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A B S T R A C T

Understanding the micromechanical events of interfacial failure in fibre reinforced composites is vital to
accurately characterising micromechanical properties and, consequently, the macroscopic properties of the
composite. A fracture mechanics model of the fibre push-out test is developed, with an emphasis on the
effect of sample thickness and residual stresses on the mechanisms of interfacial crack advancement. The
model is applied to both a SiC𝑓 -SiC ceramic matrix composite and a SiC𝑓 -Ti metal matrix composite. The
model demonstrates that previous assumptions about the micromechanical events of interfacial cracking are
consistent with the measured values of interfacial fracture energy for ceramic matrix composites. Moreover,
the model can identify the range of geometries for which different micromechanical cracking mechanisms
occur simultaneously in a given material system. Identifying this range is important in choosing the sample
geometry for fibre push-out testing because the interaction of advancing cracks affects the measurement of
interfacial fracture energy by classical models.
1. Introduction

Fibre reinforced composites are candidate materials across a wide
range of applications. The variety of available fibre and matrix mate-
rials allow these materials to be tailored for their intended usage. For
instance, ceramic matrix composites (CMCs) have excellent stiffness,
specific strength and thermal properties. The reinforcing fibres act to
prevent the brittle failures associated with monolithic ceramics [1,2].
These properties make CMCs ideal for applications in gas turbines
and other high temperature environments [3,4]. Another set of ex-
mples are polymer matrix composites (PMCs). These materials are
ightweight, flexible and have excellent specific strength. PMCs are
mployed in a wide range of aerospace applications.

The interface between the fibres and matrix plays a complex role
n determining the failure of fibre reinforced composites. Interfacial
roperties have a strong impact on translaminar fracture toughness
n PMCs [5]. In the case of CMCs, interfacial fracture is preferred to
ibre fracture. Interfacial failure enables toughening mechanisms for the
verall composite such as fibre bridging by crack deflection [2,6]. The

interface between fibres and matrix in CMCs is therefore tailored to
be weaker. This is frequently accomplished by adding a thin layer of
hexagonal boron nitride (BN) [7] or a layer of pyrolytic carbon [8].
Boron nitride is the preferred material for applications such as gas

∗ Corresponding author at: Department of Materials Science, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom.
E-mail address: b.collard20@imperial.ac.uk (B. Collard).

engine turbines due to its resistance to oxidation. Conversely, PMCs
with weak interfaces perform poorly when the polymer matrix under-
goes ductile failure. In particular, theoretical and experimental analysis
indicates that kink band formation occurs concurrently with interfacial
fracture [9]. Interfacial design remains challenging for PMCs.

One popular technique to measure the fracture energy of the in-
terface is the single fibre push-out test [10]. A sample of the material
is prepared such that an indenter can apply a displacement to the
cross-section of the fibre. The indenter increments the displacement
of the fibre, measuring the required load, until the fibre is pushed
out of the base of the sample. Recently, authors have adapted the
test to be performed in-situ, allowing analysis of the micromechanical
events involved in debonding [11]. Efforts to reduce the scatter in
data for PMC fibre push-out tests through digital technology have been
studied [12].

A range of models exist for the fibre push-out test in ceramic matrix
composites. Early models related the interfacial energy to only the
increment in strain energy [13]. Authors have since incorporated the
effect of the work done by the loading system and the work done
in interfacial sliding [14,15]. These models typically use an approach
based on shear lag, assuming the push-out sample to have infinite
thickness. Accordingly, these models perform well when the sample
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Nomenclature

Symbols

𝐻 Sample thickness
𝑅𝑓 Fibre radius
𝐹 Applied load
ℎ Interfacial coating thickness
𝑅0 Numerical outer radius
𝜎 Applied stress
𝜎res Residual axial stress
𝑢𝑓 Axial fibre displacement
𝜎𝑓 Axial fibre stress
𝐸𝑓 Fibre Young modulus
𝜏 Elastic shear stress
𝑢𝑚 Matrix displacement in axial direction
𝐺𝑚 Matrix shear modulus
𝐺𝑐 Interfacial layer shear modulus
𝜂 Dimensionless exponential parameter
𝜓 Dimensionless thickness ratio
𝜏 Interfacial frictional stress
𝑎𝑡 Crack length at sample top
𝑎𝑏 Crack length at sample bottom
𝐺II(𝐺𝑐II) (Critical) mode-II energy release rate
𝛿 Fibre displacement at loading surface
𝑤𝑠 Permanent sliding displacement
𝛼, 𝛽, 𝜔 Quadratic criterion coefficients
𝜅 Dimensionless residual axial stress balance
𝛾 Dimensionless interfacial frictional balance
𝜙 Dimensionless critical applied stress ratio

for top and bottom debonding

thickness is large and the matrix sufficiently stiff that its compliance
can be neglected. One example of such a material system are SiC–SiC
composites such as those studied in [16]. A variety of additional effects
have been considered, one example being fibre surface roughness [17].
One key finding is that the interfacial friction on debonded fibre lengths
has a strong influence on the push-out behaviour and fracture tough-
ness measurement. Recently, authors have considered the influence of
an elastic–plastic interfacial layer in a sample of infinite thickness [18].
Semi-analytic techniques are employed more generally throughout the
composites literature [19].

Modelling the fibre push-out test for metal matrix composites
presents further specific challenges. In particular, the interfacial crack
generally propagates from the bottom of the sample during the fibre
push-out test [20,21]. It is clearly not valid to apply an assumption
of infinite sample thickness in this case, leading to the formulation of
range of models [22,23]. Similarly to the model of the push-out test
for CMCs, models for MMCs have incorporated interfacial friction, the
effect of the loading system and the effect of Poisson expansion near the
loading face. These models typically apply a shear lag approach with
finite thickness. A key result for the present work is the discussion of
the effect of residual axial stresses on the debonding behaviour [22].
Like CMCs, MMCs are proposed as a candidate material for turbine
applications, with many advantageous mechanical properties [24].

Semi analytical models of the fibre push-out test remain limited
in scope due to the specificity of assumptions required in their for-
mulation. For instance, shear lag approaches assume that the matrix
undergoes no deformation [13,22], meaning that these models cannot
be applied to soft matrix composites such as PMCs. Additionally, the
models discussed take the location of crack initiation as an assumption.
2

The validity of this assumption is frequently questionable and could
explain situations in which the chosen model does not perform well. For
example, in the work of [22], the model underestimates the interfacial
fracture energy of a SCS-6/Timetal 21 s system. One possible reason for
this is that the model cannot capture the interaction of crack fronts in
the fibre push-out test. Analysing interacting crack fronts remains very
challenging [25] and is undesirable in fibre push-out testing.

Another very common approach to modelling the fibre push-out
test is the finite element method [20,26]. The finite element approach
solves the full system of elastic partial differential equations numer-
ically and is often used as a validation tool for semi-analytical ap-
proaches [18,22]. The finite element method has also been applied to
assess the micromechanics of debonding. One key conclusion of a finite
element study is that the location of the initiation of the debond in fibre
push-out is controlled by the mismatch in elastic coefficients between
the fibre and the matrix [26]. The main drawbacks of the finite element
approach are that the results can be very time consuming to obtain and
do not easily generalise beyond the systems studied.

In the present study, we have formulated a generalised model of
the fracture energy of the interface in fibre-reinforced composites. The
key dimensionless parameters controlling physical aspects of the test
are deduced and the effect of changing these parameters is studied. We
analyse CMCs and demonstrate that for realistic testing samples and
conditions, the interfacial crack initiates and propagates from the top of
the sample. We finally examine the case of the MMCs and demonstrate
that debonding typically initiates and propagates from the base of the
sample.

