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ABSTRACT

Neurobehavioral disorders can be phenotypically and genetically complex, and often diag-

nosed through observational study or subjective assessment alone. Certain neurobehavioral

phenotypes, such as those caused by circadian rhythm related behavior, are biochemically

well characterized, others, though, do not have yet a well understood genetic aetiology. Fur-

thermore, circadian biology and psychological disorders are often intertwined. To advance

our understanding of neurobehavioral trait/gene relationships, I first built a machine learn-

ing model that encompasses mouse transcriptomics to predict genes involved in circadian

rhythms. Next, I used genome wide association studies to model the causal influence of

genetic exposure in humans to an evening chronotype on several mental health and social

support traits, from depression to group religious participation. To more accurately model

how neurobehaviors relate to one another, I mined psychological assessment instruments

to build a species-agnostic psychological neurobehavior ontology encompassing autism and

schizophrenia phenotypes. I, then, tested the utility of this ontology in clustering children

on the autism spectrum based on phenotypic profiles. Lastly, I annotated genes to behaviors

identified among subgroups through genome wide association studies applied to phenotype

profiles. This allowed for the gene prioritization of circadian related experimentation results

and the discovery of new, potentially, casual relationships between chronotype and neurobe-

havioral traits. Finally, the semantic representation of schizophrenia endophenotypes in a

consistent, ontology framework catered its application for the identification of novel gene-

trait associations in humans. These contributions provide new knowledge to the scientific

community of the potential novel circadian functions for known genes, of the likely causal

influence of chronotype on social and mental health, provide novel robust ways of modeling

the complex phenotype of autism and schizophrenia patients, while annotating neurologically

active genes to new behavioral traits for the first time.
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Chapter One

Introduction

The burden that mental health and behavioral disorders place on society is immense, with

one in four people on the planet estimated to experience mental health problems during

their lifetime, according to the World Health Organization (Murray, Lopez, and others,

2002). Among adolescents, at least 4% will be diagnosed with major depression (Costello

et al., 2004). Recently, advances in molecular biology and genetics have transformed our

study of mental health. Genetic epidemiology has grown from a discipline that studied

small families and performed genetic association analyses within families or twins, to a dis-

cipline studying large cohorts to leverage the increased power of population-level genetic

associations (Merikangas and Merikangas, 2016). When applying genetic associations to

neurobehavioral disorders, however, these approaches often fail to report significant findings

or to be repeatable (Jones et al., 2013). In the model organism community, studying genetic

associations with the power of a large human GWAS study remains a challenge, especially

for the mouse, as ethics, financial cost, and time are key limiting factors to large gene/trait

associating studies. The mouse, however, provides an invaluable tool for investigating mech-

anism behind behavior through gene knockdown, knockout, and even wild-type behavioral

and experimental assays (Mandillo et al., 2008; Barnard and Nolan, 2008). High throughput

reverse genetics screens in mouse have been useful in elucidating a range of physiological and
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behavioral phenotypes linked to gene perturbation, and have been essential in prioritizing

deleterious mutations in humans (Dickinson et al., 2016; Boudellioua et al., 2017; Smedley

and Robinson, 2015). Phenotypes investigated in these studies, and related conditions, have

ranged from rare diseases and behavioral processes which affect every human on earth.

1.1 Introduction to circadian biology

Nearly every cell in every organism on the planet has a circadian rhythm, a biological pro-

cess which oscillates over a 24 hour period. In mammals, the sleep/wake cycle largely

regulated by an endogenous circadian rhythm influenced by external cues called zeitgebers,

or timekeepers (Albrecht, 2012). Light, a zeitgeber, enters the retina and entrains the core

mammalian clock in the suprachiasmatic nucleus (SCN) via the optic nerve and the cir-

cadian entrainment molecular pathway. The SCN is entrained primary by the light/dark

cycle, termed photoentrainment: rods and cones (photoreceptors) and the retinal ganglion

are all sensitive to light. This input is transmitted to the SCN via the retino-hypothalamic

tract to entrain the clock on a daily cycle (Hughes et al., 2015). The core clock exhibits

a transcriptional-translational feedback loop. Translated clock proteins (CLOCK, BMAL1)

act as transcription factors for additional clock genes (Per1/2/3,Cry1/2 ). These genes, once

translated and dimerized, negatively inhibit the action of CLOCK and BMAL1 before be-

ing phosphorylated and degraded. This process takes roughly twenty-four hours (Takahashi,

2017). This central clock acts as a pacemaker tissue-specific clocks throughout the rest of the

body, and influences every organ system. There have been several computational methods

developed to identify rhythmically cycling genes involved in circadian biology, most focusing

on statistical approaches (Hughes et al., 2017). While many core circadian clock genes are

known, contributors to circadian phenotypes remain to be predicted and cataloged. In the

most wide-ranging mouse phenotype project attempted, the International Mouse Phenotyp-
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ing Consortium, circadian studies are not part of the mandatory testing pipeline (Brown

and Moore, 2012a). Lack of high-throughput experimental circadian phenotyping, which by

its very nature takes days to perform, has led to recent attempts to predict genes involved

in circadian physiology through machine learning (Anafi et al., 2014a), and meta-analytic

(Brown et al., 2017c) methods. While many studies have used in silico methods to char-

acterize circadian genes (Hughes et al., 2017), predictive models have been lacking in the

literature. Abnormalities of circadian rhythms are associated with a myriad of neurobe-

havioral disorders in human, from schizophrenia and autism to major depressive disorder

(Karatsoreos, 2014a; Takumi et al., 2020).

1.2 Psychological traits and the circadian clock

The relationship between circadian biology and psychological, neurodevelopmental, and men-

tal health traits is well known. Mood disorders, such as depression, bi-polar disorder, and

anxiety are diagnosed by behavioral assessment; no current clinical biomarkers are widely

used in practice (Watmuff et al., 2016). Unlike observing a centrally controlled trait such

as delayed circadian period, the presentations of many psychological disorders are heteroge-

neous (Wray et al., 2018b). Recent evidence supports the involvement of circadian rhythms

in psychological disorders. For instance, actigraphy data has been used to produce measures

of chronotype in persons with depression (Burton et al., 2013). Previous studies accessing

the genetic basis for circadian biology and manic behavior, for example, have often focused

on genes involved in the core pacemaker (Moon et al., 2016). With the availability of deep

phenotyping and massive genomic coverage in the UK Biobank (Allen et al., 2014a), op-

portunities exist for surveying mental health behavior outcomes en mass, and exploring the

connection between circadian biology and symptoms of neurobehavioral disorders. When

attempting to survey an array of heterogeneous behavioral disorders, it may be beneficial to
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ask how behaviors are delineated.

1.3 Characterising behavior computationally

One cannot meaningfully study the genetics of neurobehavior without first characterising

what are the expected behaviors and how to assay their alterations. To this end, computa-

tional biologists have developed biomedical ontologies to organize and structure biological

knowledge. The largest and most well known ontology is the Gene Ontology, (Gene Ontol-

ogy Consortium, 2015), which characterizes gene function and the dynamics of gene products

through three domains of knowledge: biological progresses, which are made up of molecular

functions, and take place in particular cellular components. In the domain of human health

and disease, the Human Phenotype Ontology (Robinson et al., 2008) depicts phenotypic

abnormalities, including behavioral traits from sleep-wake disorders to autism. Biomedical

ontologies have been designed for mammalian species as well as humans, facilitating the

transfer of gene function annotations between homologous human and mouse genes (Smith

and Eppig, 2009). The AberOWL repository has catalogued hundreds of ontologies, from

the Alzheimer’s Disease Ontology to the Zebrafish Phenotype ontology (Hoehndorf et al.,

2015). Perhaps the most widely used ontology for describing behavior is the Neuro Behav-

ior Ontology (Gkoutos, Schofield, and Hoehndorf, 2012), which provides the foundational

description of behavior in both mouse and human specific phenotype ontologies.
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1.4 An overview of omics data for behavioral trait mod-

eling

This study uses two main modes of multi-omics data: DNA microarrays for studying the

genome and RNA-sequencing assays for studying the transcriptome.

1.4.1 DNA Microarray

Genomic medicine historically starts at the level of the protein. Over a century ago, the ABO

blood group system was characterized. This provided a biomarker that reflected underlying

genetic variation before the discovery of genetic structure (Landsteiner, 1901; Landsteiner,

1961), making blood transfusions safe because of precise biomarker detection. In recent

decades precision medicine has moved from isolated biomarker identification to holistic,

genome-wide investigations of coding and non-coding DNA. This allows testing for several

genomic variations: single-nucleotide polymorphisms (SNPs) involved in mis- or nonsense

mutations, copy number variations (CNVs), structural transpositions/rearrangements, and

splice-cite substitutions which affect the translated protein. Common technologies to detect

these variations include DNA microarrays for CNV and SNP detection, and next-generation

sequencing (NGS) based DNA-sequencing. In this study, I used data generated from DNA

microarrays to genotype the Simons Simplex Collection and the UK Biobank (Fischbach and

Lord, 2010a; Collins, 2007). SNP-detecting microarrays probe for thousands of known SNPs

via included oligos, are relatively cheap and allow a wide array of potential SNPs and disease-

associated loci to be probed. As a cost-effective and easily portable standard of assaying for

thousands of potentially deleterious variants, SNP arrays have been manufactured by several

companies including Illumina, Agilent, and Affymetrix. Studies have shown a high degree of

correlation between different platforms, bolstering trust in use of the technology for accurate
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patient assessment (Li et al., 2015). DNA microarrays have several limitations for SNP/CNV

detection, including an a-priori decision of probes to be mapped, and the poor resolution of

SNPs within of SNP deserts, genomic regions of low SNP density (Surrey et al., 2016). The

cost effectiveness of DNA microarrays lend them to be used by biobanks, which facilitate

deep phenotyping of participants useful for characterizing behavioral disorders. The study

of behavioral genomics presented here incorporates data from human genomics as well as

mouse transcriptomics.

1.4.2 RNA-Seq

RNA-Sequencing revolutionized transcriptome studies by providing quantitative estimates

of gene product abundance (Wang, Gerstein, and Snyder, 2009). In contrast to microar-

ray experiments, most RNA-Seq protocols involve capturing mRNA from lysed cells via the

mRNA poly-A tail and converting the mRNA to a more stable cDNA library. The library

is then fragmented, and after adapters are added the library is sequenced via one of many

next-generation sequencing (NGS) technologies (Mortazavi et al., 2008). Resulting frag-

ments, termed reads, are aligned to a reference transcriptome or genome. After reference

alignment, a transcriptome-wide profile of gene activity is quantified by mapping reads to

annotated coding regions of the genome. Unlike DNA microarray experiments, where genes

must be known a priori, the unbiased nature of RNA-Seq facilitates discovery of new gene

activity, uniquely spliced transcript isoforms, and measurable products of non-protein cod-

ing genes. One particular benefit of RNA-Seq studies is capturing the dynamic processes

of transcription. Levels of detail range from single-cell specificity, to entire organs treated

as nearly homogeneous sets. Unlike genomic experiments, RNA-Seq captures the dynamic

transcriptome, facilitating studying how physiology changes in response to environmental

and repetitive cues or cycles. Transcriptomic datasets can be further explored by creating
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multiple RNA libraries through time, enabling one to study how changes in day/night envi-

ronment or endogenous neuroendocrinological cues affect genes associated with neurological

disorders (Hastings and Goedert, 2013).

1.5 Methods in computational behavioral genetics and

phenomics

The methods used in this work include inferential, causative, and predictive statistical and

machine learning models. I have also had extensive collaboration with colleagues at the

MRC Harwell Institute who have performed experimental work, including RNA-sequencing

and mouse phenotyping, in Chapter 2. Work in Chapter 3 is partly the result of a collabo-

ration with the University of Jean (ES) during the development of the Aging Neurobehavior

Ontology.

1.5.1 Statistical inference for gene association studies

Statistical inference for gene association studies relies on generalized linear models, regressing

a trait or outcome of interest against a single locus on the genome. Analyses typically

include covariates aimed at minimizing confounding variables, including those generated

by sequencing or microarray platform, by ancestry or admixture, sex, and by phenotypic

covariates which may moderate findings such as body mass index or age. This procedure is

repeated hundreds of thousands or millions of times for each allele in the genome, resulting in

many independent models. This necessitates a strict control of false positive rates, typically

with a p-value of 1e-8 set as a genome-wide standard for significance.
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1.5.2 Causal inference based on genetic inheritance

Both genome wide association studies and differential gene expression studies use statistical

inference to model associations using omics data. Differential transcriptomics studies model

how individual transcripts change in bulk expression or differential exon usage between con-

ditions. Genetic epidemiology can model trait - gene and trait - gene x environment effects.

Both of these model association, and cannot infer causality. Using traditional statistical

approaches, one cannot ascertain if a particular SNP causes an observed trait, or if down-

regulation of one gene causes the up-regulation of another, as both of these are experimental

designs are observational. Instrumental variable analysis, originally developed in economics,

has been used in genetic epidemiology to model the relationship between traits mediated

by gene exposure. It was originally used to model the relationship between modifiable ex-

posures and disease (Davey Smith and Ebrahim, 2003a). Instrumental variables are those

which robustly predict an exposure but have no independent association with an outcome;

any association must be mediated solely by the exposure (Labrecque and Swanson, 2018).

Building such causal models rely on genetic data, especially those made available via GWAS

studies. Mendelian randomization (MR) assumes its name due to the Mendel’s law of inde-

pendent assortment, which posits that alleles should be randomly distributed. While this

is true in Mendelian genetics, alleles in linkage disequilibrium will break this assumption,

but a MR experimental design will account for this by selecting loci which are indepen-

dent. Because assortment is independent, the presence or absence of a particular minor or

major allele within a population is randomly distributed. Thus, MR can be thought of as

a natural randomized controlled trial, in which participants are randomized at birth, and

exposed to different levels due to their likelihood of developing a trait due to genetic ex-

posure (Davey Smith and Ebrahim, 2003b). MR can mimic environmental, physiological,

or psychological exposures and have been used to characterise systems biology, model phar-

macogenomics, and other areas (Davey Smith and Ebrahim, 2003a). An early application
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of MR was performed in 1986, when Katan modeled differential alleles in the APOE gene

to investigate the observational relationship between cholesterol levels and cancer (Katan,

2004). Due to one’s exposure to an allele occuring prior to an exposure to any outcomes,

reverse causation is negated when proper instrumental variables are chosen. Similar to meth-

ods in GWAS or transcriptomics, most models used in MR analyses are interpretable linear

models, and associations between variables are causal only due to the correct experimental

design. MR models have been used in recent years to characterise the relationships between

many neurobehavioral traits or psychiatric conditions, including linking smoking behavior

(exposure) to bipolar disorder and schizophrenia (outcomes) (Yuan, Yao, and Larsson, 2020)

and NR3C1 expression levels (exposure) to psychosis (Iftimovici et al., 2020). In this work,

MR will be used to model the relationships between self-reported chronotype (an exposure)

and several psychological outcomes. By using causative modeling to investigate the asso-

ciation between chronotype and mental health, this work will provide direction for further

longitudinal or interventional experiments using chronotype as a intervention when studying

behavioral outcomes. A detailed discussion of these methods used are included in Chapter

3.

1.5.3 Machine learning based on genomic and phenotypic data

Modern machine learning has its roots in early attempts to understand the learning process,

when a simple model of neuronal processing were developed - the perceptron (Rosenblatt,

1958). As computational resources have increased, machine learning has become useful

to the biomedical community. Machine learning is the application of a class of induction

algorithms which seek to learn outcomes through iterative training without being explicitly

programmed (Kohavi and Provost, 1998). As eloquently proposed in Breiman’s two cultures,

data modeling and algorithmic modeling approach inference in different ways (Breiman,
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2001). Classical statistical modeling seeks to first create a model of the world (X independent

variables) which explains Y dependent responses. Based on assumptions about X, models

are built to attempt to extract information about how the X and Y are related. In contrast,

machine learning methods are often viewed as a black box. Instead of explicitly attempting to

model how X generates Y , algorithms are built that operate on X to predict the Y response

variables. This is done independently of assumptions about how X leads to Y . To achieve

good measures of predictive accuracy, machine learning methods depend on large amounts

of data and can require vast computational resources, both of which are now available to

computational biologists. Two divisions of machine learning processes are distinguished by

the presence of labels.

Unsupervised learning

Given data without labels, a problem is formulated to detect latent patterns present in

data. Given a set of data, patterns can be constructed with many different approaches. The

most familiar may be method of moments estimators, where the first moment of a sample

of data is the mean, and the second moment about the mean is sample variance. These

calculations depend on no outside labels of the data. To aid in analysis of multidimensional

data from large genomic experiments, dimensionality reduction and clustering algorithms are

often used. This thesis uses variations on hierarchical clustering, which models the Euclidean

distance between data (such as genes or phenotypes) as a metric of gene-gene similarity. It

also uses principal component analysis (PCA) as a dimensionality reduction technique; this

is commonly performed in GWAS analyses to account for population structures. In Chapter

3, this work extensively uses clustering based on the similarity of subject’s phenotypic traits

to one another in a measure called semantic similarity.
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Supervised learning

When given labels associated with data, those labels can serve as targets for supervised

learning algorithms. The challenge of predicting phenotype annotations (and punitively

assigning functions to genes based on these phenotypes) is a classification problem using

phenotypes or phenotypic profiles as targets (dependent variables). Supervised learning

approaches used in this work include a variation on random forests, in which initially random

decision trees are made out of biological features, and an ensemble of them (a forest) are

used to assign the presence or absence of a target trait. The variation adapts trees to

better fit data as it is learning over training iterations. Other approaches used in this work

involve supervised feature selection with a penalized generalized linear model. To measure

the performance of our modeling attempts, the following general strategy is adopted:

• data are split into training and testing sets

• during hyperparameter optimization, training sets are again split into testing and val-

idation as a cross-validation procedure to select a well performing model

• model selection is judged by the area under the receiver operating curve and summary

statistics including accuracy, specificity and sensitivity

• after model selection, models learned are evaluated by performance on the yet-unseen

testing data

• as an alternative to initial data splitting, newly generated data or additional study

cohorts can be used to measure the accuracy of models

This procedure is then repeated several times, and average metrics are used to evaluate the

generalizability of the classifier. This is done to protect against train/test splits when features

may be unevenly distributed among subjects and when there are a minority of subjects in
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the analysis who have a particular target class. When predicting ontology annotations,

especially rare phenotypes, class imbalances will occur (Wei and Jr, 2013). Having an equal

number of data observations (genes) with and without a given binary phenotype annotation

will increase training efficiency. We use both under- and over-sampling, when appropriate,

to balance training datasets. When validating predictions on unseen data, class imbalances

native to the data are retained, to make predictions more accurate to current levels of gene

function annotation. Our modeling thus far has been predicting phenotype annotations

from the results of gene expression analysis experiments (below). To mitigate potential

model inaccuracy from withholding a percentage of phenotype/gene annotations, a multiple

cross-validation approach may be used instead of an initial holdout validation set.

1.5.4 Method evaluation

To evaluate supervised machine learning models, I employ diagnostics which can be derived

from a confusion matrix:

Truth

Positive Negative Total

Positive Prediction a b a+ b

Negative Prediction c d c+ d

Total a+ c b+ d N

Table 1.1: An example of a confusion matrix, or a 2x2 contingency table. The set {a,b,c,d} are all

integers, and indicate the number of true positives, false positives, false negatives, and true negatives

in a binary classification problem. N represents the total number of entities classified.

Accuracy is calculated as the sum of true positive and true negatives over the popu-
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lation:

ACC =
a+ d

a+ b+ c+ d
(1.1)

Sensitivity, recall, or the true positive rate, is calculated as the sum of true positive cases

over the sum of true and false positives:

Sens =
a

a+ b
(1.2)

Specificity, or the true negative rate is calculated as the sum of true negative cases over the

sum of true negative and false positive cases:

Spec =
d

c+ d
(1.3)

While accuracy gives a measure of the percent of classifications which are correct, this can

be misleading when there is a large imbalance between two cases: for instance, a classifier

who classified a set of 100 SNPs as pathogenic, when in reality 99 were, would have an

accuracy of 99%. Such a skewed dataset, however, benefits from other measures. I use the

area under the receiver operating characteristic (ROC) curve, denoted in this work by AUC.

It provides a balanced measure of the trade-off between specificity and sensitivity. An AUC

of 0.5 indicates a completely random binary classifier, while an AUC of 1.0 denotes perfect

classifier performance (Fawcett, 2006). Confidence intervals around the ROC curve provide

measures of the uncertainty of the model’s performance.

To evaluate unsupervised learning models in this thesis, two approaches are used.

In the first, data are permuted thousands of times, and measures of community or cluster

modality (density, node degree) are taken to produce an null, or random, distribution of

measures of class centrality. By comparing the modularity of members of a community to

the null and counting the frequency of observed values more extreme than those within a

community, p-values are generated, producing a measure of how unexpectedly connected a

community is with itself compared to data not in that community. I also evaluate unsuper-

vised learning clusters by biological observation: if genes, for instance, participate in more
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shared biological processes than would be expected by chance, this leads to the conclusion

that the community of genes as a whole may be involved in similar functions or interact with

biochemical pathways up or downstream of one another.

Inferential models from GWAS analysis (Chapter 5), and causative models from MR

analysis (Chapter 3), are evaluated primarily by the strength and variance of their associ-

ations as measured by a log-odds or the transformed β coefficient. GWAS are additionally

verified by using their features in supervised learning models, and MR analyses have exten-

sive post-hoc tests to ensure statistical robustness and appropriate experimental design.

1.6 Thesis aims and objectives

Neurobehavioral disorders are phenotypically and genetically complex, and often diagnosed

through observational study or subjective assessment alone. In order to further the under-

standing of the genetic basis of neurobehavioral disorders, it is necessary to devise ways of

both predicting gene/trait associations and to uncover new relationships between the obser-

vational traits which neurobehavioral disorders manifest. To make inroads into this domain,

several statistical methods and biological principles can be leveraged; from the homolo-

gous relationship between mouse and human neurogenetics to modeling causal relationships

between traits, though to the semantic modeling of relations between traits and then inter-

rogating their genetic basis. The ultimate aim of this thesis is to predict neurobehavioral

gene/trait relationships and provide a basis for prioritizing experimental investigations into

genetic causes of neurobehavioral dysfunction. To address this, this thesis aims to:

• 1: Predict genes which are involved in producing abnormal circadian rhythm behavior

in mice using supervised machine learning methods
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• 2: Investigate the causal relationship between chronotype, a measure of circadian

rhythm, and behavioral traits linked to mental illness or psychological disorders in

humans

• 3: Mine psychological assessment instruments to model subtle behaviors which, in ag-

gregate, are indicative of complex psychological disorders, such as autism or schizophre-

nia, and use that to reduce the phenotypic heterogeneity among populations with

complex behavioral diagnoses

• 4: Investigate genes which are associated with individuals who share both a common

behavioral diagnosis (autism) and share a common phenotypic profile derived from aim

3.

Each of these aims involves modeling of associations between neurobehavioral traits

and genetic material which, when expressed or mutated, will influence these traits. Figure

1.1 encapsulates the structure and interconnectedness of this project. The figure may be read

from top to bottom, showing the sequence of chapters, relevant data, general methods used,

and outcomes. Each chapter’s data flows into its methods and then outcomes. In Chap-

ter 2, I am to predict genes involved in abnormal circadian biology. This is accomplished

by harnessing data from mouse in predictive models using supervised machine learning to

produce genes which may produce circadian phenotypes. Knowing that circadian biology

impacts many neurobehavioral and psychosocial traits in humans, Chapter 3 uses genome

wide association studies as a basis for modeling the causal relationship between chronotype

(a manifestation of circadian rhythms) and various self-reported traits relatd to mental ill-

ness and social wellbeing. After finding such associations between chronotype and behavioral

traits in a wider population, the thesis turns to focusing on how such traits relate to one an-

other. To address this, the traits which make up complex psychological disorders, including

autism and schizophrenia, are mined from gold-standard diagnostic instruments in Chapter
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4. These traits are used to engineer biomedical ontologies, on which autism probands are

modeled to investigate the underlying (endo)phenotypic structure of a complex neurodevel-

opmental disorder. Lastly, in Chapter 5, I use phenotypic profiles from Chapter 4 and the

genome-wide association study approach from Chapter 3 to investigate the genetic archi-

tecture of probands diagnosed with autism yet presenting with distinct phenotypic profiles.

Clusters of probands who have a distinct phenotypic presentation are investigated for asso-

ciations between genetic mutations which separate them from the rest of the studied autism

cohort, revealing links to circadian biology studied in Chapter 2. The fundamental biology

studied in a model organism in Chapter 2 permiates the thesis through Chapter 5, leading to

future work combining complex behavioral phenotypes in population-based human studies

with collaborative mechanistic studies detailing individual endophenotypes in mouse.
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Figure 1.1: This work is divided into four substantive chapters, each of which attempt to address

interrelated but independent aims. Each chapter is connected to each other (left panel, "Chapter").

Solid edges represent an explicit flow of work: in Chapter 2, mouse transcriptomics and protein

interaction data feed into kernel, cycling, and machine learning methods. These methods produce

results, specifically genes with predicted circadian function in mouse. Outcomes (both biological

relationshps and methodological insight) from each chapter indirectly inform the next, as indicated

by dashed edges in the rightmost panel (Outcomes). Outcomes from Chapter 4 directly inform

those in Chapter 5 (solid dashed edges), while the outcomes of Chapters 2 and 5 inform each other

and suggest future research integrating mammalian and human studies.
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Chapter Two

Predicting genes involved in abnormal

circadian rhythm traits in mouse

2.1 Background and Chapter Overview

As described in Chapter 1, most organisms will anticipate regular daily changes to their en-

vironment which replay over a 24 hour period, chiefly involving light, food, and temperature.

These daily circadian influences, or zeitgebers, can advance or delay the phase of the central

circadian clock in the uprachiasmatic nucleus (SCN). The transcriptional-translational feed-

back loop which regulates circadian rhythms is largely conserved between different cell types,

discounting built-in redundancy of a Clock protein paralog in the SCN (Patke, Young, and

Axelrod, 2020). The SCN exhibits intercellular coupling, with an interplay between VIP-

and GRP- producing neurons in the core with AVP-expressing cells in the shell together

regulating the core circadian clock (Hamada, Antle, and Silver, 2004). The SCN acts as the

central pacemaker for tissue-specific clocks. Projections from the SCN are largely sent to

the diencephalon, and then to the rest of the body (Mieda, 2019).

Every tissue in both mouse and human contains circadian clocks, by which the rhyth-

18



Predicting genes involved in abnormal circadian rhythm traits in mouse

mic expression of circadian-influenced genes will oscillate in a tissue-specific manner. The

SCN acts as the central pacemaker, coordinatingTissue specific transcriptome profiling has

revealed differing patters of expression, many of which are able to have sustained rhythm

even in isolation of the central pacemaker (Yoo et al., 2004; Yamamoto et al., 2004). Periph-

eral clocks have been impicated in wound healing, heart rate and respiration, and immune

function (Finger, Dibner, and Kramer, 2020). One of the best-studied peripheral circadian

clock is in the liver, where metabolism is affected by clock genes including the Per and Cry

family. While these tissue-specific clocks maintain their own rhythm, the SCN is still need to

coordinate the phases of these tissue-specific clocks (Tahara et al., 2012). They are consid-

ered dependent (’slave’) oscillators that while dependent on the SCN are strongly influenced

by external zeitgebers such as feeding cycles. The circadian role of the liver has received

attention: in-vivo mouse models have shown a hepatic cytokine to activate clock genes in

the liver (Chen et al., 2019), and in humans beneficial effects of dietary fasting have been

suggested to be influenced by peripheral metabolic clocks (Lessan and Ali, 2019).

Chronobiological deficits can have system-wide influences ranging from the central

nervous sytem, suggesting possible core clock malfunction, to influencing non-neuronal tis-

sues not explained by the SCN’s central pacemaking function alone. Genome-wide associa-

tion and mutational studies have linked variants in core clock genes to sleep/wake disorders,

disruptions due to jet-lag, and even sleep-related bone loss (Swanson et al., 2017). Recent

GWAS of self-reported chronotype (lark or owl, corresponding to being a ’morning person’

or ’night person’) reveal several candidate genes associations with previously unexpected

circadian function (Hu et al., 2016). The translational importance of understanding circa-

dian biology is not limited to neurobehavioral function; the interplay between metabolism

and circadian biology has been highlighted heavily in recent years. The gut microbiome,

adipose cytokines, and metabolic hormones from grhelin to leptin are all strongly regulated

by circadian biology (Li et al., 2020; Socaciu et al., 2020; Pan, Mota, and Zhang, 2020).
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Recent Mendelian randomization studies have also suggested a strong causal link between

chronotype (a gross circadian phenotype) and body composition, free fatty acid circulation,

and adiposity (Adams and Neuhausen, 2019; Jones et al., 2019).

As such, identification of genes, which contribute to circadian biology, either as part

of core clock machinery or up- or down-stream actors, is of great importance. There have

been recent attempts, resulting from high throughput proteomic and interaction screens,

to prioritize clock genes that bind to CLOCK (Zhao et al., 2007), as well as to identify

protein-gene interactions involving the ZFHX3 protein (Parsons et al., 2015). Such high

throughput experimental assays are invaluable, and computational predictions, combining

several of these features, have been used to screen for potential clock genes (Anafi et al.,

2014b). Statistical analysis of high throughput calorimetry data from the International

Mouse Phenotyping Consortium have been harnessed to identify novel circadian functions

for well-studied genes, further highlighting the utility of integrating data from core clocks,

peripheral or exogenous zeitgebers (Zhang et al., 2020).

Creating an in-silico method of prioritizing genes of interest, resulting from mam-

malian circadian phenotyping studies, will dramatically reduce the search space for poten-

tially novel circadian genes, leading to both cost and time savings. My method screened

several features, indicative of circadian function, to classify novel circadian genes. I com-

bined measurements of RNA-Sequencing levels, at four different timepoints in the supcrachi-

asmatic nucleus (SCN) and the liver in mouse, to indicate enrichment of genes in the both

the central and peripheral pacemaker. I also assessed genes, expressed in the SCN and liver,

in terms of their likelihood of being expressed over time in a oscillating periodic fashion

taking 24 hours. Next, potential interactions of proteins, expressed in the SCN, with both

known circadian proteins, as well as with any other proteins whose gene progenitors were

expressed in the SCN, were studied. The level of expression across several tissues in the

mouse body was also considered, and the degree of specific expression in the SCN was cal-
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culated. Lastly, my candidate novel genes were further compared to several previous studies

characterizing circadian genes in the SCN. I present an analysis of three candidates with

previously unknown circadian function, and two candidates, with known circadian function,

but not known abnormal circadian phenotype associations in mouse. Of these, I present

evidence of circadian phenotypes in Gastrin Releasing Peptide (Grp) mice, thanks to the

help of experimentalist colleagues.

The suprachiasmaic nucleus (SCN) is the central pacemaker of the body, maintaining

entrainment of peripheral biological clocks in nearly every body tissue (Li et al., 2008). By

combining attributes of several known clock genes, I used the RUSBoost machine learning

algorithm to rank genes by their likelihood to contribute to the ’abnormal circadian rhythm’

phenotype in the mouse. Several known clock genes, with no predicted phenotype in mouse,

were suggested to actually contribute to circadian biology on the phenotype level. I also

predicted classes of genes not currently known to contribute to circadian phenotypes in

mouse or human. These genes are worthy of further study in model organisms to elucidate

the molecular mechanisms contributing to clock disruption.

2.2 Methods

2.2.1 Circadian phenotype selection

Mammalian phenotype to gene annotations were downloaded from the Mouse Genome

Database on 30 Nov 2016. Genes annotated to MP:0001393 in the Mammalian Pheno-

type Ontology (MP), labeled "Abnormal Circadian Rhythm," were extracted, with positive

annotations used as targets in my analysis. Genes annotated to any children of ’Abnormal

Circadian Rhythm’ MP were likewise annotated with MP:0001393 and included as positive
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targets.

RNA-Sequencing and Experimental Validation

In this work, all wet-lab experiments, including phenotyping, collection and RNA extraction,

were performed by colleagues in the Nolan group at MRC Harwell Institute. All computa-

tional and statistical analysis is my own.

All animal studies were performed under the guidance issued by the Medical Research

Council in Responsibility in the Use of Animals for Medical Research (July 1993) and Home

Office Project Licenses (30/3384 and 30/3206), with local ethical approval. All animals used

in this study were bred and maintained at MRC Harwell. When not being tested, mice were

housed in individually ventilated cages under 12/12 h light/dark (LD) conditions with food

and water available ad libitum.

2.2.2 Circadian Phenotyping of Grp knockout mice

Gastrin-releasing peptide (Grp) knockout mice were obtained from the International Mouse

Phenotyping Consortium (IMPC; https://www.mousephenotype.org/). Six 34 week old ho-

mozygous female mice were used for circadian analysis. Nine isogenic 34 week old C57BL/6N

females were used as controls. Circadian analysis was performed using the COMPASS system

(Brown et al., 2017a). Briefly mice were individually housed and activity data captured by

passive infrared sensors for 5 days in a 12:12 LD cycle, followed by 9 days in constant dark-

ness. Data were rebinned using custom python scripts converted to AWD files for analysis

on Clocklab (Actimetrics) (Brown et al., 2020).
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2.2.3 Tissue collection and RNA extraction

C57BL/6J animals were singly housed under a 12:12 hour LD cycle for at least two weeks

prior to dissection. Mouse activity was monitored by wheel running (Banks and Nolan 2011)

in order to confirm entrainment to LD cycles prior to dissection. Mice were sacrificed by

cervical dislocation at either Zt 3, 9, 15 or 21. SCN punches were collected as in Jagannath et

al., 2013 (Jagannath et al., 2013) and liver taken from the same animals. Samples were flash

frozen on dry ice and stored at -80 degrees C until RNA extraction. Total RNA was extracted

using RNAeasy column (QIAGEN). Quality and quantity of RNA were measured using an

Agilent Bioanalyzer (Thermo Fisher Scientific). The SCN quality of the tissue dissection was

confirmed by qPCR of Six6 (an SCN enriched gene) as described in by Jagannath (Jagannath

et al., 2013).

2.2.4 RNA sequencing

RNA sequencing was performed by the Oxford Genomics Centre (Wellcome Trust Centre for

Human Genetics, University of Oxford). 500 µg of RNA samples were sent for sequencing.

The samples underwent poly-A selection, after which two multiplexed DSN Library Prepa-

rations (6 samples/multiplex) were generated. Each multiplex was run on one 50bp PE lane

of a HiSeq2000.

RNA-Sequencing Analysis

To predict novel genes contributing to neurobehavioral phenotypes of circadian rhythm,

time-series gene expression studies can be used to exploit observed transcript oscillations

across a day. To study circadian rhythms in mice, RNA-Seq libraries were created from
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16 male C57BL/6J strain mice. Following procedures previously described (Parsons et al.,

2015), animals were sacrificed at four time points in a twenty-four hour range denoted in

zeitgeber time (Binder, Hirokawa, and Windhorst, 2009). By convention, zt0 corresponds

to lights on, zt12 corresponds to lights off in a twelve-hour light/dark cycle. Mice were

sacrificed at zt3, zt9, zt15, and zt21. Samples were taken from the suprachiasmatic nucleus

(SCN) of the brain and the liver. After purification and cDNA library creation, samples

were sequenced as referenced above.

Raw paired-end reads were analyzed for quality control with FASTQC (Andews,

2015). Reads were aligned to the mm10 genome with the Bowtie2 aligner in the TopHat

application suite (Trapnell et al., 2010; Langmead and Salzberg, 2012). HTSeq was used

to extract read counts using Ensembl 83 annotation (Flicek et al., 2014; Anders, Pyl, and

Huber, 2015). Processed reads were analyzed for statistical distributional assumptions and

potential sample mis-annotation. Three samples from each time point and tissue were kept

for further analysis, resulting in 24 libraries.

Differential expression between tissues and time points was analyzed with the DESeq2

package (Love, Huber, and Anders, 2014). Assuming a negative-binomial distribution to

count data, standard settings were used to fit generalized linear models and perform Wald

tests for differential expression. Transcripts expressed with a log-fold change of greater or less

than 2 between tissues were considered differentially expressed, subjected to a Benjamini-

Hochberg adjusted p-value of < 0.05 (Benjamini and Hochberg, 1995). Transcript per Million

(TPM) measurements were additionally calculated for each gene, and are reported as the

mean TPM in all SCN samples +/- the standard error of the mean.

To test for rhythmic signatures related to circadian rhythms in each tissue, several

algorithms were used. The RAIN algorithm was used to detect cycling at four time points

(Thaben and Westermark, 2014). Using DESeq2-normalized read count estimates, period
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time was explicitly set to twenty-four hours and default RAIN settings and FDR corrections

were used. To enable detection of rhythms across the entire 24 hour period with only four

time points in each tissue, a second 24 hour cycle was imputed by duplicating the first cycle’s

values. Visual inspection of core clock-related genes’ transcriptomic patterns was performed

to verify accuracy of results. Additionally, Lomb-Scargle (Lomb, 1976; Scargle, 1982) and

JTKCycle (Hughes, Hogenesch, and Kornacker, 2010a) were implemented. All features from

cycling/rhythmic analyses were combined and used as feature input, and correlated features

were permuted during training splits to avoid multicollinearity of correlated feature detection

methods.

To compare the distribution of expression from known circadian genes across various

tissues, transcript-per-million (TPM) expression data from 25 tissues was obtained from the

mouse ENCODE consortium (Mouse ENCODE Consortium et al., 2012). Each gene was

binary coded if 1 TPM was present in a given tissue and totaled. The resulting vector of

tissue totals per gene was mean centered and scaled over the standard deviation to create a

tissue ubiquity vector. Since the particular genes represented in my tissue ubiquity metric

were chosen by the ENCODE consortium, any genes discovered in my analysis but not

included in ENCODE were missing. The tissue distribution of these genes was imputed

simply with the median of all gene tissue-wise expression, in order to limit missing values in

my downstream classification attempts.

Protein-protein interactions

To derive a quantitative feature representing interactions of known circadian phenotype

proteins with other proteins expressed in the SCN, protein-protein interaction graphs were

constructed, including annotation with phenotypes of interest. Protein-protein interaction

graphs were constructed from genes expressed in the SCN, at each time point separately, as
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follows. Using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)

database version 10, all default data sources were used with an interaction threshold of

medium confidence (0.400) except for textmining which was set to a higher threshold (0.950)

(Szklarczyk et al., 2015a). Interactions between proteins are represented as an unweighted

undirected graph, and combined into one graph containing all threshold-meeting interactions

at each time point. This combined text-mining, fusion event history (proteins fused in

some genomes may have similar functions in other species), similar pathway occurrence, and

observed co-expression in tissue expression databases into one graphical representation for

potential protein-protein interactions. Graphs from each of 4 timepoints were combined,

taking the union of each graph to capture genes which were expressed in the SCN at any

point across Zt3, Zt9, Zt15 or Zt21. The biological network of interactions is represented as

a graph, G. In G, vertices represent proteins and edges represent undirected theoretical or

experimental interactions between them. Vertex sets are represented as V , while edge sets

are included in E. A convenient representation of graph G is the adjacency matrix, A. Ai,j

describes similarity between Vi and Vj.

Diffusion kernel creation

Diffusion kernels are based on the heat equation and can be thought of as discrete versions of

Gaussian kernels (Kondor and Lafferty, 2002). To compute the diffusion kernel, the Laplacian

of the combined protein-protein interaction graph above G was initially calculated as:

L = D − A (2.1)

where D is the diagonal matrix and A is the adjacency matrix of the graph. The Laplacian

L of G was used to compute the kernel K:

K = eβL (2.2)
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where β is the bandwidth parameter. The effect of diffusing the flow of information across

proteins according to the bandwidth parameter β can be seen by:

eβL = I + βL+
β2

2
L2 +

β3

6
L3 + ... (2.3)

where I is the identity matrix (Schölkopf, Tsuda, and Vert, 2004). To calculate information

diffusion from a random walk around proteins with known circadian phenotypes, the kernel

K was multiplied by P to generate a score S:

S = PK (2.4)

where

P =


1, if an Abnormal Circadian Phenotype is annotated to a a protein

0, otherwise
(2.5)

The resulting feature, the diffusion score S, was obtained with a bandwidth B set to 0.2. I

assembled two features using this approach, each with a score (0,1) for every protein coding

gene in my SCN dataset. The first feature was a diffusion score for each gene expressed in the

SCN in my dataset and participating in predicted protein-protein interactions as outlined

above. The second limited interacting proteins to those which were over-expressed in the

SCN when compared to corresponding liver experiments (log fold change > 2, FDR adjusted

p-value < 0.05). Only genes expressed in the SCN and involved in predicted interactions

were annotated with features for circadian phenotype predictions.

Phenotype modeling and classifier evaluation

To predict classification into presence or absence of an abnormal circadian rhythm phenotype,

the RUSBoost algorithm was used as implemented in the R environment (Seiffert et al., 2010),

(Carnagua, 2015). Fourty-five features (see Supplementary Table 2) were used, comprising
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six categories: protein-protein interaction based diffusion scores, SCN expression, evidence

of liver and SCN cycling and wave characteristics, evidence of paralogous circadian function

in D. Melanogaster, and pan-tissue expression. My target was the presence or absence of

the ’abnormal circadian rhythm phenotype.’ To avoid overfitting, I limited each forest of

decision trees to 30 in each iteration of the algorithm. A 70/30 training/test split was used,

maintaining the proportion of each class. Normalization parameters included centering both

training and test splits, and balancing class in the test split only via SMOTE (Chawla et al.,

2002; Torgo, 2010). Feature importance was calculated via the gain of the Gini index given

by each variable in a weighted tree, implemented in the Adabag R package as proposed

in Hastie et. al. (Alfaro, Gámez, and Garcia, 2013; Hastie, Tibshirani, and Friedman,

2009). To calculate feature importance per gene of interest, local linear approximations of

the model’s behavior were deduced using the LASSO (least absolute shrinkage and selection

operator) method, selecting the ten most explanatory features for each gene using the lime

method (Pedersen and Benesty, 2019; Ribeiro, Singh, and Guestrin, 2016).

To test the generalizability of my approach, a repeated resampling study was per-

formed, each generating a new train/test split. Two hundred train/test splits were created,

and the algorithm was optimized on training data and validated on the test split. To measure

the influence of the graph-based measure on training, during each resampling the diffusion

kernel experiment was re-run with additional masking of known circadian genes by setting

all scores in the vector P above (eq.4) to zero. Outcomes with and without masking the

kernel score were retained. Subjects were considered potentially novel circadian genes if they

appeared in the top 90% of re-sampling splits (n = 246).

To characterize the gene function of predicted novel genes across species, gene en-

richment analyses were conducted in the Biological Process domain of the Gene Ontology,

the Mammalian Phenotype, and the Reactome pathway database using the XGR R package

v.1.0.1(Fabregat et al., 2016; Smith and Eppig, 2009; Robinson and Mundlos, 2010). In each
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analysis, a hypergeometric test and Benjamini-Hochberg false discovery rate correction were

applied, with other settings used as default (Fang et al., 2016; Benjamini and Hochberg,

1995).

Novel candidate prioritization

The 246 ranked novel candidates, with an emitted probability of > 0.5, were kept for further

investigation. Of those with higher expression in the SCN than the liver, candidates with no

known rhythmic process (GO:0048511) annotations were compared with experimental data

from the Allen Mouse Brain Atlas (Jones, Overly, and Sunkin, 2009; Liu et al., 2007) and a

pan-tissue circadian gene expression database (Pizarro et al., 2013). A recent meta-analysis

of both RNA-Seq and RNA microarray studies investigating gene expression in the SCN

and whole brain was also used to bolster evidence from my initial analysis (Brown et al.,

2017c). A recent study of RNA-Seq in the SCN using six timepoints was also interrogated

(Pembroke et al., 2015), to add annotations of evidence of cycling behavior in genes in an

experiment with more timepoints than this current work.

Genes were additionally filtered by their tissue specificity among 27 tissues. RNA-

Sequencing for all available tissues were downloaded from the mouse ENCODE repository

(Mouse ENCODE Consortium et al., 2012) in Reads per Killobase per Million reads mapped

(RPKM) format and averaged for each tissue. RNA-Sequencing reads for each time period

of SCN data were converted to RPKM and then a mean was taken.

A recent benchmark of tissue specificity metrics found the tau statistic from to be a

reliable indicator of the degree to which a transcript is deferentially expressed in one tissue

compared to several others (Kryuchkova-Mostacci and Robinson-Rechavi, 2017; Yanai et al.,

2005). To calculate tissue specificity, I first took the base 2 log then quantile normalized
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the expression of each gene within each tissue. Then within each gene, the expression was

democratized into 10 bins of equal density. Next, the tau controling factor was calculated,

as:

τ =

∑n
i=1(1− x̂i)
n− 1

(2.6)

and:

x̂i =
xi

max
1≤i≤nxi

(2.7)

where xi is the binned gene count (0 - 9) for each tissue divided by the max, and N is the

number of tissues which the gene is expressed in. The τ metric was computed to compare

the degree of which each gene was expressed uniquely in each tissue. Genes with a τ of 0.85

- 1 in the SCN were deemed to be specifically expressed in that tissue. To calculate the

specificity of each gene, a final calculation is made:

τ = τ(
qn

max
) (2.8)

where qn is the quantile-norm gene count of a gene in a given tissue tissue, and max is the

maximum quantile-normed expression of that gene in any tissue studied.

2.3 Results

2.3.1 Machine Learning predicts 246 potential novel circadian genes

I used an ensemble classifier, RUSBoost with decision trees, to predict if genes were consid-

ered to be circadian or not, a binary classificaiton problem. To access the performance of my

classifier, the first variable importance was measured. As seen in Figure 2.1 A, the feature

which explained most of my model performance was a continuous score S from projecting

genes expressed in the SCN onto a protein-protein interaction graph, netting us information

about how connected each gene is to neighbors who are known to produce circadian traits in
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mouse. Measures of circadian amplitude, cycling potential (normalized adjusted p-values),

expression in the SCN, expression distribution throughout the mammalian body, and known

circadian function in fly homologues contribute to my predictive performance. In order to

predict previously unannotated circadian genes, I trained my model on my entire data set,

resulting in 246 potential genes which may contribute to the circadian phenotype in mouse,

reducing the search space for new circadian genes expressed in the central pacemaker by over

98% Figure 2.1 B, and achieved an area under the receiver operating characteristic curve

(AUROC) of 0.93. To test the generalizablity of my method on such imbalanced data, I

performed multiple permutations of training/test splits, and I measured performance while

masking the graph diffusion features by setting known circadian nodes in the training and

testing sets to the mean of each feature. These metrics allow us to compare my ability

to recover known circadian genes with other machine learning methods, but the biological

relevance of predicted novel circadian genes is best accessed by investigating known gene

functions.

2.3.2 Feature Characteristics

Several features were used in extracting information relevant to circadian classification.

These stemmed primarily from two sources, namely an RNA-Sequencing study of genes

expressed in the SCN and the liver, measured at four timepoints during a 24 hour period,

and predicted protein-protein interactions among those genes. Differential expression anal-

ysis between liver and the SCN at four time points in mouse shows that more genes were

over-expressed in the SCN compared to the those over-expressed in the liver. Interestingly,

over ten thousand genes exhibited 24-hour cycling in the liver (a peripheral clock) compared

to the SCN (Table 2.1). After excluding genes not expressed in the SCN and those not

involved in protein-protein interactions in the STRING database, only 12,502 genes were
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Figure 2.1: Classification results rely on SCN expression and protein interactions to narrow search

space for novel circadian phenotypes. Variable importance of the final model (a) is dominated by

the measure of likelihood of predicted protein interaction with known circadian proteins, seconded

by measures of rhythmicity in the liver and SCN. When serially trained, I predicted 246 genes previ-

ously unannotated with circadian phenotypes to have annotations. Accuracy, area under the ROC

curve with and without graph metrics (AUROC, AUROC without Graph Diffusion), Sensitivity,

and Specificity are depicted for all 200 models on their respective test holdouts (b). The median

performing (by AUC) model’s ROC curve is depicted in panel c, with an AUC of 0.93 +/-0.36.
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carried forward for subsequent analysis. Of those, 3058 were significantly over-expressed in

the SCN (FDR-adjusted p-value < 0.05, log fold change > 2).

SCN Liver Both Tissues

All Cycling PPI All Cycling All Cycling

Expressed 21865 6335 12052 20138 10097 18205 2877

Over-Expressed 6533 1947 3058 3995 2008 - -

Table 2.1: SCN and Liver differential expression statistics. A larger number of genes were signifi-

cantly over-expressed (log fold change > 2) in the SCN versus the liver, while the more significantly

cycling genes were detected by RAIN in the liver than in the SCN. A final protein-protein interaction

network was constructed from 12492 genes expressed in the SCN and participating in interactions

in STRING. Of those, 3058 were over-expressed in the SCN. The analysis was limited to the 12492

genes in the large interaction network going forward.

Gene expression is shown in Figure 2.2. While the differential expression study de-

picted here indicates several modules of genes overexpressed in the liver (left) or SCN (right),

differential expression analysis alone does not reveal known clock genes. Circadian genes with

a known phenotypic manifestation in mouse that were expressed in the SCN are shown in

the insert, failing to hierarchically cluster into biologically meaningful communities Figure

(2.2, insert).

As noted above, previous studies have investigated the specificity vs ubiquity of tissue

expression among the community of clock genes. I measured the expression of genes in the

SCN and 25 mouse encode tissues (Mouse ENCODE Consortium et al., 2012), showing a

uniform distribution of tissues expression among the community of mammalian clock genes,

whereas non-clock genes were found to exhibit a somewhat bi-modal distribution (Figure 2.3

A). I also characterized the degree of cycling of all genes within both the SCN and the liver

across time, visually shown in Figure 2.3 B. Sixteen exemplar clock genes are shown, and
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Figure 2.2: Circadian genes cannot be identified by expression patterns alone. Hierarchical clustering

was performed on the rows of a time series of RNA-Sequencing on liver (left, large heatmap) and

suprachiasmatic nucleus (right, large heatmap) over four time points (Zt3, Zt9, Zt15, Zt21) with

variance stabilizing transformed read counts. Genes contributing to circadian phenotypes (insert)

do not cluster together in the larger expression matrix. Circadian contributing genes are more likely

to be overexpressed in the SCN compared to the liver (insert).
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it should be noted that while some cycle in the SCN (red) with a parabolic or sinusoidal

waveform, others do not indicate expression patterns unique to circadian genes. Several

are more highly expressed in the liver than in the SCN, again indicating the complexity of

categorizing clock genes.

The classification of each gene as circadian or non-circadian rely on varying features

contributing in a non-linear manner towards the decision. Table 2.2 shows the estimated

relative feature importance for each gene in a LASSO generalized linear model, highlighting

the diversity of cycling-detection and protein-protein interaction metrics which influenced

the algorithm’s classification probability.

phase.Liver.Rain peak.shape.Scn.Rain JTK_adjphase.Liver

Sytl4 0 0.004782532 -0.001507748

Grp -0.001173762 -0.004860947 0.001170079

Calcr 0 0.004137092 -0.002211773

Trh 0 3.860104e-03 -1.922031e-03

Npas2 0 0.003597015 -0.001559419

LS_pvalue.Liver meta2d_rAMP.Liver LS_pvalue.Scn

Sytl4 0.030499157 0.031079645 0.024323524

Grp -0.021136905 -0.030154203 -0.015068329

Calcr 0.021488926 0.032092530 0.026492679

Trh 1.807519e-02 2.211730e-02 2.447960e-02

Npas2 0.017161504 0.038264636 0.019437223

LS_period.Scn LS_adjphase.Scn meta2d_period.Scn

Sytl4 -0.002756362 0.001363876 -0.005244190

Grp 0.004348889 -0.001168412 0.003868879

Calcr -0.003853733 0.001234456 -0.005247058

Trh -2.262622e-03 9.459379e-04 -4.649955e-03

Npas2 0 0.001194213 -0.003534250

origBigDiff meta2d_phase.Scn meta2d_period.Liver JTK_amplitude.Scn

Sytl4 0.303266144 0.001337962 0 0

Grp -0.304644869 0 0 0

Calcr 0.314479838 0.001138545 0 0

Trh 2.905109e-01 0 0 2.861497e-05

Npas2 0.270126899 0.001325216 -0.002642194 0

Table 2.2: LASSO modeled feature importance weights for selected genes highlight different features

important for predicting to have circadian influence in the mouse.

