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Abstract— Nonlinear excitation controllers for power systems 

are considered as promising replacements for their linear 

counterparts, such as power system stabilizers (PSSs). 

However, Lyapunov based nonlinear controllers currently 

available in literature have been derived using simplified third 

order machine dynamics and have not been tested on realistic 

power system models, and the costs associated with these 

controllers have also not been studied. The paper aims to assess 

the performance of existing Lyapunov controllers for a detailed 

benchmark power system model. Two new Lyapunov based 

nonlinear controllers have been derived using IEEE 

recommended subtransient machine model, and their 

performance and costs have been compared with existing 

methods. The controllers have been evaluated using metrics for 

both small signal stability and transient stability. It has been 

proven theoretically (via stability analysis) and demonstrated 

via simulations that proposed Lyapunov controllers are more 

viable options for control of power system oscillatory 

dynamics. It has also been demonstrated that detailed 

subtransient model is required for accurate estimation of states 

via dynamic state estimation for use in the realization of 

Lyapunov controllers. 

Index Terms— Nonlinear controller, power system dynamics, 

small signal stability, modal analysis, normal-form, Lyapunov, 

transient stability, critical clearing time, voltage regulation.  

NOMENCLATURE 

𝑝 Machine index. 

𝑖, 𝑗 General subscript for the 𝑖𝑡ℎ or 𝑗𝑡ℎ

𝜔𝑠, 𝜔 Synchronous and Mach. rotor speeds in rad./s resp. 

𝑃e, 𝐼 Electrical power and stator current in p.u. resp. 

𝛿, 𝜃 Rotor angle and stator voltage phase angle in rad. 

𝑉𝑎, 𝐸𝑓𝑑 AVR regulator voltage, field excitation voltage 

𝑉𝑟 , V𝑠𝑠 AVR filter voltage and PSS/controller output resp. 

𝐸𝑑
′ , 𝐸𝑞

′ Transient d and q axis emfs in p.u.  

𝜓𝑑, 𝜓𝑞 Subtransient damper coil d and q axis emfs in p.u. 

𝑉𝑞 , 𝑉𝑑 q and d axis stator voltages in p.u. 

𝑉Q, 𝑉D q and d axis stator voltages in p.u., in network 

frame of reference 

𝐼𝑞 , 𝐼𝑑 q and d axis stator currents in p.u. 

𝐼Q, 𝐼D q and d axis generator currents in p.u. in network 

frame of reference 
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𝐸𝑑𝑐
′ transient emf across dummy rotor coil, in p.u. 

D Damping constant (p.u.) 

H Inertia constant, in seconds, M = 2H 

𝑇𝑚, 𝑇𝑒 Mechanical and electrical torque, in p.u. resp. 

𝑃𝑚, 𝑃𝑒 Mechanical and electrical power, in p.u. resp. 

𝑇𝑑0
′ d-axis open circuit sub-transient time constant (s).

𝑇𝑞0
′ q-axis open circuit sub-transient time constant (s).

𝑇𝑐 dummy rotor coil time constant (s).

𝑥𝑑 d-axis synchronous reactance, in p.u.

𝑥𝑑
′ d-axis transient reactance, in p.u.

𝑥𝑑
′′ d-axis subtransient reactance, in p.u.

𝑥𝑞 q-axis synchronous reactance, in p.u.

𝑥𝑞
′ q-axis transient reactance, in p.u.

𝑥𝑞
′′ q-axis subtransient reactance, in p.u.

𝑥𝑙 Armature leakage reactance, in p.u.

𝐾𝑑1 Defined as (𝑥𝑑
′′ − 𝑥𝑙)/(𝑥𝑑

′ − 𝑥𝑙)
𝐾𝑑2 Defined as (𝑥𝑑

′′ − 𝑥𝑑
′ )/(𝑥𝑑

′ − 𝑥𝑙)
𝐾𝑞1 Defined as (𝑥𝑞

′′ − 𝑥𝑙)/(𝑥𝑞
′ − 𝑥𝑙)

𝐾𝑞2 Defined as (𝑥𝑞
′′ − 𝑥𝑞

′ )/(𝑥𝑞
′ − 𝑥𝑙)

V𝑡 Generator terminal voltage, in p.u.

𝑝𝑠𝑝 Controller states (including washout filter).

( .  ̃) (. ) − (. )0; State variable transformation

𝑥, 𝜇 State and input vectors respectively  

𝑦, 𝑛𝑥 Measurement vector, State vector dimension. 

𝑅𝑎 Armature resistance, in p.u.; 𝐾𝑆 PSS gain

𝐾𝐴, 𝑛𝜇 ST1A gain, Control vector dimension. 

𝐕, 𝐈 Bus voltages and bus current injection vectors resp. 

N Number of nodes in the power system network. 

𝑇CH, 𝑇SV Time constants of the turbine and governor resp.

𝑃CH, 𝑃SV Steam chest power output and valve position resp.

𝑃C, 𝑅D Governor set point and regulation constant resp.

PSS Power system stabilizer; CCT Critical clearing time 

AVR Automatic voltage regulator 

I. INTRODUCTION 

XCITATION control of multi-machine power systems

has been of interest to researchers and engineers as it 

directly decides the system stability. The design of an 

excitation controller has the following objectives [1]: a) to 

be optimally adapted to the system mathematical model, b) 

to be decentralized so that control decisions rely only on 

local measurements, c) to be immune to changes in system 

set points and operating conditions, d) not be affected by 

large disturbances, and e) robust to measurement sensor 

anomalies. Commonly used auxiliary linear controllers, such 

as PSSs, are not perfect solutions to these challenges. A 

multi-machine power system is non-linear in nature and any 

disturbances are likely to significantly change the operating 

point of the system. For linear controllers based on linear 

control theories, linearization of the system is required in the 

neighborhood of a pre-determined system equilibrium or a 
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set of equilibria. Such controllers are only valid in such a 

neighborhood and any significant change in the system may 

cause stability problems. Additionally, linear state feedback 

controllers may be sluggish as they require linearization of 

the system dynamics and their optimality depends on the 

adequacy of the system dynamic model [1]-[14]. Recently, 

with the systematic development of nonlinear control 

theory, nonlinear controllers have been proposed as a better 

solution. 

 Various nonlinear controllers proposed in power system 

literature may be broadly divided into two categories: 

methods based on normal forms [1]-[5] and methods based 

on Lyapunov functions [6]-[10]. Normal form-based 

methods involve transforming the system using a curvilinear 

coordinate system, while Lyapunov based methods involve 

finding a positive non-increasing energy-like function of the 

system states. Although significant development has been 

made in control design using both the techniques, there are 

still a few drawbacks of the existing methods. Firstly, most 

non-linear controllers are derived from a third-order model 

of a synchronous machine. Such model is a simplified 

representation of generator dynamics and cannot 

characterize subtransient dynamics of a machine. A 

controller derived from such a model may have unexpected 

effect on a power system and may even affect local stability 

at the machine [11]-[12][13]. To the best of the authors’ 

knowledge, only one paper has shown the importance and 

necessity of using detailed models for deriving nonlinear 

controllers based on normal forms [14], while a 

corresponding study on Lyapunov control is not available in 

power system literature. The Lyapunov controllers available 

in literature have only been implemented and simulated on a 

simple network modelled using third-order machine models. 

This makes it unclear if these controllers are capable of 

being applied to realistic power systems. Also, a 

comparative study of existing Lyapunov controllers is not 

available in literature. Similarly, the performance of such 

controllers considering costs of control and instrumentation 

chain anomalies has not been studied. Finally, it is assumed 

that states required for realization of these controllers [1]-

[10] are directly available as measurements which may be a

gross approximation.

This paper aims to address the aforementioned drawbacks 

by finding answers to the following questions:  

1. Are Lyapunov controllers based on third-order machine

model compatible with (or work with) a realistic network

model with detailed machine models?

2. How do different nonlinear controllers perform

compared to each other?

3. What is the impact of model order on the accurate

estimation of machine states for use in the realization of

these controllers?

4. Does the performance of Lyapunov control improve if

controllers are derived from sixth-order model?

5. Are the controllers (derived from third or sixth-order

machine model) realizable in practice considering costs

of control and instrumentation chain anomalies? And is

computation an issue in realizing these Lyapunov

controllers derived from third or sixth order models?

In this paper, two representative Lyapunov controllers

have been tested using the 68-bus benchmark power 

system [15]. The proposed controllers are based on the 

subtransient machine dynamics and focus on both small 

signal and transient stability. Specifically, the following 

metrics have been evaluated and compared for all the tested 

controllers: modal analysis, an index for transient stability 

(integrated variation of per-unit rotor energy), critical 

clearing time (CCT), control cost and voltage regulation. 

The principle contributions/advantages of this work are as 

follows: 

1. Two new decentralized nonlinear excitation controllers

based on detailed IEEE 2.2 model have been proposed

for control of oscillatory dynamics and overall stability

improvement. One controller is based on feedback

linearization (namely LYPF1) while the second (namely

LYPF2) is based on nonlinear optimal control.

Compared to all other Lyapunov controllers LYPF2 uses

reduced control effort while increasing the stability

margins. Additionally, it does not contain any derivative

term in the control law unlike other Lyapunov

controllers.

2. The compatibility, performance, and control efforts of

the Lyapunov controllers based on simplistic and

detailed machine models has been thoroughly studied

and compared, to answer the above questions.

3. Estimated states via dynamic state estimation (DSE)

have been used in realizing all the controllers to

eliminate the gross approximation about the availability

of machine states as direct measurements. It has also

been established that DSE based on detailed machine

models is necessary to accurately estimate the machine

states for use in the Lyapunov controllers based on any

model order.

4. The asymptotic stability of the system with the derived

controllers has been proven analytically. Theoretical

findings are complimented by performing eigen-value

analysis of a test system with the derived controllers.

5. The feasibility of the application of the Lyapunov

controllers including proposed ones (LYPF1 and

LYPF2) has also been discussed by comparing their

computational requirements and real-time tests.

The rest of the paper is organized as follows: Section II

reviews synchronous machine models and Section III briefly 

introduces the controllers being studied. Section IV presents 

the concise derivation of the two new controllers. Section V 

presents the stability analysis of the proposed controllers. 

Section VI introduces the detailed case studies and presents 

the comparison results and inferences followed by 

conclusions in Section VII.  

