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Monocular Visual Traffic Surveillance: A Review
Xingchen Zhang∗, Member, IEEE, Yuxiang Feng, Member, IEEE, Panagiotis Angeloudis, Yiannis Demiris, Senior
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Abstract—To facilitate the monitoring and management of
modern transportation systems, monocular visual traffic surveil-
lance systems have been widely adopted for speed measurement,
accident detection, and accident prediction. Thanks to the recent
innovations in computer vision and deep learning research,
the performance of visual traffic surveillance systems has been
significantly improved. However, despite this success, there is
a lack of survey papers that systematically review these new
methods. Therefore, we conduct a systematic review of relevant
studies to fill this gap and provide guidance to future studies.
This paper is structured along the visual information processing
pipeline that includes object detection, object tracking, and cam-
era calibration. Moreover, we also include important applications
of visual traffic surveillance systems, such as speed measurement,
behavior learning, accident detection and prediction. Finally,
future research directions of visual traffic surveillance systems
are outlined.

Index Terms—Visual traffic surveillance, camera calibration,
speed measurement, accident detection, accident prediction

I. INTRODUCTION

V ISUAL traffic surveillance systems have attracted
widespread interest [1–6]. They have been widely

adopted in vehicle type recognition [7, 8], traffic flow esti-
mation [9], headway [10] and speed [1, 11] measurement,
accident detection [12, 13] and prediction [2], and training
data generation for behavior learning [14, 15]. However, the
performance of traditional systems has been restricted by tradi-
tional object detection and tracking methods that used hand-
crafted features. Thanks to the innovations in deep learning
algorithms, new breakthroughs have emerged in object detec-
tion [16, 17], tracking [18], and classification [19], leading to
substantial performance improvements. These breakthroughs
have been increasingly incorporated in recently developed
visual traffic surveillance systems [20–23].

Although there are a few earlier review papers on visual
traffic surveillance, they have some key limitations. For ex-
ample, Datondji et al. [6] carried out a detailed survey of
visual traffic monitoring of road intersections. It was, however,
published in 2016, and thus does not incorporate many of
the seminal studies that followed, which are based on deep
learning methods. For instance, the object detection and track-
ing methods covered in that paper were traditional methods
using hand-crafted features. Furthermore, key considerations
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such as camera calibration, speed measurement, and accident
detection, were not covered. Yang et al. [24] provided a
comprehensive review of vehicle detection methods under
various environments and the applications of vehicle detection
in intelligent transportation systems. However, it focused on
vehicle detection methods and thus did not cover traffic camera
calibration, vehicle tracking, and speed estimation, etc. A more
recent review by Yuan et al. [25] focuses on machine learning
techniques for next-generation intelligent transportation sys-
tems, but deviated from the area of visual traffic surveillance.

With the increasing research interest in deep learning-based
visual traffic surveillance, many studies have been published
in recent years. Therefore, this paper aims to provide a
systematic review of these new methods. In summary, the main
contributions of this paper are identified as follows:
• An up-to-date and comprehensive review of visual traffic

surveillance systems is presented, starting with a descrip-
tion of common system architectures, and followed by an
in-depth description of individual components.

• Three primary applications of visual traffic surveillance
systems are reviewed, namely speed measurement, be-
havior learning, accident detection and prediction. A brief
summary of popular traffic surveillance video datasets is
also provided.

• The main performance evaluation methods are reviewed
and future research directions on visual traffic surveil-
lance systems are outlined.

The remainder of this paper is organized as follows. Section
II introduces the overall architecture of visual traffic surveil-
lance systems. Then, object detection and tracking methods
are discussed in Section III and IV, respectively. Since cam-
era calibration is essential in most visual traffic surveillance
systems, relevant methods are reviewed in Section V. Common
applications are summarized in Sections VI, VII, VIII, focus-
ing on speed measurement, behavior learning, and accident
detection and prediction, respectively. Section IX summarizes
the main traffic datasets used by researchers and Section X
discusses performance evaluation methods, followed by the
discussion of future prospects in Section XI. Finally, Section
XII concludes this paper.

II. THE OVERALL ARCHITECTURE OF VISUAL TRAFFIC
SURVEILLANCE SYSTEMS

Figure 1 shows the overall architecture of visual traffic
surveillance systems, which usually consists of the following
components:
• Object detection: Identifies vehicles, and other road

users if necessary, in each frame alongside their type,
position, bounding box, or mask.
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Fig. 1. The overall architecture of a visual traffic surveillance system consists of object detection, object tracking, camera calibration, 3D reconstruction, and
applications. Camera calibration is not needed in some applications that only require 2D information. By contrast, in applications that require 3D information
or real-world units, such as speed estimation and distance measurement, camera calibration is a necessary step. Video inputs are obtained from Transport for
London’s (TfL) traffic cameras (https://www.tfljamcams.net, Powered by TfL Open Data).

• Object tracking: Links detection results in consecutive
frames to derive vehicle trajectories.

• Camera calibration: Obtains camera parameters, i.e., in-
trinsic parameters, extrinsic parameters, and scene
scale. These parameters are needed to perform 3D recon-
struction and obtain real-world measurements. Calibra-
tion is not necessary if only 2D information is required.

• 3D reconstruction: Projects a 2D image to 3D space,
which is necessary for many downstream applications.

• Applications: Main applications include vehicle count-
ing, speed measurement, behavior learning, accident de-
tection and prediction, etc.

Some recently proposed visual traffic surveillance systems
are summarised in Table I, from which we can make several
observations. First, some methods focus on 2D detection and
tracking, thus camera calibration is not needed. Second, most
studies focus on vehicle detection and tracking. Only a few
methods are capable of detecting other road users, such as
pedestrians and cyclists. Third, most studies adopt existing
general object detection and tracking methods directly. Finally,
regarding accident detection and prediction, many studies have
used learning-free methods due to the lack of appropriate
training data. Meanwhile, distance, overlapping, kinematic
patterns, speed, and trajectory deviation are commonly used
criteria in these studies.

III. OBJECT DETECTION

The purpose of object detection is to identify vehicles, and
other road users if necessary, in each image frame. Typical
outputs include object classes, positions, bounding boxes, or
masks. The performance of object detection methods signifi-
cantly impacts tracking and downstream applications. Before
deep learning was applied to object detection, traditional de-
tection methods were utilized, such as background subtraction

[36] and image difference [1]. In recent years, deep learning
has significantly improved the performance of object detection
[17, 37, 38]. Consequently, most visual traffic surveillance
systems have adopted deep learning-based detectors in the past
several years, as revealed in Table I, while very few studies
still used background subtraction [33].

In this section, we review the object detection methods
employed in visual traffic surveillance systems recently. We
also discuss some measures that can improve detection per-
formance in the context of traffic surveillance.

A. Deep learning-based object detection methods

As can be seen from Table I, most recent visual traffic
surveillance systems are based on deep learning methods such
as SDD [39], YOLO [17], Faster R-CNN [37] and Mask R-
CNN [38]. These methods can be classified into two-stage
methods and one-stage methods. Two-stage methods use selec-
tive search algorithms [40] or region proposal networks (RPN)
to generate proposals for region of interests (ROI). Afterwards,
a classifier is employed to process these proposals and generate
detection results. By contrast, one-stage methods run detection
directly using a dense sampling of possible locations. In
the aforementioned detection methods, Faster R-CNN and
Mask R-CNN are two-stage methods, while SDD, YOLO, and
YOLOV2 are one-stage methods. In this section, we briefly
introduce these detection methods.