Numerical quantification of each gene in the liver and SCN, including those not ex-

pressed in the SCN and not carried further in my study, is provided in Supplemental Table 1.
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Figure 2.3: Expression between and within tissues identify circadian characteristics. Evidence

of expression was measured (> 1 TPM) in 25 mouse ENCODE tissues and the SCN (in house),

depicted in a density plot 3a. Non-clock genes (blue) exhibit a bi-modal expression, most genes

expressed specifically or ubiquitously. Clock genes annotated in mouse (pink) exhibit a near uniform

distribution. Within liver and SCN tissues, core clock genes are depicted showing cyclic waves across

four time points measured (3b). Among the core clock genes, cycling appears more sinusoidal in

the SCN (blue) and u-shaped in the liver (red). 8852 genes were significantly cyclic in the SCN,

6596 in the liver (FDR p-value < 0.05, RAIN algorithm).
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Each potentially novel gene is given not only a class, but a ranking based on the emitted prob-

abilities from the RUSBoost algorithm. In Supplemental Table 2, quantified measurements

of cycling potential based on three algorithms, non-normalized computed diffusion scores

from predicted protein-protein interaction kernels, as well as measurements from other fea-

tures and external resources are listed for both known circadian actors and all 246 suggested

novel circadian genes.

2.3.3 Predicted novel circadian genes are enriched for shared bio-

logical functions

I accessed both known and unknown circadian genes by performing gene set enrichment

analyses using three sets of ontology/gene annotations. I enriched target genes for their

annotations in the Biological Process domain of the Gene Ontology to survey shared cascades

of molecular functions which contribute to biological effects (Gene Ontology Consortium,

2015). Molecular pathways of those effects were investigated by enriching among pathways

in the Reactome database (Fabregat et al., 2016). Lastly, my target for classification was

genes categorized as contributing to abnormal circadian rhythms in MP. To survey biological

traits observable to human observers, I enriched known and predicted genes in that ontology.

Known circadian genes are highly enriched for not only circadian processes and phe-

notypes (Figure 2.4 red) but also share with genes exhibiting no circadian mouse phenotype

(blue) enrichment for GPCR ligand binding, signaling receptor events, and several behavior

related phenotypes and biological processes. While no known circadian mouse phenotypes

have been associated to the novel 246 genes enriched in the MGI database [please check that

I did not alter the intended meaning], circadian processes associations are recorded in the

GO biological process domain, as well as circadian pathways relations are identified in the

Reactome database among supposedly non-circadian genes. Both set of genes are enriched
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for abnormal sleep patterns, traits which are intricately related to circadian function.

The 246 putative novel circadian genes were segregated into two groups. The circadian-

related ignorome can be classes as a category of totally novel circadian genes, i.e. there may

be genes with biologically relevant circadian roles which have not yet been envisioned by

chronobiologists. Previously studied genes in my case include genes with identified con-

tributions to circardian biology, but who have no such recorded associations in the MGI

gene/phenotype annotation database. GO, MP, and Reactome enrichments as in Figure 2.4

above can be seen in Figure 2.5 below, with previously annotated genes in panels A,B,C

and the circadian ignorome in D,E,F. Interestingly, both gene sets share signaling pathways

and GPCR signaling events which are also shared with well prototypically characterized

circadian genes. Among the ignorome, which include genes Trh, Sytl4, and Calcr surveyed

above, abnormal synaptic transmission and nervous system physiology are highly enriched

indicating strong CNS function (E). Additionally, feeding behavior is highly enriched in the

GO.

2.3.4 ML highlights the role of Trh expressing neurons in the SCN

Thyrotropin releasing hormone (Trh) is a proprotein regulating biosynthesis of TSH, thyroid

stimulating hormone. As such, Trh deficiencies have been associated with hypothyroidism

in humans (Gary et al., 2003a), but there is no evidence that plays a circadian role in

humans or mammals. My Rusboost based approach predicted potential Trh associations

with circadian phenotypes at over 90% probability. Trh is highly expressed in the SCN

(233.39 +/- 7.99 TPM) and is predicted to interact with several known clock proteins,

including known circadian genes Avp, Cck, Oxt, and Grp. In humans, it has been suggested

that Trh is regulated by the circadian entrainment in the SCN (Gary et al., 2003b). When

comparing the expression of all my genes across 27 tissues, I found Trh to be highly enriched
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Predicting genes involved in abnormal circadian rhythm traits in mouse
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Predicting genes involved in abnormal circadian rhythm traits in mouse

in the SCN, with a specificity value τ value of 0.96 (see methods). In a recent transcriptomics

meta-analysis, Trh is highly enriched in the SCN compared to the whole brain (Brown et al.,

2017c), and has been shown to cycle rhythmically (Pembroke et al., 2015) in the SCN. In

a previous study of a Zfhx3 mutant, Trh was shown to interact with several known clock

proteins derived from ChIP-Seq data, including Prokr2, Vip, and Vipr2 (Parsons et al.,

2015).

Feature importance, based on RUSBoost algorithm ranking of several known and

predicted circadian genes, can be visualized in Figure 2.6. Of note, Trh interacts with

several genes and is shown with a high ranking (deep red) in circadian activity while being

highly enriched in the SCN compared to the liver.

Figure 2.6: Trh is predicted to contribute to abnormal circadian rhythms. Integration of clock

features helps identify known and unknown circadian genes. Genes are situated in a predicted

protein-protein interaction graph using an organic layout. Genes with dark red colors have a higher

probability of contributing to an abnormal circadian phenotype. Larger nodes are more highly

expressed in the SCN compared to the liver (log-fold change). All circular nodes depict genes with

no previous mouse abnormal circadian phenotype, while diamonds represent known ground truth

for classification. Border circle colors indicate cycling in SCN (blue), liver (green), or both (black)

tissues.
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2.3.5 ML predicts Synaptotagmin-like protein 4 contributions to

circadian rhythms

Several involved in protein exocytosis have recently been shown to be involved in circadian

rhythms (Brown et al., 2017c; Yi et al., 2002). Sylt4 was highly expressed in the SCN (mean

29.75, +/- 0.61 TPM) and interacts with genes in a SNARE complex previously shown to be

involved in circadian regulation, Vamp2 and Snap25 (Oliver et al., 2012b). Sytl4 is not only

enriched in the SCN when compared expression in the liver, but when compared to whole

brain tissue as well (Brown et al., 2017c). Brown and colleagues experimentally validated

the expressio nof Sytl4 revealed in their meta-analysis. Some experimental studies found the

Circadb database report that Sytl4 cycles in the SCN, but my four time-point study failed

to detect cycling (Pizarro et al., 2013).

2.3.6 Calcitonin receptors may contribute to circadian phenotypes

Calcitonin receptor (Calcr) is a G protein-coupled receptor, activating Gs and Gq alpha

subunits when bound to calcitonin (Goda et al., 2018a). While highly expressed in osteo-

clasts to maintain local calcium homeostasis, it is also expressed in several brain regions.

Recent research noted Calcr expression in the mammalian suprachiasmatic nucleus, and the

expression Drosophila Calcr ortholog (Goda et al., 2018b). In my study, features relevant to

Calcr include high expression in the SCN (36.5 +/- 0.51 TPM), over expression in the SCN

compared to the liver, and predicted protein-protein interactions with several well character-

ized clock proteins including Vip, Vipr2, and Avp. My algorithm predicts Calcr to influence

abnormal circadian phenotypes in mouse with > 90% probability. In addition to my algo-

rithm’s high ranking results, indicating cause for further investigation, calculations of tissue

specificity reveal a τ of 1 linked to the SCN, indicating that across 27 mouse tissues measured
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its activity is restrained to the SCN. Calcr was demonstrated to be cycling in the SCN in

several studies (Pizarro et al., 2013; Pembroke et al., 2015), indicative of possible circadian

function.

2.3.7 Recovery of core clock genes lacking mammalian phenotypes

Although circadian processes are highly evolutionarily conserved, several discrepancies exist

among gene annotations in human and mousse when measuring circadian activity at the

phenotype level. I have predicted several known circadian genes to contribute to mouse

abnormal circadian phenotypes. Among them are Npas2, Nocturnin, Rorb, Rorc, and Grp.

2.3.8 Npas2: A recovered Clock gene paralog

Neuronal PAS domain protein 2 (Npas2) is a transcription factor in humans and mice which

acts as a Clock paralog (DeBruyne, Weaver, and Reppert, 2007), rescuing circadian clock

activity in Clock gene knockout mice. However, at least withing the MGI database, no

known circadian phenotype associations have been reported. My algorithm suggests Npas2

contributes to an abnormal circadian phenotype with a high probability (0.98), being mod-

erately expressed in the SCN (6.57 +/- 0.079 TPM), interacting with the core clock ma-

chinery, and cycling in liver tissue. Npas2 was not cycling in my dataset, nor in 3/4 SCN

datasets in CircaDB. Npas2 interacts with as a Clock paralog with core clock genes in the

transcriptional-translational feedback loop, including Bmal1, Ror proteins, and the Per/Cry

complex.
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2.3.9 Grp knockouts produce a circadian phenotype

Gastrin releasing peptide is well known to stimulate the release of Gastrin in the stomach, and

is also well characterized in circadian pathways. McArthur and colleagues showed that Grp

shifts the phase of SCN nuclei as part of the circadian entrainment pathway (McArthur et al.,

2000). My results depicted Grp cycling in the liver (FDR = 0.0048) and being deferentially

overexpressed in the SCN. Grp was expressed with a mean TPM of 6.01 +/- 0.26 in the

SCN, and had enriched expression in the SCN compared to the whole brain in both Brown

et al’s meta-analysis and Pembroke et al’s time series study, who additionally found evidence

for cycling in the SCN. Grp is known to interact with many clock genes, including known

circadian actors, including Oct, Prokr2, Cck, Nmu, and App. To compare the degree to which

Grp’s role in circadian biology is evident on the phenotypic level, experimental validation was

performed. Circadian phenotyping comparing female C57Bl/6N wildtype with Grp-/- mice

indicate a reduced circadian amplitude, period, and period onset in constant darkness (DD),

and also a decreased period in in a 24 hour light-dark cycle (LD), Figure 2.7. Representative

actograms are shown in Figure 2.8, with five days of wheel running in an LD cycle, and the

remainding in DD suggesting a loss of entrainment between WT and Grp-/- models.

2.4 Discussion

Features for circadian phenotype prediction were generated from two approaches: gene ex-

pression studies and mining potential protein-protein interactions. It is worth noting that

several canonical clock genes do not share all features measured. For instance, the Clock

transcript does not cycle in the SCN, and several clock genes exhibit decreased expression

in the SCN compared to their expression levels in the liver. Using the RUSBoost algorithm,

which is particularly suited to classifying skewed data, allowed us to capture non-linear
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Figure 2.7: Grp -/- mutants exhibit a statistically significantly set of decreased circadian parameters

as defined by periodogram measurements when compared to wild type. This includes amplitude

in constant darkness (DD) as measured by a chi-squared (A) and Lomb-Scargle periodogram (B),

period in as similarly measured (C,D), decreased period in a 24 hour light-dark cycle measured by

Lomb Scargle (E), DD period onset (F), and DD interdaily variability.
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(a) (b)

Figure 2.8: Under an initial 5 day reference period, wild type (A) and Grp knockout (B) were kept

in a 24 hour light-dark (LD) cycle. The following days are under constant darkness (DD). Lights

are switched on at 7am and off at 7pm as indicated in the top x-axis label. Y-axis labels indicate

day. Lights on is zt0, off zt12. Black histograms measure activity. Wild type activity appears more

stable under DD (A) compared with the Grp mutant in identical conditions (B).

relationships between features generated.

2.4.1 Exploiting expression knowledge within and among tissues

The cycling metric was generated by using the RAIN algorithm, and I also employed the

widely used cycling detection algorithm JTKCycle (Hughes, Hogenesch, and Kornacker,

2010b). Both JTKCycle and RAIN use non-parametric slope tests to account for statistically

unexpected forms. Unlike RAIN, asymmetric expression shapes are assumed to be aperiodic,

enabling capture of non-sinusoid rhythms by JTKCycle. My experimental setup was limited

to four time points in 24 hours. To compensate for the lack of two periods worth of coverage,

I imputed time points for a second day. This was done to increase the power of RAIN to

detect rhythms which are evident when observed by eye. Additional cycling experiments

were run with JKCycle and the Lomb-Scargle periodogram method (Scargle, 1982; Lomb,
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1976). Although imputing another 24 hours of expression data carriers much extrapolation,

it was deemed reasonable for detecting 24-hour periodicity. Cycling algorithms perform best

with repeated time points within a series as evidenced by comparing cycle detection in public

databases (Pizarro et al., 2013), and doubling my time points increased my ability to detect

cycling patterns. This does have a major limitation, however. By doubling the time points,

I may have also increased the false positive rate of detecting significantly cyclic patterns in

the data. This would be particularly likely when the algorithms attempt to compute changes

within windows involving both zt21 and the "next day" zt3, where no actual measurement

occured. If a high expression of a gene in zt21 is followed by a low expression in the imputed

zt3, a false positive oscillation will be observed. This increased false positive rate must be

considered when reporting these results. For this reason, I focus on the ability of real or

imputed cyclical measurements to predict circadian activity repeated train/test splits, and

not in reporting any cycling measurements as scientific findings themselves. To produce more

valid results, data with more than four time-points and over 24 hours would need to be used.

An observation easily seen when querying public cycling databases is that measures of cycling

are not always in agreement, as methods of detecting period, phase, and amplitude all vary.

This is evident in my features table, Supplementary Table 2, providing further evidence of the

care with which these data should be interpreted. Tissue ubiquity was used previously as a

feature in previous circadian gene predictions (Anafi et al., 2014b). To accomplish this, I re-

normalized my DESeq2-normalized read counts to Transcripts per Million, giving each gene

a percentage of one experiment’s total expression. This facilitated comparison of transcripts

between labs and tissues with different library sizes. Some discrepancy arose between my

read calling and that of mouse ENCODE due to Ensembl transcript versions used. Therefore,

some genes included in my dataset had missing tissue ubiquity measurements. While I did

impute missing values with median values, this may not reflect reality. This feature did

not heavily influence my classifier results, as tissue specificity was used as a post-algorithm

augmentation of my results rather than as feature input. The calculated τ value of SCN-
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specific genes was a useful measure of tissue specificity across a wide range of organs and

brain regions.

This chapter used, as primary input, data from the liver and the SCN. As mentioned

in the introduction, there is an interplay between the regulation of the central and periph-

eral clocks. A widely studied endogenous zeitgeber is melatonin, which increases expresio

nof Cry2, Blam1, and Per1 proteins and maintains oscillations independent of those proteins

(Chen, Zhang, and Lee, 2020). Besides melatonin, oscillations within the liver may be the

most well-studied. Liver clocks may be entrained non-photically, and feeding cycles are the

dominant zeitgeber for these clocks (Finger, Dibner, and Kramer, 2020). Gastrointestinal

hormones, including VIP, gastrin, ghrelin, and cholecystokinin are produced with a circadian

or rhythmic cycle, and feedback mechanisms to the SCN are currently under heavy investi-

gation especially as this affects adiose homeostasis (Landgraf, Neumann, and Oster, 2017;

Landgraf et al., 2015; Crosby et al., 2019; Guo et al., 2005; Buijs et al., 2001). While not

confined to the liver, including a peripheral circadian tissue in this work allows for circadian

signals which would be lost by looking only at the SCN to be gained. Circadian biology

depends on the coupling of oscillators between cells to coordinate the response of external

zeitgebers, including those independent of light (Finger, Dibner, and Kramer, 2020). The

non-linear interactions produced in this chapter’s model by decision trees may indicate mul-

tiple levels of cross-talk between the gene expression and protein-protein interaction data,

which reflects the interaction of biological clocks within brain organs (SCN, hypothalamus),

within distant tissues (liver), and between organs on a system wide level.

2.4.2 Walking across connected proteins

As expression alone could not segregate data based on circadian potential, it was hypothe-

sized that combining the expression study with protein-protein interaction data would yield
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a better predictor of circadian phenotype influence in mouse. Previous work included mea-

surements of interactions with the CLOCK protein (Zhao et al., 2007). I extended this

analysis by incorporating predicted protein-protein interactions of all genes expressed in the

SCN from my RNA-Seq analysis above. The kernel method chosen to produce a circadian-

related score S, with an importance graphically depicted in Figure 2.4 A. The method is

essentially a short random walk around proteins previously annotated with circadian MP

terms. The score reflected two elements of graph architecture: the degree of nodes (how

many proteins a protein was interacting with) and path distance (how may steps it would

take to walk between any two given proteins). A similar feature was produced using only

deferentially over-expressed genes in the SCN, chosen to reflect the importance of the cen-

tral pacemaker clock in producing circadian phenotypes in mouse. Proteins near multiple

circadian nodes receive a higher score than more isolated nodes, quantifying their relative

likelihood of contributing to circadian phenotypes from guilt by association. When perform-

ing cross-validation, I chose to mask the evidence of circadian nodes, thus predicting how

much my score S relies on previous MP annotations. While the S score was a highly impor-

tant feature in my analysis, my feature importance metrics highlight the role of traditional

metrics of circadian analysis, such as phase and peak amplitude. Using a robust random for-

est approach, I were able to segregate my data with near 100% recall/sensitivity. However,

I aimed to predict potential novel circadian genes, and the performance of the RUSBoost

machine provided a balance between a high-positive rate achieved by a random forest, and

a low recall achieved by a naive-Bayes approach. My annotations from the Mammalian

Phenotype ontology were obtained in 2016, and I inspected records from May 2020 for any

of my novel predictions. Of the genes in my analysis (those highly expressed in the SCN),

seven which I labeled as ’non circadian’ have now been annotated as influencing abnormal

circadian rhythms in mice. Of these seven, Pth2r was predicted by my approach to be a

circadian gene.

49



Predicting genes involved in abnormal circadian rhythm traits in mouse

2.4.3 Prevously studied genes reveal annotation disparities

The protein Neuronal PAS Domain 2, NPAS2, has been shown to have paralogous functions

to those of the CLOCK protein. Based on homologous structure, the STRING database pre-

dicted NPAS2 to interact with partners of CLOCK. Previous Npas2-knockout experiments

have failed to produce circadian phenotypes, though one experiment did observe the "ab-

normal sleep pattern" phenotype on a mixed-strain background (Garcia et al., 2000). While

they observed disrupted sleep bouts, no abnormal circadian phenotypes were reported. A fol-

lowing study reported GO biological process descriptions of circadian rhythm processes, but

reported no abnormal circadian mammalian phenotypes (Dudley et al., 2003). Circadian-

related activity of Npas2 has been observed in the mouse forebrain and in peripheral tissues,

thus a tissue-specific role of Npas2 may explain the lack of abnormal circadian phenotype

observed in mouse.

Grp, a well characterized clock protein, was likewise predicted to contribute to cir-

cadian phenotypes on perturbation. While Grp has been characterized as a contributing to

circadian rhythms for well over a decade (McArthur et al., 2000), there is no evidence of this

in the mouse genome database. Indeed, investigation of Grp reveals reported phenotypes

of "abnormal grooming behavior," and three ’normal’ behavioral/neurological phenotypes.

While it is understandable that several circadian genes may be under reported in phenotype

databases, or may not produce a circadian disruption observable as a measured trait on the

organismal level, using a machine learning approach revealed disparities between literature

and organism databases. This validation of my predictions both provides phenotypic evi-

dence of Grp in the MGD database for other researchers to use, but creates a further link on

the phenotypic level between circadian biology along the gut-brain axis. As many circadian

genes are well characterized but lack mammalian phenotype annotation, finding closes an

annotation gap in the widely used Mouse Genome Database (Bult et al., 2019a).
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2.4.4 Illuminating the circadian ignorome

Several likely candidates among my 246 potential novel genes have external supporting ev-

idence. While tissue specificity, whether measured by a standardized Z -score in a meta-

analysis, differential expression between tissues, or a τ measurement is indicative of tissue-

related function. In the SCN Calcr, Trh, and Sytl4 are all enriched for SCN-specific action

indicating a possible circadian function. A meta-analysis recently experimentally validated

the presence of Sytl4 in the SCN, and functional validation is needed to characterize it’s

potential role. Calcr, the receptor for calcitonin, was previously investigated for circadian

function by researchers guided by enrichment in the SCN among orphaned G-protein cou-

pled receptors (Doi et al., 2016). Doi and colleagues’ analysis involved generation of a mouse

knockout model on the 129P2/OlaHsd × C57BL/6J strain background, and compared its

circadian behavior to a line backcrossed to C57BL/6J for 10 generations. As interstrain

variation even among C57BL/6 mice has been shown to affect phenotype, it is reasonable

to hypothesize that no abnormal circadian effect was observed due to strain differences (Si-

mon et al., 2013). Additionally, it has been demonstrated that while Calcr is not required

for coordinating locomotion-based circadian traits, it has recently been shown to regulate

circadian variation in temperature when mice are active (Goda et al., 2018b). Lastly, the

role of Trh in circadian rhythm processes has known in essential homeostatic processes in

chronobiology (Gary et al., 2003b). While it is expressed in multiple brain regions and body

tissues, Trh and Trhr both localize to the SCN in rat (Manaker et al., 1985). As it is also

located in retinal ganglia, the hormone may play a role in circadian entrainment via light

(Lexow, 1996). In hampsters, injection of TRH into the SCN shifted wheel-running phase

(Gary et al., 1996). This again provides evidence of a circadian function, but does not guar-

antee that perturbation or knockout of a gene, and therefore disruption of endogenous TRH

protein, would produce observable circadian phenotypic traits. Just as exogenous Leptin

did not produce the expected effect in humans that was observed in mice, further experi-
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mentation with Trh will be needed to verify an effect on circadian phenotypes in mammals

(El-Haschimi and Lehnert, 2003).

2.5 Conclusions

Ultimately, this study demonstrated both the utility of using machine learning to predict

abnormal circadian phenotypes, and the potential pitfalls of using observable single traits

(phenotypes) as ground truth in biological exploration. Machine learning has been applied

in various forms to a range of biological problems, including in recent large scale competi-

tions to access prediction of both biological processes (GO) and potential human phenotypic

traits (HPO) in unannotated proteins (Radivojac et al., 2013). Rather than relying simply

on amino or nucleic acid sequences, I have demonstrated the utility of combing multiple

forms of biological information (protein interactions and multiple measures derived from

gene expression) to make biologically relevant predictors. As several of my predicted genes

have known circadian roles, I expect that high throughput phenotyping screens such as the

International Mouse Phenotyping Consortium may rectify the uncovered annotation dis-

parity between GO and MP databases (Brown and Moore, 2012b). Ultimately I expect

several genes ranked high on my list of potential novel genes to provide increased insight

into chronobiology. Features included in my predictive analysis cannot discriminate between

genes which affect core clock machinery, and thus play a role in circadian periodicity, and

genes which are effected downstream of core clock genes and produce peripheral circadian

phenotypes, such as abnormal circadian temperature homeostasis. Regardless, as circadian

biology impacts every tissue in both human and murine anatomy, I expect my predictions to

be useful in prioritizing candidate genes for investigation by experimental chronobiologists.
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2.6 Chapter Summary

In this chapter, I applied several statistical and machine learning methods to characterize

and predict genes which are involved in producing abornomal circadian rhythm phenotypes

in mouse. The results demonstrate that leveraging information from orthologs, predicted and

verified protein-protein interaction networks, and gene expression across tissues in mouse can

improve the ability of classifying circadian genes based on study of the transcriptome. It

highlights the importance of looking outside the SCN for rhythmicity, as both liver and SCN

were useful features. Thanks to experimental colleagues, one well studied circadian gene,

Grp, has been validated to produce abnormal circadian phenotypes in mouse. Others are

being used in grant applications and will be analyzed in additional studies, aiming to further

validate findings observed in this chapter. Experimentalist colleagues will be able to use both

the final gene candidates and the detailed feature annotation, from tissue specific expression

to cycling analysis, to guide broad gene characterization experiments. Finally, the central

role that protein interaction networks played in this chapter should not be understated.

Future applications of this integrative approach will leverage tissue-specific predicted protein

interaction networks along with the extensive amount of tissue-specific circadian cycling gene

studies available, addressing links between peripheral clocks other than liver and the SCN

(Pizarro et al., 2013).

As discussed in this chapter, circadian biology impacts several areas of health from

metabolism to neurology. This chapter has used tissue-specific transcriptomic data from

mouse to model the likelihood of genetic disruptions influencing circadian biology as revealed

by some phenotypic manifestation. A commonly measured circadian phenotype in humans

is chronotype, a measure of circadian period which can be dichotomized into "eveningness"

and "morningness". In the following chapter, I investigate the relationship between a genetic

exposure to chronotype and mental health and social outcomes in humans, using genome-
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wide association studies and a method of modeling causation, Mendelian Randomization.
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Chapter Three

Evaluating the causal relationship

between circadian chronotype and

psychosocial behavioral traits

3.1 Background and Chapter Overview

As discussed in Chapter 1, this thesis addresses questions in neurobehavioral genetics using

a combination of approaches, ranging from predictive modeling with transcriptomics to sta-

tistical inference using genomics. In this chapter, I use Mendelian Randomization (MR) to

the causative relationship between chronotype (a measure of circadian influence) and several

neurobehavioral traits. First, I give a brief overview of Genome Wide Association Studies

(GWAS), which form the basis of MR analyses. Then I describe the UK Biobank cohort used

in this chapter. I then describe the statistical assumptions of MR and the methods used,

before presenting results. For a review of MR itself, see (Davey Smith and Ebrahim, 2003b).

This chapter contains three analyses relating chronotype to traits. First, I access the influ-

ence of chronotype on mental health, hypothesizing that ’morning’ and ’evening’ chronotyped
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individuals will experience different mental health conditions partly due to their chronotype

alone. Secondly, in a related study, I investigated measures of social support in the UKBB.

Circadian entrainment can be influenced by social cues and patterns, thus chronobiology may

influence social support related phenotypes. Lastly, I study the influence of chronotype on

keratometry (ophthalmetry) index measurements. These measurements attempt to capture

the degree of corneal power and the aim of this work was to employ keratometry measures

to assess whether circadian rhythm traits can influence eye morphology, given the fact that

light that reaches the eye forms the primary zeitgeber in humans.

3.1.1 Genome Wide Association Studies

Prior to the completion of the human genome project (Lander et al., 2001), associations be-

tween genetic variants and phenotypic outcomes were obtained through twin or family based

linkage disequilibrium studies (Merikangas et al., 1998). While successful in finding causes of

high powered monogenic disorders within pedigrees, there was little power to detect associa-

tions between genetic variants and complex diseases. Early literature suggested that GWAS

would bring increased power to detect small effects common in complex disorders (Risch

and Merikangas, 1996). Recently, an omnigenic model of complex disease manifestation has

been proposed, in which small variations in SNPs together act to explain the heritability of

a complex trait, a notion which would be lost when investigating Mendelian disease (Boyle,

Li, and Pritchard, 2017; Wray et al., 2018a). To investigate this omnigenic model, GWAS

are retrospective observational studies which test associations between several hundred thou-

sand or often over a million SNPs, chosen in an unbiased manner across the genome, to a

given trait (Bush and Moore, 2012). Within the context of a disease, studies often have

a case/control design wherein the alleic frequency, or dose, is measured in patients with a

condition and matched control subjects. In a naive approach assuming a biallelic SNP and
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two populations, a χ2 test can be conducted to obtain a test statistic, and then a p-value

of the association based on the extremeness of the statistic under a χ distribution. From

this "2x2" table analysis, odds ratios can be constructed to measure the effect of a SNP on

a patient, or case, population characterised by a particular disease. If the prevalence of the

disease is known, then a useful relative risk statistic can be obtained (Clarke et al., 2011).

If a trait of interest is continuous and not a disease state itself, then linear regression is

used. Likewise, instead of a χ2 test, logistic regression can be used to test for associations

between alleleic dose and conditions. In practice covariates are used in the GWAS which is

modeled. Typical covariates include any factors which may denote difference between pop-

ulations not related to the disease itself, whether mediating or moderating variables. These

typically include the loadings from a principle component analysis (PCA) which are used to

account for the genetic heterogeneity between large population groups, often accounting for

variations in ethnicity. Other common covariates include the technology or centre used when

performing sequencing or assays, age, body mass index, and sex. GWAS can be facilitated

by the availability of genotype and phenotype data from large consortia. In recent years, the

use of genomic biobanks (Bycroft et al., 2018; Bourgeois et al., 2017; Gaziano et al., 2016),

which combine deep phenotyping with genomic assays and long-term followup in a prospec-

tive study design, have facilitated both population level and personalized epidemiological

studies.

3.1.2 Mendelian Randomization

Epidemiology is the population-level study of the origin (etiology), spread (distribution), and

prevention of disease. Traditionally, most levels of inference in epidemiological studies are

associative - they can correlate hazardous exposures such as disease or lifestyle factors with

health outcomes. Correlation analyses are improved when potential moderating variables
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are accounted for. In a hypothetical example, lung cancer rates may be correlated with the

use of matches for light cigarettes, but it would be a mistake to say that matches themselves

are a primary driver of the disease and not smoking. To model the directionality of an effect,

causal models based on instrumental variables are used. Originally derived from economics,

instrumental variables (IVs) are variables which strongly predict an exposure but have no

association with the outcome studied that in turn is not mediated by the exposure (Kang

et al., 2014). Since the advent of widely available GWAS, Mendelian randomization has

used genetic variants as IVs. The fundamental assumption is that, because of independent

assortment (Mendel’s second law), genetic variants should be randomly distributed within a

population. If we have deep phenotyping or outcome data, and those data co-occur or co-

vary with the presence or absence of an allelic IV, then this IV can be used as a population

level randomizer similar to what is seen in a randomized controlled trial (Davey Smith and

Ebrahim, 2003b). This mimics the experimental design of a randomized controlled trial, as

seen in 3.1a. Here, a study population is randomized into treatment and control groups,

which are then given an intervention or treatment (treatment arm) or a placebo or standard

of care (control arm). The patients in each group are followed up to investigate the efficacy

of an intervention. It is assumed that, over a population matched for age, sex, and other

potential confounding variables that other mediators or moderators will be evenly distributed

between groups and thus not impact the trial design. In an MR experiment, the design is

similar 3.1b. A sample of a population is split, by the random assortment of alleles at birth,

into two cohorts with the minor and major allele (assuming a biallelic SNP). Observed effects

are treated as lifetime exposures to the outcome of interest, assuming the resiliency of the

genetic code to mutations over a normal sample of a population.

By using genetic variants as the basis for causative modeling, MR can allow for

stronger causal inference than genetic correlation experiments and model counterfactuals

during experimental design. On a level of inferential trust between an observational study
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(a) (b)

Figure 3.1: Study designs of Randomised Controlled Trials and Mendelian randomization. Random-

ized controlled trails (a) begin with a sample population, randomly split into treatment and control

study arms. In each arm, an intervention or therapeutic agent (treatment arm) or a placebo (control

arm) is given. Then patients in each arm are tested for changes induced by the drug or placebo. In

a Mendelian randomization experiment (b), a population-based sample is included, and the random

assortment of alleles in instrumental variables is used to stratify individuals into different genotype

groups for each SNP. Observed effects of exposure (SNP) on the outcome measured are considered

lifetime exposure effects since the genetic code is resilient.

in model organisms, an observational study in humans, controlled experimental studies in

model organisms, and randomized controlled trials in humans MR can be thought of as

stronger than observational evidence and suggestive of experimental effect. In an MR "trial",

nature has randomized the population into cases and controls based on the presence or

absence of a specific allele, and a treatment affect can be thought of as a proxy for lifetime

exposure, since the randomization into treatment and control groups occurred at conception.

Early applications of MR modelled exposure to disease and well-known mechanism, such as

the influence of C-reactive protein and inflammation, and have been expanded to cover

both treatable and non-treatable exposures, modeling variants from either a mechanistic

perspective or those found through GWAS (Burgess and Thompson, 2017).
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Mendelian Triangulation and Assumptions

MR employs IV analysis for causative inference. Any causative modeling study can be

graphically displayed using directed acyclic graphs (DAGs) (Pearl, 1995). DAGs are directed,

meaning information between two nodes of a graph must flow in one direction from node A

to B, but not both. They are acyclic, meaning that on a path form A to B to C, there cannot

be a path from C to A. In modeling ontologies, this assures that the transitive properties of

relations are maintained and that the logic underlying deductive reasoning will not break. In

causal inference and experimental design, this helps ensure that an outcome will not influence

an exposure, or that a confounding variable not provide an additional path between an IV

and an outcome. There are three fundamental assumptions of causative inference in the MR

context which must be satisfied for an IV analysis to be valid (Burgess et al., 2020):

1. The IV (allele) must not associate directly with an exposure

2. The IV must not associate with any potential confiding variables, which then associate

with the outcome

3. The IV must not associate directly with the outcome, except as mediated by the

exposure.

This is graphically depicted in Figure 3.2. When drawing DAGs for causal inference,

a solid line indicates a path between two variables. Dashed lines in this figure indicate paths

which, if followed, violate the assumptions above. The genetic variant is the allele used as

an IV to segregate the population. The IV is selected by its association with the exposure,

either through biochemical knowledge (such as the IL-6 locus for exposure to inflammation)

or through a data driven approach (GWAS).

Instrumental variable analysis relies on strong assumptions, and occasionally unver-
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Figure 3.2: Mendelian randomization experimental design. We are primarily interested in the effect

of an exposure on an outcome. Observational studies, which report the associations between an

outcome and exposure, are subject to confounding and are by nature correlative only. By using a

correctly designed genetic instrumental variable that associates with the exposure but not with out-

come, confounding can be avoided via ’Mendelian triangulation.’ Panel A depicts the conceptional

model. Each solid black line represents directional association, and each dashed curved line rep-

resents directional associations which will violate the model if present. The following assumptions

must be satisfied:

i. The genotype must associate directly with the exposure, panel B. ii. The IV must not associate

with any potential confounding variables which then directly associate with the outcome, panel C.

iii. The IV must not associate directly with the outcome except where mediated by the exposure,

panel D.

Originally published in (Sekula et al., 2016)
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ifiable conditions (Labrecque and Swanson, 2018). Subject knowledge is the most reliable

method for concluding assumptions are valid, especially when choosing exposures and out-

comes correctly. A naieve, phenome-wide search for causation between traits is likely to

include among many tests non-plausible experimental designs, leading to an artificial in-

crease in multiple testing burden and design flaws. Adjusting for covariates, including prin-

cipal component analysis to take into account population differences and combining different

methods of MR analysis will assist in adding robustness to MR analysis.

To calculate the causal effect for one SNP of interest between two independent sam-

ples, the β estimate from linear or logistic regression of the exposure on the allele and

outcome on the allele of interest are obtained from GWAS. Then the Wald ratio is obtained,

giving a measure of the effect of the exposure on the outcome:

θ̂j =
βY j
βXj

(3.1)

where βY j is the effect of the IV on the outcome, and βXj is the effect of the IV on

the exposure is obtained for SNP j, and θ̂ is the effect size. This new effect size forms the

basis of all analyses presented in this chapter. In each analysis, the summary-level statistics

from GWAS are obtained, namely β and the standard error, se, of the β. Rather than

being considered individual level data, these are summary statistics reflect population-level

estimates in each non-overlapping population used. During the GWAS, as mentioned earlier,

these βs are both adjusted for the same covariates to minimize study bias (Davies, Holmes,

and Smith, 2018). These are considered two-sample MR studies, and one-sample MR studies

can also be performed. This involves two-stage least-squares regression. First, the exposure

is regressed on the IVs and covariates. Predicted values of the exposure from the first

regression are obtained, and the outcome is regressed on those predicted values using the

same covariates. For two non-overlapping samples, two sample MR using a meta-analytic
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method (inverse variance weighted, IVW) is asymptotically equivalent to the 2SLS method

(Burgess, Butterworth, and Thompson, 2013). The IVW method is the most powerful

estimate of causal effect when all genetic variants are valid IVs (Burgess, Dudbridge, and

Thompson, 2016).

3.1.3 Previous Mendelian Randomization Studies of Chronotype

With the advent of large biobank cohorts to provide GWAS, there have been several recent

MR studies looking at the causal influence between chronotype, sleep and several physiologi-

cal and behavioral traits. Lind and colleagues found significant genetic correlations between

oversleeping, insomnia, and undersleeping exposures with an outcome of post traumatic

stress disorder (Lind et al., 2020), but when testing for causality via did not find evidence

for causal effects of sleep phenotypes on post traumatic stress. Adams and Neuhausen

were interested in the interplay between chronotype and free fatty acid circulation, and also

between free fatty acids and type two diabetes (Adams and Neuhausen, 2019). So as to eval-

uate this, they conducted a two Mendelian randomization studies using two sample data,

and found that morning chronotype is associated with lower total fatty acid levels (IVW β

-0.21, p = 0.02) and that elevated fatty acid levels are associated with a decrease in diabetes,

granting a protective effect (IVW β -0.23, p = 0.01). They then extended their analysis to

include subtypes of free fatty acids and their conclusions held, indicating that a morning

chronotype is associated with lower mono-unsaturated fatty acid intake. Richmond and col-

leagues sought to model sleep traits and risk of breast cancer using Mendelian randomization

methods, using chronotype, sleep duration, and insomnia GWAS for instrumental variable

selection (Richmond et al., 2019). They modeled the UK Biobank in a one-sample fashion,

using a two-stage least squares regression approach instead of splitting the cohort into two

non-overlapping samples, and showed a morning chronotype to be protective against breast
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cancer (Odds Ratio 0.85). Two sample modeling with an independent cohort supported these

findings, showing morning chronotype (IVW OR 0.88) was protective against breast cancer,

while increased sleep duration has a detrimental effect (IVW OR 1.19). Gibson investigated

bi-directional causal effects between smoking and sleep duration and chronotype (Gibson et

al., 2019). They found no clear evidence that smoking initiation influenced sleep behaviors

directly, nor evidence for causal effects between chronotype on smoking behavior. However,

they did find evidence that insomnia could lead to an increase in smoking behavior (IVW β

1.21, p = 0.02) in an underpowered analysis. Treur modelled caffeine consumption and sleep

traits, including chronotype, sleep duration, and history of insomnia (Treur et al., 2018).

While the association between caffeine consumption and disturbed sleep is well known, and

their analysis did show strong genetic correlations between those traits, an extensive two

sample MR using IVW and MR-Egger meta-analyses failed to produce significant causal

associations. On a wider scale, Lane and colleagues used MR analysis as a follow-up to

their first GWAS of chronotype using the UKBB (Lane et al., 2016). They found significant

associations between evening phenotype and years of education increasing and self reported

schizophrenia diagnosis, and associations between a morning chronotype and a decreased

body mass index (BMI).

3.2 Methods

A general workflow for the several MR studies in this chapter are depicted in Figure 3.3.

Data can be acquired from previously performed GWAS studies with data deposited in the

GWAS Catalog, MR Base, or another database. Additionally, researchers may conduct their

own GWAS using data they have available. I have done this in order to ensure that I include

appropriate covariates during the GWAS itself. Next, to ensure sample independence, the

UKBB population is split into two groups randomly, each with half the population. Then
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GWAS are conducted and held for further analysis. A discovery set of SNPs are obtained from

an outside data source. Next, effect sizes and their variance from each GWAS are extracted

for the discovery SNP loci. Data are then combined, and the effect sizes meta-analyzed

to produce an MR study. Lastly, post-hoc analyses are performed to test for pleiotropy,

directionality of effect between exposure and outcome, and the influence of specific SNPs in

the model.

3.2.1 Data Acquisition

To obtain an unbiased set of SNPs which associate to chronotype, I downloaded all significant

(<= 9.000e-6) variants from a 2016 GWAS conducted by 23andMe (Hu et al., 2016) via

GWAS Catalog (MacArthur et al., 2017), accession GCST00342, a total of 77 SNPs on 20

Jan, 2020.

Experimental Data

The UK Biobank (UKBB) (Bycroft et al., 2018) was initially proposed by the Wellcome

Trust and the Medical Research Council, with the goal of identifying risk factors for human

disease (Collins, 2012). The resource focuses on middle age adults, largely of European de-

scent. A plethora of biological samples and exams were taken from each subject, including

genetic material, magnetic resonance imaging (MRI) of several body regions, health and

lifestyle questionnaires, and medical history data. The UKBB aims to recruit 500,000 in-

dividuals, a large sample size reflecting the likelihood of any one individual developing a

given disorder or disease (Collins, 2012). Participants signed electronic concent declara-

tions, and the UKBB received ethics approval (Bycroft et al., 2018). For a full descrip-

tion of the resource and every measure available for use upon approved application, see

https://biobank.ctsu.ox.ac.uk/crystal/, with further details available as reported previously
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Obtain Discovery SNPs

Split UKBB into Exposure and Outcome Samples

Curate Phenotype Coding from UKBB

Perform GWAS against Chronotype on Exposure and each phenotype on Outcome

Clump Discovery SNPs LD

Extract Discovery SNPs from Exposure and Outcome

Harmonize Samples

Perform IVW Mendelian Randomization Meta-Analysis

Check for Pleiotropy and Directionality of Effect

Figure 3.3: Mendelian Randomization workflow for testing the causal influence of Evening Chrono-

type on psychosocial and vision traits from the UK Biobank (UKBB). Discovery SNPs associating

with chronotype are obtained from an outside population. The UKBB is split into exposure, which

has a GWAS performed against Chronotype, and Outcome, which has a GWAS performed against

another trait. Discovery SNPs or proxies are extracted from each GWAS, using clumping to ensure

SNP independence. Data are combined, and an IVW meta-analysis of effect sizes from GWAS is

performed, followed by tests for pleiotropy, directionality, and sensitivity. SNPs = single nucleotide

polymorphisms, LD = linkage disequilibrium, GWAS = genome wide association study, IVW =

inverse-variance weighted.
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(Bycroft et al., 2018; Collins, 2012). The research in this chapter was performed under

project number 31224.

UK resident participants registered with the National Health Service (NHS) were

recruited between 40 and 69 years of age between 2006 and 2010. At baseline, partici-

pants donated blood and urine, and completed self assessment questionnaires relating to

lifestyle, medical and family history (Allen et al., 2014b; Collins, 2007). As of July 2020,

488,264 participants have been recruited and genotyped. Participants completed self-guided

questionnaires on centre computers with the aid of in-built help systems when prompted.

Genetic data were extracted from blood as previously described (Bycroft et al., 2018; Collins,

2007). Deoxyribonucleic acid (DNA) was extracted at baseline, and initial genetic data from

Affymetrix arrays were released in May 2015 and July 2017 (Bycroft et al., 2018). The first

release included 150,000 participants, with 50,000 genotype using the Applied Biosystems

UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) Axiom Array, and all other

participants genotyped via the Applied Biosystems UK biobank Axiom Array (Bycroft et

al., 2018). Both arrays share 95% of markers. Genetic SNP arrays can use imputation to in-

crease coverage, which was performed as described (Bycroft et al., 2018). Multiallelic SNPs

or those with a minor allele frequency (MAF) of < 0.01 (1%) were removed prior to im-

putation, The UK10K and Haplotype Reference Consortium (HRC) reference pannels were

the basis for imputation, performed by the MRC-IEU unit (Howie, Marchini, and Stephens,

2011; Huang et al., 2015). Individuals self identifying as ’White British’ and having similar

ancestry by clustering with others of the same ancestry in PCA were included, while those

with a high degree of kinship to others in the biobank were excluded. The MRC-IEU also

preformed quality control during imputation, excluding individuals with a sex mismatch be-

tween self reported and genetics, or any individuals with sex-chromosome aneuploidy. For a

full description of imputation, see (Bycroft et al., 2018), and for a full description of in-house

MRC-IEU quality control see (Ruth Mitchell, 2019).
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Phenotypic data were obtained for the following fields for use in three studies in

this chapter (Table 3.1). Three studies were conducted. First, a study of the influence

of chronotype on self-reported mental health related traits. Then, a study of the effect of

chronotype on social support and lifestyle factors. Lastly, a study encompassing the influence

of chronotype on measures of eye health, taken by the best keratometry index measurements

in the UKBB. When a categorical response has multiple values, they are separated into

binary 1/0 outcomes for individual analysis.
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Trait Outcome Sample Size Type UKBB Showcase Study

1 Ever highly irritable/argumentative for 2 days 74750.000 Binary 4653 Mental Health

2 Leisure/social activities: Religious group 230684.000 Binary 6160 Social Support

3 Leisure/social activities: None of the above 230684.000 Binary 6160 Social Support

4 Ever manic/hyper for 2 days 74572.000 Binary 4642 Mental Health

5 Guilty feelings 225352.000 Binary 2030 Mental Health

6 Seen doctor (GP) for nerves, anxiety, tension or depression 229780.000 Binary 2090 Mental Health

7 Illness, injury, bereavement, stress in last 2 years: Death of a close relative 229871.000 Binary 6145 Mental Health

8 Frequency of tenseness / restlessness in last 2 weeks 222597.000 Continuous 2070 Mental Health

9 Illness, injury, bereavement, stress in last 2 years: None of the above 229871.000 Binary 6145 Mental Health

10 Fed-up feelings 226536.000 Binary 1960 Mental Health

11 3mm index of best keratometry results (right) 48004.000 Continuous 5237 Keratometry

12 Worry too long after embarrassment 221959.000 Binary 2000 Mental Health

13 Ever depressed for a whole week 74950.000 Binary 4598 Mental Health

14 Illness, injury, bereavement, stress in last 2 years: Serious illness, injury or assault to yourself 229871.000 Binary 6145 Mental Health

15 6mm index of best keratometry results (left) 41705.000 Continuous 5306 Keratometry

16 Neuroticism score 187162.000 Continuous 20127 Mental Health

17 Manic/hyper symptoms: I was more creative or had more ideas than usual 15658.000 Binary 6156 Mental Health

18 Illness, injury, bereavement, stress in last 2 years: Death of a spouse or partner 229871.000 Binary 6145 Mental Health

19 Leisure/social activities: Sports club or gym 230684.000 Binary 6160 Social Support

20 Frequency of tiredness / lethargy in last 2 weeks 224510.000 Continuous 2080 Mental Health

21 6mm index of best keratometry results (right) 42152.000 Continuous 5251 Keratometry

22 Number of depression episodes 29145.000 Continuous 4620 Mental Health

23 Suffer from ’nerves’ 222904.000 Binary 2010 Mental Health

24 Sensitivity / hurt feelings 224710.000 Binary 1950 Mental Health

25 Manic/hyper symptoms: All of the above 15658.000 Binary 6156 Mental Health

26 Worrier / anxious feelings 225382.000 Binary 1980 Mental Health

27 Leisure/social activities: Other group activity 230684.000 Binary 6160 Social Support

28 Mood swings 225810.000 Binary 1920 Mental Health

29 Number of unenthusiastic/disinterested episodes 19186.000 Continuous 5386 Mental Health

30 Tense / ’highly strung’ 223980.000 Binary 1990 Mental Health

31 Seen a psychiatrist for nerves, anxiety, tension or depression 230351.000 Binary 2100 Mental Health

32 Frequency of unenthusiasm / disinterest in last 2 weeks 223702.000 Continuous 2060 Mental Health

33 Illness, injury, bereavement, stress in last 2 years: Financial difficulties 229871.000 Binary 6145 Mental Health

34 Ever unenthusiastic/disinterested for a whole week 73271.000 Binary 4631 Mental Health

35 Manic/hyper symptoms: I was more active than usual 15658.000 Binary 6156 Mental Health

36 Irritability 221084.000 Binary 1940 Mental Health

37 Miserableness 227491.000 Binary 1930 Mental Health

38 3mm index of best keratometry results (left) 47999.000 Continuous 5292 Keratometry
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39 Frequency of friend/family visits 229915.000 Continuous 1031 Social Support

40 Longest period of depression 32350.000 Continuous 4609 Mental Health

41 Longest period of unenthusiasm / disinterest 20591.000 Continuous 5375 Mental Health

42 Frequency of depressed mood in last 2 weeks 221420.000 Continuous 2050 Mental Health

43 Able to confide 224429.000 Continuous 2110 Social Support

44 Illness, injury, bereavement, stress in last 2 years: Marital separation/divorce 229871.000 Binary 6145 Mental Health

45 Risk taking 223140.000 Binary 2040 Mental Health

46 Manic/hyper symptoms: None of the above 15658.000 Binary 6156 Mental Health

47 Loneliness, isolation 227682.000 Binary 2020 Mental Health

48 Illness, injury, bereavement, stress in last 2 years: Serious illness, injury or assault of a close relative 229871.000 Binary 6145 Mental Health

49 Nervous feelings 225350.000 Binary 1970 Mental Health

50 Length of longest manic/irritable episode 12624.000 Binary 5663 Mental Health

51 Manic/hyper symptoms: I was more talkative than usual 15658.000 Binary 6156 Mental Health

52 Leisure/social activities: Adult education class 230684.000 Binary 6160 Social Support

53 Manic/hyper symptoms: I needed less sleep than usual 15658.000 Binary 6156 Mental Health

54 Leisure/social activities: Pub or social club 230684.000 Binary 6160 Social Support

Table 3.1: UK Biobank (UKBB) statistics for each Mendelian Randomization study performed in this chapter.
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3.2.2 Performing GWAS

After harmonizing outcomes, PLINKv1.9 was used to perform GWAS against each trait

studied, including chronotype (Chang et al., 2015a). During each GWAS, the following

procedure was followed.

Quality control was carried out using PLINK R v3.5.0 (R Core Team, 2013). Variants

which had a particularly high missing call rate (>0.1) were removed. Individuals with a

missing rate of > 0.05 were also excluded. A 50kb window with a step size of 5 variants at

a time and a 0.5 r2 threshold was used to remove variants in high LD.

Variants with a MAF <0.01 were also excluded. For each analysis, covariates included

gender and the first ten principle components. PLINK was used to calculate the principal

components using default settings. Prior to any testing, final QC steps were taken per trait,

removing variants based on a case control missing rate likelihood of < 0.001 when a trait

was binary, missing rate 0.05 or a Hardy Weinberg Equilibrium p < 1E-8.

Linear models were run on all continuous traits, and logistic regression models were

used for all binary traits. To make the comparison of effect sizes between binary and con-

tinuous outcomes efficient, the β values from the generalized linear model during logistic

regression were retained using PLINK’s "–beta" flag. β, standard error (se), and p-values

from each GWAS were kept for the data harmonization process.

3.2.3 Data Harmonization

When mining each GWAS for the discovery SNPs from 23andMe, a harmonization process

was performed using the R TwoSampleMR package (Hemani et al., 2018). First, SNPs from

the discovery set were located in the exposure GWAS summary statistics. The strandedness
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of each GWAS was checked to make sure that at each allele, the minor and major alleles

were equal. If these were reversed, effect sizes were modified to correct for this. Pallendromic

SNPs, which contain alleles represented by the same base pairs on both strands of DNA,

were discarded. If SNPs were not present, proxies were found using PLINK with an R2 of at

least 0.8, and strand was checked again (Chang et al., 2015b). Next, SNPs in the exposure

GWAS set were clumped by LD to ensure statistical independence. In a window of 10000

base pairs, an R2 cutoff of < 0.001 was set to obtain haplotype blocks, and the European

reference panel of the 100,000 Genomes Project (Caulfield et al., 2017). This left 18 SNPs

for use as valid, independent IVs. The effect sizes and standard errors from each GWAS

were extracted for these 18 SNPs used in this analysis.

