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A B S T R A C T   

Shear enhancement occurs in reinforced concrete (RC) beams when loads are applied within around 2d of 
supports where d is the beam effective depth. This paper examines shear enhancement in RC beams, with stir
rups, which are loaded both within 2d of supports and at 3d from supports where shear enhancement is minimal. 
Simultaneously loading beams both inside and outside 2d of supports commonly occurs in practice but has not 
previously been systematically studied. A total of eight beams were tested in two groups of four having different 
reinforcement arrangements. The tests suggest that the shear resistance depends on the angle of the failure plane 
which is related to the loading arrangement. A strut and tie model (STM) is developed for analysing beams 
simultaneously loaded within and outside 2d of supports. The accuracy of the STM predictions is shown to be 
improved by relating strut strength to the strain in the flexural reinforcement. The proposed STM and nonlinear 
finite element analysis (NLFEA) with 3D solid elements are used to investigate parametrically the influence of 
loading arrangement on shear resistance. The strength predictions of the STM are shown to compare well with 
those of NLFEA. Comparisons are also made with shear strengths calculated using fib Model Code 2010 
(MC2010) and the draft new generation of Eurocode 2 (prEN1992-1:21). The differing philosophies of these two 
methods are discussed.   

1. Introduction 

Considerable effort has been expended studying shear enhancement, 
due to arching action, in reinforced concrete deep beams loaded on their 
top face with point loads positioned within 2d of supports [1–9]. This 
research has led to the development of strut and tie models [2–7], 
nonlinear finite element models [7–8], kinematic [9] and mechanically 
based models [10–11] for shear resistance. Most tests on short shear 
span and deep beams have been carried out using three- or four-point 
loading with all loads applied within 2d of supports. Tests studying 
the influence of loading arrangement on shear resistance are scarce. 
Brown and Bayrak [6] tested a series of tests of deep beams of span 4.4d 
(3048 mm), without and with shear reinforcement, in which three 
statically equivalent asymmetrical loading arrangements were consid
ered. The loading arrangements consisted of i) a single point load at 1.1d 
from the support, ii) two point loads at 0.55d and 1.67d and iii) a uni
formly distributed load (udl) of length 2.2d with centroid at 1.1d from 
the support. The tests showed that the failure load was greatest for the 
udl as found for slender beams in [12]. Brown and Bayrak [6] concluded 

that that “different load-carrying mechanisms are present for different 
load distributions” but the udl could be represented by two point loads. 
Tests on beams loaded with pairs of point loads applied within 2d of 
supports have also been undertaken by Vollum and Fang [3] as well as 
Elwakeel and Vollum [4] who likewise found the load carrying mech
anism to depend on the loading arrangement. In practice, slender beams 
can be loaded with concentrated loads applied both within and outside 
2d of supports as shown in Fig. 1 for a cross-head girder. This type of 
loading also arises in transfer beams supporting planted columns but is 
scarcely researched. Way back in 1956, Ferguson [13] carried out an 
exploratory campaign to investigate the influence of loading arrange
ment on shear enhancement in beams without shear reinforcement. 
Despite this, the authors are only aware of one previous test campaign 
that considered the shear strength of slender beams, with shear rein
forcement, loaded both within and outside 2d of supports. Bryant et al. 
[14] tested pairs of two span continuous beams with shear reinforce
ment and either three or five loads in each shear span. All these beams 
failed in flexure so do not give insight into shear resistance. 

The present research was motivated by differences between the 
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design approaches adopted for shear enhancement in EC2 [15] and 
previous UK practice [16] which become particularly pertinent for load 
cases like that shown in Fig. 1. EC2 [15] and fib Model Code 2010 
(MC2010) [17] reduce the contribution to the design shear force of 
concentrated loads applied to the top of a beam within 2d of supports by 
a multiple β = av/2d where av is the clear shear span. Conversely, the 
superseded UK code BS8110 [16], as well as the draft next generation 
EC2 (prEN1992-1:21) [18], relate the shear resistance within 2d of the 
support to the angle of the failure plane which is assumed to have a 
horizontal projection of av. Enhancing the shear resistance near to 
supports is attractive from a design perspective because it decouples the 
calculation of design shear force and shear resistance. The paper ex
amines the realism of these differing approaches to modelling shear 
enhancement through an experimental campaign, nonlinear finite 
element modelling and strut and tie modelling. 

2. Experimental program 

Eight beams were tested with shear reinforcement. The loading 
arrangement was chosen to simulate the case of a beam that is simul
taneously loaded near the support and elsewhere within the span. The 
point load at 3d in the test set up is intended to represent the resultant 
effect of loads applied outside 2d of supports. The beam depth of 500 
mm was chosen to be the same depth as adopted in previous in
vestigations into shear enhancement by Vollum [2–4]. The loading ra
tios were chosen to investigate the interaction between loads applied 
within and outside 2d of supports. The beams spanned 3350 mm be
tween support centrelines and measured 500 mm deep × 250 mm wide. 
The beams with shear reinforcement were divided into two series of four 
with series 1 having flexural tension reinforcement consisting of 4B25 
bars in a single layer (Fig. 2a) and series 2 having two layers of 3B25 bars 
(Fig. 2b). The top longitudinal reinforcement in both series consisted of 
two B16 straight bars. Beams in series 1 had B8 stirrups at 200 mm 
centres while beams in series 2 had B8 stirrups at 300 mm centres. 

The loading arrangements (see Table 1) were chosen to systemati
cally investigate the influence of varying the ratio of the loads applied 

within and outside 2d of supports. In each series of tests, a pair of control 
beams were tested with single point loads at either 1.5d or 3d from the 
left hand support. All but one of the remaining tests investigated the 
influence of loading the beams with pairs of concentrated loads applied 
in various ratios at 1.5d and at 3d from the left support (Fig. 2a, b). In the 
remaining test, the beam was loaded with equal point loads applied at 
1.1d and 1.9d (Fig. 2c) giving a resultant force at 1.5d. Steel loading and 
support plates were adopted with dimensions of 250 wide × 100 long ×
30 thick mm3. The naming convention of the specimens describes the 
beam loading arrangement and reinforcement as follows: 

2P - two point loads (P1 and P2). 
1.5d/3d – P1 applied at 1.5d and P2 at 3d from the centre of the 
support. 
20:80 – 20% of the total load applied at P1 and the remaining 80% at 
P2. 
2x3ϕ25 – Bottom longitudinal reinforcement composed of two layers 
of three 25-mm bars. 
s3 –stirrups at 300 mm centres. 

2.1. Material properties 

The beams were cast in two groups of four from ready mixed con
crete with specified strength class C25/30. There was an unintended 
switch between the coarse aggregate types used in series 1 and 2 with 20 
mm limestone aggregate used in series 1 and 20 mm gravel aggregate in 
series 2. This is not considered to have significantly affected the results 
since the coarse aggregate was the same size in series 1 and 2 and did not 
fracture. Control specimens for each series of four beams consisted of 12 
cylinders (100 mm × 200 mm) and 12 cubes (100 mm) for compressive 
strength tests and 12 cylinders (150 mm × 300 mm) for tensile splitting 
strength. After casting, half of each type of specimen were cured in air 
alongside the beams with the remainder cured in water at 20 ◦C. The air 
cured specimens were covered with polythene sheets and sprayed with 
water every other day for two weeks. Half of the cylinders were tested at 

Fig. 1. “Mirassolandia” precast concrete bridge in Sao Jose do Rio Preto, SP, Brazil (reproduced with permission of www.migliorepastore.com.br.).  
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the same time as the first beam of each series with the remainder tested 
at the same time as the last beam of each series. The measured concrete 
strengths at the time of testing the first and last beam of each series are 
summarised in Table 2. It is unknown why the air cured cylinder 
strengths are slightly higher than the water cured strengths but the 
difference is not considered significant. Table 3 lists the measured ten
sile properties of the reinforcement which were determined in accor
dance with [19]. 