Two-stage methods
1) R-CNN: R-CNN [16] is a milestone in object detec-

tion. It is the first method showing that a CNN can lead to
significantly better object detection performance than methods
based on histogram of oriented gradients (HOG)-like fea-
tures. As shown in Fig. 2(a), the main steps of R-CNN are

https://www.tfljamcams.net
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as follows. First, around 2000 region proposals are extracted
from the input image using the selective search algorithm
[40]. Second, each region proposal is resized as 227× 227 to
facilitate the feature extraction with CNN. Third, these features
are classified using class-specific Support Vector Machines
(SVMs). R-CNN achieved 30% relative improvements on
PASCAL VOC 2012 [41]. However, it suffers from three
primary limitations. First, the CNN-based feature extraction
of all 2000 region proposals is very time-consuming. Second,
the adopted CNN requires fixed-size inputs. Third, R-CNN can
not be trained in an end-to-end manner. Therefore, extensive
efforts have been devoted to improve R-CNN.

2) Fast R-CNN: To mitigate the aforementioned deficien-
cies of R-CNN, Fast R-CNN [42], as shown in Fig. 2(b), was
proposed with three major improvements. First, the whole im-
age is directly sent to a CNN for feature extraction. Therefore,
feature extraction is only performed once. Second, ROIs are
generated using the selective search algorithm and identified
on the feature map. Afterwards, an ROI pooling layer and a
sequence of fully connected layers are used sequentially to
map each ROI to a feature vector. Third, Fast R-CNN has
a multitask architecture and can be trained using a multitask
loss function. Fast R-CNN has achieved a 4% improvement in
mean average precision (mAP) on PASCAL VOC 2012 over
R-CNN and is nine times faster than R-CNN.

3) Faster R-CNN: Although Fast R-CNN has achieved
significant improvements in terms of accuracy and speed, it
is still not an end-to-end solution. This is because it requires
an additional stage for the generation of region proposals. To
solve this issue, Ren et al. [37] proposed Faster R-CNN, whose
architecture is shown in Fig. 2(c). It contains a region proposal
network (RPN) that can generate region proposals. With this
architecture, Faster R-CNN can be trained in an end-to-end
manner, resulting in a significant speed improvement. It should
be noted that Faster R-CNN is the first end-to-end deep
learning-based detection method. Owing to its advantages,
Faster R-CNN has been frequently used in recent visual traffic
surveillance systems. For example, Chang et al. [28] adopted
Faster R-CNN in their system to detect vehicles.

4) Mask R-CNN: Object masks are also desirable outputs
of object detection methods. For example, a mask and a 3D
bounding box projection are utilized by Clausse et al. [21] to
compute the vehicle’s center and orientation. Therefore, He
et al. [38] proposed the Mask R-CNN, which outputs both
bounding boxes and object masks. The architecture of Mask
R-CNN is shown in Fig. 2(d). In addition to the existing
branch for bounding box regression in Faster R-CNN, it adds
a parallel branch for object mask prediction. Moreover, a ROI
align layer is proposed to fix the misalignment between feature
maps and original images in Faster R-CNN. It can reach 5
FPS on an Nvidia Tesla M40 GPU [38]. Because of these
properties, Mask R-CNN has become the most frequently used
detection method in recent visual traffic surveillance systems,
as can be noted from Table I.

One-stage methods
5) YOLO: Unlike those R-CNN series detection methods,

YOLO [17] is a one-stage method, i.e., it does not need to

generate region proposals first and then classify them. YOLO
formulates object detection as a regression problem and uses
a single CNN to predict bounding boxes and the associated
class probabilities in one single evaluation. As shown in
Fig. 3(a), YOLO consists of three main stages. First, the input
image is resized to 448 × 448. Second, a CNN is run on
the whole image. Third, non-maximal suppression (NMS) is
performed to remove multiple detections and obtain the final
results. In addition, YOLO divides the input image to S × S
grids. For each grid, it predicts B bounding boxes and a
confidence value. Therefore, each bounding box has five values
(coordinates of the center, height, weight, and confidence)
and C class probabilities. Consequently, the final prediction
of YOLO is a S × S × (5B + C) tensor.

YOLO is a real-time detection method, and can reach
45 FPS on a Titan X GPU. A smaller version of YOLO,
i.e., Fast YOLO, can reach 155 FPS at the cost of slightly
worse mAP than YOLO. Therefore, several studies [22, 34]
have adopted YOLO for vehicle detection. However, YOLO
generates more localization errors compared to other state-of-
the-art methods. In addition, the detection of small objects
belonging to the same group can be less accurate due to its
strict spatial constraints on bounding box prediction.

6) YOLOV2: Based on YOLO, Redmon et al. [43] proposed
YOLOV2 that has several improvements. First, the fully con-
nected layers in YOLO are removed, and anchor boxes are
introduced to predict the bounding boxes. In this way, over
1000 bounding boxes can be predicted for an image, which
increase significantly from the 98 bounding boxes predicted in
YOLO. Second, YOLOV2 resizes the input image to 416×416
instead of 448 × 448 in YOLO, thus an odd number of
locations in the feature map can be obtained. Correspondingly,
the image is divided to 13 × 13 grids instead of 7 × 7 in
YOLO. Third, YOLOV2 can be jointly trained on the COCO
detection dataset [44] and the ImageNet classification dataset
[19] by using WordTree [43] to combine data and a joint
optimization technique. It can hence detect objects that do not
have labeled detection data. For example, YOLOV2 achieves
16.0 mAP on the 156 classes that it does not have labeled
detection data for on the ImageNet detection validation set.

Owing to these advantages, it has also been increas-
ingly adopted in visual traffic surveillance systems in recent
years. For example, Tang et al. [20] used YOLOV2 to detect
vehicles from traffic images. To improve the performance
of YOLOV2 in the context of traffic surveillance, they se-
lected 4,500 frames from the NVIDIA AI City Challenge
and manually labeled eight categories, i.e., sedan, hatchback,
bus, pickup, minibus, van, truck, and motorcycle, for training
data. The pre-trained weights [43] were utilized to initialize the
network. In addition, Seong et al. [31] also adopted YOLOV2
to detect vehicles in their system.

7) SSD: SSD [39] is another one-stage detection method
that has been applied in visual traffic surveillance system
[14]. SSD consists of a feature extractor (base network)
and additional layers. The feature extractor can be different
networks, such as VGG [45], InceptionNet [46] or MobileNet
[47]. The additional layers generate feature maps of different
sizes. A key contribution of SSD is that it performs detection
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(a) The architecture of R-CNN [16]. An additional selective search algorithm is required to provide region
proposals. Each region proposal is resized and sent to a CNN for feature extraction.

(b) The architecture of Fast R-CNN [42]. An additional selective search algorithm is required to provide region proposals. In
contrast to R-CNN, the whole input image is sent to a CNN for feature extraction.

(c) The architecture of Faster R-CNN [37]. In contrast to R-CNN and Fast R-CNN, the selective search algorithm is not needed. A region proposal network
is contained in the framework, and the whole pipeline can be trained in an end-to-end manner.

(d) The architecture of Mask R-CNN [38]. An additional branch is added to generate object masks. An ROI align layer is also designed to
solve the alignment issue between feature maps and original images in Faster R-CNN. Mask R-CNN can also be trained in an end-to-end
manner.

Fig. 2. Examples of two-stage object detection methods. From R-CNN to Mask R-CNN, two-stage object detection methods have been improved significantly
to provide better object detection results and richer information.

on these various feature maps. The SSD with a 300×300 input
size (SSD300) outperforms YOLO in both frame rate (59FPS
versus 45 FPS) and detection performance on VOC 2007 test
set. Another variant of SSD (SSD512) obtains better detection
performance at the cost of frame rate (22 FPS).