3.2.4 Causal Inference Modelling

In practice, meta-analyses often use an inverse-variance weighted average to account for

the sample size (reflected in variance) of studies included in the meta-analysis. The IVW

methods uses the Wald ratios of each SNPs as the "study" the meta-analysis, with a pooled

estimate seen in the forest plots below (see results) driving home the meta-analytic nature

of multi-SNP MR. Rather than calculate Wald ratios individually, the outcome GWAS βs

or Odds Ratios are regressed on the exposure. The slope of the regression line indicates the

strength of the effect, as an increase in the unit of outcome per unit of the exposure(Burgess

and Thompson, 2017). In a IVW metaanalysis, IVW estimate is calculated by:

β̂Y j = θIV W β̂Xj + εIj; εIj ∼ N(0, σ2se(β̂Y j)
2) (3.2)

where θ̂ is the inverse variance weighted average, se is the standard error, and other

terms are as above, and I is an error term.

Similarly to other meta-analysis frameworks, by weighting effect sizes by their in-
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verse variance, stronger SNPs make a larger contribution to the overall effect size obtained.

Compared to other methods used in this analysis, the IVW method has the strongest power

simply by not discarding any SNP instruments (Mode) or shrinking their variance (MR Eg-

ger). It strongly assumes all instruments are valid, requiring the slope of the meta-regression

line to be constrained to zero. Any potential pleiotropy or extreme heterogeneity among

SNPs would draw the gradient of the regression line away from the true slope. Heterogene-

ity can occur when individual SNPs do not converge on an estimate, and can be estimate by

Cochran’s Q (Higgins and Green, 2011). In this context, heterogeneity may be a sign of hor-

izontal pleiotropy, wherein SNPs effect the outcome by their influence on other confounding

traits (Burgess, Small, and Thompson, 2017). In any IVW-based meta-analysis, either fixed

or random effects maybe modeled (Higgins and Green, 2011). A fixed effect model applied

to MR assumes all instruments are valid, whereas modeling random effects allows for bal-

anced horizontal pleiotropy to be present if it is independent of SNPs effects on the exposure.

This is termed the Instrument Strength Independent of Direct Effect (InSIDE) assumption,

which is not currently testable. The IVW method also relies on the No Measurement Error

(NOME) assumption, assuming SNP-exposure associations are accurate. This can be ac-

cessed by calculating F-statistics to test the degree of association between discovery SNPs

and the exposure of interest.

A figure comparing the IVW method with the pleiotropy- and assumption-mitigating

factors below is shown in Figure 3.4. Each scatter plot depicts an outcome regressed on

an exposure with multiple SNPs. The slope is the estimate of the causal effect. If there is

no horizontal pleiotorpy, or the pleiotropy is balanced between outcome and effect, inverse-

variance weighted regression is used, where the contribution of each SNP is weighted by

its inverse variance, so variable SNPs contribute less to the overall study effect size. If

directional pleiotropy is suspected, then constraining the intercept to be at zero will allow

bias into the model (gray arrow). However if the intercept is not constrained via Egger
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regression, an unbiased estimate can be obtained if the instrument-exposure and pleiotropy

are uncorrelated (InSIDE assumption). If most instruments are valid (black), and some are

invalid (red), a median-based approach will provide an unbiased estimate (black), whereas

IVW linear regression would provide a biased estimate (grey). If SNPs are horizontally

pleiotropic, they will return biased estimates. Using a mode-based estimator, it is possible

to clustering SNPs based on their estimates (grey lines). If the majority of the SNPs are in

a cluster which satisfies IV assumptions, then then mode-based estimator is unbiased, if not

under powered.

3.2.5 Testing for Evidence of Pleiotropy

When an MR study, with multiple valid instruments, is considered as a meta-analysis, meta-

analytic tools used to detect bias in studies can be used to detect bias in SNPs. Egger

proposed a method for detecting small study bias in meta-analyses, and this has been adopted

into an MR context (Bowden et al., 2017; Bowden, Davey Smith, and Burgess, 2015). The

Wald ratios of each SNP are used in meta-regression by taking the inverse IVW weights used

in IVW analysis, without modeling the intercept. It provides a causal estimate similar to

IVW but adjusted for horizontal pleiotropy which would otherwise invalidate IVW (Bowden,

Davey Smith, and Burgess, 2015). As the intercept is unconstrained, it estimates the average

pleiotropic effect across the SNPs, and the slope provides an estimate of the pleiotropic effect.

If the intercept, while not constrained, is not statistically different than zero, then this suggest

lack of horizontal pleiotropy and the instruments are assumed valid. To accomplish this, the

MR-Egger method relaxes assumption 3 in Figure 3.2. MR-Egger relies on not violating the

InSIDE assumption (see above).

MR-Egger regression is an extension of IVW regression. Instead of assuming no
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Figure 3.4: Mendelian Randomization methods have different assumptions. Each scatter plot depicts

an outcome regressed on an exposure with multiple SNPs. The slope is the estimate of the causal

effect. A) If there is no horizontal pleiotorpy, or the pleiotropy is balanced between outcome and

effect, inverse-variance weighted regression is used, where the contribution of each SNP is weighted

by its inverse variance, so variable SNPs contribute less to the overall study effect size. B) If

directional pleiotropy is suspected, then constraining the intercept to be at zero will allow bias

into the model (gray arrow). However if the intercept is not constrained via Egger regression,

an unbiased estimate can be obtained if the instrument-exposure and pleiotropy are uncorrelated

(InSIDE assumption). C) If most instruments are valid (black), and some are invalid (red), a

median-based approach will provide an unbiased estimate (black), whereas IVW linear regression

would provide a biased estimate (grey). D) If SNPs are horizontally pleiotropic, they will return

biased estimates. Using a mode-based estimator, it is possible to clustering SNPs based on their

estimates (grey lines). If the majority of the SNPs are in a cluster which satisfies IV assumptions,

then then mode-based estimator is unbiased, if not under powered. Image credit: (Hemani, Bowden,

and Davey Smith, 2018).
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intercept term, an intercept is estimated:

β̂Y j = θ0E + θ1Eβ̂Xj + εEj; εEj ∼ N(0, σ2se(β̂Y j)
2) (3.3)

where θ0E is the intercept and θ1E the MR Egger estimate. If the intercept is equal to zero,

then the IVW method and MR-Egger will be equivalent (Burgess and Thompson, 2017).

During the IVW process in MR-Egger, the effect sizes of each SNP must have the same sign,

and this decreases the variation between them (Bowden, Davey Smith, and Burgess, 2015).

This renders the MR-Egger method the lowest powered method employed in this chapter,

though its robustness to horizontal pleiotropy and ability to test for this in the intercept

make it a valuable contribution to methods.

3.2.6 Assuming Weak Instrumental Variables: Median and Mode

The weighted median estimate again relies on Wald ratios. First, the Wald ratio is calculated

for each SNP. Then, as in the IVW method, a measure of central tendancy is used to produce

an overall effect size - but instead of the mean, the median is used. In an unweighted analysis

it would be assumed that over half of the instruments are valid, while in an weighted median

analysis the assumption is that the at least 50% of the weight of the instruments are valid

themselves (Bowden et al., 2016). This approach is robust to directional pleiotropy when

compared to a simple IVW meta-analysis. It is also more robust to outliers than either IVW

or Mr Egger.

Comparative studies have demonstrated that the power of the weighted median method

is similar to the IVW. Moreover, it is not constrained by the InSIDE assumption, contrary

to MR Egger, and for it to be valid only half of instruments need to be unbiased (Hemani,

Bowden, and Davey Smith, 2018). See Figure 3.4 C for a graphical explanation.

The mode-based estimator (MBE) clusters Wald ratios before calculating random
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effects in an IVW meta-analysis (Hartwig, Davey Smith, and Bowden, 2017). The simple

MBE uses unweighted analysis, while the weighted MBE uses inverse variance weighting.

First, a smooth empirical density function is calculated for each Wald ratio and are then

clustered. The ZEMPA assumption (Zero Modal Pleiotropy Assumption) states that the

biggest cluster with the same ratio estimates will be valid instruments. Thus, the MBE can

provide a valid causal estimate when the largest number of estimates come from valid IVs,

even if a majority (those in smaller clusters) are invalid. While not all snps have to be valid

IVs, fewer valid IVs is equivalent to fewer samples actually used, and results in lost power

compared to IVW methods. I calculated both weighted (by IVW) and unweighted (Wald

ratio) methods. See Figure 3.4 D for a graphical explanation.

3.2.7 Sensitivity, Bias, and Directionality

To check if possible pleiotrophic or invalid SNPs are dominating models run, I performed a

leave-one-out analysis for each experiment. In a leave-one-out senario, the inverse variance

weighted average is run using all SNPs except one. This is repeated for every SNP, resulting

in 10 IVW average effect sizes in the case of 10 SNPs in the analysis. One outlier effect size

would indicate that the SNP left out skews the analysis and may be removed for being an

outlier (Hemani, Tilling, and Davey Smith, 2017).

I composed funnel plots to access pleiotopic effects. Originally designed to identify

potential biases arising from small studies in meta-analysis, funnel plots are a graphical

method of accessing bias, by plotting the effect size against sample size, noting that smaller

effects should belong to smaller effect sizes and that there should be a degree of balance in

the signs of the effect sizes (Egger et al., 1997). Egger proposed a regression method to test

the asymmetry of this relationship, which is the basis of the MR Egger method (Bowden,

Davey Smith, and Burgess, 2015). Cochran’s Q can be used in combination with funnel plots
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to access the degree of pleiotropy. Q is a measure of heterogeneity among calculates the sum

of squared differences between SNPs and the pooled effect, and creates a χ2 test statistic for

comparison. The Q statistic is well powered as the number of SNPs increases, indicating that

evidence of overdispersion itself does not indicate pleiotropy (Lawlor et al., 2008; Burgess,

Small, and Thompson, 2017). Even for a low p-value, indicating high heterogeneity, I have

investigated funnel plots, as severe asymmetry would suggest directional pleiotropy and

violate MR-IVW assumptions. If symmetry is observed, both fixed- and random-effects

IVW would produce similar results (Bowden et al., 2017), and if asymmetry is observed

then estimates would differ, and Median or Mode methods should be considered. In this

chapter, the IVW analysis is considred the gold standard; if it is significant, other methods

are used to confirm results in the presence of pleiotropy or heterogeneity. If all methods

of analysis for an experiment concur, the potential causal effect of chronotype is considered

more plausible.

I used the Steiger test to access the directional of all causative analyses post-hoc

(Hemani, Tilling, and Davey Smith, 2017). This method tests whether the selected IVs are

more strongly associated with the exposure than the outcome. The Steiger test first assesses

which variables (exposure or outcome) are influenced by the SNPs used, by testing if the

SNPs explain more variance in the exposure than in the outcome with a modified Z statistic.

If the p-value of the IVW estimate and the Steiger estimate are both significant, the sign of

the Z statistic is used to assign the correct causal direction between exposure and outcome.

3.3 Results

Results in this chapter are presented as follows. An example GWAS is reported, IVW

meta-analyses of all traits tested are shown in graphical form, and then individual traits are
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reported. Reports from all traits are included in the Appendix. MR analyses were performed

for the influence of chronotype on each trait listed in Table 3.1.

3.3.1 Phenome-wide overview of Circadian effects of psychosocial

and ophthalmic traits

A linear GWAS of morning - to - evening preference in self-reported chronotype is depicted

in Figure 3.5. This GWAS reveals several independent loci which associate highly with

chronotype. In green, 18 clumped discovery SNPs from the 23andMe GWAS are depicted.

Note that not all of them achieve genome-wide significance levels (p <= 10−8). The y-axis

shows −log10 p-values, while the x-axis shows the location of each SNP by chromosome.

Figure 3.5: Manhattan plot of morning/evening chronotype GWAS using the UK Biobank pop-

ulation. Along the x-axis, SNPs are represented by chromosome location, and the y-axis depicts

−log10 p-values. SNPs from the discovery GWAS are highlighted in green.

Table 3.2 lists the SNPs used in this study by location, including effect size and p-
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values of Chronotype (exposure) and Leisure Activity: Religious Group (outcome). This

exposure produced the most extreme IVW p-value (4.20e − 5). All p-values in exposure

(Chronotype) GWAS are highly significant except for one, at the level of 3.5e − 6. No p-

values from the outcome GWAS reach genome-wide significance, with a range of (0.0003,0.9).

β values are likewise smaller from the outcome than the exposure.

SNP Pvalue Chronotype Pvalue Religous Group Beta Chronotype Beta Religous Group

1 rs1064213 6.20012e-14 0.0850002 -0.0152572 -0.00125918

2 rs11121022 1.59993e-17 0.6 -0.0174991 0.00038933

3 rs112613078 7.19946e-16 0.25 -0.0208278 0.00106677

4 rs11545787 3.10027e-15 0.14 0.0187265 -0.00125028

5 rs11587758 1.20005e-19 0.00109999 -0.0187958 0.00244028

6 rs12133238 1e-14 0.0729995 0.0174009 -0.00144885

7 rs12617426 3.50002e-06 0.760001 0.00974035 -0.000234953

8 rs12927162 3.19963e-20 0.01 0.0209482 -0.00210022

9 rs4239386 1.69981e-13 0.26 0.0159216 -0.000872088

10 rs4729303 1.50003e-11 0.75 -0.0175607 0.000294364

11 rs4882354 4.30031e-28 0.012 -0.0224835 0.00185288

12 rs509476 8.10028e-49 0.0219999 0.0878165 -0.00491105

13 rs57435966 8.49963e-30 0.000350002 0.0410747 -0.00465797

14 rs62436127 6.79986e-13 0.9 -0.019918 -0.000119614

15 rs7547493 3.69999e-26 0.38 -0.0281137 0.000845037

16 rs76223855 2.70023e-16 0.22 -0.0798575 -0.00429174

17 rs9475185 1.59993e-19 0.34 -0.021635 0.000818634

18 rs9565309 1e-20 0.81 0.0526882 -0.000495558

Table 3.2: Discovery SNPs in chronotype and religous group GWAS

The IVW analysis suggested that eight self-reported mental health traits were indica-

tive of possible causation (p < 0.05).

These include associations between a chronotype and manic symptoms, depression,

reactions to feelings (sensitivity and worry), and irritability, Figure 3.6. Wide confidence

intervals indicate a large confidence interval around the IVW β. Those confidence intervals

crossing the null line (zero) show a null effect. The results of each analysis, including non-

significant results, are reported in the online Appendix.

The IVW analysis revealed that two self-reported social traits were indicative of pos-
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sible causation (p < 0.05).

These were related to the attendance at group religious meetings weekly, and the

frequency of friend or family visits (Figure 3.6). Wide confidence intervals indicate a large

confidence interval around the IVW β. Those confidence intervals crossing the null line

(zero) show a null effect. The results of each analysis, including non-significant results, are

reported in the online Appendix.

Leisure/social activities: Adult education class

Leisure/social activities: Sports club or gym

Leisure/social activities: Other group activity

Leisure/social activities: Pub or social club

Leisure/social activities: Religious group

Able to confide

Leisure/social activities: None of the above

Frequency of friend/family visits

0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2

Effect of Chronotype on Social Measures 

Figure 3.7: Forest plots of change in standard deviation of each Social Support trait response as

chronotype differs.

Under IVW analysis, one keratometry result was indicative of possible causation.

A 3mm index of the best keratometry result, related to right eye measurements, was

significant, and all others, while not significant, were trending in the same direction, Figure

3.6. Wide confidence intervals indicate a large confidence interval around the IVW β. Those

confidence intervals crossing the null line (zero) show a null effect. The results of each

analysis, including non-significant results, are reported in the online Appendix.

The IVW results thus far presented provide a phenome-wide level overview of the
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6mm index of best keratometry results (right)

3mm index of best keratometry results (left)

6mm index of best keratometry results (left)

3mm index of best keratometry results (right)

0.00 0.25 0.50 0.75 1.00 −0.1 0.0 0.1

Effect of Chronotype on Keratometry Measurements 

Figure 3.8: Forest plots of change in standard deviation of each kratometry trait response as chrono-

type differs.

effect of chronotype on the phenotypes measured in their respective UKBB domains. As each

MR analysis is a self-contained experiment, significant results are reported in the following

sections.

3.3.2 Morningness and eveningness influence mental health

Regressing behavioral traits on GWAS data revealed chronotype to have a likely causal

influence on several tested traits. I observed an increase of 0.090 (IVW pval 0.036, Egger in-

tercept pval 0.970, Q pval 0.213) standard deviation (SD) units of self-reported manic/hyper

symptoms [all of the above] for evening compared to morning chronotype (Figure 3.9, Table

3.3). A decrease in the need for sleep while in a high or irritable state of 0.085 SD units

(IVW pval 0.037, Egger intercept pval 0.925, Q pval 0.848) for evening compared to morning

(Figure 3.10, Table 3.4).

Three self-reported measures of depression produced robust causative models. I ob-
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Figure 3.9: An evening chronotype suggests a small increase in manic symptoms. a) scatter plot

of MR results. b) Forest plot of SNP contributions to IVW analysis. c) Leave one out sensitivity

analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.10: An evening chronotype suggests a decrease in reported need for less sleep, therefore

increased duration of sleep. a) scatter plot of MR results. b) Forest plot of SNP contributions to

IVW analysis. c) Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing

directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted 0.090 0.043 0.036 16.700 0.213

2 MR Egger 0.098 0.214 0.654 16.698 0.161 -0.000 0.970

3 Simple mode 0.060 0.091 0.522

4 Weighted median 0.098 0.053 0.064

5 Weighted mode 0.098 0.077 0.225

Table 3.3: Causal effect of evening chronotype on Manic/hyper symptoms: All of the above.

Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted -0.085 0.041 0.037 8.737 0.848

2 MR Egger -0.099 0.150 0.522 8.727 0.793 0.000 0.925

3 Simple mode -0.084 0.085 0.336

4 Weighted median -0.074 0.052 0.155

5 Weighted mode -0.034 0.080 0.679

Table 3.4: Causal effect of evening chronotype on Manic/hyper symptoms: I needed less sleep than

usual.

served an increase of 0.023 (IVW pval 0.024, Egger intercept pval 0.907, Q pval 0.112) (SD)

incidence of seeing a psychiatrist for nerves, anxiety, tension or repression with an evening

chronotype (Figure 3.11, Table 3.5). Likewise, an increase in the likelihood of having had

a depressive episode lasting at least a week of 0.076 SD units (IVW pval 0.0.006, Egger

intercept pval 0.860, Q pval 0.110) for evening compared to morning, Figure 3.12, Table 3.6.

Lastly, there is a marked decrease in odds of reporting "feelings being easily hurt"

when a ’evening person’. This association was not significant under the IVW model, but

was with more robust analyses: a weighted median and mode (-0.053 and -0.049 SD units,

respectively).

Egger regression suggests lack of horizontal pleiotropy (intercept p = 0.704) but strong

heterogeneity of SNPs (Q statistic 47, p < 0.000) - Figure 3.13, Table 3.7. A similar decrease
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Figure 3.11: An evening chronotype suggests an increase in self reported anxiety and depression.

a) scatter plot of MR results. b) Forest plot of SNP contributions to IVW analysis. c) Leave one

out sensitivity analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.12: An evening chronotype suggests an increase in self reported depression episodes lasting

longer than one week. a) scatter plot of MR results. b) Forest plot of SNP contributions to

IVW analysis. c) Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing

directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted 0.023 0.010 0.024 24.269 0.112

2 MR Egger 0.026 0.024 0.302 24.248 0.084 -0.000 0.907

3 Simple mode 0.030 0.021 0.169

4 Weighted median 0.023 0.012 0.067

5 Weighted mode 0.027 0.018 0.150

Table 3.5: Causal effect of evening chronotype on Seen a psychiatrist for nerves, anxiety, tension or

depression.

Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted 0.076 0.028 0.006 24.365 0.110

2 MR Egger 0.066 0.065 0.328 24.316 0.083 0.000 0.860

3 Simple mode 0.082 0.067 0.240

4 Weighted median 0.072 0.034 0.033

5 Weighted mode 0.079 0.057 0.181

Table 3.6: Causal effect of evening chronotype on Ever depressed for a whole week.

was seen in SD unit self reporting of worrying too long after an embarrassing episode, though

not significant with IVW (p = 0.104), reached an effect size of β -0.052 with a Weighted

Median regression (p = 0.06, Egger intercept p = 0.268, Q pval = 0.113) - Figure 3.14, Table

3.8. Finally, a study on irritability returned mixed results. IVW analysis suggests that there

is a 0.047 SD unit increase in irritability per SD increase of self-reported evening chronotype

(p = 0.031). Non-significant values were returned for robust analyses, indicating lack of

power, which coincided with high heterogeneity among SNPs (Q 54, Q pval = < 0.001),

while MR Egger intercept p-value suggests unlikely pleiotropy (p = 0.08), Figure and Table

3.15 and 3.9.

Other analyses did not yield suggestive results using the IVW method, see the online

appendix, https://github.com/jaw-bioinf/PhdThesis.

89



Evaluating causal relationships between chronotype and psychosocial behavioral traits

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.005

0.000

0.005

0.010

0.025 0.050 0.075
SNP effect on Morning/evening person (chronotype)

S
N

P
 e

ffe
ct

 o
n 

S
en

si
tiv

ity
 / 

hu
rt

 fe
el

in
gs

MR Test

Inverse variance weighted

MR Egger

Simple mode

Weighted median

Weighted mode

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

All − IVW

All − Egger

rs11121022

rs4729303

rs11587758

rs9475185

rs12133238

rs9565309

rs4882354

rs112613078

rs509476

rs57435966

rs12927162

rs62436127

rs1064213

rs7547493

rs76223855

rs4239386

rs11545787

rs12617426

−0.2 0.0 0.2 0.4
MR effect size for

'Morning/evening person (chronotype)' on 'Sensitivity / hurt feelings'

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●All

rs11545787

rs4239386

rs7547493

rs76223855

rs12617426

rs1064213

rs12927162

rs57435966

rs62436127

rs112613078

rs4882354

rs12133238

rs9565309

rs509476

rs4729303

rs9475185

rs11587758

rs11121022

−0.075 −0.050 −0.025 0.000
MR leave−one−out sensitivity analysis for

'Morning/evening person (chronotype)' on 'Sensitivity / hurt feelings'

(c)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

15

20

25

30

−0.2 −0.1 0.0 0.1 0.2
βIV

1
S

E
IV

MR Method

Inverse variance weighted

MR Egger

(d)

Figure 3.13: An evening chronotype suggests an decrease in self reported sensitivity to hurt feelings.

a) scatter plot of MR results. b) Forest plot of SNP contributions to IVW analysis. c) Leave one

out sensitivity analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.14: An evening chronotype suggests an decrease in self reported worrying after embarrassing

episodes. a) scatter plot of MR results. b) Forest plot of SNP contributions to IVW analysis. c)

Leave one out sensitivity analysis using IVWmethod. d) Funnel plot accessing directional pleiotropy.
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Figure 3.15: An evening chronotype suggests an increase in irritability. a) scatter plot of MR results.

b) Forest plot of SNP contributions to IVW analysis. c) Leave one out sensitivity analysis using

IVW method. d) Funnel plot accessing directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted -0.039 0.022 0.075 47.398 0.000

2 MR Egger -0.057 0.051 0.285 46.959 0.000 0.000 0.704

3 Simple mode -0.047 0.035 0.195

4 Weighted median -0.053 0.020 0.010

5 Weighted mode -0.049 0.027 0.086

Table 3.7: Causal effect of evening chronotype on Sensitivity / hurt feelings.

Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted -0.026 0.016 0.104 24.243 0.113

2 MR Egger -0.064 0.036 0.098 22.389 0.131 0.001 0.267

3 Simple mode -0.049 0.029 0.117

4 Weighted median -0.052 0.019 0.006

5 Weighted mode -0.053 0.025 0.047

Table 3.8: Causal effect of evening chronotype on Worry too long after embarrassment.

3.3.3 CR influences measures of social support

Four categories of social support measures were studied in relation to self-reported chrono-

type. Of these, religious behavior and the frequency of visiting family over the last year

produced strong associations. Modeling attending group religious activities at least once a

week produced a decrease of -0.050 SD units per likelihood β of being an evening person

(p < 0.001, Q pval = 0.041, Egger intercept pval = .959). Self-reported visits to friends or

family was coded as an ordinal variable, and increases in this axis indicates less frequent

socialization with friends or family (or their absence outside the home). Evening chrono-

type was indicative of fewer visits (IVW β 0.102, p = 0.009), though suggestions of strong

heterogeneity (Q pval 0.037) and possible pleiotropy (Egger intercept .004, p = 0.069) were

present, and robust methods yielded no signal. See Figure 3.17, Table 3.11.

Other analyses did not yield suggestive results using the IVW method, see the online

93



Evaluating causal relationships between chronotype and psychosocial behavioral traits

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−0.004

0.000

0.004

0.008

0.025 0.050 0.075
SNP effect on Morning/evening person (chronotype)

S
N

P
 e

ffe
ct

 o
n 

Le
is

ur
e/

so
ci

al
 a

ct
iv

iti
es

: R
el

ig
io

us
 g

ro
up

MR Test

Inverse variance weighted

MR Egger

Simple mode

Weighted median

Weighted mode

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

All − IVW

All − Egger

rs11587758

rs57435966

rs12927162

rs12133238

rs4882354

rs11545787

rs509476

rs4239386

rs112613078

rs9475185

rs7547493

rs12617426

rs11121022

rs4729303

rs9565309

rs62436127

rs76223855

rs1064213

−0.2 −0.1 0.0 0.1
MR effect size for

'Morning/evening person (chronotype)' on 'Leisure/social activities: Religious group'

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●All

rs1064213

rs76223855

rs9565309

rs62436127

rs7547493

rs11121022

rs4729303

rs9475185

rs12617426

rs112613078

rs4239386

rs11545787

rs509476

rs12133238

rs4882354

rs12927162

rs11587758

rs57435966

−0.08 −0.06 −0.04 −0.02 0.00
MR leave−one−out sensitivity analysis for

'Morning/evening person (chronotype)' on 'Leisure/social activities: Religious group'

(c)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

30

40

−0.10 −0.05 0.00 0.05
βIV

1
S

E
IV

MR Method

Inverse variance weighted

MR Egger

(d)

Figure 3.16: An evening chronotype suggests an decrease in group religious activity. a) scatter plot

of MR results. b) Forest plot of SNP contributions to IVW analysis. c) Leave one out sensitivity

analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Figure 3.17: An evening chronotype suggests an increase in the frequency of family visits. a) scatter

plot of MR results. b) Forest plot of SNP contributions to IVW analysis. c) Leave one out sensitivity

analysis using IVW method. d) Funnel plot accessing directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted 0.047 0.022 0.031 54.070 0.000

2 MR Egger -0.031 0.046 0.515 44.402 0.000 0.002 0.080

3 Simple mode 0.030 0.025 0.236

4 Weighted median 0.027 0.018 0.124

5 Weighted mode 0.033 0.022 0.144

Table 3.9: Causal effect of evening chronotype on Irritability.

Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted -0.050 0.012 0.000 28.338 0.041

2 MR Egger -0.051 0.029 0.093 28.334 0.029 0.000 0.959

3 Simple mode -0.039 0.025 0.141

4 Weighted median -0.055 0.014 0.000

5 Weighted mode -0.050 0.021 0.028

Table 3.10: Causal effect of evening chronotype on Leisure/social activities: Religious group.

appendix, https://github.com/jaw-bioinf/PhdThesis.

3.3.4 Chronotype affects eye morphology

Finally, I modelled the causitive influence of evening chronotype on keratometry measure-

ments to study potential interplay between eye physiology and circadian biology. I found a

decrease in SD units of 3mm keratometry index in the right eye only per unit of likelihood of

having an evening phenotype (IVW β -0.096, p = 0.011, Q pval 0.607, Egger intercept pval

0.273. This trend was echoed non-significantly by results from the weighted median method

(β -0.093, p = 0.078).

Other analyses did not yield suggestive results using the IVW method, see the online

appendix, https://github.com/jaw-bioinf/PhdThesis.
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Figure 3.18: An evening chronotype suggests an decease in corneal strength measured by keratom-

etry index in the right eye. a) scatter plot of MR results. b) Forest plot of SNP contributions to

IVW analysis. c) Leave one out sensitivity analysis using IVW method. d) Funnel plot accessing

directional pleiotropy.
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Method b se pval Q Q_pval intercept intercept_pval

1 Inverse variance weighted 0.102 0.039 0.009 28.702 0.037

2 MR Egger -0.041 0.082 0.619 23.205 0.108 0.004 0.069

3 Simple mode 0.071 0.065 0.290

4 Weighted median 0.063 0.042 0.141

5 Weighted mode 0.057 0.060 0.354

Table 3.11: Causal effect of evening chronotype on Frequency of friend/family visits.

3.4 Discussion

This chapter presents a phenome-wide investigation of the role in circadian rhythms, as

reported by chronotype, on the areas of mental health and social support. The results

suggest that being a "night owl," or having an evening chronotype, may influence mental

health outcomes. The combination of self-reported traits in "Manic Symptoms: all of the

above" include feeling more active than usual, getting less sleep, being more talkative, and

having more creative ideas than usual. When modeling these traits during hyper or manic

episodes alone, sleeping less than usual was also influenced by an evening chronotype. While

it has been argued that chronotype and sleep duration are generally independent in a healthy

population (Roenneberg et al., 2007), the 43,531 individuals who answered these questions in

the UKBB were directed to because they have either been highly irritable and argumentative

or manic for a period of two days or more in the past. These may be seen as signs of

a diagnosed or undiagnosed bipolar disorder, characterized by periods of hyper and hypo

activity. Melo and colleagues recently reported that an evening chronotype is more prevalent

in adults with biopolar disorder (Melo et al., 2017), and this chapter adds weight to the

hypothesis that circadian biology may contribute to this disorder.

Both measures of depression increased with an evening chronotype, though a self-

reported episode of depression had a much larger slope, Figure 3.12 A. Sensitivity analyses
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suggest little dominance of any one SNP in the model (B), and a funnel plot (D) suggest any

pleiotropy may be balanced across conditions. Though not all SNPs have significant Wald

ratios (C) individually, collectively when meta-analysed the effect is significant. While these

findings echo previous reporting (Jones et al., 2019), there is a distinction between general

measures of anxiety and depression which are associated with an evening chronotype, and

the observation than an ’evening person’ is more likely to experience a significantly sustained

episode of depression. Measures of self-appraisal were tested for in the UKBB. These included

having easily hurt feelings and reflecting on embarrassing moments after the fact for a self-

described too long period. Both of these studies suggested, via measures other than IVW,

that an evening chronotype leads to a decrease in self-reporting these feelings. Self-reported

feelings of irritability increased when an evening chronotype was reported, and while most

measures were in agreement over the direction of effect, the MR Egger method changed

sign, Figure 3.15. Investigating returned plots, it is clear that four SNPs are strong IVs

and influence the model to be positive, seen graphically in panel B, though one single SNP

does not dominate the model, as seen in the leave-one-out sensitivity study in panel C. The

funnel plot (D) suggests a fairly balanced pleiotropy. Overall, while irritability may be caused

in part by circadian biology, these findings suggest that the effect is small and additional

investigations are warranted before truly judging that chronotype causes the trait.

Of the social support measures studied, there was an increase in attendance at group

religious activities at least once a week associated with being a morning person. This effect

was quite pronounced, yielding the smallest p-value of any study in this chapter, 4.20e-5.

This very significant effect is tempered by the high degree of heterogeneity among the SNPs

studied, though not one SNP truly changed the outcome of the model during sensitivity

tests (see Figure 3.16 C). There was little evidence of pleiotropy, as the Egger intercept

was not significantly different than zero. Nevertheless, there are strong biases to this study

design, and it may be that the questions I would ask about the role of chronobiology in
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religious participation cannot be answered by the UK Biobank data. For instance, what

about non-group religious activity - are morning people still likely to participate? There is

an extreme lack of literature on the influence of circadian biology and religion. One recent

study investigates the effect of religious participation on diurnal salivary cortisol patterns

(Merritt and McCallum, 2013), finding an increase in religious coping mechanisms correlate

with increased stress among caregivers for dementia patients. Other literature focus on the

interplay between metabolism, circadian biology, and fasting during Ramadan (Chaouachi

et al., 2009). This highlights the largest potential source of bias with this study - the

mostly white, middle age UK population in this study, who participate in group religious

activity, are not as likely to be Muslim as the are to be Christian. Viewing these results

as tantalizing but suspect, I must ask if these associations between morning chronotype

and religion would hold if the study population practice group activities Friday afternoons

instead of Sunday mornings. The decrease in frequency of self-reported visits with friends

and family was associated with an evening chronotype, though a look at the scatter plot

of results (Figure 3.17 A) do not indicate a strong agreement among methods (again, the

Egger method is reversed), nor do they suggest a large effect, as the slopes are nearly flat,

and robust methods loose any significant signal. This study highlights several pitfalls when

performing a (restricted) phenome-wide study using MR methods. Each study includes

multiple analyses, and simply looking at p-values does not tell a whole story. The multiple

testing burden on these analyses is immense, but for my purposes p-values are more of a guide

than a definitive answer. The low power of MR studies, especially when multiple instruments

are used, suggests that p-values should assist in interpretation of studies but a Bonferroni

correction may be to strict (McShane et al., 2019; Burgess et al., 2015). Additionally, the

coding in the UK Biobank for this trait is conter-intuitive, as a higher ’number’ on the

ordinal scale does not indicate increased frequency of family/friend visits. Thus, a scientist

must pay attention to the coding of traits when using such a public resource.
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Finally, I studied the causative role of chronotype on keratometry measurements. Ker-

atometry, or opthalmometry, was accessed in the UK Biobank on over 100,000 participants

(Chua et al., 2019). To date, there has been one genome-wide association study performed

using any measurements from this field, investigating loci involved in corneal and refractive

astigmatism, common to myopia in general (Shah, Guggenheim, and UK Biobank Eye and

Vision Consortium, 2018). As the keratometry data are currently used by specialists to ad-

dress specific questions after deriving new measurements relating to astigmatism from these

data, I did not set out to address the role of chronotype in astigmatism itself. The fact that

an association was found in the limited number of parameters from this field I tested is in

itself interesting and worthy of follow-up by; as light is the primary zeitgeber responsible

for circadian entrainment, eye physiology plays a crucial role in chronobiology. This study

highlights that there may be bi-directional causation which should be investigated, possibly

in mouse and other model organisms.

Each analysis in this study was tested via several methods, from those with the

most power (IVW) to others with fewer assumptions about the strength of instrumental

variables (Weighted Mode). A strength of this study was that each meta-analytic model of

the causal influence of chronotype on a trait was tested with each method and investigated

for possible evidence of pleiotropy with the MR Egger method. Vertical pleiotropy, in which

SNPs influence multiple traits because of their influence on circadian rhythm as reported

by chronotype, is an assumption of Mendelian randomization. Horizontal pleiotropy, where

SNPs independently influence multiple traits, leads to the assumptions of causality breaking

down (Davey Smith et al., 2020). In this study, although the Egger method can provide an

estimate of causal effect robust to such pleiotropy, the presence of pleiotropy was accessed

by the intercept. If significantly different than zero (p < 0.05), then evidence suggests

a lack of unbalanced pleiotropy which would bias the model. In a two-sample MR study,

weak instrument bias attenuates results towards the null as SNP-exposure and SNP-outcome
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estimates are derived in non-overlapping samples (Burgess and Thompson, 2017). If I had

performed a one-sample analysis with two-stage least-squares regression, this would not

have been the case, and bias would have artificially inflated the effects seen away from the

null hypothesis. Not only do multiple methods add strength to this chapter, but including

multiple SNPs is a strength as well, since complex traits such as depression and participation

in leisure activities are influenced by many weak effects in many SNPs, part of the omnigenic-

and polygenic hypotheses (Boyle, Li, and Pritchard, 2017; Wray et al., 2018a). Though this

model is under debate, the multiple loci identified by the chronotype GWAS, Figure 3.5,

indicate that no single locus is responsible for chronotype. To reduce the heterogeneity of

this study, I pruned SNPs in strong LD with each other. While this only left 18 instruments

for this study, they were proxies for the influence of SNPs in each locus acting in tandem.

Including all SNPs may have lead to stronger conclusions and larger effect sizes, but would

have increased the variance of SNPs and therefore the heterogeneity’s of the models. Lastly,

the direction of effect for each study was correct, as verified by the Steiger tests; all of which

were significant in the correct ’direction.’

3.5 Conclusions

I found some evidence that chronotype has causal adverse effects on mental health (increased

depression, variety of manic symptoms, sensitivity to hurt feelings, irritability), and is associ-

ated with fewer group religious activities but more frequent association with family members.

Analyses were largely robust to pleiotropy, with several methods applied to each analysis

agreeing in direction and magnitude. Nevertheless, results should be treated with caution,

and follow-up studies with large GWAS, such as the Million Veterans Program, will allow for

confirmation of these findings before any experimental follow-up may be warranted (Gaziano

et al., 2016). This study highlights how genetic epidemiology and social questionnaires can
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be combined to answer questions about the causal relationship between circadian rhythm, a

potentially modifiable exposure, and outcomes relevant to personal and social well-being.

3.6 Chapter Summary

In this chapter, I applied MR methods to investigate the role of circadian chronotype in a

series of mental health, social support, and eye physiology traits with the UK Biobank. The

results of these three studies suggest that evening chronotype affects several self-reported

mental health traits relating to depression, manic symptoms, and irritability. Additionally,

significant findings included a link between chronotype and two social measures - group

religious participation and interactions with friends and family outside the home. Lastly, a

relationship between chronobiology and the refractive index of the cornea indicate a two-way

relationship worth of further experimental study. For each of the mental and social studies,

verification outside the UK Biobank will provide additional evidence, as self-assessments of

mental and social health may be culturally biased. As chronotype is a potentially modifiable

trait, these studies suggest possible routes of therapy for depression and and other mental

health outcomes. Overall, this study demonstrates how MR and causal analysis can be

applied to test the effect of circadian biology on neurobehavioral traits. Several of these

associations can be investigated in the mouse to test a mechanism of vertical pleiotropy

between circadian biology and other behavioral outcomes.

Here I investigated the relationship between a genetic exposure to evening chrono-

type and several complex neurobehavioral traits, from episodes of depression to self-reported

visits to friends and family. Many of the outcome traits studied were interrelated, including

multiple measures of depression or surrounding manic episodes. To study the genetics of

traits with multiple presentations, it is useful to break these traits down into observable con-
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stituant parts. In the next chapter I create a biomedical ontology to model the relationships

between pschological behavioral traits in populations who are aging, have schizophrenia, or

are on the autism spectrum. The behavioral traits modeled here move beyond chrontype to

other manifestations of aberrant behavior.
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Chapter Four

Semantic Modeling of Neurobehavioral

Phenotypes

This chapter is based in part on the following publications:

Martínez-Santiago, F., García-Viedma, M. R., Williams, J. A., Slater, L. T. &

Gkoutos, G. V. Aging Neuro-Behavior Ontology. Applied Ontology 15, 219–239 (2020).

4.1 Background and Chapter Overview

From findings in Chapter 3, it is clear that circadian biology has the potential to affect many

measurable psychosocial traits, from religious participation to depression. In particular,

links between circadian biology and developmental disorders, such as autism (Hu et al.,

2009; Carmassi et al., 2019; Ballester et al., 2019; Tordjman et al., 2015; Manning, O’Roak,

and Babur, 2019; Manning, O’Roak, and Babur, 2019), and psychiatric disorders, such as

schizophrenia (Oliver et al., 2012a; Mansour et al., 2009; Kishi et al., 2011; Jones and Benca,

2015; Karatsoreos, 2014b), are abundant. Far from being homogeneous single traits, which
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are easily studied, each disorder is on a spectrum, namely the autism spectrum (ASD) and

schizophrenia spectrum (SSD). To study genetic relationships between autism and circadian

biology, for instance, it may be helpful to segregate patients by the various phenotypic traits

they manifest - identifying them where they are on the spectrum as individuals. As a first

step towards this goal, this chapter proposes to model traits related to ASD and SSD using

biomedical ontologies. Then, I will demonstrate the utility of ontological modeling using

a cohort of autism patients, while continuing to model diverse sets of behavioral processes

with ontologies relating to SSD and cognitive decline in elder patients.

4.1.1 Biomedical Ontologies

In 2009, Levitis (Levitis, Lidicker, and Freund, 2009) and colleagues conducted surveys and

proposed that behavior is the ’internally coordinated responses (actions or in-actions) of

whole living organisms (individuals or groups) to internal and/or external stimuli, excluding

responses more easily understood as developmental stimuli.’ Such a working definition points

out how broad the domain of behavior is. In psychiatric genetics, observed behaviors may be

classified differently depending on particular settings. During a typical clinical encounter, the

behavior observed may be a presenting sign as well as a phenotypic presentation that could

account for a larger part of a particular syndrome or form particular disease’s symptoms.

Endophenotypes may be considered a subclass of phenotypes in general, as they have links

to a genetic locus and are not dependent on a patient’s transitory state (Gottesman and

Gould, 2003). This chapter uses biomedical ontologies to model neurobehavioral traits and

endophenotypes relating to three domains of interest, namely autism, schizophrenia, and

cognitive decline. To enable this translation, biological processes and observable phenotypes

are represented as logical constructs known as ontologies. While an exact definition of

ontology in information science is beyond the scope of this work, a working definition is
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that an ontology is a descriptive logic knowledge base (Baader, Horrocks, and Sattler, 2008).

Description logic is a subset of first-order logic that is decidable, that is implicit knowledge

is able to be correctly inferred from axioms, in this use case via subsumption. Ontologies are

composed of an ABox (axioms stating facts about the world), a TBox (axioms pertaining

to the terminology of the domain of interest). The TBox may sate that every mouse is a

mammal, and an ABox may state that an individual is a mouse. In the ontologies used

in this chapter and following, the TBox, which pertains to classes of an ontology and not

instances, is used. Ontologies are often thought of as knowledge graphs, and can be depicted

as directed, acyclic graphs (DAGs), with entities (phenotypes, for example) connected via

relations (inter alia part-of, is-a). Ontologies typically exhibit the following four features

(Hoehndorf, Schofield, and Gkoutos, 2015):

• Classes and relations

• Domain vocabulary

• Metadata and descriptions

• Axioms and formal definitions

A class is an entity which refers to a set of entities, for example ’mouse’ which includes all mice

of all strains extant in the world. Classes are intentionally defined, as opposed to an arbitrary

set. Relations facilitate describing two different entities. An example relation, ’mitochondrial

membrane’ in the Gene Ontology (GO)(Ashburner et al., 2000) is part of some ’mitochondrial

envelope’ and is a ’organelle membrane’. Both part of and is a are relations. In addition,

standard identifiers facilitate computational integration of ontologies across databases. An

example of standard identifiers in use: in the Neuro Behavioral Ontology (Gkoutos, Schofield,

and Hoehndorf, 2012), ataxia is represented by the identifier NBO:0000590. Included in

this definition is HP:0001251, the identifier of ataxia in the Human Phenotype Ontology
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(Robinson et al., 2008), and an the analogous mouse phenotype MP:0001393 (Smith and

Eppig, 2009).

Domain vocabulary concerns the list of terms associated with an ontology’s classes

and relations (above). A class identifier may be identical to a domain vocabulary item.

In anatomical ontologies, there may be concurrent descriptions of an anatomical entity.

The cerebellum has been termed the ’corpus cerebelli’ in human and ’parencephalon’ in rat

(Swanson, 2003; Truex and Carpenter, 1996). Having a controlled domain vocabulary is

particularly useful in an international scientific world, where multiple vocabulary terms can

identify the same class.

Metadata and descriptions enable domain experts using an ontology to understand the

precise meaning intended when a class was created. Curators of the GO added the following

definition to the ’circadian rhythm’ term: "Any biological process in an organism that recurs

with a regularity of approximately 24 hours." This enables a developmental biologist without

neuroscience expertise to understand what the class means in context.

In addition to textual descriptions which are human readable, ontologies include ax-

ioms and formal definitions. These machine-readable definitions enable computation over

ontologies, such as automated reasoning and integration. Ontologies are commonly repre-

sented as directed acyclic graphs, which facilitates probabilistic methods over graphs and

storing ontologies as graph data structures.

Behavior is currently modelled in several ontologies, the most widely used of which is

the Neuro Behavior Ontology, or NBO (Gkoutos, Schofield, and Hoehndorf, 2012).
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4.1.2 NBO Model of behavior

The NBO is composed of two branches, each an ontology interacting with the other, Figure

4.1. The first is the Behavioral process (NBO:0000313) branch, which classifies processes

in which an organism or group of organisms is involved, and is an extension of the Gene

Ontology’s Behavior class (Gene Ontology Consortium, 2015). Behaviors are conceptualized

on three main axes of classification:

• Response: behavior processes are considered responses to external stimuli, and the

"in-response-to" relation axiomatizes this response. For example, visual behavior is in

response to some visual perception.

• Intentionality: Intentionality concerns what a behavior is directed towards. An aggres-

sive child’s behavior can be directed towards peers or parents; this can be differentiated

in NBO with the "is-about" relation.

• Means: Behavior, as a response to an external stimulus, must be mediated by physical

attributes. Visual behavior occurs "by-means-of" some visual system.

Having axiomatized behavior processes, the second branch of the NBO is the behavior pheno-

type domain. Most phenotypes encoded in NBO are manifestations of behavioral processes

described in the Behavior Process domain. Phenotypes, or phenotypic traits, are observable

characteristics of an organism. Phenotypes encoded in other ontologies, such as Disinhibition

(HP:0000734), are translated into NBO equivalents. Taking an example of interest to this

chapter, forgetfulness is a phenotype defined by the loss of information already encoded in

long-term memory. This is classified in NBO as NBO:0000606, and relates to memory loss

behavior in the process arm of the NBO structure. Additionally, forgetfulness is a subclass

of cognitive behavior phenotype, indicating that it is also related to cognitive processes.
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To facilitate interoperability between domains, various strategies have been imple-

mented. Ontology aligners operate in a variety of ways to find terms in one ontology which

are equivalent to another (Faria et al., 2013). Alignment may be atomic matches, where

terms are logically equivalent, or associated with a degree of probability. To aid in trans-

lating phenotypes from one species to another, it is useful to reduce complex phenotypes

into their constitute components (Malsen et al., 2011). The Phenotypic Quality Ontology

(PATO) was implemented to decompose phenotypes into constituent parts based on entity-

quality (E-Q) relations (Gkoutos et al., 2009). For example, ’amyotraphy’ in the HPO is

an intersection of the term ’atrophied’ from PATO and inheres in muscle, muscle being a

class of the Functional Model Anatomy ontology (Rosse and Jr, 2008). The NBO uses the

EQ relations imported from PATO to define the behavioral phenotype branch of NBO. The

term forgetfulness, then, is equivalent to:

has_quality some (

increased tendency and

towards some memory loss behavior)

where "increased tendency" indicates an increased likelihood of participating in (towards

relation) memory loss behavior.

4.1.3 Phenotypic Representations of Autism and Schizophrenia

Autism spectrum disorder is a neurodevelopmental disease defined by the Diagnostic and

Statistical Manual of Mental Disorders (DSM-5) as including impairment in social interac-

tion and communication, and restrictive repetitive behaviors (Association, 2013). Defects

in social communication or interaction may include verbal or non-verbal behaviors, from

abnormal eye contact to a lack of facial expression. Restricted and repetitive behaviors may
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Figure 4.1: The Neuro Behavior Ontology (NBO) is structured with two top-level domains, a

"Behavior Process" and a "Behavioral Phenotype" domain. The behavior process domain models

phenotypic processes, such as a learning behavior. Behavioral phenotypes are pre-composed from

behavioral processes. All learning behavior phenotypes, for example, ’participate in’ some learning

behavior process.

be stereotyped movements, adherence to ritualized patterns of routines, or rigid thinking

patterns. In addition to these example characteristics, the DSM-5 lists hyperreactivity to

sensory input as a type of restricted or repetitive behavior pattern.

Diagnostic criteria for schizophrenic spectrum and other psychotic disorders, as indi-

cated by the DSM-5, include delusions, hallucinations, disorganized speech, disorganized or

catatonic behavior, and the presence of negative symptoms (avolition, diminished emotional

expression). To be diagnosed, patients must also have disrupted areas of life, including work,

self-care, or interpersonal relations. Related syndromes, including depressive or bipolar dis-

order, must be ruled out. Importantly, there is large phenotypic overlap between ASD and

SSD - and if there is a history of ASD, then a diagnosis of SSD is only warranted of prominent

delusions or hallucinations occur for a period of time (Association, 2013).
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4.1.4 Current Ontological Representation of Psychological Disor-

ders

Psychological and behavioral disorders are described in several ontologies.

Neuro Behavior Ontology

The NBO currently describes psychotic disorder as a top-level behavioral phenotype, directly

under the "Behavioral Phenotype" class. Psychotic disorders are further broken down into

five subtypes via "is-a" relations to psychotic disorder, including catatonic, disorganized,

paranoid, residual, and undifferentiated schizophrenia. Other disorders are present on the

same level of the ontology, including dissociative disorders, mood disorder (including bipolar

and depressive disorder, and substance induced mood disorders). No representation of autism

itself, as an entity, exists in the NBO.

Human Phenotype Ontology

The Human Phenotype Ontology (Robinson et al., 2008) (HPO) contains an "Behavioral

Abnormality" class, among whose children are "Autistic Behavior." The HPO uses this class

to refer to autism spectrum disorder, which can be part of a disease as a phenotypic feature,

see Figure 4.2. Immediate child classes, connected by "is a" relations, include hallmarks of

autism related traits, such as restrictive behavior and impaired social interactions, as well as

additional classes denoting "Autism with high cognitive ability" and "Autism." Additional

phenotypic traits are part of the HPO’s depiction of autism. Additionally, schizophrenia

is defined as a mental disorder characterized by disintegration of thought processes and

emotional responsiveness. No child terms of schizophrenia are provided. Biologically closely

related terms to SSD include psychosis and its child terms psychotic mentation, and psychotic

112



Semantic Modeling of Neurobehavioral Phenotypes

episodes with its child transient psychotic episodes. SSD frequently manifests delusions,

hallucinations, and paranoia; all of these are in the HPO but do not have any relations to

the class "schizophrenia".

Figure 4.2: Autistic behavior is modelled in the Human Phenotype Ontology as a type of behavioral

abnormality, with many subclasses connected by "is a" relationships.

Mental Disease Ontology

The Mental Disease Ontology (Ceusters and Smith, 2010) is an extension of the Mental

Functioning Ontology which describes various mental disorders. They designate autism

spectrum disorder (and children autistic disorder, atypical autism, and Asperger syndrome)

as subclasses of "pervasive developmental disorder," but describe no ASD-related traits. SSD

is described with child classes as in the NBO, as a subclass of psychotic disorder.

Autism and Schizophrenia Specific Spectrum Ontologies

Three autism-specific ontologies have been developed in recent years. Tu et al (Tu et al.,

2008) created an autism phenotype ontology following OBO Foundry principles, and com-

prises 34 classes which represent high-level phenotypes derived from autism diagnostic in-

struments, and four classes representing the instruments used. The ontology was originally

developed for use with the National Database for Autism Research to enable the consor-
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tium to organize diagnostic data, and allow researchers to compare diagnostic instruments.