2. Fracture mechanics model

A schematic of the fibre push-out test is presented in Fig. 1. The
thickness of the sample is denoted by 𝐻 , the radius of the fibre by 𝑅𝑓 ,
the applied force by 𝐹 and the thickness of the interfacial coating by
ℎ. An outer radius 𝑅0 is defined to be much greater than 𝑅𝑓 . Given an
applied compressive load 𝐹 on the face 𝑧 = 𝐻∕2, we must compute the
axial stress distribution in the fibre. Additionally, we must consider the
effect of residual stresses in the fibre. Let us assume that the residual
stresses act in tension on the fibre faces. Let the applied stress of the
load 𝐹 be denoted by 𝜎 = 𝐹∕𝜋𝑅2

𝑓 .
We will modify the analysis of Callaway [18] by introducing an

elastic axial residual stress. Such a residual stress arises due to the mis-
match between thermoelastic properties of the fibre and the matrix. The
sample should retain rotational symmetry, suggesting that the residual
stress on the top and bottom faces should be equal in magnitude but
opposite in direction. Let the axial residual stress on the top face be
denoted by 𝜎res. The axial residual stress on the bottom face is therefore
−𝜎res. Note that in general, the direction of the residual stress is specific
o the choice of fibre and matrix. We will assume that the residual stress
t the top of the fibre acts in the opposite direction to the loading.

Let the sample have finite thickness 𝐻 . To accommodate the finite
hickness of the sample, we must alter the coordinate system such that
he sample lies in the interval [−𝐻∕2,𝐻∕2], reversing the direction of
ncreasing 𝑧. In this coordinate system, we express Hooke’s law by:

𝜕𝑢𝑓
𝜕𝑧

(𝑧) =
𝜎𝑓 (𝑧)
𝐸𝑓

. (1)

The shear lag approach to the equations of elasticity is taken.
Previous work demonstrates that the shear lag approach is insufficient
to describe the state of interfacial stress in general, particularly for
sample thicknesses between 2–5 times the fibre radius [20,27]. How-
ever, recent work has demonstrated that the shear lag approach can
accurately represent a range of material systems and sample geometries
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Fig. 1. A figure illustrating the simplified geometry of the fibre push-out test applied in the formulation of the shear lag model.
E
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when appropriately modified [16,18,22]. This further demonstrates the
care that must be taken when selecting a model appropriate for the
sample geometry and material system in fibre push-out. The equation
of shear lag is:

𝜕𝜎𝑓
𝜕𝑧

(𝑧) =
2𝜏(𝑧)
𝑅𝑓

. (2)

The equation of elasticity for the matrix is given by:

𝜕𝑢𝑚
𝜕𝑟

(𝑧) =
𝑅𝑓 𝜏(𝑧)
𝑟𝐺𝑚

. (3)

ntegrating Eq. (3), the displacement of the coating at the boundary
ith the matrix is:

𝑚(𝑧) = ∫

𝑅0

𝑅𝑓+ℎ

𝑅𝑓 𝜏(𝑧)
𝑟𝐺𝑚

d𝑟

=
𝑅𝑓 𝜏(𝑧)
𝐺𝑚

log
(

𝑅0
𝑅𝑓 + ℎ

)

.
(4)

The change in displacement across the interface is given by:

𝑢𝑓 (𝑧) − 𝑢𝑚(𝑧) =
𝜏(𝑧)ℎ
𝐺𝑐

. (5)

earranging for 𝑢𝑓 and applying Eq. (2):

𝑢𝑓 =
𝑅𝑓
2

(

ℎ
𝐺𝑐

+
𝑅𝑓
𝐺𝑚

log
(

𝑅0
𝑅𝑓 + ℎ

)) 𝜕𝜎𝑓
𝜕𝑧

(𝑧). (6)

Finally, combining with Eq. (1), the governing equation is:

𝑓 (𝑧) −
𝐸𝑓𝑅𝑓

2

(

ℎ
𝐺𝑐

+
𝑅𝑓
𝐺𝑚

log
(

𝑅0
𝑅𝑓 + ℎ

)) 𝜕2𝜎𝑓
𝜕𝑧2

(𝑧) = 0. (7)

A dimensionless parameter appears in this governing equation. Let 𝜂 be
efined by:

2 =
𝐸𝑓
2

(

ℎ
𝑅𝑓𝐺𝑐

+ 1
𝐺𝑚

log
(

𝑅0
𝑅𝑓 + ℎ

))

. (8)

emanding that 𝜎𝑓 (𝐻∕2) = 𝜎 + 𝜎res and that 𝜎𝑓 (−𝐻∕2) = −𝜎res, the
olution to Eq. (7) is:

𝑓 (𝑧) =
𝜎

2 cosh
(

𝐻
) cosh

(

𝑧
𝜂𝑅𝑓

)

+
𝜎 + 2𝜎res

2 sinh
(

𝐻
) sinh

(

𝑧
𝜂𝑅𝑓

)

. (9)
3

2𝜂𝑅𝑓 2𝜂𝑅𝑓
Another dimensionless parameter has been deduced. Let us denote 𝜓 =
𝐻∕2𝜂𝑅𝑓 . Applying Eq. (2), we obtain the shear stress distribution:

𝜏(𝑧) = 1
2𝜂

(

𝜎
2 cosh (𝜓)

sinh
(

𝑧
𝜂𝑅𝑓

)

+
𝜎 + 2𝜎res
2 sinh (𝜓)

cosh
(

𝑧
𝜂𝑅𝑓

))

. (10)

xamples of the axial and shear stress fields in the fibre for different
pplied axial stresses 𝜎 are given in Fig. 2. The material parameters are

given by the information for a SiC/SiC composite in Table 2.
Let us suppose that we have non-interacting cracks from the top face

and the bottom face of length 𝑎t and 𝑎b respectively. When the bottom
crack advances, the residual and applied stresses are relaxed. On the
crack faces, axial stress is induced only by constant frictional resistance
to sliding, the sliding stress 𝜏. We therefore solve Eq. (2) with 𝜏(𝑧) = 𝜏,
subject to 𝜎𝑓 (−𝐻∕2) = 0:

𝜎𝑓 (𝑧) =
2𝜏
𝑅𝑓

(

𝑧 + 𝐻
2

)

, 𝑧 ∈
[

−𝐻
2
, 𝑎𝑏 −

𝐻
2

)

. (11)

When the top crack advances, the fibre remains constrained and
cannot deform to relax the applied stress or the residual stresses.
Assuming that the sliding stress is equal to the same sliding stress as in
crack advancement from the bottom, the axial stress in this debonded
region is:

𝜎𝑓 (𝑧) =
2𝜏
𝑅𝑓

(

𝑧 − 𝐻
2

)

+ 𝜎 + 𝜎res, 𝑧 ∈
(𝐻
2

− 𝑎𝑡,
𝐻
2

]

. (12)

Note that in general, the sliding stress is greater at the top of the fibre
than the bottom. The Poisson effect causes the fibre to expand at the
top of the sample, inducing radial compressive stresses at the interface.
Moreover, in thin samples, the bending response of the material causes
radial compression at the top and tension at the base. Considering the
Coulomb type law 𝜏 = 𝜏0 − 𝜇𝜎𝑟𝑟, 𝜏 is generally greater in absolute
value on the top crack face. This promotes crack advancement from
the bottom of the sample.