Summary of object detection methods
Two-stage methods are generally more accurate than one-

stage methods. However, their computational costs are also
higher and thus difficult for real-time applications. By contrast,
one-stage methods are faster and can meet the real-time re-
quirement. Considering these trade-offs, the 4 best-performing
teams that participated in track 1 of the 5th AI City Challenge
adopted YOLO-derived models to balance out effectiveness
versus efficiency [48].

Along with the aforementioned methods, some other deep
learning-based detection methods have also been employed
in visual traffic surveillance systems. For example, Kocur et
al. [49] adopted CenterNet [50], which models an object as
a single point, for vehicle detection. Moreover, many other
advanced detection methods have been proposed, such as
YOLOV3 [51] and YOLOV4 [52]. However, to the best of
our knowledge, the application of these detection methods
in visual traffic surveillance systems has not been formally
published at the time of this review.

It should be mentioned that although most recent visual
traffic surveillance studies used deep learning-based object
detection methods, some studies [33] still employed back-
ground subtraction when the camera is fixed. Also, there
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(a) The pipeline of YOLO [17]. Region proposal networks are not needed
in YOLO, and object detection is formulated as a regression problem.

(b) The architecture of SSD [39]. Multi-scale features are utilized in SSD to
help to handle objects of different sizes.

Fig. 3. Two typical examples of one-stage object detection methods. In
one-stage methods, region proposal networks are not needed. Instead, these
methods run detection directly using a dense sampling of possible locations.

is an opportunity to combine background subtraction and
deep learning methods. For example, Messoussi et al. [53]
chose the SpotNet [54] as the detection method, in which
the segmentation branch was trained with semi-supervised
segmentations obtained using background subtraction when
the camera is fixed.

B. Methods to improve detection performance

Along with the adopted method, some other factors can also
affect the performance of object detection. Examples of these
factors are tiny vehicles, vehicles that are not in the road area,
and occlusion. To mitigate the influence of these factors, some
measures have been proposed in existing research.

1) Region of interest: A typical solution is to set a region
of interest (ROI) in traffic videos. ROI is very useful for
excluding noise, for example, tiny vehicles. In addition, if the
dimension of a ROI is predetermined, it can also be utilized
for vehicle speed estimation. Various ROIs have been designed
in existing studies, including regular and irregular ROIs.

Regular ROIs: A regular ROI is usually a rectangular area
set on the road plane. It is suitable for structured roads, for
example, the straight road shown in Fig. 4(a). It has been used
by Zhang et al. [35] for vehicle detection and tracking. In
addition, they utilized the travel distance inside the ROI to
compute vehicles’ speed.

Irregular ROIs: An example of irregular ROIs is shown
in Fig. 4(b). The main benefit of irregular ROIs is that they
are more flexible and can be applied to unstructured scenes
[13, 21, 22].

2) Filter: Another measure to improve the detection per-
formance is through post-processing filters. For example, Yu
et al. [13] applied a filter to the detection results provided by
Mask R-CNN. Their filter contains three sets of rules, each
aims to exclude small vehicles, vehicles outside the road area,
and occluded vehicles, respectively.

3) Retraining detection methods: The detection methods
mentioned in Section III-A are initially designed for general
purpose object detection. Therefore, they were trained using
datasets that contain many kinds of objects. For instance, Mask
R-CNN was trained using the COCO dataset [44], which con-
tains more than 80 classes of objects. It should be noted that

(a) An example of regular ROIs. Only vehi-
cles inside this rectangle ROI are detected and
tracked.

(b) An example of irregular ROIs. Only vehicles
inside this ROI are detected and tracked.

Fig. 4. Examples of ROIs. These ROIs are widely adopted in visual traffic
surveillance systems to improve object detection performance. Irregular ROIs
are more flexible compared with regular ROIs.

these pre-trained models may not perform well in the traffic
surveillance context. Therefore, the third measure to improve
the detection performance is to retrain these models with traffic
datasets. For example, Sochor et al. [27] retrained the Faster
R-CNN using the COD20K dataset [55]. Chang et al. [28]
retrained the Faster R-CNN using the UA-DETRAC dataset,
which uses a COCO pre-trained model for initialization. Seong
et al. [31] retrained the YOLOV2 model using a self-collected
vehicle dataset. In addition, retraining a model is necessary for
some specific applications when the general-purpose detection
methods are not applicable. For example, Zhang et al. [35]
proposed to detect wheels of vehicles. However, this is not
feasible using the Mask R-CNN model trained with the
COCO. To solve this issue, they collected a dataset consisting
of cars, coaches, trucks, and wheels to retrain the model.

4) Position correction methods: In many studies [14, 31],
the detected 2D bounding boxes are used to denote the position
of vehicles. In particular, a point inside the 2D bounding
box, for example, the center, is treated as the vehicle’s posi-
tion. However, several factors, such as camera view angle and
the loss of depth information, can cause a deviation between
this point and the vehicle’s actual position. Researchers have
proposed different methods to solve this issue. For example,
Ren et al. [14] manually labeled a dataset with actual vehicle
locations. Afterwards, a linear mapping between detection and
labeled results was acquired for position correction. Seong et
al. [31] used the determination of optimal bounding boxes for
correction. Along with these 2D-based methods, some studies
[27, 35, 56] have tried to adopt 3D bounding boxes and then
derive the position of vehicles from them.

5) Methods for dealing with vehicle occlusion: Vehicle de-
tection with occlusion is a challenging task. Many approaches
have been proposed to deal with vehicle occlusion. For ex-
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ample, Pham et al. [57] developed a vehicle detection method
based on car windshield appearance because they thought the
windshield is the most suitable cue in handling occlusion
situations. For deep learning-based detection methods, soft
non-maximum suppression (NMS) [58] was adopted to deal
with heavy vehicle occlusion [59]. In addition, occlusion-
focus region proposal algorithm [60] based on the Faster R-
CNN detector was recently proposed to handle vechile occlu-
sion. Moreover, occluded vehicles with accurate annotations
can be added to the training data to improve the robustness of
deep learning-based detectors to occlusion. Note that vehicle
occlusion can also be handled during the tracking process. For
example, Fang et al. [61] proposed a part-based method, which
combines a part-based strategy with a particle filter, to deal
with vehicle occlusion. Finally, 3D object detection method
[62] may be an efficient way to deal with vehicle occlusion.

IV. OBJECT TRACKING

Object tracking in visual traffic surveillance aims to extract
trajectories of multiple road users simultaneously. In recent
years, most tracking methods used the tracking-by-detection
architecture. Specifically, object detection is first performed on
each frame to obtain corresponding detection results, which
will then be associated to form the trajectories. Afterwards,
post-processing is usually needed to smooth and improve the
obtained trajectories. In this section, we first introduce the
commonly used trackers in recent visual traffic surveillance
systems and then briefly discuss relevant post-processing steps.

A. Multi-object tracking methods

Multi-object tracking methods have been employed in vi-
sual traffic surveillance systems for many years. Before deep
learning was introduced to the tracking field, many traditional
methods have been proposed [63]. Some traditional tracking
methods were still used nowadays, such as centroid tracking
[30], background subtraction [27, 33], and Kalman filter
[27]. For more details about traditional tracking methods,
please refer to this excellent survey [6].

