MF  27-hydroxycholesterol 7-alpha-monooxygenase activity
[§ 0.0460 KEGG:00120 KEGG Primary bile acid biosynthesis
7 0.0227 REAC:R-HSA-5579013 REAC Defective CYP7BI causes Spastic paraplegia 5A, autosomal recessive (SPG5A) and (CBAS3)

8 0.0427 REAC:R-HSA-1660517 REAC Synthesis of PIPs at the late endosome membrane
9  0.0427 REAC:R-HSA-175474 REAC Assembly Of The HIV Virion
10 0.0427 REAC:R-HSA-435354 REAC Zinc transporters
11 0.0427 REAC:R-HSA-435368 REAC Zinc efflux and compartmentalization by the SLC30 family
12 0.0427 REAC:R-HSA-174490 REAC Membrane binding and targetting of GAG proteins
13 0.0427 REAC:R-HSA-193807 REAC Synthesis of bile acids and bile salts via 27-hydroxycholesterol
14 0.0427 REAC:R-HSA-174495 REAC Synthesis And Processing Of GAG, GAGPOL Polyproteins
15 0.0427 REAC:R-HSA-1855183 REAC Synthesis of IP2, IP, and Ins in the cytosol
16 0.0451 REAC:R-HSA-193368 REAC Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
17 0.0451 REAC:R-HSA-192105 REAC Synthesis of bile acids and bile salts
18 0.0451 REAC:R-HSA-211976 REAC Endogenous sterols
19 0.0451 REAC:R-HSA-425410 REAC Metal ion SLC transporters
20 0.0451 REAC:R-HSA-9615710 REAC Late endosomal microautophagy
21 0.0451 REAC:R-HSA-264876 REAC Insulin processing
22 0.0451 REAC:R-HSA-917729 REAC Endosomal Sorting Complex Required For Transport (ESCRT)
23 0.0451 REAC:R-HSA-162588 REAC Budding and maturation of HIV virion
24 0.0463 REAC:R-HSA-5579029 REAC Metabolic disorders of biological oxidation enzymes
25 0.0497 REAC:R-HSA-194068 REAC Bile acid and bile salt metabolism

26 0.0420 WP:WP465 WP Tryptophan metabolism

27 0.0420 WP:WP3529 WP Zinc homeostasis

28 0.0420 WP:WP4545 WP Oxysterols derived from cholesterol
29 0.0457 WP:WP43 WP Oxidation by Cytochrome P450

Table 5.17: Significant gene set enrichmet results of genes with SNPs found by brown cluster

analysis. P-values are FDR adjusted.

s chr ps beta se p Gene

1 1s6664362 1 9536458  0.0551 0.0054 1.846251e-24 SLC25A33
2 15904218 1 54733577 0.0251 0.0055 5.74492e-06

3 1s4465227 1 83805074 0.0241 0.0054 8.421985e-06

4 1rs16841336 1 157167751 0.0185 0.0032 7.265087e-09 PYHINI1

5 1510779486 1 206805932 0.0400 0.0041 6.131656e-22
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0.0410 0.0087
0.0360 0.0079
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0.0407 0.0090
0.0358 0.0040
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1.369008e-10
1.39271e-07

7.26247e-06

8.941384e-06
1.956478e-09
4.446303e-06
5.830227e-07
3.889461e-20
5.17517e-06

1.21883e-06

6.150582e-06
6.577782e-20
6.537207e-09
5.019359e-06
2.742906e-06
9.72057e-06

3.103544e-08
2.570519e-06
5.303253e-06
5.305183e-06
8.443174e-06
1.705825e-06
3.207543e-07
5.639215e-06
1.052576e-18
2.011892¢-10

KCMF1
MGAT4A
MGAT4A

SETDb5

FHIT

MAPK10
FSTL5

TBC1D22B
COL12A1

CSMD1
CSMD1
CSMD1

SORCS1
CTBP2
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rs7970246
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rs4903419
rs11070885
rs2573590
rs235083
rs486743
rs16975208
rs11910489
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14
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15
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21

98033341
92867191
23602251
76054408
50289148
98340757
64760511
12495089
37538035
16968775