2.2. Beam setup and test procedure 

The beams were loaded in an internal reaction frame through a single 
1000-kN hydraulic jack operating in displacement control. Pairs of loads 
were applied through a spreader beam as shown in Fig. 3. The ratio 
between the loads applied at 1.5d and 3d was varied by moving the 
beam leftward or rightward within the loading rig which was fixed in 
position. The beams were supported on bearings which allow both 
rotation and horizontal movement. Load was applied at a rate of around 
0.2 mm/minute which on average corresponded to a loading rate of 

Fig. 2. Geometry and typical loading arrangements of the beams: a) Beams with 8-mm stirrups at 200 mm centres, b) Beams with 8-mm stirrups at 300 mm centres, 
c) loading arrangement for 2P-1.1d/1.9d-50:50-4ϕ25s2 and d) cross-section details. 
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around 12 kN/minute. Following flexural yielding in beam 2P-1.5d/3d- 
40:60-4ϕ25s2, and post failure in the other beams, the loading rate was 
increased to around 0.4 mm/minute since the peak load had been 
reached. Load cells (LC) were positioned under each loading point and 
under the left hand support to determine the reaction. Other instru
mentation included strain gauges attached to the stirrups and longitu
dinal bars and linear variable displacement transducers (LVDT) 
measuring displacements and beam end rotations. 

In this paper, Digital Image Correlation (DIC) is used to illustrate the 
development of cracking. Although not reported here, DIC was used to 
record displacement fields from which crack opening and sliding dis
placements were calculated. The crack opening and sliding displace
ments were subsequently used to determine the components of shear 
force resisted within the critical shear crack by residual concrete tensile 
strength, aggregate interlock, dowel action, stirrups and the flexural 
compressive zone [20]. 

3. Test results and discussion 

3.1. Series 1: Beams with 8-mm stirrups at 200 mm centres 

The loading arrangements for series 1 are summarised in Table 4 
along with the concrete strengths at the time of testing and failure loads. 
A total of five tests were carried out on the four beams of series 1 since 
beam 2P-1.5d/3d-40:60-4ϕ25s2 was repaired and retested as 2P-1.5d/ 
3d-60:40-4ϕ25s2 after initially failing in flexure. All the beams failed in 
shear except for 2P-1.5d/3d-40:60-4ϕ25s2 and 2P-1.5d/3d-60:40- 
4ϕ25s2 which failed in flexure. The concrete compressive strengths 
given in Table 4 are averages of the air and water cured cylinder 
strengths. The concrete strengths of the second and third tested beams 
were found by linear interpolation between the strengths of the first and 
last tested beams. 

Fig. 4 shows the principal tensile strains obtained with DIC using 
[21] at i) peak load and ii) after failure when the final crack pattern had 
formed. The maximum principal strain occurs normal to the cracks so 
the strain magnitude over the selected subset size of 31 pixels is an 
indication of crack width. Fig. 5 shows photographs of the beams after 
failure. Significantly, the shear resistance of beam 2P-1.1d/1.9d-50:50- 
4ϕ25s2 was 633 kN compared with 387 kN for beam P-1.5d-4ϕ25s2 
which had statically equivalent loading. This shows that it can be very 
conservative to replace multiple point loads positioned within 2d of the 
support by their resultant when assessing shear resistance. In both 
beams, the major shear crack at failure ran from the outside edge of the 
support to the inside edge of the adjacent loading plate at P1. The failure 
mode of both beams was characteristic of shear-compression but the 
crack development was different. In beam 2P-1.1d/1.9d-50:50-4ϕ25s2, 
the critical diagonal shear crack (depicted “1” in Fig. 4a) formed at V =
170 kN (0.27Vmax). Near maximum load, crack “2” in Fig. 4a rapidly 
extended to the loading plate at P1 causing complete failure. In beam, P- 
1.5d-4ϕ25s2 the critical shear crack formed at V = 150 kN (0.39Vmax). 
This crack (“1”) subsequently merged with the upper diagonal crack 
(“2”) shown in Fig. 4c causing complete failure. The significantly greater 
shear strength of 2P-1.1d/1.9d-50:50-4ϕ25s2 compared with P-1.5d- 
4ϕ25s2 results from the steeper orientation of the failure crack in 2P- 
1.1d/1.9d-50:50-4ϕ25s2 (see Fig. 5a and b). 

In beam 2P-1.5d/3d-40:60-4ϕ25s2, the dominant shear crack (“1” in 
Fig. 4e and Fig. 5c) developed from the flexural shear crack closest to the 
support at 0.30Vmax = 150 kN and subsequently extended outwards 
towards the nearest edges of the support and inner loading plate. Both 
the bottom and top reinforcement yielded near to the maximum load. 
Subsequently, a shallow “V” shaped crack (“2” in Fig. 4f) developed 
under the loading plate at P2. This was followed by crushing of the 
concrete in the flexural compression zone. The beam was repaired with a 
high strength grout and re-tested as beam 2P-1.5d/3d-60:40-4ϕ25s2 
with the loads in the same position but with loading ratio changed to 
60:40. Beam 2P-1.5d/3d-60:40-4ϕ25s2 also failed in flexure (Fig. 4g,h). 
Consequently, the measured shear strength of these beams is a lower 
bound. The localised change in the material properties due to the repair 
was not modelled in the structural analysis of the beams presented in 
this paper. 

Beam P-3d-4ϕ25s2 with a single load at 3d failed in shear with the 
least resistance of 297 kN. The critical shear crack (“1” in Fig. 4i) 
developed from a flexural shear crack at V = 114 kN (0.38Vmax). Sub
sequently, this crack extended upwards towards the corner of the 
loading plate and horizontally along the flexural reinforcement towards 
the support until it merged with a small flexural crack (“2” in Fig. 4i) at 
peak load. 

3.2. Series 2: Beams with 8-mm stirrups at 300 mm centres 

To avoid flexural failure, the stirrup spacing in series 2 was increased 
to 300 mm and the bottom reinforcement was increased to six 25 mm 
diameter bars provided in two layers. Similarly to series 1, beam P-1.5d- 

Table 1 
Description of the beams.  

Beam Effective 
depth 

As 
a Stirrups Loading 

arrangement 
(mm) 

P-1.5d-4ϕ25s2  454.5 4B25 B8 at 200 
mm 

Fig. 1a - P1 =

100%, P2 = 0% 
2P-1.1d/1.9d- 

50:50-4ϕ25s2  
454.5 4B25 B8 at 200 

mm 
Fig. 1c - P1 = 50%, 
P2 = 50% 

2P-1.5d/3d- 
40:60-4ϕ25s2  

454.5 4B25 B8 at 200 
mm 

Fig. 1a - P1 = 40%, 
P2 = 60% 

P-3d-4ϕ25s2  454.5 4B25 B8 at 200 
mm 

Fig. 1a - P1 = 0%, 
P2 = 100% 

2P-1.5d/3d- 
60:40-4ϕ25s2b  

454.5 4B25 B8 at 200 
mm 

Fig. 1a - P1 = 60%, 
P2 = 40% 

P-1.5d-2x3ϕ25s3  429.5 6B25 in 2 
layers 

B8 at 300 
mm 

Fig. 1b - P1= 100%, 
P2 = 0% 

P-3d-2x3ϕ25s3  429.5 6B25 in 2 
layers 

B8 at 300 
mm 

Fig. 1b - P1 = 0%, 
P2 = 100% 

2P-1.5d/3d- 
40:60- 
2x3ϕ25s3  

429.5 6B25 in 2 
layers 

B8 at 300 
mm 

Fig. 1b - P1 = 40%, 
P2 = 60% 

2P-1.5d/3d- 
20:80- 
2x3ϕ25s3  

429.5 6B25 in 2 
layers 

B8 at 300 
mm 

Fig. 1b - P1 = 20%, 
P2 = 80%  

a Flexural tension reinforcement, b re-test of 2P-1.5d/3d-40:60-4ϕ25s2. 