1) Matching algorithms: In a tracking-by-detection archi-
tecture, it is crucial to match detection results in adjacent
frames, as shown in Fig. 5. The Hungarian algorithm [64] and
the Kuhn-Munkres algorithm [64] are commonly used in exist-
ing studies. The Hungarian algorithm [64] can match detection
results in two different frames. It has been utilized in many
multi-object tracking methods. For example, Chang et al. [28]
used the Hungarian algorithm to associate vehicle detection
results with existing tracks. However, the Hungarian algorithm
treats each candidate equally. Therefore, the matching results
may not be optimal. To overcome its deficiency, the Kuhn-
Munkres Algorithm was proposed [64]. To differentiate the
candidates, the Kuhn-Munkres algorithm assigns weights to
detection results and the relationship between them. However,
it should be noted that while the Kuhn-Munkres algorithm can
achieve better matching results, it is more time-consuming
than the Hungarian algorithm. Therefore, users need to bal-
ance the matching results and the computational costs when
choosing matching algorithms.

Fig. 5. Detection results of frame t (left) need to be matched with the detection
results of frame (t+1) (right) to form tracklets (short trajectories).

Fig. 6. The principle of the IOU tracker [65]. The detection results in different
frames are associated using the spatial overlap between the bounding boxes
in different frames. If the IOU is larger than a chosen threshold, the two
bounding boxes are considered as the same object.

2) IOU method: The Intersection Over Union (IOU) [65] is
another tracking method, which associates the detection results
using their spatial overlaps between different frames, as shown
in Fig. 6. For example, Clausse et al. [21] adopted the IOU
method to group detection results into tracks. Specifically, the
masks that have high overlap in successive frames are formed
into tracks. Although the IOU method is simple and can work
in many situations, it has some limitations. First, it may fail
when vehicles are heavily occluded, e.g., when the density
of vehicles on the road is high. Second, it has a requirement
on video frame rate, which should be higher than the vehicle
dynamics [21].

3) SORT: Simple online and real-time tracking (SORT)
[66] is a representative online multi-object tracking method,
which combines the Kalman Filter [67] and Hungarian algo-
rithm [64]. In SORT, only the size and position of bounding
boxes are used for motion estimation and data association. The
Kalman filter is used to handle motion prediction, and the
Hungarian algorithm is employed for data association.

The detection result in the next frame is associated with the
predicted result using the Hungarian algorithm [64], whose
assignment cost matrix is computed using the IOU metric. If
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the association is successful, the detection result will be used
to update the target state. In the update process, the velocity
components are solved using a Kalman filter. However, if the
association fails, i.e., no detection result is associated with
the predicted result, the target state is simply updated using a
linear constant velocity model. In this model, the state of each
target, i.e., the bounding box, is represented as:

x = [u, v, s, r, u̇, v̇, ṡ]T , (1)

where u and v are the horizontal and vertical position of the
center of the bounding box, s and r are the scale and aspect
ratio of the bounding box, u̇, v̇, ṡ are the changing velocities of
these variables. Note that the aspect ratio is constant in SORT.

In SORT, if the IOU of a new detection with existing
detection results is smaller than IOUmin, this new detection
is considered as a new target. If a track is not detected for
one frame, the track is terminated. Due to its simplicity,
SORT is very fast and achieves 260FPS on single core of
an Intel i7 250GHz computer, thus can be applied to real-
time applications. However, due to the small track termination
threshold, SORT has many ID switches. In addition, SORT
only uses the size and positions of bounding boxes to perform
matching, thus the tracking is less robust.

4) Deep SORT: Deep SORT [68] is an improved version
of SORT with several improvements. First, a CNN is trained
to extract appearance information, which is integrated with
motion information to act as the deep association metric. This
metric allows Deep SORT to track objects over longer periods
of occlusions, thus reducing the number of ID switches
significantly. Second, if a track has not been associated with
a detection result for 30 frames, it is considered to have
left the scene. If a detection cannot be associated with any
existing tracks, a tentative new track is created. If this new
track can associate with a detection successfully for the first
three frames, it is confirmed as a new track. Third, a matching
cascade is introduced to give priority to more frequently seen
objects when handling a longer period of occlusion. Finally,
the aspect ratio is no longer constant, giving Deep SORT a
better ability to handle size changes of objects. Therefore, the
state of each target, i.e., the bounding box, is represented using
eight parameters, i.e.,

x = [u, v, γ, h, u̇, v̇, γ̇, ḣ]T , (2)

where u and v are the horizontal and vertical position of the
center of the bounding box, γ is the aspect ratio and h is the
bounding box height, u̇, v̇, γ̇, ḣ are the changing velocities of
these variables.

Because of these improvements, Deep SORT has better per-
formance and much fewer ID switches than SORT. Moreover,
it still can operate at real time (20 FPS). Therefore, Deep
SORT is one of the most frequently employed tracking meth-
ods in recent visual traffic surveillance systems [13, 29, 34].

5) Bottom-up clustering: Tang et al. [20] adopted a bottom-
up clustering method based on visual and semantic features
to generate trajectories. The bottom-up clustering method
consists of two steps. First, detection results are grouped
into tracklets using spatio-temporal consistency. Second, a

clustering method is utilized to associate tracklets into longer
trajectories. The loss used in the clustering operation is a com-
bination of trajectory smoothness loss, velocity change loss,
time interval loss between adjacent tracklets, and appearance
change loss. For each tracklet, the loss change is computed
for five separate operations (assign, merge, split, switch, and
break), and the operation with the minimum loss change is
selected. In this way, all tracklets are iteratively clustered into
longer trajectories.

Summary of multi-object tracking methods
Many multi-object tracking methods have been adopted in

visual traffic surveillance systems. Deep learning is mainly
utilized in the design of data association metrics to extract
better features. In addition, because most tracking methods
use the tracking-by-detection framework, their performance is
highly dependent on the detection performance. Finally, many
advanced trackers developed recently, such as RetinaTrack
[69] and FairMOT [70], have not been utilized in visual traffic
surveillance systems. We expect that further advanced trackers
will be adopted to improve visual traffic surveillance systems
in the coming years.

B. Trajectory post-processing

While the tracking accuracy has achieved significant im-
provements with modern deep learning-based methods, it still
suffers from false detections and positional errors, especially
for vehicle tracking in congested traffic. As indicated by Kim
et al. [71], false detections consist of false positives (i.e., detec-
tion of vehicles when none is present and detection of vehicles
with incorrect size) and false negatives (i.e., not detecting
vehicles when some are present). They developed a post-
processing method to remove those false detected tracks based
on Kalman filter and motion constraints. Along with false
detections, positional errors are also a common issue in vision-
based trajectories. It should be noted that the deviation in the
detected positions can be magnified in speed measurement and
even more in acceleration due to the derivation. Thus, post-
processing is often needed to improve the consistency and
hence obtain more smooth vehicle trajectories.

Many post-processing methods have been proposed to opti-
mise obtained trajectories. For example, Xin et al. [72] treated
post-processing as a bi-level optimization that minimizes the
measurement errors and the internal inconsistency errors in
position, speed, and acceleration. Moreover, Seong et al. [31]
developed an algorithm using the basic angle and the length of
the front of the vehicle to mitigate the positional error caused
by the geometric displacement of the camera. Furthermore,
Clausse et al. [21] used a Rauch-Tung-Striebel (RTS) smoother
[73] with a point-mass constant velocity model to process the
noisy measurements, while Tang et al. [20] utilized temporal
median filtering to smooth out the noisy trajectory estimations.