The ontology contains SWRL rules to facilitate annotating hypothetical patient traits to

the classes in the ontology (Horrocks et al., 2004). More recently, McCray and colleagues

created the ASD Phenotype ontology (McCray, Trevvett, and Frost, 2014). As part of the

Autism Consortium, their ontology encodes 283 terms across three classes: Personal Traits,

Social Competence, and Medical History, including 97 personal traits and 72 social com-

petence entities. Their goal was to integrate the ontology into the Boston-based Autism

Consortium database, which no longer exists. From the Autism Diagnostic Inventory, Re-

vised (Lord, Rutter, and Le Couteur, 1994a), they mapped 62 concepts relating to personal

traits, and 25 relating to social competence. The ontology has a maximum depth of five and

a an average number of siblings of 4. A strength of this ontology is that the compilers were

able to map diagnostic criteria from 24 instruments, including a reported 1,883 questions

mapping to 97 personal traits, and 931 questions mapping to 72 social competence traits.

The bulk of their ontology mapped to medical history questions, not behaviors relating to

autism. Lastly, Mugzach et al (Mugzach et al., 2015) combined elements of the ontologies

of Tu and McCray into the Autism DSM-ADI-R ontology, or ADAR. ADAR adds SWRL

rules to Tu’s ontology to infer traits from ADI-R items, and incorporates the phenotype class

hierarchy of McCray. Unlike Tu and McCray, their goal was to test the ability of the ADI-R

to diagnose individuals with autism using both the DSM-IV and DSM-V criteria. They map

coding from the ADI-R directly onto the ontology - for instance, a basic class they encode

is "ImaginativePlay-NotAvailable", indicating that an individual assigned to their ontology

using SWRL did not have an answer to the question, denoted by a score of 8 for the related

question in the ADI-R.

At the present time, no schizophrenia specific trait ontology exists, to the author’s

knowledge.
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4.1.5 Chapter contributions

In this chapter, I present ontological modeling of behaviors relating to three complex behav-

ioral domains: schizophrenia, cognitive decline, and autism, each extensions of the Neuro

Behavior Ontology. In the cognitive decline domain, I show the integration of pre-existing

ontologies for use in modeling behavior, currently being undertaken by colleagues. I explore

the phenotypic overlap between schizophrenia and autism, before exploring the diversity of

phenotypic presentations of children on the autism spectrum. I then use data from deeply

phenotyped people on the autism spectrum to demonstrate the utility of the Psychological

Neuro Behavior Ontology (PNBO), the primary output from this chapter, in segregating

subjects based on their presenting phenotype into data-driven subgroups based on semantic

similarity.

4.2 Methods

The ontology build in this chapter, and semantic profiles derived from it, draws heavily from

data provided by two diagnostic questionnaires, the Autism Diagnostic Interview - Revised

(ADI-R) (Lord, Rutter, and Le Couteur, 1994b), and the Positive and Negative Symptom

Scale (PANSS) (Kay, Fiszbein, and Opler, 1987a). Additionally, work with collaborators was

essential in building the Aging Neuro Behavior Ontology (ANBO) (Martínez-Santiago et al.,

2020). The data used to derive traits from the ADI-R was provided by the Simons Foundation

for Autism Research, using data collected for the Simons Simplex Collection. This study

was approved by the University of Birmingham’s ethical review committee, ERN-17-0879,

and assigned SFARI project number 2720.1.
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4.2.1 Phenotype Extraction from the Simons Simplex Collection

The SSC version 15 dataset cohort contains 2644 families, each with two biological parents,

one proband diagnosed with autism spectrum disorder, and at least one unaffected sibling

for a total of 10474 individuals, 2292 male probands and 352 female probands (Fischbach

and Lord, 2010b). Probands were deeply phenotyped with a variety of medical and behav-

ior related inventories, including the aberrant behavior checklist (Aman et al., 1985), the

autism diagnostic observation schedule (ADOS) (Lord et al., 1989), and the ADI-R. The

ADI-R was built to diagnose children with ASD, and incorporates questions appropriate for

both verbal and nonverbal children. The ADI-R contains 93 questions mapping to several

domains, each of which is used to quantitatively diagnose a child wiht ASD. The social

domain includes questions relating to peer relationships, nonverbal communication, sharing

one’s enjoyment with others, and socioemotional measures. The communication domain in-

cludes aggregate scores for verbal and non-verbal communication, delayed language learning,

ability to make conversation, idiosyncratic speech, and a lack of make believe or imaginative

play. The repetitive/restrictive behavior domain contains scores from repeated patterned be-

havior, compulsive rituals, repetitive mannerisms, and preoccupation with material objects.

Children with high scores derived from each domain can be reliably diagnosed with ASD,

using an algorithm provided with the instrument (Lord, Rutter, and Le Couteur, 1994a).

Using data provided with the SSC, I first identified behaviors relating to the ADI-R to the

"behavior process" arm of the NBO ontology, and I then manually added those which did

not exist in the current NBO hierarchy. Next, I derived traits from the ADI-R, and mapped

those to the "behavioral phenotype" arm of the NBO. Again, where traits did not exist, they

were added.
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4.2.2 Categorical Data Extraction from PANSS

The positive and negative symptom scale (Kay, Fiszbein, and Opler, 1987b) was incorporated

into the PNBO in a similar manner as in with the ADI-R. Items in the instrument were

first mapped to the ’behavior process’ domain, then composed into traits in the ’behavior

phenotype’ domain of the ontology. Where traits overlapped existing NBO/PNBO classes,

they were imported directly into the ontology. As no patient data was available, no individual

subject annotations were created.

4.2.3 Curating the NBO and creating the PNBO

Once data from each diagnostic instrument was obtained and incorporated into the NBO,

several modifications to the NBO were made. Diagnoses of psychological disorders were

removed from the "behavior process" arm of the NBO, and either remodeled as phenotypic

traits, or discarded. Next, the "object" class from the Relation Ontology (Smith et al., 2005)

was added to the NBO, to allow classes to be "about" using an external object. Next, the

OntoFox tool (Xiang et al., 2010) was used to extract those portions of the NBO, including

classes, relations, and annotations, of the NBO "behavioral phenotype" from the parent class

down to each class added from the ADI-R and PANSS. The "behavioral process" domain

was left in its entirety to facilitate future expansion of the ontology. Lastly, the extracted

classes and relations from each domain were entered into a new ontology, the Psychological

Neuro Behavior Ontology, or PNBO.
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4.2.4 Modeling the relationship between ASD and SSD phenotype

In order to model the relationship between endophenotypes of ASD and SSD as encoded

in the PNBO, a graph was created to quantify the degree of overlap between traits. Traits

derived from the PANSS and ADI-R were separated, including their ancestors through to

the root term "Behavioral Phenotype". The intersection of the terms was then obtained,

denoting which terms were exclusive to either survey. To hypothesize about the causal re-

lationship between SSD and ASD conditions, regardless of endophenotype presentation, a

Mendelian Randomization analysis was performed, suing the MR Base platform (Hemani

et al., 2018) to obtain GWAS SNPs from non-overlapping populations. 73 SNPs were ob-

tained from MR-Base curated summary statistics from a study of 35,476 SSD patients by

the Psychiatric Genomics Consortium (Schizophrenia Working Group of the Psychiatric Ge-

nomics Consortium, 2014). These SNPs were harmonized with a meta-analysis of 18,381

individuals on the autism spectrum (Grove et al., 2019). Using the TwoSampleMR pack-

age, inverse-variance weighted, MR Egger, weighted median, and weighed median Mendelian

randomization analyses were performed as in Chapter 3.

4.2.5 Modeling Behavior in the ANBO

Working with colleagues, I also created another derivation of the NBO, the Aging Neuro

Behavior Ontology (ANBO). This ontology was built to provide a model of the aging process

as it relates to activities of daily living (ADLs) and cognitive decline. To this end, the ANBO

was built to provide a formal description of cognitive processes relevant to studying an aging

population. NBO processes relating to executive function, perception, attention, memory

behavior, long-term memory, and proxies were created. Unlike the PNBO, the ANBO is

focused on the behavior process domain of the NBO only, and relies on the EQ components

of PATO to post-compose phenotypes.
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The ANBO is presented for use in conjunction with the OSLE, or Ontology SmartLab

Elderly (Martínez-Santiago et al., 2020), an ontology built by my collaborators to model

ADLs in a SmartLab environment, in which sensors are attached to devices such as medicine

cabinets or televisions to track their use, and their use is compared to pre-planned daily

routines modeled with the OSLE. Recorded daily activities in the OSLE are then mapped

to the ANBO, to monitor fluctuations in cognitive processes related to cognitive decline. To

build ANBO, I first mapped a minimal set of traits from the "Behavioral Process" arm of

NBO using OntoFox (Xiang et al., 2010). Additional processes as proposed by collaborators

were added. Cognitive processes were modelled by integrating the ANBO with functions

from the OSLE using SWRL rules, which allow integrating descriptive logic with constraints

to create new classes in the ontology. For example, to denote that a brother of one’s parent

is one’s uncle, a rule may be created:

hasParent(?x1, ?x2) ∧ hasBrother(?x2, ?x3)⇒ hasUncle(?x1, ?x3) (4.1)

which denotes that if x2 is the parent of x1, and x3 is the brother of x2, then x3 must

be the uncle of x1. SWRL rule creation, and all ontology development, were performed in

Protege (Musen, 2015).

4.2.6 Reasoning and Completeness

After each ontology was built, it was subjected to reasoning to ensure its logical consistency.

PNBO, ANBO, including the SWRL rules and collaborators’ OSLE, were evaluated with

the Hermit reasoner (Shearer, Motik, and Horrocks, 2008). Each ontology was constructed

using the OBO Foundry design standards (Smith et al., 2007a).

119



Semantic Modeling of Neurobehavioral Phenotypes

4.2.7 Comparing Individuals via Semantic Similarity

Each proband in the SSC was assayed with the ADI-R, and a numeric score was provided

for each question. Data are predominantly coded the following format:

• 0: Behavior not present

• 1: Behavior present in abnormal form, but not not severe enough to meet criteria

• 2: Definite abnormal behavior

• 3: Extreme abnormal behavior

• 7: Abnormality in the area of coding but unspecific

• 8: Not applicable

• 9: Not asked or unknown

Following the algorithm presented in (Lord, Rutter, and Le Couteur, 1994a), I as-

signed, for each question in the ADI-R, a proband a trait if their score 2 or 3, and all

others were considered to be absent. Several of the 93 questions were repeated, asking if the

proband currently or ever presented with the possible trait. If either of these traits were

scored positively, they were combined into one trait. This resulted in a corpus of probands,

each annotated to several traits in the PNBO ontology.

4.2.8 Calculating Semantic Similarity

Once annotated, probands were compared to each other by calculating the semantic similarity

shared by their annotated traits. Semantic similarity measures, originally derived for text,
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seek to quantify the specificity and commonality of information shared between two corpora.

In population genetics, they are widely used alongside ontology-based gene set enrichment

to characterise the functions of genes or the similarity of individual diagnoses. I used two

similarity measures in this chapter, both based on the measure of the specificity of a class

in the ontology. The graph-based structure of an ontology, and the (largely) is a relations

between them, ensure that the class "delayed echolalia" is more specific than its parent class,

"echolalia". This specificity can be calculated using Resnik’s method (Resnik, 1995a):

ICResnik(x) = −logp(x) (4.2)

where p is the probability of finding a term in a corpus (or in the ontology):

p(x) =
|I(x)|
|I|

(4.3)

and can be calculated directly from the ontology, or from the corpus of terms anno-

tated to the ontology. I calculated the IC of each term in terms of the frequency of a proband

being annotated to a term. All annotations take advantage of the transitive property of the

is a relation, so a proband annotated to the term "delayed echolalia" is also annotated to

"echolalia" and all intermediate terms through to "behavioral phenotype", which will have

an IC of 0.

To calculate the similarity between classes in the PNBO, I used two methods. Resnik’s

similarity measure (Resnik, 1995b):

SimResnik(x, y) = IC(MICA(x, y)) (4.4)

where IC is the information content and MICA is the most informative common
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ancestor, or the parent of the two terms with the highest IC. Lin (Lin, 1998) modifies this

measure:

SimLin(x, y) =
2 ∗ IC(MICA(x, y))

IC(x) + IC(y)
(4.5)

to standardize the measure over the total information content of each term, x and y.

This constrains the measure of similarity to be between 0 and 1, and enables classes that

are more distantly located from their MICA to have a lower similarity. To compare sets

of classes that were used when comparing sets of probands, I used the Best Match Average

approach, which first calculates the maximum average similarity between sets of probands:

simMA(X, Y ) =

∑
x∈X maxy∈Y sim(x, y)

|X|
(4.6)

where the maximum similarity of any term in proband set Y against each term for

proband set X is calculated, and standardized.

The best match average takes the average of the maximum similarity between sets of

probands, as they are not guaranteed to be symmetric:

simBMA(X, Y ) =
simMA(X, Y ) + simMA(Y,X)

2
(4.7)

All semantic similarity calculations and ontology plotting were performed in R v3.5,

using the OntologyPlot and Ontology Similarity packages (Greene, Richardson, and Turro,

2017).
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4.2.9 Semantic Clustering of SSC Proband Annotated Traits

To compare probands to each other based on their shared or differential PNBO traits, a

pairwise semantic similarity matrix was created for each proband using a Resnik-based BMA

approach. Next, hierarchical clustering was performed using the WGCNA package in R

(Langfelder and Horvath, 2008) in the following manner. First, the normalized similarity

matrix was transformed into a weighted adjacency matrix. Adjacency matrices represent

graphs in the form of:

ai,j =


1 if simi,j≥τ

0 if simi,j<τ

(4.8)

where sim is an similarity matrix, usually from correlation between entities but in this

case the semantic similarity matrix calculated. Rather than having a thresholding function

τ to constrain the adjacency matrix entries to only 0 or 1, a soft-thresholding was performed:

ai,j = |simi, j|β, forβ > 1 (4.9)

were β was set at 6, which forces less-similar pairs of probands to have much weaker

connections in the adjacency matrix. The adjacency matrix was used to calculate the

weighted connectivity, or degree, of each node (proband) in the graph.

Next, a topological overlap matrix was created from the adjacency matrix to capture

the similarity of nodes: (Zhang and Horvath, 2005):

ωi,j =

∑
u aiuauj + aij

min(ki, kj) = 1− ai,j
(4.10)
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and a dissimilarity matrix crated by 1− ω. Hierarchical clustering was performed on

the dissimilarity matrix, using average linkage. Hierarchical clustering results in a tree, or

dendogram, representing the relationship between probands. To transform the dendogram

into discrete clusters, a dynamic tree cutting algorithm was performed using the WGCNA

package (Langfelder, Zhang, and Horvath, 2008). Rather than "cut" a dendogram once,

an initial cut is made with a static tree cut, then each resulting cluster is analyzed for

fluctuations in the its own subtree. Any clusters exhibiting such a pattern are recursively

split, using a limit of 30 probands to indicate a floor for the recursive algorithm. See

(Langfelder, Zhang, and Horvath, 2008) Supplementary Data for a detailed explanation.

4.2.10 Bootstrap Cluster Validation

To test the resulting clusters’ stability, I performed a bootstrapping procedure, using the

package NetRep (Ritchie et al., 2016). Two test statistics were investigated: the magnitude

of edge weights in each module, and the magnitude of the semantic similarity of each module.

To create test statistics, the dissimilarity matrix was permuted 10,000 times, and summary

statistics created during each permutation, resulting in a null distribution. The statistics

for each module were compared to the null distribution using a one-sided test, and the

proportion of null tests more extreme than the observed test statistic provided empirical

p-values. Those values were then adjusted for multiple testing by the False Discovery Rate,

as in (Benjamini and Hochberg, 1995).

4.2.11 Bayesian Semantic Profile Regression

To investigate what underling phenotypic profile the module represents, an adaptation of

Similarity Regression using the SimReg package (Greene, Richardson, and Turro, 2016) was

124



Semantic Modeling of Neurobehavioral Phenotypes

performed. Originally developed to find single SNPs causing rare disease based on the ability

of an average semantic similarity profile from the human phenotype ontology to predict

disease, this was adapted to predict cluster membership and view the underlying marginal

probabilities of an ontology term being associated with cluster membership. Using Baysian

regression, two models are compared:

yi Bernoulli(pi);


γ = 0: log( pi

1−pi = α)

γ = 1: log( pi
1−pi = α) + βS(φ, xi)

(4.11)

yi..yn is a vector of cluster membership: 1 if a patient belongs to a cluster, and 0

if not. xi..xn is the vector of phenotypes for each subject, where xi is the minimal set of

PNBO phenotypes requried to describe the proband. The set is minimal if and only if only

contains directly annotated terms and not others implied by transitive relationships in the

PNBO. For instance, if a proband is annotated with "delayed echolalia," their minimal set

of traits will not include the parent term "echolalia."

Under the null model assuming γ = 0 (no association between a phenotype and

cluster), alpha is the intercept, the proportion of cases in the cluster. Under the alternative,

β is the coefficient representing a unit increase in phenotypic similarity, using a modified Lin

BMA measure, of the patient to a characteristic phenotype φ, on the log-odds of being a

member of the cluster. Therefore, the probability that γ = 1 is greater when the similarity

of a proband’s phenotype to a cluster profile is larger when if they are indicated as a member

of that cluster.

To estimate the characteristic profile φ, a Markov chain Monte Carlo procedure is

undertaken under a uniform sampling of up to 2,000 sets of PNBO terms of size k = 5.

A mapping function ν is applied to the vector of phenotypes to account for the fact that

not all sampled PNBO sets will be minimal. The prior on the estimated φ̃, counting the

number of times a trait appears in a sampled distribution under the gamma = 1 assumption
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(the individual is in cluster membership). For a full description of the models used, and

a detailed discussion of MCMC sampling procedures, see (Greene, Richardson, and Turro,

2016) supplementary material section 7. The conditional posterior distribution of each model

(null and alternative) can be estimated from MCMC samples where γ = 0 and 1 and the

posterior probability that the alternative model is true is estimated from the number of

iterations in which γ = 1. The marginal posterior probability of a term’s inclusion into phi

for each model was retained, to derive the characteristic minimal phenotype of each cluster.

4.3 Results

4.3.1 PNBO and ANBO Structure

The PNBO includes 131 entities in the "Behavioral Phenotype" domain specifically to model

ASD and SSD traits, including 103 novel classes specific to the PNBO. Including all NBO

terms potentially relevant to psychological disorders on heterogeneous spectra and thus kept

from the original NBO, statistics for the ontology are given in Table 4.1.

The ANBO is much smaller than the PNBO, can be visualized in Figure 4.3.

Both the PNBO and ANBO take advantage of several types of relations, among them

the following:

• by means: A process x occurs by means of a material structure y if and only if x occurs

by means of y.

• has participant: A relation between a process and a continuant, in which the continuant

is somehow involved in the process
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Figure 4.3: ANBO class diagram. Gray processes are relevant to activities of daily living and

are modeled in the OSLE. Horizontal shading indicates behavioral processes native to the NBO,

while vertical shading represents processes added for the ANBO. Graphic originally published in

(Martínez-Santiago et al., 2020)

• in response to: Between a process x and a process y if and only if x occurs in response

to y

• intersection of: With cardinality of zero or more, this indicates a term is the equivalent

to the intersection of several other terms

• is a: a subsumption, indicating that x is a subclass of y, wherein x’s specification

implies y’s specification

• is about: A process x is about some entity y if and only if x is about or directed toward

y.

• has input: A phenotype has input a collection of entities with a given property regard-

ing frequency, amount and so on

• part of: a core relation that holds between a part and its whole
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4.3.2 Integrating the OSLE and ANBO Ontologies

As the majority of the work contained in this chapter involved the PNBO, results from

the ANBO in which I played a major role will now be discussed. The ANBO combines

behavioral processes in the NBO, entities and qualities from PATO, and anatomy from

UBERON (Mungall et al., 2012). It aims to capture the conditions under which a process

can be triggered, which results may be expected after a process, and any qualities which

define normal or abnormal instances of that process. For example, "visual search" process,

ANBO:0000004, is depicted in Figure 4.4. Visual search "is a" visual behavior, which "is

about" a physical object quality, and is "in resonse to" visual perception, which is facilitated

"by means" of an in-tact visual system. This visual search process (an entity) may have a

quality of increased duration, in which case a slow visual scanning phenotype is manifested.

Each behavioral phenotype was encoded to depend on high-level UBERON anatomy, and

participate in behavioral processes while being denoted by certain qualities.

Figure 4.4: In ANBO, individual classes are composed of input from an anatomical entity, a be-

havioral process in response to such input, and an expected output. The trait of "Visual Search",

ANBO:0000004, is depicted here. Graphic originally published in (Martínez-Santiago et al., 2020)

Collaborators used the ANBO ontology with the Telehealth Smart Home system to

setup a hypothetical experiment, monitoring behaviors modeled with the ANBO by use of
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sensors attached to objects involved in activities of daily living. SWRL rules were created

for several senarios, as exemplified by by a subject getting a bottle of water, which is an

ADL which, in part, has input from a visual search process modeled in ANBO Figure 4.5.

SMARTLAB OSLE ANBO input

SWRL 

translation

rules

Repository

S

rule  1: LightQualityToPhysicalObjectQuality

Translates a OSLE context with a visual attribute (color, shape...)

to a ANBO input physical object quality

rule 4: ADLByMeansOfVisualSystemCommment: An ADL that 

includes visual quality executed by means of a visual perception 

with working visual system

physical object quality(CO5)

has_light(CO5)

rule 2: TranslateADLToSensoryBehavior

An ADL implies a sensory behavior

rule 3: TranslateContexOfADLToIsAboutAn 

ADL implies that the action is about the 

related context

Facts

context(C05) 

homo_sapiens(inhabitant1)

visual_system(vs1)

bearer_of(inhabitant1,vs1)

Asserted Facts

located_in(adl1, C05)

adl(adl1)

has_executer(adl1,inhabitant1)

inhabitant1

sensor C05

sensory_behaviour(adl1)

visual perception(adl1)

by_means(adl1,vs1)

The act of inhabitant1 obtaining a 

bottle of water triggers sensor

C05 and adl(adl1), 

has_executer(adl1,inhabitant1)

and located_in(adl1,c05) are 

asserted 

is_about(adl1,CO5)

Figure 4.5: The visual search process is modeled in SWRL rules when a hypothetical sensor (C05)

is triggered by a subject obtaining a bottle of water on which a sensor rests. SWRL rules then take

in facts that the sensor, when activated, must be operated by a subject with a visual system and

who has participated in an assigned activity of daily living, visual perception, by means of ANBO

behavior. Graphic originally published in (Martínez-Santiago et al., 2020)

While the ANBO models activities of daily living in a population which may experi-

ence cognitive decline (the elderly), the PNBO models traits found among individuals among

all walks of life, some of whom may be on the autism or schizophrenia spectra.

Overlap between ASD and SSD Phenotypes in the PNBO

A high degree of overlap is apparent between traits in the PNBO derived from ASD and

SSD diagnostic interviews, Figure 4.6. To the left, red children from the "Cognitive Behavior

Phenotype" annotated from PANSS segregate onto one level. Further yellow children are

Learning/Memory behavior phenotypes annotated from ADI-R. The bulk (middle) of the

ontology is made up of yellow nodes from the ADI-R, while orange nodes are common to

both ontologies, though they may not appear on the diagnostic instruments themselves and
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are a product of "is a" relations in the ontology. Distinct traits from each instrument can be

closely related: motor retardation (PANSS) is four classes away from abnormal gait (ADRI).

Traits with similar names can also be only distantly related: stereotyped thinking (PANSS)

is on the third level of the ontology DAG, while Stereotypic motor behavior is on the fifth,

six classes away on the DAG, traversing "Behavioral Phenotype."

Figure 4.6: The PNBO includes entities drawn from both the PANSS and the ADI-R, gold-standard

psychological instruments designed to diagnose schizophrenia and autism respectively. The structure

of the PNBO shows the high degree of overlap between traits manifested by individuals on each

spectrum. Autism-specific traits are shown in yellow, schizophrenia specific traits in red, and traits

in common in orange. Only the behavioral phenotype domain of the PNBO is shown.

To query the potential causal relationship between exposure to SSD and autism, a

strong association was identified between a genetic predisposition to SSD and a manifestation

of ASD. Although there was high heterogeneity (Inverse variance weighted [IVW] Q statistic

174, p = 4e-07, MR Egger intercept p-value 0.06), all methods agreed in the magnitude of

effect: IVW β = 0.107, standard error (se) 0.03, odds ratio (OR) = 1.1; MR Egger β = 0.306,

se 0.11, OR = 1.35, . MR Steiger tests suggest a strong directionality from SSD exposure to

ASD outcome (p = 1.e-132). See Figure 4.7.
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Figure 4.7: To test the assumption that genetic exposure to schizophrenia may influence the like-

lihood of autism diagnosis, a Mendelian randomization analysis was performed. Results show the

possible causal effect of schizophrenia associated alleles (x-axis) on the development of autism (y-

axis). MR = Mendelian randomization. Scales represent the log-odds of phenotype per allelic

dose.
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Interoperablility between PNBO and ANBO with other ontologies

Each class of the ANBO and PNBO uses entity-quality notation from the PATO ontology

(Gkoutos et al., 2009) to enable translation between different ontologies. As an example,

the PNBO trait "repetitive use of objects", PNBO:072, can be mapped nearly directly to

the Mammalian Phenotype ontology term MP:0001409, "increased stereotypic behavior" as

shown below.

PNBO_072: "repetitive use of objects"

’has part’ some (

’increased rate’ and

’inheres in’ some ’stereotypic behavior’ and

’has modifier’ some abnormal and ’is about’ some object)

MP_0001409: "increased stereotypic behavior"

’has part’ some (

’increased rate’ and

’inheres in’ some ’stereotypic behavior’ and

’has modifier’ some abnormal)

while not a perfect match, the EQ notation indicates that both traits are composed of an

increased rate of some abnormal quality (when compared to a reference population) that

’inheres in’, or belongs to or is a property of, stereotypic behavior. The EQ notation is

extended for PNBO:072, by indicating that the behavior ’is about’ some object. meaning

the behavior is directed towards an external material object - often a toy or other object, in

the case of SSC probands annotated with PNBO.
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4.3.3 Distribution of SSC Phenotypes among Probands and Clus-

tering of Traits

The frequency of trait annotations among probands can be seen in Table 4.2. The trait

observed with the highest frequency was "group play with peers," indicating that all but

five probands who were phenotyped and whose genetics passed QC did not play well with

peers! Indeed, social response abnormalities are seen in the vast majority of probands. 265

probands were annotated with a musical ability phenotype, indicating that they have an

increased ability to play music compared to their peers of a similar age. Clustering of traits

reduced the dimensionality of the ASD-related traits studied, form 73 annotated in the

PNBO to 14 clusters, Figure 4.8. Two of the largest clusters, turquoise and brown, appear

nearly intertwined; while smaller clusters with lower-hanging features in the dendogram are

more self-contained. Table 4.3 shows the permutation-based, empirical p-values for two
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Figure 4.8: Parents answers on the Autism Diagnostic Interview-Revised were used to model

probands’ traits in the Psychological Neuro Behavior Ontology (PNBO). A pair-wise semantic simi-

larity score was calculated for each pair of probands using Resnik Best-Match-Average. The resulting

matrix was clustered using hierarchical clustering and a dynamic tree cutting algorithm. Clusters

are depicted by color.

test statistics of module stability: the weighted degree of the nodes in the cluster, taken

from the topological overlap dissimilarity matrix used as clustering input, and the semantic

similarity-based degree, taken from the raw semantic similarity input. The constraints on the
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dissimilarity matrix produce more stable modules, as indicated by lower p-values (column 1

vs column 2). The FDR corrected p-values for each test are given in columns 3 and 4. Note

that the smallest possible p-value, based on 10,000 permutations, is 0.0001 - a frequently

observed output, while the highest p-value, a null result of 1, is also observed for some

clusters.

Semantic Makeup of Phenotype Derived Clusters

Semantic profiles of each cluster were generated from similarity regression, by combining the

marginal probabilities of each PNBO trait’s ability to model the likelihood of a proband in

a given cluster having membership in only that cluster. Here, I outline the semantic profiles

that typify each cluster, from largest (turquoise) to smallest (cyan) in membership.

Each cluster is made up of at least 48 probands, each annotated with a mean of 39

PNBO terms, see Table 4.4. The turquoise cluster, the largest, is associated with playing

behavior phenotypes, as well as memory and skill phenotypes, Figure 4.9.

The blue cluster revealed only one minimal trait which could reliably characterise

the cluster, abnormal reciprocal conversation. The brown cluster is broad, and encompasses

strong associations with deficits in engaging in reciprocal conversation and learning behavior

phenotypes, Figure 4.10.

The yellow cluster is very homogeneous, and indicates a combination of self injury,

lack of interest in and of playing with other children, and few instances of using one’s body

to communicate, Figure 4.11.

The green cluster’s signature is a loss of language ability, and abnormal social verbal-

ization and response rates, Figure 4.12.
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Figure 4.9: Minimal sub-graph of the PNBO traits in cluster turquoise.
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Figure 4.10: Minimal sub-graph of the PNBO traits in cluster brown.
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Figure 4.11: Minimal sub-graph of the PNBO traits in cluster yellow.
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Figure 4.12: Minimal sub-graph of the PNBO traits in cluster green.
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The red cluster is significantly enriched for defects in coping with changes in the

proband’s environment, sensitivity to noise, and increased visiospatial ability, which unlike

most PNBO traits indicates a gain of function, where an individual is assessed to have

increased visiospatial cognition, see Figure 4.13.

Figure 4.13: Minimal sub-graph of the PNBO traits in cluster red.

The black cluster and all following have under 100 probands assigned, and probands

who are members of the black cluster have the fewest average traits annotated to them, 28.5

(Table 4.4). Probands typically exhibit defects in voluntary movement, reciprocal conversa-

tion, and appropriate social responses (Figure 4.14).

The pink cluster is uniquely made up of individuals who have the restricted behav-

iors often exhibited by autism patients, including circumscribed interests, unusual sensory

interests, and unusual preoccupations, Figure 4.15.
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Figure 4.14: Minimal sub-graph of the PNBO traits in cluster black.
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Figure 4.15: Minimal sub-graph of the PNBO traits in cluster pink.
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The magenta cluster does not have a well defined signature, but self injury (with a

13% probability, and difficulties in coping with changes in the external environment (with a

22% probability) make the cluster of probands distinct.

Figure 4.16: Minimal sub-graph of the PNBO traits in cluster magenta.

Uniquely among clusters, the purple cohort of 73 probands have a strong likelihood of

self-injurious behaviour, with few instances in directing others’ attention towards interests,

poor eye contact related behavior, and few reported instances of smiling to express happiness,

Figure 4.17.

The greenyellow cohort (Figure 4.18) collectively have a strong loss of language ability

which was previously acquired, and abnormal social verbalization and response to parental

cues.
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Figure 4.17: Minimal sub-graph of the PNBO traits in cluster purple.
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Figure 4.18: Minimal sub-graph of the PNBO traits in cluster greenyellow.
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The tan subgroup (Figure 4.19) are likely to exhibit abnormal gait, and unlikely to

use their heads to nod "yes" to communicate.

Figure 4.19: Minimal sub-graph of the PNBO traits in cluster tan.

The salmon cluster (Figure 4.20) has a strong association (marginal probabilities

of 1 each) of having unusual sensory interests, having difficulty in coping with personal

environmental changes, and asking inappropriate questions.

Lastly, the cyan cluster, like the blue cluster, contained hetergogeneous behavioral

traits with one discovered unifying element, decreased frequency of head nodding. Head

nodding, in this case, indicates nodding "yes" to non-verbally communicate agreement.

Taken as a whole, these clusters are often made up of individuals with common

phenotypic traits across the spectrum of communication, repetition/restriction, and social
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Figure 4.20: Minimal sub-graph of the PNBO traits in cluster salmon.
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behavior traits. Each cohort can be distinguished by a core set of shared traits, revealing

possible sub-types of autism characterised by a spectrum of endophenotypes. The PNBO

ontology and the ANBO ontology, as implemented in (Martínez-Santiago et al., 2020), is

available in the online appendix, https://github.com/jaw-bioinf/PhdThesis

4.4 Discussion

The process of creating the ANBO and the PNBO necessitates first ontology evaluation, and

then discussion of the value of the ontologies themselves.

4.4.1 Ontology evaluation

The ANBO and PNBO ontologies can be validated several different ways. Hoehndorf and

colleagues (Hoehndorf, Dumontier, and Gkoutos, 2013) suggest three distinct modes of on-

tology validation:

• direct evaluation: accessing intrinsic properties of an ontology, such as consistency and

expressivity

• application based evaluation: evaluating an application which itself uses an ontology

• analysis based evaluation: evaluating a scientifically based data analysis which uses an

ontology for data integration or analysis itself

In this chapter, I evaluate the ANBO and PNBO by the first criterion. I also perform

unsupervised machine learning, in the form of hierarchical clustering, using data informed

by the PNBO; thus evaluating the PNBO’s ability according to the third criterion as well.
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Both the ANBO and PNBO use the DL subset of the OWL query language, which

ensures decidability. At different stages, both the Hermit and ELK reasoners were used; as

the ANBO or PNBO grow it may be necessary to restrict reasoning to the ELK reasoner as it

is guaranteed to classify an ontology in polynomial time (Kazakov, Krötzsch, and Simančík,

2014). Both ontologies follow the principles of the OBO Foundry (Smith et al., 2007b), and

are working towards fulfilling as many criteria of the minimum information for reporting on-

tologies (MIRO) standards as possible (Matentzoglu et al., 2018). Guidelines include basics

(ontology name, URL), motivation (need, competition), scope (issue tracking, community),

knowledge acquisition (data source acknowledgement), ontology content (metrics, axiom

patterns), managing change (sustainability plan), and quality assurance (testing and exam-

ples of use). While some criteria for best practices are outstanding for either ontology (issue

tracking for ANBO, for instance), this Chapter aims to fulfill the majority of these suggested

best practices. Following the OBO Foundry best practices include creating non-overlapping

ontologies with a strictly focused content, and importing data from other ontologies using

the MIREOT principles (Courtot et al., 2011). Gomez-Perez (Gómez-Pérez, 2001) provides

five criteria for validating ontologies using validation approach 1 of (Hoehndorf, Dumontier,

and Gkoutos, 2013), which are fulfilled as demonstrated here:

• Consistency: Both ANBO (including SWRL rules) and the PNBO are logically consis-

tant, and evaluation with ELK found no cases of class unsatisfiabiliity, or classes which

could contain no instances.

• Completion: That everything which should be in the ontology can be inferred from a

reasoner or is explicitly built in. With colleagues, we ensured that at least one ADL

was defined for each cognitive process in ANBO; and I ensured that all traits from the

PANSS and ADI-R were incorporated into the PNBO.

• Concision: I have pruned behavioral phenotypes from the PNBO which do not currently
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relate to either ASD or SSD, while keeping the behavior process domain intact.

• By keeping the behavior domain intact, I facilitate the expandability of the ontology

- the effort needed to add new definitions or terms. As knowledge of behavioral en-

dophenotypes grow, this strategy will help ensure the integration of PNBO with other

ontologies, including the Mammalian Phenotype ontology.

• Sensitiveness: the ability of the ontology to withstand small changes. By porting the

PNBO away from the NBO, I was able to make fundamental changes to the description

of psychologically relevant neurobehaviors without breaking the backwards compata-

bility of the NBO, which forms the basis of studying behavior in several ontologies.

4.4.2 Why model autism with the PNBO?

Fundamentally, there are two main reasons to model autism with the PNBO instead of pre-

viously discussed ontologies, these being interoperability, and the second being its ability

to correctly capture phenotypic traits relating to ASD. The PNBO relies on EQ notation

from PATO to define behavioral phenotypes by the behavioral processes in which they par-

ticipate. As illustrated in the EQ example with the Mammalian Phenotype (MP) ontology,

this allows endophenotypes derived from children with autism or adults with psychosis to

more readily be translated into observable characteristics in mouse. This is essential, be-

cause ontology labels (the readable names) can be misleading in certain contexts. The term

MP:0002730, head shaking, is a stereotypic behavior and an abnormal head movement. The

NBO term NBO:0000023, head shaking, is a behavior process relating to head movement

on the horizontal plane, and not a phenotypic trait, nor is it related to stereotypic behavior

necessarily. The PNBO term PNBO:051, head shaking, is a lack of shaking the head back

and forth to indicate a negative response to questions by others. This, unlike previous uses

of ’head shaking,’ is not just a physical response to an external stimulus (a behavior), but
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also inheres in a specific cultural context in which shaking the head horizontally indicates

"no" or displeasure, and has specific communicative intent. The existing autism ontologies,

including the ADAR, do not take advantage of EQ notation and are thus unusable by the

wider community not focused specifically on autism research in humans. The ability of the

PNBO to align with MP and HPO ontologies is a major strength, particularly with the abil-

ity of home cage monitoring in mouse and rat experiments to capture unexpected behaviors

(Bains et al., 2016; Brown et al., 2017b). Importantly, there can be no diagnosed "autistic"

or "schizophrenic" mouse, but endophenotypes of these disorders can map to approximate

equivalents. The operational subset of the PNBO needed to characterise ASD is remark-

ably slim, with only 102 classes needed to incorporate the 93 questions from the ADI-R.

When comparing this to the work of Mugzach and colleagues, this may at first seem inade-

quate. Their ontology, however, includes entities which are deemed phenotypes but are not

observable properties of an organism. The class "Imaginative Play," for example, contains

two sublasses "ImaginativePlayNotAvailable" and "ImaginativePlayUnknownOrNotAsked".

While no doubt useful for predicting if a subject will be classified as autistic, the ontology

does not allow interoperability with other ontologies which are used in behavioral genetics,

limiting its potential usefulness to the neurobehavioral genetics community in annotating

genes with autism-specific phenotypes; if association analyses are performed on the encoded

"phenotypes" in the ADAR, interpretation of "ImaginativePlayWithPeersNotAvailable", for

example, would be impossible. Where the ADAR is extensive but confounding, the current

state of psychological disorder description in the HPO and in the original NBO have flaws

which the PNBO seeks to correct. From the NBO, we removed all instances of explicity

diagnoses, or re-defined them; while there is depressive behavior in the process arm of the

PNBO, the phenotypic manifestation of that behavior has changed from "depressive dis-

order" to "depression," and children terms such as "major depressive disorder" have been

eliminated. Though useful, "major depressive disorder" is not itself a phenotype but a diag-

nosis, muddling the concept of disease and phenotypic trait. Likewise, schizophrenia is not
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directly described by the PNBO, which is not designed to aid diagnosis of the condition, and

thus the original NBO term has been removed. While the presence of these terms do not

directly impact the ability of the PNBO to model endophenotypes of ASD or SSD, they are a

potential source for confusion. When appraising the HPO’s depiction of autism and autistic

behavior, many problems are evident that give one pause when using it to describe behavioral

disorders in general. Figure 4.2 shows the many subclasses of autistic behavior which may

be annotated with patients via diagnostic instruments, or with genes from experimental or

computational studies. The true path rule, as proposed by the OBO Foundry (Smith et al.,

2007b), follows the principle of subsumption: when a gene is annotated to a child term, it

must follow transitive relations up the ontology structure. Thus, any gene which is involved

in "Lack of peer relationships," a definitive ASD trait, must also be annotated to "Autistic

Behavior." Any patient exhibiting hypersexuality or risk taking is likewise annotated with

autistic behavior. Given the fact that autism is generally diagnosed at a young age, hyper-

sexuality is unlikely to be an autistic trait, and appears to be so because it is a child of

"Inappropriate behaviors." This highlights the social context in which biomedical ontologies

must be used if they are to be interpreted correctly. By removing the diagnosis-suggesting

"Autistic Behavior" term, and modeling all behaviors on physiology-based behavioral pro-

cesses, the PNBO works around the confusion which would be evident if persons on the

autism spectrum were annotated phenotypes following the HPO. The PNBO also highlights

the co-ocurrence of ASD and SSD phenotype.

4.4.3 On which spectrum: autism or schizophrenia?

Much previous work has been done on the overlap between ASD and SSD conditions; in-

deed they were once considered the same disorder. Autism was viewed, in the 1970s, as

an early manifestation of SSD (Rutter, 1972 Oct-Dec; Kolvin, 1971). Each condition is di-
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agnosed purely based on behavioral assessment, and diagnostic instruments still carry the

legacy of early conflation of SSD and ASD. Both the DSM-5 criteria and the PANSS in-

terview both mention autism directly; the DSM as a potential confounding factor and the

PANSS as a description of the trait "Preoccupation": "Absorption with internally generated

thoughts and feelings and with autistic experiences to the detriment of reality orientation

and adaptive behavior." Recent work has highlighted the difficulty in diagnosing ASD in

SSD patients because of phenotypic overlap, even with specially made instruments (Deste

et al., 2018; Kästner et al., 2015). Figure 4.6 shows the degree of overlap between the two

conditions in the PNBO; encoded overlapping traits include both low-level phenotypic traits

with high specificity (anxious behavior, reciprocal conversation) but also intermediate level

terms (involuntary movement behavior phenotype). By encoding the PANSS and ADR-I

into the same ontology, a higher degree of overlap between conditions is seen than would

otherwise be expected. This is explained by the transitive nature of subsumption reasoning,

as described by the true path rule. This overlap is heterogeneous and does not speak to

a directionality of phenotype - however, Mendelian randomization analysis seems to echo

a base assumption from the 1970s about the relationship between ASD and SSD. In my

causative modeling of SSD exposure to ASD, I used SNPs which were not associated with

SSD. Both the effect size of all methods used, and the post-hoc directionality tests suggest

a strong possibility that a lifetime exposure to SSD associated genetic loci may cause ASD.

There was strong heterogeneity and among SNPs, though the intercept test under MR Egger

regression suggests a lack of direction pleiotropy which would invalidate the robust methods

used. While no single SNP will likely be the cause of this association, the strong evidence

brought forward by the causal model confirms the interconnected presentation, and possible

interconnected etiology, of these heterogeneous conditions.
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4.4.4 Clustering the spectrum

Methods originally developed for weighted gene co-expression analysis were adapted for clus-

tering probands based on the semantic similarity of their phenotypes. Probands were divided

into 14 clusters, with no probands failing to cluster (possible using the WGCNA framework

if unstable clusters are found during recursive tree cutting). While each cluster was accessed

for stability with permutation testing, each cluster was kept for further analysis. The most

informative measure tested under permutation was the weighted degree, which calculates the

mean weighted degree of nodes in each cluster, the idea being that nodes in a cluster should

have higher degree ( a measure of inter-connectivity) than expected by chance. When testing

each cluster’s stability, the mean semantic similarity of each trait was also calculated. While

both measures were robust, the mean semantic similarity of traits alone was not enough

to indicate cluster stability. This highlights the usefulness of exponentiating the adjacency

matrix before using it to create a dissimilarity matrix for clustering. By applying that trans-

formation, semantically dissimilar pairs of probands’s connections are further weakened. The

range of raw similarity, measured by Resnik’s method, was (2.81, 5.22), indicating the high

degree of inherent similarity of probands. Semantic similarity-based regression was used to

both independently validate clusters and indicate which combinations of traits were most

likely to segregate a cluster from the combination of all others. Two samples, cyan and blue

clusters, while varying greatly in size, were themselves heterogeneous enough to not produce

robust phenotypic signatures under similarity regression. Some clusters, for example green,

produced a signature phenotype profile of highly related traits (loss of language ability and

abnormal social verbalization and response rates). Others, such as the red cluster, included

gain of function traits - so called savant abilities. While the red cluster was marked by

increased visiospatial ability, other abilities possible include computation ability and artistic

ability. In the PNBO, these are disjoint with cognitive traits indicating loss of communica-

tive ability. The semantic profiles revealed include several upper-level terms - such as in
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the black cluster where probands exhibit abnormal voluntary movement. There are several

subclasses of voluntary movement, indicating that the members of the black cluster share

several varied movement abnormalities. If a more specific movement related trait helped de-

fine the cluster vs all others, it would have been revealed in the similarity regression analysis.

Interestingly, the pink cluster is uniquely distinguished by probands who have high levels of

several restricted behaviors. Here, sensory interests indicate repetitive preoccupations such

as spinning the wheel of a toy car repeatedly, or running in circles. The type of sensory

interests are not always well defined by the ADI-R; if they were anatomical components

from UBERON could be assigned to them to further segregate interests by body parts or

associated behaviors. For example, running repeatedly in circles may be indicated on assess-

ments as an unusual sensory interest, but may also be a voluntary movement trait. When

viewing each proband as a constellation of 100 traits, cluster-based similarity regression has

been useful for reducing the dimensionality of these traits in subgroups. What remains to

be seen, however, are if probands in different clusters have different genetic loci associated

to them from GWAS analysis.

4.4.5 Extending PNBO and ANBO beyond this chapter

A main goal of the research in this project is to expand both the ANBO and PNBO be-

yond what is currently presented. To benefit the model organism research community, I aim

to align the PNBO with the Mammalian Phenotype ontology. Working with colleagues, I

aim to annotate the PNBO with data from patients on the schizophrenia spectrum, lever-

aging large deeply phenotyped cohorts as part of the Psychosis Immune Mechanism Strati-

fied Medicine Study; see https://www.birmingham.ac.uk/research/mental-health/Psychosis-

Immune-Mechanism-Stratified-Medicine-Study.aspx. By applying the PNBO to the various

cohorts in this study, I will be able to validate the ability of PNBO to discriminate clusters of
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non-autism patients. The PNBO modelled the phenotypic profile of one well-studied cohort

of autism patients, the Simons Simplex Collection. By expanding the cohort to others diag-

nosed with the ADI-R, more precise and better powered characterization of autism subtypes

will be possible. Lastly, as the ANBO expands and opportunities to use it in practice with

SmartLab begin, it may be possible to extend this approach of studying cognitive processes

to the model organism community, by semantically labeling sensors with domains of activity

in a home cage. To accomplish this, ANBO would have to be modified to be mouse focused,

and extensive consultation with model organism focused neurobehavioral geneticists would

be required.

4.5 Conclusions and Chapter Summary

In this chapter, I have presented the development of the Psychological Neuro Behavior On-

tology, or PNBO, and the Aging Neuro Behavior Ontology, or ANBO. Both ontologies are

logically consistent and concise descriptions of their respective domains. The PNBO incor-

porates phenotypic manifestations of both autism (ASD) and schizophrenia (SSD) spectrum

disorders from two diagnostic interviews, the Positive and Negative Syndrome Scale and the

Autism Diagnostic Interview - Revised. The degree of overlap between ASD and SSD traits

is reflected a possible genetic etiology suggested by a Mendelian randomization analysis using

independent SSD and ASD populations. To my knowledge, this chapter includes both the

first ontology to represent the SSD phenotype, and to do so in combination with the ASD

phenotype. It also includes the first Mendelian randomization study of exposure to SSD

on ASD, and results are intriguing even if possible balanced pleiotropy is involved. Lastly,

a major work of this chapter was modeling the Simons Simplex Collection cohort with the

PNBO, and segregating clusters of probands who manifested similar traits. Robust boot-

strapping suggests most clusters of probands exhibit more stability than would be expected

155



Semantic Modeling of Neurobehavioral Phenotypes

by chance. Additionally, linear modeling of phenotypic profiles which can explain the cluster

segregation suggests cluster Independence while explaining which traits are informative in

segregating probands in the SSC cohort.

Modeling the relationships between traits exhibited by the probands of the SSC cohort

produced several clusters of individuals with a shared phenotypic profile. Autism manifests

itself in these various phenotypic profiles, which may have differing genetic etiologies. This

leads to the natural complement of detailed phenotyping when genetic data is available:

genomics. To test the genetic variability of autism sub-profiles, in the next chapter I employ

genome-wide association studies (as in Chapter 3) and complementary analyses to correlate

genetic mutations in the SSC cohort with both individual traits encoded in the PNBO and

with the clusters derived in this chapter.
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Metric Count

1 Axiom 52872

2 Logical axiom count 9064

3 Declaration axioms count 3649

4 Class count 3255

5 Object property count 226

6 Data property count 0

7 Individual count 4

8 Annotation Property count 166

9 SubClassOf 7058

10 EquivalentClasses 1334

11 DisjointClasses 152

12 GCI count 26

13 Hidden GCI Count 1317

14 SubObjectPropertyOf 222

15 EquivalentObjectProperties 0

16 InverseObjectProperties 41

17 DisjointObjectProperties 0

18 FunctionalObjectProperty 1

19 InverseFunctionalObjectProperty 0

20 TransitiveObjectProperty 34

21 SymmetricObjectProperty 6

22 AsymmetricObjectProperty 1

23 ReflexiveObjectProperty 0

24 IrrefexiveObjectProperty 2

25 ObjectPropertyDomain 60

26 ObjectPropertyRange 55

27 SubPropertyChainOf 78

28 AnnotationAssertion 36959

Table 4.1: PNBO Ontology Full Metrics
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Trait TraitName Count

1 PNBO_050 group play with peers 2580

2 PNBO_037 appropriate social response 2453

3 PNBO_080 social disinhibition 2446

4 PNBO_054 imaginative play 2422

5 PNBO_086 spontaneous imitation of actions 2409

6 PNBO_028 offering to share 2387

7 PNBO_047 eye contact behavior 2347

8 PNBO_074 response to children initiating behavior 2277

9 PNBO_023 reciprocal conversation 2255

10 PNBO_039 response to voice 2255

11 PNBO_055 imitative social play 2218

12 PNBO_058 initiating social activity 2215

13 PNBO_027 offering comfort 2208

14 PNBO_022 social verbalization and response 2204

15 PNBO_072 repetitive use of objects 2191

16 PNBO_059 interest in children 2190

17 PNBO_065 pointing to express interest 2184

18 PNBO_067 abnormal quality of social overtures 2162

19 PNBO_044 instrumental gesture behavior 2147

20 PNBO_077 smiling 2138

21 PNBO_068 facial expressions 2105

22 PNBO_078 directing attention 2068

23 PNBO_014 delayed echolalia 2042

24 PNBO_075 offering to share enjoyment 2030

25 PNBO_061 intonation phenotype 2024

26 PNBO_048 friendship maintenance behavior 2016

27 PNBO_084 unusual sensory interests 2010

28 PNBO_081 sensitivity to noise 1983

29 PNBO_041 circumscribed interests 1962

30 PNBO_019 loss of simple language comprehension 1961

31 PNBO_056 inappropriate facial expressions 1931

32 PNBO_004 verbal communication phenotype 1877

33 PNBO_032 aggressive behavior towards caregiver 1863

34 PNBO_046 coping with changes in environment 1847

35 PNBO_052 hand and finger mannerisms 1632

36 PNBO_035 abnormal response to sensory stimuli 1604

37 PNBO_026 head nodding 1577

38 PNBO_029 complex movement behavior 1487

39 PNBO_034 delayed development of verbal communication 1438

40 PNBO_057 inappropriate questions 1393

41 PNBO_066 pronominal reversal 1391

42 PNBO_051 head shaking 1357

43 PNBO_033 aggressive behavior towards non-caregiver 1324

44 PNBO_021 other body use 1304

45 PNBO_043 compulsive behavior 1293

46 PNBO_076 self-injury 1253

47 PNBO_024 abnormal gait 1211

48 PNBO_010 loss of articulation skills 1122

49 PNBO_085 verbal rituals 1018

50 PNBO_070 memory ability and skill phenotype 929

51 PNBO_083 unusual preoccupations 855

52 PNBO_082 attachment to objects 817

53 PNBO_025 neologism phenotype 753

54 PNBO_012 loss of learned skills 669

55 PNBO_073 coping with changes in environment not affecting self 638

56 NBO:0000565 social withdrawal 610

57 PNBO_003 loss of language ability 448

58 PNBO_071 visiospatial ability 406

59 PNBO_069 reading ability phenotype 368

60 PNBO_007 loss of meaningful communication 363

61 PNBO_008 loss of communicative intent 329

62 PNBO_064 musical ability phenotype 265

63 PNBO_036 computational ability phenotype 245

64 PNBO_013 midline hand movements 240

65 PNBO_049 fainting behavior 215

66 PNBO_053 hyperventilation 208

67 PNBO_011 loss of language from physical illness 192

68 PNBO_030 skilled drawing behavior 173

69 PNBO_016 constructive playing behavior 164

70 NBO:0000591 motor coordination phenotype 111

71 PNBO_006 decreased level of communication ability 106

72 PNBO_018 loss of self-help skills 105

73 PNBO_009 loss of syntactical skills 29

Table 4.2: The frequency of traits the Psychological Neuro Behavior Ontology mapped to the Simons

Simplex Collection probands, as provided by the Autism Diagnostic Interview - Revised (ADI-R).158
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Weighted Degree Pval Semantic Similarity Pval Degree FDR Similarity FDR Module Module Color

1 0.0001000 0.0001000 0.0001273 0.0002800 1 turquoise

2 0.0001000 0.0001000 0.0001273 0.0002800 2 blue

3 0.0217978 0.0001000 0.0234746 0.0002800 3 brown

4 0.0001000 0.0001000 0.0001273 0.0002800 4 yellow

5 0.0001000 0.0001000 0.0001273 0.0002800 5 green

6 0.0001000 0.3841616 0.0001273 0.7683232 6 red

7 0.0938906 1.0000000 0.0938906 1.0000000 7 black

8 0.0001000 0.9748025 0.0001273 1.0000000 8 pink

9 0.0001000 0.9600040 0.0001273 1.0000000 9 magenta

10 0.0001000 1.0000000 0.0001273 1.0000000 10 purple

11 0.0001000 0.9505049 0.0001273 1.0000000 11 greenyellow

12 0.0001000 0.5857414 0.0001273 1.0000000 12 tan

13 0.0009999 1.0000000 0.0011666 1.0000000 13 salmon

14 0.0001000 0.0465953 0.0001273 0.1087225 14 cyan

Table 4.3: Modules from hierarichical clustering were subjected to 10,000 label permutations. The

pairwise semantic similarity matrix and average distance of the topological overlap matrix of each

community was calculated, and test statistics created against these empirical p-values. PNBO =

Psychological - Neuro Behavior Ontology
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Color Count TraitMin TraitMean TraitMax TraitSD

turquoise 627 25 39.49 56 5.2

blue 524 17 41.06 57 6.51

brown 518 21 43.08 61 6.46

yellow 138 24 39.67 52 5.16

green 123 28 40.02 53 4.9

red 100 20 36.17 57 6.21

black 95 18 28.55 46 5.23

pink 79 25 37.65 51 6.05

magenta 74 22 34.96 49 4.97

purple 73 17 31.59 46 5.36

greenyellow 71 24 37.58 49 6.53

tan 58 24 33.67 42 4.9

salmon 57 18 31.82 45 5.81

cyan 48 27 36.9 51 5.91

Table 4.4: Trait distribution within modules. Count is the number of probands assigned to each

module. TraitMin, Mean, Max, and SD are the minimum, mean, maximum, and standard deviation

of the number of traits assigned to each proband in each cluster.
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Chapter Five

Uncovering genetic correlates of autism

endophenotypes

5.1 Background and Chapter Overview

While Chapter 4 provided a road map for depicting endophenotypic traits among cohorts

of individuals on various spectra of disorders, it did not provide a method for associating

genetic loci with these traits. To address questions of which loci or combinations of loci may

cause manifested phenotype profiles, this chapter employs a variety of methods.