II. POWER SYSTEM MODEL 

The dynamics of a conventional power system are 

dominated by generator behavior. Depending upon the 

application, a synchronous generator can be represented by 

mathematical models at different complexities with certain 

assumptions and modelling approximations. The model 

complexity of a synchronous machine is reflected by the 

numbers of damper coils on its rotor [16], [17]. The sixth-

order model is the recommended model as per IEEE [11], 

with a field winding and a damper coil on d-axis and two 

damper coils on q-axis. It is known as sub-transient model, 
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or Model 2.2, described using set of equations given in 

Appendix-A [18]-[20].  

III. LYAPUNOV CONTROLLERS BASED ON SIMPLISTIC

MODELS 

Unlike normal form-based controllers, Lyapunov function 

based controllers do not have a uniform derivation 

methodology. It varies with different choices of Lyapunov 

function. It is required that any Lyapunov function must be 

radially unbounded and positive definite while the time-

derivative of the function along system trajectory is required 

to be negative definite.  

The two Lyapunov controllers based on simplistic third-

order machine model, as studied and compared in this paper, 

are obtained from [6]-[7], with the first controller given by: 

𝐸𝑓𝑑𝑖 = 𝐶2𝑖
−1(−17∆𝑃𝑒𝑖 + 18∆𝜔𝑖 − 65∆V𝑡𝑖 − 𝐶1𝑖)       (1) 

where 𝐶1𝑖 = V𝑡𝑖
−1[−𝑉𝑑𝑖𝑥𝑞𝑖

′ 𝐼�̇�𝑖 + 𝑉𝑞𝑖(𝑥𝑑𝑖
′ 𝐼�̇�𝑖 + 𝑇𝑑0

′ −1
𝐸𝑞𝑖

′ )] and

𝑇𝑑0𝑖
′ 𝐶2𝑖 = V𝑡𝑖

−1𝑉𝑞𝑖. The second controller given by:

𝐸𝑓𝑑𝑖 = 𝑢𝑖 = −𝑎2𝑖𝑧2𝑖 − 𝑞3𝑖𝑧3𝑖 − �̂�𝑖
𝑇
𝝃𝑖 − 𝑆(�̂�𝑖

𝑇
𝜼𝑖𝑧3𝑖)�̂�𝑖

𝑇
𝜼𝑖

(2) 

with the following definition: 

𝑧1𝑖 = 𝑥1𝑖, 𝑧2𝑖 = 𝑥2𝑖 − 𝑢1𝑖, 𝑧3𝑖 = 𝑥3𝑖 − 𝑢2𝑖, 𝑢1𝑖 = −𝑞1𝑖𝑧1𝑖 ,

𝑢2𝑖 = −𝑎2𝑖
−1𝑞2𝑖𝑧2𝑖 − 𝑎2𝑖

−1𝑧1𝑖 − 𝑎2𝑖
−1(𝑎1𝑖 + 𝑞1𝑖)𝑥2𝑖, 𝑆(𝑥) =

𝜌1𝑎𝑟𝑐𝑡𝑎𝑛 (𝜌2𝑥), where 5, 5, 5, 1 and 156 are chosen

respectively for 𝑞1𝑖, 𝑞2𝑖, 𝑞3𝑖, 𝜌1 and 𝜌2. 𝜽�̂� and 𝜷�̂� meets

adaptive law: �̂��̇�
̇ = 𝝃𝑖𝑧3𝑖, �̂��̇�

̇ = |𝜼𝑖𝑧3𝑖| − 𝛼𝑖�̂�𝑖.

The controllers (1) and (2) are referred to as LYP1 & LYP2, 

respectively. 

Remark 1: In MATLAB implementation, use of derivative 

block should be avoided in Simulink as it is treated as a zero 

gain when linearized [21]. Instead, it can be replaced by an 

approximate lead compensator transfer function 𝑁𝑠/(𝑁𝑠 +
1) (N is a large positive number).

IV. LYAPUNOV CONTROLLERS BASED ON DETAILED MODEL

A. Feedback Linearization based Lyapunov control

Feedback linearization involves transformation of a

detailed nonlinear model into a linear equivalent paradigm 

through a change of variables while exactly preserving the 

system nonlinearity in the transformed model [22]-[27]. To 

study the effect of machine model on control design, a 

Lyapunov function based controller has been derived from a 

sixth-order machine model. The derivation is similar to the 

derivation of LYP1 in [6]. For the 𝑖th machine, if the

deviations in generated power, rotor speed and terminal 

voltage from their respective nominal values are selected as 

output, then: 

𝑦𝑖 = [∆𝑃𝑒𝑖  ∆𝜔𝑖  ∆V𝑡𝑖]
𝑇     (3) 

Fig. 1: Closed-loop implementation of the LYPF2 controller 

Fig. 2: Simplified line diagram of NETS-NYPS test system [14] 

Fig. 3: Schematic of the realization of controllers. 

The Lyapunov function is chosen to be: 

V𝑖(𝑦𝑖) = 2−1[∆𝑃𝑒𝑖
2 + ∆𝜔𝑖

2 + ∆V𝑡𝑖
2]                 (4)

As V𝑖 is a sum of quadratic terms, it can be easily verified

that it is positive definite and radially unbounded. The time-

derivative of  V𝑖(𝑦𝑖) along the power system can be simply

written as: 

V̇𝑖(𝑦𝑖) = 𝑦𝑖
𝑇𝑦�̇̇�, where 𝑦�̇� = [∆�̇�𝑒𝑖  ∆�̇��̇� ∆V̇𝑡�̇�]

𝑇          (5)

In order to achieve global asymptotic stability, the trajectory 

of derivative 𝑦�̇̇� is constructed as a linear control system

written as [6]: 

𝑦�̇̇� = 𝐴𝑖𝑦𝑖 + 𝐵𝑖𝑣𝑖    (6) 

where 𝐴𝑖 = [
−2 1 0
1 −2 1
0 0 0

] and 𝐵𝑖 = [
0
0
1
]. 

The virtual input 𝑣𝑖 equals the time-derivative of terminal

voltage. The next step is to calculate the time-derivative of 

terminal voltage V𝑡𝑖, which satisfies (7).

V𝑡𝑖
2 = 𝑉𝑑𝑖

2 + 𝑉𝑞𝑖
2  (7) 

As 𝑉𝑑𝑖 and 𝑉𝑞𝑖 are algebraic functions of time, for

convenience, they are denoted as 𝑏(𝑡) and 𝑐(𝑡) and V𝑡𝑖
2  is

denoted as 𝑎(𝑡). The derivative is: 

𝑑V𝑡𝑖

𝑑𝑡
= 𝑎−

1
2(𝑡)

𝑑𝑎(𝑡)

𝑑𝑡
=

1

2
𝑎−

1
2 (2𝑏(𝑡)

𝑑𝑏(𝑡)

𝑑𝑡
+ 2𝑐(𝑡)

𝑑𝑐(𝑡)

𝑑𝑡
) 

Substituting (A9.1) and (A9.2) from Appendix-A to replace 

𝑏(𝑡) and 𝑐(𝑡). 

𝑣𝑖 = 𝑆1𝑖 + 𝑆2𝑖𝐸𝑓𝑑𝑖                              (8)

where   𝑆1𝑖 = V𝑡𝑖
−1[𝑉𝑑𝑖(𝐾𝑞1𝑖�̇�𝑑𝑖

′ − 𝐾𝑞2𝑖�̇�2𝑞𝑖 − 𝑥𝑞𝑖
′′ 𝐼�̇�𝑖) +

𝑉𝑞𝑖(𝐾𝑑2𝑖�̇�1𝑑𝑖 + 𝑥𝑑𝑖
′′ 𝐼�̇�𝑖 + 𝐾𝑑1𝑖𝐸𝑞𝑖

′′ /𝑇𝑑0
′ )] and 𝑆2𝑖 =

𝐾𝑑1𝑖𝑉𝑞𝑖/(V𝑡𝑖𝑇𝑑0𝑖
′ ). Finally, applying feedback, the virtual

input 𝑣𝑖 is:

𝑣𝑖 = −𝑘1𝑖∆𝑃𝑒𝑖 − 𝑘2𝑖∆𝜔𝑖 − 𝑘3𝑖∆V𝑡𝑖              (9)

By substituting the virtual input and the constructed 

trajectory of derivative, the expression of V̇𝑖 is: 

V̇𝑖 = 𝑦𝑖
𝑇𝐻𝑖𝑦�̇̇�    (10) 
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where 𝐻𝑖 = [
−2 1 0
1 −2 1

−𝑘1𝑖 −𝑘2𝑖 −𝑘3𝑖

]. 

It is required that V̇𝑖 must be negative definite in order to 

achieve global asymptotic stability. The gains vector 
[𝑘1𝑖 𝑘2𝑖 𝑘3𝑖] = [17 −18 65] (obtained via pole

placement technique [24]) ensures V̇𝑖 is negative definite. 

Hence, the final control expression is:  

𝐸𝑓𝑑𝑖 = 𝑆2𝑖
−1(−17∆𝑃𝑒𝑖 + 18∆𝜔𝑖 − 65∆V𝑡𝑖 − 𝑆1𝑖)      (11) 

with 𝑆1𝑖 and 𝑆2𝑖 as expressed as earlier. This Controller (11)

is referred to as LYPF1. 

B. Nonlinear State-feedback Optimal Control

The Affine representation of the subtransient dynamics 

(A1)-(A10) is given by (12) after transforming the state and 

control variables as 𝒙𝑖 = 𝒙𝒊 − 𝒙0𝑖 and �̃�𝑖 = 𝝁𝒊 − 𝝁0𝑖.

where, 𝒙𝒊 = [Δ𝛿𝑖 Δ𝜔𝑖  𝐸𝑑𝑖
′  𝐸𝑞𝑖

′  𝜓𝑑𝑖  𝜓𝑞𝑖  𝐸𝑑𝑐𝑖  V𝑟𝑖]
T and 𝝁𝒊 =

V𝑠𝑠𝑖.

�̇�𝑖 = 𝒇(𝒙𝑖) + 𝒈(𝒙𝒊)�̃�𝒊 + 𝒍(𝒙𝒊)Ṽ𝑡𝑖 (12) 

The voltage deviation Ṽ𝑡 in (34) acts as an ‘exogenous 

input’ to a nonlinear system (34).  