Post-processing has also been applied in several public
vehicle trajectory datasets. For instance, both Hamdar and
Mahmassani [74] and Thiemann et al. [75] applied filtering
approaches to solve discontinuities in the NGSIM dataset.
Hamdar and Mahmassani [74] utilized a mono-dimensional
Gaussian Kernel to smooth the vehicles’ lateral position and
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speed information, while Thiemann et al. [75] applied a sym-
metric exponential moving average filter to smooth vehicles’
position, speed, and acceleration simultaneously. Meanwhile,
before releasing the HighD dataset, Krajewski et al. [76] also
used an RTS smoother and a constant acceleration model to
refine the position, speed, and acceleration in both longitudinal
and lateral directions, which reduces the positioning error to
a pixel size level.

V. TRAFFIC CAMERA CALIBRATION

Camera calibration is crucial in visual traffic surveillance
systems, most prominently, to perform 3D reconstruction and
speed measurement in the real world. If we denote a point
x in the 3D space using homogeneous coordinates as x =
(x, y, z, 1)T and the corresponding point in 2D image plane
using homogeneous coordinates as x′ = (u, v, 1)T , we have:

λx′ = Px = K[R|t]x, (3)

where λ is a scene scale factor, P is a 3 × 4 projection
matrix that can be further divided into K[Rt], where K is the
intrinsic camera parameter, R is the camera rotation matrix,
and t is the translator vector. R and t are extrinsic parame-
ters. As shown in Fig. 7, the goal of camera calibration is to
formulate the transformation matrix that links the image and
road coordinate frame. Sometimes these camera parameters
are provided by the creator of datasets [29], while camera
calibration should be performed for each traffic camera in most
cases [28]. However, as traffic cameras are usually placed in
hardly accessible locations and are focused at longer distances
[27], the traditional pattern board-based calibration method is
impractical. Therefore, various calibration methods have been
proposed, including conventional methods and deep learning-
based methods. In this section, we will discuss these methods.

A. Conventional methods

Generally speaking, conventional calibration methods can
be divided into automatic and manual methods. Automatic
methods do not require manual intervention, while manual
methods require additional inputs, such as average vehicle
size [1], average vehicle speed [77], camera position [78],
annotation of the lane marking with known lane width [78]
and marking dimensions [79], in the calibration process.

(1) Manual method
Manual calibration methods can be grouped into vanishing

point-based methods and reference image-based methods.
1) Vanishing point-based methods: With two vanishing

points on the ground plane and some constraints on the
intrinsic camera parameters, it is possible to compute the
projection matrix P [81]. Therefore, vanishing points have
been widely employed in traffic camera calibration methods. In
practice, vanishing points may be provided by the creator of
datasets. However, in most cases, vanishing points should be
derived from vanishing lines, which can usually be manually
labeled [13, 20, 29] or automatically detected [26, 35].

To manually label vanishing lines, Yu et al. [13, 29] first
labeled two groups of parallel lines for each camera view and

Fig. 7. The essential goal of traffic camera calibration is to obtain the camera
parameters to compute the real distance D between two points (P1,P2) on
the road plane, given their positions (p1, p2) on the image plane. This image
is reproduced based on [80].

then used a least square error method proposed in [82] to
derive two vanishing points. Based on this information, image
points can be projected to the derived road plane. In addition,
Yu et al. [10] used the vanishing point-based method proposed
by He et al. [83], which requires a rectangular road mark as
the manual input to perform calibration.

To automatically detect vanishing lines, buildings [84],
walking humans [85, 86], lane lines [35] and moving vehicles
[87, 88] have been adopted. Among these methods, vehicles
are more suitable for traffic camera calibration as other objects
may not present in certain scenes.

2) Reference image-based methods: For some scenes where
the location is known, it is possible to use a reference image
to assist the camera calibration. For example, Chang et al. [28]
first utilized Google Maps to specify sufficient landmarks
manually and estimated their 3D coordinates. Subsequently,
they followed a landmark-based camera calibration approach
[89] to compute the camera projection matrix by minimizing
the landmark projection square errors. Moreover, Behbahani
et al. [15] obtained a top-down satellite image of a scene
and then added landmarks to both the camera-captured image
and the satellite image. The camera matrix was computed by
using these landmarks. Similarly, Clausse et al. [21] identified
four or more matching points between the camera image (2D
points) and the satellite view (3D points). An optimization was
then formulated to minimize the reprojection error of these
matching points and find the rotation, translation and focal
length of the traffic camera. This method can also be extended
to estimate distortion coefficients by adding a distortion model.

The main advantage of reference image-based methods
is that they can provide better calibration results. However,
the landmarks and dimensions need to be set manually. In
addition, it is infeasible to obtain its corresponding satellite
image or Google Map image if the location of a camera is
unknown. Therefore, this kind of method cannot be applied to
arbitrary traffic videos.

3) Hybrid methods: Some hybrid methods use vanishing
points and reference images together. For example, Tang
et al. [20] first labeled two pairs of vanishing lines, from
which two vanishing points on the ground plane can be
obtained. Afterwards, the camera projection matrix P was
computed using these two vanishing points. To improve the
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performance, they selected a set of line segments from the
image, whose endpoints are back-projected to the 3D ground
plane and can be used to compute the estimated length. The
ground-truth 3D lengths of these selected line segments were
measured using Google Maps. The difference between these
ground-truth lengths and the estimated lengths was used as
the objective to optimize camera parameters, which was then
solved iteratively using an evolutionary algorithm.

(2) Automatic methods
Automatic calibration methods are beneficial because they

can be easily applied to many camera scenes. However, it is
challenging to develop automatic traffic calibration methods
and thus only few automatic camera calibration methods have
been proposed [26, 27].

Dubska et al. [26] proposed an automatic method that allows
calibration of traffic cameras, including scale, based on a
2-minute video. This method consists of three steps. First,
three vanishing points that define the stream of vehicles
are determined. Second, 3D bounding boxes are created for
vehicles based on calibration results. Third, the scene scale
is computed using the dimensions of 3D bounding boxes. A
key innovation in [26] is the automatic estimation of the scene
scale using histograms of sold and measured cars. Therefore,
no user input is needed in the entire process for scene scale
estimation. Another automatic method is proposed by Sochor
et al. [27]. This method is an improved version of [26]. The
main improvements lie in two aspects. First, more precise
detection of vanishing points is proposed. Second, a novel
scene scale method is developed. It should be mentioned that
this work only considered fully visible cars.

Both methods can automatically detect vanishing points
and derive the scene scale with some prior information.
Moreover, they can be used from arbitrary viewpoints without
any requirements on camera placement. However, they require
straight road segments to detect vanishing points. Therefore,
these methods do not apply to some situations, such as curved
roads and roundabouts. To solve this issue, Kocur et al. [49]
proposed a method that uses a CNN to detect vanishing
points. It learns the ability to detect orthogonal vanishing
points for individual vehicles in the scene from a large-
scale dataset, which relies on the straight movements of vehi-
cles. Consequently, this method can be applied to more cases,
such as curved roads and parking spots. Furthermore, Bartl et
al. [90] proposed to classify vehicles using a CNN and detect
keypoints on these vehicles. Then, the dimensions of these
keypoints are obtained from 3D models of vehicles. These
information are then used for automatic calibration.

B. Deep learning-based methods

In recent years, researchers have started exploring deep
learning-based camera calibration methods, which can be
roughly grouped into vanishing point detection methods and
calibration methods.