First, I briefly re-introduce the theory behind genome wide association studies (GWAS),

and explain the concept of epistasis, and how genetic interactions can be mined to provide

insight into networks of genes which contribute to a phenotype. I then review poly-genic

models of complex disease as it relates to psychiatric/behavioral disorders. The experimental

basis for this chapter is 64 genome wide association studies (GWAS): 50 of endophenotypes in

Simons Simplex Collection probands modeled in the PNBO, and 14 of clusters of probands

identified by creating a network out of those traits (see Chapter 4). I demonstrate that

GWAS of these trait profiles can produce more robust associations than single-trait GWAS,
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and that SNPs from cluster-based GWAS can be used to successfully classify probands as

belonging to their identified cluster. Lastly, I investigate findings from the best-validated

GWAS, providing insight into a possible link between chronobiology and a subgroup of autism

patients.

5.1.1 Genome Wide Association Studies

As previously described in Chapter 3, genome wide association studies, or GWAS, form the

basis of modern genetic epidemiology. GWAS have successfully revealed risk alelles associ-

ated with traits from body composition (Fox et al., 2012) to opioid sensitivity (Nishizawa

et al., 2014). At heart, they are simple association analyses between a genetic locus (often

a SNP) and an measurable or observable phenotype. However, such associations are more

complicated when subjects in a GWAS study are related. Family based GWAS offers meth-

ods not available to case/control analyses of unrelated individuals (Benyamin, Visscher, and

McRae, 2009). These include transmission disequlibrium tests (Spielman, McGinnis, and

Ewens, 1993) and family-based designs (Laird and Lange, 2006) which take into account

paternal or maternal associations or create artificial controls from a trio of parents and a

proband. In the analyses performed in this chapter, I kept a case/control framework while us-

ing generalized mixed linear models to account for relationships between cases and controls.

In combination with traditional GWAS, I explore gene x gene interactions, investigating

epistasis.

5.1.2 Epistasis

In terms of quantitative genetics, epistasis can be understood as the non-additive contribu-

tion of two variants on a phenotypic trait, as proposed by Fisher (Fisher, 1919). We know
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that proteins act together to manifest molecular functions, as evidenced by the utility of the

STRING protein-protein interaction database (Szklarczyk et al., 2015b). Because of such

interactions, there is a dependency between the loci encoding interacting proteins. This non-

independence is what Fisher measured, and can be quantified through various tests at the

level of the individual allele. Challenges in identifying epistatic interactions range from the

number of combinatorial tests to be performed (a test of 10 loci results in 100 tests, and this

scales quadraticly). Recent reviews have concentrated on the role of epistatic interactions

may play in mental illness and psychiatric disorders (Webber, 2017), leading away from a

monogenic influence on disease to a polygenic approach.

5.1.3 Polygeninicity in Psychological Disorders

Polygenicity is the contribution of many alleles, whether SNPs or larger mutations, to phe-

notype manifestation (Wendt et al., 2020). Such contributions to behavioral disorders are

often small, and it is only when combing alleles into a polygenic model does heritability or

disease status get explained. Beyond polygenic models, the omnigenic hypothesis propose

that highly interconnected networks of gene regulatory networks contribute to a phenotype

(Boyle, Li, and Pritchard, 2017). A survey of the GWAS catalog (MacArthur et al., 2017)

in March 2020 identified 29 associations between 25 independent loci and autism from 6

published studies, only one of which reached strict genome-wide significance. Compounding

this, it has been recently demonstrated that polygenic risk for autism is associated with ele-

vated DNA methylation patterns, furthering the complexity of gene regulation’s role in ASD

phenotype manifestation (Hannon et al., 2018). Knowing the complexity of the genomics

of autism spectrum disorder, this chapter attempts to reduce this complexity by organizing

ASD patients phenotypically following the approach depicted in Chapter 4, and then gene

association testing on clusters of phenotypicly similar individuals is performed.
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5.2 Methods

This study was approved by the University of Birmingham’s ethical review committee, ERN-

17-0879, and assigned the Simons Foundation Autism Research Initiative (SFARI) project

number 2720.1. Genetic data was downloaded from the Simons Simplex Collection, compris-

ing 2591 families. Of these, the majority are quads including both parents and an unaffected

sibling or parental trios, with some having two probands or more than one sibling. The fam-

ilies were genotyped on one of three Illumina platforms: 1Mv1 (333 families), 1Mv3 (1189

families), Omni2.5 (1069 families).

5.2.1 SSC GWAS Quality Control

Quality control was carried out using PLINK v1.9 and R v3.5.0. For each of the three

datasets the same procedure was followed. Firstly, variants which had a particularly high

missing call rate (>0.1) were removed. Parents were excluded from the analysis, followed

by heterogeneity outliers, with a rate greater than 3 standard deviations (SD) from the

mean and individuals with a missing rate of > 0.05. In order to find related individuals

outside of families, identity-by-descent calculations were performed. Regions of known high

LD were removed, then remaining regions presenting with high linkage disequilibrium (LD)

retained using the PLINK function ‘indep-pairwise’ moving a 50kb window with a step size

of 5 variants at a time and a 0.5 R2 threshold. Identity by descent (IBD) scores calculated

between individuals, selecting the individual with the lowest missing rate to retain. Inside

family comparisons were made for IBD estimates > 0.9 to remove twins or duplicates and

outside of family > 0.1875 to find those too closely related. Variants not positioned on

autosomes or with a MAF <0.01 were excluded before the datasets were merged.

Variants were identified that were shared across the three datasets and the merge was
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performed. Any variants which presented with inconsistent base pair position or alleles were

removed. For each analysis, a covariates file was built which included gender, genotyping

platform, and the first five Principal Components (PC’s). Principal Component Analysis

(PCA) was carried out by removing known high LD regions using the PLINK function

‘indep-pairwise’ moving a 50kb window with a step size of 5 variants at a time and a 0.5 R2

threshold.

5.2.2 GWAS with Related Subjects

To perform a GWAS analysis with related individuals, a mixed model using the GEMMA

software suite was used (Zhou and Stephens, 2012). A generalized linear mixed model is

created:

y = Wα + xβ + Zu+ ε (5.1)

where y is the vector of outcomes (presence or absence of a trait),W is a matrix of fixed effect

covariates and a column vector of 1s, α is the corresponding vector of coefficients including

the intercept, x is the vector of genotypes, β is the effect size of each genotypic marker, Z is

the identity matrix, and u is the vector of random effects, and ε is the vector of error terms.

The mixed effect term u is calculated by:

u ∼MVNm(0, λτ
−1K) (5.2)

where u is distributed in a multivariate normal distribution with a mean of 0, m = n below

and denotes the number of individuals, τ is the variance of residual errors, K is a m x m

relatedness or kinship matrix (derived from the covariance of the individuals, populated by

the proportion of shared alleles), and λ is the ratio between the variance components. The

error term, ε, is modelled as:

ε ∼MVNn(0, τ
−1In) (5.3)
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which is multivariate normally distributed about a mean of 0, where I is the identity ma-

trix. In non-human studies, m could denote the number of strains and n the number of

animals with Z representing the strain each animal belongs to, but in this case m = n as

stated. By incorporating the mixed-effect u, which captures the relatedness of individuals,

the assumption that each subject in the GWAS analysis is independent does not have to

hold. A kinship matrix was built for the entire cohort of probands and siblings and used

for each analysis. Individual fam files were created for each of the 50 different behavioural

phenotypes modelled in PNBO which had > 1,000 cases. Prior to any testing, final QC steps

were taken per trait, removing variants based on a case control missing rate likelihood of <

0.001, missing rate 0.05 or a Hardy Weinberg Equilibrium p < 1e-8. Finally, case-control

association was calculated for the remaining variants.

For each GWAS in this chapter, QQ normality and manhattan plots were generated

with ggplot2 (Wickham, 2016). Results of p <= 1e-5, were kept for further investigation.

5.2.3 GWAS of Clustered Traits

To test the assumption that individuals who shared common traits would also share a com-

mon genotypic architecture underlying those traits, GWAS were performed using the pres-

ence or absence of a proband in each cluster identified in Chapter 3. For cluster 1, probands

in clusters 2:14 were treated as controls, and probands in cluster 1 as cases. The procedure

for performing GWAS on individual PNBO traits was followed, including using a kinship

matrix as a mixed effect parameter, and including sex, genotyping platform, and genetic

principal components as fixed effects.
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5.2.4 Epistasis Detection

To test for non-additive interactions between traits, logistic regression epistasis tests for SNP-

SNP interactions were performed using CASSI (“CASSI”). After each GWAS performed,

any SNPs associated to a trait at a moderate p-value of 1e-3 were retained for analysis with

CASSI. A likelihood ratio test statistic to test two models was applied:

ln(P (y = case)/P (y = control)) = Wα + β0 + β1gA + β2gB + β3gAgB (5.4)

versus

ln(P (y = case)/P (y = control)) = Wα + β0 + β1gA + β2gB (5.5)

where the βs are the intercept, allele 1, allele 2, and the interaction term respectively. As

previously used, Wα is the fixed effect covariate matrix including sex, genotyping chip, and

5 PCs. After calculating the likelihood of each model for a pair of SNPs, the ratio of the

reduced model over the full λ = L0/L1 can be transformed into a χ2 statistic:

χ2 = −2lnλ (5.6)

to produce a p-value compared to a chi2 distribution with 1 degree of freedom. Test with p

<- 1e-5 were considered statistically significant.

5.2.5 GWAS validation via LASSO

To validate the results of clustered GWAS, SNPs identified as significantly associating with

each cluster p <= 1e−5 or whose pairwise combination was associated at the same threshold

were kept. Alleles were extracted and recoded to allelic dose format in a dominant model

using PLINK. These SNPs were used as features in a LASSO model, mimicking the frame-

work in Chapter 2 and as published by myself and colleagues (Bravo-Merodio et al., 2019).

Using the presence or absence of an individual in a cluster as target and SNPs as features,
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data were split split into training (75%) and test (25%), stratified to maintain the propor-

tion of members in the target cluster. Cluster membership was regressed on SNPs and all

their pair-wise interactions using the least absolute shrinkage and selection operator, or lasso

(Tibshirani, 1994; Zou, 2006), as modified for logistic regression. In this regression analysis,

the normal objective function is:

Residualsumofsquares (RSS) =
N∑
i=1

(
yi − xTi β

)2 (5.7)

which minimizes the residual sum of squares error. The β value, the regression coefficients,

minimize this value. In the lasso, a penalizing term is added:

minimize

β ∈ Rp

1

2
‖y −Xβ‖22 + λ ‖β‖1 (5.8)

which adds a λ penalizing term. Here, the left side of the equation is the RSS loss function

rewritten, and the right side shows the parameter λ; this is the penalized sum of the absolute

values of the β coefficient. To optimize the λ, hyperparameter,each training set was split

10-folds for cross-validation, and a grid search was used to test values of λ in each fold,

optimized on the best area under the ROC curve. The best performing model was then

tested on the hold-out test set. This procedure was repeated in an outer loop 10 times

to account for stratification effects. The caret (Wing et al., 2018) and glmnet (Friedman,

Hastie, and Tibshirani, 2010) packages were used for modeling, and all plots were created

in the ggplot2 (Wickham, 2016) package in the R computing environment (R Core Team,

2013).

5.2.6 Phenome Wide Network Creation

To characterize genetic variants which influence the autism phenome, a graph was created.

The Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016) was used to annotate

significant SNPs from GWAS and epistasis detection for each of the 14 phenome clusters
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identified in Chapter 3. For each phenotypic profile identified by Similarity Regression,

traits with a marginal probability of association greater than 0.5 were kept. Within each

gene/cluster association, the−log10 p-value of the association was multiplied by the marginal

probability of each trait/cluster association, resulting in an association score. This resulted

in gene/trait associations which formed the nodes of a weighted, undirected graph. Edge

weights were the association scores. The graph was visualized using a weighted force-directed

layout in Cytoscape v3.9.0 (Shannon et al., 2003).

5.2.7 Gene Set Investigations

SNPs identified as significant in the SSC GWAS were annotated with the Ensembl Variant

Effect Predictor, using version 97 (McLaren et al., 2016). Variants within protein-coding

genes were annotated for coding consequences, and potential deleteriousness with SIFT

(Vaser et al., 2016) and PolyPhen (Adzhubei et al., 2010). Gene sets were investigated

by performing gene set enrichment analysis using the gProfiler2 R package (Kolberg and

Raudvere, 2020; Reimand, Arak, and Vilo, 2011). Databases and ontologies used include

the Gene Ontology (Gene Ontology Consortium, 2015), the Kyoto Encyclopedia of Genes

and Genomes Database (Kanehisa and Goto, 2000), the Human Phenotype Ontology (Köh-

ler et al., 2019), the CORUM database (Ruepp et al., 2010), REACTOME (Fabregat et al.,

2016), and Wikipathways (Slenter et al., 2018). To compare my findings against a known gold

standard for autism-related genes, the gene scoring SFARI Gene database was downloaded

from the Q2 2019 release.
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5.3 Results

Strict quality control and preprocessing allowed for the assessment of individuals and SNPs,

but also facilitated for the mitigation of ethnic background artifacts by including loadings

from the principal component analysis of each cohort. The 1Mv1 chip cohort (Figure 5.1)

contains individuals with the highest missingness rate of their SNPs, while also being the

cohort genotyped - see Table 5.1. The cohort genotyped on 1Mv3, the second generation to be

processed in the SSC, is also the largest, and the large degree of variance explained by the first

principal component reflects the homogeneity of the cohort (Figure 5.2. The near horizontal

lines in the right of panel 5.2b indicate the low explanatory power of dimension 4 and

following principal components. The percent of variance explained by the second component

is the largest of each cohort. The Omni cohort reflects a wide degree of heterogeneity (Figure

5.3a as indicated by the F-Statistic range (black vertical bars). While not the largest cohort

(1016 probands vs 1136 in the 1Mv3 passing QC), it is by far the largest chipset, including

over twice the loci passing QC as any other genotyped cohort in the SSC, Table 5.2.

Individual Filter 1Mv1 1Mv3 Omni2.5

Original 335/1019 1193/3433 1077/3163

Remove Parents 335/353 1191/2378 1077/1025

Check Sex 335/350 1191/1046 1077/1024

Heterozygosity 326/343 1140/1012 1023/979

Relatedness 324/343 1136/1007 1016/978

Table 5.1: Filtering individuals in three arrays. Individuals are segregated into proband/other,

where other includes parents and siblings.

5.3.1 Single Trait GWAS fail to reveal significant associations

Fifty GWAS analyses were performed on PNBO-encoded traits from the SSC cohort. No

single-trait analysis produced SNPs above a strict genome-wide threshold for significance
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(a) (b)

Figure 5.1: Diagnostic plots for the Simons Simplex Collection (SSC) cohort genotyped with the

Illumina 1Mv1 array. For each individual, panel A indicates the Fisher’s test statistic for heterozy-

gosity (x axis), black horizontal lines representing three standard deviations from the mean. The

missingness rate for each individual is indicated by the y axis. Panel B indicates the first four prin-

cipal components of the SNPs belonging to each individual after PCA dimensionality reduction,

and the percent of variance explained by each component shown in the key.

Individual Filter 1Mv1 1Mv3 Omni2.5

Original 1,072,814 1,199,033 2,440,283

Autosomes 1,029,591 1,147,689 2,383,385

Missingness >0.05 1,006,127 1,105,550 2,380,115

MAF <0.01 962,109 1,062,277 2,236,183

Table 5.2: Filtering variants in three arrays. Within each array, variants were filtered to exclude

10% missing, a minor allele frequency (MAF) of less than 1 %, and exclude sex chromosomes.
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(a) (b)

Figure 5.2: Diagnostic plots for the Simons Simplex Collection (SSC) cohort genotyped with the

Illumina 1Mv3 array. For each individual, panel A indicates the Fisher’s test statistic for heterozy-

gosity (x axis), black horizontal lines representing three standard deviations from the mean. The

missingness rate for each individual is indicated by the y axis. Panel B indicates the first four prin-

cipal components of the SNPs belonging to each individual after PCA dimensionality reduction,

and the percent of variance explained by each component shown in the key.
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(a) (b)

Figure 5.3: Diagnostic plots for the Simons Simplex Collection (SSC) cohort genotyped with the

Illumina Omni2.5 array. For each individual, panel A indicates the Fisher’s test statistic for het-

erozygosity (x axis), black horizontal lines representing three standard deviations from the mean.

The missingness rate for each individual is indicated by the y axis. Panel B indicates the first four

principal components of the SNPs belonging to each individual after PCA dimensionality reduction,

and the percent of variance explained by each component shown in the key.
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(p < 1e-8), and few produced any hits above a nominal threshold used for inclusion into

the GWAS catalog (MacArthur et al., 2017) (p < 1e-5). Two traits are presented, namely

an abnormal gait and a lack of head nodding. As seen in Figure 5.4, the GWAS is heavily

underpowered ( Figure 5.4a), with a QQ plot whose observed p-values fall far below the

expected line The Manhattan plot likewise shows no single locus, and largely no signal.

(a) (b)

Figure 5.4: GWAS of the SSC cohort whose endophenotype included an abnormal gait as reported

by a proband’s parent. Panel A shows an under powered QQ plot, with very little signal. Panel B

shows the corresponding Manhattan plot. X-axis represents chromosome position, Y-axis represents

the -log10 p-value of association.

A GWAS analysis on head nodding produced similar results, see Figure 5.5, with

nearly identical QQ statististics; while there appears to be a locus in chromosome 15

which presents several SNPs in high LD, none are statistically significant on a genome-wide

scale. GWAS statistics for each individual analysis are available in the online appendix, see

https://github.com/jaw-bioinf/PhdThesis.
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(a) (b)

Figure 5.5: GWAS of the SSC cohort whose endophenotype included a lack of nodding the head as

reported by a proband’s parent. Panel A shows an under powered QQ plot, with very little signal.

Panel B shows the corresponding Manhattan plot. X-axis represents chromosome position, Y-axis

represents the -log10 p-value of association.

Epistasis detection highlights otherwise non-significant loci

While in most cases there were no genome-wide significant loci revealed when testing each

PNBO trait, tests for epistatic interactions did reveal loci which, when combined, had a

statistically significant association with PNBO traits (p < 1e-5). The PNBO trait "Delayed

Echolalia" can be seen in Figure 5.6. While the GWAS itself was underpowered Figure (5.6a),

there were significant epistatic interactions, as can be seen in the Manhattan plot. Intra-

genic SNPs are labelled with their coding gene, and yellow diagrams indicating interactions

between CASP8 and ADGRA3, and between SCL39A8 and AC007846.2. Each interaction

is in trans, highlighting the multigenic nature of behavioral GWAS.

While the GWAS of abnormal gait in the SSC cohort did not produce any significant

results, Table 5.3 indicates 17 significant interactions. Six of them are between SNPs located
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(a) (b)

Figure 5.6: GWAS of the SSC cohort whose endophenotype included delayed echolalia, or the

delayed repetition of words and sounds heard by the proband. Panel A shows a QQ plot. Panel B

shows the corresponding Manhattan plot. X-axis represents chromosome position, Y-axis represents

the -log10 p-value of association. Gold lines indicate epistatic interactions, both intragenic (gene

names labeled).
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on chromosomes 11 and 17, each with a β of at least 0.43, or an odds ratio (OR) of 1.5.

Not all associations are positive, indeed one pairwise epistatic interaction between SNPs on

Chr 8 and 14 may be protective against abnormal gait in an autistic population, with a β

of -17.60, OR of 2e-8.

ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p

1 rs10903108 1 25061527 rs6836731 4 126776318 -0.3352 0.0739 5.69396e-06

2 rs1975365 1 85318295 rs12120901 1 241637153 1.0540 0.2376 9.17224e-06

3 rs934012 2 19593206 rs11707637 3 25554919 0.3354 0.0750 7.63249e-06

4 rs934012 2 19593206 rs12432424 14 35549578 -0.7752 0.1711 5.86169e-06

5 rs1427538 2 19627241 rs11707637 3 25554919 0.3825 0.0863 9.37178e-06

6 rs1530940 2 236570047 rs9401672 6 123820711 -0.4470 0.0847 1.3026e-07

7 rs13024834 2 236611291 rs9401672 6 123820711 -0.4034 0.0863 2.92018e-06

8 rs6920980 6 71083045 rs9540226 13 64281942 0.7508 0.1691 8.97587e-06

9 rs12375209 7 10863750 rs7789727 7 102576731 -0.8807 0.1963 7.23405e-06

10 rs4595060 7 108548069 rs4782578 16 82620921 0.5280 0.1184 8.13866e-06

11 rs7830660 8 16460188 rs10483465 14 35978788 -17.6035 3.9463 8.16772e-06

12 rs1152620 11 65013905 rs16972147 19 52544819 0.4816 0.1026 2.65643e-06

13 rs1152620 11 65013905 rs10419759 19 52547139 0.4844 0.1018 1.97434e-06

14 rs600231 11 65017222 rs16972147 19 52544819 0.4396 0.0995 9.99016e-06

15 rs10896016 11 65092281 rs16972147 19 52544819 0.4411 0.0989 8.11992e-06

16 rs1784220 11 65094290 rs16972147 19 52544819 0.4859 0.1020 1.922e-06

17 rs1784220 11 65094290 rs10419759 19 52547139 0.4739 0.1011 2.76482e-06

Table 5.3: Significant gait Epistasis Results

An epistatic association analysis of the "head nodding" phenotype revealed 7 signif-

icant interactions, including one protective against a lack of communicating yes by a head

nod (the explanatory meaning of this trait), between Chrs 1 and 3, β -0.92, or an OR 0.39.

While individual traits may not produce many (or any) statistically significant genetic

or epistatic associations in the SSC cohort, the PNBO allows us to investigate very closely

related traits to see if they produce similar GWAS results.
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p

1 rs6673329 1 161061124 rs9837045 3 3044773 -0.9282 0.2088 8.81891e-06

2 rs2279014 2 218969420 rs6481442 10 52041194 0.3257 0.0732 8.65598e-06

3 rs12633333 3 21027741 rs4741721 9 2498296 0.3525 0.0784 6.85237e-06

4 rs12633333 3 21027741 rs1970074 9 2499947 0.3534 0.0781 5.98102e-06

5 rs6846158 4 14373558 rs7725025 5 83343330 0.5811 0.1305 8.47224e-06

6 rs6840522 4 54725132 rs17402321 7 8206434 0.6121 0.1256 1.08975e-06

7 rs4446676 7 103665690 rs8009761 14 73958307 0.3363 0.0739 5.42927e-06

Table 5.4: Significant nodding Epistasis Results

Case study: aggression towards peers (non-caregivers)

The ADI-R asks parents two questions about aggressive behavior, one relating to aggression

towards peers (coded as aggression towards non-caregivers), and the other relating to aggres-

sion towards caregivers. Each trait is a sibling in the PNBO ontology, with a common parent

term (aggressive behavior). When investigating GWAS against a caregiver, no significant

results are returned, evident in Figure 5.7. Not only did GWAS not reveal any associations,

but epistasis testing did not reveal any interacting SNPs associated with the trait.

Aggression towards a non-caregiver, however, did result in statistically relevant asso-

ciations from epistasis testing. While still underpowered, the QQ plot indicates a less-severe

observed to expected p-value ratio, and several epistatic interactions are visible in the Man-

hattan plot in Figure 5.8. Eight epistatic interactions were uncovered, including two cis

interactions sharing a chromosome, on Chr 3 and 14, see Tables 5.5 and 5.6. Three GWAS

SNPs were significant, including several intragenic. These include SNPs within PEX5L,

COL25A1, CPZ, MARCHF1, GALNT18, JCAD, OPCML, and CAPN3.

After GWAS and tests for significant epistatic interactions were performed on each

PNBO trait, intragenic SNPs were annotated with their corresponding genes, and inter-
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(a) (b)

Figure 5.7: GWAS of the SSC cohort whose endophenotype included aggression directed towards

caregivers. Panel A shows a QQ plot. Panel B shows the corresponding Manhattan plot. X-axis

represents chromosome position, Y-axis represents the -log10 p-value of association.

(a) (b)

Figure 5.8: GWAS of the SSC cohort whose endophenotype included aggression directed towards

non-caregivers, usually other children. Panel A shows a QQ plot. Panel B shows the corresponding

Manhattan plot. X-axis represents chromosome position, Y-axis represents the -log10 p-value of

association.
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rs chr ps beta se p

1 rs6530854 8 15280833 0.0432 0.0091 2.193156e-06

2 rs6530863 8 15291861 0.0403 0.0088 5.054047e-06

3 rs35684719 19 1852649 -0.0853 0.0191 7.806984e-06

Table 5.5: Significant aggression towards a non-caregiver GWAS Results

ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p

1 rs12141375 1 201447985 rs2505127 10 30409866 0.5838 0.1261 3.62889e-06

2 rs4078437 1 227325540 rs1526131 4 110053688 0.4728 0.0822 8.8008e-09

3 rs11801153 1 227327711 rs1526131 4 110053688 0.4372 0.0817 8.74462e-08

4 rs4855129 3 181161256 rs2315505 3 183835768 0.3466 0.0755 4.3705e-06

5 rs2302580 4 8659534 rs7120582 11 11508648 -0.3424 0.0769 8.57002e-06

6 rs1877314 4 164709468 rs17764849 15 40483167 -17.5639 3.9234 7.57961e-06

7 rs11154637 6 131780207 rs871437 11 132309082 0.4900 0.1000 9.67749e-07

8 rs11159233 14 76295162 rs12436912 14 85891516 0.3185 0.0702 5.76176e-06

Table 5.6: Significant aggression towards a non-caregiver Epistasis Results

sected with SFARI Gene. Gene set enrichment of those intersections included genes listed as

syndromic, and with scores 1 and 2 of potential deleteriousness, but none with score 3 (the

category with least support). Of intragenic SNPs, which overlap with SFARI Gene, signif-

icant associations include post-synapse, dendritic, and neuron projection processes, several

synaptic cellular component locations, and glutamate binding functions. Genes were en-

riched in the "Glutamatergic synapse" KEGG pathway (all adjusted p < 0.05) - see Table

5.7. Likewise, genes not found in the SFARI Gene database were also highly enriched for

synapse organization, and enriched in several synapse-related cellular components including

the glutamatergic synapse specifically, as well the postsynaptic membrane and a variety of

plasma membrane and intracellular vesicle locations. The genes were also enriched for par-

ticipation in the KEGG calcium signaling pathway. While individual trait-level GWAS did

fail to produce significant GWAS-level results, performing GWAS on the clusters of traits
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p_value term_id source term_name

1 0.0179 GO:0099173 GO:BP postsynapse organization

2 0.0201 GO:0097061 GO:BP dendritic spine organization

3 0.0291 GO:0106027 GO:BP neuron projection organization

4 0.0353 GO:0007399 GO:BP nervous system development

5 0.0043 GO:0032279 GO:CC asymmetric synapse

6 0.0062 GO:0098984 GO:CC neuron to neuron synapse

7 0.0225 GO:0098590 GO:CC plasma membrane region

8 0.0499 GO:0014069 GO:CC postsynaptic density

9 0.0497 GO:0016595 GO:MF glutamate binding

10 0.0043 KEGG:04724 KEGG Glutamatergic synapse

Table 5.7: Gene ontology and KEGG gene set enrichment results of genes in SFARI Gene with signif-

icant SNPs from individual PNBO analysed traits. P-values are analytically corrected (permutation

based) in GProfiler software.

discovered in Chapter 4 indicate significant associations between phenotypic profiles and

SNPs in the SSC cohort.

5.3.2 Phenome profile GWAS and epistasis studies reveal signifi-

cant genetic associations for diverse autism phenotypes

GWAS and epistatic interaction tests were performed for each of the 14 clusters identified

in Chapter 4. Results are all presented in order by cluster, from largest to smallest proband

membership.

The turquoise cluster’s traits include high level traits (memory ability and skill, play-

ing behavior, and loss of self-help skills). It is associated with significantly interacting (Table

5.10) and single SNPs (Table 5.9, Figure 5.9). Enrichment produced few results (Table 5.11).
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(a) (b)

Figure 5.9: GWAS of the SSC cohort who belong to cluster 1, turquoise. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

The blue cluster singularly included one significantly associated trait, lack of recipro-

cal conversation. It is associated with significantly interacting (Table 5.13) and single SNPs

(Table 5.12, Figure 5.10). The cluster is enriched for two protein interaction complexes

(Table 5.14).

The brown cluster is phenotypically diverse, including high level (restricted behavior)

and more specific (anxious behavior) traits. It is associated with significantly interacting

(Table 5.16) and single SNPs (Table 5.15, Figure 5.11). The cluster is enriched for bile acid

synthesis, and zinc homeostasis, among others (Table 5.17).

The yellow cluster is phenotypically diverse, but specific to communication and social

traits. It is associated with significantly interacting (Table 5.19) and single SNPs (Table

5.18, Figure 5.12). The cluster is enriched for receptor localization to synapse processes

(Table 5.20).

182



Uncovering genetic correlates of autism endophenotypes

(a) (b)

Figure 5.10: GWAS of the SSC cohort who belong to cluster 2, blue. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

(a) (b)

Figure 5.11: GWAS of the SSC cohort who belong to cluster 3, brown. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.
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(a) (b)

Figure 5.12: GWAS of the SSC cohort who belong to cluster 4, yellow. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

The green cluster’s phenotypic signature is broad, including lack of communication

(head nodding and loss of intent to communicate), lack of interest in children, and lack of

offering to share one’s enjoyment with others. It is associated with significantly interacting

(Table 5.22) and single SNPs (Table 5.21, Figure 5.13). The cluster is enriched for T-cell

leukemia virus 1 infection ( Table 5.23).

The red cluster’s phenotypic signature represents above normal visiospatial ability

and sensitivity to noise. It is associated with significantly interacting (Table 5.25) and single

SNPs (Table 5.24, Figure 5.14). The cluster is enriched for one protein interaction complex

(Table 5.26).

The black cluster’s phenotypic signature is vague, including a lack of appropriate

social response, abnormal reciprocal conversation, and abnormalities i voluntary movement

behavior. It is associated with significantly interacting (Table 5.28) and single SNPs (Table
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(a) (b)

Figure 5.13: GWAS of the SSC cohort who belong to cluster 5, green. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

(a) (b)

Figure 5.14: GWAS of the SSC cohort who belong to cluster 6, red. Panel A shows an under powered

QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome position,

Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic interaction.
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5.27, Figure 5.15). The cluster is associated with metabolism and energy use (Table 5.29).

(a) (b)

Figure 5.15: GWAS of the SSC cohort who belong to cluster 7, black. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

The pink cluster’s phenotypic signature includes several types of restricted behaviors.

It is associated with significantly interacting (Table 5.31) and single SNPs (Table 5.30, Figure

5.16). The cluster is associated with recombination hotspot binding (Table 5.32).

The magenta cluster’s phenotypic signature is made up of poor coping mechanisms. It

is associated with significantly interacting (Table 5.34) and single SNPs (Table 5.33, Figure

5.17). The cluster is associated with localization in the postsynaptic membrane (Table 5.35).

The purple cluster’s phenotypic makeup involves self injury, sensitivity to noise, and

social communication traits. It is associated with significantly interacting (Table 5.37) and

single SNPs (Table 5.36, Figure 5.18). The cluster is associated with three interacting protein

complexes involving DZIP1 (Table 5.38).

186



Uncovering genetic correlates of autism endophenotypes

(a) (b)

Figure 5.16: GWAS of the SSC cohort who belong to cluster 8, pink. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

(a) (b)

Figure 5.17: GWAS of the SSC cohort who belong to cluster 9, magenta. Panel A shows an

under powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents

chromosome position, Y-axis represents the -log10 p-value of association, and yellow bands indicate

epistatic interaction.

187



Uncovering genetic correlates of autism endophenotypes

(a) (b)

Figure 5.18: GWAS of the SSC cohort who belong to cluster 10, purple. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

The green-yellow cluster’s phenotypic makeup is broad, including learning, playing,

and communication traits. It is associated with significantly interacting (Table 5.40) and sin-

gle SNPs (Table 5.39, Figure 5.19). The cluster is associated with Notch signaling pathways

(Table 5.41).

The tan cluster’s phenotypic makeup is specific, involving head nodding and gait

abnormalities. It is associated with significantly interacting (Table 5.43) and single SNPs

(Table 5.42, Figure 5.20). The cluster is associated with circadian biology and the SNARE

complex ( Table 5.44).

The salmon cluster’s phenotypic makeup includes unusual sensory interests, coping

with environmental changes, and asking socially inappropriate questions. It is associated

with significantly interacting (Table 5.46) and single SNPs (Table 5.45, Figure 5.21). The

cluster is associated with several protein complexes (Table 5.47).
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(a) (b)

Figure 5.19: GWAS of the SSC cohort who belong to cluster 11, green-yellow. Panel A shows

an under powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents

chromosome position, Y-axis represents the -log10 p-value of association, and yellow bands indicate

epistatic interaction.

(a) (b)

Figure 5.20: GWAS of the SSC cohort who belong to cluster 12, tan. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.
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(a) (b)

Figure 5.21: GWAS of the SSC cohort who belong to cluster 13, salmon. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

Lastly, the cyan cluster’s phenotypic makeup includes head nodding. It is associated

with significantly interacting (Table 5.49) and single SNPs (Table 5.48, Figure 5.22). The

cluster is associated with the transcription factor PRDM1 and one protein complex (Table

5.50).

5.3.3 SNPs predict autism endophenotype-derived cluster member-

ship

Without access to external datasets of autism patients phenotyped with the PNBO and

genetic data available, I designed cluster classification experiments to test the biological

validity of phenotype-derived clusters. My working hypothesis was that if SNPs associated

to a cluster via GWAS can classify probands correctly into this cluster, then there may be
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(a) (b)

Figure 5.22: GWAS of the SSC cohort who belong to cluster 14, cyan. Panel A shows an under

powered QQ plot. Panel B shows the corresponding Manhattan plot. X-axis represents chromosome

position, Y-axis represents the -log10 p-value of association, and yellow bands indicate epistatic

interaction.

a genetic etiology to the distinct phenotype profile of that cluster. To validate this, 1/4 of

probands in a cluster were excluded from classifier training and used to test the performance

of the classifier.

The coded allele at each SNP (major, minor, missing) made up features used for

classifying SNPs into their cluster. The experiment was repeated 10 times, and the median

Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values retained. The

worst performing was an AUC of 0.61 (Figure 5.23a in the turquoise module (the largest).

The highest was in the tan cluster, the 12th smallest, with a median AUC of 0.94, seen in

Figure 5.25d.

While each cluster was evaluated with 10 different train/test splits (drawn at random),

few showed large AUC score variance, as indicated by a lack of outliers (outside of 1.5 times

the interquartile range). Predictive models, which accurately captured cluster membership,
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include those used to classify turquoise, yellow, green, red, black, purple, green-yellow, tan,

salmon, and cyan; see Figures 5.23d, 5.24a, 5.24b, 5.24c, 5.25b, 5.25c, 5.26a, and 5.26b.

Others were more variable including the blue, brown, pink, and magenta models; see Figures

5.23b, 5.23c, 5.24d, and 5.25a.
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Figure 5.23: Predictive ability of SNPs identified from GWAS in the turquoise, blue, brown, and

yellow cluster to predict cluster membership of 25% holdout validation set, repeated 10 times.

Panels A presents areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-

performing ROC curve is plotted in Panels B.

5.3.4 Phenome-wide network reveals gene-driven relationships be-

tween autism related traits

Thus far, each analysis focused on on a single trait or cluster. Each cluster of probands

is made up of multiple traits, many intersecting. To view a phenome-wide map of genes

influencing their several traits in clusters, a graph, whose edges represent the -log P-value of

association between a gene and a trait, with wider edges indicating a stronger association,

was generated . Only SNPs associating with known genes are included, and interactions are

collapsed to the level of the gene. The only edges in the graph are links between genes and

traits; no links between PNBO traits from the ontology, or links between genes sharing an

epistatic interaction, are shown, Figure 5.27.
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Figure 5.24: Predictive ability of SNPs identified from GWAS in the green, red, black, and pink

cluster to predict cluster membership of 25% holdout validation set, repeated 10 times. Panels A

presents areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-performing

ROC curve is plotted in Panels B.
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Figure 5.25: Predictive ability of SNPs identified from GWAS in the magenta, purple, greenyellow,

and tan cluster to predict cluster membership of 25% holdout validation set, repeated 10 times.

Panels A presents areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-

performing ROC curve is plotted in Panels B.
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Figure 5.26: Predictive ability of SNPs identified from GWAS in the salmon and cyan cluster to

predict cluster membership of 25% holdout validation set, repeated 10 times. Panels A presents

areas under the ROC curve for 10 repeated 75/25 train/test splits. The median-performing ROC

curve is plotted in Panels B.

Traits are in green, genes are in white, with a data-driven edge-weighted force directed

layout show. From this bird’s eye view of gene/trait associations made in this chapter, it is

apparent that loss of language ability, social verbalization and response, and learning and/or

memory behavioral phenotypes are with an interconnected cluster of genes, which reflects

results observed in the green-yellow cluster. Another cluster of genes connects traits related

to the visiospatial ability and sensitivity to noise from cluster red.

5.4 Discussion

In this chapter, 64 GWAS and epistatic analysis experiments were performed, and 14 were

validated by holdout. At the endophenotype level, GWAS failed to find significant associ-

ations between alleles and traits. In the SSC cohort, nearly 40 out of 100 individual traits

will map to an individual, giving each proband a mix of seemingly uncorrelated traits which

may be expressed more or less strongly. Because traits are assigned from the ADI-R instru-

ment, subjectivity in interpreting answers may bias how accurate assignments of individual

traits are. Moreover, these findings are not unique to this work. Chaste and colleagues

performed GWAS analyses on the SSC cohort (Chaste et al., 2015). They manually split

the cohort into 10 overlapping groups for separate analyses based on autism diagnosis, IQ,
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having circumscribed interests in the ADI-R, difficulty with change in the ADI-R, sensitivity

to noise, and from measurements derived from the Autism Diagnostic Observation Schedule

(Lord et al., 1989). They reported no genome-wide significant signal, hypothesizing that

among the phenotypically similar SSC cohort divisions based on phenotype are still to ho-

mogeneous. In each case of trait selection, rather than split the cohort into groups based

of phenotypic profile, they analysed single traits following the approach described in the be-

ginning of this chapter. Epistatic interaction analysis did not improve the signal, although

evidence of epistatic interactions associated with individual phenotypes (p < 1e-6), when no

GWAS association was identified, was found. This suggests that the non-additive effect of

SNPs making a small contribution toward a phenotype may explain more of the aberrant

traits than single SNP effects.

5.4.1 Cluster-based GWAS find novel genomic associations for autism

traits

Contrary to single trait-based GWAS, cluster GWAS and epistatic analysis produced genome-

wide significant results which were not seen at the individual trait level. These associa-

tions included 27 SNPs associated with their cluster’s traits at p < 1e-20, far exceeding the

genome-wide standard of 1e-8. To validate clusters GWAS associations, supervised learning

experiments aiming to classify probands into their cluster were performed. After training

a classifier to place probands in their cluster or the rest of the SSC population, holdout

probands were then tested. Previous approaches have used GWAS summary statistics and

expected AUCs of around 0.75 for a well-performing classifier (Patron et al., 2019). Ours

performed much better, with several GWAS validating with AUCs above 0.9, up to 0.94 in

the tan module. Their model, however, did not include SNPs from epistatic interactions,

which were not found in GWAS, and did not perform feature selection via the LASSO. Ad-
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ditionally, I made artificial epistatic interactions between all SNPs in my GWAS validation

classifier by including interaction terms for each SNP used to attempt to classify probands.

This may have explained the increased performance among some clusters, as complex disease

is often underpinned by complex genetic models. The two largest clusters had the lowest

AUC scores assigned, likely indicative of the very high level phenotypic signature which

defined the large number of probands in the two clusters. Given that most probands were

assigned play-related behavior traits in PNBO, which make up the majority of the turquoise

cluster’s phenotypic signature, this is not surprising.

Core circadian genes associate with communication and gait phenotypes

Interestingly, the best preforming validation ROC score was identified for the second smallest

"tan" cluster, see Figure 5.25d. Of nine SNPs within protein coding regions, one SNP

rs4851384 is embedded in the intron of NPAS2. NPAS2 was discussed in Chapter 2 as an

under-annotated circadian gene; it clearly has a biological function in the core circadian

pacemaker but, due to being a paralog of the CLOCK gene, does not yet have associations

with abnormal circadian rhythms in mouse. A survey of the other nine genes in this cluster

reveal CADPS2, whose mouse homolog is annotated in the Disease Ontology (Schriml et al.,

2012) with ASD. None of these genes are currently annotated to their cluster’s phenotypic

profile of head nodding and abnormal gait. Cadps2 is associated with abnormal circadian

behavior (further strengthening the module’s circadian connection) and abnormal cerebellum

morphology, affecting Purkinje and granule cells (Bult et al., 2019b). There are several

PNBO-enoded ASD traits which involve fine motor skills, controlled by the cerebellum.

Mouse models of Fragile-X syndrome often exhibit neurodegeneration, abnormal gait, and

autism characteristics while also being implicated in Purkinje cell dysfunction (Tsai et al.,

2012; Sundberg and Sahin, 2015). Given this evidence, behavioral mouse phenotyping may

be needed on Sel1l2 and Lrrc18, which have not been phenotyped by the International Mouse
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Phenotyping Consortium. The IMPC SHIRPA exam, which includes observations of gait in

all screens, may be sufficient to prompt further behavioral assays (Hampson and Blatt, 2015;

Brown and Moore, 2012a; Hatcher et al., 2001). This cross-species analysis demonstrates the

utility of combining model organism with human (and potentially translational) research,

especially in the field of neurobehavioural genetics.

5.4.2 Gene-phenotype network highlights novel gene/trait relation-

ships

Ultimately, this chapter was able to associate multiple genetic loci with multiple phenotypic

traits. No single locus was strongly associated with any of the 14 clusters, suggesting that

networks of genes acting together in trans with small effect sizes are together responsible for

complex traits.

However, whereas most GWAS studies would associate multiple loci with a single

trait, by performing GWAS on clusters of traits, effectively a single dependant variable as

a substitute for a dependent multivariate model used. This produces a many - to - many

annotation problem, where many SNPs are each associated with a set of traits in combination.

How does one annotate a gene to a profile of traits, if each trait has a different probability

of representing the cluster?

The gene/trait network, Figure 5.27, is one approach for addressing this question.

Underling that network is the probability of a trait associating with a cluster, multiplied

by the strength of the association. Thus, each SNP may be more or less well annotated

with multiple PNBO-derived traits. A threshold of 0.5 was set to inform the annotation

graph, meaning that if a trait has a marginal probability of characterising a phenotype

cluster of at least 0.5 (from Chapter 4), a SNP/trait association was made. For example,
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strong associations exist between "coping with a changing environment" and genes linked to

sensitivity to noise. SNPs linked to many behavioral traits associated with social phenotypes

such as group pay with peers and pointing to express interest. They also associate with self-

injury and repetitive hand and finger mannerisms in a different part of the graph. Of more

interest, the periphery of the graph shows loss of language ability, social verbalization and

response, and a high level learning or memory phenotype associated with a cluster of genes.

These traits are isolated from the others parts of the graph. The genes associated to them

are enriched for Notch signaling, indicating roles in developmental biology. These traits

also uniquely defined a cluster phenotypically; the same is true of sensitivity to noise and

visiospatial ability. These results suggest that while phenotypic heterogeneity among the SSC

cohort may be difficult to untangle, there is a likely shared genetic basis for characteristic

behaviors of some phenotypically similar probands in the SSC cohort.

5.5 Conclusions and Chapter Summary

In this chapter, genetic associations between autism spectrum disorder endophenotypes

mapped in the Psychological Neuro Behavior Ontology (PNBO) among families with probands

and unaffected siblings were investigated. Genetic associations between SNPs and individ-

ual traits were statistically underpowered, and produced no genome-wide significant results.

When using mixed models and surveying clustered traits, several genome-wide significant as-

sociations were found. GWAS of PNBO profile clusters were well powered, indicating a strong

correlation between genotypic and phenotypic homogeneity. Epistasis models performed on

clustered traits unveiled gene/gene interactions passing strict genome-wide significance lev-

els. In lieu of available cohorts for GWAS replication studies, predictive models tested the

performance of SNPs identified through GWAS and epistatic interactions to classify probands

by phenotypic profile. This novel approach showed that diverse autism phenotype profiles
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can be classified by genetics. Lastly, specific trait/trait relations were found when survey-

ing significantly enriched genetic activity amongst phenotype clusters. The best-performing

predictive model was annotated with genes involved in circadian rhythm biology, revealing

a subset of probands who may have circadian abnormalities though have not been tested

for it. Thus, this chapter links autism spectrum disorder and chronology indirectly, suggest-

ing an underlying polygenic link between circadian abnormalities and communicative and

movement related traits.

Following are cluster-specific tabular results, including SNPs and associations to each

cluster’s trait profile both directly and via epistatic interactions with other loci. Additional

tables incldude gene enrichment results for significant intragenic SNPs. After the last re-

sult tables are presented for each SSC cluster, the next chapter dicusses the project as a

comprehensive whole.