We will consider three contributions to the energy of the system
and deduce formulae for the mode II energy release rate when a crack
advances from the top and from the bottom. Let 𝐸end denote the work
done in the end-shortening of the fibre, 𝐸elast denote the elastic energy
stored in the system and 𝐸 denote the work done in frictional sliding.
fric
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Fig. 2. Figures demonstrating how the elastic stresses vary through the thickness of a sample 200 μm thick with different applied axial stresses 𝜎. The material parameters for this
example are given in Table 2.
The energy release rate, defined in terms of the work done per unit area
in crack advancement, is given by:

𝐺II =
d𝐸end

d𝐴 +
d𝐸elast

d𝐴 +
d𝐸fric

d𝐴 . (13)

ote that for a crack of length 𝑎, the crack area is 2𝜋𝑅𝑓 𝑎, implying
hat:

d
d𝐴 = 1

2𝜋𝑅𝑓
d
d𝑎 (14)

The end-shortening distance 𝛿 is defined by:

= ∫

𝐻∕2

−𝐻∕2

𝜎𝑓 (𝑧)
𝐸𝑓

d𝑧

= 1
𝐸𝑓

(

∫

𝑎𝑏−𝐻∕2

−𝐻∕2

2𝜏
𝑅𝑓

(

𝑧 + 𝐻
2

)

d𝑧

+ ∫

𝐻∕2−𝑎𝑡

𝑎𝑏−𝐻∕2

𝜎
2 cosh (𝜓)

cosh
(

𝑧
𝜂𝑅𝑓

)

+
𝜎 + 2𝜎res
2 sinh (𝜓)

sinh
(

𝑧
𝜂𝑅𝑓

)

d𝑧

+∫

𝐻∕2

𝐻∕2−𝑎𝑡

2𝜏
𝑅𝑓

(

𝑧 − 𝐻
2

)

+ 𝜎 + 𝜎res d𝑧
)

(15)

The work done in end-shortening the fibre is given by:

𝐸end = 𝐹𝛿 = 𝜋𝑅2
𝑓𝜎𝛿. (16)

t can be shown (see Appendix A) that the energy release rate associated
o end shortening when the crack propagates from the top of the sample
s:

d𝐸end
d𝐴𝑡

=
𝜎𝑅𝑓
2𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 + 𝜎res −
2𝜏
𝑅𝑓

𝑎𝑡 −
𝜎 cosh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

−
(𝜎 + 2𝜎res) sinh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

. (17)

The energy release rate associated to end shortening when the crack
develops from the bottom of the sample is:

𝑑𝐸end
𝑑𝐴𝑏

=
𝜎𝑅𝑓
2𝐸𝑓

⎛

⎜

⎜

⎜

⎜

2𝜏
𝑅𝑓

𝑎𝑏 −
𝜎 cosh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)
4

⎝

−
(𝜎 + 2𝜎res) sinh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

. (18)

Consider now the elastic energy stored in the system. There are two
non-trivial stress components, 𝜎𝑓 and 𝜏, acting on the fibre. The shear
stress additionally deforms the layer of interface material when such a
layer is present. We therefore have three elastic energies stored within
the system:

𝐸𝑓elast,𝜎 = 𝜋𝑅2
𝑓 ∫

𝐻∕2

−𝐻∕2

𝜎𝑓 (𝑧)2

2𝐸𝑓
d𝑧

𝐸𝑓elast,𝜏 = 𝜋𝑅2
𝑓 ∫

𝐻∕2

−𝐻∕2

𝜏(𝑧)2

2𝐺𝑓
d𝑧

𝐸𝑖elast,𝜏 = 𝜋((𝑅𝑓 + ℎ)2 − 𝑅2
𝑓 )∫

𝐻∕2

−𝐻∕2

𝜏(𝑧)2

2𝐺𝑐
d𝑧.

(19)

In Appendix A, it is demonstrated that the energy release rates in top
debonding associated to these stored energies are:

d𝐸𝑓elast,𝜎
d𝐴𝑡

=
𝑅𝑓
4𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

(

𝜎 + 𝜎res −
2𝜏
𝑅𝑓

𝑎𝑡

)2
−

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) sinh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

d𝐸𝑓elast,𝜏
d𝐴𝑡

=
𝑅𝑓
4𝐺𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

d𝐸𝑖elast,𝜏
d𝐴𝑡

=

(

(

ℎ + 𝑅𝑓
)2 − 𝑅2

𝑓

)

4𝑅𝑓𝐺𝑐

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

2
⎞

⎟

⎟

⎟

⎟

.

(20)
⎠ ⎠



Theoretical and Applied Fracture Mechanics 121 (2022) 103441B. Collard et al.

T
w
m
d
s
t
f
r

𝑤

T
o

𝑤

T

𝐸

I
v
F

p
r
a
G
c
a
W
t

The energy release rates in bottom debonding are given by:

𝑑𝐸𝑓elast,𝜎
𝑑𝐴𝑏

=
𝑅𝑓
4𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

(

2𝜏
𝑅𝑓

𝑎𝑏

)2
−

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) sinh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

𝑑𝐸𝑓elast,𝜏
𝑑𝐴𝑏

=
𝑅𝑓
4𝐺𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)
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𝑑𝐸𝑖elast,𝜏
𝑑𝐴𝑏

=
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(

ℎ + 𝑅𝑓
)2 − 𝑅2

𝑓

)
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𝜏2 − 1
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⎜

⎝

𝜎 sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟
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2
⎞

⎟
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⎟

⎟
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(21)

he final contribution to the energy of the system is that made by the
ork done against friction. In order to compute this contribution, we
ust determine the inelastic sliding distance. Observe that the axial
isplacement of the fibre is continuous. Continuity implies that the
liding distance is the difference between the displacement induced by
he axial friction force and the displacement induced by the elastic
ield. Denoting the sliding displacement at a point 𝑧 by 𝑤𝑠(𝑧), in the
egion of the top crack, we must have:

𝑠(𝑧) =
1
𝐸𝑓

|

|

|

|

|

|

|

|

|

∫

𝑧

𝐻∕2−𝑎𝑡

𝜎 cosh
(

𝑧̄
𝜂𝑅𝑓

)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑧̄
𝜂𝑅𝑓

)

2 sinh (𝜓)

− 2𝜏
𝑅𝑓

(

𝑧̄ − 𝐻
2

)

− 𝜎 − 𝜎res d𝑧̄
|

|

|

|

|

. (22)

he sliding distance for the case of crack advancement from the bottom
f the sample is:

𝑠(𝑧) =
1
𝐸𝑓

|

|

|

|

|

|

|

|

|

∫

𝑎𝑏−𝐻∕2

𝑧

𝜎 cosh
(

𝑧̄
𝜂𝑅𝑓

)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑧̄
𝜂𝑅𝑓

)

2 sinh (𝜓)

− 2𝜏
𝑅𝑓

(

𝑧̄ + 𝐻
2

)

d𝑧̄
|

|

|

|

|

. (23)

he expressions for the total work done against friction are:

𝐸fric,𝑡 = 2𝜋𝑅𝑓 ∫

𝐻∕2

𝐻∕2−𝑎𝑡
|𝜏|𝑤𝑠(𝑧) d𝑧

fric,𝑏 = 2𝜋𝑅𝑓
𝑎𝑏−𝐻∕2

|𝜏|𝑤𝑠(𝑧) d𝑧.
(24)
5

∫−𝐻∕2 r
It is demonstrated in Appendix A that the expressions for the energy
release rate associated to the work done against friction are:

d𝐸fric
d𝐴𝑡

=
|𝜏|𝑎𝑡
𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

+
2𝜏𝑎𝑡
𝑅𝑓

− (𝜎 + 𝜎res)
)

d𝐸fric
d𝐴𝑏

=
|𝜏|𝑎𝑏
𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

−
2𝜏𝑎𝑏
𝑅𝑓

)

.