DeepVP is proposed as a deep learing-based vanishing
point detection method, which formulates the vanishing point
detection as a classification problem [91]. Specifically, they
designed a CNN that has 225 output values, denoting the

225 discrete possible vanishing point locations. To train the
model, the authors collected a dataset consisting of 1,053,425
images and ground-truth vanishing points from the Google
Street view. In addition, Li et al. [92] proposed a multi-task
learning method to perform vanishing point detection and rail
segmentation together. In the network, a feature extraction
network and three sub-task networks were designed. Each sub-
task network was used for vanishing point detection, vanishing
region segmentation, and rail segmentation, respectively. The
main benefit of deep learning-based vanishing point detection
methods is that they do not have many requirements on the
scene, such as straight road segments and buildings. However,
these methods are still in their early stage. More related
methods are expected to be proposed in the coming years.

For deep learning-based calibration methods, Bogdan et
al. [93] proposed a CNN-based method to estimate the intrinsic
parameters, i.e., focal length and distortion parameters, of wide
field-of-view (FOV) cameras. This method only requires an
image of the scene. Hold-Geoffroy et al. [94] also proposed a
CNN-based method to estimate camera calibration parameters,
including roll, pitch, and FOV, from a single image. Lopez et
al. [95] proposed the first method that can jointly estimate
extrinsic (tilt and roll) and intrinsic (focal length and radial
distortion) parameters. In addition, Gordon et al. [96] proposed
the first unsupervised method for intrinsic camera parameters
estimation. Depth, egomotion, object motion, and intrinsic
camera parameters can be learned simultaneously. Two ad-
jacent video frames were used as the input to this network. In
addition to these methods, Bashetty et al. [97] applied deep
learning methods to estimate the focal length given an RGB
image. Lee et al. [98] proposed a neural network-based method
to predict camera calibration parameters, using a single im-
age of artificial scenes. Zhang et al. [99] proposed a dual-
Siamese network to estimate the focal length and distortion
parameters of a pan-tilt-zoom (PTZ) camera using an im-
age pair as input. However, although several deep learning-
based calibration methods have been proposed, none of these
methods are explicitly designed for visual traffic surveillance
systems. Therefore, it is still ambiguous how these methods
perform in the context of visual traffic surveillance.

C. Scene scale
In addition to the projection matrix, it is also essential to

estimate the scene scale, as shown in Equation (3), to obtain
measurements in real-world units. However, it is not possible
to estimate the scene scale from vanishing points. Therefore,
vanishing point-based methods need to compute two vanishing
points and the scene scale, leading to 5 degrees of freedom.

Various methods have been proposed to estimate the scene
scale. For example, Dubska et al. [26] utilized the 3D bounding
box built around vehicles and the average dimensions of
vehicles to compute the scale. Sochor et al. [27] proposed
to use the alignment of a 3D model and a bounding box for
scale inference. Another method worth trying is to use deep
learning-based depth estimation to estimate the depth and then
compute the scale accordingly. Once the vanishing points and
scene scale are obtained, some methods [100–102] can be
adopted to formulate the transformation matrix K[RT].
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D. Summary of traffic camera calibration

Although many traffic camera calibration methods have
been proposed, most of them still require manual input that
may not be applicable in practice. Moreover, it should be noted
that traditional calibration methods still dominate in this re-
search area. The principles of calibration methods employed in
most existing visual traffic systems, i.e., vanishing point-based
and reference image-based methods, have been proposed for
many years. More information about traffic camera calibration
can be found in [80].

VI. SPEED MEASUREMENT

Speed measurement is a prominent application of visual
traffic surveillance systems. Measuring speed with a monoc-
ular camera has several advantages. First, a single camera
can measure the speed of vehicles on multiple lanes. Second,
images can be utilized for other detection and recognition tasks
simultaneously. Third, many traffic surveillance cameras have
already been installed and can be employed for speed mea-
surement and other tasks. Consequently, vision-based speed
measurement has attracted widespread interest [1, 26, 77, 103].

It is essential to measure distance on the road plane before
performing speed measurement. Therefore, the detection and
tracking results should be projected to the road plane. There-
fore, we discuss both ground location estimation and speed
measurement in this section.

A. Ground location estimation

Ground location estimation consists of 2D and 3D methods.
1) 2D methods: A straightforward method is to consider

the center of the 2D bounding box as the vehicle’s position
and then project this center to the ground. This method works
well for top view [76]. However, most traffic cameras have
different angles of view. Consequently, this simple method
will cause non-negligible errors in most traffic scenes.

2) 3D methods: To facilitate 3D projection, the aforemen-
tioned camera calibration process is needed as a preliminary
condition. Afterwards, several methods can be utilized to
obtain the ground locations of vehicles. For example, Ren et
al. [14] used the middle of the bottom edge of the 2D bounding
box as the vehicle’s ground position and then project this point
to 3D space. In addition, Clausse et al. [21] first built the 3D
bounding box for vehicles and then used the bottom of the 3D
bounding box as the ground position of the vehicle.

B. Speed estimation

As shown in Fig. 8, various methods can be used to
determine the reference point for vehicle speed estimation. For
example, Sochor et al. [27] chose the center of the bottom-
front edge of the 3D bounding box. Tang et al. [20] selected
the bottom center of the 2D bounding box and projected it to
3D space. Clausse et al. [21] used the bottom center of the
3D bounding box. The principle is using the same reference
point across different image frames.

Travel distance and duration are needed to compute
speed. There are several ways in existing research. A common

Fig. 8. Examples of reference point adopted in speed estimation. Left: the
center of 2D bounding box bottom. Middle: the center of bottom-front edge
of 3D bounding box. Right: the center of the bottom of 3D bounding box.

method is to use the travel distance between 2 consecutive
frames and the frame rate [13]. However, many works have
argued that this method is unstable for calculating speed
[26, 27] and instantaneous speed [28]. To solve these is-
sues, some researchers used filtering to smooth the speed
estimation. Both exponential smoothing [13] and Gaussian
smoothing [28] were adopted for speed estimation. In addition,
some researchers suggested to use time positions that are
several frames apart [80]. Another method is to use the entire
straight-line trajectory [26] as the travel distance. Moreover,
ROI or virtual detection region has also been used for speed
estimation. They first set ROI on the image and then used the
travel distance within this region to compute speed [35]. Some
other methods have also been proposed. For example, Yu et
al. [29] obtained the speed vector of the bottom middle point
of a vehicle’s 2D bounding box from the internal state of the
Kalman filter. It should be mentioned that the estimated speed
may oscillate. One possible cause is the variation of vehicle’s
bounding box in different frames [14].

VII. BEHAVIOR LEARNING

Vehicle trajectories can be employed to train their behavior
models. These models can be used for vehicle prediction
to improve traffic safety. Moreover, these models can be
transferred to simulation environments to increase the realism
of these traffic simulators.

A few behavior learning studies have used trajectories
extracted from traffic cameras. For example, Ren et al. [14]
proposed a method to convert the traffic camera perspective to
the simulator view using a homography, which was estimated
using four pairs of corresponding points between the camera
and the simulator view. In this way, vehicle trajectories in
the simulator view were obtained. Afterwards, they modeled
the vehicle behavior using multivariate Gaussian distributions
and trained the model with those trajectories. Another exam-
ple is the ViBe proposed by Behbahani et al. [15], which
first obtained trajectories of road users (vehicles, cyclists,
pedestrians) from an initially uncalibrated camera and then
adopted a learning from demonstration technique to learn
naturalistic behavior models. These models were then utilized
in a simulation of the scene using the Unity game engine [104]
to increase the realism of autonomous vehicle simulation.