Table 2 
Mean concrete strengths.    

Compressive cylinder 
strength 

Tensile strength 

Series test 
order 

fc,avg,water 

(MPa) 
fc,avg,air 

(MPa) 
ft,avg,water 

(MPa) 
ft,avg,air 

(MPa) 

1 first  27.7  29.3  2.3  2.0  
last  30.1  32.0  2.5  2.1 

2 first  29.7  31.0  2.3  2.1  
last  30.3  32.0  2.5  2.1  

Table 3 
Steel reinforcement properties.  

Diameter 
(mm) 

Es (MPa) fy 

(MPa) 
εyield* (mm/ 
m) 

fu 

(MPa) 
εsu

** (mm/ 
m) 

8 200,100 510  2.5 695 136 
16 194,900 550  2.8 645 147 
25 200,600 540  2.7 650 126  

* Reinforcement yielding, **Reinforcement fracture strain. 
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Fig. 3. Test rig setup for beam 2P-1.5d/3d-40:60-4ϕ25s2.  

Table 4 
Summary of experimental results of beams with 8-mm stirrups at 200 mm centres.  

Beam Age at test fc a ft b Aggregate d Vtest
c Vflex

d Failure 

(days) (MPa) type (mm) (mm) kN kN Mode 

P-1.5d-4ϕ25s2 28  28.5  2.2 limestone 20  454.5 387 639 Shear 
2P-1.1d/1.9d-50:50-4ϕ25s2 31  28.9  2.2 limestone 20  454.5 633 688 Shear 
2P-1.5d/3d-40:60-4ϕ25s2 32  29.0  2.2 limestone 20  454.5 492 449 Flexure 
P-3d-4ϕ25s2 36  29.0  2.2 limestone 20  454.5 297 314 Shear 
2P-1.5d/3d-60:40-4ϕ25s2e 51  31.1  2.3 limestone 20  454.5 531 550 Flexure  

a Compressive strength of concrete used in calculations. 
b Tensile strength of concrete used in calculations. 
c Neglecting shear force due to self-weight of 5 kN. 
d Calculated with Mr = 423 kNm. 
e Re-test of 2P-1.5d/3d-40:60-4ϕ25s2. 
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Fig. 4. Crack patterns and strain state at peak load and after failure for beams with 8-mm stirrups at 200 mm centres.  
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2x3ϕ25s3 was loaded at 1.5d and beam P-3d-2x3ϕ25s3 at 3d. The 
remaining two beams were simultaneously loaded at 1.5d and 3d with 
loading proportions of 1:1.5 (2P-1.5d/3d-40:60-2x3ϕ25s3) and 1:4 (2P- 
1.5d/3d-20:80-2x3ϕ25s3). All the beams failed in shear at the maximum 
shear forces given in Table 5 which also gives concrete strengths. 

The principal tensile strains at i) peak load and ii) post failure are 
shown for series 2 in Fig. 6 while Fig. 7 shows the final crack pattern for 
each test. The failure modes of beams P-1.5d-2x3ϕ25s3 and 2P-1.5d/3d- 
40:60-2x3ϕ25s3 were characteristic of shear-compression but the crack 
development differed. The critical shear crack in beam P-1.5d-2x3ϕ25s3 

(“1” in Fig. 6a) formed at V = 180 kN (0.36Vmax). Subsequently, the 
crack extended steadily outwards towards the nearest corners of loading 
and bearing plates (Fig. 6a). A secondary shear crack “2” developed at 
the inner corner of the loading plate near maximum load. There was no 
unique single failure crack as evident in Fig. 6b. Notably, beam P-1.5d- 
2x3ϕ25s3 (Fig. 6a,b) failed at V = 496 kN which is significantly greater 
than its companion P-1.5d-4ϕ25s2 from series 1 which failed at V = 387 
kN despite having similar concrete strength and closer stirrup spacing. 
This appears to be due to the different shape of the critical shear crack in 
both beams. In Fig. 5b, the critical shear crack cuts the theoretical direct 

Fig. 5. Final crack patterns for beams of Series 1 with 8-mm stirrups at 200 mm centres.  

Table 5 
Summary of experimental results of beams with 8-mm stirrups at 300 mm centres.  

Beam Age at test fc a ft b Aggregate d Vtest
c Vflex

d Failure  

(days) (MPa)  type (mm) (mm) kN kN Mode 

P-1.5d-2x3ϕ25s3 46  30.8  2.2 sea dredged gravel 20  429.5 496 833 Shear 
P-3d-2x3ϕ25s3 49  30.9  2.3 sea dredged gravel 20  429.5 287 409 Shear 
2P-1.5d/3d-40:60-2x3ϕ25s3 50  31.0  2.3 sea dredged gravel 20  429.5 510 585 Shear 
2P-1.5d/3d-20:80-2x3ϕ25s3 56  31.1  2.3 sea dredged gravel 20  429.5 387 487 Shear  

a Compressive strength of concrete used in calculations. 
b Tensile strength of concrete used in calculations. 
c Neglecting shear force due to self-weight of 5 kN. 
d Calculated with moment of resistance Mr = 552 kNm. 
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strut, while in Fig. 7a it runs parallel to the direct strut allowing more 
load to go directly to the support. This suggests that shear enhancement 
due to arching action is sensitive to random variations in the position 
and orientation of the critical shear crack to the direct strut as found by 
others [2,22]. 

The critical shear crack in 2P-1.5d/3d-40:60-2x3ϕ25s3 developed 
from the merging of cracks “1” and “2” in Fig. 6c. Crack “1” is a flexural 
shear crack which initiated at V = 180 kN (0.35Vmax) while crack “2” is a 
shear crack. The failure crack (Fig. 6d) resulted from the merging of the 

critical shear crack and the secondary shear crack adjacent to the inner 
corner of the loading plate (“3”) which formed just before the peak load 
(Fig. 6c). 

The critical shear crack in 2P-1.5d/3d-20:80-2x3ϕ25s3 (Fig. 6e,f) 
developed from the merging of a flexural shear crack (“1”) and a shear 
crack (“2”) at V = 170 kN (0.44Vmax). The flexural shear crack initiated 
in the soffit of the beam at a distance of 215 mm from the support at V =
135 kN (0.35Vmax). The shear crack initiated at the inner corner of the 
bearing plate at V = 150 kN (0.39Vmax). From V = 250 kN (0.65Vmax), 

Fig. 6. Crack patterns and strain state at peak load and after collapse for series 2 with 8-mm stirrups at 300 mm centres.  
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three of the flexural shear cracks between the two point loads widened 
and extended eventually coalescing to form crack “3” which became the 
second widest shear crack. At maximum load, the critical shear crack 
extended rapidly towards the inner edge of the outer loading plate 
causing the final crack pattern (Fig. 6f). The maximum shear force was 
387 kN, which lies between that for beams P-1.5d-2x3ϕ25s3 (500 kN) 
and P-3d-2x3ϕ25s3 (287 kN). 

Beam P-3d-2x3ϕ25s3 (Fig. 6g,h), with a single point load at 3d, failed 
at the lowest shear force as expected. Similarly to beam 2P-1.5d/3d- 
20:80-2x3ϕ25s3, the critical shear crack developed from the merging of 

a flexural shear crack (“1” in Fig. 6g) and a shear crack (“2” in Fig. 6g) 
adjacent to the support. Crack 1 first formed in the beam soffit 425 mm 
from the inner corner of the bearing plate at 130 kN (0.45Vmax). Crack 2 
formed at V = 160 kN (0.56Vmax) and shortly afterwards merged with 
crack 1 to form the critical shear crack. At maximum load, the tip of the 
critical shear crack was only around 10 mm short of the loading plate 
(Fig. 6g). 