0.0503
0.0758
0.0300
0.0207
0.0209
0.0691
-0.0252
-0.0160
0.0421
0.0340

0.0107
0.0155
0.0051
0.0034
0.0047
0.0155
0.0030
0.0029
0.0095
0.0066

2.895588¢e-06
1.000154e-06
5.651741e-09
1.031482¢-09
8.394346e-06
8.49181e-06

2.736873e-17
3.271965e-08
9.649039e-06
2.647598e-07

ANKS1B
GPC6
CARMIL3

MYO5C
ADAMTS17

SPIRE1

Table 5.18: Significant yellow GWAS Results
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ID1 CHR1 BP1 1D2 CHR2 BP2 beta se p Genel Gene2
1 1rs12034719 1 8882740 rs1873061 17 3340194 0.8962 0.1995 7.07328e-06
2 rs2105217 1 31700974 1rs550353 5 31421753 1.1716  0.2641 9.15523e-06
3 1s10493102 1 41781108 1rs2280183 16 26987458 0.8757 0.1928 5.54145e-06
4 1s1109255 1 41864295 rs12450609 17 71249027  -1.4880 0.3338 8.28709e-06
5 1s12757818 1 104761380 1s4382869 11 14393309  -1.4173 0.3018 2.65012e-06
6 1rs486753 1 206395372 1s4861505 4 183508343  -1.6241 0.3430 2.19098e-06
7 rsl1332777 1 235820963 1s3799879 6 46672927 1.3297 0.2770 1.58329¢-06
8 1s1332777 1 235820963 1s16874838 6 46673023 1.2941 0.2796 3.68625e-06
9 1rs1842088 1 235824870 1rs3799879 6 46672927 1.2723  0.2750 3.73154e-06
10 rs1842088 1 235824870 1rs16874838 6 46673023 1.2358 0.2776 8.50978e-06
11 rs2192982 2 51369176 rs12467106 2 79301209 1.6400 0.3699 9.25034e-06
12 rs1861108 2 59274551 rs8106157 19 49784782 2.1188 0.4754 8.32022e-06
13 1rs2042091 2 64622985 1rs1519790 2 151319638  -1.2995 0.2625 7.39318e-07
14 rs10201616 2 75529368 12693698 14 98788972  -0.8607 0.1885 4.948e-06
15 1sh80041 2 166658756 1rs816623 10 599945  -2.7486 0.6142 7.64718e-06
16 rs7587026 2 166686996 1s816623 10 599945  -2.7405 0.6085 6.66797e-06
17  1s10515949 2 207446158 1rs35294541 14 50974619  -1.6834 0.3809 9.90623e-06
18 1s10933164 2 227568915 rs1812576 8 62335588  -1.3489 0.2840 2.02992¢-06
19 1s3773341 3 12591533 rs6886410 5 10161500 0.9705 0.1778 4.776e-08
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9.57569e-06

Table 5.19: Significant yellow Epistasis Results
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p_value term_id

source

term_ name

1 0.0451

GO:0097120 GO:BP receptor localization to synapse

Table 5.20: Significant gene set enrichment results of genes with SNPs found by yellow cluster

analysis. P-values are analytically adjusted.

s chr ps beta se p Gene

1 186664362 1 9536458 -0.0260 0.0051 3.124247e-07 SLC25A33

2 rs16841336 1 157167751 -0.0133 0.0030 8.459175e-06 PYHIN1

3 1s3789357 1 179286940 0.0304 0.0062 9.199761e-07 MRI1

4 1s2000220 1 216654259 0.0153 0.0031 6.426457e-07 TGFB2

5 1sl1879113 2 104450001 0.0623 0.0141 9.985805e-06

6 1rs7558405 2 162831332  0.0307 0.0063 1.168289e-06

7 1s6734769 2 162847031 0.0394 0.0070 2.003524e-08 IFIH1

8 1512476567 2 162856657  0.0377 0.0069 4.064585e-08 IFIH1

9 1rs10439256 2 162860597  0.0379 0.0069 3.620302e-08 IFIH1
10 rs16846646 2162923669 0.0318 0.0071 7.33516e-06 GCA
11 1s6978 3 56736755 0.0191 0.0041 3.306814e-06 ARHGEF3
12 rs3821414 3 56737285 0.0193 0.0041 2.186296e-06 ARHGEF3
13 1rs1009119 3 56738268 0.0190 0.0041 3.836417¢-06 ARHGEF3
14 1rs6765444 3 56738659 0.0188 0.0041 4.079054e-06 ARHGEF3
15 16795648 3 124571756  0.0448 0.0090 6.891151e-07 ADCY5
16 1rs11925421 3 147370852 -0.0246 0.0046 8.467602e-08
17 1rs10016497 4 141433672 0.0181 0.0039 2.612259e-06 SCOC
18 1rs10155508 5 136222522  0.0363 0.0082 9.451178e-06
19 1rs11949188 5 167680766  0.0234 0.0051 4.143152e-06 WWC1
20 1s10074081 5 178552380  0.0353 0.0061 8.609612¢-09 ADAMTS2
21 rs4700788 5 178553161 0.0210 0.0042 6.157401e-07 ADAMTS2
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6330731
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15442521
15446136
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0.0212 0.0042
0.0143 0.0026
0.0549 0.0121
0.0661 0.0146
0.0158 0.0034
0.0215 0.0043
0.0270 0.0054
0.0579 0.0107
0.0151 0.0033
0.0588 0.0132
0.0248 0.0052
0.0144 0.0031
0.0287 0.0061
0.0289 0.0059
0.0563 0.0109
0.0614 0.0133
0.0234 0.0053
0.0251 0.0055