Remark 2: An ‘exogenous input’ to a system is an input 

whose magnitude cannot be altered by design. If an 

exogenous input is measurable, it is possible to cancel out or 

minimize its effect by incorporating it in a control law. 

Therefore, (12) can be rewritten as (13). 

�̇�𝑖 = 𝒇(𝒙𝑖) + 𝒈(𝒙𝒊)�̃�𝒊
′ + 𝒈(𝒙𝒊)�̃�𝒊

′′ + 𝒍(𝒙𝒊)Ṽ𝑡𝑖 (13)

where, �̃�𝒊 = �̃�𝒊
′ + �̃�𝒊

′′. �̃�𝒊
′ corresponds to feedback control

law whereas �̃�𝒊
′′ design incorporates Ṽ𝑡 in the control law to

stabilize this deviation and thereby mitigates its impact on 

the system dynamics by minimizing 𝐇𝟏 (quadratic cost

function given by (14)).   

𝐇𝟏 = [𝒈(𝒙𝒊)�̃�𝒊
′′ + 𝒍(𝒙𝒊)Ṽ𝑡𝑖]

𝐓
[𝒈(𝒙𝒊)�̃�𝒊

′′ + 𝒍(𝒙𝒊)Ṽ𝑡𝑖]    (14)

∂𝐇𝟏/ ∂�̃�𝒊
′′ = 0 yields the following law for �̃�𝒊

′′.

�̃�𝒊
′′ = −[𝒈𝑻(𝒙𝒊)𝒈(𝒙𝒊)]

−𝟏𝒈𝑻(𝒙𝒊)𝒍(𝒙𝒊)Ṽ𝑡𝑖 = −𝜌Ṽ𝑡𝑖 (15)

where, 𝜌 = [𝒈𝑻(𝒙𝒊)𝒈(𝒙𝒊)]
−𝟏𝒈𝑻(𝒙𝒊)𝒍(𝒙𝒊) is a scalar

quantity. The design equation (15) ensures 𝒈(𝒙𝒊)�̃�𝒊
′′ +

𝒍(𝒙𝒊)Ṽ𝑡𝑖 → 0. Therefore, equation (13) assumes the

following form. 

�̇�𝑖 ≈ 𝒇(𝒙𝑖) + 𝒈(𝒙𝒊)�̃�𝒊
′ (16)

The optimal control value function (Lyapunov function 

candidate) [22]-[23] (17) used to derive the feedback control 

law �̃�𝒊
′ for the dynamical system (16) after cancelling the 

effect of Ṽ𝑡𝑖 via �̃�𝒊
′′ design is defined as

𝒱(�̃�𝒊
′, 𝒙𝒊) = ∫ (Q(𝒙𝒊) + (�̃�𝒊

′)TR(�̃�𝒊
′))

∞

𝑡0
𝑑𝜏     (17) 

where Q(𝒙𝒊) > 0 ∀ 𝒙𝑖 ≠ 𝟎 and 𝒙𝑖 = 𝟎 ⇒ Q(𝒙𝒊) = 0, R =
RT > 0 and R ∈ ℛ𝑛𝜇×𝑛𝜇 is a positive-definite-matrix.

Differentiating (17),  

⇒ 0 = Q(𝒙𝒊) + (�̃�𝒊
′)𝑇R(�̃�𝒊

′) + 𝓥𝒙𝒊
T (𝒇(𝒙𝑖) + 𝒈(𝒙𝒊)�̃�𝒊

′) ≡ 𝐇𝟐                                                                               

   (18) 

where, 𝒈(𝒙𝒊) = [0 0 0 𝐾𝐴𝑖/𝑇𝑑0𝑖
′  0 0 0 0], 𝓥𝑥𝑖 = 𝜕𝒱/𝜕𝒙𝒊.

The optimal control signal �̃�𝒊
′ is derived from (18) by using 

the Pontryagin’s minimum principle based stationary 

conditions [23]. These stationary conditions are given by 

(19) whereas the corresponding control law derived from it

is given by (20). This formulation is a nonlinear equivalent

of a linear quadratic regulator (LQR).

∂𝐇𝟐/ ∂�̃�𝒊
′ = 0, ∂2𝐇𝟐/ ∂2�̃�𝒊

′ = 2R > 0    (19) 

⇒ �̃�𝑖
′(𝒙𝑖) = −R−1𝒈𝐓(𝒙𝒊)𝓥𝒙𝒊/2  (20) 

Substituting (20) in (18), 

Q(𝒙𝒊) −
1

4
𝓥𝒙𝒊

T𝒈(𝒙𝒊)R𝒈𝐓(𝒙𝒊)𝓥𝒙𝒊 + 𝓥𝒙𝒊
T 𝒇(𝒙𝑖) = 0     (21)

Solution of (21) yields 𝓥𝑥𝑖 for use in (20). Since (21) is a

nonlinear algebraic equation, the value of variable 𝓥𝑥𝑖 is

obtained by a weight adaptive function approximation [23]. 

∴  𝓥𝑥𝑖 = 𝛾T𝜕(M(𝒙𝒊))/𝜕𝒙𝒊    (22) 

where, M(𝒙𝒊)=[𝑚11 𝑚12 …𝑚1𝑛𝑥
 𝑚22 …𝑚2𝑛𝑥

… 𝑚𝑛𝑥𝑛𝑥
],

𝑚𝑖𝑗 = 𝑎𝑖𝑎𝑗, 𝑖 ≤ 𝑗, 𝑖, 𝑗 ∈ [1 2…𝑛𝑥], 𝑎𝑖 is the 𝑖𝑡ℎ element of

the state vector 𝒙𝒊 and 𝛾 is the tunable gain vector

(Appendix-B) [23]. 

The controller effectiveness gets enhanced by including the 

terminal voltage deviation in the feedback law (15), (23) as 

an exogenous/pseudo control input (unlike [25]-[26], 

wherein voltage and frequency are used) and it enhances the 

system dynamic performance. Therefore, 

∴ �̃�𝑖(𝒙𝑖) = �̃�𝒊
′ + �̃�𝒊

′′ = −R−1𝒈𝐓(𝒙𝒊)𝓥𝒙𝒊/2 − 𝜌Ṽ𝑡𝑖    (23)

V𝑠𝑠𝑖 = −R−1𝒈𝐓(𝒙𝒊)𝓥𝒙𝒊/2 − 𝜌Ṽ𝑡𝑖   (24)

𝐸𝑓𝑑𝑖 = 𝐾𝐴𝑖(𝑉𝑟𝑒𝑓𝑖 + V𝑠𝑠𝑖 − V𝑟𝑖)    (25)

V𝑠𝑠𝑖 is nonzero only during dynamic conditions. The DC

component in V𝑠𝑠𝑖 is filtered out by a washout filter [15].

The controller of (25) is referred to as LYPF2 (Fig. 1). 

V. SYSTEM STABILITY WITH PROPOSED CONTROLLER

The proof of asymptotic stability for the LYPF1 follows 

similar procedure as given in Section-IV of [14], and is 

omitted here. In the case of LYPF2 controller the following 

lemma is defined.   

Lemma 1 ([27], p. 151-152): Let 𝓈 = 0 be an equilibrium 

of the system dynamics 𝓈̇ = 𝔾(𝓈) and Ω ∈ ℛ𝑛𝓈  be its

domain. If there exists a function N(𝓈) ∈ B(Ω) such that 

M1(𝓈) ≤ N(𝓈) ≤ M2(𝓈), and N𝓈
T(𝓈)𝔾(𝓈) ≤ −M3(𝓈)

∀ 𝓈 ∈ Ω, where M𝑙(𝓈) (𝑙=1, 2, 3) are positive-definite-

functions (PDFs) and N𝓈 = 𝜕N(𝓈)/𝜕𝓈, then the system is

asymptotically stable at 𝓈 = 0. 

Theorem 1: The control law (45) guarantees the asymptotic 

stability of the decentralized dynamics (34) and thereby 

guarantees the asymptotic stability of the overall power 

system irrespective of the operating point. 

Proof: Since 𝒱(�̃�𝒊
′, 𝒙𝒊) > 0 ∀ 𝒙𝑖 ≠ 𝟎 and 𝒱(�̃�𝒊

′, 𝒙𝒊) = 0 ⇔
𝒙𝑖 = 𝟎 ⇒ 𝒱(�̃�𝒊

′, 𝒙𝒊) is a positive-definite-function defined

on Ω. 𝑘-functions ([27], Lemma 4.3) 𝓀1(. ) and 𝓀2(. ) are

defined on Ω. 

𝓀1(‖𝒙𝑖‖) ≤ 𝒱(�̃�𝒊
′, 𝒙𝒊) ≤ 𝓀2(‖𝒙𝑖‖)    (26)

These 𝑘-functions are PDFs and therefore,  

M1(𝒙𝑖) = 𝓀1(‖𝒙𝑖‖) and M2(𝒙𝑖) = 𝓀2(‖𝒙𝑖‖)

The time-derivative of the Lyapunov function 𝒱(�̃�𝒊
′, 𝒙𝒊)

along the decentralized system trajectory (12) is  

�̇�(�̃�𝒊
′, 𝒙𝒊) = 𝓥𝑥𝑖

T (𝒇(𝒙𝑖) + 𝒈(𝒙𝒊)�̃�𝒊 + 𝒍(𝒙𝒊)Ṽ𝑡𝑖) (27)

Using (15), (18) equation (27) becomes. 

∴ �̇�(�̃�𝒊
′, 𝒙𝒊) ≤ Q(𝒙𝒊) + (�̃�𝒊

′)𝑇R(�̃�𝒊
′) = − M3(𝒙𝑖)     (28)

Using Lemma 1 and combining (26) and (28), it is deduced 

that �̃�𝒊  given by (23) ensures asymptotic stability of the

dynamical system (12) with pseudo-inputs Ṽ𝑡𝑖. 

The affine representation of the system dynamics of all 

machines of the power system may be combined using (12). 