Fig. 7. Final crack patterns for each beam with 8-mm stirrups at 300 mm centres.  

M.V.F. Pastore and R.L. Vollum                                                                                                                                                                                                             



Engineering Structures 264 (2022) 114408

10

4. Strut and tie modelling 

Refined STM, depicted STMa and STMb in Fig. 8, were developed by 
the authors for the tested beams and are applicable respectively to cases 
where the stirrups in the inner shear span i) cannot and ii) can solely 
resist the shear force V in the outer shear span (i.e. between P1 and P2 in 
Fig. 2). In STMa, the load P is transferred directly to the support through 
strut I. The shear force V in the outer shear span is transferred into struts 
II and III through ties Ts2 and Ts1 respectively. STMb, which differs from 
that of Sagaseta and Vollum [2] in the inclusion of the shear force V at 
the right hand side of the free body diagram, is applicable if Ts1 ≥ V 
(where Ts1 denotes the yield capacity of the stirrups in the inner shear 
span av1). In this case, part of the load P is resisted by Strut II which is 
indirect. STMa and STMb converge when Ts1 = V in which case strut II 
disappears in both STMs. 

The failure load is the least corresponding to flexure, shear and 
bearing failure under the loading and support plates. The stress at the 
back of the bottom node is not considered critical as implied by 
Figure 6.27 of EC2 [15] and Figure 7.3–39 of MC2010 [17]. Concrete 
controlled shear failure in STMa arises due to either crushing of Strut I at 
its top end or by crushing of Strut II at its bottom end. Strut III is not 
critical since it is steeper than strut I. Concrete controlled shear failure in 
STMb occurs due to crushing of Strut I at the critically stressed end 
which in general depends on the bearing plate widths. The node ge
ometry and strut forces are shown in Fig. 9. Tables 6 to 8 give the design 
concrete design strengths at the top and bottom nodes respectively ac
cording to EC2 [15], the Modified Compression Field Theory (MCFT) 
[23] and prEN 1992-1-1: 2021 [18,24]. The symbols in Tables 6 and 7 
are defined in Table 8. 

4.1. Derivation of design equations and solution for STMa 

The maximum shear force is given by Eq. (1), where P is the point- 
load applied within 2d of supports and V is the shear force in the 
outer shear span between P1 and P2. 

Vmax = P+V = P⋅(1+ κ) (1)  

where κ is defined in terms of the loading arrangement as follows: 

κ =
V
P

(2) 

The load P is limited by concrete crushing in strut I. Failure only 
needs to be considered at the top node of strut I since failure of strut II is 
critical at the bottom node. Failure of strut I at the top node, which is not 
critical for the tested beams, gives: 

P ≤ b⋅fcst⋅wI,top⋅sinβI (3)  

where b is the beam width, wI,top is the width of strut I, normal to its 
centreline at the top node, fcst is the strength of Strut I at the top node and 
βI is the inclination of Strut I to the horizontal. 

Vertical equilibrium gives: 

V = Ts1 + Ts2 =
Asw

sw
⋅fyw⋅(av1 + lt + av2) =

Asw

sw
⋅fyw⋅0.9d⋅cotθ (4)  

where Ts1 is the resultant tensile force in the stirrups in the inner shear 
span (av1), Ts2 is the resultant tensile force in the stirrups in the outer 
shear span (av2), Asw is the cross-sectional area of each set of stirrups at 
spacing sw and fyw is the yield strength of the stirrups. The force Ts2 is 
determined in the solution procedure and is limited by the compressive 
resistance of strut II at the bottom node. In the definition of model ge
ometry, the dimensions es1 and es2 in Fig. 8a are defined as es1 = 0.5av1 

Fig. 8. Proposed STM for loading arrangement with shear force from point-load near supports (P) and from loads far from supports (V). STMa is valid for Ts1 ≤ V and 
STMb is used otherwise. 

M.V.F. Pastore and R.L. Vollum                                                                                                                                                                                                             



Engineering Structures 264 (2022) 114408

11

and es2 = av1 + lt + 0.5av2. 
The proportion of the bottom bearing plate length (lb) supporting 

Strut I is given by: 

λI =
P

P + V
=

1
1 + V

P
=

1
1 + κ

(5) 

The proportion of the bottom bearing plate length (lb) supporting 
Strut II is given by: 

λII =
Ts2

P + V
=

Asw
sw

⋅fyw⋅av2

P + V
=

1 − av1+lt
0.9d⋅cotθ

1 + 1/κ
(6)  

where Ts2 is the resultant tensile force of stirrups in the outer shear span, 
lt is the length of the loading plate, av1 is the clear inner shear span and: 

av2 = 0.9d⋅cotθ−(av1 + lt) (7) 

Fig. 9. Node geometry and strut forces at top and bottom nodes for STMa and STMb.  

Table 6 
Maximum allowable stress at the top node (CCC)a.   

Strut I Strut II 
STMb 

Bearing 
under plate 

Flexural compressive 
stress (fcnt) 

Eurocode 2 [15] νfcd νfcd νfcd νfcd 

MCFT [23] 0.85fcd 0.85fcd 0.85fcd 0.85fcd 

prEN 1992-1-1: 
2021 [18] 

ηfcfcd ηfcfcd ηfcfcd ηfcfcd  

a fcd = fck/γc where γc is the partial factor for concrete which is taken as 1.0 in 
this paper. 

Table 7 
Maximum allowable stress at the bottom node (CCT)a.   

Strut I 
cracked strut 

Strut II 
cracked strut 

Strut III 
uncracked strut 

Bearing 
under plate 

EC2 [15] 0.6νfcd 0.6νfcd 0.85νfcd 0.85νfcd 

MCFT [23] kεfcd kεfcd 0.85fcd 0.85fcd 

prEN 1992-1- 
1: 2021  
[18] 

kεηfcfcd kεηfcfcd ηfcfcd ηfcfcd  

a fcd = fck/γc where γc is the partial factor for concrete which is taken as 1.0 in 
this paper. 
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The proportion of lb supporting Strut III is given by: 

λIII =
Ts1

P + V
=

av1 + lt

0.9d⋅cotθ⋅(1 + 1/κ)
= 1−(λI + λII) (8) 

The tensile force T in the bottom longitudinal reinforcement at the 
support is given by: 

Tsup = TI + TII +TIII (9)  

where TI, TII and TIII are respectively the horizontal components of force 
in Strut I, Strut II and Strut III. 

TI = P⋅cotβI (10)  

where βI is the angle of Strut I (see Eq. (14)). 

TII = Ts2⋅cotβII =
Asw

sw
⋅[0.9d⋅cotθ−(av1 + lt) ]⋅fyw⋅cotβII (11)  

where βII is the angle of Strut II (see Eq. (15)). 

TIII = Ts1⋅cotϕ =
Asw

sw
⋅(0.9d⋅cotθ − av2)⋅fyw⋅cotϕ (12)  

where Ts1 is the resultant tensile force in the stirrups within the inner 
shear span and ϕ is the angle of Strut III (see Eq. (16)). 