5.6 Cluster Result Tables

rs chr ps beta se p Gene

1 rs6664362 1 9536458 0.2252 0.0094 4.379245e-119 SLC25A33

2 rs3008409 1 31814425 0.0565 0.0107 1.487914e-07

3 rs2602948 1 77530012 0.0350 0.0072 1.08932e-06 AK5

4 rs16841336 1 157167751 0.0851 0.0058 3.525406e-48 PYHIN1

5 rs10779486 1 206805932 0.1379 0.0074 1.619351e-75

6 rs4832336 2 83911474 -0.0479 0.0071 1.645032e-11

7 rs17025837 2 85136390 0.0896 0.0063 2.179066e-44 KCMF1

8 rs2396261 2 226253774 0.0658 0.0074 1.259342e-18

9 rs11925421 3 147370852 0.1927 0.0086 6.195197e-107

10 rs11729526 4 323310 0.0383 0.0082 3.009371e-06 ZNF141
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11 rs4833120 4 35516217 -0.0281 0.0061 4.012208e-06

12 rs10053502 5 40014929 -0.0748 0.0084 6.297018e-19

13 rs16901158 5 83891214 -0.0544 0.0100 5.553335e-08

14 rs2394173 6 29881137 0.0616 0.0070 2.082146e-18

15 rs6914506 6 37374934 -0.1152 0.0049 1.470992e-115 TBC1D22B

16 rs331833 7 54629782 -0.0530 0.0076 2.667352e-12

17 rs17837474 7 142056577 -0.0568 0.0080 1.8312e-12

18 rs16931350 8 65701037 -0.0581 0.0088 4.863796e-11 CYP7B1

19 rs3019885 8 118094826 0.0398 0.0059 1.58287e-11 SLC30A8

20 rs12114111 8 125398550 -0.0292 0.0057 2.843439e-07 TMEM65

21 rs1887387 9 90069741 0.0464 0.0057 6.535233e-16

22 rs4978649 9 109716918 0.0433 0.0061 1.832544e-12

23 rs11238776 10 42098785 0.1046 0.0218 1.723645e-06

24 rs7908852 10 90684773 0.0855 0.0139 7.865417e-10 STAMBPL1

25 rs11818837 10 99209983 0.1540 0.0297 2.230238e-07 MMS19

26 rs7913323 10 132050446 0.0340 0.0070 1.217173e-06

27 rs7946005 11 78464992 0.1297 0.0072 1.442226e-69 TENM4

28 rs11225401 11 102113169 0.0968 0.0061 6.03376e-56

29 rs17100060 12 62739380 -0.0335 0.0075 8.276557e-06 SRGAP1

30 rs9316212 13 20727309 -0.0348 0.0078 8.25745e-06

31 rs2137512 13 64399588 -0.0314 0.0068 4.303749e-06

32 rs1003761 14 23602251 0.0914 0.0094 5.07282e-22 CARMIL3

33 rs4903419 14 76054408 0.0964 0.0061 4.322848e-55

34 rs4780805 16 19312146 0.0413 0.0071 7.015834e-09 AC130456.7

35 rs13330491 16 30012701 -0.0684 0.0078 3.076694e-18 YPEL3

36 rs13329856 16 57491588 -0.0598 0.0081 2.302452e-13
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37 rs235083 16 64760511 -0.1138 0.0053 1.744564e-99

38 rs486743 18 12495089 -0.0742 0.0052 1.134169e-44 SPIRE1

39 rs2849233 18 46585551 0.0334 0.0058 9.244312e-09 MRO

40 rs11910489 21 16968775 0.0825 0.0122 1.403848e-11

41 rs4596064 21 19786452 0.0394 0.0078 4.893777e-07

42 rs2828789 21 24363246 0.0617 0.0139 9.103979e-06

43 rs17002187 21 26762664 -0.0460 0.0057 1.1432e-15 CYYR1

Table 5.12: Significant blue GWAS Results
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p_value term_id source term_name

1 0.0235 CORUM:6807 CORUM ADRA1A-CXCR4 complex

2 0.0205 GO:0050808 GO:BP synapse organization

3 0.0000 GO:0098978 GO:CC glutamatergic synapse

4 0.0002 GO:0030054 GO:CC cell junction

5 0.0006 GO:0045202 GO:CC synapse

6 0.0007 GO:0071944 GO:CC cell periphery

7 0.0007 GO:0005886 GO:CC plasma membrane

8 0.0008 GO:0097060 GO:CC synaptic membrane

9 0.0013 GO:0098794 GO:CC postsynapse

10 0.0020 GO:0099699 GO:CC integral component of synaptic membrane

11 0.0020 GO:0045211 GO:CC postsynaptic membrane

12 0.0038 GO:0099240 GO:CC intrinsic component of synaptic membrane

13 0.0070 GO:0099056 GO:CC integral component of presynaptic membrane

14 0.0112 GO:0005901 GO:CC caveola

15 0.0120 GO:0098889 GO:CC intrinsic component of presynaptic membrane

16 0.0156 GO:0016020 GO:CC membrane

17 0.0185 GO:0031012 GO:CC extracellular matrix

18 0.0185 GO:0031226 GO:CC intrinsic component of plasma membrane

19 0.0185 GO:0099055 GO:CC integral component of postsynaptic membrane

20 0.0217 GO:0005887 GO:CC integral component of plasma membrane

21 0.0217 GO:0098590 GO:CC plasma membrane region

22 0.0217 GO:0098936 GO:CC intrinsic component of postsynaptic membrane

23 0.0250 GO:0042383 GO:CC sarcolemma

24 0.0321 GO:0098793 GO:CC presynapse

25 0.0321 GO:0062023 GO:CC collagen-containing extracellular matrix

26 0.0321 GO:0045121 GO:CC membrane raft

27 0.0321 GO:0098857 GO:CC membrane microdomain

28 0.0321 GO:0044853 GO:CC plasma membrane raft

29 0.0435 GO:0098589 GO:CC membrane region

30 0.0492 GO:0097708 GO:CC intracellular vesicle

31 0.0492 GO:0031224 GO:CC intrinsic component of membrane

32 0.0492 GO:0031410 GO:CC cytoplasmic vesicle

33 0.0045 GO:0005509 GO:MF calcium ion binding

34 0.0145 KEGG:04020 KEGG Calcium signaling pathway

Table 5.8: Gene ontology and KEGG gene set enrichment results of genes not annotated in SFARI

Gene, which have significant SNPs from individual PNBO analysed traits. P-values are analytically

corrected (permutation based) in GProfiler software.
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Uncovering genetic correlates of autism endophenotypes

rs chr ps beta se p Gene

1 rs6664362 1 9536458 -0.1252 0.0106 1.355673e-31 SLC25A33

2 rs16841336 1 157167751 -0.0536 0.0063 3.442908e-17 PYHIN1

3 rs10779486 1 206805932 -0.0820 0.0081 8.339206e-24

4 rs17025837 2 85136390 -0.0571 0.0069 2.64675e-16 KCMF1

5 rs2396261 2 226253774 -0.0405 0.0081 5.565648e-07

6 rs11925421 3 147370852 -0.1013 0.0096 1.063148e-25

7 rs2394173 6 29881137 -0.0444 0.0076 5.607052e-09

8 rs6914506 6 37374934 0.0718 0.0055 2.449977e-38 TBC1D22B

9 rs16931350 8 65701037 0.0487 0.0095 3.433225e-07 CYP7B1

10 rs7341614 8 68723993 0.1358 0.0296 4.600234e-06 CPA6

11 rs10125854 9 5454065 0.0630 0.0137 4.417458e-06 CD274

12 rs7946005 11 78464992 -0.0799 0.0079 1.167039e-23 TENM4

13 rs11225401 11 102113169 -0.0536 0.0067 1.316471e-15

14 rs4765231 12 124270220 -0.0423 0.0087 1.187936e-06 TMEM132B

15 rs4765028 12 124278681 -0.0368 0.0082 7.45518e-06 TMEM132B

16 rs11058097 12 124287014 -0.0400 0.0084 2.012821e-06 TMEM132B

17 rs1003761 14 23602251 -0.0598 0.0103 6.047103e-09 CARMIL3

18 rs4903419 14 76054408 -0.0542 0.0067 7.658302e-16

19 rs13330491 16 30012701 0.0431 0.0085 4.075843e-07 YPEL3

20 rs13329856 16 57491588 0.0407 0.0088 4.146549e-06

21 rs235083 16 64760511 0.0623 0.0059 5.425392e-26

22 rs486743 18 12495089 0.0387 0.0057 1.949031e-11 SPIRE1

23 rs17002187 21 26762664 0.0284 0.0062 5.17815e-06 CYYR1

Table 5.9: Significant turquoise GWAS Results
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Uncovering genetic correlates of autism endophenotypes

ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs12089482 1 183864117 rs1689310 7 52983956 1.0042 0.2159 3.3078e-06

2 rs10779486 1 206805932 rs11225401 11 102113169 -0.9935 0.1759 1.6097e-08

3 rs10779486 1 206805932 rs4903419 14 76054408 -0.8547 0.1757 1.14832e-06

4 rs748615 2 13250777 rs16827846 3 158771579 -16.9912 3.8248 8.89616e-06

5 rs12712101 2 101426229 rs9393387 6 23396822 0.3867 0.0845 4.6701e-06

6 rs2396261 2 226253774 rs6914506 6 37374934 0.4563 0.0921 7.21786e-07 TBC1D22B

7 rs11549705 3 17107009 rs3749213 3 123616520 -0.8504 0.1891 6.92634e-06

8 rs11549705 3 17107009 rs10934592 3 123617932 -0.8506 0.1892 6.92298e-06

9 rs17018468 3 26662581 rs2508191 11 63509558 -16.2046 3.6469 8.85541e-06

10 rs11925421 3 147370852 rs2394173 6 29881137 -1.4784 0.3183 3.4118e-06

11 rs11925421 3 147370852 rs4903419 14 76054408 -1.0787 0.2247 1.58633e-06

12 rs11925421 3 147370852 rs486743 18 12495089 0.9562 0.1937 7.996e-07 SPIRE1

13 rs11925421 3 147370852 rs7278383 21 27500390 1.7747 0.3768 2.47226e-06

14 rs10053502 5 40014929 rs486743 18 12495089 -0.4105 0.0892 4.20932e-06 SPIRE1

15 rs6452463 5 81868125 rs11651038 17 11167226 -0.5360 0.1203 8.29945e-06

16 rs6452463 5 81868125 rs1546560 17 11169414 -0.5363 0.1203 8.24343e-06

17 rs6914506 6 37374934 rs13329856 16 57491588 -0.4824 0.0972 6.99962e-07 TBC1D22B

18 rs6914506 6 37374934 rs235083 16 64760511 -0.4957 0.0713 3.69418e-12 TBC1D22B

19 rs480456 6 147889216 rs4257948 7 93578688 -0.4184 0.0936 7.73479e-06

20 rs4263777 8 25783203 rs551112 9 14433468 -0.8769 0.1952 7.07747e-06

21 rs10429356 8 126150662 rs4792121 17 11141667 -0.5742 0.1291 8.67985e-06

22 rs12686783 9 100901588 rs3210635 12 26955499 -0.6130 0.1353 5.86506e-06

23 rs7946005 11 78464992 rs11225401 11 102113169 -0.7171 0.1576 5.35793e-06 TENM4

24 rs7946005 11 78464992 rs4903419 14 76054408 -0.7035 0.1585 9.02146e-06 TENM4

25 rs7946005 11 78464992 rs235083 16 64760511 0.6037 0.1325 5.24508e-06 TENM4

26 rs7946005 11 78464992 rs486743 18 12495089 0.7445 0.1258 3.28291e-09 TENM4 SPIRE1

27 rs11225401 11 102113169 rs235083 16 64760511 0.4424 0.0915 1.3385e-06

28 rs10162458 14 77174941 rs2295000 20 61007383 -0.6148 0.1284 1.6795e-06

29 rs235083 16 64760511 rs486743 18 12495089 -0.2986 0.0662 6.56885e-06 SPIRE1

30 rs7186168 16 86543637 rs4792121 17 11141667 0.4059 0.0918 9.81487e-06

Table 5.10: Significant turquoise Epistasis Results

p_value term_id source term_name

1 0.0499 REAC:R-HSA-5579013 REAC Defective CYP7B1 causes Spastic paraplegia 5A, autosomal recessive (SPG5A) and Congenital bile acid synthesis defect 3 (CBAS3)

Table 5.11: Significant gene set enrichment results of genes with SNPs found by turquoise cluster

analysis. P-values are analytically adjusted.
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs6664362 1 9536458 rs17025837 2 85136390 -1.0634 0.1314 5.69145e-16 SLC25A33 KCMF1

2 rs6664362 1 9536458 rs10053502 5 40014929 1.5329 0.3299 3.37052e-06 SLC25A33

3 rs6664362 1 9536458 rs16931350 8 65701037 1.3496 0.2883 2.85701e-06 SLC25A33 CYP7B1

4 rs6664362 1 9536458 rs1887387 9 90069741 -0.6083 0.1324 4.30855e-06 SLC25A33

5 rs6664362 1 9536458 rs11238776 10 42098785 -1.8342 0.3687 6.54073e-07 SLC25A33

6 rs6664362 1 9536458 rs5030416 11 36489064 -0.7433 0.1465 3.87038e-07 SLC25A33

7 rs6664362 1 9536458 rs1003761 14 23602251 -0.8616 0.1729 6.20901e-07 SLC25A33 CARMIL3

8 rs6664362 1 9536458 rs486743 18 12495089 1.3808 0.2775 6.49246e-07 SLC25A33 SPIRE1

9 rs6664362 1 9536458 rs11910489 21 16968775 -1.3202 0.2190 1.65162e-09 SLC25A33

10 rs6664362 1 9536458 rs17002187 21 26762664 0.9024 0.1982 5.30623e-06 SLC25A33 CYYR1

11 rs6687006 1 38445830 rs2924338 18 51326785 -0.9532 0.2072 4.19675e-06

12 rs6690381 1 83928327 rs13415553 2 221126448 -3.1959 0.6105 1.64724e-07

13 rs16841336 1 157167751 rs17025837 2 85136390 -0.4429 0.0793 2.33708e-08 PYHIN1 KCMF1

14 rs16841336 1 157167751 rs5030416 11 36489064 -0.4897 0.0903 5.89178e-08 PYHIN1

15 rs11803913 1 203139465 rs11925421 3 147370852 -0.7989 0.1515 1.33751e-07

16 rs10779486 1 206805932 rs17025837 2 85136390 -0.4889 0.0909 7.39718e-08 KCMF1

17 rs10779486 1 206805932 rs11238776 10 42098785 -1.4005 0.2926 1.70295e-06

18 rs2574672 1 240482668 rs663366 8 98528011 -0.8496 0.1838 3.79235e-06

19 rs11898209 2 45872037 rs12549933 8 80992623 -0.5751 0.1270 5.9624e-06
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20 rs17025837 2 85136390 rs11925421 3 147370852 -0.7958 0.1126 1.55212e-12 KCMF1

21 rs17025837 2 85136390 rs9322193 6 149960836 -0.3705 0.0762 1.17391e-06 KCMF1

22 rs17025837 2 85136390 rs1887387 9 90069741 -0.3553 0.0744 1.77149e-06 KCMF1

23 rs17025837 2 85136390 rs11823088 11 19146328 0.6435 0.1393 3.86113e-06 KCMF1

24 rs17025837 2 85136390 rs11225401 11 102113169 -0.5004 0.0811 6.96136e-10 KCMF1

25 rs17025837 2 85136390 rs4903419 14 76054408 -0.4412 0.0802 3.80492e-08 KCMF1

26 rs6809953 3 117493781 rs9383431 6 18800063 -0.5738 0.1289 8.56706e-06

27 rs782437 3 128899892 rs6788460 3 138324139 0.4671 0.0908 2.65296e-07

28 rs782437 3 128899892 rs9831130 3 138332662 0.4453 0.0902 7.96323e-07

29 rs11925421 3 147370852 rs16931350 8 65701037 1.3044 0.2620 6.40999e-07 CYP7B1

30 rs11925421 3 147370852 rs1887387 9 90069741 -0.5915 0.1140 2.13373e-07

31 rs11925421 3 147370852 rs1003761 14 23602251 -0.8264 0.1556 1.08115e-07 CARMIL3

32 rs11925421 3 147370852 rs11910489 21 16968775 -1.0415 0.1880 3.04159e-08

33 rs6443856 3 184362805 rs387946 12 69162165 -1.2677 0.2831 7.53719e-06

34 rs6443856 3 184362805 rs632547 12 69162296 -1.2696 0.2830 7.27077e-06

35 rs3902731 5 87314833 rs11152086 18 54391010 -1.1719 0.2488 2.46512e-06

36 rs3844554 5 87317210 rs11152086 18 54391010 -1.1536 0.2492 3.65516e-06

37 rs13172873 5 118665442 rs3789950 10 98152781 1.1497 0.2585 8.68879e-06

38 rs582677 6 5953061 rs7251000 19 4665468 -0.4884 0.1098 8.58508e-06

39 rs7754397 6 91847214 rs8127479 21 26012227 -1.5186 0.3305 4.3388e-06

40 rs11758609 6 105948645 rs11626056 14 51303026 -0.6441 0.1454 9.43036e-06
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41 rs4458717 6 132950572 rs17837474 7 142056577 -0.8846 0.1792 7.96785e-07

42 rs4458717 6 132950572 rs16931350 8 65701037 -1.2024 0.2109 1.19041e-08 CYP7B1

43 rs6922844 6 150360447 rs7022051 9 95042804 1.1557 0.2616 9.92936e-06

44 rs11761505 7 47069736 rs10876864 12 54687352 0.4749 0.0988 1.51414e-06

45 rs17837474 7 142056577 rs16931350 8 65701037 -1.5678 0.2736 1.00398e-08 CYP7B1

46 rs17837474 7 142056577 rs12114111 8 125398550 -0.8455 0.1400 1.52957e-09 TMEM65

47 rs10755971 8 52577973 rs7923523 10 95192322 0.5616 0.1170 1.58222e-06

48 rs12541541 8 52579465 rs7923523 10 95192322 0.5391 0.1198 6.81784e-06

49 rs16931350 8 65701037 rs12114111 8 125398550 -0.6981 0.1577 9.61961e-06 CYP7B1 TMEM65

50 rs4307325 8 124490578 rs17375044 11 35173476 -1.0275 0.2148 1.72692e-06

51 rs1887387 9 90069741 rs11225401 11 102113169 -0.4008 0.0829 1.3395e-06

52 rs11238776 10 42098785 rs11225401 11 102113169 -1.0909 0.2392 5.1104e-06

53 rs548102 10 105854556 rs8063675 16 68841080 2.4075 0.5193 3.55187e-06

54 rs5030416 11 36489064 rs4903419 14 76054408 -0.4518 0.0923 9.8978e-07

55 rs7946005 11 78464992 rs11910489 21 16968775 -0.6999 0.1580 9.42932e-06 TENM4

56 rs11225401 11 102113169 rs1003761 14 23602251 -0.5900 0.1018 6.88186e-09 CARMIL3

57 rs11225401 11 102113169 rs486743 18 12495089 0.9056 0.1849 9.71786e-07 SPIRE1

58 rs380835 12 69136889 rs2149313 14 23313477 -0.7588 0.1707 8.78126e-06

59 rs7156661 14 70131302 rs4636985 18 12068224 0.5602 0.1262 9.10903e-06

60 rs4903419 14 76054408 rs11910489 21 16968775 -0.6136 0.1361 6.48894e-06

61 rs2162549 15 78303041 rs2221434 16 77508627 -0.8880 0.1918 3.67171e-06
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62 rs8063675 16 68841080 rs2824699 21 18483226 2.8982 0.6053 1.68158e-06

Table 5.13: Significant blue Epistasis Results
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Uncovering genetic correlates of autism endophenotypes

p_value term_id source term_name

1 0.0497 CORUM:7222 CORUM MMS19-XPD complex

2 0.0497 CORUM:7223 CORUM MMS19-FAM96B complex

Table 5.14: Significant gene set enrichment results of genes with SNPs found by blue cluster analysis.

P-values are analytically adjusted.
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Uncovering genetic correlates of autism endophenotypes

rs chr ps beta se p Gene

1 rs6664362 1 9536458 -0.1140 0.0098 6.045372e-31 SLC25A33

2 rs16841336 1 157167751 -0.0471 0.0058 8.530469e-16 PYHIN1

3 rs10779486 1 206805932 -0.0672 0.0075 3.520136e-19

4 rs17025837 2 85136390 -0.0420 0.0064 6.236332e-11 KCMF1

5 rs2396261 2 226253774 -0.0389 0.0074 1.760571e-07

6 rs164208 3 32519945 0.0273 0.0061 7.229022e-06

7 rs164219 3 32539488 0.0305 0.0063 1.192366e-06

8 rs3853720 3 32590673 0.0272 0.0061 7.851331e-06

9 rs11925421 3 147370852 -0.0968 0.0088 1.32862e-27

10 rs6914506 6 37374934 0.0593 0.0051 5.092402e-31 TBC1D22B

11 rs17837474 7 142056577 0.0433 0.0080 7.93706e-08

12 rs11555737 8 17198414 0.0403 0.0087 3.449944e-06 VPS37A

13 rs7015243 8 17220931 0.0413 0.0089 3.610716e-06 MTMR7

14 rs16931350 8 65701037 0.0577 0.0088 5.578833e-11 CYP7B1

15 rs3019885 8 118094826 -0.0265 0.0059 6.479774e-06 SLC30A8

16 rs12114111 8 125398550 0.0389 0.0056 6.399247e-12 TMEM65

17 rs10829351 10 129865332 -0.0353 0.0071 7.688361e-07

18 rs7946005 11 78464992 -0.0693 0.0073 3.799564e-21 TENM4

19 rs11225401 11 102113169 -0.0442 0.0062 7.932704e-13

20 rs9548183 13 37559893 -0.0293 0.0065 6.773426e-06

21 rs1924198 13 37628805 -0.0303 0.0064 2.171432e-06

22 rs1003761 14 23602251 -0.0445 0.0095 2.52818e-06 CARMIL3

23 rs4903419 14 76054408 -0.0494 0.0062 1.44213e-15

24 rs13330491 16 30012701 0.0692 0.0078 7.493377e-19 YPEL3

25 rs235083 16 64760511 0.0539 0.0054 4.174809e-23

26 rs486743 18 12495089 0.0265 0.0053 6.556181e-07 SPIRE1

Table 5.15: Significant brown GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs16861446 1 18221371 rs2798353 1 47413628 1.5482 0.3489 9.10384e-06

2 rs1149064 1 30315613 rs511773 2 13543565 0.5905 0.1332 9.33032e-06

3 rs16841336 1 157167751 rs10779486 1 206805932 -1.1393 0.1833 5.08374e-10 PYHIN1

4 rs16841336 1 157167751 rs11925421 3 147370852 -1.4548 0.2774 1.57319e-07 PYHIN1

5 rs16841336 1 157167751 rs7946005 11 78464992 -0.8703 0.1698 2.98342e-07 PYHIN1 TENM4

6 rs16841336 1 157167751 rs11225401 11 102113169 -0.5718 0.1211 2.35013e-06 PYHIN1

7 rs16841336 1 157167751 rs4903419 14 76054408 -0.6564 0.1271 2.40881e-07 PYHIN1

8 rs10779486 1 206805932 rs2396261 2 226253774 -1.0879 0.2392 5.41111e-06

9 rs10779486 1 206805932 rs6914506 6 37374934 0.6451 0.1428 6.2931e-06 TBC1D22B

10 rs10779486 1 206805932 rs11225401 11 102113169 -1.0480 0.1915 4.44974e-08

11 rs10779486 1 206805932 rs4903419 14 76054408 -0.8963 0.1925 3.23644e-06

12 rs10779486 1 206805932 rs235083 16 64760511 0.8737 0.1594 4.19024e-08

13 rs10779486 1 206805932 rs486743 18 12495089 0.6892 0.1536 7.2125e-06 SPIRE1

14 rs511773 2 13543565 rs17097224 5 140708718 -2.8161 0.6119 4.18622e-06

15 rs13402137 2 91334683 rs7832778 8 27181804 -2.0163 0.4550 9.36948e-06

16 rs10206874 2 120876615 rs9988693 10 4369270 0.4632 0.0962 1.45726e-06

17 rs2396261 2 226253774 rs11925421 3 147370852 -2.2440 0.4296 1.76062e-07

18 rs2396261 2 226253774 rs2394173 6 29881137 -0.6360 0.1373 3.59189e-06

19 rs2396261 2 226253774 rs11225401 11 102113169 -0.9079 0.1478 8.05579e-10
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20 rs2396261 2 226253774 rs235083 16 64760511 0.4829 0.0991 1.1096e-06

21 rs2396261 2 226253774 rs486743 18 12495089 0.4315 0.0942 4.69904e-06 SPIRE1

22 rs4381740 2 235698824 rs16879540 4 27200415 -17.2377 3.7457 4.18497e-06

23 rs10180205 2 240165374 rs4618447 5 177799781 -1.3536 0.2975 5.37353e-06

24 rs9861677 3 29472993 rs4374629 4 99630806 0.4309 0.0932 3.79037e-06

25 rs13325694 3 150740094 rs6924196 6 131631199 -0.5837 0.1108 1.38346e-07

26 rs11735537 4 144370151 rs2188148 7 91046536 -1.1761 0.2605 6.32338e-06

27 rs2355617 4 146429885 rs3848701 20 57536928 -0.4536 0.0957 2.16634e-06

28 rs30708 5 128987981 rs4922069 8 19518995 -0.8433 0.1798 2.71299e-06

29 rs17338894 5 164848265 rs1396208 12 24449587 0.4803 0.1063 6.17479e-06

30 rs2267639 6 30688616 rs7843326 8 120942523 -0.9458 0.2096 6.38434e-06

31 rs6914506 6 37374934 rs235083 16 64760511 -0.4966 0.0769 1.06689e-10 TBC1D22B

32 rs6914506 6 37374934 rs486743 18 12495089 -0.3528 0.0733 1.48384e-06 TBC1D22B SPIRE1

33 rs10239402 7 36754882 rs17691755 19 34485216 -0.6212 0.1152 6.94713e-08

34 rs7797417 7 46188335 rs10859030 12 89614699 -1.7266 0.3894 9.23292e-06

35 rs4947572 7 51149992 rs8071990 17 4526387 -0.4730 0.1046 6.18877e-06

36 rs10247961 7 75147682 rs2725627 15 51979784 -0.6196 0.1352 4.56701e-06

37 rs9644372 8 4645818 rs2076421 16 1071394 1.4867 0.3339 8.47268e-06 CSMD1

38 rs1947717 9 99145556 rs28364553 15 40492634 1.5533 0.3324 2.97645e-06

39 rs2242187 9 99177215 rs28364553 15 40492634 1.5653 0.3290 1.95973e-06

40 rs7023854 9 103331633 rs3824951 11 5611809 -0.4790 0.0974 8.70492e-07

213



U
ncovering

genetic
correlates

ofautism
endophenotypes

41 rs1983812 9 103372864 rs3824951 11 5611809 0.4332 0.0961 6.54686e-06

42 rs12292693 11 64693295 rs17073814 13 80638674 1.0129 0.2243 6.2858e-06

43 rs7946005 11 78464992 rs11225401 11 102113169 -0.9678 0.1802 7.888e-08 TENM4

44 rs7946005 11 78464992 rs235083 16 64760511 0.7355 0.1439 3.18345e-07 TENM4

45 rs11225401 11 102113169 rs4903419 14 76054408 -0.6355 0.1329 1.74557e-06

46 rs235083 16 64760511 rs486743 18 12495089 -0.3868 0.0722 8.28396e-08 SPIRE1

Table 5.16: Significant brown Epistasis Results
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p_value term_id source term_name

1 0.0017 CORUM:6780 CORUM RAD6A-KCMF1-UBR4 complex

2 0.0248 GO:0008396 GO:MF oxysterol 7-alpha-hydroxylase activity

3 0.0248 GO:0015218 GO:MF pyrimidine nucleotide transmembrane transporter activity

4 0.0248 GO:0033783 GO:MF 25-hydroxycholesterol 7alpha-hydroxylase activity

5 0.0248 GO:0047092 GO:MF 27-hydroxycholesterol 7-alpha-monooxygenase activity

6 0.0460 KEGG:00120 KEGG Primary bile acid biosynthesis

7 0.0227 REAC:R-HSA-5579013 REAC Defective CYP7B1 causes Spastic paraplegia 5A, autosomal recessive (SPG5A) and (CBAS3)

8 0.0427 REAC:R-HSA-1660517 REAC Synthesis of PIPs at the late endosome membrane

9 0.0427 REAC:R-HSA-175474 REAC Assembly Of The HIV Virion

10 0.0427 REAC:R-HSA-435354 REAC Zinc transporters

11 0.0427 REAC:R-HSA-435368 REAC Zinc efflux and compartmentalization by the SLC30 family

12 0.0427 REAC:R-HSA-174490 REAC Membrane binding and targetting of GAG proteins

13 0.0427 REAC:R-HSA-193807 REAC Synthesis of bile acids and bile salts via 27-hydroxycholesterol

14 0.0427 REAC:R-HSA-174495 REAC Synthesis And Processing Of GAG, GAGPOL Polyproteins

15 0.0427 REAC:R-HSA-1855183 REAC Synthesis of IP2, IP, and Ins in the cytosol

16 0.0451 REAC:R-HSA-193368 REAC Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol

17 0.0451 REAC:R-HSA-192105 REAC Synthesis of bile acids and bile salts

18 0.0451 REAC:R-HSA-211976 REAC Endogenous sterols

19 0.0451 REAC:R-HSA-425410 REAC Metal ion SLC transporters

20 0.0451 REAC:R-HSA-9615710 REAC Late endosomal microautophagy

21 0.0451 REAC:R-HSA-264876 REAC Insulin processing

22 0.0451 REAC:R-HSA-917729 REAC Endosomal Sorting Complex Required For Transport (ESCRT)

23 0.0451 REAC:R-HSA-162588 REAC Budding and maturation of HIV virion

24 0.0463 REAC:R-HSA-5579029 REAC Metabolic disorders of biological oxidation enzymes

25 0.0497 REAC:R-HSA-194068 REAC Bile acid and bile salt metabolism

26 0.0420 WP:WP465 WP Tryptophan metabolism

27 0.0420 WP:WP3529 WP Zinc homeostasis

28 0.0420 WP:WP4545 WP Oxysterols derived from cholesterol

29 0.0457 WP:WP43 WP Oxidation by Cytochrome P450

Table 5.17: Significant gene set enrichmet results of genes with SNPs found by brown cluster

analysis. P-values are FDR adjusted.

rs chr ps beta se p Gene

1 rs6664362 1 9536458 0.0551 0.0054 1.846251e-24 SLC25A33

2 rs904218 1 54733577 0.0251 0.0055 5.74492e-06

3 rs4465227 1 83805074 0.0241 0.0054 8.421985e-06

4 rs16841336 1 157167751 0.0185 0.0032 7.265087e-09 PYHIN1

5 rs10779486 1 206805932 0.0400 0.0041 6.131656e-22
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6 rs17025837 2 85136390 0.0224 0.0035 1.369008e-10 KCMF1

7 rs10173578 2 98638084 0.0711 0.0135 1.39271e-07 MGAT4A

8 rs7586108 2 98656954 0.0545 0.0121 7.26247e-06 MGAT4A

9 rs4467263 2 216412203 0.0284 0.0064 8.941384e-06

10 rs2396261 2 226253774 0.0244 0.0041 1.956478e-09

11 rs17050371 3 9482379 0.0539 0.0117 4.446303e-06 SETD5

12 rs7613687 3 60124976 0.0366 0.0073 5.830227e-07 FHIT

13 rs11925421 3 147370852 0.0451 0.0049 3.889461e-20

14 rs6855169 4 87409854 0.0174 0.0038 5.17517e-06 MAPK10

15 rs359502 4 163061103 0.0566 0.0116 1.21883e-06 FSTL5

16 rs4594876 5 96200799 0.0587 0.0130 6.150582e-06

17 rs6914506 6 37374934 -0.0256 0.0028 6.577782e-20 TBC1D22B

18 rs636444 6 75886187 0.0681 0.0117 6.537207e-09 COL12A1

19 rs4719303 7 12212182 0.0710 0.0155 5.019359e-06

20 rs2333890 7 131063176 0.0467 0.0099 2.742906e-06

21 rs1881690 7 154556020 0.0248 0.0056 9.72057e-06

22 rs9644372 8 4645818 0.0448 0.0081 3.103544e-08 CSMD1

23 rs17071510 8 4658756 0.0410 0.0087 2.570519e-06 CSMD1

24 rs17071569 8 4663824 0.0360 0.0079 5.303253e-06 CSMD1

25 rs7859572 9 32127688 0.0551 0.0121 5.305183e-06

26 rs7477268 10 5360986 -0.0150 0.0034 8.443174e-06

27 rs10491052 10 108384604 0.0211 0.0044 1.705825e-06 SORCS1

28 rs3781436 10 126685259 0.0256 0.0050 3.207543e-07 CTBP2

29 rs341093 11 71914693 0.0407 0.0090 5.639215e-06

30 rs7946005 11 78464992 0.0358 0.0040 1.052576e-18 TENM4

31 rs11225401 11 102113169 0.0214 0.0034 2.011892e-10
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32 rs7970246 12 98033341 0.0503 0.0107 2.895588e-06 ANKS1B

33 rs17234467 13 92867191 0.0758 0.0155 1.000154e-06 GPC6

34 rs1003761 14 23602251 0.0300 0.0051 5.651741e-09 CARMIL3

35 rs4903419 14 76054408 0.0207 0.0034 1.031482e-09

36 rs11070885 15 50289148 0.0209 0.0047 8.394346e-06 MYO5C

37 rs2573590 15 98340757 0.0691 0.0155 8.49181e-06 ADAMTS17

38 rs235083 16 64760511 -0.0252 0.0030 2.736873e-17

39 rs486743 18 12495089 -0.0160 0.0029 3.271965e-08 SPIRE1

40 rs16975208 18 37538035 0.0421 0.0095 9.649039e-06

41 rs11910489 21 16968775 0.0340 0.0066 2.647598e-07

Table 5.18: Significant yellow GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs12034719 1 8882740 rs1873061 17 3340194 0.8962 0.1995 7.07328e-06

2 rs2105217 1 31700974 rs550353 5 31421753 1.1716 0.2641 9.15523e-06

3 rs10493102 1 41781108 rs2280183 16 26987458 0.8757 0.1928 5.54145e-06

4 rs1109255 1 41864295 rs12450609 17 71249027 -1.4880 0.3338 8.28709e-06

5 rs12757818 1 104761380 rs4382869 11 14393309 -1.4173 0.3018 2.65012e-06

6 rs486753 1 206395372 rs4861505 4 183508343 -1.6241 0.3430 2.19098e-06

7 rs1332777 1 235820963 rs3799879 6 46672927 1.3297 0.2770 1.58329e-06

8 rs1332777 1 235820963 rs16874838 6 46673023 1.2941 0.2796 3.68625e-06

9 rs1842088 1 235824870 rs3799879 6 46672927 1.2723 0.2750 3.73154e-06

10 rs1842088 1 235824870 rs16874838 6 46673023 1.2358 0.2776 8.50978e-06

11 rs2192982 2 51369176 rs12467106 2 79301209 1.6400 0.3699 9.25034e-06

12 rs1861108 2 59274551 rs8106157 19 49784782 2.1188 0.4754 8.32022e-06

13 rs2042091 2 64622985 rs1519790 2 151319638 -1.2995 0.2625 7.39318e-07

14 rs10201616 2 75529368 rs2693698 14 98788972 -0.8607 0.1885 4.948e-06

15 rs580041 2 166658756 rs816623 10 599945 -2.7486 0.6142 7.64718e-06

16 rs7587026 2 166686996 rs816623 10 599945 -2.7405 0.6085 6.66797e-06

17 rs10515949 2 207446158 rs35294541 14 50974619 -1.6834 0.3809 9.90623e-06

18 rs10933164 2 227568915 rs1812576 8 62335588 -1.3489 0.2840 2.02992e-06

19 rs3773341 3 12591533 rs6886410 5 10161500 0.9705 0.1778 4.776e-08

218



U
ncovering

genetic
correlates

ofautism
endophenotypes

20 rs1873628 3 70193317 rs12111597 7 34836526 -2.0540 0.4596 7.85256e-06

21 rs9874533 3 78363609 rs7777560 7 29428441 1.6559 0.3490 2.08683e-06

22 rs964243 3 83649900 rs2100425 15 46021021 1.2354 0.2786 9.2362e-06

23 rs9290057 3 101636807 rs269876 5 22626814 -2.3294 0.4954 2.57288e-06

24 rs10516998 4 40820851 rs11072326 15 69851773 -1.2871 0.2620 9.00425e-07

25 rs2291182 4 71236237 rs10486180 7 7528105 1.7258 0.3709 3.27583e-06

26 rs17148759 4 71256426 rs10486180 7 7528105 1.6189 0.3620 7.7579e-06

27 rs7660807 4 71423140 rs10486180 7 7528105 1.8648 0.3704 4.77229e-07

28 rs7678480 4 87306344 rs10215217 7 25127658 1.0351 0.2246 4.06314e-06

29 rs12498329 4 119530972 rs1574196 8 62656389 0.9820 0.2135 4.25482e-06

30 rs724043 4 150120535 rs11665868 19 57045646 2.9996 0.6296 1.89802e-06

31 rs269876 5 22626814 rs6099116 20 54374675 -2.1664 0.4600 2.48396e-06

32 rs4435901 5 117399047 rs1792005 11 122947776 1.2235 0.2687 5.27761e-06

33 rs7356549 5 129751415 rs8073016 17 66027687 -1.1027 0.2297 1.58098e-06

34 rs2636112 5 143140380 rs9471773 6 42199623 -1.2516 0.2805 8.14772e-06

35 rs2636112 5 143140380 rs9493282 6 99611098 0.9448 0.1988 2.00947e-06

36 rs3792815 5 143172404 rs9493282 6 99611098 0.9417 0.2070 5.36743e-06

37 rs11134531 5 168144746 rs10788336 10 86005175 0.9124 0.2039 7.60982e-06

38 rs11134531 5 168144746 rs4933317 10 86006146 0.9252 0.2041 5.78925e-06

39 rs28011 5 179339835 rs1189133 14 55951645 0.9330 0.2089 7.94133e-06

40 rs9381137 6 42183439 rs180623 10 117774312 -0.9005 0.2030 9.13006e-06
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41 rs9688879 6 117806498 rs7944394 11 313649 1.1729 0.2271 2.39325e-07

42 rs6569053 6 119539583 rs12580674 12 63204613 -2.2643 0.5124 9.905e-06

43 rs10215217 7 25127658 rs11219115 11 122704777 1.2651 0.2735 3.7211e-06

44 rs2285738 7 25148437 rs11219115 11 122704777 1.2167 0.2665 4.98167e-06

45 rs7800248 7 29434639 rs860798 21 38054651 0.9782 0.2205 9.15855e-06

46 rs255112 7 30703658 rs10149902 14 55952495 1.3518 0.3047 9.1307e-06

47 rs255112 7 30703658 rs2269193 21 37028413 0.8909 0.1966 5.89267e-06

48 rs10267710 7 95578271 rs9554019 13 26849711 1.4706 0.3228 5.212e-06

49 rs4731523 7 128317512 rs2298389 22 23283349 -2.8521 0.5945 1.60363e-06

50 rs2272750 8 28265756 rs11111796 12 102730058 1.1918 0.2606 4.81667e-06

51 rs1606133 8 50215053 rs2849890 21 17807769 1.3259 0.2837 2.95774e-06

52 rs1434927 8 69702396 rs976825 9 78118411 -0.9969 0.2227 7.57185e-06

53 rs16924243 9 6247054 rs2835119 21 36039929 -17.1460 3.8803 9.92747e-06

54 rs943452 10 6655460 rs17005224 12 78030993 -3.0671 0.6333 1.28012e-06

55 rs2765161 13 23468779 rs2693698 14 98788972 -0.8782 0.1842 1.8668e-06

56 rs9508434 13 28860368 rs9931155 16 9892024 0.8193 0.1816 6.43107e-06

57 rs10483305 14 25626745 rs731119 16 54955872 -0.9807 0.2021 1.2197e-06

58 rs10483305 14 25626745 rs9937484 16 55022018 -1.0663 0.2064 2.39145e-07

59 rs8061733 16 26983403 rs7196183 16 77228455 0.8645 0.1953 9.57569e-06

Table 5.19: Significant yellow Epistasis Results
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p_value term_id source term_name

1 0.0451 GO:0097120 GO:BP receptor localization to synapse

Table 5.20: Significant gene set enrichment results of genes with SNPs found by yellow cluster

analysis. P-values are analytically adjusted.

rs chr ps beta se p Gene

1 rs6664362 1 9536458 -0.0260 0.0051 3.124247e-07 SLC25A33

2 rs16841336 1 157167751 -0.0133 0.0030 8.459175e-06 PYHIN1

3 rs3789357 1 179286940 0.0304 0.0062 9.199761e-07 MR1

4 rs2000220 1 216654259 0.0153 0.0031 6.426457e-07 TGFB2

5 rs1879113 2 104450001 0.0623 0.0141 9.985805e-06

6 rs7558405 2 162831332 0.0307 0.0063 1.168289e-06

7 rs6734769 2 162847031 0.0394 0.0070 2.003524e-08 IFIH1

8 rs12476567 2 162856657 0.0377 0.0069 4.064585e-08 IFIH1

9 rs10439256 2 162860597 0.0379 0.0069 3.620302e-08 IFIH1

10 rs16846646 2 162923669 0.0318 0.0071 7.33516e-06 GCA

11 rs6978 3 56736755 0.0191 0.0041 3.306814e-06 ARHGEF3

12 rs3821414 3 56737285 0.0193 0.0041 2.186296e-06 ARHGEF3

13 rs1009119 3 56738268 0.0190 0.0041 3.836417e-06 ARHGEF3

14 rs6765444 3 56738659 0.0188 0.0041 4.079054e-06 ARHGEF3

15 rs6795648 3 124571756 0.0448 0.0090 6.891151e-07 ADCY5

16 rs11925421 3 147370852 -0.0246 0.0046 8.467602e-08

17 rs10016497 4 141433672 0.0181 0.0039 2.612259e-06 SCOC

18 rs10155508 5 136222522 0.0363 0.0082 9.451178e-06

19 rs11949188 5 167680766 0.0234 0.0051 4.143152e-06 WWC1

20 rs10074081 5 178552380 0.0353 0.0061 8.609612e-09 ADAMTS2

21 rs4700788 5 178553161 0.0210 0.0042 6.157401e-07 ADAMTS2
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22 rs3822601 5 178554182 0.0212 0.0042 4.95439e-07 ADAMTS2

23 rs6914506 6 37374934 0.0143 0.0026 4.687496e-08 TBC1D22B

24 rs16896333 6 43275633 0.0549 0.0121 5.342441e-06 CUL9

25 rs17073336 6 112524916 0.0661 0.0146 5.760098e-06 FAM229B

26 rs876058 8 29081350 0.0158 0.0034 2.413463e-06 KIF13B

27 rs12543905 8 134637913 0.0215 0.0043 7.481305e-07 ST3GAL1

28 rs6578122 8 136155923 0.0270 0.0054 7.858254e-07

29 rs3781509 10 117847336 0.0579 0.0107 5.862896e-08 GFRA1

30 rs1872706 11 32533274 0.0151 0.0033 5.776211e-06

31 rs11227655 11 66555934 0.0588 0.0132 8.110952e-06 SYT12

32 rs12427339 12 103048947 0.0248 0.0052 2.281135e-06 NFYB

33 rs12898861 15 75770857 0.0144 0.0031 4.42175e-06 LINGO1

34 rs8053650 16 11450946 0.0287 0.0061 2.225265e-06 AC099489.1

35 rs12601618 17 6330731 0.0289 0.0059 9.562703e-07 PITPNM3

36 rs9962971 18 64621573 0.0563 0.0109 2.69358e-07 CCDC102B

37 rs2403768 21 14593706 0.0614 0.0133 4.077156e-06 ABCC13

38 rs9984213 21 15442521 0.0234 0.0053 8.524214e-06

39 rs9974747 21 15446136 0.0251 0.0055 5.1839e-06

40 rs9306428 22 25594282 0.0373 0.0077 1.217336e-06

Table 5.21: Significant green GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs3010109 1 27151140 rs11226850 11 105164739 2.8624 0.6105 2.74803e-06

2 rs12025436 1 80078572 rs1452333 9 28110384 -1.3014 0.2933 9.0877e-06

3 rs2503273 1 88046378 rs11075030 16 11883915 1.0811 0.2421 7.95436e-06

4 rs2503273 1 88046378 rs11075032 16 11911951 1.0787 0.2432 9.2194e-06

5 rs10881450 1 107190366 rs10492555 13 35607109 -17.1996 3.8527 8.03373e-06

6 rs11583252 1 117275111 rs2545394 5 66441899 -17.4176 3.9373 9.69977e-06

7 rs1891737 1 163195377 rs6472078 8 49907900 0.9183 0.2060 8.24406e-06

8 rs1409813 1 182324982 rs7143462 14 76092986 1.3118 0.2926 7.34496e-06

9 rs12755165 1 201286370 rs11916000 3 144846715 -2.7839 0.6256 8.5953e-06

10 rs6691953 1 214721745 rs1866670 2 42163826 1.7707 0.3844 4.09264e-06

11 rs7574069 2 116461957 rs2702959 17 31301319 -1.8928 0.4146 4.98898e-06

12 rs6735366 2 117090007 rs7724036 5 150265001 1.2624 0.2681 2.49552e-06

13 rs6719835 2 144504859 rs10873325 14 79531042 1.2082 0.2596 3.25006e-06

14 rs6759721 2 147503753 rs12193414 6 2238019 -1.5902 0.3475 4.74317e-06

15 rs2706035 2 147529174 rs6869001 5 60943136 2.3592 0.5311 8.90825e-06

16 rs16863814 2 177000920 rs4301259 5 117288025 -1.5359 0.3448 8.43626e-06

17 rs6722501 2 202501511 rs9936526 16 59162462 1.4549 0.3192 5.16022e-06

18 rs11675143 2 230583555 rs4554985 12 24684085 -0.8614 0.1924 7.56811e-06

19 rs748465 3 127690482 rs9958551 18 43490826 -16.8299 3.6601 4.26018e-06

223



U
ncovering

genetic
correlates

ofautism
endophenotypes

20 rs6784120 3 134844999 rs1564896 4 96667710 2.4703 0.5196 1.99179e-06

21 rs13084806 3 193211750 rs6122673 20 46443923 2.7787 0.5452 3.46503e-07

22 rs987218 4 141397778 rs16902124 8 128426400 -16.8295 3.7496 7.17697e-06

23 rs1398186 4 141400596 rs980712 10 15680110 -1.6746 0.3650 4.46394e-06

24 rs1398186 4 141400596 rs896431 10 15696680 -1.6853 0.3530 1.81028e-06

25 rs1398186 4 141400596 rs2039910 10 15752834 -1.6896 0.3565 2.13979e-06

26 rs1436969 5 30725657 rs2051072 6 37669843 0.8802 0.1797 9.64798e-07

27 rs4389670 5 72646286 rs2388807 16 53294960 -2.3385 0.4972 2.55497e-06

28 rs17163950 5 109093607 rs7939444 11 7738998 -1.6382 0.3438 1.88407e-06

29 rs6872842 5 146443032 rs4799581 18 27415509 -0.8271 0.1796 4.11984e-06

30 rs7723948 5 146445272 rs2704058 18 27411566 -0.8004 0.1791 7.8098e-06

31 rs7723948 5 146445272 rs4799581 18 27415509 -0.8783 0.1796 1.00104e-06

32 rs6939085 6 40739033 rs931546 6 125840174 -16.8805 3.6300 3.31456e-06

33 rs6939230 6 40739043 rs931546 6 125840174 -16.8818 3.6098 2.91624e-06

34 rs9381214 6 42801937 rs10781329 9 70808065 -1.2184 0.2741 8.81273e-06

35 rs11980453 7 31404897 rs878202 18 68864017 1.8288 0.4096 8.01959e-06

36 rs4282513 7 135986301 rs7317997 13 113781019 1.5554 0.3314 2.69543e-06

37 rs13253327 8 9347868 rs854380 14 24340175 -0.8046 0.1795 7.39399e-06

38 rs17150066 8 9347921 rs854380 14 24340175 -0.9277 0.1832 4.14057e-07

39 rs2004678 8 10172645 rs36400 14 71429746 2.9652 0.6567 6.31394e-06

40 rs1480803 8 136202180 rs4511648 19 35798852 1.2950 0.2831 4.79367e-06

224



U
ncovering

genetic
correlates

ofautism
endophenotypes

41 rs10119193 9 109336507 rs17132028 10 4119009 3.1801 0.6917 4.27896e-06

42 rs7047863 9 110590683 rs12228854 12 46683187 2.5555 0.5702 7.38978e-06

43 rs7047863 9 110590683 rs11168370 12 46721547 2.3114 0.5207 9.0462e-06

44 rs7047863 9 110590683 rs9971764 12 130814085 3.6700 0.7595 1.35017e-06

45 rs1349323 9 117781539 rs4766152 12 3620389 -0.9393 0.2007 2.8774e-06

46 rs11192698 10 107811288 rs2824700 21 18484365 1.3977 0.2974 2.6108e-06

47 rs2725829 11 76733434 rs4511648 19 35798852 1.6364 0.3491 2.76447e-06

48 rs7973859 12 3855485 rs5746996 22 15983801 0.8547 0.1900 6.8435e-06

49 rs17662791 14 51086033 rs9958551 18 43490826 3.4493 0.7545 4.84095e-06

50 rs10484088 14 51102810 rs9958551 18 43490826 17.9096 3.8728 3.75638e-06

Table 5.22: Significant green Epistasis Results
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p_value term_id source term_name

1 0.0179 KEGG:05166 KEGG Human T-cell leukemia virus 1 infection

Table 5.23: Significant gene set enrichment results of genes with SNPs found by green cluster

analysis. P-values are analytically adjusted.

rs chr ps beta se p Gene

1 rs12144395 1 97988897 0.0572 0.0123 3.605114e-06 DPYD

2 rs17045707 3 6700175 0.0129 0.0029 8.053122e-06

3 rs2068197 4 178461632 0.0473 0.0099 1.871678e-06

4 rs562819 6 116385418 0.0145 0.0031 3.030728e-06 FRK

5 rs12353094 9 7533336 0.0216 0.0045 1.675326e-06

6 rs17771757 9 28189845 0.0295 0.0062 1.880324e-06 LINGO2

7 rs1048370 9 139566627 0.0652 0.0136 1.60149e-06 MRPL41

8 rs11017185 10 131986157 0.0261 0.0057 5.136763e-06

9 rs7335956 13 101986271 0.0176 0.0037 1.697828e-06

10 rs8081464 17 74703613 0.0262 0.0055 1.87884e-06 RBFOX3

11 rs1440475 18 51130347 0.0392 0.0083 2.150068e-06 TCF4

12 rs3764532 19 63621034 0.0154 0.0035 9.331308e-06 ZNF584

13 rs11667591 19 63629449 0.0164 0.0035 2.290426e-06

14 rs1122955 19 63638015 0.0162 0.0035 3.771492e-06 ZNF132

15 rs12980907 19 63648138 0.0163 0.0035 3.724861e-06

16 rs2823375 21 15853950 0.0175 0.0037 1.734587e-06

17 rs9977399 21 23535457 0.0306 0.0066 3.677517e-06

Table 5.24: Significant red GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs17385885 1 15372802 rs7502538 17 13299190 -17.7143 3.7003 1.69035e-06

2 rs1321117 1 30400206 rs12881810 14 71993639 1.0136 0.2150 2.41313e-06

3 rs13426 1 32028673 rs3766379 1 159074339 1.4875 0.2981 6.06304e-07

4 rs13426 1 32028673 rs6671710 1 159075909 1.3881 0.3022 4.34981e-06

5 rs13426 1 32028673 rs512525 1 159080367 1.3813 0.3024 4.92128e-06

6 rs13426 1 32028673 rs11582719 1 159090436 1.4119 0.3019 2.91276e-06

7 rs4915873 1 63307674 rs9822730 3 114337365 -1.2383 0.2742 6.31023e-06

8 rs284169 1 91986030 rs705099 4 37271341 -1.1248 0.2209 3.55266e-07

9 rs2207701 1 115111035 rs1042717 5 148186839 -2.7862 0.6137 5.63112e-06

10 rs3765821 1 239860854 rs6737623 2 42144989 -2.2711 0.5073 7.56743e-06

11 rs6737623 2 42144989 rs12363683 11 87459489 2.6636 0.5837 5.04272e-06

12 rs2567599 2 73847582 rs11563057 2 234563208 2.4924 0.5341 3.06772e-06

13 rs162810 3 7691889 rs7324378 13 50577045 -17.2315 3.6314 2.08341e-06

14 rs780362 3 59734612 rs1892669 21 31213372 -1.5527 0.3275 2.12719e-06

15 rs2971458 3 184697981 rs3794370 13 22654627 1.3251 0.2906 5.10049e-06

16 rs16861112 4 47890699 rs17209451 5 65952734 1.2977 0.2860 5.6869e-06

17 rs7668895 4 53151173 rs7340852 4 65192764 1.2893 0.2765 3.11407e-06

18 rs7668895 4 53151173 rs4403082 4 65193230 1.2987 0.2803 3.60218e-06

19 rs7668895 4 53151173 rs766818 4 65195214 1.2530 0.2818 8.71394e-06
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20 rs3733506 4 53154377 rs7340852 4 65192764 1.2912 0.2764 2.99961e-06

21 rs3733506 4 53154377 rs4403082 4 65193230 1.3011 0.2803 3.44955e-06

22 rs3733506 4 53154377 rs766818 4 65195214 1.2554 0.2817 8.34194e-06

23 rs6840875 4 53299344 rs7340852 4 65192764 1.4748 0.2890 3.32978e-07

24 rs6840875 4 53299344 rs4403082 4 65193230 1.5008 0.2929 3.00065e-07

25 rs6840875 4 53299344 rs766818 4 65195214 1.4251 0.2925 1.10087e-06

26 rs4865408 4 53314124 rs7340852 4 65192764 1.4411 0.2837 3.78264e-07

27 rs4865408 4 53314124 rs4403082 4 65193230 1.4678 0.2873 3.24594e-07

28 rs4865408 4 53314124 rs766818 4 65195214 1.3969 0.2874 1.17207e-06

29 rs10009096 4 53318494 rs7340852 4 65192764 1.4706 0.2860 2.73289e-07

30 rs10009096 4 53318494 rs4403082 4 65193230 1.4850 0.2899 3.02432e-07

31 rs10009096 4 53318494 rs766818 4 65195214 1.4092 0.2894 1.12051e-06

32 rs6855459 4 64086972 rs2806890 13 45360061 -1.1212 0.2369 2.21014e-06

33 rs6534554 4 127502750 rs3758893 11 120480600 -1.7188 0.3836 7.45224e-06

34 rs1993616 4 174056940 rs219816 7 98448531 -17.0403 3.6457 2.95293e-06

35 rs1993616 4 174056940 rs219815 7 98448620 -21.6502 4.8658 8.60983e-06

36 rs9361116 6 77470954 rs2211848 21 38289313 1.5022 0.3397 9.75834e-06

37 rs11153611 6 116871256 rs2516737 16 2041750 -2.2439 0.5071 9.65482e-06

38 rs11153611 6 116871256 rs1800720 16 2045401 -2.2607 0.5100 9.30948e-06

39 rs2051950 7 86833858 rs8012614 14 73024217 -1.6106 0.3637 9.48057e-06

40 rs11977045 7 130480376 rs4875371 8 4479917 -1.5120 0.3111 1.17044e-06
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41 rs1439794 7 130485199 rs4875371 8 4479917 -1.3963 0.3060 5.03862e-06

42 rs7462672 8 11935618 rs933577 17 50807334 1.4449 0.2996 1.41339e-06

43 rs1531848 8 94306462 rs10835507 11 29268995 0.9141 0.2064 9.51145e-06

44 rs882259 9 2589564 rs3911554 11 80827181 0.9511 0.1985 1.66173e-06

45 rs885578 9 107906281 rs9320004 18 58029028 17.8708 3.7113 1.47085e-06

46 rs10509936 10 113026683 rs953905 13 73891001 1.0962 0.2473 9.30599e-06

47 rs10736280 10 121827417 rs2823357 21 15836776 -3.0359 0.6601 4.2461e-06

48 rs10736280 10 121827417 rs2179030 21 15837982 -2.9384 0.6331 3.45988e-06

49 rs4751072 10 130899243 rs7124697 11 24605938 0.9887 0.2219 8.37049e-06

50 rs9804629 11 82413697 rs8129780 21 21916220 -18.4187 4.0891 6.65694e-06

51 rs9804629 11 82413697 rs17003913 21 21917013 -23.1629 5.0585 4.67141e-06

52 rs12602753 17 62332794 rs9320004 18 58029028 1.1025 0.2202 5.52669e-07

53 rs12602753 17 62332794 rs978572 18 58073170 1.0726 0.2253 1.93415e-06

54 rs12602753 17 62332794 rs2980981 18 58098098 1.0292 0.2206 3.07117e-06

Table 5.25: Significant red Epistasis Results
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p_value term_id source term_name

1 0.0497 CORUM:5262 CORUM TCF4-CTNNB1 complex

Table 5.26: Significant gene set enrichment results of genes with SNPs found by red cluster analysis.