Therefore,   
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[

�̇�𝟏

�̇�𝟐
⋯
�̇�𝒑]

= [

𝒇(𝒙𝟏)

𝒇(𝒙𝟐)
⋯

𝒇(𝒙𝒑)

] +

[

𝒈(𝒙𝟏) 0 0  0
0 𝒈(𝒙𝟐) 0 0

0
0

0
0

⋱
0

 0
𝒈(𝒙𝒑)]

[

�̃�𝟏

�̃�𝟐
⋯
�̃�𝒑

] 

+[

𝒍(𝒙𝟏) 0  0  0
0 𝒍(𝒙𝟐)  0 0

0
0

0
0

⋱
0

0
𝒍(𝒙𝒑)

] [

Ṽ𝑡1

Ṽ𝑡2
⋯
Ṽ𝑡𝑝

]

(29) 

In compact form the above equation (29) can be represented 

as follows. 

�̇�𝑠 = 𝐅𝐬(𝐗𝐬) + 𝐆𝐬(𝐗𝐬)𝐔𝐬 + 𝐋𝐬𝐕𝐬 (30) 

Where, 

𝐗𝐬 =

[

�̇�𝟏

�̇�𝟐
⋯
�̇�𝒑]

, 𝐔𝐬 = [

�̃�𝟏

�̃�𝟐
⋯
�̃�𝒑

] ,𝐆𝐬 =

[

𝒈(𝒙𝟏) 0 0  0
0 𝒈(𝒙𝟐) 0 0

0
0

0
0

⋱
0

 0
𝒈(𝒙𝒑)]

, 

𝐋𝐬 = [

𝒍(𝒙𝟏) 0  0  0
0 𝒍(𝒙𝟐)  0 0

0
0

0
0

⋱
0

0
𝒍(𝒙𝒑)

] and 𝐕𝐬 = [

Ṽ𝑡1

Ṽ𝑡2
⋯
Ṽ𝑡𝑝

]

The composite representation of the overall system 

dynamics (30) resembles (12). Therefore, the asymptotic 

stability of the system (30) is proved with Theorem 1 while 

using the same sequential steps as used for the decentralized 

dynamics (12). It is further validated by performing the 

eigenvalue analysis of the overall system (detailed in 

Section VI.  )  

VI. CASE STUDY

A. System Description and Controller Realization

The proposed controllers were tested on a 16-machine, 68

bus IEEE benchmark test system, as shown in Fig. 2. In the 

study, it is assumed that all machines have the controllers 

enabled as shown in Fig. 3. Low frequency oscillations in 

power systems are global as they involve generators, loads, 

and substantial portion of the power network. Each 

synchronous machine contributes to these low frequency 

oscillations in varying degrees [15]. Therefore, each 

machine is equipped with a controller to dampen out these 

oscillations [28], [29]. All these controllers need the interior 

machines states as inputs to derive the control effort. These 

states are estimated locally from terminal bus phasor 

measurements using a dynamic state estimator (DSE) [27]-

[31] as shown by the schematic in Fig. 3. [15] presents a

study in small signal stability when the system is controlled

by PSS-AVR (see Appendix-B for PSS equations).

MATLAB-Simulink platform has been used for power

system modelling, controller designs and simulations.

B. Dynamic State Estimation and Model Order

Implementation/realization of control laws (1), (2), (11) and

(25) requires accurate estimation of machine states as they

are not measurable directly. Generator bus PMU

measurements serve as inputs for the dynamic state

estimator (Fig. 3). The procedure to estimate the

synchronous machine states from generator bus PMU

measurements uses a decentralized methodology [31]. In the

DSE methodology, generator bus voltage phasor (both angle

and magnitude) are used as pseudo-inputs to make the

estimation process decentralized. The unscented Kalman

filter based DSE is used to derive the estimates of the states 

dynamically [31]-[32]. If a simplistic model (A1)-(A2), 

(A11)-(A14) of the synchronous machine is used in the 

DSE, the estimated states do not follow the actual trajectory 

of these states due to model inadequacy whereas if the 

detailed subtransient model (A1)-(A10) is used in the DSE, 

the estimated states track the actual time trajectory of the 

machine states. For illustration, the dynamic estimate of the 

machine speed of the 13th generation unit of the test system 

(Fig. 2) considering simplistic and detailed order models is 

shown in Fig. 4. In this case study, a fault was simulated at 

bus 54 of the test system at 𝑡 = 1𝑠 and cleared by opening 

circuit breakers on line 53-54 at 𝑡 = 1.18𝑠.  

Fig. 4: Dynamic state estimation; simplistic model versus detailed model 

Fig. 5: Frequency transition; Base case scenario. 

Fig. 6-Eigenvalue plot with/without Lyapunov based controllers/PSS 
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Fig. 7-Eigenvalue plot of inter-area modes with/without Lyapunov based 
controllers/PSS. 

Fig. 8: Controller effort in p.u. following a step change in 𝑻𝒎𝒊 (machine 1). 

C. Base Case and Lyapunov Control

The base case refers to the case of the power system at

equilibrium with no external disturbance applied. It is a 

basic test of compatibility and demonstrates the influence of 

difference in model complexity. The system is expected to 

have a new equilibrium if controllers derived using third-

order machine model are applied.  

Fig. 5. shows the graphs of system frequency in time 

domain when the system is controlled by LYP1, LYP2, 

LYPF1 and LYPF2. In the case of LYP1 and LYP2 there is 

a transition to a new steady state value. Such transitions in 

frequencies occur because of mismatch in assumptions of 

system model and thus in assumed system equilibrium. 

Taking 𝐸𝑓𝑑 as an example, since the power system is

modelled with sixth-order machine models, subtransient 

machine dynamics define the dynamics of the system. 

Therefore, at equilibrium, the initial excitation voltage 𝐸𝑓𝑑

for subtransient model is 𝐸𝑓𝑑0𝑖 = | 𝐸𝑞0𝑖| − (𝑥𝑑𝑖 − 𝑥𝑞𝑖)𝐼𝑑0𝑖 .

However, the two controllers (LYP1 and LYP2) are derived 

from third order machine model. At the start of simulation, 

all quantities are at nominal values. Under such condition, 

excitation voltage is 𝐸𝑓𝑑 = |𝐸𝑞|.  Because of this mismatch,

a transition in equilibrium values takes place. Based on this 

observation, any comparison should also be conducted 

between post-disturbance values and values at new 

operating point as new nominal values. For LYPF1 and 

LYPF2, the system remains at pre-calculated equilibrium as 

expected since there is no mismatch in model complexity.  

D. Modal Analysis

Power system oscillations contain multiple frequency

components (modes). Each eigenvalue corresponds to a 

mode. Modes where electromechanical states (i.e. rotor 

speed and rotor angle) have high participation are 

electromechanical modes. Among them, poorly damped low 

frequency oscillations (0.2~2𝐻𝑧) (particularly inter-area 

oscillations [18], [33]) pose a serious threat for secure and 

stable operation of an interconnected power systems. Unless 

well damped, such oscillations hamper the transfer of large 

amounts of power through transmission lines [11]-[12]. 

With their low frequency, it takes a long time for them to 

settle down and thus at least 10% damping ratio [15] is 

desired. The eigen-value plot of the system with and without 

Lyapunov controllers and PSS is shown in Fig. 6. All the 

Lyapunov controllers improve the damping ratios of all low 

frequency modes including inter-area modes. TABLE I lists 

the damping ratios and frequencies of inter-area modes if the 

system is controlled by PSS, LYP1, LYP2, LYPF1 and 

LYPF2. The corresponding eigenvalue plot of inter-area 

modes for illustration is shown in Fig. 7. 

TABLE I- FREQUENCY AND DAMPING RATIOS OF INTER-AREA MODES 

Controller 
Mode 1 Mode 2 Mode 3 Mode 4 

𝜁(%) 𝑓(𝐻𝑧) 𝜁(%) 𝑓(𝐻𝑧) 𝜁(%) 𝑓(𝐻𝑧) 𝜁(%) 𝑓(𝐻𝑧) 

Open Loop -0.44 0.40 0.94 0.53 -3.86 0.61 3.32 0.78 

PSS 15.72 0.35 14.78 0.52 4.69 0.54 3.50 0.77 

LYP1 83.17 0.06 35.35 0.10 32.59 0.14 26.26 0.24 

LYP2 99.48 0.09 99.90 0.10 32.13 0.66 / / 

LYPF1 83.17 0.06 37.66 0.10 33.53 0.14 27.60 0.24 

LYPF2 36.01 0.31 20.21 0.49 24.58 0.52 19.63 0.73 

TABLE II- NORMALIZED PARTICIPATION FACTORS 

M
o

d
e
 1

 

PSS LYP1 LYP2 LYPF1 LYPF2 

State NPF State NPF State NPF State NPF State NPF 

𝜔15 1 𝛿15 1 𝑝𝑠14 1 𝛿15 1 𝜔15 1 

𝜔16 0.83 𝜔15 0.93 𝛿14 0.61 𝜔15 0.93 𝛿1 0.97 

𝛿13 0.77 𝜔14 0.38 𝐸𝑞
′

14
0.51 𝜔14 0.37 𝛿15 0.90 

𝜔16 0.62 𝛿14 0.32 𝑝𝑠15 0.47 𝛿14 0.31 𝜔13 0.33 

𝛿5 0.55 𝐸𝑑
′
15

0.10 𝛿15 0.42 𝐸𝑑
′
15

0.08 𝛿14 0.30 

M
o

d
e
 2

 

𝜔13 1 𝛿14 1 �̇�16 1 𝛿14 1 𝜔14 1 

𝛿13 0.96 𝜔14 0.72 𝐸𝑞
′

16
0.75 𝜔14 0.69 𝜔16

0.98 

𝛿12 0.62 𝜔16 0.46 𝜔16 0.74 𝜔16 0.47 𝛿16
0.87 

𝛿14 0.30 𝛿15 032 �̇�14 0.68 𝛿15 031 𝜔15
0.51 

𝜔16 0.30 𝜔15 0.17 𝜔14 0.57 𝜔15 0.15 𝛿14
0.30 

M
o

d
e
 3

 

𝛿14 1 𝛿13 1 �̇�15 1 𝛿13 1 𝛿13 1 

𝜔16 0.83 𝜔13 0.58 𝜔15 0.80 𝜔13 0.58 𝜔13 0.91 

𝜔14 0.49 𝜔16 0.29 𝛿15 0.79 𝜔16 0.26 𝜔16
0.76 

𝛿13 0.46 𝜔15 0.07 𝛿15 0.64 𝜔15 0.09 𝛿16
0.10 

𝜔13 0.21 𝜔14 0.07 �̇�14 0.43 𝜔14 0.08 𝜔14
0.10 

M
o

d
e
 4

 

𝛿15 1 𝜔13 1 - - 𝜔13 1 𝛿15 1 

𝜔15 0.74 𝜔16 0.50 - - 𝜔16 0.56 𝜔15 0.89 

𝜔14 0.30 𝛿5 0.35 - - 𝛿5 0.35 𝜔14
0.82 

𝛿14 0.14 𝛿6 0.29 - - 𝛿6 0.29 𝛿9
0.20 

𝜔16 0.13 𝛿9 0.28 - - 𝛿9 0.26 𝜔16 0.16 

TABLE III- CONTROL EFFORT AND STATE DEVIATION 

Controller Control effort State deviation Total cost 

PSS+AVR 14.44 54.54 68.98 

LYPF2+AVR 59.61 57.74 117.35 

LYP1 188.4 1114 1302.4 

LYP2 3 × 104 1.358 3 × 104 

LYPF1 178.3 992.2 1170.5 
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As shown in TABLE I and Fig. 6-Fig. 7, all controllers 

can handle the instability (negative damping ratio) in open 

loop system. However, every nonlinear controller exhibits a 

much higher damping ratio but a relatively lower modal 

frequency with respect to inter-area modes. A brief 

explanation of why this happens is as follows. 