The relative heights of the bottom node supporting Strut I and Strut II 
are given by: 

αi =
Ti

Tsup
(13)  

where i = I or II. 
The angles of Strut I (βI), Strut II (βII) and Strut III (ϕ) can be calcu

lated from geometry as follows: 

cotβI =
λI ⋅0.5lb + λII ⋅lb + av1 + 0.5lt

h − c⋅(αI + 2⋅αII) −
TIII+0.5TI

b⋅fcnt

(14)  

cotβII =
λII ⋅0.5lb + es2

h − c⋅αII −
TI+TIII+0.5TII

b⋅fcnt

=
λII ⋅0.5lb + av1 + lt + 0.5av2

h − c⋅αII −
TI+TIII+0.5TII

b⋅fcnt

(15)  

cotϕ =
(1 + λI + λII)⋅0.5lb + es1

h − c⋅(1 + αI + αII) −
0.5TIII
b⋅fcnt

=
0.5⋅[(1 + λI + λII)⋅lb + av1 ]

h − c⋅(1 + αI + αII) −
0.5TIII
b⋅fcnt

(16)  

where h is the beam height, c is the concrete cover measured from the 
bottom face of the beam to the centroid of the bottom longitudinal 
reinforcement, es1 defines the position of the centroid of Ts1 and es2 
defines the position of the centroid of Ts2. For the tested beams, cotθ is 
governed by failure of Strut II at its bottom end as follows: 

cotθ =
1

0.9d

[
sw

Asw⋅fyw
b⋅fcsb⋅(αII ⋅2c⋅cosβII + λII ⋅lb⋅sinβII)⋅sinβII+av1 + lt

]

≤ cotθmin

(17) 

If cotθ from Eq. (17) is greater than cotθmin the maximum shear 

resistance is given by: 

Vmax =
Asw⋅fyw

sw
0.9d.cotθmin(1+ 1/κ) (18) 

The equations of the STM can be readily solved with a nonlinear 
equation solver like the Generalised Reduced Gradient (GRG2) available 
in Microsoft Excel. The procedure for using GRG2 is to firstly estimate 
values for cotθ, cotβI, cotβII and cotϕ which should be defined as variable 
cells. Updated values of the cotangents are then calculated with Eqs. 
(14) to (17) respectively using inputs from Eqs. (2) and (5)–(13) which 
can be directly evaluated. For example, once cotθ is known P is calcu
lated in terms of V (see Eq. (2)) using Eq. (4). The solver GRG2 can then 
be used to adjust the trial values of cotθ, cotβI, cotβII and cotϕ until the 
estimated values equal those given by Eqs. (14) to (17). Flexural failure 
also needs to be checked. 

4.2. Derivation of design equations and solution for STMb 

The maximum shear force transferred to the support by STMb is 
given by: 

VRd = λt⋅P+Ts = λt⋅P+
Asw

sw
⋅fyw⋅av =

Ts

1 − λb
=

1
(1 − λb)

⋅
Asw

sw
⋅fyw⋅av (19)  

where λt is the proportion of the top plate supporting the shear force 
carried by the direct strut, P is the applied point load, Ts is the tensile 
force in the stirrups within the inner shear span, Asw is the cross sectional 
area of each set of stirrups at spacing sw, fyw is the yield strength of the 
stirrups, av is the clear shear span and λb is the relative length of the 
bottom plate supporting the shear force carried by the direct strut. 

Ts =
Asw

sw
⋅fyw⋅av = (1 − λt)⋅P + V (20)  

where V is the uniform shear force. STMa applies if Eq. (20) is not 
satisfied. 

Failure is assumed to occur due to simultaneous yielding of stirrups 
and crushing of strut I (direct strut) at the bottom node. Therefore, the 
applied load P is given by: 

P =
b⋅fcsb⋅(α⋅2c⋅cosβ + λb⋅lb⋅sinβ)⋅sinβ

λt
(21)  

where b is the beam width, fcsb is the concrete strength of Strut I at the 
bottom node, c is the concrete cover measured from the bottom face of 
the beam to the centroid of the bottom longitudinal reinforcement, lb is 
the length of the bottom bearing plate, α is the relative proportion of the 
height of the bottom node supporting the horizontal component of Strut 
I and β is the angle of Strut I. 

The ratio of the proportions of the bottom and top plate supporting 
the direct strut is given by: 

λb

λt
=

1
1 + κ

=
P⋅(1 − λb)

Ts
(22)  

where κ is given by Eq. (2). 
The force T in the longitudinal reinforcement at the outer edge of the 

loading plate is given by: 

T = Tsup +Vcotθ+(1− λt)⋅P⋅cotφ (23)  

where θ is the orientation of the uniform compressive stress field, φ is the 
orientation of Strut II and Tsup is the tensile force in the longitudinal 
reinforcement at the support. 

Tsup = TI +TIII (24)  

where TI and TIII are the horizontal components of force in Struts I and 
III. 

Table 8 
Efficiency factors in Tables 6 and 7.  

EC2 [15] ν = 1 −
fck

250 
MCFT [23] kε =

1
0.8 + 170ε1 

ε1 = εx + (εx + 0.002)cot2β 
prEN 1992-1-1: 2021 [18] 

ηfc =

(
40
fck

)1
3 ≤ 1 

kε =
1

1 + 110ε1
≤ 1 

ε1 = εx + (εx + 0.001)cot2β  
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TI = λt⋅P⋅cotβ =
λb

1 − λb
⋅Ts⋅cotβ =

α
1 − α⋅Ts⋅cotϕ (25)  

where β is the orientation of Strut I and α defines the relative height of 
the bottom node supporting the horizontal component of the direct 
strut. 

TIII = Ts⋅cotϕ (26)  

where ϕ is the orientation of Strut III and α is given by Eq. (13) with i = I. 

cotβ =
λb⋅0.5lb+av + λt⋅0.5lt

h − c⋅α − TIII+0.5TI
b⋅fcnt

(27)  

cotϕ =
0.5⋅[(1 + λb)⋅lb + av ]

h − c⋅(1 + α) − 0.5TIII
b⋅fcnt

(28)  

where h is the beam height, av is the clear shear span, lt is the top loading 
plate width and fcnt is the flexural compressive stress. 

In the tested beams, failure of STMb is governed by crushing of strut I 
at its bottom end. In this case, the coefficient α can be obtained by 
equating the horizontal component of force in strut I at failure to TI from 
Eq. (25). This leads to: 

α =
λb.lb

2c.cotβ
.

[
Ts(1 + cot2β)

(1 − λb).lb.b.fcsb
− 1

]

(29) 

STMb can be solved similarly to STMa with a nonlinear equation 
solver such as the Generalised Reduced Gradient (GRG2) solver in 
Microsoft Excel. The solution can also be found using the iterative 
procedure of Sagaseta and Vollum [2]. 

4.3. Shear resistance predictions of strut and tie models 

The shear resistances of the tested beams were evaluated with STMa 
and STMb as appropriate. In STMa, the strength of strut II at its bottom 
end was initially related to the strut orientation βII but slightly better 
failure load predictions were obtained when the strength was related to 
β1. Justification for this is provided by [9,24,27] and Fig. 8.26b of 
prEN1992-1:21 [18] which relates the strut strength in a variable width 
stress field (e.g. fan) to the mean strut orientation with respect to the tie. 
Taking the strength of strut II as equal to that of strut I at the bottom 
node ensures that strut I is almost at failure when strut II fails, thereby 
allowing for redistribution of stress at the bottom node. For consistency 
with prEN1992-1:21 [18], the angle used to calculate the strength of 
strut II at its bottom node should be the least of β1 and: 

cotθcs =
cotθ

2
+

lb

2⋅z
(30) 

The strength of beam 2P-1.1d/1.9d-50:50-4ϕ25s2 with two-point 

loads applied within 2d of a support was evaluated with the STM of 
Vollum and Fang [3]. Table 9 gives the resulting shear resistances 
calculated using the design concrete strengths given in Tables 6 to 8. In 
the cases of prEN1992-1:21 [18] and MCFT [23], the strut strength at 
the bottom node was calculated in terms of i) εx and ii) 0.5εx where εx is 
the peak strain in the flexural reinforcement at the bottom node. The 
latter approach is adopted in prEN1992-1:21 [18]. Table 9 shows that all 
the STM predictions are safe with the prEN1992-1:21 [18] predictions 
based on 0.5εx most accurate. The STMs predict greater strengths for 
comparable beams in the 2x3ϕ25s3 series than the 4ϕ25s2 series. This is 
principally due to the flexural reinforcement being provided in two 
layers in the 2x3ϕ25s3 series, which increases the bottom node depth. 
The reduction in εx due to the increase in flexural reinforcement area 
only accounts for around 10% of the strength increase. The increase in 
strut strength in the 2x3ϕ25s3 series due to the reinforcement being 
provided in two layers more than compensates for the increase in stirrup 
spacing compared with the 4ϕ25s2 series. 