0.0373 0.0077

4.95439e-07
4.687496e-08
5.342441e-06
5.760098e-06
2.413463e-06
7.481305e-07
7.858254e-07
5.862896e-08
5.776211e-06
8.110952¢-06
2.281135e-06
4.42175e-06
2.225265e-06
9.562703e-07
2.69358e-07
4.077156e-06
8.524214e-06
5.1839¢-06
1.217336e-06

ADAMTS2
TBC1D22B
CUL9
FAM229B
KIF13B
ST3GALL1

GFRA1

SYT12
NFYB
LINGO1
AC099489.1
PITPNM3
CCDC102B
ABCC13

Table 5.21: Significant green GWAS Results
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ID1 CHR1 BP1 1D2 CHR2 BP2 beta se p Genel Gene2
1 rs3010109 1 27151140 rs11226850 11 105164739 2.8624 0.6105 2.74803e-06
2 1rs12025436 1 80078572 1s1452333 9 28110384  -1.3014 0.2933 9.0877e-06
3 1rs2503273 1 88046378 1s11075030 16 11883915 1.0811 0.2421 7.95436e-06
4 1s2503273 1 88046378 1s11075032 16 11911951 1.0787 0.2432 9.2194e-06
5 1s10881450 1 107190366 1s10492555 13 35607109 -17.1996 3.8527 8.03373e-06
6 1rs11583252 1 117275111 rs2545394 5 66441899 -17.4176 3.9373 9.69977e-06
7 1rsl891737 1 163195377 1s6472078 8 49907900 0.9183 0.2060 8.24406e-06
8 1s1409813 1 182324982 rs7143462 14 76092986 1.3118 0.2926 7.34496e-06
9 rs12755165 1 201286370 rs11916000 3 144846715  -2.7839 0.6256 8.5953e-06
10 rs6691953 1 214721745 1s1866670 2 42163826 1.7707 0.3844  4.09264e-06
11 rs7574069 2 116461957 1rs2702959 17 31301319  -1.8928 0.4146 4.98898¢-06
12 1s6735366 2 117090007 rs7724036 5 150265001 1.2624 0.2681 2.49552e-06
13 rs6719835 2 144504859 rs10873325 14 79531042 1.2082 0.2596  3.25006e-06
14 1s6759721 2 147503753 1rs12193414 6 2238019  -1.5902 0.3475 4.74317e-06
15 1s2706035 2 147529174  rs6869001 5 60943136 2.3592  0.5311 8.90825e-06
16  rs16863814 2 177000920 rs4301259 5 117288025  -1.5359 0.3448 8.43626e-06
17 rs6722501 2 202501511 1rs9936526 16 59162462 1.4549 0.3192 5.16022e-06
18 1s11675143 2 230583555 rs4554985 12 24684085  -0.8614 0.1924 7.56811e-06
19  rs748465 3 127690482  rs9958551 18 43490826 -16.8299 3.6601 4.26018e-06
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53294960
7738998
27415509
27411566
27415509
125840174
125840174
70808065
68864017
113781019
24340175
24340175
71429746

35798852

2.4703
2.7787
-16.8295
-1.6746
-1.6853
-1.6896
0.8802
-2.3385
-1.6382
-0.8271
-0.8004
-0.8783
-16.8805
-16.8818
-1.2184
1.8288
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-0.8046
-0.9277
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1.2950

0.5196
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3.7496
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0.3438
0.1796
0.1791
0.1796
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0.2831
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4.79367e-06

sodAjouoydopus WSIINE JO SOIR[OLIOD DI}OUOS FULIDAOIU()



gce

41
42
43
44
45
46
47
48
49

50

rs10119193
rs7047863
rs7047863
rs7047863
rs1349323
rs11192698
rs2725829
rs7973859
rs17662791

rs10484088

10
11
12
14

14

109336507
110590683
110590683
110590683
117781539
107811288
76733434
3855485
51086033

51102810

rs17132028
rs12228854
rs11168370
rs9971764
rs4766152
rs2824700
rs4511648
rsH746996
rs9958551

rs9958551

10
12
12
12
12
21
19
22
18

18

4119009
46683187
46721547

130814085

3620389
18484365
35798852
15983801
43490826

43490826

3.1801
2.5555
2.3114
3.6700
-0.9393
1.3977
1.6364
0.8547
3.4493

17.9096

0.6917
0.5702
0.5207
0.7595
0.2007
0.2974
0.3491
0.1900
0.7545

3.8728

4.27896e-06
7.38978e-06
9.0462¢-06
1.35017e-06
2.8774e-06
2.6108e-06
2.76447e-06
6.8435¢-06
4.84095e-06