The studied nonlinear controllers work by changing the 

excitation of the rotor field windings and thereby modulate 

the developed electrical torque. These nonlinear controllers 

modulate the field winding excitation and therefore the 

synchronous torque produced due to interaction of stator and 

rotor magnetic fields. In response to a change in the 

dynamic states of the machine due to a disturbance, the 

nonlinear controllers respond immediately, and provide fast 

damping to any electromechanical mode of the system. The 

modal damping ratio increases, while modal frequency 

decreases significantly. Modal damping ratios in the case of 

LYPF2 are lower than other nonlinear controllers but much 

higher than PSS whereas inter-area mode frequencies 

remain almost same as PSS i.e., LYPF2 improves the 

damping of these inter-area eigenvalues significantly 

whereas there is minimal change in corresponding modal 

frequencies (Fig. 6-Fig. 7), unlike the other three nonlinear 

controllers.  

Furthermore, a participation factor analysis [17]-[18] was 

also conducted to measure the sensitivity of a mode to a 

state. In nonlinear systems, the generic second-order 

expression for modes-in-states participation is given by 

(31) [12].

𝑥𝑖(𝑡) = 𝑝2𝑖𝑘𝑒𝜆𝑘𝑡 + ∑ ∑ 𝑝2𝑗𝑙
𝑖 𝑒(𝜆𝑗+𝜆𝑙)𝑡𝑛

𝑙=𝑗
𝑛
𝑗=1

   (31) 

where, 𝑝2𝑖𝑘 represents the participation of 𝑘𝑡ℎ mode in 𝑖𝑡ℎ

state and 𝑝2𝑗𝑙
𝑖  represents the participation of combination of 

𝑗𝑡ℎ and 𝑙𝑡ℎ modes in 𝑖𝑡ℎ state.  Assuming the system is not

extremely stressed and the individual components of the 

initial vector 𝑥0𝑖 = 𝑥𝑖(0) values are statistically

independent, then the contribution from the second term in 

the above expression is marginal [12]-[13].  For relative 

ranking of the principal participating states in particular 

modes, the second term in the generic second order 

expression of participation factors can be ignored. 

Therefore, the participating factor 𝑝2𝑖𝑘 has been used to

determine the ranking of the principal participating states in 

a particular inter-area mode as shown in TABLE II. TABLE 

II lists the top 5 normalized participation factors (NPFs) and 

corresponding states in each inter-area mode for all the 

controllers. It should be noted that all of the Lyapunov 

controllers - LYP1, LYP2, LYPF1 and LYPF2 exhibit high 

participation factors from rotor speed and rotor angles 

(electromechanical states). However, LYP1, LYP2 and 

LYPF1 also have significant participation factors from 

controller/non electromechanical states, with LYP2 having 

highest participation from a controller state. In other words, 

the three feedback linearization based Lyapunov controllers 

significantly modify the mode-shapes of interarea modes via 

high participation of electrical/controller states and large 

control effort. As any type of Lyapunov control or PSS 

control that we have studied in this paper is after all a type 

of excitation control (which controls the excitation voltage 

of the machine, which then influences the developed torque, 

which in turn influences the rotor angle), ideally excitation 

control shouldn’t have a direct influence on the inter-area 

modes from controller/electrical states, and this is true for 

both PSS and LYPF2. But this is not true for LYP1, LYP2 

and LYPF1, where we see direct influence from 

control/electrical states in the inter-area modes, and which 

also leads to reduction in their modal frequencies to values 

which are usually not observed for interarea modes (that is, 

frequencies less than 0.2 Hz) [16]. It should be noted here 

that the change in modal properties depend upon control 

parameters, total control effort, the feedback variables and 

state participation factors [28]. The overall damping of 

modal oscillations in the power system is decided not only 

by the frequencies of the dominant modes, but also by the 

damping ratios of those modes [17]. Thus, the reduction in 

frequencies of the inter-area modes in the case of LYP1, 

LYP2 and LYPF1 has no apparent adverse effect on control 

performance because this reduction is well compensated by 

a significant increase in damping ratios. Nevertheless, the 

associated modification of the inherent nature of the inter-

area modes is not desirable as it can have an adverse effect 

on the stability of the system in the long run. 

E. Total Control Cost

The total cost is a sum of the control effort and state

deviations [25]. The control effort (CE) for each machine is 

measured as the square of deviation in control input, which 

is 𝐸𝑓𝑑, from its steady state value. State deviation (SD) for

each machine is measured as the sum of square of deviations 

in the seven states (𝛿, 𝜔, 𝐸𝑑
′ , 𝐸𝑞

′ , 𝜓1𝑑, 𝜓2𝑞 , 𝐸𝑑𝑐
′ ) from their

respective nominal values. In this case study, a 1% step 

change in input mechanical torque was applied at 𝑡 = 10𝑠 

as a disturbance to each machine in the system. The 

deviations were sampled at 100Hz and are accumulated for 

15 seconds (from 𝑡 = 10𝑠 to 𝑡 = 25𝑠). A sample plot of 

control effort with different controllers for machine 1 is 

shown in Fig. 8. For a small disturbance, 15 seconds are 

adequate for the system to settle down to a new steady 

state. TABLE III lists the control effort (32) and state 

deviation (33) for each controller. 

CE = ∑ [∑ (𝐸𝑓𝑑𝑖
𝑘 − 𝐸𝑓𝑑0𝑖

𝑘 )
T
(𝐸𝑓𝑑𝑖

𝑘 − 𝐸𝑓𝑑0𝑖
𝑘 )�̅�

𝑘=𝑘 ]
𝑝
𝑖=1   (32) 

SD = ∑ [∑ (𝒙𝑖
𝑘 − 𝒙0𝑖

𝑘 )
T
(𝒙𝑖

𝑘 − 𝒙0𝑖
𝑘 )�̅�

𝑘=𝑘 ]
𝑝
𝑖=1

(33) 

where, 𝒙𝑖
𝑘 = [𝛿𝑖

𝑘, 𝜔𝑖
𝑘 , 𝐸𝑑𝑖

′ 𝑘, 𝐸𝑞𝑖
′ 𝑘 , 𝜓1𝑑𝑖

𝑘 , 𝜓2𝑞𝑖
𝑘 , 𝐸𝑑𝑐𝑖

′ 𝑘 ], and 𝑘 and �̅� 

are the sampling instants at the start and the end, 

respectively, of the accumulation of CE and SD.  

It may be observed from the above table that all the 

nonlinear controllers have a higher control cost than the 

conventional PSS. This is because nonlinear controllers tend 

to respond vigorously in order to maintain stability when 

subjected to either small or large disturbances 

([1], [2], [14], [26]). On the other hand, nonlinear controllers 

behave differently with respect to state deviations. LYP2 

exhibits very low state deviations. LYPF2 with AVR leads 

to a moderate state deviation that is the closest to that of 

PSS and AVR. LYP1 and LYPF1 have similar basis exhibit 

the highest state deviations. The cumulative costs of control 

in the case of LYPF2 with AVR are much lesser than other 

nonlinear controllers but higher than traditional PSS 

(TABLE III). It is important to note that too high control 

costs (in the case of LYP1, LYP2 and LYPF1) may cause 
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the over-fluxing of generator transformer, which is not 

desirable.  

It was found that such high state deviations result from 

rotor angle excursions. As LYP1 and LYPF1 do not include 

rotor angle in feedback, the controller has no control over 

rotor angle. Thus, any disturbance leads to new steady state 

rotor angles and the controllers are not able to restore them 

back to nominal values. This, in turn, significantly increases 

the accumulated rotor angle deviation over time compared 

to other controllers.  

Fig. 9: Selected machine slips (system subjected to a 200ms fault). 

Fig. 10: Inter-area power flow (system subjected to a 200ms fault). 

TABLE IV- TRANSIENT STABILITY INDICES 

Controller PSS LYP1 LYP2 LYPF1 LYPF2 

CCT (ms) 190 385 125 330 348 

W𝑡𝑘 1.531 0.112 4.576 0.121 0.117 

TABLE V- CCT FOR DIFFERENT DISTURBANCE SCENARIOS 

Faulted Line 

↓ 
C

C
T

 (
m

s)
 PSS LYP1 LYP2 LYPF1 LYPF2 

53-54 190 385 125 330 348 

47-48 187 368.2 121 324.5 343 

60-61 189 383.1 122.8 328 345.5 

Fig. 11: Selected machine bus voltages (system subjected to a 200ms fault).

Fig. 12: Selected machine bus voltages showing post-fault dynamics. 
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F. Critical Clearing Time and Transient Stability Measure

Critical clearing time (CCT) refers to the longest time a

fault can be tolerated by a system without losing stability. 

To find CCT, a three-phase symmetric fault was simulated 

by adding a large admittance to a bus node in system 

admittance matrix. The fault was simulated at bus 54 and 

cleared by opening circuit breakers on line 53-54. Faults of 

different time lengths were simulated until a CCT was 

found. System instability manifested itself as loss of 

synchronism, that is, non-zero rotor speed slips and 

irrevocable separation of machines into two mutually 

asynchronous groups. TABLE IV lists CCTs of each 

controller. Furthermore, slips and terminal voltages of 

machine 1, 8 and 13 and inter-area power flow (from NETS 

to NYPS through intertie 60-61) when subjected to a fault 

described above that lasts 200𝑚𝑠 are shown in Fig. 9-Fig. 