5. Modelling of beams with NLFEA 

For comparison with the STM, the beams were modelled with NLFEA 
using 3D solid elements in ATENA [25]. The aim was to develop a 
calibrated modelling procedure that could be used to investigate other 
loading arrangements than tested. Concrete was modelled using 
CC3DNonLinCementitious2 [25] which is a fracture-plastic model that 
combines constitutive models for concrete in tension and compression. 
The optimum choice of concrete model parameters in CC3DNonLinCe
mentitious2 is case-dependent and varies dependent on the tests selected 
for model calibration. Based on calibration studies by Pastore [20], a 
fixed crack model was adopted since this replicated the observed crack 
patterns best. Compressive fracture of concrete in CC3DNonLinCe
mentitious2 is related to a critical compressive displacement, wd, which 
was taken as its default value of 0.5 mm in ATENA [25] based on cali
bration studies by Pastore [20]. The concrete compressive strength is 
reduced in CC3DNonLinCementitious2 parallel to the crack direction, as 
in the MCFT [23]. The strength reduction is related to the largest 
maximal fracturing strain [25] and is limited to a ratio rc of the uniaxial 
concrete compressive strength which was taken as 0.8. The reinforcing 
bars were modelled as discrete reinforcement using truss elements 
embedded in the solid concrete elements. Perfect bond was adopted 
between the reinforcement and concrete. The nodal displacements of the 
bar element are kinematically dependent on those of the solid element. 
A multi-linear stress–strain relationship was used to replicate the 
measured reinforcement stress strain relationship. Concrete and steel 
loading plates were meshed using eight node linear order hexahedra 
elements. The whole beam was modelled in the analyses using the same 
element size for concrete throughout the beam. A finite element size of 

Table 9 
Strut-and-tie predictions for short-span beams.      

Vtest/Vpred     

– 0.5εx = T/(2EsAs) εx = T/(EsAs) 

beams fc (MPa) Vtest (kN) ATENA [25] (FE) EC2 [15] STM MCFT [23] prN1992:21 [18] MCFT [23] prEN1992:21 [18] 

P-1.5d-4ϕ25s2c 28.5 387 0.83 1.19 1.12 0.95 1.21 1.03 
2P-1.1d/1.9d-50:50-4ϕ25s2d 28.9 633 1.04 1.73 1.45 1.29 1.57 1.40 
2P-1.5d/3d-40:60-4ϕ25s2b 29.0 492 1.05 1.51 1.46 1.26 1.56 1.36 
2P-1.5d/3d-60:40-4ϕ25s2b 31.1 531 1.13 1.56 1.49 1.29 1.60 1.40 
P-1.5d-2x3ϕ25s3c 30.8 496 1.01 1.25 1.25 1.01 1.35 1.11 
2P-1.5d/3d-40:60-2x3ϕ25s3a 31.0 510 1.11 1.33 1.37 1.16 1.47 1.25 
2P-1.5d/3d-20:80-2x3ϕ25s3a 31.1 387 1.03 1.16 1.22 1.08 1.28 1.12    

Mean 1.03 1.39 1.33 1.15 1.43 1.24   
StdDev 0.10 0.22 0.14 0.14 0.16 0.15   
CoV 9% 16% 11% 12% 11% 12%  

a : STMa, b: STMb, c: STM of Sagaseta and Vollum [2], d: STM of Vollum and Fang[3]. 
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50 mm3, giving 10 elements through the beam depth, was chosen on the 
basis of a sensitivity study that considered cubic element sizes of 25 
mm3, 50 mm3 and 75 mm3. The point loads were applied through the 
central node on the top surface of the loading plate. Vertical constraints 
were applied to the centre line of the bottom surface of bearing plates, 
allowing the supports to rotate about this line. Horizontal movements 
were constrained in the longitudinal direction at one bearing plate and 
in the transverse direction at the other bearing plate. All plates were 
modelled as elastic with modulus of 200 GPa. Load was applied in force 
control using the arc-length solution procedure. The adopted modelling 
parameters were determined by best fitting the NLFEA results to a series 
of similar, but short shear span, beams with shear reinforcement tested 
by Vollum and Fang [3]. Full details of the calibration study are given by 
Pastore [20]. Table 10 summarises the key user defined parameters 
adopted in modelling the tested beams. Other parameters in 
CC3DNonLinCementitious2 were taken as the default values from [25] 
given in Table 11. The calibrated NLFEA model was used to determine 
the predicted strengths of the eight beams tested in this campaign. The 
resulting failure loads are seen to compare reasonably well with the 
measured ones as shown in Table 9. Fig. 10 compares the measured and 
predicted load displacement responses of the calibrated model for test 
series 2 at LVDT 6 positioned under P2 at 3d. Overall, the comparison is 
favourable even though the initial NLFEA response is overly stiff. 
Further details of the NLFEA verification including comparison of 
measured and predicted reinforcement strains is given by Pastore [20]. 

6. Evaluation of shear enhancement methods in MC2010 [17] 
and prEN1992-1:2021 [18] 

As well as allowing design by STM, design standards give simplified 
formulae for modelling shear enhancement near supports of top loaded 
beams. This section considers the simplified design methods of MC2010 
[17] Level of Approximation III (LoA III) (see Appendix A) and pr 
EN1992-1:2021 [18]. EC2 [15] is not considered since it is known to 
perform poorly for beams with shear reinforcement [2,3]. 

The draft next generation EC2 (prEN1992-1:2021 [18]) calculates 
the shear resistance of beams with shear reinforcement (τRd) as follows: 

τRd =
VRd

bwz
=

Asw

bws
fywdcotθ = ρwfywdcotθ ≤

νηfcfcd

2
(31)  

where VRd is the design shear resistance, bw is the width of the web, z =
0.9d is the lever arm for shear calculation, fcd = fck/γc where γc is the 
partial factor for concrete which is taken as 1.0 in this paper, ηfc is 
defined in Table 8, fywd is the design yield strength of the shear rein
forcement and:  

cotθmin ≥ cotθ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
νηfcfcd

ρwfywd
− 1

√

≥ 1 (32) 

For beams without axial force, ν may be taken as 0.5 with cotθmin =

2.5. Alternatively [18], cotθ can be taken as greater than cotθmin = 2.5, or 

ν > 0.5 if the effectiveness factor is calculated as: 

ν =
1

1 + 110[εx + (εx + 0.001)cot2θ ]
≤ 1 (33)  

where εx is the average of the strain in the bottom and top chords ac
counting for sign. The forces in the tension and compression chords are 
given respectively by Ftd = M/z+0.5Nvd ≤ Mmax/z and 
Fcd = M/z−0.5Nvd where z is the flexural lever arm, which for calcula
tion of εx is approximated as 0.9d in this paper, and Nvd = Vcotθ. Strains 
in the tension and compression chords are calculated as Ftd/(AsEs) and 
Fcd/(AcEc) respectively where Ac is the area of the compressive chord 
which is calculated for a fully cracked section in this paper assuming 
elastic behaviour. 