As a promising research direction, behavior learning using
trajectories extracted from traffic surveillance cameras is still
in its very early stage. We expect that more work will be
conducted following this direction in the coming years.
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VIII. ACCIDENT DETECTION AND PREDICTION

Traffic accident detection and prediction are critical to traffic
safety, thus have attracted tremendous research interest in
recent years. An accident can be divided into three stages: pre-
collision, collision, and post-collision [33]. Accident detection
corresponds to the collision stage, while accident prediction
corresponds to the pre-collision stage. It should be noted
that some accident detection methods are offline because they
need some additional information from the frames after the
accident. For example, Singh et al. [33] use the trajectory
information after the accident time to determine whether the
intersection of trajectories is caused by occlusion or colli-
sion. In this section, we review the recent studies on accident
detection and prediction in visual traffic surveillance systems.

A. Accident detection

Accident detection methods can be generally divided into
learning-free methods and learning-based methods.

1) Learning-free methods: Learning-free methods mainly
utilize the kinematic information of vehicles to detect acci-
dents. For example, Ki et al. [105] used the variation rate
of velocity, position, area, and direction of moving vehi-
cles. Meanwhile, Maalou et al. [106] utilized the sudden
and sharp change in vehicles’ velocity. The distance between
vehicles and the overlap in their trajectories were also used to
detect traffic danger [13]. Moreover, Ijjina et al. [30] proposed
a computer vision-based accident detection method for traffic
surveillance videos, which generates an accident score based
on acceleration anomaly, trajectory anomaly, and change in
angle anomaly. It should be noted that hand-crafted features
were employed in these methods. More importantly, rules
were designed manually to determine the occurrence of an
accident. Consequently, learning-free methods are less robust.

2) Learning-based methods: With the development of deep
learning techniques, some learning-based accident detection
methods have been proposed. For example, Singh et al. [33]
proposed a deep spatio-temporal method to detect road ac-
cidents. This method consists of two parts. The first part is
collision detection based on trajectories of road users, which
will give a collision score. The second part is a spatio-temporal
network using denoising autoencoders. Specifically, three de-
noising autoencoders are employed to process appearance,
motion, and the joint of both, respectively. A reconstruction
error and an anomaly score are computed for each denois-
ing autoencoder, resulting in three reconstruction errors and
three anomaly scores in total. These reconstruction errors and
anomaly scores are then fused with the obtained collision score
to generate a final decision. Moreover, Yu et al. [32] developed
a self-tuning iterative hard thresholding (ST-IHT) algorithm to
learn sparse spatio-temporal features and a weighted extreme
learning machine (W-ELM) for detection from imbalanced
datasets. Furthermore, Bortnikov et al. [107] proposed a 3D
CNN-based model for accident detection, which can extract
both spatial and temporal features. In addition, Tian et al. [108]
developed YOLO-CA [17]. They collected an accident dataset
CAD-CVIS that contains 633 accident videos and annotated
the locations of accidents in image frames for model training.

There are some difficulties in developing learning-based
accident detection methods. First, there is a lack of sufficient
accident training data. Second, the ratio between normal and
accident videos in most existing datasets is imbalanced. To
solve these issues, efforts have been devoted to collecting
accident videos. For example, Shah et al. [12] collected the
CADP dataset, which consists of 1416 accident videos. Spatio-
temporal annotations are also provided for this dataset. An-
other solution is using synthetic videos. For example, Bort-
nikov et al. [107] trained a 3D CNN-based accident detection
system with traffic videos generated from a view game Grand
Theft Auto V, which is then tested on real traffic videos. This
method can facilitate the generation of training data under var-
ious weather and scene conditions. However, the performance
of this method degrades significantly on real videos due to
the domain gap between synthetic and real videos. To solve
this problem, Batanina et al. [109] adapted the trained model
to real videos using domain adaptation techniques, which has
significantly improved its performance on real videos.

B. Accident prediction

Compared with accident detection, accident prediction is
more beneficial for traffic safety. Existing methods can also
be roughly grouped into learning-free methods and learning-
based methods.

1) Learning-free methods: Learning-free accident predic-
tion methods mainly utilize the kinematic information of
vehicles. For example, Yu et al. [13] first predicted the speed
and trajectories of vehicles and then predicted accidents using
this information. However, owing to the employed linear
prediction of speed and position, this method can only handle
vehicles moving on straight roads. Yu et al. [29] proposed an
improved method, which also detects accidents based on kine-
matic patterns. The main improvements are as follows. First,
some vehicle manoeuvres can be detected, such as vehicle
turning to either direction and starting. Second, both speed
and driving direction of vehicles were estimated. It is worth
mentioning that both methods employed a manual camera
calibration method, thus they cannot be applied to arbitrary
traffic surveillance cameras automatically.

2) Learning-based methods: Only a few learning-based
accident prediction methods for traffic surveillance videos have
been proposed. For example, Shah et al. [12] proposed an
accident prediction method based on Faster R-CNN and the
Dynamic-Spatial-Attention LSTM [114]. The Faster R-CNN
was employed to extract features, which were then fed into
the DSA-LSTM to generate accident scores. Huang et al. [34]
proposed a two-stream CNN consisting of a spatial stream for
object detection and a temporal stream for leveraging motion
features to predict accidents at real time.

IX. TRAFFIC SURVEILLANCE DATASETS

Traffic surveillance video datasets are crucial for deep
learning-based visual traffic surveillance systems. Table II lists
some existing surveillance video datasets. It can be noted that
these datasets have distinct characteristics. Generally speaking,
the number of traffic surveillance images (with bounding box
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TABLE II
EXAMPLES OF EXISTING TRAFFIC SURVEILLANCE VIDEO DATASETS AND THEIR DETAILS. THE DATASETS RELEASED IN RECENT YEARS ARE MUCH

LARGER AND DIVERSE COMPARED WITH DATASETS RELEASED BEFORE 2010. ‘N/A’ MEANS THE INFORMATION IS NOT AVAILABLE.

Name/Reference Year Size Resolution Ground truth Publicly available
Roundabout [110] 2008 1 video (93,500 frames) 360×288 N/A Yes

QMUL Junction [111] 2009 1 video (90,000 frames) 360×288 anomaly description Yes
QMUL Junction 2 [112] 2009 1 video (78,000 frames) 360×288 N/A Yes

CADP [12] 2018 1,416 videos (518,256 frames) various temporal, spatial, accident Yes
AAU traffic dataset [113] 2018 130,800 RGB-thermal image pairs 640×480 object mask (2,200 frames) Yes

TCP [14] 2018 234 videos 1280 × 720 trajectory (2618 vehicles) Yes
IITH Accident Dataset [33] 2019 127,138 frames Not provided accident (863 frames) Yes

Fedorov et al. [9] 2019 986 frames 1920×1080 object mask Yes
CAD-CVIS [108] 2019 633 videos Various accident location Yes

BrnoCompSpeed [80] 2019 18 videos 1920×1080 speed, distance measuerment Yes
BrnoCarPark [90] 2021 11 videos 1920×1080 distance measurements in the ground plane Yes

or mask annotations) that can be used to train vehicle detection
methods is still insufficient. In addition, there is only one
dataset that contains the ground-truth speed measurements. It
should be mentioned that some self-collected datasets have
been used in different studies, such as the accident detection
dataset used by Ijjina et al. [30]. However, these datasets are
not publicly available yet.

X. PERFORMANCE EVALUATION METHODS

It is crucial to evaluate the performance of different com-
ponents of visual traffic surveillance systems. In this section,
we briefly discuss the commonly used performance evaluation
methods for the main components of these systems.