11. The three machines are chosen as they are electrically

the closest and most remote from fault location, respectively

(see Fig. 2).

For better understanding of the above CCT results an 

index W𝑡𝑘 (34) is defined as integrated variation of per-unit

total energy exchanged between rotors of the generation 

units and the system has also been used for the transient 

stability evaluation (TSE) of the controllers. A lower value 

of TSE index indicates that the transient swings are smaller 

and TSE margins are better.  

W𝑡𝑘 = 𝑘𝑛 ∫ |𝑑W𝑡/𝑑𝑡|𝑑𝑡
𝜏𝑠𝑖𝑚

0

(34) 

where 𝜏𝑠𝑖𝑚 = 30𝑠 is the observation period, W𝑡 is the

summation of per-unit energy exchanged and 𝑘𝑛 is a

normalization constant. W𝑡 in (34) is calculated by using the

rotor slip speeds (with center-of-inertia as frame of 

reference) of all the individual generation units.  

W𝑡 = ∑ M𝑖𝑆𝑖
2𝑝

𝑖=1 , 𝑆𝑖 = 𝜔𝑖 − 𝜔COI (35) 

where, 𝜔COI = (∑ M𝑖𝜔𝑖
𝑝
𝑖=1 )/(∑ M𝑖

𝑝
𝑖=1 ). The corresponding

values of W𝑡𝑘 are listed in TABLE IV. The disturbance in

this case study lasts for 180𝑚𝑠 (which is less than the least 

CCT amongst all the controllers other than LYP2). For 

further evaluation, faults were initiated near buses 47 and 60 

of the test system (Fig. 2) and the faults were cleared by 

opening the breakers of the faulted lines. CCTs for these 

fault scenarios were obtained using the aforementioned 

procedure and the results have been presented in TABLE V. 

With LYP1, LYPF1 and LYPF2 controllers the CCT 

improves significantly compared to PSS and the results are 

consistent for any disturbance scenario. 

G. Voltage regulation

It is vital for a power system to maintain terminal

generator voltages at their nominal values in post-

disturbance condition. In this case study, post-fault-clearing 

generator terminal voltages were studied for the critically 

cleared fault at bus 54. The post-fault terminal voltage of 

machine 1, 8 and 13 are shown (Fig. 12). Note that the 

controllers LYP1 and LYP2 settle down to a new steady 

state.  

The controller is deemed effective if the post-disturbance 

voltage regulation of the generator buses is very small. The 

percentage voltage regulation of the 𝑖𝑡ℎ generator bus VR𝑖 is

given by (36). The voltage regulation indices; average 

(VR𝑎𝑣𝑔) and maximum (VR𝑚𝑎𝑥) voltage regulations of the

generator buses were used to quantify and study the effect of 

the studied controllers including proposed ones on the 

voltage regulation under various power disturbance 

scenarios. Three different disturbance scenarios were used 

to assess the impact of controllers on the voltage regulation. 

In the first disturbance scenario, a fault was simulated at bus 

54 and cleared by opening circuit breakers on line 53-54. In 

the second disturbance scenario, a fault was simulated at bus 

27 and cleared by opening circuit breakers on line 53-27. In 

the third disturbance scenario, the loads at bus 61 and bus 47 

were increased by 10% and 7% respectively. The 

corresponding regulation indices are given in TABLE VI. 

As inferred from the tabulated results, controllers LYP1, 

LYPF1 and LYPF2 have good voltage regulation whereas 

with LYP2, the voltage regulation is relatively poor.  Similar 

results were obtained by simulating multiple disturbance 

scenarios.  

VR𝑖 = 100 × (V𝑡𝑖0 − V𝑡𝑖∞)/V𝑡𝑖0 (36)

where, V𝑡𝑖0 and V𝑡𝑖∞ are respectively the pre-disturbance and

post-disturbance bus voltages of the 𝑖𝑡ℎ generator.

Controllers LYP1, LYPF1 and LYPF2 have good voltage 

regulation (as illustrated in Fig. 12, TABLE VI), owing to 

the terminal voltage term in their feedback loops. However, 

LYP2 does not control the terminal voltage on its own. 

LYP2 requires switching to a voltage controller using a so-

called ‘membership function’ in post-disturbance 

condition [7]. Fig. 11 also corroborates the above 

findings/inferences. 

TABLE VI- VOLTAGE REGULATION; DIFFERENT DISTURBANCES  

↓ Events LYP1 LYP2 LYPF1 LYPF2 

I 
VR𝑎𝑣𝑔 0.0269% 2.58% 0.0228% 0.0226% 

VR𝑚𝑎𝑥 0.0363% 5.26% 0.0261% 0.0258% 

II 
VR𝑎𝑣𝑔 0.0277% 2.66% 0.0226% 0.0229% 

VR𝑚𝑎𝑥 0.0391% 5.47% 0.0258% 0.0262% 

III 
VR𝑎𝑣𝑔 0.007% 1.94% 0.0047% 0.0052% 

VR𝑚𝑎𝑥 0.011% 3.73% 0.0049% 0.0057% 

TABLE VII- ROOT MEAN SQUARE ERRORS FOR DSE 

�̂�13

DSE (1%TVE) DSE (1.5%TVE) DSE (2%TVE) 

RMSE (𝑝. 𝑢.) RMSE (𝑝. 𝑢.) RMSE (𝑝. 𝑢.) 

𝛿13 6.54 × 10−3 1.43 × 10−2 2.31 × 10−2 

𝜔13 4.08 × 10−4 7.03 × 10−4 1.11 × 10−3 

𝐸𝑑13
′ 1.16 × 10−3 2.56 × 10−3 4.66 × 10−3 

𝐸𝑞13
′ 1.71 × 10−3 3.09 × 10−3 5.27 × 10−3 

𝜓1𝑑13 1.98 × 10−3 7.10 × 10−3 1.13 × 10−2 

𝜓2𝑞13 2.33 × 10−3 6.86 × 10−3 1.06 × 10−2 

TABLE VIII- EFFECT OF DSE ON CONTROLLER PERFORMANCE 

Controller → LYP1 LYP2 LYPF1 LYPF2 

0
.5

%
 T

V
E

 Control effort 188.5 3 × 104 178.30 59.61 

State deviation 1115 1.358 992.31 57.74 

Total Cost 1303.5 3 × 104 1170.61 117.35 

1
%

 T
V

E
 Control effort 188.7 3.1 × 104 178.32 59.62 

State deviation 1118 1.373 994.11 57.77 

Total Cost 1306.7 3.1 × 104 1172.43 117.39 

2
%

 T
V

E
 Control effort 193.25 3.6 × 104 182.28 60.80 

State deviation 1129.4 1.557 1003.2 61.25 

Total Cost 1322.6 3.6 × 104 1185.48 122.05 
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TABLE IX-CONTROL INDICES: VARYING OPERATING CONDITIONS 

↓  Operating Condition LYP1 LYP2 LYPF1 LYPF2 

I 

Control effort 188.5 3 × 104 178.30 59.61 

State deviation 1115 1.358 992.31 57.74 

Total Cost 1303.5 3 × 104 1170.61 117.35 

II 

Control effort 190.5 3.1 × 104 180.75 60.01 

State deviation 1131.8 1.387 998.11 58.35 

Total Cost 1322.3 3.1 × 104 1178.86 118.36 

III 

Control effort 192.1 3.1 × 104 182.2 60.1 

State deviation 1142.1 1.399 1005.2 59.86 

Total Cost 1334.2 3.1 × 104 1187.4 119.96 

Fig. 13: Gen. 1. slip (system subjected to a 180ms fault). 

H. Implementation and measurement noise

A general schematic of the implementation of these 

nonlinear controllers is shown in Fig. 3. Realization of these 

nonlinear controllers in practice (field) requires a dynamic 

state estimator (DSE) [27]-[31] to derive the unmeasurable 

states from the terminal measurements of the generation 

unit. A noisy measurement acts as an impediment in the 

realization of any control law particularly when derivative 

terms feature in it. As derivative terms feature in the control 

law of the LYP1 and LYPF1, the presence of the DSE for 

realization of these nonlinear controllers brings additional 

benefits as a noise filter. Assuming a 1% total vector error in 

the measurements as per IEEE standards [34]-[35], the 

performance of all these controllers and PSS was evaluated 

as illustrated in Fig. 13. Since the DSE was used as the input 

stage of these controllers their performance remains almost 

unchanged. The performance of the PSS, however, 

deteriorates in the case of a noisy measurements, probably 

due to the noise accentuation by the washout filter.  

All the aforementioned test cases were simulated 

considering 0.1% total vector error (TVE) in the PMU 

measurements which is less than 1% TVE as recommended 

by IEEE standard C37.118.1-2011 for PMUs [34]. For 

comparison, results have also been obtained considering 

0.5%, 1% and 2% TVEs in the PMU measurements. The 

performance of the controllers does not change even when 

TVE is as high as 1% TVE, as the DSE estimates are 

accurate for measurement noises less than or equal to 1% 

TVE. However, the control performance is affected by 

inaccurate estimates which happens when the noise/bad-data 

(TVE) in the acquired phasor measurements is 2%. With 2% 

TVE the estimated state trajectories are less accurate as 

shown in TABLE VII in which the corresponding root mean 

square errors in estimated states of the 13th generation unit 

of the test system are tabulated. In the case of LYP1, LYP2 

and LYPF1, the cost indices increases slightly for TVEs 

greater than 1%. However, the effect in the case of LYPF2 

is too marginal to make any substantial impact on the 

performance of the controller. The costs shown in TABLE 

VIII illustrates the impact of the impact of the less accurate 

estimates on the performance of the controllers. Due to 

presence of derivative terms in the control laws, the increase 

in the cost indices with LYP1, LYP2 and LYPF1 controllers 

is more than LYPF2 controller. Lastly, bad-data in the 

measurements can be detected and corrected using the bad-

data detection algorithm [15]. That way the impact of the 

noise/bad-data can be alleviated to ensure that it does not 

affect the controller performance. 