For beams with stirrups, prEN1992-1:2021 [18] utilises a stress field 
approach [26] to calculate the enhanced shear strength of beams loaded 
with concentrated loads applied within zcotθ of supports. The enhanced 
shear resistance is assumed to equal the sum of a direct strut contribu
tion plus the force carried by the vertical steel links over the clear shear 
span av. For cotθ ≥ 1, the shear resistance is given [18] by: 

VRd = bwzνηfcfcd
cotθ − cotβ
1 + cot2θ

+
Asw

s
zfywdcotβ ≤ bwzνηfcfcd

cotθ
1 + cot2θ

(34)  

where bw is the beam web width, z is the internal lever arm taken as 0.9 
times the effective depth, ν is a strength reduction factor, θ is the 
orientation of the compression field, cotβ = av/z where av is the clear 
shear span, Asw is the cross-sectional area of each set of stirrups at 
spacing s and fywd is the design yield strength of the stirrups. For 1 ≤ cotθ 
≤ cotθmin = 2.5, the effectiveness factor ν may be taken as 0.5. In this 
case, the optimum value of cotθ in Eq. (34) is given [18] by: 

cotθ = cotβ+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + cot2β

√
≤ cotθmin (35) 

Alternatively, the effectiveness factor ν in Eq. (34) may be calculated 
using Eq. (33) in terms of the strain εx at a cross section midway between 
the support and load. In this case, the bending moment used in the 
calculation of the tension (Ftd) and compression (Fcd) chord forces should 
be taken as M+ΔM where M is the design bending moment at the 
considered cross section and ΔM is given by: 

ΔM =

(

VEd −
Asw

s
zfywdcotθ

)

a (36)  

where a is the distance from the centreline of the support to the cen
treline of the concentrated load under consideration. 

For the tested beams with two-point loads, shear failure needs to be 
checked for the shear force i) between the support and P1 and ii) be
tween P1 and P2 (see Fig. 2). For beams loaded at 1.5d and 3d, the shear 
resistance between P1 and P2 is the unenhanced shear resistance. The 
shear resistance predictions are shown in Table 12 for MC2010 [17] 
LoAIII and prEN1992:2021 [18] with ν = 0.5 and with ν from Eq. (33). 
Also shown for comparison are the predictions from ATENA and STM 
prEN1992:21 with 0.5εx. The resistances were all calculated with partial 
factors equal to 1.0 for concrete and reinforcement. Table 12 shows that 
the shear enhancement methods of MC2010 [17] and prEN1992 [18] 

Table 10 
Summary of best fitted parameters for numerical modelling of tested beams.  

Parameter Beams with stirrups 
ATENA v5.6.1i 

Smeared crack model Fixed crack model (1.0) 
Shear factor 3000 
Compressive strength of concrete Cylinder strength (fcm ≅ 30 MPa) 
Tensile strength of concrete Brazilian test (fctm ≅ 2.2 MPa) 
Maximum aggregate size 20 mm 
Critical plastic displacement wd 0.5 mm 
Compressive strength reduction factor rc 0.8 
Mesh size 50 mm 
Element 8-node brick 
Load step size (initial increment) 1% Pu (experimental failure load) 
Solution method Arc-length  

Table 11 
Default values of main model parameters.  

Parameter Formula or value 

Modulus of elasticity (MC 2010) 
Eci = 21.5⋅103⋅

(
fcm/10

)
1
3 in MPa 

Poisson’s ratio 0.2 
Fracture Energy (MC2010) GF = 73⋅fcm0.18 in N/m 
Plastic strain εcp = fcm/Eci 

Onset of crushing fc0 =−2⋅fctm in MPa 
Direction of the plastic flow β = 0 
Roundness of failure surface EXC = 0.52  
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are of comparable accuracy despite the differences in their formulation. 
Calculating ν with Eq. (33) allows significantly lower strut inclinations 
θmin for beams P-3d-4ϕ25s2 and P-3d-2x3ϕ25s3 which increases their 
shear resistance significantly over taking cotθmin = 2.5. However, 
calculating ν gives lower resistances for the other beams since ν from Eq. 
(33) is less than 0.5. 

7. Discussion 

Eq. (34) of prEN1992-1:2021 [18] is derived from consideration of 
the free body diagram shown in Fig. 11 [26]. The shear resistance at the 
support is given by the sum of the vertical component of the force in the 
direct strut, which is assumed to have inclination θ and the force in the 

Fig. 10. Comparison of measured and predicted load deflection curves for series 2.  

Table 12 
Design code predictions for all beams.     

Vtest max/Vpred max  

beams with stirrups fc 

(MPa) 
Vtest 

(kN) 
ATENA  
[25] 

prEN1992:21 0.5εx 

STM 
MC2010 LoA III  
[17] 

prEN1992:21 ν = 0.5  
[18] 

prEN1992:21 calculate ν  
[18] 

P-1.5d-4ϕ25s2  28.5 387 0.83 0.95 1.00 1.05 1.10 
2P-1.1d/1.9d-50:50- 

4ϕ25s2  
28.9 633 1.04 1.29 1.61 1.50 1.38 

2P-1.5d/3d-40:60-4ϕ25s2  29.0 492 1.05 1.26 1.57 1.31 1.45 
P-3d-4ϕ25s2  29.0 297 0.93 – 1.21 1.13 0.99 
2P-1.5d/3d-60:40-4ϕ25s2  31.1 531 1.13 1.29 1.49 1.36 1.47 
P-1.5d-2x3ϕ25s3  30.8 496 1.01 1.01 1.58 1.60 1.59 
P-3d-2x3ϕ25s3  30.9 287 0.98 – 1.35 1.74 1.23 
2P-1.5d/3d-40:60- 

2x3ϕ25s3  
31.0 510 1.11 1.16 1.93 1.63 1.70 

2P-1.5d/3d-20:80- 
2x3ϕ25s3  

31.1 387 1.03 1.08 1.58 1.61 1.31     

Mean 1.01 1.15 1.48 1.44 1.36    
StdDev 0.09 0.14 0.27 0.24 0.23    
CoV 9% 12% 18% 17% 17%  

M.V.F. Pastore and R.L. Vollum                                                                                                                                                                                                             



Engineering Structures 264 (2022) 114408

16

stirrups within the clear shear span av. This approach has some similarity 
to that of the superseded UK code BS8110 [16] which relates shear 
resistance to the angle of the critical failure plane. Both these methods 
imply that the shear resistance along the considered failure plane is 
independent of the ratio between the loads P1 and P2 in Fig. 2. This 
assumption is inconsistent with the STM in Fig. 8 as well as the shear 
enhancement method of MC2010 [17]. In both these approaches, shear 
enhancement only applies to the proportion of P1 that contributes to the 
design shear force in the shear span under consideration. Conversely, the 
enhanced shear resistance given by the draft EN1992 [18] is indepen
dent of the proportion of the shear force at P1 that arises from P2 in 
Fig. 2. A further difference between the simplified shear enhancement 
methods and STM is that the shear resistance of the STM depends on the 
size of the bearing plates and the cover to the centroid of the flexural 
reinforcement. 

The influence of the loading ratio P1/(P1 + P2) on shear resistance 
was explored further by carrying out a parametric study on beams with 
the same cross section and span as tested. The load P1 was placed at 1.5d 
from the centreline of the left hand support while P2 was placed at 3d 
from the left hand support as in the tests. The ratio P1/(P1 + P2) was 
varied from 0 to 100% in steps of 10%. The flexural reinforcement was 
taken as either 4B25 (4ϕ25) bars or 6B25 (2x3ϕ2) bars in two layers of 
three as in the tests. 8 mm stirrups were used as in the tests with spacing 
of 100 mm (2P-1.5d/3d-2x3ϕ25s100), 200 mm (2P-1.5d/3d-4ϕ25s200) 
and 300 mm (2P-1.5d/3d-2x3ϕ25s300). The concrete cylinder 
compressive strength was taken as 30 MPa since this is close to the 
average concrete compressive strength in the tests. Reinforcement 
strengths were as in the tests. 