A. Vehicle detection and tracking

Performance evaluation measure is critical in the research
of object detection and tracking. Different metrics have been
proposed, among which some are widely used. In object
detection, mean average precision (mAP) [115] is the most
popular evaluation metric and has been adopted by a series of
popular object detection challenges, such as the PASCAL VOC
Challenge [41] and the COCO Object Detection Challenge
[44], and most object detection papers. In the COCO Object
Detection Challenge, mean average recall (mAR) was also
adopted. In terms of multiple object tracking, the most widely
used evaluation metric is multiple object tracking accuracy
(MOTA) [116]. MOTA has a good expressiveness because it
combines false negative, false positive and ID switches, thus it
has been adopted as a main metric in MOTChallenge [117]. In
addition, the multiple object tracking precision (MOTP) [118],
which measures the average dissimilarity between all true
positives and their corresponding ground-truth targets, and
the IDF1 measure [117], which emphasizes the track identity
preservation capability over the entrie sequence, have also
been utilized in MOTChallenge [117].

However, the performance evaluation methods for existing
visual traffic surveillance systems are different from general
object detection and tracking. For example, Seong et al. [31]
used Root Mean Square Error (RMSE) to compare the position
of vehicles in each frame with the ground truth. Sochor et
al. [27] evaluated the vehicle detection and tracking perfor-
mance using the False Positives Per Minute (FPPM) and

mean recall in vehicle counting. Ren et al. [14] manually
labeled a dataset of 100 images using bounding boxes around
objects and then computed the IoU between each detected
bounding box and the ground truth. Afterwards, different
rules were set to obtain true positive, false positive, and false
negative. These values were then used to compute precision
and recall. In summary, there is no consensus on a unified
method to evaluate vehicle detection and tracking performance
in visual traffic surveillance systems.

B. Traffic camera calibration

The evaluation of traffic camera calibration methods is not
straightforward [26]. For example, Zhang et al. [102] evaluated
the calibration performance by comparing the focal length and
the first vanishing point with the ground truth. However, this
method requires to manually annotate the first vanishing point
and compute the focal length with a traditional method using
a calibration board. Therefore, this method is not feasible in
practice, where access to traffic cameras is restricted.

Camera parameters can be utilized to backproject image
points to 3D space. Therefore, the calculated Euclidean dis-
tance between backprojected points P1 and P2 (see Fig. 7)
should be similar to the actual value, if the camera parameters
are correct. Therefore, the performance evaluation of camera
calibration is usually achieved using distance measurement
[13, 26, 80, 90, 102] in real-world coordinates.

C. Speed measurement

Although various speed measurement methods have been
proposed, it was difficult to compare these methods due to the
lack of standard datasets with associated ground truth. To solve
this issue, Soochor et al. [80] created the BrnoCompSpeed
dataset that contains ground-truth speed for performance com-
parison. This dataset has been employed in several studies
[13, 35, 49, 90, 119, 120] and has almost become a standard
dataset for speed measurement performance evaluation.

D. Evaluation based on traffic simulation environment

Some researchers have proposed to use a simulation envi-
ronment, because it is easier to generate traffic videos and
ground-truth vehicle information in simulation. For example,
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Clausse et al. [21] utilized CARLA to generate traffic videos
with associated ground-truth information. They extracted vehi-
cle trajectories from these videos and evaluated the accuracy
using the ground truth. Specifically, they utilized RMSE to
compare the position, velocity, and heading of vehicles. Per-
forming evaluation using a traffic simulation environment is
promising, but the sim-to-real gap should be properly handled.

XI. FUTURE RESEARCH DIRECTIONS

A. Adopting the latest object detection and tracking methods
Object detection and tracking methods have a significant

impact on the performance of visual traffic surveillance sys-
tems. However, the commonly adopted detection and tracking
methods in existing visual traffic surveillance systems are
a bit outdated. For example, both Mask R-CNN and Deep
SORT were published in 2017. Many object detection and
tracking methods have been proposed since then. Therefore,
it would be beneficial to apply those new detection and
tracking methods to improve the performance of visual traffic
surveillance systems in the future.

B. Adopting 3D detection methods
3D bounding boxes of vehicles have been used in many

existing studies. These 3D bounding boxes are built based
on 2D detection results [13, 26], e.g., 2D bounding boxes or
masks, using traditional methods. In recent years, some deep
learning-based 3D detection methods [62, 121, 122] have been
proposed. These 3D bounding boxes might be more accurate
than those obtained using traditional methods. Therefore, it is
worth trying to adopt these 3D detection methods in visual
traffic surveillance systems.

C. Enhancing the running speed of traffic surveillance systems
Some components in visual traffic surveillance systems are

relatively time-consuming. For example, Mask R-CNN and
Deep SORT can only reach 5 and 20 FPS, respectively. Obvi-
ously, systems that adopt these methods can not meet the real-
time requirement. Therefore, improving the computing speed
is essential for real-time practical applications.

D. Deep learning-based calibration methods
Automatic camera calibration methods can improve the

generalization and scaling ability of visual traffic surveillance
systems. However, existing automatic calibration methods are
limited. Deep learning can be a potential solution for auto-
matic calibration, although related research is still in an early
stage. We expect that this will be a good research direction
and will attract more researchers in the near future.

E. Including other road users into the system
Most existing visual traffic surveillance studies only consid-

ered vehicles. However, it is also crucial to include other road
users, such as cyclists and pedestrians. This is particularly im-
portant to improve traffic safety and facilitate the development
of autonomous vehicles. For example, the motion patterns of
road users can be learned and replicated in simulations to
facilitate the training and evaluation of autonomous vehicles.

F. Handling low-resolution videos

Most existing visual traffic surveillance systems are de-
signed to work with high-resolution videos. For example,
the videos provided in the AI City Challenge for traffic
flow analysis are high-resolution (1920×1080) videos. How-
ever, many practical traffic cameras have low resolution. For
example, the resolution of the videos provided by TfL is
only 352×288. The performance of the algorithms trained
using high-resolution videos may significantly degrade when
applied to low-resolution videos. It is therefore beneficial to
devote more effort to low-resolution videos to improve the
transferability and practical implications..

G. Handling adverse weather conditions

Most aforementioned studies require good lighting and
weather conditions. Their performance may degrade signif-
icantly when adverse conditions are present. Therefore, it
would be beneficial to develop algorithms that are more robust
to these adverse conditions. A potential solution is to integrate
other types of cameras to work together. For example, thermal
cameras are insensitive to lighting conditions, thus they have
been combined with RGB cameras to assist pedestrian detec-
tion [123, 124] and object tracking [125–127]. However, they
have rarely been adopted in visual traffic surveillance systems.

XII. CONCLUSIONS

This paper presents a comprehensive review of monocular
visual traffic surveillance systems, covering three main compo-
nents, three important applications, datasets, and performance
evaluation methods. It is found that deep learning has signifi-
cantly inspired modern object detection and tracking methods,
leading to substantial performance improvements. However,
although researchers have started to develop deep learning-
based calibration methods, traditional camera calibration meth-
ods are more commonly adopted in visual traffic surveillance
systems. Therefore, it can be noted that deep learning has a
limited impact on traffic camera calibration. In addition, we
find that deep learning has enabled new applications of visual
traffic surveillance systems, such as behavior learning of vehi-
cles. Deep learning has also been applied to some traditional
applications, such as accident detection and prediction. Based
on the reviewed studies and outlined future research directions,
we expect deep learning will play a more critical role in visual
traffic surveillance systems.
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