I. Robustness to Varying Operating Conditions

The Lyapunov control laws (1), (2), (11) and (25) get 

adapted to the varying power system conditions. Therefore, 

these control designs remain valid for any operating 

condition. For three operating conditions, a 1% step change 

in input mechanical torque was applied at 𝑡 = 10𝑠 as a 

disturbance to each machine in the system. The deviations 

were sampled at 100Hz and are accumulated for 15 seconds 

(from 𝑡 = 10𝑠 to 𝑡 = 25𝑠). The cost indices were used to 

assess the performance of Lyapunov control designs for 

three different operating cases. Case-I is the base case (same 

case discussed in section-VI.  , sub-section E.  ). In case-II, 

the real-power load on bus 61 of the test system (Fig. 2) was 

increased by 50MW. In case-III, the real-power load on bus 

47 of the test system was increased by 70MW. As observed 

from the tabulated data of control indices (TABLE IX), the 

controller performance does not change (or the change is 

quite marginal) upon change in the operating conditions. 

Therefore the performance of all these controllers does not 

change with change in operating conditions.  

J. Computational Requirements and Feasibility

For nonlinear Lyapunov design, the complete power system 

simulation (along with the DSEs and the controllers at each 

generation unit of the test system) was performed in real-

time (RT) simulation environment. A 100𝑠 simulation takes 

an average running time of 29.4𝑠, 32.8𝑠, 32.9𝑠, and 38.7𝑠 

for the LYP1, LYP2, LYPF1 and LYPF2 respectively on a 

personal computer with 𝑖7-4970S-CPU, 2GHz Intel-

processor and 8 GB RAM. Additionally floating-point 

operations per second (FLOPS) [36] were also computed to 

assess the feasibility of their real-time application. All these 

Lyapunov designs use less than hundred thousand FLOPS. 

Therefore, their computational requirements can be met by 

an ordinary DSP processor with processing speed in MHz. 

Moreover, all these controllers are decentralized, rely on 

local measurements and are therefore not affected by the 

scalability of the system/application. OP5600 Opal-RT 

multiprocessors were also used to execute the test case 

scenario in real-time Fig. 14. In this test case scenario, a 
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fault is simulated at bus 54 of the IEEE 68 bus test system 

for 200𝑚𝑠 and the fault is cleared by opening circuit 

breakers on line 53-54. QNX platform based Opal-RT 

multiprocessor was used to emulate the power system and 

network dynamics and therefore worked as a real-time 

station and a Linux Redhat OP5600 core implemented the 

proposed LYPF2 algorithm. The host command station with 

RT-lab (personal computer with 𝒊𝟕-4970S CPU, 2GHz 

processor and 8GB RAM), real-time station (RTS) and 

Redhat core2 (implementing LYPF2 scheme) interact 

between themselves through 𝟏𝟎𝟎𝐌𝐛𝐢𝐭/𝒔 ethernet 

connection. Built-in DAC/ADC modules act as interface 

between the two Opal-RT cores and it was virtually 

impossible for the LYPF2 controller to distinguish between 

the emulated and the actual plant. Tektronix-MDO4054B-3 

oscilloscope was used to capture the RT results (Fig. 14).  

Fig. 14: Real-time results: LYPF2 performance in real-time (RT)  

K. Potential for Field Application

The case studies presented in the paper establish the 

theoretical applicability of these Lyapunov based control 

methods. However, their dependencies must be considered 

for their field applicability. All these controllers are a direct 

application of dynamic state estimator (DSE), and therefore 

their practical realization also depends on how swiftly DSE 

is adopted by the industry. Since DSE is a fairly new 

technology, it requires reasonable time to be adopted by the 

power system industry. DSE has been widely researched in 

the field of power systems, and shows very promising 

potential for industry application. ABB Research Ltd. has 

filed a patent on “parallel computation of DSE” implying 

the adoption of DSE technology by the industry [37]. 

Similar patents on DSE technology were filed 

recently [38], [39]. The practical impediments and 

associated drawbacks of DSE have been studied /addressed 

in the recent power system literature [29], [40]. Therefore, 

with a high potential for DSE technology, the Lyapunov 

control for power systems discussed in the paper has a 

potential to be adopted for oscillatory control of future 

power systems. 

L. Discussions

For the various case studies presented, the five questions 

that the research aims to answer may be revisited. Firstly, 

compatibility problem between the models used to design 

and test the controller does exist since even though LYP1 

and LYP2 do not fail, they lead to a new system 

equilibrium, which may not be desired. Accordingly, one 

obvious advantage of controllers derived from sixth-order 

model (LYPF1 and LYPF2) over that derived from third-

order model (LYP1 and LYP2) is that the controllers 

derived from sixth-order model are compatible with a 

detailed power system model, and hence, can be more 

realistically used for power system control. 

   Secondly, the nonlinear controllers have two advantages 

over PSS in the case study. All nonlinear controllers have a 

much higher damping ratio in inter-area modes than PSS 

and three nonlinear controllers (LYP1, LYPF1 and LYPF2) 

have much longer CCT for the faults simulated as compared 

to PSS. On comparing normal form-based control with 

Lyapunov based control, it can be observed that Lyapunov 

based controllers have better control performance as they 

have higher CCTs and better voltage regulation (please 

see [14] to compare the CCT and voltage regulation of 

normal form-based control with those presented in this 

paper).    

   Thirdly, the realization of all these Lyapunov controllers 

requires accurate estimation of machine states via dynamic 

state estimator. It has been established that detailed 

synchronous model is required to estimate these states 

accurately as estimates based on simplistic model are not 

accurate. Therefore, a detailed synchronous model is needed 

to perform DSE for realization of any Lyapunov controller. 

   Fourthly, without filtered measurements the performance 

(of all the controllers) is bound to deteriorate particularly in 

the case of controllers with derivative terms. However, the 

effect is alleviated by the DSE filter at the input of these 

nonlinear feedback controllers. It should be noted that 

amongst all the controllers, LYPF2 is least affected as it 

does not contain a derivative term in its feedback law. 

Moreover, the computation times for the Lyapunov 

controllers derived from sixth order model (LYPF1 and 

LYPF2) are marginally higher than their counterparts (LYP1 

and LYP2) derived from third order model. However, all 

these controllers use less than hundred thousand FLOPS. 

Therefore, computation time is not an issue as their 

computational requirements can be met by a megahertz 

(MHz) processor. 

   Finally, all the three Lyapunov controllers based on 

feedback linearization and adaptive backstepping (LYP1, 

LYP2 and LYPF1) have drastic impact on the position of 

interarea modes because of which the frequencies of these 

modes are so much decreased that these modes are difficult 

to be classified as interarea modes. Moreover, the total costs 

of control for the three controllers are also very high (as can 

be seen in TABLE III). This means that all the three 

controllers increase the synchronizing torque by a large 

extent (as explained in Section VI.  D.  ) which can cause 

over-fluxing issues in practice. The proposed LYPF2 

controller, on the other hand, has modal frequencies similar 

to that of the linear PSS controller and its total costs of 

control are of the same order as PSS, and at the same time 

LYPF2 can provide much higher damping to interarea 

modes and its transient stability indices (like CCT and W𝑡𝑘

(TABLE IV)) are much better than PSS. Thus, the proposed 

nonlinear controller provides the best features of both linear 

Power Flow (Line 60-61) p.u.
Power Flow (Line 60-61) p.u.

Gen. 1 Rotor Slip (p.u.)

LYPF2 Controller
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and nonlinear control and can be used safely without 

changing the inherent nature of a power system. This is an 

advantage which may prove to be critical for field 

implementation of Lyapunov control (and nonlinear control 

in general) in power systems. It should be noted that the 

adoption of the Lyapunov methodologies for oscillatory 

control in power systems depends on how swiftly DSE is 

adopted by the power system industry.   

VII. CONCLUSION

      In this paper, the control performance of various 

Lyapunov based nonlinear controllers was studied for the 

benchmark NETS-NYPS test system. It was found that 

nonlinear controllers derived from third-order machine 

models are not compatible with detailed power system 

models and, hence, nonlinear controllers should be derived 

from a detailed subtransient model of a machine. It was also 

found that nonlinear controllers can have an advantage in 

modal behavior, CCT, voltage regulation and robustness to 

noise (due to DSE) over a PSS. Also, Lyapunov based 

controllers show better performance as compared to normal 

form [14] based methods. The drawback of existing 

Lyapunov controllers has also been identified in terms of 

severe impact on interarea modes, very high costs of control 

and unrealistically high synchronizing torques. A new 

derivative free Lyapunov controller (LYPF2) has been 

proposed to address these drawbacks and serve as practical 

solution for field implementation of nonlinear control. 

APPENDIX-A 

IEEE 2.2 Model with Turbine Governor Dynamics [41]: 

∆𝛿�̇�
̇ = 𝜔𝑖 − 𝜔𝑠 = ∆𝜔𝑖      (A1) 

2𝐻𝑖∆𝜔�̇�
̇ = 𝜔𝑠(𝑇𝑚𝑖 − 𝑇𝑒𝑖) − 𝐷𝑖∆𝜔𝑖     (A2) 

𝑇𝑞0𝑖
′ �̇�𝑑𝑖

′ = {−𝐸𝑑𝑖
′ − (𝑥𝑞𝑖 − 𝑥𝑞𝑖

′ ) [𝐾𝑞1𝑖𝐼𝑞𝑖 + 𝐾𝑞2𝑖

𝜓2𝑞𝑖 − 𝐸𝑑𝑖
′

𝑥𝑞
′ − 𝑥𝑙𝑖

]} 

(A3) 

𝑇𝑑0𝑖
′ �̇�𝑞𝑖

′ = 𝐸𝑓𝑑𝑖 − 𝐸𝑞𝑖
′ + (𝑥𝑑𝑖 − 𝑥𝑑𝑖

′ ) [𝐾𝑑1𝑖𝐼𝑑𝑖 + 𝐾𝑑2𝑖

𝜓1𝑑𝑖−𝐸𝑞𝑖
′

𝑥𝑑𝑖
′ −𝑥𝑙𝑖

]           

(A4) 

𝑇𝑑0𝑖
′′ �̇�1𝑑𝑖 = [𝐸𝑞𝑖

′ + (𝑥𝑑𝑖
′ − 𝑥𝑙𝑖)𝐼𝑑𝑖 − 𝜓1𝑑𝑖]

(A5) 