(25)

We finally formulate the critical energy release rate for the cases of
crack advancement from both the top and the bottom of the sample.
Observe that the energy release rate associated to crack advancement
from the top does not depend on the length of the crack at the bottom
of the sample and vice versa. Furthermore, the choice of coordinate
system means that the sign of the interfacial fracture energy values
differ. Denoting the critical applied stresses for both cases of debonding
by 𝜎𝑡𝑐 and 𝜎𝑏𝑐 , we have:

𝐺𝑐II
(

𝑎𝑡, 𝜎
𝑎
𝑡
)

=
d𝐸end
d𝐴𝑡

+
d𝐸𝑓elast,𝜎

d𝐴𝑡
+

d𝐸𝑓elast,𝜏
d𝐴𝑡

+
d𝐸𝑖elast,𝜏

d𝐴𝑡
+

d𝐸fric
d𝐴𝑡

𝐺𝑐II
(

𝑎𝑏, 𝜎
𝑎
𝑏
)

= −
⎛

⎜

⎜

⎝

d𝐸end
d𝐴𝑏

+
d𝐸𝑓elast,𝜎

d𝐴𝑏
+

d𝐸𝑓elast,𝜏
d𝐴𝑏

+
d𝐸𝑖elast,𝜏

d𝐴𝑏
+

d𝐸fric
d𝐴𝑏

⎞

⎟

⎟

⎠

.

(26)

One application of the model is to compute the interfacial fracture
energy of a test sample. The most challenging parameters to obtain are
the sliding stress 𝜏 and the elastic residual axial stress 𝜎res. However, by
matching the widths of hysteresis loops, 𝜏 can be computed [18]. The
finite element method is often used to characterise the typical residual
stresses in the composite before testing [28]. Given these parameters,
we can estimate the interfacial fracture energy in top and bottom crack
advancement by fitting the parameter to forward loading data [16].

In order to deduce the actual fracture energy of the interface, we
must finally determine which of the computed values is physically
relevant. If the values of critical applied stress increase in absolute
value with increasing fracture energy, and if the value were the smaller
of the two, both cracks would advance. However, our model assumes
that only one crack advances, thus proving by contradiction that the
relevant value of fracture energy is the larger of the two. Although the
assumption is not true in complete generality, we demonstrate that it is
true for the material systems studied in the present work. Observe that
both energy release rates can be written in the form 𝛼(𝑎)𝜎2+𝛽(𝑎)𝜎+𝜔(𝑎).
t is sufficient to demonstrate that 𝛼𝑡(𝑎𝑡) > 0 and that 𝛼𝑏(𝑎𝑏) > 0 for all
alues of crack length. These inequalities are demonstrated to hold in
ig. 3.

It can be shown that the coefficient 𝛼 depends only on the elastic
arameters of the system and the sample geometry. This implies that,
egardless of the system interfacial properties and residual stresses, an
ppropriate test geometry can be found such that the model is valid.
iven an experimentally computed value of 𝐺𝑐II, we can deduce the
ritical applied stress as a function of the crack length. Formulae for 𝜎𝑡𝑐
nd 𝜎𝑏𝑐 in terms of the quadratic parameters are derived in Appendix B.
e will now demonstrate how the micromechanical events in push-out

esting vary across the parameter space. Validation and experimental

elevance will be provided by application to CMC and MMC systems.
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Fig. 3. Figures demonstrating that the quadratic coefficient 𝛼 is positive for both material systems considered in this work, for both top and bottom debonding. This implies that
the model is valid for these material systems and geometries.
e
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3. Results and discussion

3.1. Dimensional analysis

The key objective in the formulation of the model is the expansion
of the fibre push-out test to new material systems. We would like to be
able to compute the geometric parameters for which, in a given system,
the crack initiated during fibre push-out is stable, not influenced by
other crack tips and propagates in a known direction. Since we aim for
this analysis to apply in general, we begin with a dimensional analysis
of the problem.

In this problem, we aim to determine how the critical applied
stress changes with the crack length in dimensionless form. The crack
advances on the scale of the shortest length in the sample geometry,
typically the fibre radius, suggesting that 𝑅𝑓 is a suitable choice for
he scale of the crack length. Let us denote the dimensionless crack
engths by 𝑎̂𝑡 and 𝑎̂𝑏. We expect that the cracking process will be
riven by the applied stress overcoming the critical energy release
ate 𝛤 . An appropriate scale for the stress is therefore 𝛤∕𝑅𝑓 , denoting
he dimensionless applied stress by 𝜎̂. Analogously, let us denote the
imensionless critical applied stresses by 𝜎̂𝑐𝑡 and 𝜎̂𝑐𝑏 .

A number of dimensionless parameters have already been identified
n our analysis. The parameter 𝜂 was identified by Callaway [18], and
e have identified the parameter 𝜓 earlier in our analysis. Applying

he scales above, we obtain five further parameters:

∗
𝑓 =

𝑅𝑓𝐸𝑓
𝛤

, 𝐺∗
𝑓 =

𝑅𝑓𝐺𝑓
𝛤

,

𝐺∗
𝑐 =

𝑅3
𝑓𝐺𝑐

((ℎ + 𝑅𝑓 )2 − 𝑅2
𝑓 )𝛤

, 𝜅 =
𝑅𝑓𝜎res
𝛤

, 𝛾 =
𝑅𝑓 𝜏
𝛤

(27)

ote that 𝐸∗
𝑓 , 𝐺∗

𝑓 and 𝐺∗
𝑐 are analogous to the elastic constants in the

riginal problem and are typically large parameters. The parameters 𝜓
nd 𝜂 are grouped together as geometric parameters, while 𝜅 and 𝛾 are
onstitutive parameters.

The first problem we address is that of crack initiation. We will
onsider fixed initial crack lengths 𝑎̂𝑡 = 𝑎̂𝑏 = 1 and define the ratio
𝜙 = 𝜎̂𝑡𝑐∕𝜎̂

𝑏
𝑐 . When 𝜙 > 1, the critical stress required to advance the

op crack is smaller than that required to advance the bottom crack,
uggesting that mode is preferred for initiation. When 𝜙 < 1, bottom
rack advancement is preferred. Defining an acceptable tolerance, 𝑒,
parameter regime with |𝜙 − 1| > 𝑒 should be demanded in order to

void sensitivity of crack initiation to material defects.
Let us start by computing 𝜙 across the range of dimensionless

arameters; results are presented in Fig. 4. In each case, the other
arameters are fixed, with values given in Table 1. The figures in-
icate that increasing parameters 𝜂, 𝜓 and 𝛾 makes initiation of the
rack at the top of the sample more favourable, whereas increasing

encourages crack initiation at the bottom of the sample. We now
6

urn to the physical interpretation of the model and the implications
Table 1
A table of fixed values of the dimensionless parameters applied to generate the plots
in Fig. 4.
𝜂 𝜓 𝜅 𝛾 𝐸∗

𝑓 𝐺∗
𝑓 𝐺∗

𝑐

2 2 300 −180 1.6 × 106 6.5 × 105 8.5 × 105

of these results. The parameter 𝜓 increases when the sample thickness
𝐻 increases, implying that increasing the sample thickness makes top
debonding more favourable. We expect this because the applied stress
has less influence at the bottom of the sample when the thickness is
large. Similarly, the parameter 𝜂 controls the exponential decay of the
applied stress through the sample. When 𝜂 is large, the decay is very
steep and the applied stress has little influence on the stress state at the
base of the sample.