The beams were analysed with NLFEA, STM (prEN1992-1:21 [18]: 
0.5εx = T/(2EsAs)) as well as the shear enhancement methods of 
MC2010 [17] LoA III and prEN1992-1:21 [18] using mean material 
strengths. The maximum shear forces at failure are plotted against the 
percentage of the total load applied at P1 (see Fig. 2) in Fig. 12 a) to c) 
which also show measured beam strengths and the shear force at flexural 
failure. The flexural limit was not applied to the code predictions when 
calculating Vmax in order to better illustrate the predicted influence of 
loading arrangement on shear resistance. Hence, the shear capacity in 
Fig. 12 is given by the least of the plotted shear forces at shear and 
flexural failure. The NLFEA strengths agree very well with the measured 
strengths with the next best predictions obtained with the STM. The STM 
strengths are relatively high in Fig. 12c for beam 2P-1.5d/3d-2x3ϕ25s3 
due to the flexural reinforcement being provided in two layers. This 
increases the strut width at the bottom node as previously discussed in 
the context of the proportionally greater STM strengths predicted for the 
tested 2x3ϕ25s3 series compared with the tested 4ϕ25s2 series. 
Generally, the NLFEA and STM strength predictions are reasonably in
dependent of loading ratio for P1/(P1 + P2) between 50% and 100%. 

Below this ratio the shear resistance reduces. According to the STM this 
is because the proportion of load being transferred to the support by the 
direct strut progressively reduces as the load ratio P1/(P1 + P2) reduces. 
The strength enhancement factor of MC2010 [17] reduces similarly with 
load ratio because it only applies to P1 and not the shear force coming 
from P2. 

The maximum shear resistance in Fig. 12 predicted by prEN1992- 
1:21 [18] with ν = 0.5 only reduces when shear failure becomes crit
ical between P1 and P2 owing to Eq. (31) governing. This is due to the 

Fig. 11. Stress field used in derivation of equation (34) [26].  

Fig. 12. Influence of loading ratio on shear resistance for a) 2P-1.5d/3d- 
2x3ϕ25s100, b) 2P-1.5d/3d-4ϕ25s200 and c) 2P-1.5d/3d-2x3ϕ25s300. 
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shear resistance given by Eq. (34), which applies between the support 
and P1, being independent of the proportion of maximum shear force 
arising from P1. Calculating ν in terms of the reinforcement strain in Eq. 
(34) of prEN1992-1:2 1[18] gives slightly lower values of Vmax for the 
considered beams than the standard method with ν = 0.5 when the 
critical section lies between the support and P1. This is because the 
calculated value of ν is less than 0.5 for these beams unlike beam 2P- 
1.1d/1.9d-50:50-4ϕ25s2 (see Table 12) where the failure plane is 
steeper. The key benefits of calculating ν arise in Fig. 12 for P1/(P1 + P2) 
less than 20% where calculating ν allows cotθmin to be increased above 
2.5. Despite not capturing the experimentally observed drop in Vmax 
with reducing P1/(P1 + P2), prEN1992-1:21 [18] tends to give slightly 
better predictions of the maximum shear force at failure (which is 
limited by flexure) than MC2010 [17] LoAIII. The prEN1992:21 [18] 
method scores highly for ease of use when ν = 0.5 compared with 
MC2010 [17] since it is simpler to enhance the shear resistance than 
reduce the design shear force resulting from arching action. This is 
especially true for moving concentrated loads. A potential disadvantage 
of the prEN1992-1:21 [18] method is that unlike MC2010 [17] it doesn’t 
differentiate between top and bottom loading within zcotθ of the sup
port. In Fig. 11, only top loading would be resisted by the direct strut 
which gives rise to shear enhancement. 

8. Conclusions 

This paper investigates the influence of loading arrangement on 
shear enhancement in simply supported reinforced concrete beams with 
shear reinforcement. The main focus is on load arrangements 
comprising concomitant point loads applied simultaneously at 1.5d and 
at 3d from the support with greatest shear force. This type of loading 
arrangement in which shear enhancement only applies to part of the 
load is common in practice but to the authors’ knowledge has not pre
viously been systematically investigated. Experimental results for nine 
tests on eight beams are presented and compared with the strength 
predictions of NLFEA with ATENA [25], STM, MC2010 LoAIII [17] and 
prEN1992-1:21 [18]. The key findings are as follows:  

• Shear resistance increases as the failure plane becomes steeper as 
illustrated by comparison of the shear strengths of beams P-1.5d- 
4ϕ25s2 (387 kN) and 2P-1.1d/1.9d-50:50-4ϕ25s2 (633 kN) with 
statically equivalent loading. The horizontal projection of the failure 
plane was 562.5 mm for beam P-1.5d-4ϕ25s2 but only 375 mm for 
2P-1.1d/1.9d-50:50-4ϕ25s2. This observation is consistent with the 
design approach of prEN1992-1:21 [18] for shear enhancement in 
beams with shear reinforcement.  

• The most accurate strength predictions of the tested beams were 
obtained with NLFEA and STM with strut strengths calculated with 
prEN1992-1:21 [18] in terms of 0.5εx where εx is the flexural rein
forcement strain at the inside edge of the support.  

• The measured shear resistance of the beams loaded simultaneously 
with point loads P1 at 1.5d and P2 at 3d is relatively constant for P1/ 
(P1 + P2) ≥ 40% and can be conservatively assumed to equal that for 
P1/(P1 + P2) = 100% which simplifies the development of STM. For 
lower loading ratios, the shear resistance reduces almost linearly to 
that corresponding to 100% of the load at 3d.  

• The length of the plateau over which shear resistance is relatively 
constant is overestimated by prEN1992-1:21 [18] since it neglects 
the interaction between P1 and P2 which causes shear resistance to 
reduce prior to becoming critical, according to [18], between P1 and 
P2. Despite this, the shear enhancement provisions of prEN1992-1:21 
[18] were found to be sufficiently accurate for practical purposes and 
easier to apply than the shear enhancement rules of MC2010 LoAIII 
[17].  

• Due to the limited nature of the experimental campaign further tests 
are suggested for detailed study of the influence of parameters such 
as relative dimensions of beam and support plates, shear span, shear 
reinforcement ratio and concrete strength. 
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Appendix A. Model code 2010 shear resistance 

In MC2010 [17] LoAIII, the design shear resistance in the range of VRd ≤ VRd,max(θmin) is given by: 

VRd = VRd,c +VRd,s (A1)  

VRd,c = kv⋅
̅̅̅̅̅
fck

√

γc
⋅z⋅bw (A2)  

in which 
̅̅̅̅̅̅
fck

√
should not be taken as greater than 8 MPa. 

θmin = 20◦

+ 10000⋅εx (A3)  

kv =
0.4

1 + 1500εx
⋅
[

1−
VEd

VRd,max(θmin)

]

≥ 0 (A4)  

εx =
1

2EsAsl
⋅
(

MEd

z
+VEd

)

≤
Mmax

2EsAslz
(A5)  
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where Es is the Young’s modulus of the longitudinal reinforcement, Asl is the area of flexural tension reinforcement, z is the lever arm which may be 
taken as 0.9d for shear, MEd is the design bending moment taken at d from the support or concentrated load but not closer than d from the face of the 
support and Mmax is the maximum beam moment. The upper limit on εx of εx ≤ Mmax

2EsAsz is not given in MC2010 [17] but is implicit in its design model for 
shear. 

VRd,s =
Asw

s
zfydcotθ ≤ VRd,max (A6)  

VRd,max = kc
fck

γc
bwzsinθcosθ (A7)  

kc = kεηfc (A8)  

kε =
1

1.2 + 55ε1
≤ 0.65 (A9)  

ηfc =

(
30
fck

)1
3

≤ 1 (A10)  

ε1 = εx +(εx + 0.002)cot2θ (A11) 

If VRd ≥ VRd,max(θmin) the design shear resistance is given by Eq. (A7). 
MC2010 [17] models shear enhancement by reducing the shear force component of loads acting at a distance ai from the centre of the support, with 

clear shear span avi ≤ 2d by the multiple: 

βi =
avi

2d
≥ 0.5 (A12)  

where avi is the clear shear span measured to concentrated load Pi and d is the beam effective depth. 
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