𝑇𝑞0𝑖
′′ �̇�2𝑞𝑖 = [𝐸𝑑𝑖

′ + (𝑥𝑞𝑖
′ − 𝑥𝑙𝑖)𝐼𝑞𝑖 − 𝜓2𝑞𝑖]         (A6) 

𝑇𝑐𝑖�̇�𝑑𝑐𝑖
′ = [(𝑥𝑑𝑖

′′ − 𝑥𝑞𝑖
′′ )𝐼𝑞𝑖 − 𝐸𝑑𝑐𝑖

′ ]  (A7) 

𝑃𝑒𝑖 = 𝑉𝑑𝑖𝐼𝑑𝑖 + 𝑉𝑞𝑖𝐼𝑞𝑖 , 𝑄𝑒𝑖 = 𝑉𝑑𝑖𝐼𝑞𝑖 − 𝑉𝑞𝑖𝐼𝑑𝑖  (A8) 

where 𝑉𝑑𝑖 = −V𝑡𝑖cos (𝛿𝑖 − 𝜃𝑖), 𝑉𝑞𝑖 = V𝑡𝑖sin (𝛿𝑖 − 𝜃𝑖) and

[
𝐼𝑑𝑖

𝐼𝑞𝑖
] = [

𝑅𝑎𝑖 𝑥𝑞𝑖
′′

𝑥𝑑𝑖
′′ 𝑅𝑎𝑖

]

−1

[
𝐸𝑑𝑖

′ 𝐾𝑞1𝑖 − 𝜓2𝑞𝑖𝐾𝑞2𝑖 − 𝑉𝑑𝑖

𝐸𝑞𝑖
′ 𝐾𝑑1𝑖 − 𝜓1𝑑𝑖𝐾𝑑2𝑖 − 𝑉𝑞𝑖

]     (A9) 

However, 𝑅𝑎𝑖 usually is much smaller compared to𝑥𝑞𝑖
′′  and 

𝑥𝑑𝑖
′′ , and the above equation gets simplified as follows. 

𝐼𝑑𝑖 = (𝐸𝑞𝑖
′ 𝐾𝑑1𝑖 − 𝜓1𝑑𝑖𝐾𝑑2𝑖 − 𝑉𝑞𝑖)/𝑥𝑑𝑖

′′          (A9.1) 

𝐼𝑞𝑖 = (𝐸𝑑𝑖
′ 𝐾𝑞1𝑖 − 𝜓2𝑞𝑖𝐾𝑞2𝑖 − 𝑉𝑑𝑖)/𝑥𝑞𝑖

′′         (A9.2) 

With (A8), (A9.1) and (A9.2), torque 𝑇𝑒𝑖  can be calculated

as: 

𝑇𝑒𝑖 = 𝜔𝑖
−1𝑃𝑒𝑖 = 𝐸𝑞𝑖

′ 𝐼𝑞𝑖𝐾𝑑1𝑖 + 𝐸𝑑𝑖
′ 𝐼𝑑𝑖𝐾𝑞1𝑖 + (𝑥𝑑𝑖

′′ − 𝑥𝑞𝑖
′′ )𝐼𝑞𝑖𝐼𝑑𝑖

−𝜓2𝑞𝑖𝐼𝑞𝑖𝐾𝑞2𝑖 + 𝜓1𝑑𝑖𝐼𝑑𝑖𝐾𝑑2𝑖    (A10) 

The third-order machine model is a simplified model 

where subtransient dynamics are neglected by removing the 

damper windings. Equations (A1)-(A2) still hold for this 

model. The remaining equations for the model are as 

follows [19]. 

𝑇𝑑0𝑖
′ �̇�𝑞𝑖

′ = 𝐸𝑓𝑑𝑖 − 𝐸𝑞𝑖   (A11) 

𝐸𝑞𝑖 = 𝐸𝑞𝑖
′ + (𝑥𝑑𝑖 − 𝑥𝑑𝑖

′ )𝐼𝑑𝑖      (A12) 

𝑉𝑑𝑖 = 𝑥𝑞𝑖
′ 𝐼𝑞𝑖 , 𝑉𝑞𝑖 = 𝐸𝑞𝑖

′ − 𝑥𝑑𝑖
′ 𝐼𝑑𝑖      (A13) 

𝑃𝑒𝑖 = 𝐸𝑞𝑖
′ 𝐼𝑞𝑖 ,   𝑄𝑒𝑖 = 𝑥𝑑𝑖

−1V𝑡𝑖(𝐸𝑞𝑖 − V𝑡𝑖)       (A14) 

Furthermore, automatic voltage regulators (AVRs) 

through excitation control regulate the generator terminal 

voltage at its nominal value. In this paper, it is assumed that 

all AVRs are assumed to be the standard static exciters 

(ST1A), with equations given as follows [15]. 

𝑇𝑟𝑖�̇�𝑟𝑖 = V𝑡𝑖 − 𝑉𝑟𝑖    (A15) 

𝐸𝑓𝑑𝑖 = 𝐾𝐴𝑖(𝑉𝑟𝑒𝑓𝑖 + 𝑉𝑠𝑠𝑖 − 𝑉𝑟𝑖)      (A16) 

Standard TGOV1 model (17)-(18) represents the turbine-

governor dynamics [20]. 

𝑇CH𝑖�̇�𝑚𝑖 = −𝑇𝑚𝑖 + 𝑃SV𝑖    (A17) 

𝑇SV𝑖�̇�SV𝑖 = −𝑃SV𝑖 + 𝑃C𝑖 − 𝑅D𝑖
−1∆𝜔𝑖/𝜔𝑠      (A18) 

The network interface, network equations and loads are 

represented by (19)-(22) equations [15]. 

𝐼Q𝑖 + 𝑗𝐼D𝑖 = (𝐼𝑞𝑖 + 𝑗𝐼𝑑𝑖)𝑒
𝑗𝛿𝑖    (A19) 

𝑉𝑔𝑖 = 𝑉Q𝑖 + 𝑗𝑉D𝑖 = (𝑉𝑞𝑖 + 𝑗𝑉𝑑𝑖)𝑒
𝑗𝛿𝑖      (A20) 

𝐼𝑔𝑖 = 𝐼Q𝑖 + 𝑗𝐼D𝑖+(𝑅𝑎𝑖 + 𝑗𝑥𝑑
′′)−1𝑉𝑔𝑖      (A21) 

𝐕 = 𝐙𝐀𝐔𝐆𝐈 , 𝐙𝐀𝐔𝐆 = 𝐘𝐀𝐔𝐆
−𝟏  (A22) 

where, 𝐘𝐀𝐔𝐆 = 𝐘𝐆 + 𝐘𝐍 + 𝐘𝐋, 𝐘𝐆 =
𝑑𝑖𝑎𝑔(YG1, YG2, … , YGN),

YG𝑗 = (𝑅𝑎𝑖 + 𝑗𝑥𝑑
′′)−1 when 𝑖𝑡ℎ generator is connected to 𝑗𝑡ℎ

network node, otherwise YG𝑗 = 0. 𝐘𝐍 is the network shunt

admittance whereas 𝐘𝐋 is load admittance matrix [15],[16].

APPENDIX-B 

Tuning of gain vector 𝛾 

Arbitrary choice of controller gain may not produce the 

desired results. Therefore, the gain vector 𝛾 is tuned using a 

meticulously justified gradient based tuning method 

(detailed in the chapter 7 of [23]) given by (B.1) below. 

�̇� = −𝛼1

ϱ

(ϱTϱ + 𝛼2)
2
[ϱT𝛾 + Q(𝒙𝒊) + (�̃�𝒊

′)𝑇R(�̃�𝒊
′)]    (B. 1)

where, ϱ = [𝜕(M(𝒙𝒊))/𝜕𝒙𝒊][𝒇(𝒙𝑖) + 𝒈(𝒙𝒊)�̃�𝒊
′], 𝛼1 = 7.6,

𝛼2 = 1, Q(𝒙𝒊) = 𝒙𝒊
T𝑰𝑛𝑥

𝒙𝒊, R = 𝑰𝑛𝜇
. 𝑰𝑛𝑥

 and 𝑰𝑛𝜇
 are the

identity matrices of orders 𝑛𝑥 and 𝑛𝜇 respectively.

𝐸𝑑𝑐𝑖  dynamics is absent in 68 bus NETS-NYPS power

system (Fig. 2) as all the generation units are turbo-

generators (i.e., 𝑥𝑑
′′ = 𝑥𝑞

′′). Therefore, the state vector

dimension reduces to 7.  For 9th generation unit the value of 

the gain vector 𝛾 in steady state is given below: 

𝛾 = [−0.17 0.01 0.14    −0.45 0.19 0.13   0 ⋯ 

 0  0 −0.01    −0.02 0 0   −0.095 ⋯

0.04 −0.16 −0.11    0 1.18 0.43 −0.12 ⋯ 

0 −0.17 0.13    0 −0.09 0.01   0]T
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Power System Stabilizer Equations [15], [33], [28]-[40] 

𝑇𝑤𝑖�̇�𝑠1𝑖 = 𝑝𝑠1𝑖
′ ,        𝑝𝑠1𝑖

′ = 𝐾𝑆𝑖Δ𝜔𝑖 − 𝑝𝑠1𝑖  (B. 2) 

𝑇12𝑖�̇�𝑠2𝑖 = 𝑝𝑠2𝑖
′ ,        𝑝𝑠2𝑖

′ = 𝑝𝑠1𝑖
′ − 𝑝𝑠2𝑖  (B. 3) 

𝑇22𝑖�̇�𝑠3𝑖 = 𝑝𝑠3𝑖
′ ,

𝑝𝑠3
′ = 𝑝𝑠1

′ + (𝑇11𝑖 − 𝑇12𝑖) 𝑝𝑠2
′ 𝑇12𝑖⁄ − 𝑝𝑠3  (B. 4) 

V𝑠𝑠𝑖 = 𝑝𝑠1i
′ + (𝑇11𝑖 − 𝑇12𝑖) 𝑝𝑠2

′ 𝑇12𝑖⁄ +
(𝑇21𝑖 − 𝑇22𝑖) 𝑝𝑠3

′ 𝑇22𝑖⁄  (B. 5) 

𝐸𝑓𝑑𝑖 = 𝐾𝐴𝑖(𝑉𝑟𝑒𝑓𝑖 + 𝑉𝑠𝑠𝑖 − 𝑉𝑟𝑖)        (B. 6) 
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