3.75638e-06

Table 5.22: Significant green Epistasis Results
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Uncovering genetic correlates of autism endophenotypes

p_value term id source term_name

1 0.0179 KEGG:05166 KEGG Human T-cell leukemia virus 1 infection

Table 5.23: Significant gene set enrichment results of genes with SNPs found by green cluster

analysis. P-values are analytically adjusted.

s chr ps beta se p Gene

1 1512144395 1 97988897 0.0572 0.0123 3.605114e-06 DPYD

2 rs17045707 3 6700175 0.0129 0.0029 8.053122e-06

3 rs2068197 4 178461632 0.0473 0.0099 1.871678¢-06

4 rsb62819 6 116385418 0.0145 0.0031 3.030728¢-06 FRK

5 1rs12353094 9 7533336  0.0216 0.0045 1.675326e-06

6 1s17771757 9 28189845 0.0295 0.0062 1.880324c-06 LINGO2
7 11048370 9 139566627 0.0652 0.0136 1.60149e-06 MRPLA41
8 rs11017185 10 131986157 0.0261 0.0057 5.136763e-06

9 1s7335956 13 101986271 0.0176 0.0037 1.697828e-06

10 rs8081464 17 74703613 0.0262 0.0055 1.87884e-06 RBFOX3
11 rs1440475 18 51130347 0.0392 0.0083 2.150068¢-06 TCF4
12 1s3764532 19 63621034 0.0154 0.0035 9.331308e-06 ZNF584
13 1rs11667591 19 63629449 0.0164 0.0035 2.290426e-06

14 1rs1122955 19 63638015 0.0162 0.0035 3.771492e-06 ZNF132
15 1s12980907 19 63648138 0.0163 0.0035 3.724861e-06

16 1rs2823375 21 15853950 0.0175 0.0037 1.734587e-06

17 1rs9977399 21 23535457 0.0306 0.0066 3.677517e-06

Table 5.24: Significant red GWAS Results
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LCG

ID1 CHR1 BP1 1D2 CHR2 BP2 beta se p Genel Gene2
1 rs17385885 1 15372802 1s7502538 17 13299190 -17.7143 3.7003 1.69035e-06
2 rsl321117 1 30400206 1rs12881810 14 71993639 1.0136  0.2150 2.41313e-06
3 rs13426 1 32028673 1s3766379 1 159074339 1.4875 0.2981 6.06304e-07
4 1rs13426 1 32028673 1s6671710 1 159075909 1.3881 0.3022 4.34981e-06
5 rs13426 1 32028673 1sb12525 1 159080367 1.3813 0.3024 4.92128e-06
6 1rs13426 1 32028673 1rs11582719 1 159090436 1.4119 0.3019 2.91276e-06
7 1rs4915873 1 63307674 1s9822730 3 114337365  -1.2383 0.2742 6.31023e-06
8 15284169 1 91986030 rs705099 4 37271341  -1.1248 0.2209 3.55266e-07
9 1rs2207701 1 115111035 rs1042717 5 148186839  -2.7862 0.6137 5.63112e-06
10 rs3765821 1 239860854 1s6737623 2 42144989  -2.2711 0.5073 7.56743e-06
11 rs6737623 2 42144989 rs12363683 11 87459489 2.6636 0.5837 5.04272¢-06
12 1s2567599 2 73847582 rs11563057 2 234563208 2.4924 0.5341 3.06772e-06
13 rs162810 3 7691889 1s7324378 13 50577045 -17.2315 3.6314 2.08341e-06
14 rs780362 3 59734612 1rs1892669 21 31213372 -1.5527 0.3275 2.12719e-06
15 1s2971458 3 184697981 rs3794370 13 22654627 1.3251 0.2906 5.10049e-06
16 rs16861112 4 47890699 rs17209451 5 65952734 1.2977 0.2860 5.6869e-06
17 rs7668895 4 53151173 rs7340852 4 65192764 1.2893 0.2765 3.11407e-06
18  rs7668895 4 53151173 rs4403082 4 65193230 1.2987 0.2803 3.60218e-06
19  rs7668895 4 53151173 rs766818 4 65195214 1.2530 0.2818 8.71394e-06
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

153733506
rs3733506
rs3733506
rs6840875
rs6840875
rs6840875
rs4865408
rs4865408
rs4865408
rs10009096
rs10009096
rs10009096
rs6855459
rs6534554
rs1993616
rs1993616
19361116
rs11153611
rs11153611
rs2051950

rs11977045

IS RN |

93154377
53154377
53154377
53299344
53299344
53299344
53314124
53314124
53314124
53318494
93318494
53318494
64086972
127502750
174056940
174056940
77470954
116871256
116871256
86833858
130480376