Considering the non-geometric parameters 𝛾 and 𝜅, these param-
ters influence the initiation of fracture in an expected manner. The
arameter 𝜅 represents the dimensionless axial residual stress. When a

crack advances from the bottom of the sample, these residual stresses
are relaxed. This is not the case when the crack advances from the top,
suggesting that increasing 𝜅 makes bottom debonding more favourable,
increasing 𝜙. This is observed in Fig. 4(c). The parameter 𝛾 represents
the effect of interfacial friction in the dimensionless problem. When |𝛾|
is large, the resistance to crack advancement due to friction is large.
Although this is true for both top and bottom debonding, it has a bigger
effect on crack advancement from the bottom. This is because the
applied stress has little impact on the stress distribution at the bottom of
the sample. The process is almost entirely controlled by residual stresses
favouring bottom debonding, opposed by friction preventing bottom
debonding. Increasing friction therefore increases the stress required
for bottom debonding much more than it increases the stress in top
debonding.

Another interesting observation on the variation of 𝜙 is the relation-
ship with the results of finite element modelling [26,27]. The result of
the finite element modelling is that the mismatch in elastic coefficients
between the fibre and the matrix plays a much more important role
than the radial elastic residual strain. This is reflected in Fig. 4(d),
in which varying 𝛾 over several orders of magnitude induces a much
smaller change than the other parameters, particularly 𝜅. We can
explore this link further by assuming that the residual stresses are
induced by an isotropic thermal contraction. In this case, the axial and
radial strains will be of the same order of magnitude. However, the
axial residual stress is proportional to the elastic modulus of the fibre,
whereas the radial residual stress caused by the matrix ‘clamping’ is
proportional to the elastic modulus of the matrix. The ratio of 𝜅 to 𝛾 will
therefore be approximately the ratio between elastic coefficients. This
demonstrates consistency between the observations that in some works,
the elastic mismatch determines the debonding mechanism [26,27],
while in others the mechanism of debonding changes due to axial

residual stress [22].
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Fig. 4. Figures demonstrating the effect of the identified dimensionless parameters on the ratio of critical applied stresses in crack advancement 𝜙.
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Having determined the effect of the dimensionless parameters on
rack initiation, we now aim to understand how the parameters affect
he growth of cracks from the top and the bottom of the sample.
n particular, let us focus on the stability of the crack advancement.
tability in crack advancement is important because when the crack is
nstable, we cannot experimentally verify the mechanisms of debond-
ng. We describe a crack as unstable when an infinitesimal increase in
he absolute value of applied stress induces finite growth of the crack.
ote that such an increase represents a decrease in the value of applied

tress. One criteria for unstable growth, applied in the analysis of Fig. 5,
s:
d𝜎̂𝑐
d𝑎̂ > 0. (28)

crack is described as stable if it is not unstable. In practice, it is
xperimentally desirable for the derivative to be less than zero. This
nsures that the stability of the crack growth is unaffected by random
efects in the interface. A formula for the derivative in terms of the
ritical stress and the quadratic parameters 𝛼, 𝛽 and 𝜔 is given in
ppendix B.

We will test the stability of with a predetermined intermediate
ength. Obviously, an intermediate length must be chosen with respect
o the sample geometry. We will examine 𝑎̂𝑡 = 𝑎̂𝑏 = 𝜓𝜂, half the dimen-
ionless sample thickness. The effect of the dimensionless parameters
n the stability of the advancing cracks is demonstrated in Fig. 5.

The geometric parameters influence the stability of the advancing
rack with trends which are consistent with our physical understanding
f the process. Increasing the parameter 𝜓 encourages stability of the
rack advancing from the top of the sample, conversely inhibiting the
tability of the bottom crack. Larger sample thicknesses, controlled by
, ensure that the top crack undergoes stable propagation because the
lastic energy stored in the fibre in front of the crack tip is very small,
mplying that more work must be done on the system to advance the
rack. For the bottom crack, the stress present in the fibre must already
e very large, suggesting that when the crack advances, much more
lastic energy is available in the fibre for fracture. Increasing 𝜂 acts to
tabilise both modes of cracking because the observed steeper decay
f axial stress ensures that the work done by the loading system is the
7

t

ain source of energy for fracture of either type to occur in the central
rea of the sample.

The parameters 𝜅 and 𝛾 also affect the stability of the advancing
racks in a predictable way. We see that 𝜅 acts to promote stability
or both the top and bottom crack, having a larger effect on the
rack advancement from the bottom of the sample. This is expected
ecause larger residual stresses make crack initiation easier without
ffecting the elastic energy stored in the central regions of the fibre,
mplying that little energy is available for the crack to advance in these
egions and that more work must be done on the system in order for
ither crack to propagate. Considering 𝛾, we observe that increasing 𝛾
romotes stability for the top crack while inhibiting stability for the
ottom crack. This is because increasing 𝛾 increases the stress required
or bottom crack initiation, without affecting the fibre elastic stresses.
ince the stress required for initiation is much larger, the elastic energy
vailable from the fibre during crack advancement is much larger,
romoting unstable advance.

Having deduced the effect of the different parametric contributions
o the interfacial fracture process in using a general analysis based
n dimensionless quantities, we now apply the model to validate the
ssumptions of previous analytic models for the fibre push-out test. We
ill analyse ceramic matrix composites and metal matrix composites.

.2. Ceramic matrix composites

Classical push-out experiments indicate that in ceramic matrix com-
osites, debonding initiates and undergoes stable propagation from the
op of the sample [16], until the crack tip is approximately 3𝑅𝑓∕2 away
rom the base of the sample. At this point, the influence of defects at
he base of the sample induces an unstable advance of a crack from the
ase of the sample to complete the push-out.

However, recent in-situ testing on half fibres appears to indicate
hat a crack can initiate and undergo stable propagation from the base
f the sample in SiC/BN/SiC composites [11]. Full fibre push-out tests
erformed in the same work indicate that the crack initiates from the

op of the sample, suggesting substantial variability in mechanisms for
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b

Fig. 5. Figures demonstrating the effect of the dimensionless parameters on the stability of the advancing cracks.
Table 2
A table of the constitutive parameters in each part of
the CMC system.

𝐸(GPa) 𝜈

SiC𝑓 270 [29,30] 0.2 [30]
SiC𝑚 460 [31] 0.2 [32]
BN 20 0.22

Table 3
A table of the geometric parameters for the fibre push-
out test of the SiC/BN/SiC composite. The thickness of
the sample varies between 30 μm and 80 μm.
𝑅𝑓 ℎ 𝑅0

7 μm 0.2 μm 1000 μm

different thin samples. We will take the example of the SiC/BN/SiC
composite and apply the model to it.

Constitutive information for the silicon carbide fibres and matrix
and the boron nitride interface material is provided in Table 2. We will
begin by considering a thick sample, for which experiments indicate the
debonding process initiates from the top. The geometric information is
summarised in Table 3. Due to the similarity of thermo-elastic proper-
ties between the fibre and the matrix, the elastic residual stresses within
the system remain small [28]. Note that the residual stresses arising due
to solidification of the system after CVI melt infiltration are not relieved
by fibre push-out, implying that only the small thermal residual stresses
are relaxed. We will assume a typical boundary residual stress of
50MPa. Following the analysis of Callaway, the interfacial fracture
energy measured is 1.2Nm−1. The interfacial sliding stress, obtained
y matching the width of hysteresis loops, is 30.3MPa.