P-values are analytically adjusted.

rs chr ps beta se p Gene

1 rs10779486 1 206805932 -0.0156 0.0034 3.672534e-06

2 rs11925421 3 147370852 -0.0206 0.0040 3.170029e-07

3 rs13122003 4 23368426 -0.0128 0.0028 4.27892e-06 PPARGC1A

4 rs4697418 4 23368811 -0.0133 0.0028 1.813714e-06 PPARGC1A

5 rs6914506 6 37374934 0.0118 0.0023 4.047782e-07 TBC1D22B

6 rs12235745 9 12530358 0.0167 0.0038 9.082487e-06

7 rs1766059 9 116078932 -0.0131 0.0029 6.857047e-06 COL27A1

8 rs10982134 9 116090819 0.0130 0.0029 6.407809e-06 COL27A1

9 rs235083 16 64760511 0.0123 0.0025 5.498986e-07

10 rs1822215 18 49501501 0.0135 0.0029 2.852245e-06

11 rs16980635 20 19394626 -0.0130 0.0028 2.706448e-06 SLC24A3

12 rs1538218 20 22444290 0.0613 0.0134 5.181347e-06

Table 5.27: Significant black GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs7537470 1 58774809 rs10871631 18 64564484 1.4029 0.3031 3.69222e-06

2 rs3136247 2 47866603 rs13113465 4 165917658 1.1195 0.2512 8.31952e-06

3 rs10865358 2 66900069 rs9939674 16 16831521 -1.3684 0.3060 7.76812e-06

4 rs1008800 3 191677262 rs8042025 15 92391548 1.1654 0.2563 5.44436e-06

5 rs4487342 4 7568079 rs17349444 13 82122720 -17.3758 3.8501 6.38988e-06

6 rs9918079 4 15154508 rs2930230 16 83874666 -2.3389 0.5193 6.67054e-06

7 rs11728037 4 15203996 rs2930230 16 83874666 -2.4446 0.5050 1.29232e-06

8 rs2571494 4 29743146 rs2253907 6 31444849 0.9725 0.2078 2.87074e-06

9 rs2571494 4 29743146 rs2844558 6 31448412 -0.9268 0.1977 2.75928e-06

10 rs7663168 4 67020209 rs414845 21 39176335 -1.7270 0.3737 3.81087e-06

11 rs4619859 4 94918032 rs7896076 10 15912833 -17.4349 3.9409 9.68226e-06

12 rs732020 4 94920377 rs7896076 10 15912833 -17.4286 3.9450 9.96727e-06

13 rs1453871 4 100167429 rs304379 5 121796570 0.9916 0.2206 6.95238e-06

14 rs1238741 4 100202335 rs7323392 13 23164521 -2.3326 0.5195 7.11327e-06

15 rs8086 4 185914415 rs7806 20 54412578 1.1596 0.2601 8.2869e-06

16 rs1803898 4 185938543 rs2284060 22 36873399 -0.9556 0.2036 2.67939e-06

17 rs7698980 4 186412191 rs2064108 6 5609463 -1.0657 0.2392 8.37314e-06

18 rs10473829 5 27337279 rs7821554 8 106867851 2.3199 0.5088 5.12265e-06
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19 rs9313564 5 171274454 rs12587001 14 103671930 -1.3761 0.2809 9.60461e-07

20 rs307805 5 180010093 rs1791619 12 51057341 -2.0340 0.4470 5.36448e-06

21 rs2844558 6 31448412 rs7996365 13 67200857 -1.9982 0.4399 5.57184e-06

22 rs2855448 6 33244553 rs1796135 12 77512679 0.9289 0.2070 7.23374e-06

23 rs6954595 7 19905468 rs702827 7 29457928 0.9967 0.2217 6.90662e-06

24 rs17513961 7 46359092 rs12242999 10 16717982 1.4122 0.3119 5.96359e-06

25 rs921773 8 13275292 rs2294618 16 1754392 -17.2755 3.7218 3.45483e-06

26 rs16883597 8 35139007 rs12323080 13 100841576 1.9783 0.4473 9.7467e-06

27 rs1947300 8 35195174 rs12323080 13 100841576 2.2536 0.5099 9.87656e-06

28 rs17456596 8 80946553 rs7288416 22 27129436 1.0053 0.2192 4.50629e-06

29 rs10956824 8 93257078 rs8086318 18 29517318 -0.9459 0.2039 3.49948e-06

30 rs1331436 9 88358520 rs12831803 12 124127104 1.8995 0.4240 7.47958e-06

31 rs9988765 10 82705777 rs4789374 17 72423955 -17.3086 3.7812 4.70532e-06

32 rs7073243 10 112592257 rs11908625 20 23378230 2.7529 0.6086 6.09455e-06

33 rs3741845 12 10853382 rs1791619 12 51057341 -1.1086 0.2486 8.24971e-06

34 rs3741845 12 10853382 rs10459511 14 55336569 -1.7295 0.3242 9.56024e-08

35 rs10881068 12 45868962 rs2839010 21 46067460 0.9623 0.2147 7.41232e-06

36 rs2272550 14 21661828 rs7187470 16 20327276 -1.1308 0.2512 6.72258e-06

37 rs4794255 17 46907675 rs3746236 19 39990801 -1.0497 0.2367 9.18601e-06
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Table 5.28: Significant black Epistasis Results
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p_value term_id source term_name

1 0.0249 GO:1990843 GO:CC subsarcolemmal mitochondrion

2 0.0249 GO:1990844 GO:CC interfibrillar mitochondrion

3 0.0442 WP:WP3407 WP FTO Obesity Variant Mechanism

4 0.0442 WP:WP4191 WP Caloric restriction and aging

Table 5.29: Significant gene set enrichment results of genes with SNPs found by black cluster

analysis. P-values are analytically adjusted.

rs chr ps beta se p Gene

1 rs7531445 1 86439481 0.0203 0.0043 2.132489e-06

2 rs7558478 2 21041664 0.0458 0.0103 8.519934e-06

3 rs1896701 5 23504549 0.0239 0.0052 3.875019e-06 PRDM9

4 rs13362182 5 85575598 0.0364 0.0079 4.480616e-06

5 rs17058082 6 130214612 0.0471 0.0090 1.885517e-07 TMEM244

6 rs9364788 6 165378269 0.0126 0.0028 9.090796e-06

7 rs4475440 8 32846452 0.0411 0.0084 9.092389e-07

8 rs16880105 8 32849239 0.0410 0.0084 9.825619e-07

9 rs16880178 8 32939262 0.0508 0.0097 1.748787e-07

10 rs9643901 8 38898804 0.0138 0.0030 6.163741e-06 PLEKHA2

11 rs875056 8 142652032 0.0191 0.0038 6.880124e-07

12 rs1453580 11 99286357 0.0344 0.0072 1.809675e-06 CNTN5

13 rs11068753 12 116864562 0.0162 0.0036 8.607632e-06 KSR2

14 rs4905757 14 98252379 0.0243 0.0055 9.735744e-06

Table 5.30: Significant pink GWAS Results

rs chr ps beta se p Gene

1 rs7513083 1 20010708 0.0420 0.0086 1.180802e-06

2 rs10914230 1 31142100 0.0570 0.0107 1.004611e-07 SDC3

3 rs356392 1 71618040 0.0490 0.0100 9.407864e-07

4 rs4262503 1 180518932 0.0227 0.0049 4.063218e-06

5 rs12085373 1 191430770 0.0450 0.0098 4.082378e-06 CDC73

6 rs7519081 1 194324511 0.0445 0.0096 4.026014e-06

7 rs17022092 1 212418241 0.0353 0.0074 2.111922e-06

8 rs11900406 2 74748856 0.0357 0.0080 9.439586e-06 SEMA4F
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9 rs17014064 2 77494416 0.0521 0.0117 8.994745e-06 LRRTM4

10 rs10178717 2 109809934 0.0328 0.0070 2.922429e-06

11 rs2922309 2 177188300 0.0182 0.0036 6.345909e-07

12 rs16863360 2 222673958 0.0480 0.0090 9.439669e-08

13 rs10211582 2 227299685 0.0424 0.0095 7.775491e-06

14 rs16825543 2 229556193 0.0498 0.0102 1.027337e-06 PID1

15 rs9878022 3 1118424 0.0184 0.0036 3.129339e-07 CNTN6

16 rs6442206 3 1124544 0.0177 0.0036 1.024663e-06 CNTN6

17 rs1504076 3 1129559 0.0208 0.0043 1.556434e-06 CNTN6

18 rs2872338 3 1137041 0.0220 0.0043 2.47368e-07 CNTN6

19 rs11925472 3 88921014 0.0578 0.0097 3.22674e-09

20 rs6788974 3 88954827 0.0435 0.0091 1.901243e-06

21 rs11921073 3 89693118 0.0550 0.0112 8.641648e-07

22 rs7649531 3 187356269 0.0361 0.0081 8.977747e-06 DGKG

23 rs11930898 4 34710972 0.0399 0.0089 7.150223e-06

24 rs6447170 4 42262372 0.0202 0.0045 8.131334e-06 ATP8A1

25 rs11934086 4 76867439 0.0332 0.0073 6.030591e-06 G3BP2

26 rs7698406 4 88453617 0.0518 0.0109 1.984204e-06 HSD17B13

27 rs9994891 4 111010902 0.0313 0.0065 1.507277e-06 LRIT3

28 rs17050077 4 120234346 0.0500 0.0092 5.608889e-08

29 rs17007008 4 142360954 0.0476 0.0105 6.164935e-06

30 rs6824449 4 149210445 0.0114 0.0025 6.055101e-06 ARHGAP10

31 rs11933380 4 149216852 0.0121 0.0026 2.391101e-06

32 rs5534 4 149220535 0.0113 0.0025 3.963045e-06 NR3C2

33 rs4396973 4 153866528 0.0485 0.0095 3.460692e-07

34 rs6817090 4 156999620 0.0141 0.0032 8.673273e-06 ASIC5
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35 rs17314234 4 157030205 0.0196 0.0041 1.644914e-06 TDO2

36 rs17054390 4 169766756 0.0500 0.0101 8.028544e-07 PALLD

37 rs10013501 4 185851469 0.0577 0.0107 6.49959e-08 PRIMPOL

38 rs10023035 4 189707217 0.0583 0.0102 1.126058e-08

39 rs4481275 4 191066832 0.0281 0.0060 3.510118e-06

40 rs7711748 5 689589 0.0608 0.0117 1.876282e-07 CEP72

41 rs4540151 5 5411146 0.0470 0.0105 7.656081e-06

42 rs16902110 5 12304916 0.0464 0.0098 2.404024e-06

43 rs16894229 5 25229794 0.0476 0.0106 7.668456e-06

44 rs16884834 5 55448597 0.0345 0.0076 6.13885e-06 ANKRD55

45 rs6869150 5 71832199 0.0513 0.0108 2.281972e-06 ZNF366

46 rs1150555 6 11108503 0.0582 0.0116 5.338111e-07 ELOVL2

47 rs7767058 6 75640352 0.0454 0.0097 2.91443e-06

48 rs6934826 6 79101608 0.0373 0.0081 4.38008e-06

49 rs9456853 6 163639068 0.0532 0.0098 6.301062e-08 PACRG

50 rs2526615 7 19024189 0.0558 0.0105 1.127028e-07

51 rs10226401 7 86295461 0.0496 0.0106 3.101765e-06 GRM3

52 rs7792679 7 154504393 0.0564 0.0106 1.225709e-07 HTR5A

53 rs6946401 7 155921602 0.0359 0.0078 3.989848e-06

54 rs9886459 8 9032820 0.0518 0.0103 4.546778e-07 PPP1R3B

55 rs17054447 8 25759079 0.0491 0.0107 4.409374e-06 EBF2

56 rs16876321 8 29984758 0.0570 0.0107 9.911058e-08

57 rs6987116 8 32971639 0.0554 0.0111 7.016618e-07

58 rs7003403 8 37860475 0.0575 0.0113 4.160963e-07 RAB11FIP1

59 rs16891358 8 42509836 0.0791 0.0116 1.226689e-11 SLC20A2

60 rs6990159 8 42523979 0.0308 0.0065 1.940991e-06 SMIM19
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61 rs13439165 8 87120095 0.0389 0.0087 8.341251e-06 ATP6V0D2

62 rs16926678 9 10960165 0.0188 0.0040 2.291648e-06

63 rs4097990 9 11053519 0.0218 0.0040 6.974418e-08

64 rs16935681 9 17460126 0.0460 0.0094 8.980852e-07 CNTLN

65 rs7027646 9 139341403 0.0233 0.0050 3.7343e-06 EXD3

66 rs7907639 10 60537173 0.0417 0.0089 3.141399e-06

67 rs12416478 10 132736140 0.0128 0.0029 7.5594e-06

68 rs1329152 10 135153022 0.0282 0.0060 3.28626e-06 SCART1

69 rs7924536 11 12874326 0.0283 0.0061 3.113337e-06 TEAD1

70 rs12292743 11 24574951 0.0341 0.0076 7.201329e-06 LUZP2

71 rs7110236 11 118908226 0.0368 0.0075 8.742096e-07

72 rs12314360 12 8711391 0.0396 0.0088 6.752011e-06

73 rs16913692 12 18035565 0.0452 0.0098 3.970053e-06

74 rs12307979 12 44533920 0.0348 0.0076 4.798102e-06 ARID2

75 rs7303119 12 44541262 0.0371 0.0081 4.787352e-06 ARID2

76 rs10161510 12 44543753 0.0374 0.0081 4.343722e-06 ARID2

77 rs1997279 12 79461884 0.0201 0.0043 2.568212e-06 PTPRQ

78 rs7317427 13 27518563 0.0487 0.0100 1.202044e-06 FLT3

79 rs7993593 13 27541728 0.0677 0.0103 5.891557e-11 FLT3

80 rs16944562 13 89938215 0.0469 0.0099 2.086672e-06

81 rs4778547 15 21323644 0.0383 0.0082 2.880616e-06

82 rs1400896 15 34413201 0.0367 0.0080 4.950426e-06

83 rs8039750 15 56740661 0.0472 0.0089 1.330753e-07 ADAM10

84 rs720273 15 56811819 0.0469 0.0105 8.937799e-06 ADAM10

85 rs3759822 15 66355366 0.0582 0.0114 3.343013e-07

86 rs16970108 15 76886530 0.0474 0.0094 4.184148e-07 ADAMTS7
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87 rs2302085 15 90495211 0.0473 0.0101 2.798805e-06 SLCO3A1

88 rs8060156 16 13673522 0.0382 0.0086 8.015921e-06

89 rs6498703 16 17410330 0.0132 0.0030 8.419755e-06 XYLT1

90 rs4547344 16 78341778 0.0118 0.0026 8.434265e-06

91 rs13338235 16 78355131 0.0126 0.0027 2.779489e-06

92 rs7239517 18 1760403 0.0538 0.0105 3.069724e-07

93 rs8088506 18 53915357 0.0597 0.0115 2.436038e-07 NEDD4L

94 rs17056358 18 70950152 0.0506 0.0108 2.906366e-06

95 rs567717 18 75610863 0.0476 0.0100 1.876543e-06 CTDP1

96 rs524643 18 75616126 0.0472 0.0099 2.128941e-06

97 rs7250069 19 16682566 0.0620 0.0110 1.841046e-08

98 rs2823875 21 16847242 0.0434 0.0071 1.042645e-09

99 rs171479 21 28078751 0.0386 0.0086 7.339007e-06

100 rs8132871 21 41732690 0.0162 0.0034 2.532079e-06 MX1

101 rs5748302 22 17939409 0.0539 0.0102 1.357992e-07

102 rs7290537 22 48312295 0.0605 0.0103 4.880806e-09

Table 5.33: Significant magenta GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs7520924 1 62273143 rs12640158 4 104940847 1.7675 0.3751 2.44971e-06

2 rs12410256 1 155496893 rs1056032 6 28978954 18.1830 4.0424 6.85652e-06

3 rs12410256 1 155496893 rs7762289 6 29018214 18.3579 4.0951 7.3634e-06

4 rs12410256 1 155496893 rs4947256 6 29029919 18.2365 4.0648 7.24373e-06

5 rs16834300 1 190684303 rs6054399 20 6547698 16.8988 3.7025 5.01514e-06

6 rs1033928 1 194430520 rs3736919 13 35837688 -1.1001 0.2458 7.61243e-06

7 rs7604720 2 26591404 rs9789218 18 64284356 1.0979 0.2477 9.34751e-06

8 rs17025044 2 40169403 rs17690319 7 41084586 -17.5766 3.5960 1.01995e-06

9 rs3754568 2 46224718 rs6054399 20 6547698 -1.0248 0.2306 8.81437e-06

10 rs9811522 3 5854366 rs925319 18 66623186 -17.1518 3.6727 3.0102e-06

11 rs9834970 3 36831034 rs12364918 11 130246625 1.8564 0.3823 1.20128e-06

12 rs1553656 3 36834709 rs12364918 11 130246625 -1.7587 0.3894 6.29289e-06

13 rs4789 3 36844443 rs12364918 11 130246625 -1.7590 0.3892 6.2122e-06

14 rs2167180 3 67763797 rs2612060 12 64529769 -2.0481 0.4486 4.97941e-06

15 rs2316263 3 101382786 rs4883536 12 131746819 -1.0119 0.2263 7.73409e-06

16 rs1812310 4 5272479 rs12230547 12 57526292 -17.1231 3.7837 6.0271e-06

17 rs4100758 5 148626971 rs17420770 8 20503992 1.7703 0.3789 2.98131e-06

18 rs6458116 6 39507637 rs2823188 21 15550904 2.3543 0.5069 3.4081e-06

19 rs7807193 7 37901198 rs11983950 7 53422386 -1.4160 0.3161 7.48468e-06

20 rs11774078 8 125017223 rs10746936 9 75976117 1.2251 0.2690 5.24179e-06

21 rs10962915 9 1721076 rs2664374 20 5607444 1.2852 0.2709 2.09985e-06

22 rs622173 11 1842723 rs12449822 17 74867283 17.2612 3.7549 4.28722e-06

23 rs1005842 15 79768620 rs13058323 22 20770829 2.8986 0.5920 9.77038e-07

24 rs12916179 15 79845673 rs13058323 22 20770829 2.4541 0.5514 8.54643e-06

25 rs12913258 15 79849884 rs13058323 22 20770829 2.5603 0.5607 4.96805e-06

26 rs9980212 21 39376918 rs2110412 22 19349125 1.2227 0.2692 5.55825e-06

Table 5.31: Significant pink Epistasis Results

p_value term_id source term_name

1 0.0499 GO:0010844 GO:MF recombination hotspot binding

Table 5.32: Significant gene set enrichment results of genes with SNPs found by pink cluster analysis.

P-values are analytically adjusted.
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs7513083 1 20010708 rs17825455 17 5783519 -2.7033 0.5975 6.05738e-06

2 rs2473277 1 22234432 rs17135441 16 1621753 -17.2259 3.5822 1.51926e-06

3 rs12026014 1 38833082 rs7196594 16 24298206 3.1005 0.6937 7.8484e-06

4 rs1746747 1 75915283 rs11672222 19 56919728 3.2168 0.6772 2.03014e-06

5 rs17118192 1 98575051 rs7548237 1 183394873 -1.8104 0.3859 2.70676e-06

6 rs1282275 1 111431094 rs4540151 5 5411146 18.5410 4.0662 5.12015e-06

7 rs1282275 1 111431094 rs234369 19 45168577 2.9522 0.6469 5.02603e-06

8 rs7515448 1 150638659 rs6126303 20 49740539 -2.7786 0.6228 8.14578e-06

9 rs6427202 1 167795454 rs2907465 17 58738171 -1.0689 0.2364 6.12601e-06

10 rs7546105 1 187289233 rs16936162 10 35928643 3.6672 0.7687 1.83831e-06

11 rs12065500 1 197740157 rs7005571 8 66914425 4.1640 0.8917 3.01893e-06

12 rs12065500 1 197740157 rs7005641 8 102193073 4.0596 0.8083 5.09669e-07

13 rs9430018 1 208063165 rs11068512 12 116413880 -17.3912 3.9364 9.96194e-06

14 rs9430019 1 208117417 rs2903728 19 61100107 2.4636 0.5239 2.56851e-06

15 rs823198 2 2869699 rs6800366 3 54665399 17.8172 3.9975 8.30775e-06

16 rs2693822 2 6083374 rs2352224 6 67207301 3.7601 0.7453 4.52819e-07

17 rs6724922 2 79824756 rs7762767 6 90058184 1.7550 0.3912 7.24621e-06

18 rs10178940 2 123311751 rs9604511 13 113486684 2.8007 0.5982 2.83994e-06

19 rs10178940 2 123311751 rs7489888 13 113502415 2.5770 0.5765 7.8304e-06

240



U
ncovering

genetic
correlates

ofautism
endophenotypes

20 rs2551649 2 208064454 rs10092425 8 67098659 2.8143 0.6303 7.99944e-06

21 rs6755425 2 208065237 rs10092425 8 67098659 3.1164 0.6604 2.3678e-06

22 rs16866930 2 226861513 rs10499163 6 130004326 4.0666 0.8669 2.71551e-06

23 rs2686702 3 4165452 rs12361365 11 68348448 -1.9281 0.4229 5.13788e-06

24 rs6599257 3 38779592 rs4872439 8 26382300 1.2245 0.2673 4.63299e-06

25 rs2699975 3 110453409 rs2893954 10 65718694 17.7018 3.9239 6.443e-06

26 rs893883 3 144050017 rs853553 6 110976298 -17.5461 3.8360 4.78366e-06

27 rs7624371 3 183294929 rs7904164 10 119613646 -17.8961 3.9399 5.56486e-06

28 rs4298137 4 14412892 rs992592 5 98095732 -1.8689 0.4093 4.96418e-06

29 rs9291218 4 42185437 rs4899038 14 60859545 -1.8708 0.4223 9.40518e-06

30 rs10222924 4 48711518 rs7965179 12 51791594 -1.7789 0.4026 9.92621e-06

31 rs2768957 4 48748279 rs7965179 12 51791594 -1.7835 0.4035 9.8402e-06

32 rs1051447 4 48758629 rs7965179 12 51791594 -1.8574 0.4016 3.75441e-06

33 rs28498138 4 71515512 rs7831728 8 29261722 3.9938 0.8852 6.43056e-06

34 rs28690964 4 71515698 rs7831728 8 29261722 3.9912 0.8852 6.51892e-06

35 rs1962495 4 115532764 rs2059117 4 181678796 1.1316 0.2544 8.68676e-06

36 rs1962495 4 115532764 rs1376508 8 35081747 -1.8596 0.4195 9.28618e-06

37 rs7674531 4 165105510 rs10499163 6 130004326 2.7837 0.6092 4.88203e-06

38 rs4690554 4 178836765 rs697550 5 14125453 17.0624 3.7910 6.76863e-06

39 rs7669469 4 181700302 rs11150032 16 76595394 -17.4714 3.3131 1.33896e-07

40 rs11943826 4 181711225 rs11150032 16 76595394 -2.8583 0.6382 7.50889e-06
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41 rs4426911 5 125806834 rs4782717 16 81167218 -1.7019 0.3678 3.71386e-06

42 rs4426911 5 125806834 rs459756 21 26598272 1.3782 0.2839 1.20289e-06

43 rs2161747 5 146651578 rs9595770 13 47219459 -1.5016 0.3045 8.17068e-07

44 rs7760394 6 45686882 rs7928765 11 126287995 -2.2074 0.4418 5.84518e-07

45 rs9456696 6 161989559 rs9604511 13 113486684 18.5316 3.8816 1.80375e-06

46 rs11770984 7 26137739 rs2925877 8 129318573 1.0398 0.2341 8.9224e-06

47 rs7783212 7 153773484 rs4918948 10 97306030 -1.6880 0.3612 2.9665e-06

48 rs7831728 8 29261722 rs2813277 10 51573668 4.0065 0.8970 7.95521e-06

49 rs7831728 8 29261722 rs17058178 13 38014394 3.1900 0.7110 7.22913e-06

50 rs7831728 8 29261722 rs10149020 14 52968356 3.3903 0.7325 3.6867e-06

51 rs7831728 8 29261722 rs8031014 15 33108637 3.0094 0.6769 8.76352e-06

52 rs6558205 8 48244020 rs11247118 15 97989207 1.5805 0.3539 7.96403e-06

53 rs4551346 8 63565715 rs7974366 12 12829195 1.6016 0.3553 6.54995e-06

54 rs17085042 9 83578988 rs7404578 16 17404445 1.8676 0.3975 2.618e-06

55 rs4518734 9 123708019 rs11831821 12 43763574 2.4895 0.5579 8.12116e-06

56 rs1904024 10 53511343 rs1002244 21 18477887 2.4747 0.5526 7.51381e-06

57 rs11231918 11 64513102 rs1336666 13 101849898 3.6445 0.7975 4.88521e-06

58 rs10774812 12 114349795 rs4902046 14 60859258 -17.0918 3.8533 9.18007e-06

59 rs10774812 12 114349795 rs4899038 14 60859545 -2.5990 0.5518 2.47932e-06

60 rs17079354 13 23269225 rs1629174 19 44578058 1.6854 0.3802 9.29416e-06

61 rs7331256 13 32281103 rs4899038 14 60859545 -23.3283 5.0950 4.68074e-06
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62 rs9595770 13 47219459 rs191207 19 57493758 3.6303 0.7548 1.51306e-06

63 rs338122 13 70141283 rs10483479 14 36515241 1.4729 0.3260 6.24364e-06

64 rs7184991 16 9048552 rs2972588 19 8814922 1.8008 0.3740 1.47488e-06

Table 5.34: Significant magenta Epistasis Results
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Uncovering genetic correlates of autism endophenotypes

p_value term_id source term_name

1 0.0065 GO:0097060 GO:CC synaptic membrane

2 0.0106 GO:0045211 GO:CC postsynaptic membrane

3 0.0429 GO:0099572 GO:CC postsynaptic specialization

Table 5.35: Significant gene set enrichment results of genes with SNPs found by magenta cluster

analysis. P-values are analytically adjusted.

rs chr ps beta se p Gene

1 rs12729332 1 98772342 0.0536 0.0118 5.644269e-06

2 rs11692400 2 216547176 0.0200 0.0042 1.484727e-06 MREG

3 rs4680509 3 160634953 0.0155 0.0033 1.940174e-06 IQCJ-SCHIP1

4 rs17419291 5 87816188 0.0239 0.0044 4.218069e-08

5 rs6997672 8 69109036 0.0434 0.0093 2.823701e-06 PREX2

6 rs7855148 9 1506528 0.0340 0.0067 3.366948e-07

7 rs10975612 9 6498149 0.0211 0.0047 7.058319e-06

8 rs11813051 10 18783066 0.0551 0.0105 1.44058e-07 CACNB2

9 rs10827540 10 36116780 0.0255 0.0051 5.592256e-07

10 rs945494 10 36141815 0.0235 0.0046 2.593002e-07

11 rs4934770 10 36155566 0.0182 0.0037 1.181975e-06

12 rs7122974 11 45097320 0.0167 0.0037 8.066621e-06 PRDM11

13 rs9524352 13 93630098 0.0195 0.0044 9.549363e-06 GPC6

14 rs17235334 13 95072901 0.0175 0.0038 4.888065e-06 DZIP1

15 rs1560694 19 6218827 -0.0108 0.0024 8.676698e-06 MLLT1

16 rs751327 20 62048057 0.0480 0.0098 9.406004e-07 UCKL1

Table 5.36: Significant purple GWAS Results

244



U
ncovering

genetic
correlates

ofautism
endophenotypes

ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs11122109 1 6610945 rs9424522 1 230519655 -1.4552 0.3280 9.14473e-06

2 rs2235564 1 6635701 rs8052587 16 24796094 17.1808 3.8246 7.04889e-06

3 rs6659873 1 6646393 rs8052587 16 24796094 17.1689 3.8213 7.02494e-06

4 rs2789740 1 14542883 rs1888560 14 20234085 1.6415 0.3641 6.52689e-06

5 rs194637 1 33174360 rs6413504 19 11102915 1.1736 0.2588 5.77179e-06

6 rs194640 1 33176068 rs6413504 19 11102915 1.1739 0.2588 5.73066e-06

7 rs11161721 1 86260502 rs8055371 16 25635344 -1.7543 0.3802 3.93939e-06

8 rs10799928 1 161761408 rs10076979 5 145027619 17.5446 3.8895 6.45913e-06

9 rs17026635 1 214618990 rs1471744 5 154798692 -23.9991 5.4202 9.52492e-06

10 rs2618663 1 235777616 rs10932037 2 204533591 2.0911 0.4698 8.55964e-06

11 rs13405142 2 41409785 rs6998543 8 82063399 -16.7546 3.7633 8.50153e-06

12 rs2874316 2 95173331 rs2042484 2 208071307 1.9369 0.4156 3.16075e-06

13 rs2946592 2 100594107 rs882575 2 114734725 -1.1089 0.2388 3.42507e-06

14 rs10182570 2 165817880 rs1445728 5 13260997 1.3874 0.2833 9.74896e-07

15 rs10174400 2 165833465 rs1445728 5 13260997 1.4200 0.2824 4.95218e-07

16 rs1011584 2 190606463 rs4146282 3 109979738 3.0712 0.6162 6.24003e-07

17 rs6759008 2 216677487 rs4715247 6 51791833 5.7512 1.2063 1.86457e-06

18 rs7579078 2 230935683 rs754970 11 45008403 1.1193 0.2519 8.84584e-06

19 rs6803088 3 2643594 rs1837763 15 69494429 -2.8238 0.6251 6.25991e-06
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20 rs807193 3 53591378 rs12783710 10 82396254 -17.4838 3.7611 3.34217e-06

21 rs1492001 3 54981222 rs2347785 7 47294909 -1.1395 0.2540 7.24856e-06

22 rs1368515 3 97031729 rs2052162 7 77009553 1.4506 0.3127 3.51203e-06

23 rs1368515 3 97031729 rs4729594 7 77136688 1.4535 0.3131 3.43792e-06

24 rs10804512 3 97040061 rs2052162 7 77009553 1.4693 0.3124 2.55907e-06

25 rs10804512 3 97040061 rs4729594 7 77136688 1.4728 0.3127 2.48231e-06

26 rs13101933 4 163369235 rs2757117 14 58764396 -17.4512 3.8621 6.226e-06

27 rs2067587 5 13446197 rs744654 14 94438034 2.1072 0.4224 6.08319e-07

28 rs6885207 5 76180991 rs17205951 5 82884080 -1.7955 0.4023 8.06019e-06

29 rs163129 5 78315576 rs2414049 15 48453732 1.3551 0.2997 6.14625e-06

30 rs7720835 5 117269389 rs972894 15 35751832 1.2737 0.2862 8.60466e-06

31 rs13196352 6 49621726 rs11064111 12 6232623 2.1282 0.4669 5.16984e-06

32 rs3779837 8 2036057 rs2032357 18 20373239 -2.5278 0.5455 3.58927e-06

33 rs11780116 8 73957810 rs5750310 22 35538606 1.4139 0.3195 9.59883e-06

34 rs7006008 8 129676131 rs3830068 17 77233304 1.4650 0.3215 5.18877e-06

35 rs7017613 8 139309627 rs2304144 19 57197045 -17.0745 3.5660 1.68287e-06

36 rs12251539 10 12405881 rs17105725 10 87359244 1.8001 0.4016 7.36376e-06

37 rs11258865 10 14186438 rs9612028 22 41953966 -24.4211 5.4523 7.49827e-06

38 rs10732804 10 112785011 rs4130618 11 91176411 -2.2566 0.4395 2.8355e-07

39 rs7112451 11 37182142 rs531860 11 115766886 18.5902 4.1010 5.81367e-06

40 rs1483397 11 83314550 rs837127 15 35031478 -1.5133 0.3364 6.82307e-06
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41 rs1483397 11 83314550 rs844380 15 35032208 -1.4482 0.3253 8.52616e-06

42 rs1450998 12 96550445 rs12904629 15 64274276 1.2851 0.2753 3.05149e-06

43 rs7154375 14 22996199 rs2581641 18 71119261 1.1984 0.2604 4.17771e-06

44 rs8014874 14 23008418 rs2581641 18 71119261 1.2142 0.2613 3.37157e-06

45 rs1028589 14 23010199 rs2581641 18 71119261 1.2642 0.2658 1.9749e-06

Table 5.37: Significant purple Epistasis Results
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Uncovering genetic correlates of autism endophenotypes

p_value term_id source term_name

1 0.0497 CORUM:6524 CORUM DZIP1-GLI3 complex

2 0.0497 CORUM:6531 CORUM CEP164-DZIP1 complex

3 0.0497 CORUM:6533 CORUM DZIP1-IFT88 complex

Table 5.38: Significant gene set enrichment results of genes with SNPs found by purple cluster

analysis. P-values are analytically adjusted.

rs chr ps beta se p Gene

1 rs2379146 1 11405504 0.0438 0.0081 7.356094e-08

2 rs4526656 1 77055155 0.0350 0.0076 3.886543e-06

3 rs7512513 1 145553128 0.0158 0.0029 3.118e-08 BCL9

4 rs946903 1 145563890 0.0151 0.0029 1.589736e-07 BCL9

5 rs885239 1 145594226 0.0140 0.0031 4.808661e-06 ACP6

6 rs7550430 1 179427776 0.0675 0.0106 2.251652e-10

7 rs16846590 1 225131343 0.0519 0.0107 1.354884e-06 PSEN2

8 rs971121 2 76814935 0.0111 0.0025 7.744659e-06

9 rs10202684 2 125259581 0.0229 0.0050 4.007289e-06 CNTNAP5

10 rs1568519 2 212714637 0.0216 0.0047 4.739713e-06 ERBB4

11 rs9993404 4 25440137 0.0400 0.0090 8.982442e-06 SEL1L3

12 rs17015461 4 90491000 0.0503 0.0113 8.450987e-06

13 rs11562926 4 118869490 0.0115 0.0026 9.858816e-06

14 rs152615 5 14645979 0.0529 0.0103 3.11351e-07 OTULINL

15 rs10053502 5 40014929 0.0183 0.0033 2.031656e-08

16 rs10475791 5 165980465 0.0453 0.0101 8.327628e-06

17 rs11964520 6 20199553 0.0583 0.0095 9.02915e-10

18 rs17139557 7 18677723 0.0519 0.0115 6.341957e-06 HDAC9

19 rs4840528 8 10872062 0.0245 0.0048 2.970369e-07 XKR6

20 rs6980533 8 20781438 0.0463 0.0095 1.223912e-06
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21 rs10092318 8 21414363 0.0592 0.0106 2.312417e-08

22 rs16907174 8 138517940 0.0459 0.0102 6.733312e-06

23 rs472936 9 112669312 0.0267 0.0060 7.607175e-06

24 rs17011340 10 49756248 0.0544 0.0108 5.468037e-07 WDFY4

25 rs7100357 10 94451324 0.0537 0.0107 6.132173e-07

26 rs6585325 10 117053520 0.0517 0.0114 5.665307e-06 ATRNL1

27 rs10490912 10 120136330 0.0558 0.0118 2.407318e-06

28 rs11198385 10 120143942 0.0629 0.0103 1.135182e-09

29 rs11818150 10 121060687 0.0350 0.0072 1.278625e-06 GRK5

30 rs7069895 10 127903886 0.0516 0.0114 5.79542e-06 ADAM12

31 rs12422109 11 3591662 0.0358 0.0080 6.868221e-06 TRPC2

32 rs1036864 11 27177824 0.0544 0.0108 5.474938e-07

33 rs12788404 11 95567860 -0.0123 0.0027 5.952731e-06 MAML2

34 rs2920027 12 67241298 0.0475 0.0073 1.011208e-10

35 rs11609868 12 126602165 0.0171 0.0036 1.825437e-06

36 rs7308784 12 126814588 0.0483 0.0103 2.656139e-06

37 rs17633078 13 29728634 0.0202 0.0045 8.412617e-06 KATNAL1

38 rs4884871 13 69490705 0.0125 0.0027 5.162202e-06 KLHL1

39 rs2019845 13 81866894 0.0212 0.0046 4.072522e-06

40 rs10130493 14 30050171 0.0466 0.0102 5.039719e-06

41 rs3865365 18 10515480 0.0499 0.0105 1.944334e-06

42 rs171479 21 28078751 0.0451 0.0086 1.91667e-07

Table 5.39: Significant greenyellow GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs3828051 1 30970386 rs7815682 8 18623918 1.9864 0.4263 3.16241e-06

2 rs6425939 1 35401376 rs4618582 7 66546427 1.2207 0.2682 5.31044e-06

3 rs4348764 1 68610398 rs6743106 2 68595464 5.6031 1.2236 4.67165e-06

4 rs11210357 1 74106296 rs4074617 6 3858629 -17.7804 3.7574 2.22276e-06

5 rs3916208 1 95033472 rs10440995 7 11198252 -17.0745 3.8581 9.61453e-06

6 rs2810418 1 100416498 rs871429 11 36183135 1.4439 0.3256 9.23334e-06

7 rs946818 1 176264420 rs3007061 14 46308356 -1.9142 0.4306 8.77885e-06

8 rs11799643 1 207946222 rs1988083 17 50146705 2.7173 0.5796 2.75047e-06

9 rs1366990 1 234948326 rs10254035 7 70039082 17.5660 3.7695 3.16156e-06

10 rs4390163 1 237562512 rs3120890 13 54609561 1.3305 0.2957 6.81754e-06

11 rs4390163 1 237562512 rs1582147 13 54628925 1.3311 0.2957 6.73788e-06

12 rs4390163 1 237562512 rs641385 13 54771026 1.3187 0.2948 7.70887e-06

13 rs11903474 2 52100230 rs7216300 17 56023823 3.8464 0.8557 6.95987e-06

14 rs6743106 2 68595464 rs327832 5 125200482 -16.8887 3.7043 5.13326e-06

15 rs6743106 2 68595464 rs4149313 9 106626574 17.1767 3.5725 1.52431e-06

16 rs7606395 2 76734718 rs2830976 21 27782693 2.0499 0.4204 1.08491e-06

17 rs17024323 2 84043438 rs3003202 13 69469515 -2.9748 0.6155 1.34288e-06

18 rs17024323 2 84043438 rs2472285 13 69478105 -17.7830 3.8921 4.90148e-06

19 rs6733249 2 98093335 rs166353 4 26222553 -17.2881 3.9066 9.62875e-06
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20 rs6743113 2 175860968 rs472936 9 112669312 -17.5115 3.7326 2.71132e-06

21 rs4894203 2 177418213 rs7047329 9 132229317 -17.1244 3.8295 7.76114e-06

22 rs10497567 2 181111709 rs10814814 9 4009700 1.7146 0.3851 8.51567e-06

23 rs2372757 3 81305242 rs2631864 8 21156364 1.2811 0.2878 8.50915e-06

24 rs10470524 3 185251030 rs1510973 5 118117697 -1.4302 0.3166 6.25099e-06

25 rs12233824 4 7784743 rs9380934 6 12337924 -1.2382 0.2555 1.25781e-06

26 rs6833151 4 24343929 rs8103801 19 14546934 5.0580 1.1361 8.50016e-06

27 rs6833151 4 24343929 rs10415055 19 14549725 18.8564 4.1985 7.08313e-06

28 rs4861074 4 40648464 rs2836889 21 39407444 -1.6516 0.3673 6.88788e-06

29 rs2412494 4 54327916 rs17760491 13 95965153 1.8601 0.4210 9.96685e-06

30 rs355679 4 78697530 rs28735138 9 139393985 18.3068 4.1044 8.18514e-06

31 rs345328 4 86982925 rs4806798 19 59858533 -2.2048 0.4927 7.65065e-06

32 rs1553142 4 129806899 rs9603226 13 37041586 -17.1104 3.8619 9.3977e-06

33 rs11133706 5 12363717 rs12198596 6 103902072 1.8297 0.3731 9.36843e-07

34 rs1966938 5 93608749 rs497264 19 60801728 -1.8487 0.3731 7.23127e-07

35 rs9393069 6 8800947 rs1880535 8 69434121 1.5351 0.3341 4.32425e-06

36 rs9262539 6 31098469 rs9305467 21 31971660 -17.4354 3.4843 5.61443e-07

37 rs9471115 6 39544026 rs3865365 18 10515480 19.2794 4.3559 9.59812e-06

38 rs593493 6 65114770 rs11630814 15 88439163 -1.1026 0.2421 5.26003e-06

39 rs10440995 7 11198252 rs6948941 7 24368645 -3.4814 0.7354 2.20195e-06

40 rs10440995 7 11198252 rs6980533 8 20781438 -18.0562 2.9506 9.38654e-10
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41 rs10440995 7 11198252 rs10092318 8 21414363 -2.6757 0.5829 4.42812e-06

42 rs10440995 7 11198252 rs575764 11 22441652 -2.9788 0.6436 3.68629e-06

43 rs10440995 7 11198252 rs1367860 13 46541160 -3.5470 0.7908 7.2735e-06

44 rs10440995 7 11198252 rs16991956 20 44918454 -17.6237 3.5238 5.69165e-07

45 rs221134 7 28943536 rs13045110 20 48270025 -1.8694 0.4207 8.86395e-06

46 rs221151 7 28958387 rs13045110 20 48270025 -2.3065 0.5185 8.6449e-06

47 rs10112584 8 10316913 rs7828503 8 27385398 3.9735 0.8914 8.28422e-06

48 rs2607058 8 95296944 rs7831168 8 138689939 -1.2499 0.2760 5.91704e-06

49 rs4506215 8 123591503 rs763512 17 32963644 -1.1925 0.2673 8.16839e-06

50 rs10814814 9 4009700 rs8063474 16 53100356 -1.3832 0.2958 2.92979e-06

51 rs16938162 9 20753840 rs7349 10 31857911 1.2521 0.2814 8.64043e-06

52 rs11144075 9 76529111 rs3095821 15 55363208 1.7919 0.4026 8.53269e-06

53 rs11008356 10 31465689 rs2669017 12 75564882 -1.9340 0.4367 9.49989e-06

54 rs10128422 10 130837828 rs2198517 17 51367182 -3.2100 0.7016 4.74958e-06

55 rs2669017 12 75564882 rs9597698 13 57738510 1.1389 0.2490 4.78758e-06

56 rs3120890 13 54609561 rs1951187 14 31977943 1.2457 0.2563 1.17078e-06

57 rs3120890 13 54609561 rs941749 14 31998385 1.3059 0.2661 9.19626e-07

58 rs1582147 13 54628925 rs1951187 14 31977943 1.2464 0.2563 1.15095e-06

59 rs1582147 13 54628925 rs941749 14 31998385 1.3067 0.2660 9.03505e-07

60 rs641385 13 54771026 rs1951187 14 31977943 1.1726 0.2548 4.19486e-06

61 rs641385 13 54771026 rs941749 14 31998385 1.3008 0.2654 9.52124e-07
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62 rs12886510 14 40666305 rs2615258 15 42291407 -1.2745 0.2796 5.16825e-06

63 rs12915222 15 21724598 rs6564427 16 75924089 1.4652 0.3109 2.44552e-06

Table 5.40: Significant greenyellow Epistasis Results
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p_value term_id source term_name

1 0.0224 KEGG:04330 KEGG Notch signaling pathway

2 0.0011 REAC:R-HSA-2894862 REAC Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants

3 0.0011 REAC:R-HSA-2644606 REAC Constitutive Signaling by NOTCH1 PEST Domain Mutants

4 0.0011 REAC:R-HSA-2894858 REAC Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer

5 0.0011 REAC:R-HSA-2644602 REAC Signaling by NOTCH1 PEST Domain Mutants in Cancer

6 0.0011 REAC:R-HSA-2644603 REAC Signaling by NOTCH1 in Cancer

7 0.0021 REAC:R-HSA-1980143 REAC Signaling by NOTCH1

8 0.0300 REAC:R-HSA-350054 REAC Notch-HLH transcription pathway

9 0.0419 REAC:R-HSA-1980145 REAC Signaling by NOTCH2

10 0.0251 WP:WP3845 WP Canonical and Non-canonical Notch signaling

11 0.0310 WP:WP4905 WP 1q21.1 copy number variation syndrome

Table 5.41: Significant gene set enrichment results of genes with SNPs found by greenyellow cluster

analysis. P-values are analytically adjusted.
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rs chr ps beta se p Gene

1 rs10917804 1 161825373 0.0183 0.0038 1.296552e-06

2 rs12986863 2 42986051 0.0105 0.0023 4.623089e-06

3 rs4851384 2 100928070 0.0180 0.0037 1.356349e-06 NPAS2

4 rs2657606 3 16151302 0.0108 0.0024 4.735653e-06

5 rs6766801 3 64476738 0.0530 0.0104 3.518725e-07 ADAMTS9

6 rs17070965 3 64502168 0.0560 0.0106 1.421178e-07 ADAMTS9

7 rs12644729 4 60612082 0.0410 0.0066 4.792338e-10

8 rs10009793 4 60660113 0.0329 0.0063 2.010529e-07

9 rs2328662 6 22149112 0.0138 0.0030 5.633088e-06

10 rs12706405 7 121746982 0.0114 0.0025 4.280018e-06 CADPS2

11 rs4871014 8 128340162 0.0112 0.0023 9.236507e-07

12 rs11599366 10 3762249 0.0135 0.0029 4.094138e-06

13 rs210271 10 42318996 0.0095 0.0021 9.285532e-06

14 rs11101535 10 49734437 0.0126 0.0027 2.720994e-06 WDFY4

15 rs7094610 10 49792187 0.0102 0.0022 6.452029e-06 LRRC18

16 rs11195970 10 114222079 0.0179 0.0037 1.84804e-06 VTI1A

17 rs3803174 12 43743585 0.0345 0.0077 7.346486e-06

18 rs11499034 14 81042194 0.0539 0.0086 4.685786e-10 SEL1L

19 rs2706600 18 61913993 0.0225 0.0041 2.952041e-08

20 rs7233624 18 61946597 0.0235 0.0052 5.641393e-06

21 rs1388176 18 61955870 0.0225 0.0050 5.650304e-06

22 rs6034804 20 17298685 0.0201 0.0042 2.022442e-06 PCSK2

Table 5.42: Significant tan GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs12563394 1 7303334 rs10429632 9 134316627 -1.8560 0.4033 4.19639e-06

2 rs919055 1 60235624 rs12039989 1 231564859 -2.3579 0.5138 4.46025e-06

3 rs4287129 1 74788735 rs9569913 13 33104418 3.4697 0.7781 8.2328e-06

4 rs10917799 1 161792101 rs10501429 11 77957438 1.3856 0.2775 5.92581e-07

5 rs1934533 1 161810065 rs10501429 11 77957438 1.2591 0.2699 3.0773e-06

6 rs11803436 1 180306065 rs7355673 2 213112634 1.3042 0.2932 8.67048e-06

7 rs7520347 1 239507041 rs9358493 6 22269883 1.6514 0.3242 3.51577e-07

8 rs28477715 1 240207464 rs16824173 2 228468580 -21.8462 4.9293 9.33961e-06

9 rs11681404 2 106102745 rs10501745 11 90281003 -2.5166 0.5234 1.52626e-06

10 rs13315983 3 2905995 rs9376393 6 139367404 -2.2107 0.5005 9.9945e-06

11 rs11708252 3 63483860 rs3812689 10 70725502 2.2041 0.4911 7.17843e-06

12 rs17045666 3 67097455 rs9559900 13 110325330 17.5897 3.8789 5.76743e-06

13 rs17048091 3 69008468 rs237733 20 47375387 3.7309 0.8230 5.80689e-06

14 rs6794608 3 150665245 rs17106990 14 37268283 1.6133 0.3568 6.14495e-06

15 rs9289788 3 150690624 rs17106990 14 37268283 1.9302 0.4156 3.41595e-06

16 rs17632548 3 178765503 rs2221894 8 28847078 -22.0786 4.9580 8.46258e-06

17 rs10008679 4 23643806 rs1388176 18 61955870 2.0707 0.4610 7.04983e-06

18 rs12647295 4 59176173 rs9563614 13 33087333 3.2846 0.7219 5.3626e-06

19 rs6849677 4 84421707 rs500951 15 23924879 2.6582 0.5845 5.42465e-06
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20 rs9307824 4 84439636 rs500951 15 23924879 2.6060 0.5897 9.91743e-06

21 rs313949 4 114240542 rs1829127 12 72715377 -17.1197 3.7726 5.68123e-06

22 rs4241923 4 140062058 rs17799219 7 51105350 -1.9204 0.4241 5.95896e-06

23 rs12502016 4 158569059 rs1944790 11 96366083 -2.0572 0.4484 4.4871e-06

24 rs1865353 4 158579217 rs1944790 11 96366083 -2.0669 0.4481 3.9787e-06

25 rs6536237 4 158583138 rs1944790 11 96366083 -1.9879 0.4491 9.57797e-06

26 rs1049344 5 10733487 rs10099164 8 126458440 -1.9717 0.4318 4.976e-06

27 rs3822414 5 10755688 rs10099164 8 126458440 -1.9779 0.4286 3.94038e-06

28 rs7725550 5 11427223 rs1829127 12 72715377 -2.0408 0.4458 4.70738e-06

29 rs7702488 5 11431282 rs1829127 12 72715377 -2.0201 0.4148 1.11439e-06

30 rs13167730 5 79406003 rs7298766 12 531917 1.7179 0.3786 5.69543e-06

31 rs17341747 5 103598057 rs7771953 6 27379322 -17.1239 3.6265 2.33622e-06

32 rs4720028 7 31124806 rs2124154 8 2631200 2.8986 0.6538 9.28418e-06

33 rs10246618 7 53250628 rs17119756 14 83704185 1.5370 0.3411 6.61509e-06

34 rs664112 7 70786039 rs532849 18 42526088 -2.5354 0.5253 1.38897e-06

35 rs9641363 7 105855399 rs11779546 8 26730853 1.2893 0.2876 7.36106e-06

36 rs4726342 7 140501563 rs5027573 10 87881252 2.1600 0.4877 9.48129e-06

37 rs4726342 7 140501563 rs9323455 14 64397041 2.9386 0.5834 4.7309e-07

38 rs10112737 8 126354508 rs7961656 12 103546283 -18.5535 3.4055 5.09074e-08

39 rs17156937 10 16847751 rs7123583 11 116105231 2.3735 0.5303 7.61678e-06

40 rs1585962 11 38621133 rs12597 12 92320556 -1.3848 0.3134 9.92898e-06
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41 rs10773558 12 127643363 rs11626215 14 94365382 -1.2226 0.2538 1.44995e-06

42 rs4784805 16 55998908 rs4808983 19 19743476 2.5561 0.5589 4.80444e-06

Table 5.43: Significant tan Epistasis Results
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p_value term_id source term_name

1 0.0069 CORUM:876 CORUM SNARE complex (VAMP3, STX6, VTI1A)

2 0.0069 CORUM:877 CORUM SNARE complex (VAMP4, STX6, STX16, VTI1a, VTI1b)

3 0.0069 CORUM:4999 CORUM VCP-VIMP-DERL1-DERL2-HRD1-SEL1L complex

4 0.0069 CORUM:6886 CORUM AUP1-OS9-SEL1L-UBC6e-UBXD8 complex

5 0.0069 CORUM:7271 CORUM ARNTL-NPAS2 complex

6 0.0125 CORUM:6859 CORUM HRD1 complex

7 0.0255 KEGG:04130 KEGG SNARE interactions in vesicular transport

8 0.0255 KEGG:04710 KEGG Circadian rhythm

Table 5.44: Significant gene set enrichmet results of genes with SNPs found by tan cluster analysis.