The key result of applying the model to the thick fibre push-out
test is demonstrated in Fig. 6(a). For short crack lengths (less than
8

20 μm) the critical stress required for crack advancement from the top
is approximately eight times smaller than that required to advance a
crack at the bottom of the sample of similar length. In this case, it is
clear that the crack therefore initiates and develops from the top of the
sample. Moreover, the critical stress required for debonding from the
top is an increasing function of the crack length, implying that the crack
growth is stable in this sample. This is in agreement with the available
experimental data for thick sample testing [16].

Figs. 6(b)–6(d) demonstrate the evolution of the critical applied
stresses in the sample when the thickness of the sample is varied.
Decreasing the sample thickness does not affect the crack advancement
profile for a crack propagating at the top of the sample to a great
extent. In contrast, the sample thickness strongly influences the critical
stress required for crack propagation at the bottom of the sample. For
the thinnest sample, 𝐻 = 40 μm, the stresses differ by a factor of
approximately three for the shortest cracks. However, we still expect
the crack to initiate and advance from the top of the sample. This
suggests that when the crack propagates from the bottom, as observed
in [11], some other parameter is influencing the balance between the
top and bottom stresses.

The parametric study indicates that, within the model framework,
the only possible parameter responsible is the residual stress. This is
confirmed in Fig. 7. Fig. 7(a) indicates that even a substantial increase
in residual stress is insufficient to change the crack initiation from the
top to the bottom of the sample. However, the initiation stress for a
crack from the bottom is comparable to the critical stress required
for greater crack lengths propagating from the top. This implies that
the interaction of advancing crack tips could be problematic for such
systems.

In Fig. 7(b), the critical stress required for crack advancement
from the bottom is less than for crack advancement from the top
for short crack lengths, implying that when the sample has strong
residual stresses, an interfacial crack advances from the bottom of the
sample. However, after a short period of stable crack advancement from

the bottom, a stable crack initiates from the top of the sample. The
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Fig. 6. Figures demonstrating how sample thickness affects the critical applied stress required for top and bottom crack advancement in CMC push-out testing. For each thickness,
the critical applied stress is expressed as a function of the relevant crack length.
Fig. 7. Figures illustrating the transition from stable crack advancement from the top of the sample to unstable crack advancement from the bottom. The transition is caused by
increasing the axial residual stress acting on the fibre.
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current model and previous models do not cover the case of interacting
cracks, suggesting that this combination of residual stresses and sample
geometry should be avoided for CMCs.

Finally, we will use the case of a thick sample CMC problem
to validate the model quantitatively. The sample is considered thick
relative to the samples prepared for in-situ testing [11], with the ratio
of sample thickness to fibre diameter exceeding 10. Fig. 8 demonstrates
the application of the model to the 200 μm thick samples studied in the

ork of Gavalda-Diaz et al. [16]. The residual stresses are calibrated
rom the drop in load and constant sliding stress after complete debond-
ng observed in the experimental literature. The load–displacement
ehaviour is computed by first obtaining the crack length as a function
f the critical applied stress. The applied load is then varied from 0 to

400mN. With each increment in the load, the applied stress is found
and compared to the critical applied stress of the crack length at that
increment. If the applied stress is greater than the critical stress, the
crack length is increased until the critical stress exceeds the applied
stress. The elastic displacement of the fibre is then computed from the
9

H

axial stress distribution by:

𝑢𝑓 = ∫

𝐻∕2

−𝐻∕2

𝜎𝑓 (𝑧)
𝐸𝑓

d𝑧

= 1
𝐸𝑓

(

∫

𝐻∕2

𝐻∕2−𝐿

2𝜏
𝑅𝑓

(

𝑧 − 𝐻
2

)

+ 𝜎 + 𝜎res d𝑧

+ ∫

𝐻∕2−𝐿

−𝐻∕2

𝜎 cosh
(

𝑧
𝜂𝑅𝑓

)

2 cosh
(

𝐻
2𝜂𝑅𝑓

) +
(𝜎 + 2𝜎res) sinh

(

𝑧
𝜂𝑅𝑓

)

2 sinh
(

𝐻
2𝜂𝑅𝑓

) d𝑧

⎞

⎟

⎟

⎟

⎟

⎠

.

(29)

The model performs very well for the experimental data points
f Gavaldà-Diaz et al. [16]. Compared to the model of Callaway
t al. [18], the predictions are similar, with slight corrections to that
odel arising due to the consideration of the sample thickness and

he weak axial residual stresses. Overall, for thick sample CMC push-
ut tests, the new model performs better than the model of Callaway.
owever, the Callaway model gives a very similar prediction to the
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Fig. 8. Figure illustrating the predicted load–displacement behaviour of the thick
sample fibre-push-out tests performed by Gavaldà-Diaz et al. plotted in comparison
to the observed data values [16]. The model predictions are similar to those of the
work of Callaway et al. [18], calibrated in the work of [16], also plotted.

Table 4
A table of the constitutive information in the metal
matrix composite. The Young modulus of Timetal 834
is taken to be average [21].

𝐸 (GPa) 𝜈

SCS-6 469 0.17
Timetal 834 90 0.3

present model, suggesting that neglecting axial residual stresses and
the effect of sample thickness is appropriate for these experiments.

In summary, the model predicts that in most realistic cases, the
crack develops and advances at the top of the sample. This agrees with
the wealth of experimental data from classical push-out tests and with
previous models for the fibre push-out test for CMCs. Moreover, the
model demonstrates that strong residual stresses can cause the crack
to propagate from the bottom of the sample. We will now further ex-
plore the link between axial residual stress and the micromechanics of
fracture by examining fibre push-out tests of metal matrix composites.

3.3. Metal matrix composites

We now turn our attention to MMCs, with a particular focus on the
Ti-SiC system studied by Sun [22]. One of the main differences between
the CMC system and the MMC system is that the mismatch in thermo-
elastic properties induces much stronger residual stresses when the test
is performed at room temperature. Finite element modelling indicates
that this is also the case for PMCs [33]. However, the thickness of the
samples used in fibre push-out tests for MMCs is typically much larger
than for CMCs, typically ranging from 200 μm to 600 μm [34]. Such
geometry is typically chosen because the fibres in MMCs have a much
larger radius than the fibres in CMCs. The study of CMCs demonstrated
that thicker samples promote crack formation from the top of the
sample, whereas strong residual stresses promote crack formation at
the bottom of the sample, suggesting that the choice of geometry for
MMC push-out tests is more complex.

In order to validate the model in this case, we will compare the
computed values of fracture energy to those computed by the Sun
model [22] and the value obtained by finite element simulation [21].
We take the interfacial sliding stress to be 717.3MPa and the axial
residual stress to be 839MPa, with an applied load of 45N and a crack
length of 20 μm [22]. The thickness of the sample is 400 μm and the
10

fibre radius is 71 μm. The resulting fracture energy from our model is
Table 5
A table of the geometric parameters for the fibre push-
out test of the SCS-6/Timetal 834 composite. The
thickness of the sample varies between 200 μm and
500 μm.
𝑅𝑓 ℎ 𝑅0

71 μm 0 1000 μm

47.7 J∕m2, comparable to the 45.6 J∕m2 computed by the Sun model and
the 40 J∕m2 obtained by finite element analysis [21]. This demonstrates
the applicability of the model to metal matrix fibre push-out tests.