P-values are FDR adjusted.

rs chr ps beta se p Gene

1 rs6577570 1 6309863 0.0262 0.0059 8.77777e-06 ACOT7

2 rs12118066 1 29958054 0.0329 0.0068 1.476096e-06

3 rs941124 1 53826672 0.0281 0.0056 6.24286e-07 GLIS1

4 rs2218404 1 107754128 0.0316 0.0067 2.162715e-06 NTNG1

5 rs558009 1 107758362 0.0343 0.0062 3.876878e-08 NTNG1

6 rs10918226 1 163884596 0.0156 0.0033 3.451386e-06 MGST3

7 rs9332628 1 167764355 0.0221 0.0046 2.035565e-06 F5

8 rs2494302 1 201511837 0.0154 0.0035 9.629035e-06

9 rs2494279 1 201522441 0.0174 0.0036 1.875029e-06

10 rs6734660 2 8010477 0.0382 0.0085 6.980981e-06

11 rs2287105 2 36671811 0.0332 0.0070 2.041979e-06 FEZ2

12 rs3792223 2 68945648 0.0220 0.0047 3.217716e-06 BMP10

13 rs13428497 2 129693628 0.0457 0.0083 3.784852e-08

14 rs10432509 2 192094767 0.0149 0.0032 2.876863e-06

15 rs2203748 2 192105436 0.0165 0.0035 2.11851e-06

16 rs284552 2 217021289 0.0281 0.0061 5.084279e-06 SMARCAL1
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17 rs9851625 3 107615782 0.0548 0.0091 1.623243e-09

18 rs2715694 3 110023833 0.0147 0.0033 7.019351e-06

19 rs6795648 3 124571756 0.0292 0.0063 3.379739e-06 ADCY5

20 rs6780511 3 162969359 0.0412 0.0092 7.297414e-06

21 rs16861986 3 188557190 0.0337 0.0073 3.735657e-06

22 rs2124075 3 192370979 0.0423 0.0086 8.281619e-07

23 rs1836702 4 30022467 0.0396 0.0077 2.934216e-07

24 rs7673475 4 83215207 0.0458 0.0102 7.701697e-06

25 rs11936273 4 88554532 0.0470 0.0080 3.9524e-09

26 rs16997168 4 111848488 0.0124 0.0028 7.566087e-06

27 rs2972781 5 42752083 0.0293 0.0054 6.355426e-08 GHR

28 rs37540 5 53213804 0.0252 0.0050 4.248416e-07

29 rs965795 5 57980586 0.0095 0.0021 9.218401e-06 RAB3C

30 rs11953502 5 160972260 0.0487 0.0105 3.541367e-06 GABRA6

31 rs307835 5 179966211 0.0384 0.0073 1.265326e-07 FLT4

32 rs12663510 6 42436047 0.0236 0.0052 6.737154e-06 TRERF1

33 rs265387 6 129606637 0.0107 0.0024 9.173991e-06 LAMA2

34 rs6977730 7 28100505 0.0207 0.0042 7.567479e-07 JAZF1

35 rs2435279 7 84893553 0.0194 0.0041 1.833612e-06

36 rs2463664 7 84917896 0.0180 0.0039 3.865175e-06

37 rs7003666 8 18107049 0.0247 0.0056 9.809486e-06 NAT1

38 rs2513764 8 95176653 0.0201 0.0039 2.223534e-07

39 rs2382962 8 144740535 0.0158 0.0035 6.355282e-06 EEF1D

40 rs16925649 9 108403551 0.0286 0.0050 1.393939e-08

41 rs17154797 10 14267295 0.0357 0.0080 7.40503e-06 FRMD4A

42 rs12253961 10 24307122 0.0518 0.0102 3.915021e-07 KIAA1217
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43 rs4935474 10 55292241 0.0276 0.0057 1.100928e-06 PCDH15

44 rs2886405 10 127142934 0.0110 0.0022 8.611043e-07

45 rs6488271 12 10241957 0.0152 0.0034 6.357687e-06

46 rs1148980 12 70252605 0.0463 0.0104 8.239239e-06 LGR5

47 rs17032130 12 100855303 0.0354 0.0080 9.626446e-06 DRAM1

48 rs2257147 13 37421512 0.0308 0.0068 6.166626e-06

49 rs4148511 13 94589810 0.0335 0.0074 6.988155e-06 ABCC4

50 rs2619313 13 94589862 0.0354 0.0076 3.328072e-06 ABCC4

51 rs16964614 13 103774966 0.0412 0.0091 6.389575e-06

52 rs1012023 14 33025960 0.0231 0.0045 3.036911e-07 NPAS3

53 rs10133168 14 104507267 0.0158 0.0036 9.00513e-06 AHNAK2

54 rs12594522 15 30855341 0.0505 0.0104 1.229724e-06 FMN1

55 rs12591918 15 32807797 0.0313 0.0068 4.95362e-06

56 rs2413886 15 46265512 0.0262 0.0058 6.757172e-06 CTXN2

57 rs1566091 15 84566901 0.0106 0.0023 5.642319e-06 AGBL1

58 rs13379679 15 85704281 0.0495 0.0100 6.719055e-07

59 rs8042285 15 90116648 0.0346 0.0066 1.828344e-07

60 rs8030496 15 90122915 0.0353 0.0064 3.203015e-08

61 rs35356834 16 66253866 0.0267 0.0057 3.216372e-06 PARD6A

62 rs1113232 16 66437328 0.0270 0.0058 2.75359e-06 CENPT

63 rs28679372 16 66440433 0.0252 0.0050 5.610266e-07 NUTF2

64 rs5923 16 66531454 0.0225 0.0049 4.012146e-06 LCAT

65 rs1133090 16 66578969 0.0263 0.0051 2.577475e-07 DPEP2

66 rs11860071 16 66894393 0.0258 0.0052 6.53352e-07 SLC7A6OS

67 rs7501522 17 285907 0.0346 0.0071 1.217473e-06

68 rs7235119 18 2034076 0.0448 0.0094 1.835765e-06
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69 rs9748638 18 7867052 0.0182 0.0039 3.660023e-06 PTPRM

70 rs9958551 18 43490826 0.0469 0.0086 5.682477e-08

71 rs740021 19 803104 0.0314 0.0054 7.566308e-09 ELANE

72 rs1274688 19 55692129 0.0557 0.0093 2.397298e-09

73 rs20554 22 39883205 0.0534 0.0089 2.0182e-09 EP300

74 rs8135305 22 45097718 0.0216 0.0048 5.759904e-06 GTSE1

Table 5.45: Significant salmon GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs12047204 1 4368607 rs7946005 11 78464992 1.7910 0.3901 4.39917e-06 TENM4

2 rs1541318 1 4534838 rs643394 6 126635960 -1.5134 0.2944 2.73001e-07

3 rs1541318 1 4534838 rs4724679 7 5451609 -17.1773 3.7331 4.19874e-06

4 rs705191 1 33374139 rs7966642 12 23782609 18.8706 3.5243 8.58381e-08

5 rs3902720 1 50377924 rs17093638 9 136259102 1.2244 0.2679 4.87643e-06

6 rs10127537 1 58562458 rs11810097 1 232357275 1.1701 0.2637 9.1167e-06

7 rs10801851 1 91519594 rs1328531 9 79579741 1.8565 0.4126 6.7977e-06

8 rs743113 1 94215327 rs7626405 3 20151852 -2.2311 0.4997 7.99887e-06

9 rs12080747 1 101858086 rs820007 2 173831519 -17.7399 3.7119 1.76065e-06

10 rs2127980 1 105034488 rs745831 19 51715250 18.1066 3.9116 3.67549e-06

11 rs3134871 1 150565857 rs271245 5 53223060 -17.8103 3.8408 3.53286e-06

12 rs1208373 1 167441820 rs913891 20 55851133 17.2376 3.7057 3.2938e-06

13 rs1938522 1 185702203 rs16901239 8 90951107 -2.1930 0.4799 4.87962e-06

14 rs4025021 1 199695134 rs7661552 4 166259824 -17.5400 3.9542 9.17575e-06

15 rs2551325 2 23833233 rs16882141 6 52127622 -17.6612 3.7828 3.02957e-06

16 rs7562996 2 68940864 rs1328674 13 46339708 2.9105 0.6262 3.35506e-06

17 rs3792223 2 68945648 rs1328674 13 46339708 3.4105 0.6811 5.52391e-07 BMP10

18 rs6743132 2 85307104 rs16969846 15 76516794 -2.3816 0.5290 6.72647e-06

19 rs10208875 2 134469526 rs8033596 15 60914346 2.4620 0.4724 1.87147e-07
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20 rs10200377 2 146407901 rs2566830 6 123006981 1.6218 0.3605 6.85146e-06

21 rs820007 2 173831519 rs10838239 11 44112011 17.9575 4.0181 7.85295e-06

22 rs16839858 2 204075021 rs3866838 4 111973264 -1.5618 0.3433 5.37838e-06

23 rs7634161 3 2541831 rs7946005 11 78464992 1.7198 0.3871 8.90318e-06 TENM4

24 rs7634161 3 2541831 rs2427537 20 61846671 -1.8606 0.3824 1.14268e-06

25 rs12636309 3 2548531 rs2427537 20 61846671 -1.7883 0.3879 4.01153e-06

26 rs11714594 3 4412484 rs6414745 4 11990689 -1.2889 0.2598 7.03247e-07

27 rs3911945 3 5107977 rs11204411 17 19564494 -17.3735 3.8840 7.70934e-06

28 rs2887976 3 64290071 rs13125670 4 10122170 1.3308 0.2984 8.21186e-06

29 rs11128181 3 70690895 rs11754094 6 106216673 1.3513 0.3035 8.48149e-06

30 rs16838468 3 98414526 rs831465 11 20135461 2.4301 0.5313 4.78625e-06

31 rs4299484 3 109672317 rs9377141 6 148826747 -24.2549 5.3091 4.91175e-06

32 rs11917814 3 119334708 rs16928055 11 35870147 1.5676 0.3416 4.45501e-06

33 rs11927890 3 133484772 rs17046936 4 166835457 1.9884 0.4344 4.71527e-06

34 rs970235 3 152304758 rs10746798 9 89157155 -1.1704 0.2511 3.13817e-06

35 rs970235 3 152304758 rs3793708 10 5805643 -2.3536 0.5269 7.92367e-06

36 rs1346943 3 152307484 rs10746798 9 89157155 -1.1745 0.2514 2.97422e-06

37 rs1346943 3 152307484 rs3793708 10 5805643 -2.3482 0.5262 8.10085e-06

38 rs11730321 4 57433226 rs193858 7 105363793 -2.2079 0.4714 2.81213e-06

39 rs1387964 4 71296502 rs9354072 6 94764903 16.9583 3.7979 8.00114e-06

40 rs2194225 5 35919561 rs10483936 14 79442984 -1.5988 0.3548 6.59064e-06
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41 rs302483 5 88179847 rs10828393 10 23329068 -16.6583 3.7335 8.1249e-06

42 rs3776996 5 153777242 rs9347621 6 162670416 -2.8689 0.6398 7.32203e-06

43 rs12526605 6 1566624 rs929026 22 33676625 2.2750 0.4602 7.69568e-07

44 rs12529159 6 24055592 rs989996 7 117429488 -17.6914 3.8365 4.00199e-06

45 rs12663510 6 42436047 rs2830412 21 26994130 2.1415 0.4750 6.51705e-06 TRERF1

46 rs9388726 6 130077505 rs9518226 13 100398863 -1.8832 0.4208 7.63203e-06

47 rs6456182 6 170388033 rs10774348 12 5573729 1.3579 0.3010 6.42949e-06

48 rs12539924 7 10309563 rs2114076 11 25272547 -2.4557 0.5303 3.64873e-06

49 rs36916 7 14969354 rs169851 9 92767566 -1.3064 0.2829 3.87523e-06

50 rs11975368 7 52562628 rs12277367 11 107945626 -1.7715 0.3687 1.55476e-06

51 rs1979600 7 154062483 rs953334 12 24363082 -1.5339 0.3367 5.20707e-06

52 rs6991079 8 12777125 rs929026 22 33676625 1.9771 0.4289 4.02291e-06

53 rs1809437 8 68691402 rs16970072 17 29924662 -1.5233 0.3241 2.60409e-06

54 rs7875771 9 2923001 rs929026 22 33676625 -17.8825 3.4586 2.3352e-07

55 rs169851 9 92767566 rs2872615 17 8855418 -1.1918 0.2613 5.09678e-06

56 rs734632 9 97858467 rs8017553 14 22807362 1.2013 0.2687 7.78357e-06

57 rs11573709 9 109125076 rs9555773 13 110571109 -1.5544 0.3518 9.96228e-06

58 rs12219721 10 114930505 rs12279209 11 82630953 20.2670 4.3531 3.22792e-06

59 rs1080015 11 2468103 rs16988469 20 37838349 17.3197 3.5842 1.34997e-06

60 rs10838382 11 44877202 rs2427537 20 61846671 -1.7710 0.3997 9.3838e-06

61 rs7946005 11 78464992 rs2427537 20 61846671 -2.3607 0.5162 4.7948e-06 TENM4
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62 rs7946005 11 78464992 rs2834428 21 34561844 3.1717 0.5047 3.30008e-10 TENM4

63 rs7946005 11 78464992 rs4817630 21 34567605 2.5893 0.4567 1.42796e-08 TENM4

64 rs12587046 14 87249362 rs2830412 21 26994130 17.8064 3.8326 3.38457e-06

65 rs12444250 16 19031915 rs133076 22 39411507 -21.5003 4.6143 3.17007e-06

66 rs8097281 18 57193201 rs3919594 18 68922380 -17.2152 3.8679 8.55575e-06

67 rs16988469 20 37838349 rs913891 20 55851133 17.8300 3.8765 4.23414e-06

68 rs2834428 21 34561844 rs4044210 22 45164979 -1.7960 0.3950 5.43591e-06

Table 5.46: Significant salmon Epistasis Results
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p_value term_id source term_name

1 0.0083 CORUM:1779 CORUM TGF-beta-receptor-PAR6 complex

2 0.0083 CORUM:5375 CORUM EGR-EP300 complex

3 0.0083 CORUM:5261 CORUM TCF4-CTNNB1-EP300 complex

4 0.0083 CORUM:6354 CORUM Sox4-beta-catenin-p300 complex

5 0.0083 CORUM:6502 CORUM Estrogen receptor complex (ESR1, EP300, NCOA1)

6 0.0083 CORUM:2642 CORUM SMAD1-P300 complex

7 0.0083 CORUM:6586 CORUM VEcad-VEGFR complex

8 0.0083 CORUM:5535 CORUM PLCB3-PARD3-PARD6A complex

9 0.0083 CORUM:1831 CORUM PIAS3-SMAD3-P300 complex

10 0.0083 CORUM:6144 CORUM CENP-T-W complex

11 0.0083 CORUM:1521 CORUM p300-SMAD1-STAT3 complex

12 0.0083 CORUM:5388 CORUM SERPINA1-ELA2 complex

13 0.0083 CORUM:6942 CORUM FZD5-LGR5-LRP6 complex

14 0.0083 CORUM:1160 CORUM ING1-p300-PCNA complex

15 0.0083 CORUM:1158 CORUM p33ING1b-p300 complex

16 0.0083 CORUM:7328 CORUM AML1-HIPK2-p300 complex

17 0.0083 CORUM:918 CORUM PAR3-PAR6-PALS1 complex

18 0.0083 CORUM:5740 CORUM NRP2-VEGFR3 complex

19 0.0083 CORUM:831 CORUM PAR-6-PAR-3-VE-cadherin complex, endothelial

20 0.0083 CORUM:829 CORUM PAR-6-VE-cadherin complex, endothelial

21 0.0083 CORUM:571 CORUM p300-CBP-p270 complex

22 0.0083 CORUM:7564 CORUM LGR5-RNF43-RSPO1 complex

23 0.0083 CORUM:98 CORUM p300-MDM2-p53 protein complex

24 0.0083 CORUM:7300 CORUM PARD3B-PARD6A-PRKCI complex
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25 0.0083 CORUM:5534 CORUM PLCB1-PARD3-PARD6A complex

26 0.0096 CORUM:4 CORUM Multisubunit ACTR coactivator complex

27 0.0096 CORUM:7444 CORUM HOOK2-PAR3-Par6alpha-PKCiota complex

28 0.0096 CORUM:6653 CORUM EP300-KAT2B-TBX5-WWTR1 complex

29 0.0096 CORUM:6146 CORUM CENP-T-W-S-X heterotetramer complex

30 0.0108 CORUM:5260 CORUM TCF4-CTNNB1-SUMO1-EP300-HADAC6 complex

31 0.0108 CORUM:1471 CORUM (RB2, E2F5, HDAC1, SUV39H1, P300)

32 0.0108 CORUM:905 CORUM KIF3A/B-PAR-3-aPKC-PAR-6 complex

33 0.0119 CORUM:5118 CORUM RBL2 complex

34 0.0119 CORUM:2638 CORUM HES1 promoter corepressor complex

35 0.0119 CORUM:927 CORUM CENP-A NAC complex

36 0.0135 CORUM:570 CORUM p300-CBP-p270-SWI/SNF complex

37 0.0236 CORUM:2639 CORUM HES1 promoter-Notch enhancer complex

38 0.0236 CORUM:1179 CORUM CENP-A NAC-CAD complex

39 0.0247 CORUM:7388 CORUM CENP-A nucleosomal complex

40 0.0301 CORUM:7581 CORUM ESR1-TRAP/Mediator coactivator-complex

Table 5.47: Significant gene set enrichment results of genes with SNPs found by salmon cluster

analysis. P-values are FDR adjusted.
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rs chr ps beta se p Gene

1 rs6664362 1 9536458 0.0240 0.0032 1.483981e-13 SLC25A33

2 rs2360546 1 200155592 0.0117 0.0025 2.108225e-06 LMOD1

3 rs16849442 1 200158880 0.0106 0.0024 7.466283e-06 LMOD1

4 rs10779486 1 206805932 0.0118 0.0025 2.355672e-06

5 rs12471455 2 79763857 0.0177 0.0037 2.172188e-06 CTNNA2

6 rs2289129 3 14483315 0.0186 0.0042 8.383137e-06 SLC6A6

7 rs2944401 3 117044246 0.0152 0.0034 9.204589e-06 LSAMP

8 rs2972479 3 117048717 0.0163 0.0034 1.872022e-06 LSAMP

9 rs11925421 3 147370852 0.0184 0.0029 4.73261e-10

10 rs11934086 4 76867439 0.0271 0.0060 5.735106e-06 G3BP2

11 rs2713946 4 111417254 0.0328 0.0053 6.26633e-10

12 rs6866220 5 17078067 0.0403 0.0084 1.570396e-06

13 rs6914506 6 37374934 -0.0088 0.0017 1.546578e-07 TBC1D22B

14 rs1137086 6 149945290 0.0239 0.0052 5.054793e-06 GINM1

15 rs9372012 6 150766274 0.0202 0.0042 2.004581e-06 IYD

16 rs16919513 8 54805952 0.0323 0.0071 6.35616e-06 ATP6V1H

17 rs7827405 8 69927679 0.0293 0.0063 3.71653e-06

18 rs1888203 9 74713677 0.0426 0.0076 2.028845e-08 ALDH1A1

19 rs7029300 9 109192354 0.0137 0.0030 5.883305e-06

20 rs7946005 11 78464992 0.0125 0.0024 3.517999e-07 TENM4

21 rs11225401 11 102113169 0.0093 0.0020 4.135928e-06

22 rs2236336 14 24145569 0.0287 0.0060 2.141021e-06 GZMH

23 rs1420995 16 50068938 0.0488 0.0090 6.728779e-08

24 rs235083 16 64760511 -0.0096 0.0018 8.533857e-08

25 rs1420791 17 61345212 0.0220 0.0043 3.859276e-07 CEP112

26 rs9959968 18 10427781 0.0190 0.0038 5.643485e-07

27 rs7577 18 70339327 0.0109 0.0023 2.563995e-06 CNDP2

28 rs12151353 19 60878398 0.0365 0.0075 1.031181e-06

29 rs16999673 21 40610439 0.0355 0.0080 8.672033e-06 DSCAM

30 rs4822679 22 24722172 0.0240 0.0050 1.85396e-06 MYO18B

Table 5.48: Significant cyan GWAS Results
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ID1 CHR1 BP1 ID2 CHR2 BP2 beta se p Gene1 Gene2

1 rs12128446 1 6977194 rs9542596 13 70621297 -1.9700 0.4418 8.23735e-06

2 rs2297977 1 43187875 rs1535692 13 93832750 1.5306 0.3327 4.20554e-06

3 rs2297972 1 43190613 rs11203200 21 42687644 1.6399 0.3620 5.91541e-06

4 rs11162094 1 76417668 rs12446798 16 28191236 2.2932 0.5122 7.57619e-06

5 rs12726148 1 102860260 rs7086624 10 73369151 -17.6720 3.5360 5.79921e-07

6 rs1241182 1 103120688 rs7086624 10 73369151 -17.6075 3.4055 2.33648e-07

7 rs13375429 1 111904845 rs11954658 5 140901595 3.8089 0.8518 7.76249e-06

8 rs11102354 1 112235189 rs16966406 15 36264553 17.8819 4.0332 9.26558e-06

9 rs6703705 1 113175228 rs10203969 2 217193795 19.1931 4.2631 6.72647e-06

10 rs6703705 1 113175228 rs12880418 14 78239581 -17.5491 3.8575 5.3805e-06

11 rs12132927 1 151698185 rs7585718 2 11640781 17.4523 3.8720 6.56357e-06

12 rs9435886 1 246395636 rs7626182 3 195328616 -17.2831 3.5659 1.25461e-06

13 rs6760967 2 4647199 rs166213 16 64456437 1.7659 0.3957 8.09826e-06

14 rs1558628 2 10395873 rs17021982 3 2911576 -2.3225 0.5234 9.1228e-06

15 rs1558628 2 10395873 rs12153515 5 164564372 1.6423 0.3635 6.253e-06

16 rs6758633 2 10397652 rs12153515 5 164564372 1.6634 0.3698 6.85873e-06

17 rs6758633 2 10397652 rs1638586 11 66931173 1.6241 0.3602 6.52401e-06

18 rs7585718 2 11640781 rs12313273 12 120547393 18.2520 3.9889 4.74574e-06

19 rs7585718 2 11640781 rs3741595 12 120563572 4.1800 0.9058 3.93458e-06
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20 rs7585718 2 11640781 rs6127466 20 36276297 18.2759 3.8876 2.58847e-06

21 rs6733711 2 12498718 rs1286738 3 25589536 17.2235 3.6827 2.91379e-06

22 rs1530394 2 31217236 rs2834114 21 33451104 1.8019 0.3999 6.61117e-06

23 rs207440 2 31415916 rs812315 12 56279757 -2.9958 0.6683 7.38007e-06

24 rs2273659 2 32781367 rs759159 7 55146894 1.4506 0.3205 6.0088e-06

25 rs7596775 2 58015024 rs10934665 3 125525876 -18.0649 3.9136 3.91362e-06

26 rs7585161 2 76723811 rs1710896 3 10992136 2.4261 0.5036 1.45564e-06

27 rs16844617 2 141217162 rs6794294 3 65618598 1.6192 0.3635 8.4005e-06

28 rs7604580 2 158769504 rs16970049 15 38038887 2.1940 0.4782 4.46417e-06

29 rs7579360 2 158769781 rs16970049 15 38038887 2.2057 0.4782 3.98312e-06

30 rs6740826 2 168735801 rs10770407 12 18978417 -2.8427 0.6125 3.46891e-06

31 rs540524 2 169465176 rs16926560 11 44536546 17.7545 3.8100 3.1616e-06

32 rs4125973 2 180654320 rs1420995 16 50068938 2.5140 0.5626 7.87318e-06

33 rs6717445 2 221643665 rs17094645 14 96475737 4.3796 0.9638 5.51924e-06

34 rs17050639 3 9920978 rs6925338 6 994017 -17.8520 4.0070 8.38129e-06

35 rs1710896 3 10992136 rs3028 9 89341182 -17.4121 3.9083 8.38177e-06

36 rs4340668 3 24972917 rs12880418 14 78239581 -22.8939 5.0397 5.5531e-06

37 rs10934665 3 125525876 rs3741595 12 120563572 18.7760 3.8680 1.20852e-06

38 rs10934665 3 125525876 rs12880418 14 78239581 -18.1415 3.8859 3.03276e-06

39 rs4599370 4 169878084 rs16928463 9 114903731 17.7206 3.8768 4.85452e-06

40 rs17064782 4 178550268 rs12153515 5 164564372 1.6372 0.3690 9.15257e-06

271



U
ncovering

genetic
correlates

ofautism
endophenotypes

41 rs17739994 4 178550508 rs12153515 5 164564372 1.9466 0.4095 2.00144e-06

42 rs11724481 4 188588781 rs12363087 11 45069446 20.2031 4.4527 5.70008e-06

43 rs13186768 5 18084440 rs12441058 15 59164913 -1.2767 0.2857 7.87279e-06

44 rs6451722 5 43747135 rs16966406 15 36264553 -17.8555 3.9949 7.8353e-06

45 rs809798 5 53284120 rs12877019 13 25377030 -1.3646 0.3071 8.83086e-06

46 rs809798 5 53284120 rs6134722 20 12856451 -17.7285 3.8899 5.1747e-06

47 rs10474648 5 80444622 rs9927125 16 86029374 17.5885 3.8208 4.15837e-06

48 rs12153515 5 164564372 rs885201 12 2982639 1.5626 0.3456 6.12601e-06

49 rs4395771 6 3249777 rs7976542 12 79020516 18.3472 3.9578 3.55738e-06

50 rs7761394 6 21889931 rs8084524 18 41168213 17.1916 3.8868 9.73047e-06

51 rs6901028 6 62042822 rs1011387 8 128351093 2.3961 0.5321 6.70988e-06

52 rs12662237 6 148150583 rs3741595 12 120563572 -2.8634 0.6459 9.29141e-06

53 rs9384449 6 150725088 rs12154752 7 124837765 1.4320 0.2848 4.96966e-07

54 rs9322486 6 155296741 rs9901870 17 72575732 17.2411 3.7977 5.62825e-06

55 rs17707505 7 22124589 rs4945142 11 76484170 2.3170 0.4719 9.09473e-07

56 rs739627 7 24820021 rs16926560 11 44536546 2.2266 0.4732 2.53641e-06

57 rs12546334 8 15764239 rs2292910 11 45860189 3.0271 0.6820 9.06791e-06

58 rs10108727 8 15816860 rs10441687 9 38154364 1.4948 0.3344 7.83732e-06

59 rs7842248 8 89697728 rs17514846 15 89217554 -3.3992 0.7428 4.73109e-06

60 rs11784608 8 96271460 rs9584922 13 98182541 19.2755 4.3413 8.99505e-06

61 rs11142907 9 73397341 rs12589344 14 85027423 16.7630 3.6866 5.44255e-06
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62 rs12220112 10 8852761 rs12589344 14 85027423 3.1679 0.7081 7.69236e-06

63 rs1638586 11 66931173 rs3803452 15 55367038 2.2581 0.4903 4.11244e-06

64 rs7105776 11 72401751 rs12589344 14 85027423 3.1567 0.6968 5.88177e-06

65 rs871639 12 67725342 rs7204722 16 85987740 1.6518 0.3362 8.93642e-07

66 rs6581845 12 67741183 rs7204722 16 85987740 1.7100 0.3449 7.10923e-07

67 rs1873570 12 98961863 rs16975208 18 37538035 3.0999 0.6724 4.0265e-06

68 rs7296162 12 98969115 rs16975208 18 37538035 3.1095 0.7009 9.1386e-06

69 rs7296162 12 98969115 rs16997918 22 35925862 -17.5512 3.8066 4.01126e-06

70 rs7963085 12 112709174 rs6087433 20 31017374 -17.2793 3.8685 7.94709e-06

71 rs3741595 12 120563572 rs1500106 12 124315518 -1.8022 0.4053 8.72556e-06

72 rs7335200 13 22555518 rs17721321 20 5244078 -1.6987 0.3714 4.79016e-06

73 rs17649047 15 49840521 rs6044870 20 1754234 19.6224 4.0980 1.68202e-06

74 rs17649255 15 49908897 rs6044870 20 1754234 18.8020 3.9719 2.20363e-06

75 rs12592953 15 94329349 rs6417104 18 45253512 -1.3819 0.2851 1.25191e-06

76 rs3102350 16 87907437 rs2836034 21 38179247 2.5746 0.5817 9.58299e-06

Table 5.49: Significant cyan Epistasis Results
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p_value term_id source term_name

1 0.0499 CORUM:7357 CORUM TRIM25-G3BP2 complex

2 0.0197 TF:M03916 TF Factor: PRDM1; motif: NRAAAGTGAAAGTNN

3 0.0197 TF:M03916_0 TF Factor: PRDM1; motif: NRAAAGTGAAAGTNN; match class: 0

Table 5.50: Significant gene set enrichment results of genes with SNPs found by cyan cluster analysis.

P-values are analytically adjusted.
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Chapter Six

Discussion and Thesis Conclusions

The genesis of this body of work was the near insurmountable task of understanding the

genetic underpinnings of behavioral and developmental disorders affecting human health,

and a desire to contribute to the ability of basic researchers to prioritize areas of focus in

a world ever more drowned in biological data. All projects grow, and this work started

small by classifying circadian functions of genes expressed in the suprachiasmatic nucleus,

deep in the anterior hypothalamus of the mouse brain. As disrupted circadian rhythmicity

and expression is a known hallmark of psychological disorders, I exploited massive biobank

data to draw inferences about the relationship between chronotype and several measures of

psychosocial wellbeing. I then moved to characterize behavioral traits relating to complex

neurobehavioral dysfunction in autism and psychosis, before testing phenotypic models by

exploring genetic associations among diverse phenotypes. Before setting out on this work, I

aimed to attempt to accomplish for interrelated tasks:

• 1: Predict genes which are involved in producing abnormal circadian rhythm behavior

in mice using supervised machine learning methods

• 2: Investigate the causal relationship between chronotype, a measure of circadian

rhythm, and behavioral traits linked to mental illness or psychological disorders in
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humans

• 3: Mine psychological assessment instruments to model subtle behaviors which, in ag-

gregate, are indicative of complex psychological disorders such as autism or schizophre-

nia, and use that to reduce the phenotypic heterogeneity among populations with

complex behavioral diagnoses

• 4: Investigate genes which are associated with individuals who share both a common

behavioral diagnosis (autism) and share a common phenotypic profile derived from aim

3.

6.1 Overview of major findings

In Chapter 2, I used a multi-modal machine learning model to classify genes which may con-

tribute to abnormal circadian rhythm function in mouse. I was able to exploit measurements

of rhythmicity and gene expression values in predictions. I showed that combining measure-

ments of rhythmicity, bulk expression, tissue specificity, and protein-protein interactions can

generate robust predictions of circadian gene function. Including protein data substantially

improved model performance, illustrating the value in multimodal data integration for gene

function prediction.

Previously studied genes circadian genes, such as NPAS2, revealed a disparity be-

tween Mammalian Phenotype and Gene Ontology annotated circadian traits. This finding

demonstrates the care that must be used in basing findings off of bioinformatics databases,

while suggesting the Mouse Genome Database (Bult et al., 2019b) to be a conservative gold

standard of experimentally based gene annotations. Working with colleagues, I predicted

Grp to contribute to circadian phenotypes; this was experimentally validated, facilitating

correcting this oversight in the MGD database (Bult et al., 2019a). Potentially more useful,
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though, is that I predicted 246 novel genes to be involved in circadian traits. While pre-

dictions do not necessarily reflect the biological reality, and I do not expect every gene to

produce a phenotype, several had strong external evidence to bolster their reliability. Among

these, several had tissue-specific profiles for the SCN, indicating a lack of expression in other

brain regions as well as throughout the mouse body.

In Chapter 3, I performed Mendelian randomization experiments using the UK Biobank

cohort in a mental-health based phenome-wide manner, investigating the potential causal

relationships between evening chronotype and mental health. Significant associations were

identified between exposure to evening chronotype and experiencing a combination of "manic

symptoms," including being more active than usual, getting less sleep, and being more

talkative and communicative than usual. This association, while not surprising, is fairly

non-specific and includes sleep traits. Though sleep is related to circadian exposure, the two

phenomena are distinct; yet the causal association could be bidirectional. Measures of emo-

tional self-appraisal, including having one’s feelings hurt easily and reflecting on embarrassing

moments, were negatively associated with an evening chronotype. Of the measures tested,

several did not produce associations (see online Appendix). These included psychosocial

factors, such as friendship satisfaction, financial situation satisfaction, and work/job satis-

faction. Although these were modeled, heterogeneity was high and even negative results are

likely unreliable, unless additional confounding variables are accounted for in experimental

design. Without appropriately designing causal diagrams when modeling behavioral traits,

false positive results are common (Burgess, Small, and Thompson, 2017). Social support

measures were included in the analysis, the first time chronotype has been suggested to have

a causal role in hobbies or gatherings. Unsurprisingly from a western cultural context, there

was a highly significant (p = 4.2e-5) causal association between a morning chronotype and

resulting religious gatherings. Though effects were highly variable, the overall effect suggests

causation and opens up a potential area of study between chronotype and social events.
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While questions about the context of religion and chronotype are interesting, modeling gene

x environment interactions may illuminate this connection, and this result should be re-

peated in a multivariate Mendelian randomization experiment to control for other indicators

of extroversion, personality type, or other factors which may influence social gatherings.

Finally in this chapter, I modelled the relationship between chronotype and keratometry

measurements, and found one (out of four modelled) potential association. While light

as a zeitgeber travels through the eye to regulate chronotype, these findings suggest that

chronotype may have an affect on eye morphology and angles of refraction. To pursue this

finding experimentally, phenotype screens via the International Mouse Phenotyping Consor-

tium could be conducted since eye morphology data is routinely collected. A strength of this

study was the robustness of statistical methods, which attempted to attenuate bidirectional

(balanced) pleiotropy as well as weak genetic instruments. This was balanced by the choice

of instruments used, none were in linkage disequilibrium (ensuring independence), and they

were selected from an independent cohort to avoid the "winner’s curse". Using a two-sample

approach also catered for this analysis to be justifiably conservative, will pleiotropy biasing

associations toward the null. One additional note about Chapter 3 that needs restating, is

that the 18 SNPs acted as proxy for a lifetime exposure to an evening chronotype; and in this

analysis the biological roles of the individual SNPs are less relevant than in a cis Mendelian

study focused on one locus. Chapter 3 completed my focus on chronotype, and the pheno-

typic complexity of many traits discussed in this chapter motivated a new appraisal of the

state of behavioral ontologies.

In Chapter 4, I co-created the Aging Neuro Behavior Ontology and created the Psy-

chological Neuro Behavior Ontology, ANBO and PNBO respectively. Each ontology is de-

signed to meet the best practice standards for ontology creation and maintenance; more

importantly both are logically consistent and contain traits needed to model select cogni-

tive and behavioral traits. While this study focused on human behavioral traits relating to
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autism and schizophrenia, the ontology itself remains species neutral, and patterning the E-Q

notation will facilitate working with murine neurogeneticists. There are several reasons why

modeling behaviors with the PNBO is useful; the first being the structure of the ontology -

this is shared by a large portion of the Neuro Behavior Ontology, and the primary value is

in creating new knowledge that is not implicitly coded into the ontology. New class relations

are created when reasoners run, and annotations are expanded when probands, patients, or

genes area annotated to the ontology thanks to the true path rule. This facilitates mapping

individuals to traits that, on the surface, may not have much in common but share common

ancestor terms, linking individuals close in function. The utility of this approach was demon-

strated when surveying the concurrence of ASD and SSD traits. The diagnosis of disorders

historically overlap (Rutter, 1972 Oct-Dec), but this lack of distinction is echoed today by

a recent meta-analysis of ASD and SSD GWAS, where the consortium (Autism Spectrum

Disorders Working Group of The Psychiatric Genomics Consortium, 2017) identified a "neu-

rodevelopmental hub" when combining cohorts into one analysis. Their analysis could be

augmented by phenotyping participants with the PNBO and performing GWAS for traits

which overlap between ASD and SSD affected individuals, providing deeper insight into very

heterogeneous syndromes. A useful aspect of the PNBO is that it separates the concepts of

disease and trait, something that the NBO and Human Phenotype ontologies do not delinate

as successfully. Thankfully this issue does not arise in the Mammalian Phenotype ontology,

likely because mouse geneticists are not trying to diagnose mice but rather observe traits.

This work assumes behavioral disorders as a constellation of traits that different clinicians or

diagnosticians may assign different labels (Asperger’s vs ASD in the DSM-IV, for instance),

but whose phenotypic manifestations have physiological or environmental causes. An experi-

mental result in Chapter 4, which contributes to the literature, was clustering the spectrum,

or segregating probands by their indicative phenotype profiles. These phenotypic profiles

of probands in the clusters were often at high levels of the ontology, but some clusters of

probands exhibited well known trait profiles, such as having several restricted behaviors as

279



Discussion and Thesis Conclusions

a hallmark.

In Chapter 5, I extended my analysis of autism endophenotypes in the SSC cohort

by attempting genome-wide association studies. As is not surprising given the sample size

of some traits tested, no increased power was seen when performing GWAS associations on

individual traits. Likewise, epistatic interactions did not reach genome-wide significance to

a strict p < 1e-8 standard. Interestingly, epistatic interactions associated to individual traits

and to trait profiles had both negative (or less than 1 odds ratio), and positive (more than

one OR) βs, indicating that protective and deleterious pairs of interacting genes were found.

Epistatic interaction tests were run under a model of dominant inheritance, and changing

these assumptions may enable detection of different interacting alleles. Contrary to the poor

performance of single-trait GWAS, cluster based GWAS had good performance, with some

SNPs in a range of clusters reaching extremely low p-values. Cluster GWAS were validated

with a machine learning approach, wherein the cohort was split into training/test sets the

the allele (coded 0,1,2) for each SNP deemed significant to that cluster via association stud-

ies were used as features belonging to their respective probands. These genetic features

were used in a LASSO penalized logistic regression model to predict cluster membership;

the holdout probands were then used to test the classifier’s learned performance. In the

absence of another cohort to study, this validation strategy is innovative. It cannot replace

GWAS replication on an independently phenotyped cohort, but does allow a measure of the

ability of the genomic makeup of a cluster’s probands to predict that the probands belong

to that cluster. Lastly, the highest performing cluster in validation experiments, made up

of 95 SNPs, of which nine were intragenic. Of these, two genes were indicative of circadian

function - NPAS2, discussed in Chapter 2, and CADPS2. In humans, CADPS2 is not anno-

tated to autism traits, but in mouse it was observed to be related ASD traits and abnormal

gait, which is a hallmark of the tan cluster these genes are associated with. Without being

informed by model organism studies, analysis of this cluster would have been incomplete.
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Innovations in this chapter include not only individual cluster/gene relationships, but the

network-based view of interrelated traits and genes associated with them in the SSC cohort.

When annotating an ontology term with a gene or an individual, there is no room for doubt,

and no probabilities associated with that annotation; this is necessary for logical complete-

ness and to enable reasoners to make inferences. However, biology is seldom definitive, and

having a probabilistic way of annotating genes to ontology terms would be an innovation

that could be pursued outside of this work.

This project focused on revealing gene/trait relationships within neurobehavioral pro-

cesses and the broader domain of neurological and mental health disorders. Serveral methods

and and applications presented here have implications beyond this domain, especially where

complex syndromes or highly comorbid conditions exist. The PNBO was used to encode spe-

cific phenotypic traits and serve as a basis for modeling the semantic similarity of patients

who presented with multiple variations of said traits. This allowed for the stratification of

patients that incorporated the relationship between the observed traits and included other-

wise hidden dependencies between patient symptoms which may be shared by portions of

the cohort. This methods may be applied to comorbid diseases when rich phenotyping data

is available, and may be particularly suited to common disorders such as sarcopenia or other

highly prevalent multifactorial syndromes. In order to properly harness such an application,

corrections to the Human Phenotype ontology mentioned in this thesis, and the incorpo-

ration of parts of the ANBO and PNBO into a broarder ontological framework, will be

needed. The improved PNBO and ANBO descriptions of behavior which can be transferred

to model organisms through the Phenotype and Trait Ontology to augment and refine the

Mammalian Phenotype ontology. Incoproration of analagous PNBO and ANBO classes into

the MP ontology may facilitate a more precise translation of observed behavioral observa-

tions when systematically studying models of non-behavioral or non-neurological disorders.

Thus, improved ontologies may be useful in not only stratifiying patients with neurological
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and non-neurological disorders, but in elicidating the behavioral effects of mutant models

designed to study non-neurological phenomena.

6.2 Contributions the literature

• Several novel circadian-related genes have been proposed; among them are genes im-

plicated in the SNARE complex (Sytl4), a G-protein coupled receptor (Calcr), and a

hormone (Trh).

• With the creation of large genomics consortia and biobanks, including 23andMe and

the UK Biobank, several chronotype GWAS have been published. This facilitated a

comprehensive causal analysis of the influence of chronotype on reported measures of

mental health, social support, and eye physiology.

• During this work, two biomedical ontologies were created. The Aging Neuro Behavior

Ontology models behavioral processes relating to cognitive decline, and the Psychologi-

cal Neuro Behavior Ontology models behavior phenotypes exhibited by patients on the

autism and schizophrenia spectra. When published, PNBO will be the first biomed-

ical ontology to attempt to model both autism and schizophrenia related behaviors

together, and the first to model schizophrenia traits at all.

• I have discovered novel autism trait related loci in GWAS of the SSC cohort, and using

a polygenic model have validated those via machine learning methods. In particular,

NPAS2 and CADPS2 were implicated in gait and communication related phenotypes

in an autistic population.

In summary, these contributions provide new knowledge to the scientific community

of the potential role of characterized genes in circadian biology, of the likely causal influence
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of chronotype on social and mental health, and provide novel robust ways of characterizing

the complex phenotype of autism and schizophrenia patients.

6.3 Limitations

6.3.1 Limitations of transcriptome characterization

A strength of this thesis was its use of both model and human organisms as sources for

creating new inferences, and using mammalian genetics to infer possible function to human

associated genes. This is also a limitation, as not all phenotypic traits are guaranteed

to phenocopy between mouse and human. Indeed, even the genetic background of inbred

C57BL/6 mouse sub-strains (J and N) can dramatically influence the phenotype observed

(Simon et al., 2013).

6.3.2 Polygenic causal associations

A limitation in Chapter 3 is the data-driven nature of SNP selection in the discovery dataset

for Mendelian randomization. If I was estimating the effect of increased inflammation using

Mendelian randomization, I would investigate inflammatory cytokines for cis based associa-

tions, picking cytokines based on the pathology or traits of interest as prevously performed

(Collaboration (CCGC), 2011). To perform an analogous experiment, I could have chosen

core clock genes as the focus of analysis.
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6.4 Planed future work

There are several extension to this work which may be done; some are planned for validation

and others to continue themes of this project.

6.4.1 Replication of gene associations

Both a limitation and future work, I aim to replicate the GWAS and phenotype associations

presented herein by applying to the Autism Genetic Resource Exchange, AGRE (Geschwind

et al., 2001). The AGRE holds an independent replication cohort of deeply phenotyped

(ADOS, ADR-I, and others) autism probands for use in both phenotype cluster analysis and

GWAS. As the input into clusters in this work was the semantic similarity of probands; and

that relationship to the whole will change when 1) any new terms are added to the PNBO

in which probands participate, and 2) new probands are added to the analysis, a perfect

replication may not be possible. However, because of the hierarchical nature of the ontology

probands with not identical but similar traits should still cluster together.

6.4.2 Validation of PNBO in schizophrenia patients

As part of the PIMS study currently underway at the universities of Birmingham and Cam-

bridge, colleagues are preforming a meta-analysis of cohorts of schizophrenia patients from

five cohorts, investigating inflammatory biomarkers of the SSD. Several cohorts are deeply

phenotyped, and I aim to work with psychiatrists to interpret diagnostic and assessment

tools used to enhance the PNBO and annotate study participants with PNBO traits. While

current unsupervised learning methods by the group have not segregated patients based on

phenotype, they are not using a structured, semantic approach to phenotyping patients.
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The approach developed here may help, and would further validate the use of the PNBO for

patient stratification.

6.4.3 Extending the PNBO ontology to more assessment instru-

ments

To that end, I plan on extending the PNBO with more traits based on relevant psychological

or psychiatric assessments. This will enable the PNBO to capture more phenotypic variation

among ASD and SSD patients, and deeper phenotyping will allow more human traits to be

mapped to mouse via E-Q statements. Having psychosis or autism related traits mapped

directly to mouse may help guide researchers in planning phenotyping experiments, saving

valuable resources and ensuring translatability of any findings.

6.4.4 Working with colleagues to validate circadian genes and gene/trait

causality

To validate findings, I plan to work with colleagues from MRC Harwell Institute to plan

behavioral phenotyping experiments of candidate circadian and autism-related traits. As

the Institute changes, collaborations will be maintained.

6.4.5 Large scale studies and future plans

The initial methods used in this work, especially the methods in Chapters 3, 4, and 5, will

be applied within biobank-scale data. During the course of this work, I have become an

affiliate researcher at the Lawrence Berkely National Laboratory in Berkeley, CA, USA to

obtain access to the Million Veteran Program (MVP) which aims to genotype and phenotype
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current and former US military personnel (Gaziano et al., 2016). Phenotypic information is

broad, as in the UK Biobank, and streams of research include behavioral concerns includ-

ing substance abuse, mental disorders, as well as exposure-specific heterogeneous syndroms

incluidng Persian Gulf Syndrome. To facilitate patient stratification, I will ontologize the

information from the MVP biobank relevant to mental health but absent from the PNBO,

and combine the existing Human Phenotype ontology with the PNBO to stratify patients

based on psychological and pysiological traits. Whereas the UK Biobank does not focus on

a population at high risk for mental illness such as post-traumatic stress disorder (PTST)

or suicidal idiation, the MVP participants will have increased likelihood of poor mental

health outcomes compared to the general population who have not been at war in some

fashion since at least 2001. Once patients are stratified, GWAS and epistatic testing will

be performed, as well as gene/environment interaction studies to take into account spe-

cific exposures unique to this population. Accessing such a large biobank will also serve

as an independnt replication set for chronotype GWAS performed in this study and those

of outher outcomes, from depression to group religious participation. Applying Mendelian

Randomization, as discussed in Chapter 3, to these populations will allow for the modeling

of causal relationships between genetic succeptability to PTSD and moderating or mediating

exposures and quality of life outcomes. Findings will have potential implications for treat-

ment of these and other populations beyond the biobank setting. The Psychiatric GWAS

Consortium meta-analizes several psyciatric GWAS studies (Psychiatric GWAS Consortium

Steering Committee, 2009), and will additionally provide fruitful ground for patient strat-

ification using more recent studies from the consoritum which include diagnostic and deep

phenotyping information. Performing patient stratification at the biobank or meta-analysis

scale will ensure that the approches devised in this thesis are exploited to directly bene-

fit basic research into genetic epidemiology and potentially translate into human health.

By maintaining collaborations with experimentalists working with mouse models, findings

from these wider studies be investiated mechanistically to put computational insights into
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biological context.

6.5 Conclusions

This thesis aims to formulate models to predict genes involved in neurobehavioral abnor-

malities. Journeying from mouse to human to back again, it has demonstrated the inherent

dependence that human genetics has on model organism work. With colleagues, I predicted

and validated circadian functions brought about by the Grp gene and prioritized several

others for experimental validation. Moving to human, this work investigated the causal

links between chronotype and a series of mental health, social, and opthalmic traits. This

work confirmed previously known associations (depression), while proposing novel social and

mental traits influenced by circadian genetics, while finding null associations with several

mental traits. Knowing that circadian biology influences more aspects of mental health than

were modeled using the UK Biobank self assessment, I then modeled autism and schizophre-

nia related traits using the new Psychological Neuro Behavior Ontology. This ontology was

used to develop a new method of segregating autistic probands by endophenotype similarity.

Lastly, this work contributed 64 possible GWAS to the literature. Most were insignificant, as

expected, but clustering probands led to highly significant results, including potential new

links between genes associated with abnormal gait and head nodding in humans and autistic

behaviors and chronotype in mouse.
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Appendix One

Online Appendix

Several supplementary files are available for chapters 2 - 5 can be accessed at http://github.com/jaw-

bioinf/PhdThesis:

• Chapter 2: Appendix 1:

• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter2/AppendixTable1.csv

• Chapter 2: Appendix 2:

• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter2/AppendixTable2.csv

• Chapter 3: All mental health trait Mendelian results:

• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter3/all_mental.tsv

• Chapter 3: All social support trait Mendelian results:

• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter3/all_social.tsv

• Chapter 3: All keratometry trait Mendelian results:

• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter3/all_keratometry.tsv

• Chapter 4: The PNBO ontology
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• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter4/pnbo.obo

• Chapter 4: The ANBO ontology

• https://github.com/jaw-bioinf/PhdThesis/blob/master/AppendixChapter4/anbo.owl

• Chapter 5: All nominally significant GWAS results from single PNBO trait analyses

• https://github.com/jaw-bioinf/PhdThesis/tree/master/AppendixChapter5
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