We will now analyse the micromechanics of the debonding in the
SCS-6/Timetal 834 composite across a range of sample thicknesses.
Geometric and constitutive information for the analysis is provided
in Tables 4 and 5. The result of applying the model across a range
of thickness values is provided in Fig. 9. For samples thinner than
400 μm, the crack initiates and propagates from the bottom of the
sample. This is in agreement with the assumption of previous works
on MMCs [22,23]. Moreover, the critical applied stress is an increasing
function of the crack length, implying that the crack development is
stable. This is consistent with the parametric study, in which strong
residual stresses acted to make bottom crack advancement stable.

In the case of a sample of thickness greater than 400 μm, indicated
in Figs. 9(c) and 9(d), the micromechanical events involved in the
debonding process are not clear. Initially, the model predicts that an
interfacial crack will advance from the base of the sample. However,
the critical applied stress required for advancement of the bottom crack
at length of 120 μm is greater than that required to advance a very
short crack from the top of the sample. Therefore, a crack may initiate
and propagate from the top of the sample. In this case, we will have
an interaction between the two advancing cracks, a case beyond the
scope of this model. However, it is clear that the fracture process in
this case is experimentally undesirable. We conclude that demanding
predictable, stable crack advancement constrains the sample geometry
in MMC push-out tests to a greater extent than previously assumed. For
the SCS-6/Timetal 834 system, a maximum thickness of around 300 μm
is suggested.

An important example of why it is important to consider the mi-
cromechanics of the debonding arises in the study of an SCS-6/Timetal
21 s system. The Sun model predicts a fracture energy of 38.9 J∕m2,
whereas experimental analysis gives a value in the range 50-70 J∕m2 [35]

aking the axial residual stress 736MPa and the interfacial sliding stress
79.7MPa, with a sample thickness of 540 μm, Fig. 10(a) demonstrates
he crack propagation behaviour of the sample, assuming a fracture
nergy of 60 J∕m2. We see that in the course of the push out experiment,
racks will potentially advance from both the top and bottom of the
ample. This leads to the underestimate of the Sun model because
maller stresses are required to achieve the same total crack length
hen both cracks advance. If it is assumed that the crack advances from
nly one face, the smaller critical stress for crack advancement leads to
n underestimate of the ability of the material to resist fracture.

Fig. 10(b) demonstrates how choosing a thinner sample could avoid
he problem of simultaneously advancing cracks, giving a test geometry
ore appropriate for existing characterisation techniques.

. Conclusion

In conclusion, a new model for the fibre push-out test was formu-
ated, taking into account the finite thickness of test samples and the
ffect of residual stresses in the fibre. The model was applied to the
ush-out test performed on a ceramic matrix composite with a thin
nterfacial layer of boron nitride. In addition, the model was applied
o a test on a metal matrix composite. The objective of this study
as to characterise the micromechanical events involved in interfacial

racture, with particular focus on determining whether the interfacial
rack initiates at the top or the bottom of the sample.
The key conclusions of this work can be summarised as follows:
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Fig. 9. Figures demonstrating the effect of sample thickness in the fibre push-out test for a metal matrix composite.
Fig. 10. Figures demonstrating the interaction between crack advancement mechanisms in an SCS-6/Timetal 21 s system. When the sample thickness is reduced to 350 μm, the
crack solely advances from the bottom of the sample.
s

• Provided with the sample geometry and an estimate of the in-
terfacial fracture energy, the new model accurately predicts the
micromechanical events involved in interfacial fracture for both
CMCs and MMCs. We conclude from this that the assumptions of
previous models for the push-out test on those materials were well
founded.

• The validity of the new model can be tested for a given sample
geometry and material system by applying the quadratic coeffi-
cient criterion. Moreover, it was found that model validity can
be assured independently of the interfacial properties, making the
model suitable for new material systems in which residual stresses
and interfacial friction are unknown.

• For new material systems, applying the model can determine
the values of sample thickness for which the crack advancement
is stable and the interaction between crack tips is minimal. In
general, the model concludes that thinner samples are preferable
for systems with strong residual stresses, while thick samples are
advantageous for systems with weak residual stresses.

The model has successfully characterised the micromechanical event
11

involved in the fibre push-out test. However, problems remain. One of
the assumptions made in formulating the model was that the interfacial
sliding stress was constant across both crack areas. In general, the slid-
ing stress on the top crack area is greater. Both the Poisson expansion of
the fibre and the bending response of the matrix in thin samples apply
radial compressive stresses to the top part of the interface, introducing
stronger frictional resistance to debonding and sliding when the crack
propagates from the top of the sample. Additionally, the present model
considers only a mode-II fracture. For soft matrix materials like most
PMCs, the bending response of the matrix induces tensile radial stresses
at the bottom of the sample, suggesting that a mixed mode-I/mode-II
crack opening is possible.

For future work, resolving the above difficulties is a priority. Ad-
ditionally, one aspect of the model of Callaway [18] we have not
incorporated is the yielding of the interfacial layer. Such yielding
can influence the value of fracture energy computed experimentally
and potentially influences the micromechanical events involved in
the interfacial failure. Moreover, the model presented in this paper
does not account for composites with a soft matrix material such as
polymer matrix composites. Extending the model to the case of PMCs

by accounting for the elastic deformation of the matrix and the energy
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dispersed due to plasticity would represent a major generalisation to
the model presented in this work.
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Appendix A. Contributions to energy

This appendix contains explicit derivations for each of the contribu-
tions to the energy release rate. We begin with the contribution due to
end shortening. By definition, 𝐸end = 𝜎𝜋𝑅2

𝑓 𝛿. Applying the fundamental
theorem of calculus, we deduce:
𝑑𝐸end
𝑑𝑎𝑏

= 𝜋𝜎𝑅2
𝑓
𝑑𝛿
𝑑𝑎𝑏

=
𝜋𝜎𝑅2

𝑓

𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

2𝜏
𝑅𝑓

𝑎𝑏 −

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) sinh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

.

(30)

imilarly:

𝑑𝐸end
𝑑𝑎𝑡

=
𝜋𝜎𝑅2

𝑓

𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 + 𝜎res −
2𝜏
𝑅𝑓

𝑎𝑡 −

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) sinh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

. (31)

or the elastic coating, the total energy stored is:

elast, coat =
𝜋
(

(

ℎ + 𝑅𝑓
)2 − 𝑅2

𝑓

)

2𝐺𝑐 ∫

𝐻∕2

−𝐻∕2
𝜏(𝑧)2 d𝑧

=
𝜋
(

(

ℎ + 𝑅𝑓
)2 − 𝑅2

𝑓

)

2𝐺𝑐

(

∫

𝑎𝑏−𝐻∕2

−𝐻∕2
𝜏2 d𝑧 + ∫

𝐻∕2−𝑎𝑡

𝑎𝑏−𝐻∕2
𝜏𝑓 (𝑧)2 d𝑧

+ ∫

𝐻∕2

𝐻∕2−𝑎𝑡
𝜏2 d𝑧

)

.

(32)
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e again apply the fundamental theorem of calculus:

𝑑𝐸elast, coat
𝑑𝑎𝑏

=
𝜋
(

(

ℎ + 𝑅𝑓
)2 − 𝑅2

𝑓

)

2𝐺𝑐

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

𝑑𝐸elast, coat
𝑑𝑎𝑡

=
𝜋
(

(

ℎ + 𝑅𝑓
)2 − 𝑅2

𝑓

)

2𝐺𝑐

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

.

(33)

The energy stored in the fibre due to shear deformation is similarly
derived as:

𝑑𝐸elast, shear
𝑑𝑎𝑏

=
𝜋𝑅2

𝑓

2𝐺𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

𝑑𝐸elast, shear
𝑑𝑎𝑡

=
𝜋𝑅2

𝑓

2𝐺𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜏2 − 1
4𝜂2

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 sinh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) cosh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

.

(34)

Finally, the energy stored in the fibre by the axial deformation is

𝐸elast, axial =
𝜋𝑅2

𝑓

2𝐸𝑓 ∫

𝐻∕2

−𝐻∕2
𝜎𝑓 (𝑧)2 d𝑧. (35)

pplying the fundamental theorem of calculus:

𝑑𝐸elast, axial
𝑑𝑎𝑏

=
𝜋𝑅2

𝑓

2𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

(

2𝜏
𝑅𝑓

𝑎𝑏

)2
−

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) sinh

(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎟

⎠

𝑑𝐸elast, axial
𝑑𝑎𝑡

=
𝜋𝑅2

𝑓

2𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

(

𝜎 + 𝜎res −
2𝜏
𝑅𝑓

𝑎𝑡

)2
−

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)

+
(𝜎 + 2𝜎res) sinh

(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

⎞

⎟

⎟

⎟

⎟

2
⎞

⎟

⎟

⎟

⎟

.

(36)
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We must finally consider the work done by the system against
friction. Given an inelastic slide 𝑤𝑠(𝑧) on the top crack area, the work
done against 𝜏 is given by [22]:

𝐸fric = 2𝜋𝑅𝑓 ∫

𝐻∕2

𝐻∕2−𝑎𝑡
|𝜏 ∥ 𝑤𝑠(𝑧)| d𝑧. (37)

Computing 𝑤𝑠(𝑧):

𝑤𝑠(𝑧) =
1
𝐸𝑓 ∫

𝑧

𝐻∕2−𝑎𝑡

𝜎 cosh
(

𝑧̄
𝜂𝑅𝑓

)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑧̄
𝜂𝑅𝑓

)

2 sinh (𝜓)

−
(

2𝜏
𝑅𝑓

(

𝑧̄ − 𝐻
2

)

+ 𝜎 + 𝜎res

)

d𝑧̄

=
𝜂𝑅𝑓𝜎

2𝐸𝑓 cosh (𝜓)

(

sinh
(

𝑧̄
𝜂𝑅𝑓

)

− sinh
(

𝜓 −
𝑎𝑡
𝜂𝑅𝑓

))

+
𝜂𝑅𝑓 (𝜎 + 2𝜎res)
2𝐸𝑓 sinh (𝜓)

(

cosh
(

𝑧̄
𝜂𝑅𝑓

)

− cosh
(

𝜓 −
𝑎𝑡
𝜂𝑅𝑓

))

− 𝜏
𝐸𝑓𝑅𝑓

(

(

𝑧 − 𝐻
2

)2
− 𝑎2𝑡

)

−
𝜎 + 𝜎res
𝐸𝑓

(

𝑧 + 𝑎𝑡 −
𝐻
2

)

.

(38)

Note that we can apply the Leibniz integral rule in Eq. (37). We have:

d𝐸fric
d𝑎𝑡

= 2𝜋𝑅𝑓 |𝜏|
d

d𝑎𝑡 ∫
𝐻∕2

𝐻∕2−𝑎𝑡
𝑤𝑠(𝑧) d𝑧

= 2𝜋𝑅𝑓 |𝜏|

(

𝑤𝑠
(𝐻
2

− 𝑎𝑡
)

+ ∫

𝐻∕2

𝐻∕2−𝑎𝑡

d
d𝑎𝑡

𝑤𝑠(𝑧) d𝑧
)

=
2𝜋𝑅𝑓 |𝜏|𝑎𝑡

𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 cosh (𝜓)
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(𝜎 + 2𝜎res) sinh
(

𝜓 − 𝑎𝑡
𝜂𝑅𝑓

)

2 sinh (𝜓)

+
2𝜏𝑎𝑡
𝑅𝑓

− (𝜎 + 𝜎res)
)

(39)

An analogous line of reasoning applies to the work done against friction
for the bottom crack. For the bottom crack, we have:

d𝐸fric
d𝑎𝑏

= 2𝜋𝑅𝑓 |𝜏|

(

𝑤𝑠
(

𝑎𝑏 −
𝐻
2

)

+ ∫

𝑎𝑏−𝐻∕2

−𝐻∕2

d
d𝑎𝑏

𝑤𝑠(𝑧) d𝑧
)

(40)

By continuity of displacement, we have 𝑤𝑠(𝑧) = 0 at the crack tip.
Moreover, by definition, we have:

𝑤𝑠(𝑧) =
1
𝐸𝑓 ∫

𝑎𝑏−𝐻∕2

𝑧

𝜎 cosh
(

𝑧̄
𝜂𝑅𝑓

)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑧̄
𝜂𝑅𝑓

)

2 sinh (𝜓)

− 2𝜏
𝑅𝑓

(

𝑧̄ + 𝐻
2

)

d𝑧̄. (41)

By the fundamental theorem of calculus:

d
d𝑎𝑏

𝑤𝑠(𝑧) =
1
𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

−
2𝜏𝑎𝑏
𝑅𝑓

)

. (42)

We can therefore conclude that:

d𝐸fric
d𝑎𝑏

=
2𝜋𝑅𝑓 |𝜏|𝑎𝑏

𝐸𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝜎 cosh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 cosh (𝜓)
+

(𝜎 + 2𝜎res) sinh
(

𝑎𝑏
𝜂𝑅𝑓

− 𝜓
)

2 sinh (𝜓)

−
2𝜏𝑎𝑏

)

. (43)
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Appendix B. Critical stress formulae

In computing the fracture energy, we arrived at a quadratic relation-
ship between the critical stress for crack advancement and the fracture
energy. We expressed this relationship in the form:

𝛤 = 𝛼𝜎2𝑐 + 𝛽𝜎𝑐 + 𝜔. (44)

e may apply the quadratic formula to this equation in order to derive
ormulae for the critical stresses:

𝑐 =
−𝛽 ±

√

𝛽2 − 4𝛼(𝜔 − 𝛤 )
2𝛼

. (45)

Two problems arise in this formula. Firstly, it is not immediately clear
which root we should choose. However, for a compressive push-out
test, we expect 𝜎𝑐 to be negative. Since 𝛼 > 0 is the test for model
validity, we therefore select the most negative solution, taking the
negative square root. Secondly, it is not true that for any choice of the
parameters the value of 𝜎𝑐 is real. However, one simple criteria for real
solutions is 𝜔 − 𝛤 < 0, which is trivially satisfied when 𝜔 < 0. This is
the case for the examples examined in this work.

To compute the derivative, observe that Eq. (44) implies that:

0 = d
d𝑎

(

𝛼𝜎2𝑐 + 𝛽𝜎𝑐 + 𝜔
)

= d𝛼
d𝑎 𝜎

2
𝑐 +

d𝛽
d𝑎 𝜎𝑐 +

d𝜔
d𝑎 + 2𝑎𝜎𝑐

d𝜎𝑐
d𝑎 + 𝛽

d𝜎𝑐
d𝑎 .

(46)

Rearranging, the derivative of the critical stress with respect to the
crack length is:

d𝜎𝑐
d𝑎 = −

d𝛼
d𝑎 𝜎

2
𝑐 +

d𝛽
d𝑎 𝜎𝑐 +

d𝜔
d𝑎

2𝑎𝜎𝑐 + 𝛽
. (47)
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